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Abstract. At Crypto 2004 Joux showed a novel attack against the concatenated hash
combiner instantiated with Merkle-Damgård iterated hash functions. His method of pro-
ducing multicollisions in the Merkle-Damgård design was the �rst in a recent line of generic
attacks against the Merkle-Damgård construction. In the same paper, Joux raised an open
question concerning the strength of the concatenated hash combiner and asked whether
his attack can be improved when the attacker can e�ciently �nd collisions in both un-
derlying compression functions. We solve this open problem by showing that even in the
powerful adversarial scenario �rst introduced by Liskov (SAC 2006) in which the underly-
ing compression functions can be fully inverted (which implies that collisions can be easily
generated), collisions in the concatenated hash cannot be created using fewer than 2n/2

queries. We then expand this result to include the double pipe hash construction of Lucks
from Asiacrypt 2005. One of the intermediate results is of interest on its own and provides
the �rst streamable construction provably indi�erentiable from a random oracle in this
model.
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1 Introduction

Cryptanalysis of hash functions has been a very active area of research in the past few years.
A �urry of attacks have been found against various hash functions including SHA-1 and the
MD variants (see [10, 16�19]). Besides these attacks on speci�c hash functions, a number of
novel generic attacks against the Merkle-Damgård [5, 14] iterated construction have been
published as well. These include among others Joux's multicollision attack [7], Kelsey
and Schneier's expandable message attack [9] and Kelsey and Kohno's herding attack [8].
Joux's multicollision attack demonstrates how to �nd collisions in a concatenated hash
construction H(M) = F (M)‖G(M) when at least one of the underlying hash functions is
iterated.
In the classic combiner scenario we have two instantiations, I1 and I2, of some crypto-
graphic primitive, e.g., two encryption schemes or two hash functions. The goal is to build
a new combined instantiation I of the primitive, which remains secure even when one of
the underlying primitives is broken, as long as the other remains secure. In contrast to
this classical approach, we will show that certain hash combiners retain a provable level of
security even if all of the underlying hash functions are compromised, provided that the
two primitives are su�ciently random and su�ciently di�erent in a sense which will be
made precise later.



1.1 Related Work
Joux's innovative attack focused attention on the security properties of hash combiners
as his attack shows that the trivial combiner does not improve over the security of the
underlying hash functions. A line of research concerning hash combiners has followed,
demonstrating that security amplifying combiners exist [6] and on the other hand proving
that any provably secure black-box combiner must preserve the total length of the under-
lying hash functions [1, 15]. Other responses to Joux's paper include Lucks' [12] proposal of
the wide/double piped constructions whose aim was to overcome the multicollision attack
by using a larger internal state. Lucks' proposal is provably secure in the random oracle
model against multicollisions. Maurer et al. [13] introduced the notion of indi�erentiability.
Similar to the concept of indistinguishability, this notion describes a situation in which
two systems are indistinguishable despite having extra access to the internal structure of
the systems. Inspired by the generic attacks against the Merkle-Damgård iterated con-
struction, Coron et al. [3] operated within the indi�erentiability framework to show how
iterated hash functions can be proved indi�erentiable from random oracles in the ideal
cipher model.1 Liskov further pursued this approach in [11] by introducing weak compres-
sion functions. A weak compression function behaves like a random oracle except that the
adversary is given access to corresponding inversion oracles. Liskov presented a new hash
construction, the zipper hash, composed of a pair of weak compression functions and using
the framework of Coron et al. proved it indi�erentiable from a random oracle. In Joux's at-
tack he did not assume that the attacker can �nd collisions in the underlying compression
functions faster than the birthday paradox bound. Joux then posed the question whether
the ability to �nd collisions e�ciently in both the underlying compressions functions can
help the attacker improve the complexity of his attack.

1.2 Our Results
In this paper we prove that even in a very strong attack scenario in which the attacker
can �nd not only collisions but even invert in unit time all the compression functions
on inputs of his choice, the best attack against the concatenated construction is Joux's
multicollision attack with complexity O

(
2n/2

)
. Furthermore, as an intermediate result we

show a streamable2 hash construction, provably indi�erentiable from a random oracle in
the model of weak compression functions, which has the same rate as the non-streamable
zipper hash of Liskov [11]. This result is then extended to prove that the double pipe
hash construction of Lucks [12] is also indi�erentiable from a random oracle in the same
model. We stress that the model of weak compression functions captures all black-box
generic attacks arising from collision or preimage �nding attacks against the underlying
compression functions.

