
Improving upon HCTR and matching attacks for
Hash-Counter-Hash approach

Mridul Nandi

Indian Statistical Institute, Kolkata
mridul.nandi@gmail.com

Abstract. McGrew and Fluhrer first proposed hash-counter-hash approach to encrypt arbitrary length
messages. By its nature, counter can handle incomplete message blocks as well as complete message
blocks in the same manner. HCTR is the till date best (in terms of efficiency) strong pseudo random
permutation or SPRP among all known counter based SPRPs. But as of now, a cubic bound for HCTR
is known. Moreover, all invocations of underlying block ciphers can not be made in parallel. Our new
proposal (we call it HMC or Hash Modified Counter) provides a quadratic security bound and all block
cipher invocations are parallel in nature even if we have an incomplete message block. We also present a
prp-distinguishing attack on a generic counter based encryption, which makes q non-adaptive encryption
queries consisting of (`+1) n-bit blocks and has success probability roughly `2q2/2n. Loosely speaking,
the success probability matches with the upper bound of distinguishing probability. As a result, we
prove that the known quadratic bounds for XCB, HCH and HMC are tight.

Keywords: Strong pseudo random permutation, modes of operation, HCTR, dis-
tinguishing attack.

1 Introduction

A mode of operation is a method of constructing an encryption algorithm which can encrypt
arbitrary length messages. It uses a cryptographic object called block cipher, as an underlying
object and possibly some algebraic operations such as finite field multiplication. (Strong) Pseudo
Random Permutation or (S)PRP [12], authenticity and privacy [8] are some of the desired security
notions for symmetric key encryptions. Later, Liskov et al. [10] followed by Halevi-Rogaway [7]
considered tweakable version of length-preserving SPRP, which allows us to process associated
data or tweak as a part of the messages. Disk-encryption is one of the important application for the
length-preserving tweakable SPRP as mentioned in [7]. Motivated by disc-encryption algorithms,
there are several tweakable-SPRP proposals. We list some of these important constructions based
on three categories.

1. Hash-Encrypt-Hash: First introduced by Naor-Reingold [17, 18], consists of ECB layer between
two layers of invertible hash. Similar approach is considered in TET [5] and HEH [20], where
latter is an improvement over TET.

2. Encrypt-Mix-Encrypt: Halevi-Rogaway [7] introduced ECB, mixing and ECB approach. Some
of the constructions in this types are CMC [7], EME [6] and EME∗ [4] (modification of EME
which can encrypt arbitrary size messages).

3. Hash-Ctr-Hash: This approach is fist observed in the original proposal of XCB [15]. Later,
HCTR [22], HCH [20] and a new version of XCB with security bound [16] are of this type.
The first hash function layer is to generate counter. Based on the counter, we obtain ciphertext
except one block which is computed by using the second hash layer. In this paper, we are mainly
interested in this type of modes of operations.

1.1 Brief outline of the paper

HMC: a new hash-counter-hash encryption proposal This paper is broadly classified into
two parts. In the first part we propose an improvement over HCTR which is itself one of the most
efficient encryption algorithms. The improvement is made in efficiency as well as security. We call
this new construction as HMC or Hash Modified Counter. To be precise we modify the definition
of counter in HCTR. This is why we name it as Hash Modified Counter. We show that encryption
algorithm of HMC is more efficient than HCTR in both hardware and software (all block cipher
invocations can be made parallel for any type of messages). We also prove that HMC has quadratic
security bound, roughly `2q2/2n where ` is the number of n-bit blocks in the longest query among
all q queries. Whereas, as of now a cubic security bound σ3/2n for HCTR is known where σ = O(`q)
is the number of message blocks in all q queries.

The new construction is having similar performance as HEH when we have messages of size
multiple of n. But HMC is more efficient and suitable than HEH when we need to process messages
of size not multiple of n. We consider several issues related to modes of operations like hardware
and software efficiency, key-storage, internal storage, simplicity and security bounds. We choose one
of the efficient candidates from each class. In particular, HEH from the Hash-Encrypt-Hash type,
EME from the Encrypt-Mix-Encrypt class and HCTR from the hash-counter-hash type. A detailed
comparison among all these constructions along with the new construction HCM is provided and
comparison is mainly based on those issues.

Distinguishing attack on hash-counter-hash encryption : In the second part, we consider
the opposite direction. We first define a wide generic class of counter based encryption and then
provide a distinguishing attack which can distinguish a counter-based encryption from a random
permutation with advantage roughly `2q2/2n where q is the number of queries and ` is the number
of blocks of each query. We already know similar bound for XCB [16], HCH [2] and HMC (in this
paper) as a maximum distinguishing advantage. Thus we prove that this quadratic bound is in
fact tight. In other words, the known security bounds for these constructions can not be further
improved. As of now, this is the first result showing distinguishing attack as well as the tightness of
the bound for strong pseudorandom permutations of arbitrary length (i.e. advantage includes the
length of queries).

Organization of the paper. In section 2, we provide a brief discussion on the two underlying
function namely, hash function and counter function which have been used in hash-counter-hash
approach. In section 3, we provide our new proposal called HMC and provide a detailed comparison
with some of the best constructions known so far. In the following section, we provide the security
analysis of this new construction. We define a large class of counter based encryption algorithm
and state a quadratic distinguishing attack in section 5. Finally we conclude with possible future
research works.

2 Hash functions and Counter functions

poly hash function

We first define poly-hash [21] which is an useful algebraic object for cryptography. Let n be the
block-size of an underlying block cipher. In this paper we identify the Galois field F2n and {0, 1}n

and we use ⊕ for bit-wise xor and ∗ for the field multiplication1. We represent 0 = 0n for the
additive identity and 1 for the multiplicative identity. Let h,Xi ∈ F2n , 1 ≤ i ≤ m. We define

Hpoly
h (X1, · · · , Xm) = Xm ⊕Xm−1 ∗ h⊕ · · · ⊕X1 ∗ hm−1.

