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Abstract. We present a public-key encryption scheme which is provably secure against adaptive chosen cipher-
text attack. The scheme is constructed using Cramer-Shoup paradigm [7]. The security of the scheme is based
on the Decisional Bilinear Diffie-Hellman problem.
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1 Introduction

Indistinguishability against adaptive chosen ciphertext attack (IND-CCA2), where an adversary is given
the capability to decrypt ciphertexts of his choice, with the exception of a target ciphertext, is considered
to be the correct notion of security for general-purpose public-key encryption schemes. In the literature,
there are a number of approaches for obtaining public key encryption schemes that are secure under this
model. Much of this work, however, has been only achieved with proofs in the random oracle model [4],
the most well-known being OAEP [3].

In the standard model, three main techniques have been proposed for constructing CCA-secure en-
cryption schemes. The first approach, by Naor and Yung [5] and subsequently by Dolev, Dwork and Naor
[1], builds IND-CCA2 secure schemes from any chosen-plaintext secure scheme (CPA-secure) and any non-
interactive zero knowledge (NIZK) proof system. The resulting schemes, however, are too inefficient for
practical use, since they use expensive NIZK proofs.

Cramer and Shoup [6] proposed the first encryption scheme that was simultaneously practical and IND-
CCA2 secure in the standard model. Subsequently, Cramer and Shoup [7] generalised their encryption
scheme by introducing the notion of hash proof systems (HPS) and gave a framework for constructing
IND-CCA2 secure schemes using HPS constructed from a general subset membership problem. They also
showed that their scheme can be regarded as a special case of their general construction.

Our contribution:
We construct a new universal2 projective hash family. Consequently, using Cramer-Shoup paradigm [7],

from this family we can easily get a public-key encryption scheme which is secure against adaptive chosen
ciphertext attack. The security of the scheme reduces to Decisional Bilinear Diffie-Hellman problem. The
underlying security assumptions of the previously constructed encryption schemes using Cramer-Shoup
paradigm are the DDH assumption, Quadratic Residuosity assumption and Paillier’s Decision Composite
Residuosity assumption. Further we observe that our scheme can be used to derive the well known (albeit,
easy) reduction ‘DBDH implies DDH’. Usually hardness of the underlying assumptions are used to prove
the security of a cryptographic protocol. On the contrary we describe a method which uses the security of
a protocol to derive this above mention reduction.
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2 Preliminaries

2.1 Notations

– Zq denotes the set of all congruence classes modulo q
– |S| denotes the cardinality of S if S is a set.
– If S is a set, x ∈R S denotes the experiment of choosing x ∈ S at random.

2.2 Bilinear Groups

We briefly review the necessary facts about the bilinear maps and bilinear map friendly groups. We use
the following notation:

1. G and G̃ are two cyclic groups of prime order q.
2. g is any non zero element of G.
3. e : G×G → G̃ a bilinear map.

We use additive notation for the group operation in G and mulitiplicative notation in G̃. Let G and G̃ be
two groups as above. A bilinear map (pairing map) is a map e : G×G → G̃ with the following properties.

1. Bilinearity: for all x, y ∈ G and a, b ∈ Z, we have e(ax, by) = e(x, y)ab.
2. Non-degeneracy: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently and there exists
a group G̃ and an efficiently computable bilinear map e : G × G → G̃ as above. Note that the map e is
symmetric since e(ag, bg) = e(g, g)ab = e(bg, ag). Examples of such maps are the (modified) Weil and Tate
pairings.

2.3 Public-Key Encryption Scheme

We recall the definition of a public-key encryption scheme and the notion of security against adaptive
chosen ciphertext attack.

A public key encryption scheme provides three algorithms:

KeyGen(l): a probabilistic, polynomial-time key-generation algorithm that on input 1l, where l ≥ 0, is
a security parameter, outputs a public-key/private-key pair (PK, SK). A public key PK specifies a
finite message space MPK .

