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Abstract: Generalized signcryption is a new cryptographic primitive in 
which a signcryption scheme can work as an encryption scheme as well 
as a signature scheme. This paper presents an identity based 
generalized signcryption scheme based on bilinear pairing and 
discusses its security for message confidentiality non repudiation and 
ciphertext authentication. 
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1. Introduction: 
Confidentiality and authenticity are two main primitives of cryptography and realized 

through encryption schemes and digital signature schemes respectively. Logically two 
primitives are independent. In public key setting, the encryption uses the public key of the 
receiver whereas signature uses secrete or private key of the sender. To achieve both 
confidentiality and authenticity we use sign-then-encrypt approach which involves both 
encryption as well as signature. In 1997, Zheng [13] gave the concept of signcryption, which 
performs encryption and signature both in a single logical step. Computationally, 
signcryption is more efficient than ‘sign-then-encrypt’ approach. The use of signcryption 
reduces the number of steps, reduces the length of ciphertext and most importantly, it reduces 
the implementation complexity by combining the two modules of encryption and signature 
into a single module of signcryption. Zheng’s original signcryption scheme is discrete 
logarithm based. In 1998, Zheng and Imai [14] gave a signcryption scheme based on elliptic 
curves. The first identity based signcryption scheme was proposed by Malone-Lee [8] in 
2002. Since then, several identity based signcryption algorithms have been proposed [2, 4, 5, 
7, 8, 9]. However, not all these schemes are supported by formal models and security proofs 
in the random oracle model. Boyen [2] gave the security notions for signcryption as: message 
confidentiality, signature non-repudiation, ciphertext unlinkability, ciphertext authentication, 
and ciphertext anonymity. Among the schemes supported by security proofs in formal 
security models, Chen and Malone Lee’s proposal [4] happens to be most efficient 
construction; however, it loses ciphertext unlinkability. 
  
 All the above signcryption schemes work well when user wants both confidentiality 
and authenticity. However, not all messages require both confidentiality and authenticity. If 
only one of the two functionalities is required then the signcryption scheme is not efficient. In 
this scenario, according to Zheng, signcryption may be replaced with signature/encryption 
algorithm. Thus, to resolve the problem, we have to use three cryptographic algorithms 
signcryption, encryption and signature as per need. However it may not be feasible in some 
applications such as embedded systems and ubiquitous computing. In 2006, Han and Yang 
[6] proposed the idea to use the same scheme as a signcryption scheme, as an encryption 
scheme and as a signature scheme as per requirement. They termed the new primitive as 
generalized signcryption. There scheme is based on elliptic curves. Wang et al [12] 
improved upon the scheme [6] and provided security notions of generalized signcryption 
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scheme. It is to be noted that none of these schemes is identity based. Here we propose an 
identity based generalized signcryption (IDGSC) scheme. 
  
 In IDGSC, we have three modes signcryption mode, signature-only mode and 
encryption-only mode. The crucial point here is to identify the three modules. In the identity 
based cryptography, to sign a message we require the information about specific sender, to 
encrypt a message we require the information about specific recipient and to signcrypt a 
message we require the information about both sender and receiver. Thus identity can be used 
to distinguish the three cases. It is signcryption mode when both specific parties exist. It is 
signature/encryption mode when one of specific parties exists. We also give the security 
notions for IDGSC for message confidentiality, signature non-repudiation and ciphertext 
authentication. The security of our IDGSC scheme relies on the hardness of Bilinear Diffie-
Hellman Problem (BDHP).  
 This paper will organize as follows: before introducing our ID based generalized 
signcryption scheme, we discuss a generalized signcryption scheme [6] in section 2. In 
section 3 definition of IDGSC and security notions for IDGSC are given and section 4 give 
the definition of bilinear pairings and some computational hard problem on which security of 
our scheme rely. Also we proposed IDGSC scheme in section 4. In section 5 security results 
are given. Before giving concluding remarks section 6 deals with the efficiency of proposed 
scheme. 
 
2. A GSC based on ECDSA 
 First we describe the generalized signcryption scheme introduced by Han and Yang 
[6] in 2006.  
Set up: Let be an elliptic curve defined over , and let P be a point on  of prime 

order p. Then 
qE(F ) qF qE(F )

x ypP .We let ( ,= =O O O )O , where O  is the point at infinity on elliptic curve.  
 Bind is an arbitrary string involving some information about the sender and the 
receiver. {0,1}* denotes the set of all binary strings and  denotes the set of all n-bits 
binary strings. Kenc, Ksig denotes suitable binary strings.  

n{0,1}

The scheme uses four hash functions  

 and 

* *
qH :{0,1} ,→Z 0 1k k*

1 qH : {0,1} ,+→Z
* n

2 qH : {0,1} ,+→Z 2n kH :{0,1}K
+ {0,1} .→  Here  denotes the number of bits 

required to represents the binary length of the key K of keyed hash function H
0k

K, k1 is the 
number of bits in the binary string Ksig, k2 is the number of bits required to represents the 
elements of ,  is the number of bits required to represent the output of HqZ K and n is a 

number of bits of a message unit. For px,0∈Z  xO  = O  and 0P =O . Further 1 yH ( ) =O 0 , 

, H , where 0 denotes suitable binary string of zeros. 2 xH ( ) =O 0 (.) =0 0
 
Extract: Each user U randomly chooses his private key computes the public 

key .  

*
U R pd ∈ Z ,

P

0

U UQ d=
 In the signature-only mode (encryption-only mode) receiver (respectively sender) 
does not exist. We denote this situation by taking U and dφ= φ =  where 0 is the zero of pZ .  
In this situation , whereO is the point at infinity on the elliptic curve. Q 0Pφ = =O

 Let the message  be signcrypted by A (Alice, the sender) and 
unsigncrypted by B (Bob, the receiver).  

nm {0,1}∈
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Signcryption                      Unsigncryption                                                   
A uses the algorithm GSC (generalized signcry-  B uses the algorithm UGSC (generalized                    
ption)   with   inputs m, and   to   return unsigncryption) with inputs , , and  Ad BQ σ AQ
σ = (c, R,s)  as  follows:     to return m as follows: Bd

1. Chooses      1. Recovers r from R *
R px∈ Z ,

= = 2

2. Computes                                          2. Computes  
   (i)       (i) 1 1R xP (x , y ), 1r x mod q= B 2d R (x , y )=   
  (ii)        (ii) B 2 2xQ (x , y )= 2 2H (x ) Kenc= ,   1 2H (y ) K Ksig= ||
 (iii)   3. Recovers (m2 2H (x ) Kenc,= 1 2H (y ) K Ksig= || e) c Kenc|| = ⊕  
3. If  takes ; else computes  4. Computes Ad 0= , s 0= e = H (m s)K′ ||  

   (i)      If -1
As = x (H(m ) rd ) mod n|| || +Bind Ksig e e , returns ;′≠ ⊥  else, 

  (ii)          If se = H (m s)K || 0=  returns m; else, 
4. Computes       5. Computes 
        c (m e) Kenc= || ⊕       (i) 1

1u s (H(m ))−= || ||Bind Ksig  

5. Returns .     (ii) (c, R,s)σ= 1
2u s r−=  

       (iii) 1 2R u P u QA′ = +  
        If R R′ ≠ , return ⊥ ;  

 else returns m. 
 
