
 ID based generalized signcryption

 Sunder Lal and Prashant Kushwah
 Department of Mathematics
 Dr B. R. A. (Agra) University
 Agra- 282002 (UP) - INDIA
E-mail: sunder_lal2@rediffmail.com, pra.ibs@gmail.com

Abstract: Generalized signcryption is a new cryptographic primitive in
which a signcryption scheme can work as an encryption scheme as well
as a signature scheme. This paper presents an identity based
generalized signcryption scheme based on bilinear pairing and
discusses its security for message confidentiality non repudiation and
ciphertext authentication.

Keywords: bilinear pairings, identity based cryptography,
signcryption, generalized signcryption.

1. Introduction:
Confidentiality and authenticity are two main primitives of cryptography and realized

through encryption schemes and digital signature schemes respectively. Logically two
primitives are independent. In public key setting, the encryption uses the public key of the
receiver whereas signature uses secrete or private key of the sender. To achieve both
confidentiality and authenticity we use sign-then-encrypt approach which involves both
encryption as well as signature. In 1997, Zheng [13] gave the concept of signcryption, which
performs encryption and signature both in a single logical step. Computationally,
signcryption is more efficient than ‘sign-then-encrypt’ approach. The use of signcryption
reduces the number of steps, reduces the length of ciphertext and most importantly, it reduces
the implementation complexity by combining the two modules of encryption and signature
into a single module of signcryption. Zheng’s original signcryption scheme is discrete
logarithm based. In 1998, Zheng and Imai [14] gave a signcryption scheme based on elliptic
curves. The first identity based signcryption scheme was proposed by Malone-Lee [8] in
2002. Since then, several identity based signcryption algorithms have been proposed [2, 4, 5,
7, 8, 9]. However, not all these schemes are supported by formal models and security proofs
in the random oracle model. Boyen [2] gave the security notions for signcryption as: message
confidentiality, signature non-repudiation, ciphertext unlinkability, ciphertext authentication,
and ciphertext anonymity. Among the schemes supported by security proofs in formal
security models, Chen and Malone Lee’s proposal [4] happens to be most efficient
construction; however, it loses ciphertext unlinkability.

 All the above signcryption schemes work well when user wants both confidentiality
and authenticity. However, not all messages require both confidentiality and authenticity. If
only one of the two functionalities is required then the signcryption scheme is not efficient. In
this scenario, according to Zheng, signcryption may be replaced with signature/encryption
algorithm. Thus, to resolve the problem, we have to use three cryptographic algorithms
signcryption, encryption and signature as per need. However it may not be feasible in some
applications such as embedded systems and ubiquitous computing. In 2006, Han and Yang
[6] proposed the idea to use the same scheme as a signcryption scheme, as an encryption
scheme and as a signature scheme as per requirement. They termed the new primitive as
generalized signcryption. There scheme is based on elliptic curves. Wang et al [12]
improved upon the scheme [6] and provided security notions of generalized signcryption

 1

scheme. It is to be noted that none of these schemes is identity based. Here we propose an
identity based generalized signcryption (IDGSC) scheme.

 In IDGSC, we have three modes signcryption mode, signature-only mode and
encryption-only mode. The crucial point here is to identify the three modules. In the identity
based cryptography, to sign a message we require the information about specific sender, to
encrypt a message we require the information about specific recipient and to signcrypt a
message we require the information about both sender and receiver. Thus identity can be used
to distinguish the three cases. It is signcryption mode when both specific parties exist. It is
signature/encryption mode when one of specific parties exists. We also give the security
notions for IDGSC for message confidentiality, signature non-repudiation and ciphertext
authentication. The security of our IDGSC scheme relies on the hardness of Bilinear Diffie-
Hellman Problem (BDHP).
 This paper will organize as follows: before introducing our ID based generalized
signcryption scheme, we discuss a generalized signcryption scheme [6] in section 2. In
section 3 definition of IDGSC and security notions for IDGSC are given and section 4 give
the definition of bilinear pairings and some computational hard problem on which security of
our scheme rely. Also we proposed IDGSC scheme in section 4. In section 5 security results
are given. Before giving concluding remarks section 6 deals with the efficiency of proposed
scheme.

2. A GSC based on ECDSA
 First we describe the generalized signcryption scheme introduced by Han and Yang
[6] in 2006.
Set up: Let be an elliptic curve defined over , and let P be a point on of prime

order p. Then
qE(F) qF qE(F)

x ypP .We let (,= =O O O)O , where O is the point at infinity on elliptic curve.
 Bind is an arbitrary string involving some information about the sender and the
receiver. {0,1}* denotes the set of all binary strings and denotes the set of all n-bits
binary strings. Kenc, Ksig denotes suitable binary strings.

n{0,1}

The scheme uses four hash functions

 and

* *
qH :{0,1} ,→Z 0 1k k*

1 qH : {0,1} ,+→Z
* n

2 qH : {0,1} ,+→Z 2n kH :{0,1}K
+ {0,1} .→ Here denotes the number of bits

required to represents the binary length of the key K of keyed hash function H
0k

K, k1 is the
number of bits in the binary string Ksig, k2 is the number of bits required to represents the
elements of , is the number of bits required to represent the output of HqZ K and n is a

number of bits of a message unit. For px,0∈Z xO = O and 0P =O . Further 1 yH () =O 0 ,

, H , where 0 denotes suitable binary string of zeros. 2 xH () =O 0 (.) =0 0

Extract: Each user U randomly chooses his private key computes the public

key .

*
U R pd ∈ Z ,

P

0

U UQ d=
 In the signature-only mode (encryption-only mode) receiver (respectively sender)
does not exist. We denote this situation by taking U and dφ= φ = where 0 is the zero of pZ .
In this situation , whereO is the point at infinity on the elliptic curve. Q 0Pφ = =O

 Let the message be signcrypted by A (Alice, the sender) and
unsigncrypted by B (Bob, the receiver).

nm {0,1}∈

 2

Signcryption Unsigncryption
A uses the algorithm GSC (generalized signcry- B uses the algorithm UGSC (generalized
ption) with inputs m, and to return unsigncryption) with inputs , , and Ad BQ σ AQ
σ = (c, R,s) as follows: to return m as follows: Bd

1. Chooses 1. Recovers r from R *
R px∈ Z ,

= = 2

2. Computes 2. Computes
 (i) (i) 1 1R xP (x , y), 1r x mod q= B 2d R (x , y)=
 (ii) (ii) B 2 2xQ (x , y)= 2 2H (x) Kenc= , 1 2H (y) K Ksig= ||
 (iii) 3. Recovers (m2 2H (x) Kenc,= 1 2H (y) K Ksig= || e) c Kenc|| = ⊕
3. If takes ; else computes 4. Computes Ad 0= , s 0= e = H (m s)K′ ||

 (i) If -1
As = x (H(m) rd) mod n|| || +Bind Ksig e e , returns ;′≠ ⊥ else,

 (ii) If se = H (m s)K || 0= returns m; else,
4. Computes 5. Computes
 c (m e) Kenc= || ⊕ (i) 1

1u s (H(m))−= || ||Bind Ksig

5. Returns . (ii) (c, R,s)σ= 1
2u s r−=

 (iii) 1 2R u P u QA′ = +
 If R R′ ≠ , return ⊥ ;

 else returns m.

 Signature-only mode
Sign Verify
If A wants to only sign m, then A uses the algo- Any recipient can use the algorithm UG-
rithm GSC with inputs m, and Ad Qφ =O to re- SC with inputs m, , and to ve- AQ dφ = 0

,

= =

turn as follows: rify the signature of A as follows: σ (m, R,s)=

1. Chooses 1. Recovers r from R *
R px∈ Z

2. Computes 2. Computes
 (i) (i) 1 1R xP (x , y), 1r x mod q= x y0R (,)= =O O O

 (ii) (ii) x yx (,= =O O O O) 2 xH () =O 0 , 1 yH () =O 0

 (iii) , 3. m m2 xH () =O 0 1 yH () =O 0 = ⊕0

3. Computes 4. = H (m s)||00

 (i) 5. Computes -1
As = x (H(m) rd) mod n|| || +0 0

 (ii) (i) = H (m s)||00 1
1u s (H(m))−= || ||0 0

4. Computes (ii) 1
2u s r−=

 (i) (iii) m (m)= || ⊕0 0 A1 2R u P u Q′ = +
5. Returns . If R(m, R,s)σ= R′ ≠ , return ⊥ ;

 else returns T.