Trivially for any i ≥ 1, Hpoly
h (X) = Hpoly

h (0i, X) for all h ∈ F2n . In the following result, we state
that this is the only possibility to get same hash values with probability one. The proof is a direct
application of fundamental theorem of algebra. In this paper, we denote h to represent the uniform
random variable taking values on F∗2n := F2n \ {0}.
Lemma 1. Let X = (X1, · · · , Xm) ∈ Fm

2n and X ′ = (X ′
1, · · · , X ′

m′) ∈ Fm′
2n , X 6= X ′ and m′ ≤ m. If

X1 6= 0 then Prh[Hpoly
h (X) = Hpoly

h (X ′)] ≤ m−1
2n−1 .

Corollary 1. Let X = (X1, · · · , Xm) ∈ Fm
2n and X ′ = (X ′

1, · · · , X ′
m′) ∈ Fm′

2n such that m′ ≤ m and
X 6= X ′. Moreover, τk : Fk

2n → Fk
2n is a permutation for all k ≥ 1. Then, Prh[Hpoly

h (1, τm(X)) =
Hpoly

h (1, τm′(X ′))] ≤ m−1
2n−1 .

Horner’s rule To compute Xm ⊕Xm−1 ∗ h⊕ · · · ⊕X1 ∗ hm−1, one can use Horner’s rule.

– Y ← X1;
– for i = 1 to m− 1

Y ← (Y ∗ h)⊕Xi+1;
– end for
– return Y ;

We need m− 1 multiplication to compute the hash value. Note that, when X1 = 1 (corresponding
to monic polynomial) we do not need first multiplication in the loop. In this case we need, only
m− 2 multiplications for m ≥ 2.

Counter-function

Notations For a, b ∈ {0, 1}n, a + b is defined to be (a + b) mod 2n. We denote Xm = Xm0i

where i = n − |Xm|. If Z ∈ {0, 1}n then we denote Z ⊕ Xm for the first |Xm| bits of Z ⊕ Xm.
The n-bit standard binary representation of an integer 0 ≤ i < 2n is given by binn(i). We also
denote [a, b] = {a, a + 1, · · · , b} for two integers a ≤ b and Bin[a,b] = {binn(i) : i ∈ [a, b]}. We
simply denote Binx for Bin[0,x]. Moreover, given a set A ⊆ {0, 1}n, and S ∈ {0, 1}n we define
S ⊕A = {S ⊕ a : a ∈ A} and S + A = {S + a : a ∈ A}.

Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block-cipher (in other words, it is a keyed family of
permutation which are efficiently computable). The function EK(·) := E(K, ·) is a permutation on
{0, 1}n. Now we state two examples of counter functions which have been used in many counter
modes of encryptions such as HCTR, HCH and XCB etc.

Example 1. (Modulo Counter) CtrK,S(X2, · · · , Xm) = (C2, · · · , Cm), where Ci = EK(S+i−2)⊕Xi,
|X2| = · · · = |Xm−1| = n, |Xm| ≤ n. The set of inputs of EK for computing counter function is
S + [0,m− 2].
1 Once we fix an irreducible polynomial of degree n and the representation of F2n as {0, 1}n, field multiplication

operation on {0, 1}n are determined.

Example 2. (XOR Counter) XCtrK,S(X2, · · · , Xm) = (C2, · · · , Cm), where Ci = EK(S ⊕ binn(i −
1)) ⊕ Xi, |X2| = · · · = |Xm−1| = n, |Xm| ≤ n. Here, the sets of inputs of EK is S ⊕ Bin[1,m−1].
One can similarly define Ci = EK(S ⊕ binn(i− 2))⊕Xi, 2 ≤ i ≤ m, and hence the set of inputs is
S ⊕ Binm−2. We denote this variant of xor-counter function by XCtr′K,S .

In these above examples, S is also called as the counter for corresponding counter-function. All
inputs of EK are derived from this counter either by adding or xor-ing some distinct constants. We
state a simple and useful observation on these derived elements.

Lemma 2.
1. (S + [0, k]) ∩ (S′ + [0, k′]) 6= ∅ =⇒ (S − S′) ∈ [−k, k′].

2. (S ⊕ Bink) ∩ (S′ ⊕ Bink′) 6= ∅ =⇒ (S ⊕ S′) ∈ Binx where x = 2×max{k, k′} − 1.

Proof. The first part is straightforward from the definition of S + [0, k] and S′ + [0, k′]. We prove
the second part here. We identify n-bit binary sequences and integers in a standard way. Without
loss of generality, let us assume that k′ ≤ k. Let b denote the minimum number of bits needed to
represent k. In other words, b = blog2 kc+1. If z = binn(a)⊕binn(b) where 0 ≤ a ≤ k and 0 ≤ b ≤ k′

then z can also be represented by b bits. Hence z ≤ 2b − 1 ≤ 2k − 1 = x. Thus, S ⊕ a = S′ ⊕ a′

implies S ⊕ S′ = a⊕ a′ ∈ Binx.

Definition 1. Let Si be a random variable taking values on {0, 1}n, 1 ≤ i ≤ q. We say a q-tuple
of random variables (S1, · · · , Sq) is ε-AXU if

Pr[Si ⊕ Sj = α] ≤ ε ∀i 6= j, and ∀α ∈ {0, 1}n.

Now we prove an important result based on the above observation (Lemma 2).

Proposition 1. Let `1, · · · , `q be q positive integers and ` = maxi `i ≤ 2n/2. If (S1, · · · , Sq) is
`+1

2n−1 -AXU then the q sets, Si ⊕ Binmi−1, 1 ≤ i ≤ q are disjoint with probability at least 1− `2q2

2n .

Proof. We show that the complement probability is at most `2q2

2n . For any pair (i, i′) with i 6= i′,
we define the following collision event

Colli,i′ : (Si ⊕ Bin`i−1) ∩ (Si′ ⊕ Bin`i′−1) 6= ∅.

Thus, Colli,i′ implies Si ⊕ Si′ ∈ Bin2`−3 (from Lemma 2). Since |Bin2`−3| = 2(`− 1), Pr[Colli,i′] ≤
2(`− 1)× (`+1)

2n−1 ≤ 2`2

2n . Since there are less than q2/2 pairs of (i, i′),

Pr[
⋃

1≤i 6=i′≤q

Colli,i′] ≤ `2q2

2n
.

The complement of ∪1≤i6=i′≤qColli,i′ corresponds to the event where Si ⊕ Bin`i−1, 1 ≤ i ≤ q are
disjoint. Hence proved.