Encrypt(PK, M): a probabilistic, polynomial-time encryption algorithm that takes as input a public-key
PK, 1l and a message M . It outputs a ciphertext.

Decrypt(SK, C): a polynomial-time decryption algorithm that takes as input a private key SK and a
ciphertext C. It outputs a plaintext message or the special symbol reject.

2.4 Adaptive Chosen Ciphertext Security(IND-CCA2)

The strongest and commonly accepted notion of security for a public key encryption system is that of
indistinguishability against an adaptive chosen ciphertext attack. This notion, denoted IND-CCA2, is
defined using the following game between a challenger and an adversary A. Both are given the security
parameter l ∈ Z+ as input.

Setup The challenger runs KeyGen(l) to obtain a random instance of public and private key pair (PK, SK).
It gives the public key PK to the adversary.



Query phase-1 The adversary adaptively issues decryption queries C where C ∈ {0, 1}∗. The challenger
responds with Decrypt(SK, C).

Challenge The adversary outputs two (equal length) messages M0,M1. The challenger picks a random
b ∈ {0, 1} and sets C∗=Encrypt(PK, Mb). It gives C∗ to the adversary.

Query Phase-2 The adversary continue to issue decryption queries C as in Phase 1, with the added
constraint that C 6= C∗. The challenger responds with Decrypt(SK, C).

Guess Adversary outputs its guess b̂ ∈ {0, 1} for b and wins the game if b = b̂.

The above game is commonly known as the IND-CCA2 game. We define the advantage of A in this game
as AdvAcca(l) = |Pr[b = b̂]− 1

2 |. An encryption system is (t, q, ε)-IND-CCA2 secure if there is no randomized
algorithm A that runs in time t, makes at most q decryption queries, and has advantage at least ε in the
IND-CCA2 game.

3 Security Assumption

Decisional Diffie-Hellman Assumption
Let G be an Abelian group of order q, where q is a large prime. Let g1 be a generator of G. Consider

the following two distributions. Let

D̂ = {(g1, g2, u1 = gr
1, u2 = gr

2)|r ∈ Zq, g2 = gw
1 , w ∈ Zq}

R̂ = {(g1, g2, u1 = gr1
1 , u2 = gr2

2 )|r1, r2 ∈ Zq, r1 6= r2, g2 = gw
1 , w ∈ Zq}

The decisional Diffie-Hellman (DDH) assumption claims that the distributions D̂ and R̂ are indistinguish-
able.
Decisional Bilinear Diffie-Hellman Assumption

Let G be a bilinear group of prime order q. Let e : G × G → G̃ be the bilinear map. The decisional
bilinear Diffie-Hellman problem in G is as follows:

Given g, ag, bg, cg ∈ G and T ∈ G̃, where a, b, c are random elements in Zq, g is random element in G,
T is random element in G̃. We say an algorithm A that outputs l ∈ {0, 1} has advantage ε in solving the
DBDH problem in G if

|Pr[A(g, ag, bg, cg, e(g, g)abc) = 0]− Pr[(g, ag, bg, cg, T ) = 0]| ≥ ε

We refer to the distribution on the left as D and the distribution on the right as R.

4 Universal Projective Hashing

In this section we review universal projective hashing introduced by Cramer and Shoup [7].

Definition 1 Let X and Π be finite, non empty sets. Let H = (Hk)k∈K be a collection of functions indexed
by K, so that for every k ∈ K, Hk is a function from X into Π. Note that we may have Hk = Hk′ for
k 6= k′. We call F =(H,K,X, Π) a hash family and each Hk a hash function.

We now introduce the concept of universal projective hashing. Let F =(H,K,X, Π) be a hash family.
Let L be a nonempty, proper subset of X. Let S be a finite, nonempty set, and let α : K → S be a function.
Set H=(H,K,X, L, Π, S, α).