 3

 Encryption-only mode
Encrypt Decrypt
Any one can encrypt m for Bob by using algor- B uses the algorithm UGSC with inputs
tm GSC with inputs m, d and to return 0φ = BQ σ , Qφ =O , and to return m as foll- Bd
σ (c, R)= as follows: ows:

1. Chooses 1. Computes *
R px∈ Z ,

22. Computes (i) B 2d R (x , y)=
 (i) (ii) R xP= 2 2H (x) Kenc= , 1 2H (y) K Ksig= ||
 (ii) 2. Recovers (mB 2 2xQ (x , y)= e) c Kenc|| = ⊕
 (iii) 3. Computes e2 2H (x) Kenc,= 1 2H (y) K Ksig= || = H (m)′ ||K 0
3. If e es 0= , returns ;′≠ ⊥
4. Computes else returns m.
 (i) e = H (m)K || 0
 (ii) c (m e) Kenc= || ⊕
5. Returns . (c, R)σ=

3. IDGSC and its Security
 An Identity based generalized signcryption consists of the following algorithms:

Set Up: On input of a security parameter 1k the private key generator (PKG) uses this
algorithm to produce a pair (param, s), where params are global public parameters for the
system and s is the master secrete key. The public parameters include PPub, the public key of
PKG, a description of finite message space M, a description of a finite signature space S and a
description of a finite ciphertext space C.. Further, there is no need for publicly known param
to be explicitly provided as input to any other algorithm.

Extract: On input of an identity IDU and the master key s, PKG uses this algorithm to
compute secrete key corresponding to IDUS U.

GSC: Suppose Alice (IDA) wants to send a message m to Bob (IDB). On input (, IDAS B, m),
Alice uses this algorithm to produce cipher text c.

UGSC: On receiving c, Bob uses this algorithm with input (IDA, BS , c) and obtain m if c is
valid ciphertext, and the symbol if c is invalid ciphertext. ⊥

The two algorithms GSC and UGSC are such that

c =(, IDAS B, m) iff m= UGSC (IDA, BS , c).

Signature-Only mode: If Alice wants only to sign a message m, then the specific receiver
Bob does not exist. In this case BID IDφ= , GSC (AS , IDφ , m) = Sign (, m), and UGSC
(ID

AS

A, S , c) = Verify (IDφ A, m).

 4

Encryption-Only mode: If a user wants to encrypt a message for Bob, then the specific
sender Alice does not exist. In this case GSC (Sφ , IDB, m) = Enc (IDB, m), and UGSC
(, , c) = Dec (, c). IDφ BS BS

We now discuss the security model for identity based generalized signcryption
scheme.
3.1 Message Confidentiality
 The accepted notion of security with respect to confidentiality for public key
encryption is indistinguishability of encryptions under adaptive chosen ciphertext attack. The
notion of security defined in the game below is a natural adaptation of this notion for the
generalized signcryption scheme.

Game

Initial: The challenger runs Setup and gives the resulting params to the adversary. It
keeps s secrete.

k(1)

Phase1: The challenger is probed by the adversary who makes the following queries.
• Sign: The adversary submits a signer identity and a message to the challenger. The

challenger responds with the signature of the signer on the message.
• Signcrypt: The adversary submits a sender and receiver identity and a message to the

challenger. The challenger responds with the signature of the sender on the message,
encrypted under the public key of the receiver.

• Decrypt: The adversary submits a ciphertext and a receiver’s identity to the challenger.
The challenger decrypts the ciphertext under the secrete key of receiver and returns the
message.

• Unsigncrypt: The adversary submits a ciphertext and a receiver’s identity to the
challenger. The challenger decrypts the ciphertext under the secrete key of receiver. It
then verifies that the resulting decryption is a valid message/signature pair under the
public key of the decrypted identity. If so the challenger returns the message, its
signature and the identity of the signer, otherwise it returns⊥ .

• Extract: The adversary submits an identity to the challenger. The challenger responds
with the secrete key of that identity.

 At the end of phase1 the adversary outputs two identity { , } and two
messages { }. The adversary must not have made extraction query on .

AID BID

0m , m1 BID
Challenge: The challenger chooses a bit b uniformly at random. It signs bm under secrete
key corresponding to and encrypts the result under the public key of to produce
c. The challenger returns c to the adversary.

AID BID

Phase2: The adversary continues to probe the challenger with the same type of queries that
it made in the phase1. It is not allowed to extract the private key corresponding to and
it is not allowed to make a decrypt and unsigncrypt query for c under .

BID

BID
Response: The adversary returns a bit b′ . The adversary wins if b′ = b.

Definition1: Let A denote an adversary that plays the game above. If the quantity
Adv[A]= is negligible we say that the scheme is semantically secure against
adaptive chosen ciphertext attack, or IND-IDGSC-CCA2 secure.

2 Pr[b ' b] 1= −

 5

 Note that above definition deals with insider security since the adversary is assumed
to have access to the private key of the sender of a signcrypted message. This means that
confidentiality is preserved even if a sender’s key is compromised.

3.2 Signature Non-repudiation
 Regarding the property of authentication and non-repudiation, the following
definitions formalize the inability of any adversary to create a ciphertext containing a
message authenticated by some user without knowing the latter’s private key. We define the
notion of non-repudiation via the following game

Game

Initial: The challenger runs Setup and gives the resulting params to the adversary. It
keeps s secrete.

k(1)

Probing: The challenger is probed by the adversary who makes queries as in the phase1 of
the game in section 3.1.
Forge: The adversary returns a recipient identity with its PKG and a ciphertext c. Let
(m, ,) be the result of decrypting c under the secrete key corresponding to . The
adversary wins if ;

BID

AID σ BID

AID ≠ BID AID IDφ≠ ; Verify (m, ,AID σ) =F ; no extraction query
was made on ; no sign query was responded with (m, ,AID AID σ) and no signcrypt query
(m, ,) was responded to with a ciphertext whose decryption under the private key
of is (m, ,

AID B'ID

B'ID AID σ).

Definition2: Let A denote an adversary that plays the game above. If the quantity
Adv[A]=Pr[A wins] is negligible we say that the scheme is existentially unforgeable against
insider chosen message attack, or EUF-IDGSC-CMA secure.

Definition2 allows the adversary access to the secret key of the recipient of the
forgery. It is this that gives us insider security.

3.3 Ciphertext Authentication:
 Ciphertext authentication provides the guarantee to the recipient that the message was
encrypted by the same person who signed it. We define this notion via a game played by a
challenger and an adversary.

Game

Initial: The challenger runs Setup and gives the resulting params to the adversary. It
keeps s secrete.

k(1)

Probing: The challenger is probed by the adversary who makes queries as in the phase1 of
the game in section 3.1.
Forge: The adversary returns a recipient identity with its PKG and a ciphertext c. Let
(m, ,) be the result of decrypting c under the secrete key corresponding to . The
adversary wins if ;

BID

AID σ BID

AID ≠ BID AID IDφ≠ ; Verify (m, ,AID σ) =F ; no extraction query
was made on or ; and c did not result from a Signcrypt query with sender

and recipient .
AID BID

AID BID

 6

Definition3: Let A denote an adversary that plays the game above. If the quantity
Adv [A] = Pr [A wins] is negligible we say that the scheme is existentially ciphertext-
unforgeable against outsider chosen message attacks, or AUTH-IDGSC-CMA secure.

 Here we have an example of outsider security since the adversary is not able to extract
the secret key corresponding to . BID

4. Proposed IDGSC scheme
 Before we present our identity based generalized signcryption scheme, we discuss
some preliminaries.
Bilinear Pairings: Let G1 be an additive group of order q, a prime and G2 be a multiplicative
group of same order q. A function e: G1 × G1→ G2 is called a bilinear pairing if it satisfies
the following properties:
(i) , *

1 qP,Q G , a,b∀ ∈ ∀ ∈Z abe(aP,bQ) e(P,Q)=

(ii) For any point for all 1P G ,e(P,Q) 1∈ = 1Q G∈ iff P =O , the identity of G1.