3 HMC, an improvement over HCTR

3.1 Definition of HCTR

Now we define HCTR. The other hash-counter-hash functions, for example, HCH and XCB are
described later in section 5. Let X = X1 ‖ · · · ‖ Xm−1 ‖ Xm where |X1| = · · · = |Xm−1| = m and
|Xm| ≤ n. Key-generation of HCTR is made by choosing two keys K ∈ {0, 1}κ and h ∈ {0, 1}n

uniformly and independently. h is the known as the hash-key and K is the block-cipher key.

HCTR encryption

step-1 U = Hpoly
h (X2, · · · , Xm−1, Xm, binn(|X|), X1);

step-2 V = EK(U) and S = U ⊕ V ;
step-3 (C2, · · · , Cm) = XCtrK,S(X2, · · · , Xm); (see example 2 for the definition of XCtrK,S)

step-4 C1 = Hpoly
h (C2, · · · , Cm−1, Cm, binn(|X|), V);

The final output of HCTR for the message X is (C1, · · · , Cm). The decryption of the algorithm
can be made similarly. For detail, see [22].

Observation on HCTR

The order of the blocks in the hash-input chosen in such a way (step-1 and 4) so that Horner’s
rule can be applied online. We first observe that, the second and third step have to be executed
sequentially and hence all block cipher invocations are not parallel in HCTR. Secondly, the
information of length of the input is needed for computing the hash function of HCTR. In the next
section, we propose a new counter based encryption scheme whose all block cipher invocations are
parallel and we use different hash function which does not need length of the message as an input
of the hash function.

3.2 New counter-based construction: HMC

Key-Generation. We choose block cipher key K ∈ {0, 1}κ uniformly and poly hash key h ∈ F∗2n

uniformly and independently with K.

Encryption. Let X = X1 ‖ · · · ‖ Xm−1 ‖ Xm where |X1| = · · · = |Xm−1| = m and |Xm| ≤ n.

step-1 S = Hpoly
h (1, X2, · · · , Xm, X1,0);

step-2 (C1, · · · , Cm) = MCtrK,h(S,X2, · · · , Xm); \\ (see figure 1)

MCtrK,h(S, X2, · · · , Xm)

step-3 (C2, · · · , Cm) = XCtr′K,S(X2, · · · , Xm)); (see example 2 for the definition of XCtr′K,S)
step-4 C1 = Hpoly

h

(
1, C2, · · · , Cm, EK(binn(m− 1)⊕ S)

)
.

Denote HMCEK,h(X) = (C1, · · · , Cm) where EK is the underlying block cipher. When we have
an uniform random permutation Π on the set of all permutation on n-bits, Perm(n) we denote
HMCΠ,h(X) = (C1, · · · , Cm). Similarly we denote the corresponding counter function as XCtr′Π,S .
Now we define decryption algorithm. The decryption algorithm is behaving almost same as decryp-
tion of HCTR. Here we can store h−1 along with h and K so that the computation of X1 can be
made faster.

Decryption. Let C = C1 ‖ · · · ‖ Cm1 ‖ Cm where |C1| = · · · = |Cm−1| = m and |Cm| ≤ n.

step-1 V = Hpoly
h (1, C2, · · · , Cm, C1);

step-2 S = E−1
K (V)⊕ binn(m− 1);

step-3 Xi = EK(S ⊕ binn(i− 2))⊕ Ci, 2 ≤ i ≤ m;

step-4 X1 = (h−1 ∗ S)⊕Hpoly
h (1, X2, · · · , Xm,0);

Remark 1. The set of all inputs for EK for HMCEK ,h is {S, S ⊕ binn(1), · · · , binn(m − 1)} = S ⊕
Binm−1. Thus, all m computation of EK can be made in parallel. We also have only one type of
input for EK (unlike HCTR, where we need two different types of inputs, U and the elements
derived from the counter). This helps us to get much simpler hardware design for HMC.

MCtrK,h(S, X2, · · · , Xm)

001 Sum ← h;
002 C2 ← EK(S)⊕X2;
003 for i = 3 to m
004 Ci ← EK(S ⊕ binn(i− 2))⊕Xi;
005 Sum ← (Sum⊕ Ci−1) ∗ h;
006 end for
007 C1 ← EK(S ⊕ binn(m− 1))⊕ Sum;
008 return (C1, · · · , Cm);

Fig. 1. Modified xor-Counter function. In AES pipeline implementation for EK , the line 004 and the line 005 can be
done parallel in each clock-cycle

Tweakable mode

For a tweakable mode we can compute the counter S = Hpoly
h (1, T,X2, · · · , Xm, X1,0) where T is

one block tweak. One can similarly extend for arbitrary length and in that case we need to provide
length of the tweak as an input. One can find a standard literature how to consider tweak in [10,
7, 2, 22]. As in HCH [2], we can also encrypt tweak by block cipher (when tweak has size at most
n-bits) and then we simply xor with hash value. A similar steps should be done for the second hash
layer. Security analysis for tweakable case can be done similarly. To have a simple and clear proof
to the readers we will only consider non-tweak case.

3.3 HMC is an improvement over HCTR

Table 1 is providing a comparison among EME∗, HEH, HCTR and HMC based on several efficiency
and design issues. The improvement is made in the following points.

1. all encryptions are parallel. We make all invocation of the underlying block cipher parallel
even if we need to encrypt the partial block messages. This is not present in HCTR and in

HEH (in the case of partial block messages). In fact, HMC is the first SPRP-construction which
has complete parallel invocations of block ciphers while encrypting incomplete message blocks.
Thus, a pipeline implementation of AES can make it most efficient construction so far.

2. quadratic security bound. It has quadratic security bound. In particular, we show that any
distinguisher A has advantage of distinguishing at HMC from an uniform random permutation
at most (5`2 + 1)2q2/2n, where A can make at most q queries with ` as the number of blocks of
the longest query. On the other hand, HCTR has cubic security bound. Thus, our construction
guarantees more security than HCTR.

3. simpler design. The design is simpler than HCTR (HCTR has simpler design also) and it is
broadly broken into two main steps. In first step, we compute the counter (by using only field
multiplication) and then based on the counter we compute the complete cipher text. In HCTR,
there are two types of AES inputs whereas in new construction we have only one type of AES
input. This helps us to have an efficient hardware design and fewer amounts of multiplexers.