Definition 2 H=(H,K,X, L, Π, S, α), defined as above, is called a projective hash family for (X, L) if for
all k ∈ K, the action of Hk on L is determined by α(k) [7].



Definition 3 Let H=(H,K,X, L, Π, S, α) be a projective hash family , and let ε ≥ 0 be a real number.
Consider the probability space defined by choosing k ∈ K at random.
Then H is said to be ε-universal1 if for all s ∈ S, x ∈ X\L and π ∈ Π, it holds that

Pr[Hk(x) = π ∧ α(k) = s] ≤ εPr[α(k) = s].

H is said to be ε-universal2 if for all s ∈ S, x, x∗ ∈ X and π, π∗ ∈ Π with x doesnot belongs to L∪{x∗},
it holds that

Pr[Hk(x) = π ∧Hk(x∗) = π∗ ∧ α(k) = s] ≤ εPr[Hk(x∗) = π∗ ∧ α(k) = s].

Definition 4 Let H=(H,K,X, L, Π, S, α) be a projective hash family. Consider the probability space de-
fined by choosing k ∈R K, x ∈R X\L and π′ ∈R Π. We say for ε ≥ 0, a real number, the above family is
ε-smooth if

|Pr[Hk(x) = π′]− 1
|Π|

| ≤ ε

4.1 Diverse Group System

Let X, L and Π be finite abelian groups, L be a proper subgroup of X.
Let Hom(X, Π) denote the group of all homomorphisms φ : X → Π. This is also a finite abelian group.

If we use additive notation for the group operation in X, L and Π then the group operation in Hom(X, Π)
is as follows. For φ, φ′ ∈ Hom(X, Π), x ∈ X, and α ∈ Z, we have (φ + φ′)(x) = φ(x) + φ′(x), (φ− φ′)(x) =
φ(x) − φ′(x), and (aφ)(x) = aφ(x) = φ(ax). The zero element of Hom(X, Π) sends all elements of X to
0 ∈ Π.

Definition 5 Let X, L, Π be as above. Let H be a subgroup of Hom(X, Π). Then G=(H,X,L,Π) is
called a group system.

Definition 6 Let G=(H,X,L,Π) be a group system. We say that G is diverse if for all x ∈ X\L, there
exists φ ∈ H such that φ(L) =< 0 >, i.e. φ vanishes on L but φ(x) 6= 0.

4.2 Subset-Membership Problem (SMP)

A subset membership problem SMP specifies a collection {instancen}n∈N such that for every n, instancen

is a probability distribution over problem instance Λ. Each Λ specifies the following:
Non-empty sets, X, L and W such that L is a proper subset of X.
A binary relation R ⊂ X ×W such that x ∈ L iff (x,w) ∈ R for some witness w ∈ W .
SMP requires that the following Probabilistic polynomial time algorithms exist.

1. Instance sampling: samples an instance Λ according to instancen on system parameter1n.
2. Subset sampling: outputs a random x ∈ L together with a witness w ∈ W for x on input 1n and

Λ[X, L, W, R].
3. Element sampling: outputs a random x ∈ X.

The SMP is said to be hard if (Λ, x0) and (Λ, x1) are indistinguishable for a random x0 ∈ L and a
random x1 ∈ X\L.



4.3 Hash proof systems

Let M be a susbet membership problem specifying a sequence (Il)l≥0 of instance distrubutions. A hash
proof system(HPS) P for M associates with each instance Λ[X, L, W, R] of M a projective hash family
H=(H,K,X, L, Π, S, α) for (X, L). Additionally, P provides several algorithms to carry out basic oper-
ations we have defined for an associated projective hash family; namely, sampling k ∈ K at random,
computing α(k) ∈ S given k ∈ K, computing Hk(x) ∈ Π given k ∈ K and x ∈ X. This later algorithm
is called private evaluation algorithm for P. Moreover, a crucial property is that the system provides an
efficient algorithm to compute Hk(x) ∈ Π, given α(k) ∈ S, x ∈ L and w ∈ W , where w is a witness for x.
This algorithm is called public evaluation algorithm for P.

