
On the Security of Chien’s Ultralightweight RFID Authentication
Protocol

Hung-Min Sun, Wei-Chih Ting, and King-Hang Wang

Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan

hmsun@cs.nthu.edu.tw

{sd,khwang0}@is.cs.nthu.edu.tw

Abstract. Recently, Chien proposed an ultralightweight RFID authentication protocol to prevent all
possible attacks. However, we find two de-synchronization attacks to break the protocol.

Key words: RFID, cryptanalysis, identification protocols

1 Introduction

RFID systems will soon be widely deployed. Currently, they are not secure enough, and hence
researchers have proposed various solutions as introduced by Chien in [1]. Chien classified these
protocols into four classes. They are full-fledged, simple, lightweight, and ultralightweight protocols.
The first uses cryptographic functions or public key algorithms to provide mutual authentication
between the reader and the tag. The second requires a random number generator and a hash function
on each tag. The third uses CRC functions instead of hash functions. The fourth class only needs
simple operations, such as XOR, AND, OR, etc. Recently, Chien [1] proposed a new ultralightweight
protocol, called SASI, which provides mutual authentication, tag anonymity, data integrity, and
forward security. It was designed to resist de-synchronization attack, replay attack, and man-in-
the-middle attack. However, we find two de-synchronization attacks to break the protocol.

2 SASI protocol

In this section, we review Chien’s protocol. There are three entities in the scheme: tag, reader, and
backend database. It is assumed that the reader and the database shares a secure channel, but the
channel between the reader and the tag is insecure. The tag is initialized with a static identification
(ID), a pseudonym (IDS) which is used as the search index in the database, and two secret keys
K1 and K2. The length of each variable is 96 bits. These variables are also stored in the database.

Let R denote the reader and T denote the tag. The symbol ’⊕’ refers to bitwise exclusive-or,
’+’ refers to addition under mod 296, and ’∨’ refers to bitwise-or. Rot(x, y) stands for left rotating
x according to y’s bits. More precisely, for y = y96y95y94...y2y1, each input bit yi, where 1 ≤ i ≤ 96,
is examined and processed by: if yi = 1, x is left rotated one bit; otherwise, do nothing. (Note that
Rot(x, y) is not clearly defined in [1]. We confirm it in [2]). In fact, Rot(x, y) acts as an w(y)-bit
left rotation on x, where w(y) denotes the Hamming weight of y. The protocol works as follows:

1. R→ T : hello

2. T → R : IDS

3. The reader uses IDS to find a matched record in the database and access the corresponding
secret information ID, K1, and K2 for the tag. If the IDS is not found in the database, the
reader will request the old IDS by Step 2 again.

4. The reader chooses two random numbers n1, n2 and sends:
R→ T : A||B||C, where
A = IDS ⊕K1⊕ n1,
B = (IDS ∨K2) + n2,
K1 = Rot(K1⊕ n2, K1),
K2 = Rot(K2⊕ n1, K2),
C = (K1⊕K2) + (K2⊕K1).

5. T extracts n1 and n2 from A and B. Then it computes C. If C matches with the one in Step
4, then it updates its IDS, K1, and K2 as follows:
(a) IDSold = IDS; K1old = K1; K2old = K2,
(b) IDSnext = (IDS + ID)⊕ (n2⊕K1),
(c) K1next = K1; K2next = K2.

6. T → R : D, where
D = (K2 + ID)⊕ ((K1⊕K2) ∨K1).

7. R computes D. If D matches with the one in Step 6, R updates its IDS, K1, and K2.

Note that in Step 7, if D passes the verification, the database will update the variables IDS,
K1, and K2 with the value of IDSnext, K1next, and K2next respectively. The old values of the
variables are discarded [2].

3 The First Attack

We assume that there is a synchronized tag in which (IDSnext, K1next, K2next) equals to (IDS, K1, K2)
stored in the database. We denote these variables as (IDS1, K11, K21). Now, suppose the reader
goes to read the tag. The attacker records the messages (A, B, C) as (A′, B′, C ′). At the end of
the protocol, the attacker interrupts the message D so that the reader will not update its variables.
However, the tag will update its variables as follows:

a) (IDSold, K1old, K2old) = (IDS1, K11, K21),
b) (IDSnext, K1next, K2next) = (IDS2, K12, K22).
Next, we allow the reader and the tag to run the protocol again without intervening them.

Because IDS2 is not found in the database, both the reader and the tag use IDS1 to communication.
Thus, the database will update its variable list to (IDS3, K13, K23). In the tag, the values of
(IDSold, K1old, K2old) are now updated to (IDS1, K11, K21) and (IDSnext, K1next, K2next) are
now updated to (IDS3, K13, K23).