4. a better hash function. We choose hash function different from that of HCTR. By choosing
the new hash function we do not need any information of length of the message (which we need
for HCTR and some other constructions). This helps us in two ways. Firstly, we have again a
simpler hardware design for the hash function. Secondly, we also save one multiplication which is
indeed an advantage for software implementation (for hardware, we can save one clock-cycle as
Karatsuba-Ofman [9] implementation of field multiplication needs one clock cycle.). Moreover,
we choose h as a part of the key and hence we need constant multiplier. A constant multiplier
is always having advantage in hardware implementation than variable multiplier (which is used
in one variant of HEH to save one key).

Table 1. Comparison among EME∗, HEH, HCTR and the new construction HMC. Here, [BC] denotes block cipher
invocations and [M] denotes finite field multiplication. Constant multiplier has one input as constant.

Parameter EME∗[4] HEH [20] HCTR [22] HMC

Block cipher key 1 1 1 1

Auxiliary key 2 0 1 1

computational cost 2m + m
n

[BC] (m + 1)[BC]+2(m− 1)[M] m[BC]+2m[M] m[BC]+(2m− 1)[M]

clock-cycle (32 blocks) 107 75 89 76

Block-cipher layer (enc) ≥ 3 1 (or 2 for incomplete block) 2 1

Block-cipher layer (dec) ≥ 3 1 (or 2 for incomplete block) 2 2

multiplier NO YES YES but const. YES but const.

length as input NO YES YES NO

4 Security Analysis of HMC

4.1 Security notions for length-preserving enciphering schemes

Length-preserving enciphering scheme Let A,B ⊆ {0, 1}∗. A function f : A → B is called
length-preserving if for all a ∈ A, |a| = |f(a)|. Formally, a tweakable enciphering scheme is a
function E : K × T ×M → M, where K 6= ∅ and T 6= ∅ are the key space and the tweak space

respectively such that for each key K ∈ K and each tweak T ∈ T , ET
K(·) := E(K,T, ·) : M→M

is a length-preserving permutation. The message and the cipher spaces are M. The inverse of an
enciphering scheme is D = E−1 where X = DT

K(Y) if and only if ET
K(X) = Y .

Uniform random permutation Let Perm(n) denote the set of all permutations on {0, 1}n and
Π corresponds to the uniform distribution on the set Perm(n). It is easy to see that for any distinct
x1, · · · , xσ ∈ {0, 1}n and distinct y1, · · · , yσ ∈ {0, 1}n, we have Pr[Π(x1) = y1, · · · ,Π(xσ) = yσ] =

1
N(N−1)···(N−σ+1) where N = 2n. The uniform random permutation Π is the ideal candidate for
block cipher.

Ideal enciphering schemes In what follows, by the notation X
$← S, we will denote the event

of choosing X uniformly at random from the set S when |S| is finite. Let PermT (M) denote the
set of all functions πππ : T × M → M where πππ(T , .) is a length preserving permutation. Such a

πππ ∈ PermT (M) is called a tweak indexed permutation. Here, πππ
$← PermT (M) means that for each

` such that {0, 1}` ⊆M and T ∈ T we choose a tweakable random permutation πππT from Perm(`)
uniformly and independently.

Advantage of a distinguisher An adversary A is a probabilistic algorithm which has access to
some oracles and which outputs either 0 or 1. Oracles are written as superscripts. The notation
AO1,O2 ⇒ 1 denotes the event that the adversary A, interacts with the oracles O1,O2, and finally
outputs the bit 1.

We require a block cipher E(,) to be a strong pseudorandom permutation. The advantage of
an adversary in breaking the strong pseudorandomness of E(,) is defined in the following manner.

Adv±prp
E (A) =

∣∣∣Pr
[
K

$← K : AEK(),E−1
K () ⇒ 1

]
− Pr

[
π

$← Perm(n) : Aπ(),π−1() ⇒ 1
]∣∣∣ .

For a tweakable enciphering scheme E : K×T ×M→M, we define the advantage of an adversary
A at distinguishing E and its inverse E−1 from a random tweak indexed permutation and its inverse
in the following manner.

Adv±p̃rp
E (A) =

∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣ .

(1)

We define Adv±p̃rp
E (q, σ, `) by maxAAdv±p̃rp

E (A) where maximum is taken over all distinguishers
which makes at most q queries having at most σ many blocks and maximum ` blocks in a query.

For a computational advantage we define Adv±p̃rp
E (q, σ, `, t) by maxAAdv±p̃rp

E (A). In addition to
the previous restrictions on A, he can run in time at most t.

Pointless queries: We assume that an adversary never repeats a query, i.e., it does not ask the
encryption oracle with a particular value of (T, P) more than once and neither does it ask the
decryption oracle with a particular value of (T,C) more than once. Furthermore, an adversary
never queries its deciphering oracle with (T, C) if it got C in response to an encipher query (T, P)
for some P . Similarly, the adversary never queries its enciphering oracle with (T, P) if it got P
as a response to a decipher query of (T, C) for some C. These queries are called pointless as the
adversary knows what it would get as responses for such queries.

4.2 Security analysis for complete message blocks

We first make our analysis for complete message blocks without tweak. Later we state how same
security analysis will work when a distinguisher can ask incomplete message blocks queries.

Definition 2. A tuple v = (M1, · · · ,M q, C1, · · · , Cq) is called view if M1, · · · ,M q, C1, · · · , Cq ∈
F+

2n such that M i’s are distinct and Ci’s are distinct and ||M i|| = ||Ci|| (= `i, say). We write
M i = (M i

1, · · · ,M i
`i
) where |M i

1| = · · · = |M i
`i
| = n. Similarly we denote Ci

j’s. We say that a view
is good if the collection of the following blocks are distinct :

A = {M i
j ⊕ Ci

j : 2 ≤ j ≤ `i, 1 ≤ i ≤ q.}
Now we define two class of blocks known as input blocks and output blocks. Intuitively, these are

inputs and outputs for the block ciphers when we compute the encryption values of the messages
M1, · · · ,M q and obtain responses (C1, · · · , Cq). Define, Si = Hpoly

h (1,M i
2, · · · ,M i

`i
,M i

1,0) is the
counter for the message M i. Similarly, we define V i = Hpoly

h (1, Ci
2, · · · , Ci

`i
, Ci

1) when Ci is the
ciphertext for M i (it is same as Π(Si ⊕ binn(`i − 1))).