4.4 Universal hash proof systems

Definition 7 Let ε(l) be a function mapping non-negetive integers to non-negetive reals. Let M be a subset
membership problem specifying a sequence (Il)l≥0 of instance distributions. Let P be an HPS for M. We
say that P is ε(l)-universal (respectively , -universal2, -smooth) if there exists a negligible function δ(l) such
that for all l ≥ 0 and for all Λ[X, L, W, R] ∈ [Il], the projective hash family H=(H,K,X, L, Π, S, α) that P
associates with Λ is δ(l)-close (see [7]) to an ε(l)-universal((respectively, -universal2, -smooth ) projective
hash family H∗=(H∗,K∗, X, L,Π, S, α∗).

Moreover, if this is the case, and ε(l) is a negligible function, then we say that P is strongly universal
(respectively, universal2, smooth).

Definition 8 For l ≥ 0 and for all Λ[X, L, W, R] ∈ [Il] an extended HPS P for M associates with Λ a
finite set E along with a projective hash family H=(H,K,X × E,L× E,Π, S, α) for (X × E,L× E). All
the related properties of HPS can similarly be defined for extended HPS.

5 The generic Cramer-Shoup scheme

We now describe the Cramer-Shoup generic mothod for constructing a secure public-key encryption scheme.
The method requires

– M, a subset membership problem
– a strongly smooth hash proof system P for M
– a strongly universal2 extended hash proof system P̂ for M

To simplyfy things, we will describe the scheme with respect to a fixed problem instance Λ[X, L, W, R].
With Λ fixed, let H=(H,K,X, L, Π, S, α) be the projective hash family that P associates with Λ, and let
Ĥ=(Ĥ, K̂,X ×Π,L ×Π, Π̂, Ŝ, α̂) be the projective hash family that P̂ associates with Λ . It is required
that Π is an abelian group, for which we use additive notation, and that elements of Π can be efficiently
added and substracted. The message space is Π.

– Key Generation Choose k ∈R K and k̂ ∈R K̂. Compute s = α(k) ∈ S and ŝ = α̂(k̂) ∈ Ŝ. Note that
all these operations can be efficiently performed using the algorithms provided by P and P̂.
The public key is (s, ŝ).
The private key is (k, k̂).

– Encryption
To encrypt a message m ∈ Π under the public key as above, one does the following. Choose x ∈R L
together with a corresponding witness w ∈ W , using the subset sampling algorithm provided by M.



Compute π = Hk(x) ∈ Π, using the public evaluation algorithm for P on inputs s, x, and w.
Compute e = m + π ∈ Π.
Compute π̂ = Ĥk̂(x, e) ∈ Π̂, using the public evaluation algorithm for P̂ on inputs ŝ, x, e, and w.
The ciphertext is (x, e, π̂).

– Decryption
To decrypt a ciphertext (x, e, π̂) ∈ X ×Π × Π̂ under a secret key as above, one does the following.
Compute π̂′ = Ĥk̂(x, e) ∈ Π̂, using the private evaluation algorithm for P̂ on inputs k̂, x, and e.
Check wheather π̂ = π̂′; if not , then output reject and halt.
Compute π = Hk(x) ∈ Π, using the private evaluation algorithm for P on inputs k and x.
Compute m = e− π ∈ Π, and output the message m.

Theorem 1. The above scheme is secure against adaptive chosen ciphertext attack, assuming M is a hard
subset membership problem.

Proof. See [7] ut

6 The Proposed Scheme

Let G, G̃ be two prime order groups and ê : G×G → G̃, a bilinear map. We use additive notation for the
group operation in G and multiplicative for G̃. Let q be the order of G, G̃, where q is a prime. Let

– Γ : G× G̃× G̃ → Z∗
q be a collision resistant hash function.