                                                Signature-only mode  
Sign                        Verify                                                   
If A wants to only sign m, then A uses the algo-  Any recipient can use the algorithm UG-                     
rithm GSC with inputs m, and Ad Qφ =O  to re- SC with inputs m, , and  to ve-  AQ dφ = 0

,

= =

turn  as follows:    rify the signature of A as follows: σ (m, R,s)=

1. Chooses      1. Recovers r from R *
R px∈ Z

2. Computes                                          2. Computes  
   (i)       (i) 1 1R xP (x , y ), 1r x mod q= x y0R ( , )= =O O O   

  (ii)       (ii) x yx ( ,= =O O O O ) 2 xH ( ) =O 0 ,   1 yH ( ) =O 0

 (iii) ,    3. m m2 xH ( ) =O 0 1 yH ( ) =O 0 = ⊕0  

3. Computes       4. = H (m s)||00  

   (i)   5. Computes     -1
As = x (H(m ) rd ) mod n|| || +0 0

  (ii)        (i) = H (m s)||00 1
1u s (H(m ))−= || ||0 0    

4. Computes        (ii) 1
2u s r−=  

   (i)      (iii) m (m )= || ⊕0 0 A1 2R u P u Q′ = +    
5. Returns .     If R(m, R,s)σ= R′ ≠ , return ⊥ ;  

 else returns T. 
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  Encryption-only mode 
Encrypt                       Decrypt                                                   
Any one can encrypt m for Bob by using algor-  B uses the algorithm UGSC with inputs                     
tm GSC with inputs m, d and  to return  0φ = BQ σ , Qφ =O , and  to return m as foll- Bd
σ (c, R)=  as follows:     ows: 

1. Chooses      1. Computes *
R px∈ Z ,

22. Computes                                             (i) B 2d R (x , y )=    
   (i)         (ii) R xP= 2 2H (x ) Kenc= ,     1 2H (y ) K Ksig= ||
  (ii)      2. Recovers (mB 2 2xQ (x , y )= e) c Kenc|| = ⊕   
 (iii)   3. Computes e2 2H (x ) Kenc,= 1 2H (y ) K Ksig= || = H (m )′ ||K 0  
3.           If e es 0= , returns ;′≠ ⊥   
4. Computes          else returns m. 
   (i) e       = H (m )K || 0
  (ii) c (m e) Kenc= || ⊕      
5. Returns . (c, R)σ=
 
3. IDGSC and its Security 
 An Identity based generalized signcryption consists of the following algorithms: 
 
Set Up: On input of a security parameter 1k the private key generator (PKG) uses this 
algorithm to produce a pair (param, s), where params are global public parameters for the 
system and s is the master secrete key. The public parameters include PPub, the public key of 
PKG, a description of finite message space M, a description of a finite signature space S and a 
description of a finite ciphertext space C.. Further, there is no need for publicly known param 
to be explicitly provided as input to any other algorithm. 
 
Extract: On input of an identity IDU and the master key s, PKG uses this algorithm to 
compute secrete key  corresponding to IDUS U. 
 
GSC: Suppose Alice (IDA) wants to send a message m to Bob (IDB). On input ( , IDAS B, m), 
Alice uses this algorithm to produce cipher text c. 
 
UGSC: On receiving c, Bob uses this algorithm with input (IDA, BS , c) and obtain m if c is 
valid ciphertext, and the symbol  if c is invalid ciphertext.  ⊥
 
The two algorithms GSC and UGSC are such that  

c =( , IDAS B, m) iff m= UGSC (IDA, BS , c).  
 
Signature-Only mode: If Alice wants only to sign a message m, then the specific receiver 
Bob does not exist. In this case BID IDφ= , GSC ( AS , IDφ , m) = Sign ( , m), and UGSC 
(ID

AS

A, S , c) = Verify (IDφ A, m). 
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Encryption-Only mode: If a user wants to encrypt a message for Bob, then the specific 
sender Alice does not exist. In this case GSC ( Sφ , IDB, m) = Enc (IDB, m), and UGSC 
( , , c) = Dec ( , c). IDφ BS BS
 

We now discuss the security model for identity based generalized signcryption 
scheme. 
3.1 Message Confidentiality 
 The accepted notion of security with respect to confidentiality for public key 
encryption is indistinguishability of encryptions under adaptive chosen ciphertext attack. The 
notion of security defined in the game below is a natural adaptation of this notion for the 
generalized signcryption scheme. 
 
Game 

Initial: The challenger runs Setup  and gives the resulting params to the adversary. It 
keeps s secrete. 

k(1 )

Phase1: The challenger is probed by the adversary who makes the following queries. 
• Sign: The adversary submits a signer identity and a message to the challenger. The 

challenger responds with the signature of the signer on the message. 
• Signcrypt: The adversary submits a sender and receiver identity and a message to the 

challenger. The challenger responds with the signature of the sender on the message, 
encrypted under the public key of the receiver. 

• Decrypt: The adversary submits a ciphertext and a receiver’s identity to the challenger. 
The challenger decrypts the ciphertext under the secrete key of receiver and returns the 
message. 

• Unsigncrypt: The adversary submits a ciphertext and a receiver’s identity to the 
challenger. The challenger decrypts the ciphertext under the secrete key of receiver. It 
then verifies that the resulting decryption is a valid message/signature pair under the 
public key of the decrypted identity. If so the challenger returns the message, its 
signature and the identity of the signer, otherwise it returns⊥ . 

• Extract: The adversary submits an identity to the challenger. The challenger responds 
with the secrete key of that identity. 

 At the end of phase1 the adversary outputs two identity { , } and two 
messages { }. The adversary must not have made extraction query on . 

AID BID

0m , m1 BID
Challenge: The challenger chooses a bit b uniformly at random. It signs bm  under secrete 
key corresponding to  and encrypts the result under the public key of  to produce 
c. The challenger returns c to the adversary. 

AID BID

Phase2: The adversary continues to probe the challenger with the same type of queries that 
it made in the phase1. It is not allowed to extract the private key corresponding to  and 
it is not allowed to make a decrypt and unsigncrypt query for c under . 

BID

BID
Response: The adversary returns a bit b′ . The adversary wins if b′ = b. 
 

Definition1: Let A denote an adversary that plays the game above. If the quantity 
Adv[A]=  is negligible we say that the scheme is semantically secure against 
adaptive chosen ciphertext attack, or IND-IDGSC-CCA2 secure. 

2 Pr[b ' b] 1= −
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 Note that above definition deals with insider security since the adversary is assumed 
to have access to the private key of the sender of a signcrypted message. This means that 
confidentiality is preserved even if a sender’s key is compromised. 
 
3.2 Signature Non-repudiation 
 Regarding the property of authentication and non-repudiation, the following 
definitions formalize the inability of any adversary to create a ciphertext containing a 
message authenticated by some user without knowing the latter’s private key. We define the 
notion of non-repudiation via the following game  
 
Game 

Initial: The challenger runs Setup  and gives the resulting params to the adversary. It 
keeps s secrete. 

k(1 )

Probing: The challenger is probed by the adversary who makes queries as in the phase1 of 
the game in section 3.1. 
Forge: The adversary returns a recipient identity  with its PKG and a ciphertext c. Let 
(m, , ) be the result of decrypting c under the secrete key corresponding to . The 
adversary wins if ;

BID

AID σ BID

AID ≠ BID AID IDφ≠ ; Verify (m, ,AID σ ) =F ; no extraction query 
was made on ; no sign query was responded with (m, ,AID AID σ ) and no signcrypt query 
(m, , ) was responded to with a ciphertext whose decryption under the private key 
of  is (m, ,

AID B'ID

B'ID AID σ ). 
 

Definition2: Let A denote an adversary that plays the game above. If the quantity              
Adv[A]=Pr[A wins] is negligible we say that the scheme is existentially unforgeable against 
insider chosen message attack, or EUF-IDGSC-CMA secure. 
 

Definition2 allows the adversary access to the secret key of the recipient of the 
forgery. It is this that gives us insider security. 
 
3.3 Ciphertext Authentication: 
 Ciphertext authentication provides the guarantee to the recipient that the message was 
encrypted by the same person who signed it. We define this notion via a game played by a 
challenger and an adversary. 
  
Game 

Initial: The challenger runs Setup  and gives the resulting params to the adversary. It 
keeps s secrete. 

k(1 )

Probing: The challenger is probed by the adversary who makes queries as in the phase1 of 
the game in section 3.1. 
Forge: The adversary returns a recipient identity  with its PKG and a ciphertext c. Let 
(m, , ) be the result of decrypting c under the secrete key corresponding to . The 
adversary wins if ;

BID

AID σ BID

AID ≠ BID AID IDφ≠ ; Verify (m, ,AID σ ) =F ; no extraction query 
was made on  or ; and c did not result from a Signcrypt query with sender 

and recipient . 
AID BID

AID BID
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Definition3: Let A denote an adversary that plays the game above. If the quantity              
Adv [A] = Pr [A wins] is negligible we say that the scheme is existentially ciphertext-
unforgeable against outsider chosen message attacks, or AUTH-IDGSC-CMA secure. 
 