(iii) There exists an efficient algorithm to compute 1.e(P,Q), P,Q G∀ ∈
Computational Diffie-Hellman Problem (CDHP): Given P, aP, bP in , for some

(unknown) , compute abP in .
1G

*
qa,b∈ 1G

Bilinear Diffie-Hellman Problem (BDHP): Given P, aP, bP, cP in , for some (unknown)

, compute in .
1G

*
qa,b,c∈ abce(P,P) 2G

Our proposed IDGSC scheme works as follows:
Setup:
 Establishes parameters G1, G2 , q, 1 1e : G G G2× → , , 1k

0 1H :{0,1} G→ 0k n
1H :{0,1} +

, , where is the number of bits required to represent an

element of G

*
qZ→ 0 1k k n

2 2H : G {0,1} + +→ 0k

1, 1k is the number of bits required to represent an identity of a user and n is a
number of bits of a message unit.
 Chooses P, a generator of cyclic group G1.
 Chooses a random s in and computes the public key of PKG, P*

qZ Pub = sP.

 The system parameter params are 1, 2, pub 0 1 2G G q,e,P,P ,n,H ,H ,H〈 〉 . Further we take

output of as bit zero string. 2H (1) 0 1(k k n)+ +

Extract: Extracts private key of the user U with 1k

UID {0,1}∈
 Computes the public key U 0 UQ H (ID)= and the private key . U US sQ=
 For signature-only mode (encryption-only mode) where receiver (sender) does not
exist, we use the key pair when U=U U(,) (Q ,S)←O O UID IDφ= where is a bits zero
string.

IDφ 1k

GSC : To send a message to Bob () in a secure and
authenticated way, Alice () does the following:

A B(S ,ID ,m) nm {0,1}∈ BID

AID

 7

1. Chooses *
R qr∈ Z

2. Computes
 (i) , where AX rP rQ= + A 0 AQ H (ID)=
 (ii) , wherePub 1 AZ rP (r h)S= + + 1 1h H (X m)= ||
 (iii) , wherePub A Be(rP rS ,Q)ω = + B 0 BQ H (ID)=
 (iv) A 2y (Z ID m) H ()= ⊕|| || ω
3. Return . c (X, y)=
 Here c is the signcryptext of message m.

UGSC On receiving the signcryptextA B(ID ,S ,c) : c (X, y)= , Bob
1. Computes
 (i) A 0 AQ H (ID=)

)

 (ii) Be(X,S)ω=
 (iii) A 2Z ID y H ()= ⊕ ω|| ||m

 (iv) 1 1h H (X m= ||
 (v) e(Z, P)
 (vi) pub 1 Ae(P , X h Q)+

2. Returns valid iff pub 1 Ae(Z,P) e(P ,X h Q)= + .

Consistency:
 B Ae(X,S) e(rP rQ ,sQ)= + B

 = r
A Be(P Q ,sQ)+

 = r
A Be(sP sQ ,Q)+

 = r
Pub A Be(P S ,Q)+

and
 pub 1 Ae(P , X h Q)+ = A 1 Ae(sP, rP rQ h Q)+ +

 = 1 Ae(P, rsP (r h)sQ)+ +
 = Pub 1 Ae(P, rP (r h)S)+ +
 = = e(P, Z) e(Z, P)

 Once Bob has recovered m and Z, he can prove to a third party that (Z, X) is a valid
signature of Alice on m. Third party can compute 1 1h H (X m)= || and then can verify
that pub 1 Ae(Z,P) e(P ,X h Q)= + .

Signature-only mode: GSC (AS , IDφ , m) = Sign (, m) AS

 If Alice only wants to sign , then she nm {0,1}∈

1. Chooses *
R qr∈ Z

2. Computes
 (i) , where AX rP rQ= + A 0 AQ H (ID)=

 8

 (ii) , wherePub 1 AZ rP (r h)S= + + 1 1h H (X m)= ||

 (iii) r
Pub A1 e(P S ,)= + O

 (iv) , and A AZ ID m (Z ID m) H (1)= ⊕|| || || || 2

3. Return . A(Z ID m, X)σ = || ||
Here is the signature on message m. σ

UGSC (IDA, ,) = Verify (IDIDφ σ A,σ)
 Any one can verify the signature on m by
computing
 (i) A 0 AQ H (ID=)

2

)

 (ii) 1 e (X,)= O
 (iii) A AZ ID Z ID H (1)= ⊕|| ||m || ||m

 (iv) 1 1h H (X m= ||
 (v) e(Z, P)
 (vi) pub 1 Ae(P , X h Q)+

and concluding that is valid iff σ pub 1 Ae(Z,P) e(P ,X h Q)= + .

Encryption-only mode: GSC (, IDIDφ B, m) = Enc (IDB, m)

 If user wants to send a message in a secure manner to Bob then he/she nm {0,1}∈

1. Chooses *
R qr∈ Z

2. Computes
 (i) X = rP+O rP=
 (ii) = +(r+hPubZ rP= PubrP 1)O , where 1 1h H (X m)= ||
 (iii) =Pub Be(rP ,Q)ω = Pub B e(rP ,Q)+O , where B 0 BQ H (ID)=
 (iv) 2y (Z ID m) H ()φ= ⊕|| || ω

)

3. Return as the ciphertext of message m. c (X, y)=

UGSC (, ,c) = Dec (,c) IDφ BIDd BS
 On receiving ciphertext c (, Bob X, y)=
1. Computes
 (i) Be(X,S)ω=
 (ii) 2Z ID y H ()φ = ⊕ ω|| ||m

 (iii) 1 1h H (X m= ||
 (iv) e(Z, P)
 (v) pub 1e(P ,X h)+ O

2. Accepts m as plaintext iff . pub 1e(Z,P) e(P ,X h)= + O

5. Security:
 In this section we state the security results for the IDGSC scheme under the definition
of section 4. The proofs are suitable modification in the proofs in [4].

 9

 All our security results are based on the Bilinear Diffie-Hellman Problem (BDHP)
defined in section 5. Our results assume that the hash functions and in the
IDGSC scheme are all random oracles. In each of the results below we assume that the
adversary makes queries to for i= 0, 1, 2. The number of sign, signcrypt, decrypt and
unsigncrypt queries made by the adversary are denoted by and respectively.

0H , 1H 2H

iq iH

sq , scq , dq uq

5.1 Theorem (Message Confidentiality)
 If there is an IND-IDGSC-CCA2 adversary A of IDGSC that succeeds with
probabilityε , then there is a simulator B running in polynomial time that solves the BDHP
with probability at least

 s 1 s sc sc 1 s sc

0 2

q (q q q) q (q q q) 11 1q q
+ + + +⎛ ⎞ ⎛− −⎜ ⎟ ⎜

⎝ ⎠ ⎝
ε�· · q q

⎞
⎟
⎠
·

5.2 Theorem (Signature Non-repudiation)
 If there is an EUF-IDGSC-CMA adversary A of IDGSC that succeeds with
probabilityε , then there is a simulator B running in polynomial time that solves the BDHP
with probability at least

 s 1 s sc sc 1 s sc
2 2
0 1 s sc

q (q q q) q (q q q) 11 1q q 4q (q q q)
+ + + +⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ + +⎝ ⎠ ⎝ ⎠

ε�
2 2

· · ·

5.3 Theorem (Ciphertext Authentication)
 If there is an AUTH-IDGSC-CMA adversary A of IDGSC that succeeds with
probabilityε , then there is a simulator B running in polynomial time that solves the BDHP
with probability at least

 s 1 s sc sc 1 2 s sc

0 0 sc u 2 sc

q (q q q) q (q q q 2q) 11 1q q q (q 1)(q q)(q q)
+ + + + +⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ − + +⎝ ⎠ ⎝ ⎠

ε�· · ·

5.4 Lemma 1: If there is a EUF-IDGSC-CMA adversary A of IDGSC in signcryption mode
that succeeds with probability withε , then there is a EUF-IDGSC-CMA adversary of IDGSC
in signature-only mode that succeeds with probability at leastε .