– f : G → G̃ be an efficiently computable isomorphism.

Key-Generation
Choose g0, g1, g2 ∈R G and k0, k1, k00, k01, k10, k11 ∈R Z∗

q . Compute

s0 = f(g0)k0 .ê(g1, g2)k1

s1 = f(g0)k00 .ê(g1, g2)k01

s2 = f(g0)k10 .ê(g1, g2)k11

The public-key pk=(g0, g1, g2, s0, s1, s2) and secret-key sk=(k0, k1, k00, k01, k10, k11).
Encryption

To encrypt a message m ∈ G̃,
– choose w ∈R Z∗

q

– compute (x, y)=(wg0, ê(g1, g2)w)
– compute π=sw

0

– compute e=π.m

– compute π̂=(s1.s
t
2)

w, where t = Γ (x, y, e)
– Ciphertext is (x, y, e, π̂)

Decryption
To decrypt (x, y, e, π̂) using the secret-key sk=(k0, k1, k00, k01, k10, k11),
– compute π̂′ = (f(x)k00 .yk01).(f(x)k10 .yk11)t, where t = Γ (x, y, e)
– check if π̂=π̂′; if not, then output ‘reject’ and halt.
– compute π=(f(x)k0 .yk1)
– compute m=e.π−1.



We first verify that this is an encryption scheme, in the sense that the decryption of an encryption of
a message yields the message. One can see that for a valid ciphertext (x, y, e, π̂) of the message m the
decryption algorithm first computes π̂′ which is, one can see, is equal to π̂ as follows

π̂′ = (f(x)k00 .yk01).(f(x)k10 .yk11)t

= (f(wg0)k00 .(ê(g1, g2)w)k01).(f(wg0)k10 .(ê(g1, g2)w)k11)t

= (f(g0)k00 .(ê(g1, g2))k01)w.(f(g0)k10 .(ê(g1, g2))k11)w.t

= ((f(g0)k00 .(ê(g1, g2))k01).(f(g0)k10 .(ê(g1, g2))k11).t)w

= (s1.s
t
2)

w

= π̂

Then see that

(f(x)k0 .yk1) = (f(wg0)k0 .(ê(g1, g2)w)k1)
= (f(g0)k0 .(ê(g1, g2))k1)w

= sw
0

= π

Note: The map f in scheme can be taken as follows. For fixed non-zero element g0 ∈ G, f(x) = ê(g0, x)
for all x ∈ G. This is clearly an isomorphism from G → G̃. Also ê(g1, g2) can be taken as part of pulic key.

6.1 Security

Theorem 2. Assuming the hardness of Decisional Bilinear Diffie-Hellman (DBDH) assumption the pro-
posed public-key encryption scheme is secure against adaptive chosen ciphertext attack (IND-CCA2).

Proof. To prove the security of the proposed scheme we show the scheme to be an particular instantantiation
of Cramer-Shoup paradigm. We single out the universal1 and universal2 projective hash families which build
the above scheme according to the Cramer-Shoup paradigm. ut

6.2 Security Analysis of the Proposed Scheme

As we mention earlier, we will show the proposed scheme to be an particular instantantiation of the Cramer-
Shoup generic scheme. To this end we describe the following objects essential to Cramer-Shoup paradigm
which we use in our scheme. They are

– a subset membership problem M
– a smooth projective hash family H=(H,K,X, L, Π, S, α) which can be obtained given an instance

Λ[X, L, W, R] of the subset membership problem M
– a universal2 projective hash family Ĥ=(Ĥ, K̂,X ×Π,L×Π, Π̂, Ŝ, α̂) which can be obtained given the

instance Λ[X, L, W, R]

One can observe that describing an efficient way to obtain the above objects will suffices as it gives the
required Hash Proof Systems for the paradigm. To this end we first describe the subset membership problem
and then given an instance of the subset membership problem we will construct a diverse group system.
Using this diverse group system we derive the smooth projective hash family and universal2 projective
hash family. This group theoretic method to construct the above families is due to Cramer-Shoup [7].