 Here we have an example of outsider security since the adversary is not able to extract 
the secret key corresponding to . BID
 
4. Proposed IDGSC scheme 
 Before we present our identity based generalized signcryption scheme, we discuss 
some preliminaries. 
Bilinear Pairings: Let G1 be an additive group of order q, a prime and G2 be a multiplicative 
group of same order q. A function e: G1 × G1→ G2 is called a bilinear pairing if it satisfies 
the following properties: 
(i)   ,    *

1 qP,Q G , a,b∀ ∈ ∀ ∈Z abe(aP,bQ) e(P,Q)=

(ii)  For any point  for all 1P G ,e(P,Q) 1∈ = 1Q G∈ iff P =O , the identity of G1.

(iii) There exists an efficient algorithm to compute 1.e(P,Q), P,Q G∀ ∈  
Computational Diffie-Hellman Problem (CDHP): Given P, aP, bP in , for some 

(unknown) , compute abP in . 
1G

*
qa,b∈ 1G

Bilinear Diffie-Hellman Problem (BDHP): Given P, aP, bP, cP in , for some (unknown) 

, compute  in .  
1G

*
qa,b,c∈ abce(P,P) 2G

  
Our proposed IDGSC scheme works as follows: 
Setup:  
 Establishes parameters G1, G2 , q, 1 1e : G G G2× → , , 1k

0 1H :{0,1} G→ 0k n
1H :{0,1} +  

, , where is the number of bits required to represent an 

element of G

*
qZ→ 0 1k k n

2 2H : G {0,1} + +→ 0k

1, 1k is the number of bits required to represent an identity of a user and n is a 
number of bits of a message unit. 
 Chooses P, a generator of cyclic group G1.  
 Chooses a random s in  and computes the public key of PKG, P*

qZ Pub = sP. 

 The system parameter params are 1, 2, pub 0 1 2G G q,e,P,P ,n,H ,H ,H〈 〉 . Further we take 

output of  as bit zero string. 2H (1) 0 1(k k n)+ +
 
Extract: Extracts private key of the user U with  1k

UID {0,1}∈
 Computes the public key U 0 UQ H (ID )=  and the private key . U US sQ=
 For signature-only mode (encryption-only mode) where receiver (sender) does not 
exist, we use the key pair when U=U U( , ) (Q ,S )←O O UID IDφ=  where  is a bits zero 
string.  

IDφ 1k

 
GSC : To send a message to Bob ( ) in a secure and 
authenticated way, Alice ( ) does the following:  

A B(S ,ID ,m) nm {0,1}∈ BID

AID
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1. Chooses  *
R qr∈ Z

2. Computes 
 (i)  , where AX rP rQ= + A 0 AQ H (ID )=  
  (ii) , wherePub 1 AZ rP (r h )S= + + 1 1h H (X m)= ||  
 (iii) , wherePub A Be(rP rS ,Q )ω = + B 0 BQ H (ID )=  
 (iv)  A 2y (Z ID m) H ( )= ⊕|| || ω
3. Return   . c (X, y)=
 Here c is the signcryptext of message m. 
 
UGSC  On receiving the signcryptextA B(ID ,S ,c) : c (X, y)= , Bob  
1. Computes  
 (i)   A 0 AQ H (ID= )

)

 (ii)  Be(X,S )ω=
 (iii)  A 2Z ID y H ( )= ⊕ ω|| ||m

 (iv)  1 1h H (X m= ||
 (v)  e(  Z, P)
 (vi) pub 1 Ae(P , X h Q )+  

2. Returns valid iff pub 1 Ae(Z,P) e(P ,X h Q )= + . 
 
Consistency: 
  B Ae(X,S ) e(rP rQ ,sQ )= + B

        =   r
A Be(P Q ,sQ )+

        =  r
A Be(sP sQ ,Q )+

        =  r
Pub A Be(P S ,Q )+

and  
 pub 1 Ae(P , X h Q )+ = A 1 Ae(sP, rP rQ h Q )+ +  

            = 1 Ae(P, rsP (r h )sQ )+ +  
            = Pub 1 Ae(P, rP (r h )S )+ +  
            = =  e(P, Z) e(Z, P)
 
 Once Bob has recovered m and Z, he can prove to a third party that (Z, X) is a valid 
signature of Alice on m. Third party can compute 1 1h H (X m)= || and then can verify 
that pub 1 Ae(Z,P) e(P ,X h Q )= + . 
 
Signature-only mode: GSC ( AS , IDφ , m) = Sign ( , m) AS

 If Alice only wants to sign , then she  nm {0,1}∈

1. Chooses  *
R qr∈ Z

2. Computes 
 (i)  , where AX rP rQ= + A 0 AQ H (ID )=  
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  (ii) , wherePub 1 AZ rP (r h )S= + + 1 1h H (X m)= ||  

 (iii)   r
Pub A1 e(P S , )= + O

 (iv) , and A AZ ID m (Z ID m) H (1)= ⊕|| || || || 2

3. Return . A(Z ID m, X)σ = || ||
Here is the signature on message m. σ
 
UGSC (IDA, , ) = Verify (IDIDφ σ A,σ ) 
 Any one can verify the signature on m by 
computing  
 (i)   A 0 AQ H (ID= )

2

)

 (ii) 1 e  (X, )= O
 (iii)  A AZ ID Z ID H (1)= ⊕|| ||m || ||m

 (iv)  1 1h H (X m= ||
 (v) e(  Z, P)
 (vi) pub 1 Ae(P , X h Q )+  

and concluding that  is valid iff σ pub 1 Ae(Z,P) e(P ,X h Q )= + . 
 
Encryption-only mode: GSC ( , IDIDφ B, m) = Enc (IDB, m) 

 If user wants to send a message  in a secure manner to Bob then he/she  nm {0,1}∈

1. Chooses  *
R qr∈ Z

2. Computes 
 (i)  X = rP+O  rP=
  (ii) = +(r+hPubZ rP= PubrP 1)O , where 1 1h H (X m)= ||  
 (iii) =Pub Be(rP ,Q )ω = Pub B e(rP ,Q )+O , where B 0 BQ H (ID )=  
 (iv)  2y (Z ID m) H ( )φ= ⊕|| || ω

)

3. Return  as the ciphertext of message m. c (X, y)=
 
UGSC ( , ,c) = Dec ( ,c) IDφ BIDd BS
 On receiving ciphertext c ( , Bob X, y)=
1. Computes  
 (i)   Be(X,S )ω=
 (ii)  2Z ID y H ( )φ = ⊕ ω|| ||m

 (iii)  1 1h H (X m= ||
 (iv) e(  Z, P)
 (v)  pub 1e(P ,X h )+ O

2. Accepts m as plaintext iff . pub 1e(Z,P) e(P ,X h )= + O

 
5. Security: 
  In this section we state the security results for the IDGSC scheme under the definition 
of section 4. The proofs are suitable modification in the proofs in [4]. 
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  All our security results are based on the Bilinear Diffie-Hellman Problem (BDHP) 
defined in section 5. Our results assume that the hash functions   and  in the 
IDGSC scheme are all random oracles. In each of the results below we assume that the 
adversary makes  queries to  for i= 0, 1, 2. The number of sign, signcrypt, decrypt and 
unsigncrypt queries made by the adversary are denoted by  and  respectively. 

0H , 1H 2H

iq iH

sq , scq , dq uq
 
5.1 Theorem (Message Confidentiality) 
  If there is an IND-IDGSC-CCA2 adversary A  of IDGSC that succeeds with 
probabilityε , then there is a simulator B  running in polynomial time that solves the BDHP 
with probability at least  

   s 1 s sc sc 1 s sc

0 2

q (q q q ) q (q q q ) 11 1q q
+ + + +⎛ ⎞ ⎛− −⎜ ⎟ ⎜

⎝ ⎠ ⎝
ε�· · q q

⎞
⎟
⎠
·  

 
5.2 Theorem (Signature Non-repudiation) 
  If there is an EUF-IDGSC-CMA adversary A  of IDGSC that succeeds with 
probabilityε , then there is a simulator B  running in polynomial time that solves the BDHP 
with probability at least 

  s 1 s sc sc 1 s sc
2 2
0 1 s sc

q (q q q ) q (q q q ) 11 1q q 4q (q q q )
+ + + +⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ + +⎝ ⎠ ⎝ ⎠

ε�
2 2

· · ·  

 
5.3 Theorem (Ciphertext Authentication) 
  If there is an AUTH-IDGSC-CMA adversary A  of IDGSC that succeeds with 
probabilityε , then there is a simulator B  running in polynomial time that solves the BDHP 
with probability at least 
 

 s 1 s sc sc 1 2 s sc

0 0 sc u 2 sc

q (q q q ) q (q q q 2q ) 11 1q q q (q 1)(q q )(q q )
+ + + + +⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ − + +⎝ ⎠ ⎝ ⎠

ε�· · ·  

 
5.4 Lemma 1: If there is a EUF-IDGSC-CMA adversary A  of IDGSC in signcryption mode 
that succeeds with probability withε , then there is a EUF-IDGSC-CMA adversary of IDGSC 
in signature-only mode that succeeds with probability at leastε . 
 