5.5 Lemma 2: If there is an IND-IDGSC-CPA adversary of IDGSC in signcryption mode
that succeeds with probability withε , then there is an IND-IDGSC-CPA adversary of IDGSC
in encryption-only mode that succeeds with probability at least .

A

ε

Remark:

Our scheme is a combination of Malone-Lee [8] and Chen and Malone-Lee [4]
signcryption schemes. In the signature-only mode it reduces to a modified form of Cha-
Cheon signature scheme. In the encryption-only mode it reduces to Boneh-Frankline [1] basic
encryption scheme, which is chosen plaintext secure.

Boyen [2] gave three additional security notions ciphertext unlinkability, ciphertext
authentication and ciphertext anonymity for identity based signcryption schemes. Like the
scheme in [4], this scheme too does not possess the ciphertext unlinkability. Also we use
identities of sender and receiver as the identifier of signature-only mode and encryption-only
mode. Hence the concept of ciphertext anonymity does not exist.

 10

6. Efficiency and Comparisons:
 The idea of generalized signcryption is to reduce implementation complexity (same
algorithm for encryption, signature and signcryption). It may not reduce the computational
complexity. However, the communication complexity in encryption-only mode and
signature-only mode may increase a bit. In our scheme, the signcryption mode is as efficient
as [4]. This is an additional advantage of our scheme.
 In Table 1 we assess the comparative efficiency of some identity based signcryption
schemes. Table 1 summarizes the number of relevant basic operations underlying the some
identity based signcryption, namely scalar multiplication (G1mls.) exponentiation (G2 exps.)
and pairing evaluation (e cps.).

 Sign/Encrypt Decrypt/Verify Signcryption schemes
G1
mls

G2
exps

e cps G1
mls

G2
exps

e cps

Malone-Lee [8]
Nalla-Reddy [9]
Libert-Quisquater[7]
Chen-J.M. Lee [4]
X. Boyen [2]
Our scheme

 3
 2
 2
 3
 3
 3

 ⎯
 1
 ⎯
 ⎯
 1
 ⎯

 1
 1
 2
 1
 1
 1

 1
⎯
 1
 1
 2
 1

 ⎯
 1
 ⎯
 ⎯
 ⎯
 ⎯

 3
 3
 4
 3
 4
 3

 Table 1

Conclusion: In this paper, we proposed an identity based generalized signcryption scheme.
To achieve our goal of generalized signcryption we use a variant of Cha-Cheon [3] signature
scheme. We also compare the efficiency of our scheme with several signcryption schemes.

Reference:
1. D. Boneh and M. Franklin: Identity–based encryption scheme from Weil pairing.

CRYPTO 2001, LNCS # 2139, Springer-Verlag, 2001, 213-229.
2. X. Boyen: Multipurpose Identity based signcryption: A Swiss army knife for identity

based cryptography. CRYPTO 2003, LNCS # 2729, Springer-Verlag, 2003, 389-399.
3. J.C. Cha and J.H. Cheon: An identity-based signature from Gap Diffie-Hellman Groups.

PKC-2003, LNCS # 2567, Springer-Verlag, 2003, 18-30.
4. L. Chen and J. Malone-Lee: Improved Identity-based signcryption. PKC 2005, LNCS #

3386, Springer-Verlag, 2005, 362-379.
5. S. S. M. Chow, S. M. Yiu, L. C. K. Hui and K. P. Chow: Efficient forward and provably

secure ID based signcryption scheme with public verifiability and public cipher text
authenticity. ICISC’2003, LNCS # 2971, Springer-Verlag, 2003, 352-369.

6. Y. Han and X. Yang: ECGSC: Elliptic curve based generalized signcryption scheme.
Cryptology ePrint Archive, Report 2006/126, 2006, http:/eprint.iacr.org/.

7. B. Libert and J.J. Quisquater: New Identity based signcryption schemes from pairings.
IEEE Information Theory Workshop, Paris (France) 2003.

8. J. Malone-Lee: Identity based signcryption. Cryptology ePrint Archive, Report 2002/098,
2002, http:/eprint.iacr.org/.

9. D. Nalla and K.C. Reddy: Signcryption scheme for identity based cryptosystems.
Cryptology ePrint Archive, Report 2003/066, 2003, http:/eprint.iacr.org/.

10. D. Pointcheval and J. Stern: Security arguments for digital signature and blind signature.
Journal of cryptology, 13(3): 361-396, 2000.

 11

11. A. Shamir: Identity-based cryptosystems and signature schemes. CRYPTO 84, LNCS #
196, Springer-Verlag, 1984, 47-53.

12. X. Wang, Y. Yang and Y. Han: Provable secure generalized signcryption. Cryptology
ePrint Archive, Report 2007/173, 2007, http:/eprint.iacr.org/.

13. Y. Zheng: Digital signcryption or How to Achieve cost (Signature & Encryption) << cost
(Signature) + cost (Encryption). CRYPTO’97, LNCS # 1294, Springer-Verlag, 1997,
165-179.

14. Y. Zheng and H. Imai: How to construct efficient signcryption schemes on elliptic curves.
Information Processing Letters 68(5), 1998.

 12

Appendix:
Proof of Theorem 5.1:
 We will show how an IND-IDGSC-CCA2 adversary A of IDGSC may be used to
construct a simulator B that solves the BDHP. Let (be the instant of the BDHP
that we wish to solve.

P,aP, bP,cP)

 The simulator runs A with =Ppub bP . It also creates algorithms to respond to
queries made by A during its attack. To maintain consistency between queries made by ,
the simulator keeps the following lists: for

A
iL i 0,1, 2= of data for query/response pairs to

random oracle of signcryptions generated by the simulator; of signatures
generated by the simulator; of some of the queries made byA to decrypt oracle and of
some of the queries made by to unsigncryption oracle. We describe how runs phase1 of

 attack below.

iH ; scL sL

dL uL
A B

'sA

Simulator: 0 UH (ID)
 At the beginning of simulator choose iβ uniformly at random from {1, …, }. We
show how to respond to the i

0q
th query made by A below. Note that we assume that A does

not make repeat queries.
─ If i = i then respond with = aP and set β 0 UH (ID) IDβ= . UID

─ Else chooses x uniformly at random from , compute *
q UQ xP= ; compute ;

store (, , x) in and respond with
US PubxP=

UID UQ , US 0L UQ .

Simulator: 1H (X m)||

─ If (, ∈ for some , returns . X m|| 1h) 1L 1h 1h

─ Else choose uniformly at random from ; add (,) to and returns . 1h *
q X m|| 1h 1L 1h

Simulator: 2H ()ω
─ If (, ∈ for some , return ω 2h) 2L 2h 2h .

─ Else choose uniformly at random from 2h 0 1k k n{0,1} + + ; add (ω ,) to and return 2h 2L 2h .

Simulator: Extract U(ID)
 We will assume that A makes the query before it makes the extraction
query for .

0 UH (ID)

UID
─ If = abort the simulation. UID IDβ

─ Else search for the entry (, , x) corresponding to and return 0L UID UQ , US UID US .