1.3 Paper Organization
Section 2 describes the model of weak compression functions and gives our notation for
the rest of the paper. Section 3 proves the main result of the paper, namely that in the
model of weak compression functions, �nding collisions in the concatenated hash combiner
requires O

(
2n/2

)
operations. Finally, Section 4 proves the indi�erentiability of Lucks'

double pipe hash construction.
1 The underlying compression function is modelled as an ideal cipher.
2 A hash construction in which each block of the message can be processed once and then be forgotten.
This is an essential requirement in applications where the hash is computed on the �y from a data
stream.
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2 The Model
We �rst give a short description of the iterated hash construction. An iterated hash function
F f : {0, 1}∗ → {0, 1}n is built by iterating a basic compression function f : {0, 1}m ×
{0, 1}n → {0, 1}n as follows:
• Split a message M into k, m-bit blocks x1, . . . , xk.
• Set h0 = IV where IV is the initialization vector.
• For each message block xi compute hi = f (hi−1, xi).
• Output F f (M) = hk.

The classical Merkle-Damgård construction also contains padding and length encoding
which we will ignore for the sake of simplicity since they do not a�ect our results.
Following Joux's open question, we will try to model a situation in which the attacker
can e�ciently �nd collisions in either compression function, but do not assume any other
special properties of these colliding pairs. In fact we will give our adversary even stronger
oracle access and allow him to �nd in unit time random preimages of two di�erent types
as well. Formally, let f and g be compression functions from m + n bits to n bits, and let
F and G be the corresponding hash functions built by instantiating the Merkle-Damgård
paradigm with f and g respectively. We will model f and g as random functions provided
as black box oracles with additional respective inversion oracles.
We de�ne the following oracles:
• f∗(x, ?, z) → (x, y, z) where y is chosen uniformly such that f(x, y) = z, or ⊥ if no

such y exists.
• f−1(?, y, z) → (x, y, z) where x is chosen uniformly such that f(x, y) = z, or ⊥ if no

such x exists.
• g∗(x, ?, z) → (x, y, z) where y is chosen uniformly such that g(x, y) = z, or ⊥ if no

such y exists.
• g−1(?, y, z) → (x, y, z) where x is chosen uniformly such that g(x, y) = z, or ⊥ if no

such x exists.
f and g queries will be called forward queries, g−1 and f−1 queries will be called backward
queries and f∗ and g∗ queries will be called bridging queries.3 The slightly more compli-
cated case in which these inverses are not uniformly distributes will be discussed at the
end of this section. One should notice that while weak compression functions are indeed
weak in the sense that they allow trivial collision and preimage attacks, there are some
operations in which they do not assist at all. For example, given two chaining values x1

and x2 �nding a message block y such that f(x1, y, ?) = f(x2, y, ?) still requires O
(
2n/2

)

queries.
We now introduce a slight modi�cation due to Liskov [11] of the framework of Coron et
al. [3] and Maurer et al. [13]. This framework will enable us to prove that certain hash
functions based on weak compression functions are indi�erentiable from random oracles.
Let Γ be an oracle encapsulating f, f−1, f∗,g, g−1 and g∗.

De�nition 1 (indi�erentiability). A construction C is (q, ε) indi�erentiable in the
presence of Γ from a random oracle RO if there exists a polynomial time simulator S,
such that for every distinguisher D which uses at most q oracle queries (to either of the
oracles), ∣∣Pr[DC,Γ = 1]− Pr[DRO,SRO

= 1]
∣∣ < ε

Notice that this de�nition is slightly di�erent from the usual notion of indistinguishability
in that the simulator, besides simulating the behavior of Γ , must also remain consistent
with the random oracle RO. The following example illustrates the problem. Let C be
an iterated hash function built from a compression function f and assume that f is a
random oracle. The pair (C, f) is di�erentiable from (RO, SRO) for any simulator S. The