5.5 Lemma 2: If there is an IND-IDGSC-CPA adversary  of IDGSC in signcryption mode 
that succeeds with probability withε , then there is an IND-IDGSC-CPA adversary of IDGSC 
in encryption-only mode that succeeds with probability at least . 

A

ε
 
Remark:  

Our scheme is a combination of Malone-Lee [8] and Chen and Malone-Lee [4] 
signcryption schemes. In the signature-only mode it reduces to a modified form of Cha-
Cheon signature scheme. In the encryption-only mode it reduces to Boneh-Frankline [1] basic 
encryption scheme, which is chosen plaintext secure. 

Boyen [2] gave three additional security notions ciphertext unlinkability, ciphertext 
authentication and ciphertext anonymity for identity based signcryption schemes. Like the 
scheme in [4], this scheme too does not possess the ciphertext unlinkability. Also we use 
identities of sender and receiver as the identifier of signature-only mode and encryption-only 
mode. Hence the concept of ciphertext anonymity does not exist. 
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6. Efficiency and Comparisons: 
 The idea of generalized signcryption is to reduce implementation complexity (same 
algorithm for encryption, signature and signcryption). It may not reduce the computational 
complexity. However, the communication complexity in encryption-only mode and 
signature-only mode may increase a bit. In our scheme, the signcryption mode is as efficient 
as [4]. This is an additional advantage of our scheme. 
 In Table 1 we assess the comparative efficiency of some identity based signcryption 
schemes. Table 1 summarizes the number of relevant basic operations underlying the some 
identity based signcryption, namely scalar multiplication (G1mls.) exponentiation (G2 exps.) 
and pairing evaluation (e cps.). 
 
 

  Sign/Encrypt                Decrypt/Verify Signcryption schemes 
G1 
mls 

G2  
exps 

e cps G1 
mls 

G2 
exps 

e cps 

Malone-Lee [8] 
Nalla-Reddy [9]  
Libert-Quisquater[7] 
Chen-J.M. Lee [4] 
X. Boyen [2] 
Our scheme 

 3 
 2 
 2 
 3 
 3 
 3 

 ⎯ 
 1 
 ⎯ 
 ⎯ 
 1 
 ⎯ 

  1 
  1 
  2 
  1 
  1 
  1 

 1 
⎯ 
 1 
 1 
 2 
 1 

 ⎯ 
  1 
 ⎯ 
 ⎯ 
 ⎯ 
 ⎯ 

   3 
   3 
   4 
   3 
   4 
   3 

 
 

     Table 1 
  
Conclusion: In this paper, we proposed an identity based generalized signcryption scheme. 
To achieve our goal of generalized signcryption we use a variant of Cha-Cheon [3] signature 
scheme. We also compare the efficiency of our scheme with several signcryption schemes. 
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Appendix: 
Proof of Theorem 5.1: 
  We will show how an IND-IDGSC-CCA2 adversary A  of IDGSC may be used to 
construct a simulator B  that solves the BDHP. Let (  be the instant of the BDHP 
that we wish to solve.  

P,aP, bP,cP)

  The simulator runs A  with =Ppub bP . It also creates algorithms to respond to 
queries made by A  during its attack. To maintain consistency between queries made by , 
the simulator keeps the following lists:  for 

A
iL i 0,1, 2=  of data for query/response pairs to 

random oracle   of signcryptions generated by the simulator;  of signatures 
generated by the simulator; of some of the queries made byA  to decrypt oracle and of 
some of the queries made by  to unsigncryption oracle. We describe how  runs phase1 of 

 attack below. 

iH ; scL sL

dL uL
A B

'sA
 
Simulator:  0 UH (ID )
  At the beginning of simulator choose iβ  uniformly at random from {1, …, }. We 
show how to respond to the i

0q
th query made by A  below. Note that we assume that A does 

not make repeat queries. 
─ If i = i  then respond with = aP and set β 0 UH (ID ) IDβ= . UID

─ Else chooses x uniformly at random from , compute *
q UQ xP= ; compute ; 

store ( ,  , x) in  and respond with  
US PubxP=

UID UQ , US 0L UQ .
 
Simulator:  1H (X m)||

─ If ( , ∈  for some , returns . X m|| 1h ) 1L 1h 1h

─ Else choose  uniformly at random from ; add ( , ) to  and returns . 1h *
q X m|| 1h 1L 1h

 
Simulator:   2H ( )ω
─ If ( , ∈  for some , return  ω 2h ) 2L 2h 2h .

─ Else choose  uniformly at random from 2h 0 1k k n{0,1} + + ; add (ω , ) to  and return  2h 2L 2h .
 
Simulator: Extract  U(ID )
 We will assume that A  makes the query  before it makes the extraction 
query for . 

0 UH (ID )

UID
─ If =  abort the simulation. UID IDβ

─ Else search  for the entry ( ,  , x) corresponding to  and return  0L UID UQ , US UID US .
 
Simulator: Sign  1(m, ID , ID )φ
 We will assume that A  makes the queries  before it makes a sign query on 
message m using this identity. We have following cases to consider 

0 1H (ID )
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Case1:   1ID IDβ≠

─ Find the entry  ( ,  , x) in 1ID 1Q , 1S 0L  

─ Choose r uniformly at random from  and compute *
q 1X rP rQ= +  

─ Compute  (where  is the simulator above) 1 1h H (X m= || ) 1H
─ Compute   Pub 1 1Z rP (r h )S= + +
─ Compute  Pub 11 e(rP rS , )= + O
─ Compute (where  is a zero string of length          

) 
1 2 1Z ID m H (1) (Z ID m)= ⊕|| || || || 2H (1)

0 1k k n+ +
─ Return (X, ) 1Z ID m|| ||

Case2:  1ID IDβ=

─ Choose r,  uniformly at random from  1h *
q

─ Compute X = rP 1h Qβ−  and  PubZ rP=

─ Add ( , ) to X m|| 1h 1L  
─ Compute 1 e  (X, )= O
─  Compute  (where  is a zero string of length          

) 
2Z ID m H (1) (Z ID m)β = ⊕|| || || ||β 2H (1)

0 1k k n+ +
─ Return (X, ) Z ID mβ|| ||

 
Simulator: Signcrypt  1 2(m, ID , ID )
 We will assume that A  makes the queries  and before it makes a 
signcryption query on message m using these identities. We have following cases to consider 

0 1H (ID ) 0 2H (ID )

Case1:   1ID IDβ≠

─ Find the entry  ( ,  , x) in 1ID 1Q , 1S 0L  

─ Choose r uniformly at random from  and compute *
q 1X rP rQ= +  

─ Compute  (where  is the simulator above) 1 1h H (X m= || )

1

s

1H
─ Compute   Pub 1 1Z rP (r h )S= + +
─ Compute   (where  is the simulator above) 2Q = 0 2H (ID ) 0H
─ Compute  Pub 1 2e(rP rS ,Q )ω = +
─Compute (where  is the simulator above) 2y H ( ) (Z ID m)= ω ⊕ || || 2H
─ Return (X, y). 
Case2:  1ID IDβ=

─ If  for m then 1(m, ID , X, Z, r, h ) Lβ ∈

• Find the entry ( ,  , x) in 2ID 2Q , 2S 0L  
• Compute  2e(X,S )ω =
• Compute (where  is the simulator above) 2y H ( ) (Z ID m)β= ω ⊕ || || 2H
• Return (X, y) 