Simulator: Sign 1(m, ID , ID)φ
 We will assume that A makes the queries before it makes a sign query on
message m using this identity. We have following cases to consider

0 1H (ID)

 13

Case1: 1ID IDβ≠

─ Find the entry (, , x) in 1ID 1Q , 1S 0L

─ Choose r uniformly at random from and compute *
q 1X rP rQ= +

─ Compute (where is the simulator above) 1 1h H (X m= ||) 1H
─ Compute Pub 1 1Z rP (r h)S= + +
─ Compute Pub 11 e(rP rS ,)= + O
─ Compute (where is a zero string of length

)
1 2 1Z ID m H (1) (Z ID m)= ⊕|| || || || 2H (1)

0 1k k n+ +
─ Return (X,) 1Z ID m|| ||

Case2: 1ID IDβ=

─ Choose r, uniformly at random from 1h *
q

─ Compute X = rP 1h Qβ− and PubZ rP=

─ Add (,) to X m|| 1h 1L
─ Compute 1 e (X,)= O
─ Compute (where is a zero string of length

)
2Z ID m H (1) (Z ID m)β = ⊕|| || || ||β 2H (1)

0 1k k n+ +
─ Return (X,) Z ID mβ|| ||

Simulator: Signcrypt 1 2(m, ID , ID)
 We will assume that A makes the queries and before it makes a
signcryption query on message m using these identities. We have following cases to consider

0 1H (ID) 0 2H (ID)

Case1: 1ID IDβ≠

─ Find the entry (, , x) in 1ID 1Q , 1S 0L

─ Choose r uniformly at random from and compute *
q 1X rP rQ= +

─ Compute (where is the simulator above) 1 1h H (X m= ||)

1

s

1H
─ Compute Pub 1 1Z rP (r h)S= + +
─ Compute (where is the simulator above) 2Q = 0 2H (ID) 0H
─ Compute Pub 1 2e(rP rS ,Q)ω = +
─Compute (where is the simulator above) 2y H () (Z ID m)= ω ⊕ || || 2H
─ Return (X, y).
Case2: 1ID IDβ=

─ If for m then 1(m, ID , X, Z, r, h) Lβ ∈

• Find the entry (, , x) in 2ID 2Q , 2S 0L
• Compute 2e(X,S)ω =
• Compute (where is the simulator above) 2y H () (Z ID m)β= ω ⊕ || || 2H
• Return (X, y)

─ Else choose r, uniformly at random from 1h *
q

 14

• Compute and X = rP 1h Qβ− PubZ rP=
• Add (,) to X m|| 1h 1L
• Find the entry (, , x) in 2ID 2Q , 2S 0L
• Compute 2e(X,S)ω =
• Compute (where is the simulator above) 2y H () (Z ID m)β= ω ⊕ || || 2H
• Return (X, y)

Simulator: Decrypt 2(X, y) ID
 We will assume that A makes the queries before it makes a decryption
query for . We have following cases to consider

0 2H (ID)

2ID
Case1: 2ID IDβ≠

─ Find the entry (, , x) in 2ID 2Q , 2S 0L
─ Compute 2e(X,S)ω =
─ If , return . Else 2Lω∉ ⊥ 1Z ID m y H ()2= ⊕ ω|| || (where is the simulator above) 2H
─ If , return . Else = O 1ID IDφ≠ ⊥ 1Q
─ If return . Else return m, (X, Z), e(Z, P) ≠ Pube(P ,X) ⊥ IDφ .
Case2: = 2ID IDβ

 Step through the list with entries (2L ω ,) as follows 2h
─ Compute 1 2Z ID m y h= ⊕|| ||

─ If , move to the next element in and begin again 1ID ≠ IDβ 2L
─ If set 1ID IDφ= 1Q =O

─ Check that and if not move to the next element in and begin again e(Z,aP)ω = 2L
─ Check that = , if so return m, else move to the next element in e(Z, P) Pube(P ,X) 2L
─ If no message has been returned after stepping through return 2L ⊥ .

Simulator: Unsigncrypt (X, y), 2ID
 We will assume that A makes the queries before it makes an
unsigncryption query for . We have following cases to consider

0 2H (ID)

2ID
Case1: 2ID ≠ IDβ

─ Find the entry (, , x) in 2ID 2Q , 2S 0L
─ Compute 2e(X,S)ω =
─ If , return . Else 2Lω∉ ⊥ 1Z ID m y H ()2= ⊕ ω|| || (where is the simulator above) 2H
─ If = , = or , return 1ID IDφ 1ID 2ID 1ID 0L∉ ⊥ . Else = 1Q 0 1H (ID)
─ If , return . Else X m|| ∉ 1L ⊥ 1 1h H (X m)= || (where is the simulator above) 1H
─ If return e(Z, P) ≠ Pub 1 1e(P ,X h Q)+ ⊥ . Else return m, (X, Z), . 1ID
Case2: = 2ID IDβ

 Step through the list with entries (2L ω ,) as follows 2h
─ Compute 1 2Z ID m y h= ⊕|| ||

 15

─ If = or = ID , move to the next element in and begin again 1ID IDφ 1ID β 2L
─ If let = and find in , else move to the next element in 1ID ∈ 0L 1Q 0 1H (ID) 1S 0L 2L
─ Check that and if not move to the next element in and begin again 1 1e(Z h S ,aP)ω = − 2L

─ Check that = , if so return m, else move to the next element in Le(Z, P) Pub 1 1e(P ,X h Q)+ 2

─ If no message has been returned after stepping through return 2L ⊥ .

 At the end of phase1 the adversary outputs two identities { , } and two
messages { }. If

AID BID

0m , m1 BID ≠ IDβ , aborts the simulation. Otherwise it chooses

y*∈ and sets X*= cP. It returns the challenge ciphertext to A .
The queries made by A in phase2 are responded to in the same way as those made by A in
phase1.

B
0 1k k n{0,1} + + * (X*, y*)σ =

 At the end of phase2, A outputs a bit b. The simulator ignores this bit. It chooses
some at random from as its guess at the solution of the BDHP . We call
this event ch

ω 2L (P,aP, bP,cP)
1. Let us now consider how our simulation could fail when it execute phase1 of

’s attack i.e. what events could cause A ’s view to differ when run by B from its view in
a real attack. We call such an event error and denote it ER.
A

 It is clear that the simulations for and are indistinguishable from genuine
random oracles. Since they are only define at points where they are called by A or .

0H , 1H 2H
B

 Let us now consider how the simulation for sign could fail. We denote such an event
S-ER. The most likely failure will caused by the sign simulator responded to a query of the
form case2 (see simulator). The only possibility for introducing an error here defining

 where it is already defined. Since X takes the values uniformly at random in 1H (X m)|| P〈 〉 ,
the chance of these event occurring is most 1 s sc(q q q) q+ + for each query. The and
comes from the fact that the signing and signcryption simulator adds elements to
Therefore over the whole simulation, the chance of an error introduced in this way is at most

sq scq

1L .

 s 1 s scq (q q q)
q

+ + .

With the similar argument the chance of an error introduced in signcrypt simulator is at most

 sc 1 s scq (q q q)
q
+ +

we denote an error in the signcryption simulator by SC-ER.
 Also the decrypt and unsigncrypt simulators are indistinguishable from genuine
random oracles. The final simulator to consider is the extract simulator. Looking at the
simulator we see that it chooses one query made by the adversary and responds to this
with group elements from the BDHP instance that it is trying to solve. The simulator hopes
that this will be the identity chosen by A for the recipient in the challenge. This will be the
case with probability at least

0H

0H

0

1
q

 If this is not the case we say that an error has occurred in the extract simulator
because, if the adversary tried to extract the private key for this identity the simulator would
abort. An error in the extract simulator is denoted by E-ER.

 16

 Let us now consider what errors that could be when execute phase2 of A . All the
same errors are possible, in addition the simulator will fail if the adversary makes the

query with . However if A has any advantage it must make this query, and
once it has done so we have trapped it into leaving enough information in to solve the
BDHP.

B
2H

abc(P,P)ω=

2L

 Let Ask be the event that a query related to is issued at some point. 2H abc(P,P)ω=

 Pr[b ' b] Pr[b ' b Ask]Pr[Ask] Pr[b ' b Ask]Pr[Ask]= = = + = ¬ ¬| |
 P r[Ask] Pr[b ' b Ask](1 Pr[Ask])≤ + = ¬ −|
 Pr[b ' b Ask] (1 Pr[b ' b Ask]) Pr[Ask]= = ¬ + − = ¬| | ·
Clearly Pr[b ' b Ask]= ¬| 1

2= . Hence

 1 1 1 Pr[Ask]2 2 2
+

≤ +
ε

 Pr[Ask] ≥ ε
Thus we have
 1Adv[] Pr[Ask S ER SC ER E ER ch]B ≥ ∧¬ − ∧¬ − ∧¬ − ∧

 ≥ s 1 s sc sc 1 s sc

0 2

q (q q q) q (q q q) 11 1q q
+ + + +⎛ ⎞ ⎛− −⎜ ⎟ ⎜

⎝ ⎠ ⎝
ε�· · q q

⎞
⎟
⎠
·

as required.