– Inh = {Si ⊕ binn(j) : 0 ≤ j ≤ `i − 1 and 1 ≤ i ≤ q} = ∪q
i=1(S

i ⊕ Bin`i−1). It denotes the set of
all inputs for Π while computing HMCΠ,h(M1), · · · , HMCΠ,h(M q).

– Outh = A ∪ {V i : 1 ≤ i ≤ q}. This is the set of all corresponding outputs of Π.

Denote two bad events Badin and Badout as the collision in the set Inh and Outh respectively. From
corollary 1, we know that (S1, · · · , Sq) is `+1

2n−1 -universal where ` = maxi`i. Hence, by proposition
1,

Pr[Badin] ≤ ` + 1
2n − 1

× (2`− 2)×
(

q

2

)
≤ `2q2

2n
.

Similarly, V i is a non-constant monic polynomial of degree `. Moreover, for i 6= j, either V i ⊕ V j

is non-zero constant or it is the polynomial of degree at most `. Thus, Prh[V i = V j] ≤ `
2n−1 and

Pr[V i = α] ≤ `
2n−1 .

Pr[Badout] ≤ `

2n − 1
× q(σ − 1) ≤ `2q2

2n
.

Here we assume that A is derived from a good view. Let Bad = Badin ∪ Badout. Thus, Bad implies
that all inputs and outputs of Π (we assume that the underlying permutation is Π, an uniform
random permutation) are distinct. Thus,

Pr[HMCΠ,h(M1) = C1, · · · , HMCΠ,h(M q) = Cq | Bad] =
1

P(2n, σ)
≥ 1

2nσ

where σ =
∑

i `i and P(a, b) denotes the value a(a − 1) · · · (a − b + 1). We have already observed
that Prh[Bad] ≤ 2`2q2

2n . Hence we have proved that

Pr[HMCΠ,h(M1) = C1, · · · ,HMCΠ,h(M q) = Cq] ≥ 1− 2`2q2/2n

2nσ
. (2)

Now we prove the following result which says that for any distinguisher interacting with two inde-
pendent length preserving uniform random function, obtains a good view with probability at least
1− σ(σ−1)

2n+1 .

Lemma 3. AF1,F2 is a distinguisher interacting with two independent length-preserving uniform
random function. Suppose A is not making any pointless query. Let v = (M1, · · · , M q, C1, · · · , Cq)
be the view of A. Then the probability that v is good is at least 1− σ(σ−1)

2n+1

Proof. Since A is making all distinct queries, the output distribution of any query is uniformly
distributed. Hence M i

j ⊕ Ci
j are uniformly and independently distributed over {0, 1}n. Since there

are σ many blocks there is a collision with probability at most σ(σ − 1)/2n+1.

Let us denote E for the HMC based on an uniform random permutation Π and h chosen uni-
formly from {0, 1}n\{0}. Let E−1 be its inverse function. We denote F1 and F2 for two independently
distributed length-preserving uniform random functions.

Lemma 4. Let A be an adversary which do not make any pointless query. A is either interacting
with E and E−1 or F1 and F2. Now the distinguishing advantage of A is at most 5`2q2/2n+1.

Proof. Let V1 be the set of all views on which A outputs one. Let vE,E−1 denote the random
variable view which is obtained when A is interacting with E and E−1. Similarly we denote vF1,F2 .
Thus, advantage of A is Pr[vF1,F2 ∈ V1]−Pr[vE,E−1 ∈ V1]. Let V G

1 denote the set of all views from V1

which are good. Now, for all v ∈ V G
1 , we have Pr[vF1,F2 = v]−Pr[vE,E−1 = v] ≤ 2`2q2

2n ×Pr[vF1,F2 = v]
(from equation 2). By using lemma 3,

Pr[vF1,F2 ∈ V1]− Pr[vE,E−1 ∈ V1] ≤ 2`2q2

2n
+ Pr[vF1,F2 is not good] ≤ 5`2q2

2n+1
.

Theorem 1. For any q, `, we have Adv±p̃rp
E (q, σ, `) ≤ 5(`2+1)q2

2n+1 .

Proof. This is followed from above Lemma 4 and the fact that two independent length-preserving
random functions can be distinguished from an uniform length-preserving permutation and its
inverse by at most q(q − 1)/2n+1 probability (a statement with proof can be found in [7]). Thus,
Adv±p̃rp

E (q, σ, `) ≤ 5`2q2

2n+1 + q(q − 1)/2n+1 ≤ 5(`2+1)q2

2n+1 .

4.3 Security analysis in presence of incomplete message blocks

Here, we provide how one can make similar security analysis when distinguisher is allowed to
have queries of length not multiple of n. Given X = X1 ‖ · · ·Xm−1 ‖ Xm where |X1| = · · · =
|Xm−1| = n and |Xm| ≤ n. Now we define modified encryption/decryption algorithm as HMC′(X)
= HMC(X)‖ R, where R is an independently distributed string of size n− |Xm| and HMC denotes
both encryption and decryption algorithm for HMC. In other words, we add remaining n−|Xm| bits
which is uniformly and independently distributed. Similarly, we define a pair of two independent
uniform random functions F′ = (F′1, F

′
2) which returns nm bits for the query X. Distinguishing,

HMC′ from F′ is equivalent in distinguishing HMC from F. By previous section, we can prove that
all inputs and outputs of the underlying uniform random permutation are distinct with probability
at least (1− 2`2q2/N)/N . Hence, we have the following similar bound for variable length version.

Theorem 2. Let A be an adversary which do not make any pointless query. A is either interacting
with E and E−1 (with input space {0, 1}≥n) or two independent length-preserving random functions.
Now the distinguishing advantage of A is at most 5`2q2/2n+1. Hence, for any q, `, σ, we have
Adv±p̃rp

E (q, σ, `) ≤ 5(`2+1)q2

2n+1 .

5 A distinguishing attack on a wide class of counter-based encryption

5.1 C : A class of counter-based encryptions

Now we define a wide class of counter based encryption algorithms. It uses three functions H(·), S(·)
and B(·) based on secret keys. These functions satisfy some conditions (stated in the encryption
algorithm) so that decryption is also possible. In this paper, we are mainly interested on the
behavior of the function S : {0, 1}2n → {0, 1}n. We denote both function and functional value
by S. All probability calculation are based on probability distribution of the secret keys of an
enciphering scheme.