─ Else choose r,  uniformly at random from  1h *
q
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• Compute  and X = rP 1h Qβ− PubZ rP=  
• Add ( , ) to X m|| 1h 1L  
• Find the entry ( ,  , x) in 2ID 2Q , 2S 0L  
• Compute  2e(X,S )ω =
• Compute (where  is the simulator above) 2y H ( ) (Z ID m)β= ω ⊕ || || 2H
• Return (X, y) 

 
Simulator: Decrypt  2(X, y) ID
  We will assume that A  makes the queries  before it makes a decryption 
query for . We have following cases to consider 

0 2H (ID )

2ID
Case1:  2ID IDβ≠

─ Find the entry ( ,  , x) in 2ID 2Q , 2S 0L  
─ Compute  2e(X,S )ω =
─ If , return . Else 2Lω∉ ⊥ 1Z ID m y H ( )2= ⊕ ω|| ||  (where  is the simulator above) 2H
─ If , return . Else = O   1ID IDφ≠ ⊥ 1Q
─ If  return . Else return m, (X, Z), e(Z, P) ≠ Pube(P ,X) ⊥ IDφ . 
Case2: =  2ID IDβ

 Step through the list  with entries (2L ω , ) as follows 2h
─ Compute  1 2Z ID m y h= ⊕|| ||

─ If , move to the next element in  and begin again 1ID ≠ IDβ 2L
─ If  set  1ID IDφ= 1Q =O

─ Check that  and if not move to the next element in  and begin again e(Z,aP)ω = 2L
─ Check that = , if so return m, else move to the next element in e(Z, P) Pube(P ,X) 2L  
─ If no message has been returned after stepping through  return 2L ⊥ . 
 
Simulator: Unsigncrypt (X, y),  2ID
  We will assume that A  makes the queries  before it makes an 
unsigncryption query for . We have following cases to consider 

0 2H (ID )

2ID
Case1:  2ID ≠ IDβ

─ Find the entry  ( ,  , x) in 2ID 2Q , 2S 0L  
─ Compute  2e(X,S )ω =
─ If , return . Else 2Lω∉ ⊥ 1Z ID m y H ( )2= ⊕ ω|| ||  (where  is the simulator above) 2H
─ If = , =  or , return 1ID IDφ 1ID 2ID 1ID 0L∉ ⊥ . Else =   1Q 0 1H (ID )
─ If , return . Else X m|| ∉ 1L ⊥ 1 1h H (X m)= ||  (where  is the simulator above) 1H
─ If  return e(Z, P) ≠ Pub 1 1e(P ,X h Q )+ ⊥ . Else return m, (X, Z), .  1ID
Case2: =  2ID IDβ

 Step through the list  with entries (2L ω , ) as follows 2h
─ Compute  1 2Z ID m y h= ⊕|| ||
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─ If =  or = ID , move to the next element in  and begin again 1ID IDφ 1ID β 2L
─ If  let =  and find  in , else move to the next element in    1ID ∈ 0L 1Q 0 1H (ID ) 1S 0L 2L
─ Check that  and if not move to the next element in  and begin again 1 1e(Z h S ,aP)ω = − 2L

─ Check that = , if so return m, else move to the next element in Le(Z, P) Pub 1 1e(P ,X h Q )+ 2

─ If no message has been returned after stepping through  return 2L ⊥ .  
 
 At the end of phase1 the adversary outputs two identities { , } and two 
messages { }. If 

AID BID

0m , m1 BID ≠ IDβ ,  aborts the simulation. Otherwise it chooses 

y*∈  and sets X*= cP. It returns the challenge ciphertext  to A . 
The queries made by A  in phase2 are responded to in the same way as those made by A  in 
phase1. 

B
0 1k k n{0,1} + + * (X*, y*)σ =

  
 At the end of phase2, A  outputs a bit b. The simulator ignores this bit. It chooses 
some  at random from  as its guess at the solution of the BDHP . We call 
this event ch

ω 2L (P,aP, bP,cP)
1. Let us now consider how our simulation could fail when it execute phase1 of 

’s attack i.e. what events could cause A ’s view to differ when run by B  from its view in 
a real attack. We call such an event error and denote it ER. 
A

 
 It is clear that the simulations for   and  are indistinguishable from genuine 
random oracles. Since they are only define at points where they are called by A  or . 

0H , 1H 2H
B

 Let us now consider how the simulation for sign could fail. We denote such an event 
S-ER. The most likely failure will caused by the sign simulator responded to a query of the 
form case2 (see simulator). The only possibility for introducing an error here defining 

 where it is already defined. Since X takes the values uniformly at random in 1H (X m)|| P〈 〉 , 
the chance of these event occurring is most 1 s sc(q q q ) q+ +  for each query. The  and 
comes from the fact that the signing and signcryption simulator adds elements to  
Therefore over the whole simulation, the chance of an error introduced in this way is at most  

sq scq  

1L .

     s 1 s scq (q q q )
q

+ + . 

With the similar argument the chance of an error introduced in signcrypt simulator is at most 

     sc 1 s scq (q q q )
q
+ +  

we denote an error in the signcryption simulator by SC-ER. 
 Also the decrypt and unsigncrypt simulators are indistinguishable from genuine 
random oracles. The final simulator to consider is the extract simulator. Looking at the 
simulator we see that it chooses one  query made by the adversary and responds to this 
with group elements from the BDHP instance that it is trying to solve. The simulator hopes 
that this will be the identity chosen by A  for the recipient in the challenge. This will be the 
case with probability at least 

0H  

0H

     
0

1
q  

 If this is not the case we say that an error has occurred in the extract simulator 
because, if the adversary tried to extract the private key for this identity the simulator would 
abort. An error in the extract simulator is denoted by E-ER. 

 16



 
 Let us now consider what errors that could be when  execute phase2 of A . All the 
same errors are possible, in addition the simulator will fail if the adversary makes the 

query with . However if A  has any advantage it must make this query, and 
once it has done so we have trapped it into leaving enough information in  to solve the 
BDHP. 

B
2H  

abc(P,P)ω=

2L

 Let Ask be the event that a  query related to  is issued at some point. 2H abc(P,P)ω=
 
  Pr[b ' b] Pr[b ' b Ask]Pr[Ask] Pr[b ' b Ask]Pr[ Ask]= = = + = ¬ ¬| |
      P r[Ask] Pr[b ' b Ask](1 Pr[Ask])≤ + = ¬ −|
      Pr[b ' b Ask] (1 Pr[b ' b Ask]) Pr[Ask]= = ¬ + − = ¬| | ·
Clearly Pr[b ' b Ask]= ¬| 1

2= . Hence 

  1 1 1 Pr[Ask]2 2 2
+

≤ +
ε  

   Pr[Ask] ≥ ε
Thus we have 
   1Adv[ ] Pr[Ask S ER SC ER E ER ch ]B ≥ ∧¬ − ∧¬ − ∧¬ − ∧

   ≥ s 1 s sc sc 1 s sc

0 2

q (q q q ) q (q q q ) 11 1q q
+ + + +⎛ ⎞ ⎛− −⎜ ⎟ ⎜

⎝ ⎠ ⎝
ε�· · q q

⎞
⎟
⎠
·  

as required. 
 
Proof of Theorem 5.2:  
  We are going to use the “forking lemma” technique of Pointcheval and Stern [10] to 
prove our result. We will in fact reduce the standard Diffie-Hellman problem (DHP) to the 
problem of forging. Since a black box for the DHP is sufficient to solve the BDHP the result 
will follow. We will now show how a EUF-IDGSC-CMA adversary A  of IDGSC may be 
used to construct a simulator B  that solves the DHP. Let (P  be the instant of the 
DHP that we wish to solve. The simulator runs in three stages: ,  and .   

, aP, bP)

1B 2B 3B

  The simulator  runs with PKG public key =1B A Ppub bP . It also creates algorithms 
to respond to queries made by A  during its attack. To maintain consistency between queries 
made by , the simulator keeps lists as in the proof of Theorem 1. A
 
Simulator:   0 UH (ID )
  At the beginning of simulator choose  uniformly at random from {1, …, }. We 
show how to response to the i

ai 0q
th query made by A  below. Note that we assume that A does 

not make repeat queries. 
 