Proof of Theorem 5.2:
 We are going to use the “forking lemma” technique of Pointcheval and Stern [10] to
prove our result. We will in fact reduce the standard Diffie-Hellman problem (DHP) to the
problem of forging. Since a black box for the DHP is sufficient to solve the BDHP the result
will follow. We will now show how a EUF-IDGSC-CMA adversary A of IDGSC may be
used to construct a simulator B that solves the DHP. Let (P be the instant of the
DHP that we wish to solve. The simulator runs in three stages: , and .

, aP, bP)

1B 2B 3B

 The simulator runs with PKG public key =1B A Ppub bP . It also creates algorithms
to respond to queries made by A during its attack. To maintain consistency between queries
made by , the simulator keeps lists as in the proof of Theorem 1. A

Simulator: 0 UH (ID)
 At the beginning of simulator choose uniformly at random from {1, …, }. We
show how to response to the i

ai 0q
th query made by A below. Note that we assume that A does

not make repeat queries.

─ If i = then respond with = aP and set = . ai 0 UH (ID) AID UID

─ Else chooses x uniformly at random from , compute *
q UQ xP= ; compute ;

store (, , x) in and respond with
US PubxP=

UID UQ , US 0L UQ .

Simulator: and as in the proof of Theorem 1. 1H (X m)|| 2H ()ω

 17

Simulator: Extract U(ID)
 We will assume that A makes the query before it makes the extraction
query for .

0 UH (ID)

UID

─ If = abort the simulation. UID AID
─ Else search for the entry (, , x) corresponding to and return 0L UID UQ , US UID US .

Simulator: Sign 1(m, ID , ID)φ
 We will assume that A makes the queries before it makes a sign query
using this identity. We have following cases to consider

0 1H (ID)

Case1: 1ID ≠ AID
 Use the simulation from case1 of sign in the proof of Theorem 1.
Case2: 1 AID ID=
 Use the simulation from case2 of sign in the proof of Theorem 1 by replacing IDβ by

 and by AID Qβ AQ .

Simulator: Signcrypt 1 2(m, ID , ID)
 We will assume that A makes the queries and before it makes a
signcryption query using these identities. We have following cases to consider

0 1H (ID) 0 2H (ID)

Case1: 1ID ≠ AID
 Use the simulation from case1 of signcrypt in the proof of Theorem 1.
Case2: 1 AID ID=
 Use the simulation from case2 of signcrypt in the proof of Theorem 1 by replacing

 by and by IDβ AID Qβ AQ .

Simulator: Decrypt 2(X, y) ID
 We will assume that A makes the queries before it makes a decryption
query for this identity. We have following cases to consider

0 2H (ID)

Case1: 2ID ≠ AID
 Use the simulator from case1 of decrypt in the proof of Theorem 1.
Case2: 2 AID ID=
 Use the simulation from case2 of decrypt in the proof of Theorem 1 by replacing IDβ
by and by AID aP AQ .

Simulator: Unsigncrypt 2(X, y) ID
 We will assume that A makes the queries before it makes an
unsigncryption query for this identity. We have following cases to consider

0 2H (ID)

Case1: 2ID ≠ AID
 Use the simulator from case1 of unsigncrypt in the proof of Theorem 1.

 18

Case2: 2 AID ID=
 Use the simulation from case2 of unsigncrypt in the proof of Theorem 1 by replacing

 by and by IDβ AID aP AQ .

 Let us now consider how our simulation could fail i.e. what events could cause A ’s
view to differ when run by from its view in a real attack. We call such an event error and
denote it ER. It is clear that the simulations for and are indistinguishable from
genuine random oracles. Since they are only defines at points where they are called by A or

.

1B

0H , 1H 2H

1B
 Let us now consider how the simulation for sign and signcrypt could fail. The analysis
of these case are identical to the equivalent cases in Theorem 1. An error is therefore
introduced in sign and signcrypt simulator respectively with probability at most

 s 1 s scq (q q q)
q

+ +
 and sc 1 s scq (q q q)

q
+ +

 (1)

 Also the decrypt and unsigncrypt simulators are indistinguishable from genuine
random oracles. The final simulator to consider is the extract simulator. Note that the
adversary will only succeed in its task with non-negligible probability if it queries with
identity under which the message contained in the ciphertext it returns is signed. Looking at
the simulator we see that it chooses one query made by the adversary and responds to
this with group elements from the DHP instance that it is trying to solve. The simulator hopes
that this will be the signer identity for the ciphertext it returns. This will be the case with
probability at least

0H

0H 0H

0

1
q (2)

 If this is not the case we say that an error has occurred in the extract simulator
because, if the adversary tried to extract the private key for this identity the simulator would
abort.

 Now from (1) and (2), it is clear that with probability grater or equal to

 s 1 s sc sc 1 s sc

0

q (q q q) q (q q q) 11 1q q
+ + + +⎛ ⎞ ⎛− −⎜ ⎟ ⎜

⎝ ⎠ ⎝
ε�· · q

⎞
⎟
⎠
· (3)

the simulator obtains from the adversary a recipient identity and a ciphertext c such that,
if (m, ,) is the result of decrypting c under the secrete key corresponding to ,
Verify (m, ,)= . Note that, since we are assuming that A has been successful,

 and so we can use the decryption process of the simulator. Also, if = (X, Z)
then, except with negligible probability, the query must have been made at some point
during the simulation. We call this query the critical query.

BID

AID σ BID

AID σ F

BID ≠ AID σ

1H

 Let φ , ψ be the random tapes for random oracle and simulator respectively.
That is to say ψ is the random tape for all functions of except random oracle . The
random oracle is called times. The second step in the process of solving
DHP is to choose j {1, …, } at random. We now split φ into and

1H 1B

1B 1H

1H 1 s sc(q q q)+ +
← 1 s sc(q q q)+ + 1φ 2φ

where contains the random responses for queries 1,…, j-1 and 1φ 2φ contains responses for

 19

queries j, …, . The next step of the simulation, is to run a simulator similar
to with the same and but a new

1 s sc(q q q)+ + 2B

1B ψ 1φ 2φ , say 2′φ . With probability
 1 s sc1 (q q q)+ + (4)
the value of j that we chose corresponds to the critical query.

 Our proof now uses the following lemma from [10].
Lemma: (The splitting lemma)
 Let E be such that ⊂ ×£Θ Pr[E] υ≥ . Define
 2F {(,) [(, ') E] }υ

ν∈= θ ν ∈ × θ ν ∈ ≥' ££ : PrΘ
we have the following
1. 2(,) F, [(, ') E] υ

ν∈∀ θ ν ∈ θ ν ∈ ≥' £Pr

2. 1
2Pr[F E] ≥|

 Now, from (3), (4) and lemma1 applied with 1= ψ∪φΘ and 2φ=£ , with probability
greater than equal to

2 2

2 s 1 s sc sc 1 s sc
2
0 1 s sc

q (q q q) q (q q q) 11 1q q 4q (q q q)
+ + + +⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ + +⎝ ⎠ ⎝ ⎠

ε �· · · 2

′

′

P,cP)

b

 (5)

the two simulated runs of A gives us two signatures (X, Z) and (X, Z’) on m with the
following properties. After the first run of the simulator there is an and after the
second run there is an (the responses to the critical queries) such that

1h ∈ 1L

1h′ ∈ 1L
 and 1Z rbP (r h)abP= + +
 (6) 1Z rbP (r h)abP′ = + +
where . Assuming that and are successful, it is easy to see from (6) that
the third stage of the simulation, can compute

X rP raP= + 1B 2B

3B

 (7) 1
1 1abP (h h) (Z Z)−′= − −

The result follows from (7) and (5).

Proof of Theorem 5.3:
 We will show how an AUTH-IDGSC-CMA adversary A of IDGSC may be used to
construct a simulator that solves the BDH problem. Let be the instant of the
BDH problem that we wish to solve.