3 Liskov in [11] used the term squeezing queries.
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distinguisher D, when presented with a pair (A, B), performs the following queries h1 =
A(m1), h2 = B(h1, m2), h = A(m1m2). If h = h2 the distinguisher returns 1 and otherwise
0. When D is presented with the pair (C, f), the equality will always hold and Pr[DC,f =
1] = 1. On the other hand, for any simulator S, the probability over the random coins of
S and the random oracle that SRO(m2) = RO(m1m2) is negligible. In this example, the
distinguisher worked since the simulator could not maintain the required consistency with
RO. So we see that S does not only need to simulate Γ per se but also needs to maintain
the relation of S relative to the RO, simulating the relationship between Γ and C as well.
Maurer et al. [13] proved that this de�nition of indi�erentiability will allow us to use the
construction C in place of a random oracle in any cryptography protocol and retain the
same level of provable security.
Another subtle issue is the fact that in our case Γ includes inversion oracles. Notice that
when f is a random function, a �xed fraction of the queries f−1(?, y, z) do not have answers,
while other queries might have multiple possible answers. We have de�ned f−1 and f∗ to
return an answer uniformly distributed the possible answers, and thus the simulator S
must reproduce the same distribution of the number of inverses which is known to be
Poisson.4 If we would like to model inversion oracles with a non-uniform distribution, the
simulator will need to model this distribution as well.

3 A Lower Bound
Using techniques similar to those introduced by Coron et al. we will show that the con-
struction C(M) = F (M) ⊕ G(M) is indi�erentiable from a random oracle RO when less
than O

(
2n/2

)
queries are performed. Since �nding collisions in H(M) = F (M)‖G(M)

implies �nding collisions in C(M) as well, the indi�erentiability of C(M) will give us a
lower bound on the number of queries required to �nd a collision in H(M) with non-
negligible probability. Notice that the same proof can be used for any construction of the
form H(M) = α(F (M), G(M)) for any n-bit function α which is uniquely invertible when
its output and any one of its input parameters in known.
Let Γ be an oracle implementing f, g, f−1, f∗, g−1 and g∗. Let RO be a random oracle
and let SRO be an oracle Turing machine with the same black-box interface as Γ . In order
to prove the indi�erentiability result, we will give a hybrid argument and show that any
distinguisher D cannot di�erentiate between interacting with the pair (C, Γ ) and the pair
(RO, SRO).

3.1 The Simulator S

We want the simulator SRO to simulate Γ such that for any distinguisher D, which per-
forms q ¿ 2

n
2 queries 5, |Pr[DC,Γ = 1]−Pr[DRO,S = 1]| is negligible. Obviously we would

like the simulator S to produce random responses to the simulated queries while maintain-
ing consistency. The naive approach would be to keep a list of all answers given so far and
each time S receives a new query, it will return a random value consistent with the values
returned so far. Notice that there are two types of consistency involved: self consistency

4 Note that Liskov in [11] neglected to handle this problem, and therefore his simulator su�ers from the
fact that a distinguisher can query f−1 on a large number of random inputs and the simulator will
always return an inverse whereas a true random function will only have inverses for 1− 1/e fraction
of the inputs.

5 We will charge queries to C or RO di�erently than queries to Γ or S. An l block message query to C
or RO will cost l queries. The reason for this di�erent cost will become clear in the remainder of the
proof.
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and consistency with the random oracle RO. Handling the self consistency can be done
e�ciently with the list of answers, however consistency with the random oracle is a bit
more tricky. The following de�nition will capture the essence of maintaining consistency
with the random oracle.
De�nition 2 (Chains). A chain is a triplet (M, hf , hg), where M is a k block message
and hf , hg are hash values. In addition we require that

f(f(...f(IV, m1), m2), ..), mk) = hf

g(g(...g(IV, m1), m2), ...), mk) = hg

and all the intermediate links are de�ned in the list of known values (i.e., have been queried
previously).