─ If i =  then respond with = aP and set = . ai 0 UH (ID ) AID UID

─ Else chooses x uniformly at random from , compute *
q UQ xP= ; compute ; 

store ( ,  , x) in  and respond with  
US PubxP=

UID UQ , US 0L UQ .
 
Simulator:  and  as in the proof of Theorem 1. 1H (X m)|| 2H ( )ω
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Simulator: Extract   U(ID )
 We will assume that A  makes the query   before it makes the extraction 
query for . 

0 UH (ID )

UID
 
─ If =  abort the simulation. UID AID
─ Else search  for the entry ( ,  , x) corresponding to  and return  0L UID UQ , US UID US .
 
Simulator: Sign  1(m, ID , ID )φ
 We will assume that A  makes the queries  before it makes a sign query 
using this identity. We have following cases to consider 

0 1H (ID )

Case1:  1ID ≠ AID
 Use the simulation from case1 of sign in the proof of Theorem 1. 
Case2:  1 AID ID=
 Use the simulation from case2 of sign in the proof of Theorem 1 by replacing IDβ  by 

 and  by  AID Qβ AQ .
 
Simulator: Signcrypt  1 2(m, ID , ID )
 We will assume that A  makes the queries  and  before it makes a 
signcryption query using these identities. We have following cases to consider 

0 1H (ID ) 0 2H (ID )

Case1:  1ID ≠ AID
 Use the simulation from case1 of signcrypt in the proof of Theorem 1. 
Case2:  1 AID ID=
 Use the simulation from case2 of signcrypt in the proof of Theorem 1 by replacing 

 by  and  by  IDβ AID Qβ AQ .
 
Simulator: Decrypt  2(X, y) ID
  We will assume that A  makes the queries  before it makes a decryption 
query for this identity. We have following cases to consider 

0 2H (ID )

Case1:  2ID ≠ AID
 Use the simulator from case1 of decrypt in the proof of Theorem 1. 
Case2:  2 AID ID=
 Use the simulation from case2 of decrypt in the proof of Theorem 1 by replacing IDβ  
by  and  by  AID aP AQ .
 
Simulator: Unsigncrypt  2(X, y) ID
  We will assume that A  makes the queries  before it makes an 
unsigncryption query for this identity. We have following cases to consider 

0 2H (ID )

Case1:  2ID ≠ AID
 Use the simulator from case1 of unsigncrypt in the proof of Theorem 1. 
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Case2:  2 AID ID=
 Use the simulation from case2 of unsigncrypt in the proof of Theorem 1 by replacing 

 by  and  by  IDβ AID aP AQ .
 
 Let us now consider how our simulation could fail i.e. what events could cause A ’s 
view to differ when run by  from its view in a real attack. We call such an event error and 
denote it ER. It is clear that the simulations for   and  are indistinguishable from 
genuine random oracles. Since they are only defines at points where they are called by A  or 

. 

1B

0H , 1H 2H

1B
 Let us now consider how the simulation for sign and signcrypt could fail. The analysis 
of these case are identical to the equivalent cases in Theorem 1. An error is therefore 
introduced in sign and signcrypt simulator respectively with probability at most   

   s 1 s scq (q q q )
q

+ +
 and sc 1 s scq (q q q )

q
+ +

    (1) 

 Also the decrypt and unsigncrypt simulators are indistinguishable from genuine 
random oracles. The final simulator to consider is the extract simulator. Note that the 
adversary will only succeed in its task with non-negligible probability if it queries  with 
identity under which the message contained in the ciphertext it returns is signed. Looking at 
the  simulator we see that it chooses one  query made by the adversary and responds to 
this with group elements from the DHP instance that it is trying to solve. The simulator hopes 
that this will be the signer identity for the ciphertext it returns. This will be the case with 
probability at least 

0H

0H 0H

     
0

1
q        (2) 

 If this is not the case we say that an error has occurred in the extract simulator 
because, if the adversary tried to extract the private key for this identity the simulator would 
abort.  
 
 Now from (1) and (2), it is clear that with probability grater or equal to  

   s 1 s sc sc 1 s sc

0

q (q q q ) q (q q q ) 11 1q q
+ + + +⎛ ⎞ ⎛− −⎜ ⎟ ⎜

⎝ ⎠ ⎝
ε�· · q

⎞
⎟
⎠
·    (3) 

the simulator obtains from the adversary a recipient identity  and a ciphertext c such that, 
if (m, , ) is the result of decrypting c under the secrete key corresponding to , 
Verify (m, , )= . Note that, since we are assuming that A  has been successful, 

 and so we can use the decryption process of the simulator. Also, if = (X, Z) 
then, except with negligible probability, the  query must have been made at some point 
during the simulation. We call this query the critical query. 

BID

AID σ BID

AID σ F

BID ≠ AID σ

1H

 
 Let φ , ψ  be the random tapes for random oracle  and simulator  respectively. 
That is to say ψ  is the random tape for all functions of  except random oracle . The 
random oracle  is called  times. The second step in the process of solving 
DHP is to choose j {1, …, } at random. We now split φ  into  and 

1H 1B

1B 1H

1H 1 s sc(q q q )+ +
← 1 s sc(q q q )+ + 1φ 2φ  

where  contains the random responses for queries 1,…, j-1 and 1φ 2φ  contains responses for 
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queries j, …, . The next step of the simulation,  is to run a simulator similar 
to  with the same  and  but a new

1 s sc(q q q )+ + 2B

1B ψ 1φ 2φ , say 2′φ . With probability  
     1 s sc1 (q q q )+ +      (4) 
the value of j that we chose corresponds to the critical query. 
 
 Our proof now uses the following lemma from [10]. 
Lemma: (The splitting lemma) 
 Let E  be such that ⊂ ×£Θ Pr[E] υ≥ . Define 
  2F {( , ) [( , ') E] }υ

ν∈= θ ν ∈ × θ ν ∈ ≥' ££ : PrΘ  
we have the following 
1. 2( , ) F, [( , ') E] υ

ν∈∀ θ ν ∈ θ ν ∈ ≥' £Pr  

2. 1
2Pr[F E] ≥|  

 
 Now, from (3), (4) and lemma1 applied with 1= ψ∪φΘ  and 2φ=£ , with probability 
greater than equal to 
   

 
2 2

2 s 1 s sc sc 1 s sc
2
0 1 s sc

q (q q q ) q (q q q ) 11 1q q 4q (q q q )
+ + + +⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ + +⎝ ⎠ ⎝ ⎠

ε �· · · 2

′

′

P,cP)

b

   (5) 

the two simulated runs of A  gives us two signatures (X, Z) and (X, Z’) on m with the 
following properties. After the first run of the simulator there is an  and after the 
second run there is an  (the responses to the critical queries) such that  

1h ∈ 1L

1h′ ∈ 1L
     and 1Z rbP (r h )abP= + +
          (6) 1Z rbP (r h )abP′ = + +
where . Assuming that  and  are successful, it is easy to see from (6) that 
the third stage of the simulation,  can compute 

X rP raP= + 1B 2B

3B

         (7) 1
1 1abP (h h ) (Z Z )−′= − −

The result follows from (7) and (5). 
 
Proof of Theorem 5.3:  
  We will show how an AUTH-IDGSC-CMA adversary A  of IDGSC may be used to 
construct a simulator  that solves the BDH problem. Let  be the instant of the 
BDH problem that we wish to solve.   

B (P,aP, b

  The simulator B  runs A with PKG public key Ppub = . It also creates algorithms 
to respond to queries made by A  during its attack. To maintain consistency between queries 
made by , the simulator keeps lists as in the proof of Theorem 1. 

cP

A
 
Simulator:   0 UH (ID )
  At the beginning of simulator choose  uniformly at random from {1, …, 

}(subject to  ). We show how to response to the i
a bi , i

0q ai i≠ th query made by A  below. Note 
that we assume that A does not make repeat queries. 
─ If i =  then respond with = aP and set = . ai 0 UH (ID ) AID UID
─ If i = bi  then respond with = bP and set = . 0 UH (ID ) BID UID
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─ Else chooses x uniformly at random from , compute *
q UQ xP= ; compute ; 

store ( ,  , x) in  and respond with  
US PubxP=

UID UQ , US 0L UQ .
 