B (P,aP, b

 The simulator B runs A with PKG public key Ppub = . It also creates algorithms
to respond to queries made by A during its attack. To maintain consistency between queries
made by , the simulator keeps lists as in the proof of Theorem 1.

cP

A

Simulator: 0 UH (ID)
 At the beginning of simulator choose uniformly at random from {1, …,

}(subject to). We show how to response to the i
a bi , i

0q ai i≠ th query made by A below. Note
that we assume that A does not make repeat queries.
─ If i = then respond with = aP and set = . ai 0 UH (ID) AID UID
─ If i = bi then respond with = bP and set = . 0 UH (ID) BID UID

 20

─ Else chooses x uniformly at random from , compute *
q UQ xP= ; compute ;

store (, , x) in and respond with
US PubxP=

UID UQ , US 0L UQ .

Simulator: and as in the proof of Theorem 1. 1H (X m)|| 2H ()ω

Simulator: Extract U(ID)
 We will assume that A makes the query before it makes the extraction
query for .

0 UH (ID)

UID

─ If = or = , abort the simulation. UID AID UID BID
─ Else search for the entry (, , x) corresponding to and return 0L UID UQ , US UID US .

Simulator: Sign 1(m, ID , ID)φ
 We will assume that A makes the queries before it makes a sign query
using this identity. We have following cases to consider

0 1H (ID)

Case1: and 1ID ≠ AID 1ID ≠ BID
 Use the simulation from case1 of sign in the proof of Theorem 1.
Case2: 1 AID ID=
 Use the simulation from case2 of sign in the proof of Theorem 1 by replacing IDβ by

 and by AID Qβ AQ .
Case3: 1 BID ID=
 Use the simulation from case2 of sign in the proof of Theorem 1 by replacing IDβ by

 and by BID Qβ BQ .

Simulator: Signcrypt 1 2(m, ID , ID)
 We will assume that A makes the queries and before it makes a
signcryption query using these identities. We have following cases to consider

0 1H (ID) 0 2H (ID)

Case1: and 1ID ≠ AID 1ID ≠ BID
 Use the simulation from case1 of Signcrypt in the proof of Theorem 1.
Case2: 1 A 2 A 2 BID ID , ID ID and ID ID= ≠ ≠
 Use the simulation from case2 of Signcrypt in the proof of Theorem 1 by replacing

 with and IDβ AID Qβ with AQ .
Case3: 1 B 2 A 2 BID ID , ID ID and ID ID= ≠ ≠
 Use the simulation from case2 of Signcrypt in the proof of Theorem 1 by replacing

 with and IDβ BID Qβ with BQ .
Case4: 1 A 2ID ID and ID ID= = B

s

c

― If for m then A 1(m, ID ,X, Z, r, h) L∈

• Choose uniformly at random 0 1k k n
2h {0,1} + +∈

• Compute 2 Ay h Z ID m= ⊕

• Add A B 1 2 s(ID , ID , X, y, Z, m, r, h , h) to L

 21

• Return (X, y)
― Else choose r, uniformly at random from 1h *

q

• Compute and 1 AX rP h Q= − PubZ rP=

• Add 1 1(X m,h) to L

• Choose uniformly at random 0 1k k n
2h {0,1} + +∈

• Compute 2 Ay h Z ID m= ⊕

• Add A B 1 2 s(ID , ID , X, y, Z, m, r, h , h) to L c

A

• Return (X, y)
Case5: 1 B 2ID ID and ID ID= =
 Use the simulator of case4 swapping with . A A B(ID ,Q , ID) B B A(ID ,Q , ID)

Simulator: Decrypt 2(X, y) ID
 We will assume that A makes the queries before it makes a decryption
query for this identity. We have following cases to consider

0 2H (ID)

Case1: and 2ID ≠ AID 2ID ≠ BID
 Use the simulator from case1 of decrypt in the proof of Theorem 1.
Case2: 2 AID ID=
 Use the simulation from case2 of decrypt in the proof of Theorem1 by replacing IDβ
by . AID
Case3: 2 BID ID=
 Use the simulation from case2 of decrypt in the proof of Theorem 1 by replacing IDβ
by and aP by bP. BID

Simulator: Unsigncrypt 2(X, y), ID
 We will assume that A makes the queries before it makes an
unsigncryption query for this identity. We have following cases to consider

0 2H (ID)

Case1: and 2ID ≠ AID 2ID ≠ BID
 Use the simulator from case1 of Unsigncrypt in the proof of Theorem 1.
Case2: 2 BID ID=
― If for some m. return m, (X, Z), . A B 1 2 s(ID , ID ,X, y, Z,m, r, h ,h) L∈ c

A

)

)

AID
― Else, add (X, y), to and step through the list with entries as follows. BID uL 2L 2(, h)ω

• Compute 1 2Z ID m y h= ⊕

• If , or , move to the next element in and begin again 1 AID ID= 1ID IDφ= 1ID ID= 2L
• If let and find in else move to the next element in and

begin again
1 0ID L∈ 1 0 1Q H (ID= 1S 0L 2L

• If let , else move to the next element in and begin again 1X m L∈ 1 1h H (X m= 2L
• Check that and if not move to the next element in and begin

again
1 1 Be(Z h S ,Q)ω= − 2L

• Check that , if so return m, (X, Z) and else move to the
next element in and begin again

Pub 1 1e(Z,P) e(P ,X h Q)= + 1ID

2L

 22

― If no message has been returned after stepping through the list , step through the list
as follows

2L

scL
• If the entry has the form the check that . If so

continue, else move on to the next element of and begin again.
A B 1 2(ID , ID ,X , y, Z,m , r, h , h)′ ′ ′ X X′ =

scL
• Else if the current entry has the form then checks that

. If so continue, if not move to the next element of and begin
again.

B A 1 2(ID , ID ,X , y, Z,m , r, h , h)′ ′ ′

Ae(X ,Q) e(X,Q)′ = B

)
)

scL

• Compute 1 2Z ID m y h= ⊕
• If or , move to the next element in and begin again. 1 BID ID= 1ID IDφ= scL
• If let , else move to the next element in and begin again 1 0ID L∈ 1 0 1Q H (ID= scL
• If let , else move to the next element in and begin again 1X m L∈ 1 1h H (X m= scL
• Check that , if so return m, (X, Z) and else move to the

next element in and begin again
Pub 1 1e(Z,P) e(P ,X h Q)= + 1ID

scL
― If no message has been retuned, return . ⊥
Case3: 2 AID ID=
 Use the simulator of case2 replacing by B B A(ID ,Q , ID) A A B(ID ,Q , ID).

Once A has been run, does one of the two things. B
 1. With probability sc sc uq (q q+) choose a random element from and a random
element from . We call this event in the analysis below (Ch for choice). This is
the worst case scenario.

scL

2(, h)ω 2L 1Ch

― If the chosen element has form compute A B 1 2(ID , ID ,X, y, Z,m, r, h , h),

 () 11 hB e(rbP,cP) −= ω
― If the chosen element has form compute B A 1 2(ID , ID ,X, y, Z,m, r, h , h),

 () 11 hB e(raP,cP) −= ω
 2. With probability u sc uq (q q)+ choose a random element from and a random
element from . We call this event in the analysis below. This is the worst case
scenario.

uL

2(, h)ω 2L 2Ch

― If the chosen element has form (X, y), compute . If has the form
for some Z, m compute

BID 2y h⊕ 2y h⊕

AZ ID m

 () 11 hB e(Z,bP) −= ω
If does not have this formB has failed. 2y h⊕
― If the chosen element has form (X, y), compute . If has the form

for some Z, m compute
AID 2y h⊕ 2y h⊕

BZ ID m

 () 11 hB e(Z,aP) −= ω
If does not have this formB has failed. 2y h⊕

 23

 Let us now consider how our simulation could fail i.e. describe events that could
cause ’s view to differ when run by B from its view in a real attack. We call such an event
error and denote it ER.

A

 It is clear that the simulations for are indistinguishable from real random
oracles. Let us now consider the simulator. The important point here is that is not only
defined at points where the simulator is called by A or by the simulator itself. It is also
defined at certain points implicitly by the Signcrypt simulator. For example, suppose that the
Signcrypt simulator responds to a query m, In this case it adds an entry

. This implicitly defines

0H , 1H

2H 2H

2H

AID , BID .