Finally, when the reader leaves the reading range of the tag, the attacker imitates as a valid
reader to query the tag. The tag will reply IDSnext, which is IDS3. The attacker pretends that he
cannot find IDSnext and requests the old IDS. The tag will response IDSold, which has the value
IDS1. The attacker now replays the recorded message A1, B1, C1 to the tag. Since these values
were computed by a valid reader with IDS1 previously, the tag will treat the attacker as a valid
reader and update its variables again as:

a) (IDSold, K1old, K2old) = (IDS1, K11, K21),
b) (IDSnext, K1next, K2next) = (IDS2, K12, K22).

Now, they are desynchronized since the values stored in the database are (IDS3, K13, K23),
which are completely different from the values stored in the tag.

4 The Second Attack

We assume that there is a synchronized tag with the above settings. The attacker eavesdrops on
a successful session between the tag and the reader, and records the values (A, B, C) as (A1,
B1, C1). At the same time, the database updates its variable list to (IDS2, K12, K22). In the
tag, the values of (IDSold, K1old, K2old) are (IDS1, K11, K21) and (IDSnext, K1next, K2next) are
(IDS2, K12, K22) .

When the reader leaves the reading range of the tag, the attacker initiates the protocol and
requests IDS1 by claiming a mismatching for IDS2.

Thus, the tag will reply with IDS1. The attacker’s goal is to forge a tuple (A′1, B
′
1, C

′
1) that is

accepted by the tag. The attack makes A′1 = A∗1 where A∗1 is to flip the k-th bit in A1, B′1 = B1,
and C ′1 = C∗1 where C∗1 is to flip the most significant bit (MSB) of C1. Then, the attacker replies
the tag with (A′1, B

′
1, C

′
1).

Note that in the protocol of SASI, flipping the k-th bit in A leads to the k-th bit in n1 be
flipped if IDS and K remain unchanged. Therefore, the k-th bit in K2⊕ n1 will flip.

If the flipped bit is coincidentally rotated to the MSB in K2, then C will be changed in the
MSB. This is because the addition overflowing bit under mod 296 would be discarded. Therefore,
x+y only differs from x∗+y in the MSB if x∗ only differs from x in the MSB. More precisely, there
are eight cases. Let us use X, Y , and CMSB to denote the MSBs of (K1⊕K2), (K2⊕K1), and C
respectively. Let carry represent whether the sum of the rest bits of the two operands generates a
carry bit. We have C ′MSB denote the MSB of C after we flip X. The truth table is shown in Table
1.

Table 1. Truth table

X Y carry X CMSB C′
MSB

0 0 0 1 0 1

0 0 1 1 1 0

0 1 0 1 1 0

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 0 0 1

1 1 0 0 0 1

1 1 1 0 1 0

In this way, C ′MSB always flips and C∗1 from the attacker will pass the verification process of
the tag. Since the rotation is controlled by the Hamming weight of K21, the attacker can obtain
an authenticated tuple (A′1, B

′
1, C

′
1) by at most 96 trials for all possible values of k. We also note

that an authenticated tuple can be confirmed if there is a response D′ from the tag in Step 6. In
fact, D′ differs from D in the MSB, too. Once an authenticated tuple (A′1, B

′
1, C

′
1) is accepted by

the tag, the tag will update (IDSnext, K1next, K2next) = (IDS2, K12, K2∗2), where K2∗2 has the
k-th bit flipped in K22.

In the next time, when the reader tries to read the tag, the tag replies IDS2. This value can
be found in the database, but the reader will be rejected by the tag, since the key K2next stored in
the tag is no longer synchronized with the database. This makes them de-synchronized.

5 Discussion and Conclusion

In order to prevent the first attack, it is possible to store two copies of variables in the database.
In this way, the old IDS, i.e., IDSold, can be found in the database so that the first attack

can not work. However, this approach is still vulnerable to the second attack. In the second at-
tack, IDSnext in the tag is the same as IDSnext in the database. However, the reader cannot be
authenticated due to the difference in K2next.

We often find security loopholes in authentication protocols without hash functions. It is still a
hard challenge to design an ultralightweight secure authentication protocol.

Acknowledgment

We thank Prof. Chien for clarifying the design.

References

1. H.-Y. Chien, “SASI: A new ultralightweight rfid authentication protocol providing strong authentication and
strong integrity,” IEEE Transactions on Dependable and Secure Computing, vol. 4, no. 4, pp. 337–340, 2007.

2. H.-Y. Chien, private communication.