Simulator:  and  as in the proof of Theorem 1. 1H (X m)|| 2H ( )ω
 
Simulator: Extract   U(ID )
 We will assume that A  makes the query   before it makes the extraction 
query for . 

0 UH (ID )

UID
 
─ If = or = , abort the simulation. UID AID UID BID
─ Else search  for the entry ( ,  , x) corresponding to  and return  0L UID UQ , US UID US .
 
Simulator: Sign  1(m, ID , ID )φ
 We will assume that A  makes the queries  before it makes a sign query 
using this identity. We have following cases to consider 

0 1H (ID )

Case1: and  1ID ≠ AID 1ID ≠ BID
 Use the simulation from case1 of sign in the proof of Theorem 1. 
Case2:  1 AID ID=
 Use the simulation from case2 of sign in the proof of Theorem 1 by replacing IDβ  by 

 and  by  AID Qβ AQ .
Case3:  1 BID ID=
 Use the simulation from case2 of sign in the proof of Theorem 1 by replacing IDβ  by 

 and  by  BID Qβ BQ .
 
Simulator: Signcrypt  1 2(m, ID , ID )
 We will assume that A  makes the queries  and  before it makes a 
signcryption query using these identities. We have following cases to consider 

0 1H (ID ) 0 2H (ID )

Case1:  and  1ID ≠ AID 1ID ≠ BID
 Use the simulation from case1 of Signcrypt in the proof of Theorem 1. 
Case2:  1 A 2 A 2 BID ID , ID ID and ID ID= ≠ ≠
 Use the simulation from case2 of Signcrypt in the proof of Theorem 1 by replacing 

 with  and IDβ AID Qβ  with  AQ .
Case3:  1 B 2 A 2 BID ID , ID ID and ID ID= ≠ ≠
 Use the simulation from case2 of Signcrypt in the proof of Theorem 1 by replacing 

 with  and IDβ BID Qβ  with  BQ .
Case4:  1 A 2ID ID and ID ID= = B

s

c

― If for m then A 1(m, ID ,X, Z, r, h ) L∈

• Choose uniformly at random 0 1k k n
2h {0,1} + +∈

• Compute  2 Ay h Z ID m= ⊕

• Add  A B 1 2 s(ID , ID , X, y, Z, m, r, h , h ) to L
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• Return (X, y) 
― Else choose r, uniformly at random from  1h *

q

• Compute  and  1 AX rP h Q= − PubZ rP=

• Add  1 1(X m,h ) to L

• Choose uniformly at random 0 1k k n
2h {0,1} + +∈

• Compute  2 Ay h Z ID m= ⊕

• Add  A B 1 2 s(ID , ID , X, y, Z, m, r, h , h ) to L c

A

• Return (X, y) 
Case5:  1 B 2ID ID and ID ID= =
 Use the simulator of case4 swapping with .  A A B(ID ,Q , ID ) B B A(ID ,Q , ID )
 
Simulator: Decrypt  2(X, y) ID
  We will assume that A  makes the queries  before it makes a decryption 
query for this identity. We have following cases to consider 

0 2H (ID )

Case1: and  2ID ≠ AID 2ID ≠ BID
 Use the simulator from case1 of decrypt in the proof of Theorem 1. 
Case2:  2 AID ID=
 Use the simulation from case2 of decrypt in the proof of Theorem1 by replacing IDβ  
by . AID
Case3:  2 BID ID=
 Use the simulation from case2 of decrypt in the proof of Theorem 1 by replacing IDβ  
by and aP by bP. BID
 
Simulator: Unsigncrypt  2(X, y), ID
  We will assume that A  makes the queries  before it makes an 
unsigncryption query for this identity. We have following cases to consider 

0 2H (ID )

Case1: and   2ID ≠ AID 2ID ≠ BID
 Use the simulator from case1 of Unsigncrypt in the proof of Theorem 1. 
Case2:  2 BID ID=
― If  for some m. return m, (X, Z), . A B 1 2 s(ID , ID ,X, y, Z,m, r, h ,h ) L∈ c

A

)

)

AID
― Else, add (X, y), to and step through the list  with entries as follows. BID uL 2L 2( , h )ω

• Compute  1 2Z ID m y h= ⊕

• If , or , move to the next element in and begin again 1 AID ID= 1ID IDφ= 1ID ID= 2L
• If let and find in else move to the next element in and 

begin again 
1 0ID L∈ 1 0 1Q H (ID= 1S 0L 2L

• If let , else move to the next element in and begin again 1X m L∈ 1 1h H (X m= 2L
• Check that and if not move to the next element in and begin 

again 
1 1 Be(Z h S ,Q )ω= − 2L

• Check that , if so return m, (X, Z) and else move to the 
next element in and begin again  

Pub 1 1e(Z,P) e(P ,X h Q )= + 1ID

2L
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― If no message has been returned after stepping through the list , step through the list 
as follows 

2L

scL
• If the entry has the form the check that . If so 

continue, else move on to the next element of and begin again. 
A B 1 2(ID , ID ,X , y, Z,m , r, h , h )′ ′ ′ X X′ =

scL
• Else if the current entry has the form then checks that 

. If so continue, if not move to the next element of and begin 
again. 

B A 1 2(ID , ID ,X , y, Z,m , r, h , h )′ ′ ′

Ae(X ,Q ) e(X,Q )′ = B

)
)

scL

• Compute  1 2Z ID m y h= ⊕
• If or , move to the next element in and begin again. 1 BID ID= 1ID IDφ= scL
• If let , else move to the next element in and begin again 1 0ID L∈ 1 0 1Q H (ID= scL
• If let , else move to the next element in and begin again 1X m L∈ 1 1h H (X m= scL
• Check that , if so return m, (X, Z) and else move to the 

next element in and begin again  
Pub 1 1e(Z,P) e(P ,X h Q )= + 1ID

scL
― If no message has been retuned, return . ⊥
Case3:  2 AID ID=
 Use the simulator of case2 replacing  by  B B A(ID ,Q , ID ) A A B(ID ,Q , ID ).
 
Once A has been run, does one of the two things. B
 1. With probability sc sc uq (q q+ ) choose a random element from and a random 
element from . We call this event in the analysis below (Ch for choice). This is 
the worst case scenario. 

scL

2( , h )ω 2L 1Ch

― If the chosen element has form compute A B 1 2(ID , ID ,X, y, Z,m, r, h , h ),

    ( ) 11 hB e(rbP,cP) −= ω   
― If the chosen element has form compute B A 1 2(ID , ID ,X, y, Z,m, r, h , h ),

    ( ) 11 hB e(raP,cP) −= ω   
 2. With probability u sc uq (q q )+ choose a random element from and a random 
element from . We call this event in the analysis below. This is the worst case 
scenario. 

uL

2( , h )ω 2L 2Ch

― If the chosen element has form (X, y), compute . If  has the form 
for some Z, m compute 

BID 2y h⊕ 2y h⊕

AZ ID m

    ( ) 11 hB e(Z,bP) −= ω  
If does not have this formB  has failed. 2y h⊕
― If the chosen element has form (X, y), compute . If  has the form 

for some Z, m compute 
AID 2y h⊕ 2y h⊕

BZ ID m

    ( ) 11 hB e(Z,aP) −= ω  
If does not have this formB  has failed.  2y h⊕
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 Let us now consider how our simulation could fail i.e. describe events that could 
cause ’s view to differ when run by B  from its view in a real attack. We call such an event 
error and denote it ER. 

A

 It is clear that the simulations for   are indistinguishable from real random 
oracles. Let us now consider the simulator. The important point here is that is not only 
defined at points where the  simulator is called by A or by the simulator itself. It is also 
defined at certain points implicitly by the Signcrypt simulator. For example, suppose that the 
Signcrypt simulator responds to a query m, In this case it adds an entry 

. This implicitly defines 

0H , 1H

2H 2H

2H

AID , BID .