– We say that S is ε-∆ in first coordinate if for all M0 6= M ′
0 ∈ {0, 1}n and α,N ∈ {0, 1}n we have

Pr[S(M0, N)− S(M ′
0, N) = α] ≤ ε where “−” is the inverse operation of 2n-modular addition.

– Similarly, we say S is ε-AXU in first coordinate if for all M0 6= M ′
0 ∈ {0, 1}n and α, N ∈ {0, 1}n

we have Pr[S(M0, N)⊕ S(M ′
0, N) = α] ≤ ε.

Encryption E:

input. A message M = M0 ‖ M1 · · · ‖ M` with |M0| = · · · = |M`−1| = n, |M`| ≤ n and ` ≥ 0. If
` = 0, M = M0 ∈ {0, 1}n.

step-1 We compute S = S(M0, N) (called as counter) where N = H(M1, · · · ,M`) ∈ {0, 1}n.

step-2 If ` = 0, then we skip this step. Otherwise, we compute the last ` blocks of ciphertexts2 as

(C1, · · · , C`) = (EK(S1)⊕M1, · · · , EK(S`)⊕M`).

1. If Si = S ⊕ ai we say E is XOR-based encryption.
2. If Si = S + ai we say E is addition-based encryption.

step-3 The first block ciphertext C0 is computed as C0 = B(M, C1, · · · , C`). The function B and S are
defined in such a way so that S is also computable only from the ciphertext C = (C0, · · · , C`).
Moreover, M0 should be computable from the ciphertext C, (M1, · · · , M`). B can use some
intermediate computation in step-1 to make it more efficient.

Decryption E−1: We first compute the counter S from the ciphertext C (it is possible as
described in step-3 of the encryption algorithm), and based on S we compute M1, · · · ,M` where
Mi = Ci ⊕EK(Si). Finally, we can compute M0 from C and (M1, · · · ,M`) (again by requirements
of the functions S and B as mentioned in step-3). This completes the decryption. A specific method
to decrypt depends on the specification of the functions S(·) and B(·). Since we are interested in
prp-distinguishing attack which needs only encryption query, we do not go to the detail of the
decryption algorithm.

The class C1. Let C1 be the the set of all counter based encryption algorithm E defined as
above where S(·) is c/2n-∆ (or c/2n-AXU) in first coordinate if E is addition-based (or XOR-based
respectively) and c is some constant.

Fig. 2. Encryption using HCH. K is the block-cipher key and h the hash key.

Algorithm EK,h(M0, M1, . . . , M`)

1. MM ← M1 ⊕Hh(M1|| . . . ||M`);
2. CC ← EK(MM);
3. U ← MM ⊕ CC
4. S = EK(U)
5. (C1, . . . , C`−1, C`)

← CtrK,S(M1, . . . , M`);
6. C0 ← CC ⊕Hh(C1||C2|| . . . ||C`);
7. return (C0, C1, . . . , C`).

Fig. 3. Encryption using XCB. K = (K1, K2, K3) is a tuple of block-cipher keys and h the hash key.

Algorithm EK,h(M0, M1, . . . , M`)

1. S ← EK1(M1)⊕Hh(M1|| . . . ||M`);
2. (C1, . . . , C`−1, C`)

← CtrK2,S(M1, . . . , M`);
3. C0 ← E−1

K3
(S ⊕Hh(C1||C2|| . . . ||C`));

4. return (C0, C1, . . . , C`).

Examples : HCTR, HCH, XCB, HMC

We define HCH, XCB encryption algorithms in the figures 2 and 3 respectively. We define it for
without tweak. For a complete definition with tweak one can refer [2, 16]. Now we see that these
encryptions along with HCTR [22] and HMC (stated in section 3) are included in the class defined
above. The function H is nothing but different variants of poly-hash function for all four encryption
schemes. The counter S is defined as

XCB : S(M0, N) = EK(M0)⊕N ,

HMC: S(M0, N) = h ∗M0 ⊕N ,

HCTR : S(M0, N) = EK(M0 ⊕N)⊕M0 ⊕N ,

HCH : S(M0, N) = EK

(
EK(M0 ⊕N)⊕M0 ⊕N

)
.

Si’s are computed from the counter S as follows :

– In case of HCTR and HCH, Si = S⊕binn(i) and in case of HMC Si = S⊕binn(i−1), 1 ≤ i ≤ `.
We call this type of encryption as XOR-based encryption.

– In case of XCB, Si ≡ (S + i− 1) mod 2n (more precisely, mod 232 for the last 32-bits). We call
this type of encryption as addition based encryption.

Now we show that the function S(·) for the above encryptions are 2/2n-∆ or 5/2n-AXU in first
coordinate. More precisely, we have the following lemma. We denote N = 2n.

2 Recall that, EK(S`)⊕M` = EK(S`)|M`| ⊕M` where EK(S`)|M`| denotes the first |M`| bits of EK(S`).

Lemma 5. We assume that the underlying block cipher EK is an uniform random permutation and
hash key h is chosen uniformly from F∗2n. In case of HMC, HCTR and HCH, S(·) is 5/2n-AXU in
first coordinate, i.e., for all M i

0 6= M i′
0 ∈ {0, 1}n and α ∈ {0, 1}n,

Pr[S(M i
0, N0)⊕ S(M i′

0 , N0) = α] ≤ 5/2n.

For XCB, S(·) is 2/2n-∆ in first coordinate. That is, for all M i
0 6= M i′

0 ∈ {0, 1}n and α ∈ {0, 1}n,

Pr[S(M i
0, N0)− S(M i′

0 , N0) = α] ≤ 2/2n.

Proof.

XCB : One can see that there are N possible pair of values for S(M i
0, N0), S(M i′

0 , N0) such that
S(M i

0, N0) − S(M i′
0 , N0) = α. Note that, S(M i

0, N0) = EK(M i
0) ⊕ N0 and S(M i′

0 , N0) =
EK(M i′

0)⊕N0 and M i
0 6= M i′

0 . Thus, for each such choice the probability is 1/N(N − 1) (here
we assume that the underlying permutation is an uniform random permutation). So, for any
given α 6= 0 and i 6= i′, Pr[S(M i

0, N0)− S(M i′
0 , N0) = α] = 1/(N − 1) ≤ 2/N .