6.3 The Subset-Membership Problem

Let G be a bilinear group and e : G×G → G̃ be a bilinear map, where G and G̃ are groups of prime order
q. We use additive notation for G and multiplicative notation for G̃. With G, G̃, q and e given, we now
define an instance of a subset-membership problem as follows.

Let g0, g1, g2 be randomly chosen elements of G. Define X=G × G̃ and let L be the subgroup of X
generated by the element (g0, e(g1, g2)). Given an element (x0, x1) ∈ X a witness for (x0, x1) which shows
that (x0, x1) ∈ L is an element w ∈ Zq such that (x0, x1) = (wg0, e(g1, g2)w). Obviously one can efficiently
sample a random element of L together with a witness by generating w ∈ Zq at random and computing
(wg0, e(g1, g2)w).

It is clear that this defines a subset-membership problem (distinguishing between elements of L and
X\L) and we will show that the hardness of the subset-membership problem is equivalent to the hardness
of DBDH-assumption as follows.

The subset membership problem intend to distinguish tuples of the form(
g0, g1, g2, rg0, Ã = e(g1, g2)r

)
(in L)

from the tuples of the form (
g0, g1, g2, rg0, B̃ = e(g1, g2)r′)

(in X\L)

where g0, g1, g2 are randomly chosen from G and r, r′ are randomly chosen from Zq.
Now we show how to derive an instance for DBDH problem from the given tuples. We set(

g = g0, A = ag = rg0, B = bg = g1, C = cg = g2, Z = Ã
)

and (
g = g0, A = ag = rg0, B = bg = g1, C = cg = g2, Z = B̃

)
It is clear, that for Z=Ã the distribution of the corresponding tuple is from D, as Z = Ã = e(g1, g2)r

= e(bg, cg)a = e(g, g)abc. If Z=B̃, then clearly the distribution of the corresponding tuple is from R.
Conversely given a valid DBDH tuple,

(g, ag, bg, cg, e(g, g)abc)

by setting g0=g, g1=bg, g2=cg yeilds an element of the set L as follows.

(g0, g1, g2, rg0 = ag, e(g1, g2)r = e(g, g)abc)

Thus hardness of the subset-membership reduces to the hardness of DBDH problem.

6.4 Construction of Diverse Group-System

Now as we have the subset-membership problem, we construct a Diverse Group System as follows.
We set, for a fixed non-zero element g0 ∈ G, f(x) = e(g0, x) for all x ∈ G. This is clearly an isomorphism.

With X and L defined as above, set K = Zq×Zq. We define for each (k0, k1) ∈ K a map Hk0,k1 : G×G̃ → G̃
as follows.
For (x, y) ∈ X = G× G̃,

Hk0,k1(x, y) = f(x)k0yk1 .



It can be checked that the correspondence (k0, k1) → Hk0,k1 is a bijection between K and Hom(X, G̃),
the set of all group homomorphisms from X to G̃ (Its clear that Hom(X, G̃) is a group).

With H=Hom(X, G̃), we consider the group system G= (H,X,L, G̃).
Claim : G is a diverse group system.
Given G= (H,X,L, G̃) with g0, g1, g2 ∈ G, X = G × G̃ and L =< (g0, e(g1, g2)) > a subgroup of X

generated by (g0, e(g1, g2)), we set X ′ = G̃× G̃ and L′ =< (f(g0), e(g1, g2)) > a subgroup of X ′ generated
by (f(g0), e(g1, g2)).

We define H ′=Hom(X ′, G̃). It follows from [7] that the map (k0, k1) → H ′
(k0,k1), where H ′

k0,k1
(x, y) =

xk0yk1 is a 1-1 correspondence between K = Zq × Zq and H ′=Hom(X ′, G̃). So now we have the following
two group systems.