A B 1 2 s(ID , ID , X, y, Z, m, r, h , h ) to L c ( )2 BH e(X,S ) h= 2

B

although it is 
not actually able to compute If the simulator is subsequently called with 

it will not recognize it so it will not return . We denote such events H-ER. 
However, such an event occurs we have 

Be(X,S ). 2H

Be(X,S )ω= 2h

    B 1 Ae(X,S ) e(rP h Q ,S )ω= = −
for which it is possible to compute  
  ( ) ( )1 11 h 1 habc

A B B Pube(P,P) e(Q ,S ) e(rQ ,P ) e(rbP,cP)− −= = ω = ω  (1) 
Similarly if the simulator is called with ω  that is implicitly defined by an entry 

we can compute 
2H

B A 1 2 s(ID , ID ,X, y, Z,m, r, h , h ) L∈ c

  ( ) ( )1 11 h 1 habc
B A A Pube(P,P) e(Q ,S ) e(rQ ,P ) e(raP,cP)− −= = ω = ω  (2) 

 Let us now consider how the simulation for sign could fail. We denote such an event 
S-ER. The most likely failure will caused by the sign simulator responded to the query of the 
form case 2 or case 3 (see simulator). Since we do not know how often each case will occur. 
We will be conservative and assume that each query will be one of these, 2 say. The only 
possibility for introducing an error here defining when it is already defined. Since 
X takes its values uniformly at random in , the chance of these events occurring 

1H (X m)
P〈 〉

1 s sc(q q q ) q+ + for each query. The and come from the fact that the sign and 
Signcrypt simulator adds elements to . Therefore over the whole simulation, the chance of 
an error introduced in this way is at most 

sq scq

1L

     s 1 s scq (q q q )
q

+ +      (3) 

 Now we consider how the simulator for Signcrypt could fail. We denote such an error 
by SC-ER. The most likely failure will cause by the Signcrypt simulator responding to the 
query of the form case 4 or case 5 (see simulator). Again we do not know how often each 
case will occur so assume that each query will be one of these, 4 say. The only possibility for 
introducing an error here defining when it is already defined or defining 1H (X m)

( ) ( )2 B 2H e(X,S ) H e(X,S )A  when it is already defined. The chance of one of these events 
occurring 1 2 s sc(q q q 2q ) q+ + + for each query. Therefore over the whole simulation, the 
chance of an error introduced in this way is at most 

       sc 1 2 s scq (q q q 2q )
q

+ + +     (4) 

 Also the decrypt simulator is indistinguishable from genuine random oracles. We now 
turn our attention to the Unsigncrypt simulator. An error in this simulator is denoted by 

It is clear that this simulator never accepts an invalid encryption. What we worry 
about is the possibility that it rejects a valid one. This can only occur with non-negligible 
U ER.−
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probability in case 2 or case 3. Suppose that we are trying to decrypt (X, y), (i.e. case 2). 
An error will only occur if while stepping through there is an entry such that 

= and (X, y) is a valid encryption of m from to . In this case we 
must have  

BID

2L 2( , h )ω

AZ ID m 2y h⊕ AID BID

   1 A B B 1 A B 1e(Z h S ,Q ) e(Z,Q )e( h S ,Q ) e(Z, bP)e( h acP, bP)ω= − = − = −
where . From the above we can compute 1h = 1H (X m)

    abce(P,P) = ( ) 11 he(Z,bP) −ω     (5) 
Suppose we are trying to decrypt (X, y), (i.e. case 3). An error will only occur if while 
stepping through there is an entry such that =  and (X, y) is a 
valid encryption of m from to . In this case we must have  

AID

2L 2( , h )ω BZ ID m 2y h⊕

BID AID
   1 B A A 1 B A 1e(Z h S ,Q ) e(Z,Q )e( h S ,Q ) e(Z,aP)e( h bcP,aP)ω= − = − = −
where . From the above we can compute 1h = 1H (X m)

    abce(P,P) = ( ) 11 he(Z,aP) −ω      (6) 
 The final simulator is the extract simulator. Note that the adversary will only succeed 
in its task with non-negligible probability if it queries  with the two identities under which 
the encrypted and signed message it produces is supposed to be valid. Looking at the 
simulator we see that it chooses two  queries made by the adversary and responds to these 
with group elements from the BDHP instance that it is trying to solve. The simulator hopes 
that these will be the signer identities for the adversary’s encrypted and signed message. This 
will be the case with probability at least 

0H

0H  

0H

     
0 0

1
q (q 1)−

      (7) 

 If this is not the case we say that an error has occurred in the extract simulator 
because, if the adversary tried to extract the private key for these identities the simulator 
would abort. An error in the extract simulator is denoted by E-ER. 
  
 Once A has been run by the simulatorB , there are two courses of action: and 

(as describe above). If has been chosen, we denote the event that B selects the 
correct elements to solve the BDHP from and by (under the assumption that there 
are such correct elements in the lists at the end of the simulation). Likewise if has been 
chosen, we denote the event that selects the correct elements from and by . 

1Ch

2Ch 1Ch

scL 2L 1CG

2Ch
B uL 2L 2CG

 With the events described above we have 
       1 1Adv[ ] Pr[ E ER H ER S ER SC ER Ch CG ]≥ ¬ − ∧ − ∧¬ − ∧¬ − ∧ ∧B
       (8) 2Pr[U ER E ER H ER S ER SC ER Ch CG ]+ − ∧¬ − ∧¬ − ∧¬ − ∧¬ − ∧ ∧ 2

2

we have 
      1 1Pr[ E ER H ER S ER SC ER Ch CG ]¬ − ∧ − ∧¬ − ∧¬ − ∧ ∧
 =    (9) 1 1Pr[ E ER S ER SC ER]Pr[Ch CG ]Pr[H ER]¬ − ∧¬ − ∧¬ − ∧ −
Also, 
      2 2Pr[U ER E ER H ER S ER SC ER Ch CG ]− ∧¬ − ∧¬ − ∧¬ − ∧¬ − ∧ ∧
 =       (10) 2Pr[U ER]Pr[ E ER H ER S ER SC ER]Pr[Ch CG ]− ¬ − ∧¬ − ∧¬ − ∧¬ − ∧
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 Note that, in the event the adversary is 
run by B in exactly the same way that it would we run in a real attack until the event U-ER 
occurs. Moreover, in the event , winning and 
U-ER are equivalent. This means (10) becomes 

E ER H ER S ER SC ER¬ − ∧¬ − ∧¬ − ∧¬ − A

E ER H ER S ER SC ER¬ − ∧¬ − ∧¬ − ∧¬ − A

  2 2Pr[U ER E ER H ER S ER SC ER Ch CG ]− ∧¬ − ∧¬ − ∧¬ − ∧¬ − ∧ ∧
  =             (11) 2Pr[ E ER H ER SER SC ER]Pr[Ch CG ]ε ¬ − ∧¬ − ∧¬ ∧¬ − ∧ 2
  
From the definition of , , and above we have 1Ch 1CG 2Ch 2CG

  sc
1 1

sc u sc 2 sc sc u 2 sc

q 1 1Pr[Ch CG ]
q q q (q q ) (q q )(q q+

∧ = =
+ + + )

            (12) 

    

  u
2 2

sc u u 2 sc sc u 2 sc

q 1 1Pr[Ch CG ]
q q q (q q ) (q q )(q q+

∧ = =
+ + + )

            (13) 

 
From, the fact that  (8), (9), (11), (12) and (13) we have Pr[H ER] Pr[ H ER] 1,− + ¬ − =
Adv[ ] (Pr[H ER] Pr[ H ER]) Pr[ E ER S ER SC ER]≥ − +ε ¬ − ¬ − ∧¬ − ∧¬ −B  

         
sc u 2 sc

1
(q q )(q q )+ +

 

  (Pr[H ER] Pr[ H ER]) Pr[ E ER S ER SC ER]≥ε − + ¬ − ¬ − ∧¬ − ∧¬ −

         
sc u 2 sc

1
(q q )(q q )+ +

 

 
sc u 2 sc

1Pr[ E ER S ER SC ER]
(q q )(q q )

= ε ¬ − ∧¬ − ∧¬ −
+ +

             (14) 

 
Finally, by the independence of E-ER, S-ER and SC-ER, using (3), (4), (7) and (14) 

s 1 s sc sc 1 2 s sc

0 0 sc u 2 sc

q (q q q ) q (q q q 2q ) 1Adv[ ] 1 1
q q q (q 1)(q q )(q q )

⎛ ⎞⎛ ⎞+ + + + +⎟ ⎟⎜ ⎜≥ ε − ⎟ − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ − + +⎝ ⎠⎝ ⎠
B

as required. 
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