HMC : For any given α and i 6= i′, Pr[S(M i
0, N0) ⊕ S(M i′

0 , N0) = α] = Pr[h ∗ (M i
0 ⊕ M i′

0) = α] ≤
1/2n−1 ≤ 2/2n.

HCTR : For any given α and i 6= i′, Pr[S(M i
0, N0)⊕S(M i′

0 , N0) = α] = Pr[EK(M i
0⊕N0)⊕EK(M i′

0 ⊕N0) =
M i

0⊕M i′⊕α]. By similar argument as in XCB, one can show that Pr[EK(M i
0⊕N0)⊕EK(M i′

0 ⊕
N0) = M i

0 ⊕M i′ ⊕ α] ≤ 1/(N − 1). Hence c for HCTR is 2.

HCH : Recall that, S(M0, N0) = EK(M0 ⊕ N0 ⊕ EK(M0 ⊕ N0)). Let vi = EK(M i
0 ⊕ N0) and vi′ =

EK(M i′
0 ⊕N0). Define an event E such that all inputs of EK are distinct, i.e.,

E : M i
0 ⊕N0,M

i′
0 ⊕N0, v

i ⊕M i
0 ⊕N0, v

i′ ⊕M i
0 ⊕N0 are distinct

Given that, E is true, one can similarly prove that the conditional probability of Xi,i′ :=
EK(vi ⊕ M i

0 ⊕ N0) ⊕ EK(vi′ ⊕ M i
0 ⊕ N0) = α is 1/(N − 1) provided α 6= 0. Now, Pr[E] ≥

(N − 2)(N − 3)/N(N − 1). Thus,

Pr[Xi,i′ = α] ≤ 1−
∑

β 6=α,0

Pr[Xi,i′ = β] ≤ 1− (N − 2)2(N − 3)
N(N − 1)2

≤ 5
N

.

5.2 Some known related results on PRP-advantages

In [2], it has been shown that for any PRP-distinguisher A which makes q queries of (`+1) blocks,
the PRP-advantage for HCH based on an uniform random permutation is at most 7(`+1)2q2/2n =
O(`2q2/2n). Similar results have been shown for XCB [16] and HMC (in the section 4.2). In case
of XCB, the maximum PRP-advantage is bounded by 8q2(` + 3)2/2n and in case of HMC the
maximum advantage is bounded by 5(` + 2)2q2/2n. For HCTR, a cubic bound is known so far. In
the next section, we state a distinguisher which has the PRP-advantage Ω(`2q2/2n). By this result
we prove that Adv±p̃rp

E (q, σ, `) = Θ(`2q2/2n) where E is either HMC or XCB or HCH.

5.3 Distinguishing Attacks

Distinguisher A :

step-1 It first chooses distinct M i
0 ∈ {0, 1}n and define M i

j = 0 for 1 ≤ i ≤ q, 1 ≤ j ≤ `. Denote
M i = (M i

0,M
i
1, · · · ,M i

`).

step-2 It makes encryption queries M i for 1 ≤ i ≤ q. Let Ci = (Di, Y i) = (Di, Y i
1 , · · · , Y i

`) be the
response corresponding to the message M i where |Di| = |Y i

j | = n.

step-3 Return 1 if all Y i
j ’s are distinct for 1 ≤ i ≤ q, 1 ≤ j ≤ `. Otherwise it returns 0.

The event DIST : It corresponds to the event where Y i
j ’s are distinct for 1 ≤ i ≤ q, 1 ≤ j ≤ `

when the above distinguisher runs.

Let E ∈ C. Let p1 := Pr[DIST is true] when A1 in interacting with E and p2 denote the
probability for same event when A1 is interacting with an uniform length-preserving permutation.
By definition of advantage (see section 4), Adv±p̃rp

E (A1) ≥ |p2 − p1|. Now we compute p1 and p2

and obtains an estimate of the advantage of the given distinguisher. Let N = 2n.

An observation : When A interacts with any XOR-based encryption for the above choices of
messages we have that Y i

j = EK(Si⊕ binn(j))⊕M i
j = EK(Si⊕ binn(j)). Thus, DIST is true if and

only if Si ⊕ binn(j)’s are distinct. Even if there are `q many possible values we actually need to
compare 2`× (

q
2

)
times. This is because of the following main observation.

Si ⊕ binn(j) = Si′ ⊕ binn(j′) ⇒ (Si ⊕ Si′) = binn(j)⊕ binn(j′) ∈ {binn(k) : 0 ≤ k ≤ 2`− 1}.

One can similarly study for the modular-addition based encryption. Let N0 = Hh(0, · · · ,0). Thus,
Si = S(M i

0, N0) where M i
0’s are distinct. Since S(·) is c/2n-AXU, probability that DIST is not true

is at most 2`× (
q
2

)× c
2n . Thus we have proved the following result.

p2 := Pr[DIST is true] ≥ (1− c`q(q − 1)
N

) (3)

Computation of probability of DIST in case of an uniform random permutation

Let P be an uniform random permutation on {0, 1}n(`+1). Thus, for any distinct M1, · · · , M q ∈
{0, 1}n(`+1), the joint probability distribution of (P(M1), · · · , P(M q)) is uniform over all q distinct
n(` + 1) bits. More precisely, for any distinct C1, · · · , Cq we have

Pr[P(M1) = C1, · · · , P(M q) = Cq] =
1

P(N `+1, q)

where N = 2n. We write Ci = Di ‖ Y i where |Di| = n. Let D be the set of all q-tuples (C1, · · · , Cq)
such that the q-tuple (Y 1, · · · , Y q) has no block-wise collision. Note that,

(Y 1, · · · , Y q) has no block-wise collision =⇒ Ci’s are always distinct.

Now we see that |D| = P(N, `q)×N q. This is true since we can choose all `q blocks of Y i’s in
P(N, `q) ways and then we can choose Di’s all possible way i.e., in N q ways.

Proposition 2. Pr[DIST is true] = Pr[P(M1, · · · ,M q) ∈ D] ≤ (1 − (`q−1)`q
4N) where M1, · · · ,

M q are q distinct elements from {0, 1}n(`+1) and D is defined as above. Here, we assume that
(`q−1)`q

4N ≤ 1.