G = (H,X,L, G̃) and G′ = (H ′, X ′, L′, G̃)

We know (by [7]) that G′=(H ′, X ′, L′, G̃) is a diverse group system. We will show that G = (H,X,L, G̃)
is also diverse group system.

The map (k0, k1) → H(k0,k1), where Hk0,k1(x, y) = f(x)k0yk1 is a 1-1 correspondence between Zq × Zq

and H
Now let (x′, y′) be an element which is in X\L. Then (x′, y′) = (ag0, e(g1, g2)b) for some a 6= b, a, b ∈ Zq.

We have to show that there exists (k0, k1) ∈ Zq×Zq such that H(k0,k1)(x′, y′) = f(x′)k0 .y′k1 6= 0 but H(k0,k1)

vanishes on L. Now (f(x′), y′) = (f(g0)a, e(g1, g2)b), clearly (f(x′), y′) ∈ X ′\L′. As G′ is a diverse group
system there exists a tuple (k0, k1) ∈ Zq ×Zq such that the corresponding homomorphism H ′

k0,k1 vanishes
on L′ but H ′

k0,k1(f(x′), y′) = f(x′)k0y′k1 6= 0. Since H ′
k0,k1(f(x), y) = Hk0,k1(x, y) for all (x, y) ∈ X,

H(k0,k1) vanishes on L and H(k0,k1)(x′, y′) 6= 0.
This clearly shows that G=(H,X,L, G̃) is a diverse group system.

6.5 Construction of Smooth Projective Hash Family and Universal2 Projective Hash
Family

First we construct a 1
q -universal1 projective hash family H=(H,K,X, L, Π, S, α) given the above diverse

group system G=(H,X,L, G̃) as follows.
With H, K, X, L as above we set Π = G̃ and S = G̃. The map α : K → S is defined as follows :

α(k0, k1) = Hk0,k1(g0, e(g1, g2)) = f(g0)k0e(g1, g2)k1

where (k0, k1) ∈ K. This resulting family is a 1
q -universal1 projective hash family due to the following

thoerem.

Theorem 3. [7] Let G=(H,X,L,Π) be a diverse group system. A projective hash family derived from G
in the above fashion will be ε-universal, where ε = 1/p̃, and p̃ is the smallest prime dividing |X/L|.
In our case p̃ is actually q as |X|=q2 and |L|=q. Further one can observe that this family is 0-smooth.
We now construct a 1

q universal2 projective hash family using the above family.
Let Γ : X × G̃ → Zq be a collision resistant hash function (CRHF).

Set Ĥ=(Ĥ,K ×K, X × G̃, L× G̃, G̃, S × S, α̂).
For ((k0, k1), (k′0, k

′
1)) ∈ K ×K define Ĥ((k0,k1),(k′

0,k′
1)) ∈ Ĥ as follows,

Ĥ((k0,k1),(k′
0,k′

1))((x, y), e) = H(k0,k1)(x, y).(H(k′
0,k′

1)(x, y))t

where (x, y) ∈ X, e ∈ G̃ and Γ ((x, y), e) = t. Define the map α̂ as follows:

α̂((k0, k1), (k′0, k
′
1)) = (α(k0, k1), α((k′0, k

′
1))



where ((k0, k1), (k′0, k
′
1)) ∈ K ×K.

Theorem-3 of [7] assures that this family to be a 1
q universal2 projective hash family.

Now one can observe that these two families are used in the proposed scheme according to the Cramer-
Shoup paradigm. Hence by Theorem 1 the proposed scheme is IND-CCA2 secure provided Decisional
Bilinear Diffie-Hellman problem is hard.

7 Relation between DBDH and DDH

By saying DBDH implies DDH we mean that if there is a polynomially-bounded algorithm Addh solving
the problem DDH then we can build another polynomially-bounded algorithm Adbdh with polynomially-
bounded access to Addh which solves the problem DBDH.