 

1
m

fIV
2

m km

fh

gIV
gh

1
m

2
m km

Fig. 1. Chains in the concatenated hash combiner

The chains create a tree structure, with the triplet (⊥, IVf , IVg) at the root. An edge
between (M, hf , hg) and (M‖mk+1, h

′
f , h′g) corresponds to a pair of queries, linking hf to h′f

and hg to h′g with the same message block mk+1. Each node/chain in the tree corresponds
to a constraint hf ⊕ hg = RO(M). The fact that with overwhelming probability the
chains form a tree rather than a general graph structure will be proven later. To maintain
consistency with the random oracle RO, our naive S will examine each new query and
check if answering it will create a chain. If the response creates a chain, S will return
a value consistent with RO. As stated, however, this task may require exponential time.
Let us assume that the adversary uses a small number of calls to f and f∗ in order to
create a exponential size multicollision in F . When receiving a new g query, S must check
exponentially many possible messages for G as there are that many messages with known
chaining values for F . To overcome this problem the simulator will maintain three data
structures in order to perform its operation. The �rst two structures Tf and Tg will contain
explicit lists of the triplet answers given by S so far. The third structure will hold the tree
of chains created so far. Notice that while the chain tree is implied from the �rst two lists,
keeping it explicitly allows the simulator to run in polynomial time.
We will show how S updates these structures after each query and uses them in order
to give consistent answers. For each forward query to f or g, S checks whether the value
is already de�ned in the corresponding data structure of triplets, and if so returns the
same value; if not, it returns a random value. To check if the value is de�ned, S checks if
the query appears in its list of responses and additionally checks if the query completes
a chain, i.e., extends the chain tree. If the query completes a chain with message M , S
queries RO(M) and uses the answer to give a consistent answer to the query. Notice that
although chains might be created by bridging or backward queries, we will show that this
will only happen with negligible probability and thus we can ignore these possibilities. In
fact, we will show that with very high probability the chain tree does not contain any
hash value more than once. I.e., the combined list of all x's and z's in the chain tree does
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not contain duplicates. Our main lemma will show that with high probability, the above
holds and chains are only created though forward queries. This in turn will imply that the
answers S gives are consistent with the random oracle RO.
For backward and bridging queries, S also needs to reproduce the preimage distribution of
Γ . In normal practice, m is signi�cantly larger than n and therefore, returning a random
value for bridging queries will reproduce the expected preimage distribution with respect
to bridging queries. However, for backward queries6, we need to reproduce a Poisson distri-
bution on the number of preimages. To this e�ect, S will keep together with each triplet, an
integer j that represents the number of answers to the query (?, y, z). Whenever a triplet
containing the pair (y, z) is created for the �rst time, S generates j according to a Poisson
distribution. If on a backward query j = 0, S returns the triplet (⊥, y, z). For forward
and bridging queries, j is generated according to a Poisson distribution conditioned on the
output being non-zero. In future backward queries, S will return a uniform answer from
the j possible answers. If one of the j possible answers is not de�ned yet, S will simply
return a random value.
The simulator S formally acts as follows:
Forward queries
On input (x, y, ?):
1. Check if there exists a triplet (x′, y′, z′) in the same7 list and return that triplet if it

exists.
2. If no such triplet exists, generate an integer j with Poisson distribution conditioned

on being non-zero.
3. Check whether the query extends the chain tree.
4. If it does, query RO(M) where M is the message corresponding to the new chain, and

return the answer compatible with RO(M).
5. Update the chain tree.
6. If no such chain is found, return a uniformly distributed answer.
7. In any case update the list of triplets with the answer and memorize the generated j.

Backward queries
On input (?, y, z):
1. Check if there exists a triplet (x′, y′, z′) in the same list with (y, z) = (y′, z′).
2. If no such triplet exists, generate an integer j with Poisson distribution.
3. Choose uniformly from the j possible answers (some may not be de�ned yet).
4. If the chosen answer is not de�ned, generate a uniform answer x.
5. If j = 0, set x =⊥.
6. In any case (even if j = 0) update the list of triplets with the answer and memorize

the generated j.

Bridging queries
On input (x, ?, z):
1. Generate a random y.
2. Generate an integer j with Poisson distribution conditioned on being non-zero.
3. Update the list of triplets with the answer and memorize the generated j.

3.2 The Indi�erentiability Proof
Our hybrid argument will have �ve settings. In the �rst setting, we simply have the pair
(RO, SRO). In the second setting, we have the pair (RRO, SRO) where R simply relays the

6 The same special treatment given to backward queries can be given to bridging queries as well when
m is not signi�cantly larger than n.