A B 1 2 s(ID , ID , X, y, Z, m, r, h , h) to L c ()2 BH e(X,S) h= 2

B

although it is
not actually able to compute If the simulator is subsequently called with

it will not recognize it so it will not return . We denote such events H-ER.
However, such an event occurs we have

Be(X,S). 2H

Be(X,S)ω= 2h

 B 1 Ae(X,S) e(rP h Q ,S)ω= = −
for which it is possible to compute
 () ()1 11 h 1 habc

A B B Pube(P,P) e(Q ,S) e(rQ ,P) e(rbP,cP)− −= = ω = ω (1)
Similarly if the simulator is called with ω that is implicitly defined by an entry

we can compute
2H

B A 1 2 s(ID , ID ,X, y, Z,m, r, h , h) L∈ c

 () ()1 11 h 1 habc
B A A Pube(P,P) e(Q ,S) e(rQ ,P) e(raP,cP)− −= = ω = ω (2)

 Let us now consider how the simulation for sign could fail. We denote such an event
S-ER. The most likely failure will caused by the sign simulator responded to the query of the
form case 2 or case 3 (see simulator). Since we do not know how often each case will occur.
We will be conservative and assume that each query will be one of these, 2 say. The only
possibility for introducing an error here defining when it is already defined. Since
X takes its values uniformly at random in , the chance of these events occurring

1H (X m)
P〈 〉

1 s sc(q q q) q+ + for each query. The and come from the fact that the sign and
Signcrypt simulator adds elements to . Therefore over the whole simulation, the chance of
an error introduced in this way is at most

sq scq

1L

 s 1 s scq (q q q)
q

+ + (3)

 Now we consider how the simulator for Signcrypt could fail. We denote such an error
by SC-ER. The most likely failure will cause by the Signcrypt simulator responding to the
query of the form case 4 or case 5 (see simulator). Again we do not know how often each
case will occur so assume that each query will be one of these, 4 say. The only possibility for
introducing an error here defining when it is already defined or defining 1H (X m)

() ()2 B 2H e(X,S) H e(X,S)A when it is already defined. The chance of one of these events
occurring 1 2 s sc(q q q 2q) q+ + + for each query. Therefore over the whole simulation, the
chance of an error introduced in this way is at most

 sc 1 2 s scq (q q q 2q)
q

+ + + (4)

 Also the decrypt simulator is indistinguishable from genuine random oracles. We now
turn our attention to the Unsigncrypt simulator. An error in this simulator is denoted by

It is clear that this simulator never accepts an invalid encryption. What we worry
about is the possibility that it rejects a valid one. This can only occur with non-negligible
U ER.−

 24

probability in case 2 or case 3. Suppose that we are trying to decrypt (X, y), (i.e. case 2).
An error will only occur if while stepping through there is an entry such that

= and (X, y) is a valid encryption of m from to . In this case we
must have

BID

2L 2(, h)ω

AZ ID m 2y h⊕ AID BID

 1 A B B 1 A B 1e(Z h S ,Q) e(Z,Q)e(h S ,Q) e(Z, bP)e(h acP, bP)ω= − = − = −
where . From the above we can compute 1h = 1H (X m)

 abce(P,P) = () 11 he(Z,bP) −ω (5)
Suppose we are trying to decrypt (X, y), (i.e. case 3). An error will only occur if while
stepping through there is an entry such that = and (X, y) is a
valid encryption of m from to . In this case we must have

AID

2L 2(, h)ω BZ ID m 2y h⊕

BID AID
 1 B A A 1 B A 1e(Z h S ,Q) e(Z,Q)e(h S ,Q) e(Z,aP)e(h bcP,aP)ω= − = − = −
where . From the above we can compute 1h = 1H (X m)

 abce(P,P) = () 11 he(Z,aP) −ω (6)
 The final simulator is the extract simulator. Note that the adversary will only succeed
in its task with non-negligible probability if it queries with the two identities under which
the encrypted and signed message it produces is supposed to be valid. Looking at the
simulator we see that it chooses two queries made by the adversary and responds to these
with group elements from the BDHP instance that it is trying to solve. The simulator hopes
that these will be the signer identities for the adversary’s encrypted and signed message. This
will be the case with probability at least

0H

0H

0H

0 0

1
q (q 1)−

 (7)

 If this is not the case we say that an error has occurred in the extract simulator
because, if the adversary tried to extract the private key for these identities the simulator
would abort. An error in the extract simulator is denoted by E-ER.

 Once A has been run by the simulatorB , there are two courses of action: and

(as describe above). If has been chosen, we denote the event that B selects the
correct elements to solve the BDHP from and by (under the assumption that there
are such correct elements in the lists at the end of the simulation). Likewise if has been
chosen, we denote the event that selects the correct elements from and by .

1Ch

2Ch 1Ch

scL 2L 1CG

2Ch
B uL 2L 2CG

 With the events described above we have
 1 1Adv[] Pr[E ER H ER S ER SC ER Ch CG]≥ ¬ − ∧ − ∧¬ − ∧¬ − ∧ ∧B
 (8) 2Pr[U ER E ER H ER S ER SC ER Ch CG]+ − ∧¬ − ∧¬ − ∧¬ − ∧¬ − ∧ ∧ 2

2

we have
 1 1Pr[E ER H ER S ER SC ER Ch CG]¬ − ∧ − ∧¬ − ∧¬ − ∧ ∧
 = (9) 1 1Pr[E ER S ER SC ER]Pr[Ch CG]Pr[H ER]¬ − ∧¬ − ∧¬ − ∧ −
Also,
 2 2Pr[U ER E ER H ER S ER SC ER Ch CG]− ∧¬ − ∧¬ − ∧¬ − ∧¬ − ∧ ∧
 = (10) 2Pr[U ER]Pr[E ER H ER S ER SC ER]Pr[Ch CG]− ¬ − ∧¬ − ∧¬ − ∧¬ − ∧

 25

 Note that, in the event the adversary is
run by B in exactly the same way that it would we run in a real attack until the event U-ER
occurs. Moreover, in the event , winning and
U-ER are equivalent. This means (10) becomes

E ER H ER S ER SC ER¬ − ∧¬ − ∧¬ − ∧¬ − A

E ER H ER S ER SC ER¬ − ∧¬ − ∧¬ − ∧¬ − A

 2 2Pr[U ER E ER H ER S ER SC ER Ch CG]− ∧¬ − ∧¬ − ∧¬ − ∧¬ − ∧ ∧
 = (11) 2Pr[E ER H ER SER SC ER]Pr[Ch CG]ε ¬ − ∧¬ − ∧¬ ∧¬ − ∧ 2

From the definition of , , and above we have 1Ch 1CG 2Ch 2CG

 sc
1 1

sc u sc 2 sc sc u 2 sc

q 1 1Pr[Ch CG]
q q q (q q) (q q)(q q+

∧ = =
+ + +)

 (12)

 u
2 2

sc u u 2 sc sc u 2 sc

q 1 1Pr[Ch CG]
q q q (q q) (q q)(q q+

∧ = =
+ + +)

 (13)

From, the fact that (8), (9), (11), (12) and (13) we have Pr[H ER] Pr[H ER] 1,− + ¬ − =
Adv[] (Pr[H ER] Pr[H ER]) Pr[E ER S ER SC ER]≥ − +ε ¬ − ¬ − ∧¬ − ∧¬ −B

sc u 2 sc

1
(q q)(q q)+ +

 (Pr[H ER] Pr[H ER]) Pr[E ER S ER SC ER]≥ε − + ¬ − ¬ − ∧¬ − ∧¬ −

sc u 2 sc

1
(q q)(q q)+ +

sc u 2 sc

1Pr[E ER S ER SC ER]
(q q)(q q)

= ε ¬ − ∧¬ − ∧¬ −
+ +

 (14)

Finally, by the independence of E-ER, S-ER and SC-ER, using (3), (4), (7) and (14)

s 1 s sc sc 1 2 s sc

0 0 sc u 2 sc

q (q q q) q (q q q 2q) 1Adv[] 1 1
q q q (q 1)(q q)(q q)

⎛ ⎞⎛ ⎞+ + + + +⎟ ⎟⎜ ⎜≥ ε − ⎟ − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ − + +⎝ ⎠⎝ ⎠
B

as required.

 26