Let e : G×G → G̃ be a bilinear map. It is easy to see that if DDH is easy in G̃ then the corresponding
DBDH is also easy. However, we shall obtain this, albeit easy, reduction in an indirect fashion. This is
just meant as an illustration of obtaining a reduction between two hardness assumptions. In fact, given a
DDH oracle Oddh in G̃, we shall simulate an adversary to mount an IND-CCA2 attack against our proposed
scheme with non-negligible advantage. By Theorem 2, this will show that, there is a distinguishing algorithm
for DBDH with non-negligible advantage.

7.1 Reduction

Let Oddh be an oracle for DDH.
We build a simulator(for an IND-CCA2 adversary), who in turn use the above DDH oracle Oddh, to mount
an IND-CCA2 attack against the proposed scheme with non-negligible advantage.
Let U, the user of the scheme, runs the Key-Generation algorithm as follows. It chooses k0, k1, k00, k01, k10, k11

∈R Z∗
p . It computes,

s0 = f(g0)k0 .e(g1, g2)k1

s1 = f(g0)k00 .e(g1, g2)k01

s2 = f(g0)k10 .e(g1, g2)k11

It keeps the secret key (k0, k1, k00, k01, k10, k11) to itself and issues the public-key (g0, g1, g2, s0, s1, s2) to
the simulator.
With this the simulator directly moves to the Challenge phase without carrying out phase-1 decryption-
queries.
Challenge-Phase The simulator chooses r0, r1 ∈R Z∗

p and then computes,

m0 = (f(g0)k0 .e(g1, g2)k1)r0

= sr0
0

m1 = (f(g0)k0 .e(g1, g2)k1)r1

= sr1
0

and gives m0 and m1 to the U.
Then U chooses b ∈R {0, 1} and encrypts the message mb as follows.

– choose w ∈R Z∗
p

– compute (x, y)=(wg0, e(g1, g2)w)
– compute π=sw

0



– compute e=π.mb

– compute π̂=(s1.s
t
2)

w, where t = Γ (x, y, e)
– Ciphertext is (x, y, e, π̂)

WIth the challenge ciphertext in hand the simulator once again avoids Phase-2. It moves to Guess Phase.
Guess-Phase The simulator chooses b̂ ∈ {0, 1} and computes

T1 = (f(x).y).(f(g0).e(g1, g2))rb̂

= (f(wg0).e(g1, g2)w).(f(g0).e(g1, g2))rb̂

= (f(g0).e(g1, g2))w+rb̂

Now the simulator submits the following tuple

((f(g0).e(g1, g2)), s0, T1, T2 = e)

as a DDH query to the oracle Oddh.
Now we show that the answer DDH oracle gives will clearly determine which message was encrypted.
Looking at the query tuple carefully we find,

e = π.mb

= sw
0 .mb

= (f(wg0)k0 .e(g1, g2)wk1).mb

= (f(g0)k0 .e(g1, g2)k1)w.(f(g0)k0 .e(g1, g2)k1)rb

= (f(g0)k0 .e(g1, g2)k1)w+rb

So the tuple is essentially

( (f(g0).e(g1, g2)), (f(g0)k0 .e(g1, g2)k1), (f(g0).e(g1, g2))w+rb̂ , (f(g0)k0 .e(g1, g2)k1)w+rb )

Clearly , this is a valid DDH tuple iff

w + rb̂ = w + rb i.e. iff b = b̂

Thus the DDH oracle Oddh enables the simulator to win the game (b̂ was chosen by simulator) with
non-negligible probability.

8 Conclusions

We presented a public-key encryption scheme, which is provably secure against adaptive chosen ciphertext
attack. The security of the scheme is based on the Decisional Bilinear Diffie-Hellman problem. We further
illustrate that given a DDH oracle Oddh, we simulate an IND-CCA2 game in which an adversary (using an
Oddh) has non-negligible advantage of winning the game. This shows that the DBDH assumption implies
the DDH assumption.
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