Proof. Roughly speaking, the complement is the collision event for randomly chosen `q elements.
Thus, the complement probability is the order of O(`2q2/2n). We know from the above discussion
that

p1 := Pr[P(M1, · · · ,M q) ∈ D] =
P(N, `q)×N q

P(N `+1, q)
=

∏`q−1
i=1 (1− i/N)∏q−1

i=1 (1− i/N `+1)
.

Now the term (1− i/N)/(1− i/N `+1) is less than (1− i/N + i/N `+1) for 1 ≤ i ≤ q − 1. Thus,

p1 ≤
q−1∏

i=1

(1− i/N + i/N `+1)×
`q−1∏

i=q

(1− i/N) ≤
`q−1∏

i=1

(1− i/2N).

The last inequality is true provided ` ≥ 1. Now,
∏

i(1− ai) ≤ exp(−∑
i ai) ≤ 1− 1

2 ×
∑

i ai where
0 ≤ ai ≤ 1 and

∑
i ai ≤ 1. Since we assume that (`q−1)`q

4N ≤ 1, p1 ≤ 1− (`q−1)`q
4N . Hence proved.

Combining equation 3 and proposition 2 the distinguishing PRP-advantage of A1 for a counter-
based E ∈ C1 based on c/2n-∆ or c/2n-AXU function, is at least

p2 − p1 ≥ (`q − 1)`q
4N

− c`q(q − 1)
N

≥ q2`(`− 4c)
4N

≥ `2q2

8N

provided 8c ≤ `. Since c is constant, we can choose ` more than 8c.

Theorem 3. Let E ∈ C with c/2n-function S(·) as described in the generic definition of counter
based encryption where c is a constant. Then, AdvE(q, σ, ` + 1) ≥ q2`2

2n+3 where ` ≥ 8c. Thus,

AdvE(q, σ, `) = Θ(q2`2

2n) in case of E = HMC or XCB or HCTR.

6 Conclusion

The new counter based encryption HMC is having improved performance than HCTR. Moreover,
it has quadratic security, whereas a cubic security bound for HCTR is known. Since the modified
construction has similar nature as HCTR, an important question would be to find a quadratic
security bound for HCTR. We also present a wide class of counter based encryption algorithms and
present a distinguishing attack which has quadratic advantage on this class. Thus, we can not expect
more than quadratic security from a counter based encryption. It looks possible to characterize
the counter based subclass which has exactly quadratic security bound. Outside counter based
enciphering schemes there are several good constructions with quadratic security bound. It would
be nice to find a quadratic advantage for those constructions also.

References

1. D. Chakraborty and P. Sarkar. A new mode of encryption providing a strong tweakable pseudo-random permuta-
tion. Fast Software Encryption FSE 2006, LNCS vol. 4047, Springer, pp. 293309, 2006.

2. D. Chakraborty and P. Sarkar. HCH: A new tweakable enciphering scheme using the Hash- Encrypt-Hash approach.
Advances in Cryptology INDOCRYPT 2006, LNCS vol. 4329, Springer, pp. 287302, 2006.

3. Joan Daemen and Vincent Rijmen The Design of Rijndael: AES The Advanced Encryption Standard. Springer
2002. http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf

4. S. Halevi. EME∗: Extending EME to handle arbitrary-length messages with associated data. Advances in Cryp-
tology INDOCRYPT 2004, LNCS vol. 3348, Springer, pp. 315327, 2004.

5. S. Halevi. TET: A wide-block tweakable mode based on Naor-Reingold. Advances in Cryptology 2007. Cryptology
ePrint archive, report 20007/14, 2007.

6. S. Halevi and P. Rogaway. A parallelizable enciphering mode. Topics in Cryptology CT-RSA 2004, LNCS vol.
2964, Springer, pp. 292304, 2004.

7. S. Halevi and P. Rogaway. A tweakable enciphering mode. Advances in Cryptology CRYPTO 2003, LNCS vol.
2729, Springer, pp. 482499, 2003.

8. C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology EUROCRYPT 2001.
Lecture Notes in Computer Science, vol. 2045, Springer-Verlag, 2001.

9. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers by automata. Soviet Physics-Doklady, 7:595596,
1963.

10. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. Advances in Cryptology CRYPTO 2002, LNCS
vol. 2442, Springer, pp. 3146, 2002.

11. C. M. Lopez, D. Chakraborty and F. R. Henriquez. Efficient Implementations of Some Tweakable Enciphering
Schemes in Reconfigurable Hardware. To appear in Indocrypt-2007.

12. M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM
Journal of Computing, vol. 17, no. 2, pp. 373386, 1988.

13. S. Lucks. Faster Luby-Rackoff ciphers. Fast Software Encryption 1996, LNCS vol. 1039, Springer, pp. 189203,
1996.

14. D. McGrew and S. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint archive, report
2007/298. To appear in Proceedings in Selected Areas in Cryptography.

15. McGrew and S. Fluhrer, The Extended Codebook (XCB) Mode of Operation, Cryptology ePrint Archive: Report
2004/278, October 25, 2004. http://eprint.iacr.org/2004/278

16. D. McGrew and S. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint archive, report
2007/298. To appear in Proceedings in Selected Areas in Cryptography.

17. Moni Naor and Omer Reingold. A pseudo-random encryption mode. Manuscript available from www.wisdom.
weizmann.ac.il/naor.

18. M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revisited. Journal
of Cryptology, vol. 12, no. 1, pp. 2966, 1999.

19. P. Rogaway. Authenticated-encryption with associated-data. Ninth ACM Conference on Computer and Commu-
nications Security (CCS-9). ACM Press, 2002.

20. Palash Sarkar. Improving Upon the TET Mode of Operation. Cryptology ePrint archive, report 2007/317.

21. Victor Shoup. On fast and provably secure message authentication based on universal hashing. CRYPTO-1996,
volume 1109, Lecture Notes in Computer Science, pages 313328. Springer, 1996.

22. P. Wang, D. Feng, and W. Wu. HCTR: a variable-input-length enciphering mode. Information Security and
Cryptography, CISC 2005, LNCS vol. 3822, Springer, pp. 175188, 2005.