7 I.e., Tf for f queries and TG for g queries.
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queries it receives to RO and answers with the responses it gets from RO. Since the view
of any distinguisher D is identical with both pairs, we clearly have that

Pr[DRO,SRO

= 1] = Pr[DRRO

, SRO = 1]

In the third setting, we have the pair (RRO, S1
RO) in which we slightly change the simulator

S to S1 such that when certain unexpected events occur, S1 explicitly fails. Whenever an
unexpected event occurs, S1 fails explicitly, otherwise S1 behaves exactly as S does.

De�nition 3 (Unexpected events). Let an unexpected event be the event that during
an S query one of the following occurs:
U1 During a forward query the answer triplet (x, y, z) is such that there exists a triplet

(x′, y′, z′)8 in one of the lists, (x, y) 6= (x′, y′) and either z = z′, z = x′ or z = IV .
U2 During a backward query the answer triplet (x, y, z) is such that there exists a triplet

(x′, y′, z′) in one of the lists, (y, z) 6= (y′, z′) and either x = x′, or x = IV .
U3 During a bridging query the answer triplet (x, y, z) is such that there exists a triplet

(x′, y′, z′) in one of the lists and y = y′.

Lemma 1. For any distinguisher D, the probability over the random coins of S and the
random oracle RO that one of the unexpected events occurs is O

(
q2

2n

)
.

Proof. We will prove that the probability of an unexpected event occurring at query num-
ber i, conditioned on the event that so far no unexpected events have occurred is O (

q
2n

)
.

Using the union bound over all q queries we then get that the probability of the unexpected
event is O

(
q2

2n

)
.

We will examine each of the three possible unexpected events and bound their probability.
We �rst analyze what happens if during the query, no chain is completed. In this case,
for forward queries the answer triplet has a uniformly distributed z and therefore the
probability of z = z′ or z = x′ for any of the existing x′, z′ in the respective list is bounded
by 2q

2n . For bridging queries, the answer triplet has a uniformly distributed y and therefore
the probability of y = y′ for any of the existing y′ in the co-respecting list is bounded by
2q
2m . For backward queries the answer triplet has a uniformly distributed x and therefore
the probability of x = x′ or x = z′ for any of the existing x′, z′ in the respective list is
bounded by q

2n .
We now examine the case in which the query completes a chain. For a backward and
bridging queries the simulator's answer does not depend on the fact that a chain has been
completed and therefore the probability of an unexpected event is the same as before. For
forward queries, the response of the simulator is fully determined by RO(M). However, the
value of RO(M) is uniformly distributed and hence so is the simulator's answer. Therefore,
also in this case the probability of U1 occurring is at most 2q

2n . Concluding, we have that
the probability of an unexpected event occurring conditioned that no such events have
happened so far is O (

q
2n

)
. A union bound over all the queries gives us the bound O

(
q2

2n

)

as required.9 ut

Lemma 2.

1. If we condition on the event that no unexpected events occur, then for every distin-
guisher the view when interacting with the pair (RRO, SRO) is identical to view when
interacting with the pair (RRO, S1

RO)

8 Throughout this de�nition, answer triplets of the form (⊥, y′, z′) are also considered.
9 Note that even though using the union bound is usually not tight, in this case we get the birthday
bound which is indeed tight.
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2.
∣∣Pr[DRRO,SRO

= 1]− Pr[DRRO,S1
RO

= 1]
∣∣ = O

(
q2

2n

)

Proof. Unless an unexpected event occurs, S1 behaves exactly the same as S. This proves
the �rst part of the lemma. Putting this result together with the fact that the probability
of an unexpected event is bounded by O

(
q2

2n

)
, proves the second part as well. ut

Now we turn our attention to the fourth setting, in which we examine the pair (R1
S1 , SRO

1 ),
where R1 answers its RO queries on input M by using S1 to calculate C(M). I.e., R1 queries
S on all the required f and g queries. Notice that a single query to R1 with an l-block
message will result in l queries to S1, for this reason R1 queries cost l times more than a
S1 query.

Lemma 3. If no unexpected events occur, then chains are only created by forward queries.

Proof. Notice that when a chain is created, the message M is already determined. With
out loss of generality, let the query which completes the chain be a f, f−1 or f∗ query. In
this case, all the g triplets in the chain have already been made and in particular, M is
de�ned. Now, if a chain were created using a bridging query f∗, then the answer triplet
(x, y, z) is such that y ∈ M (as it completes a chain) and in particular y appears in a triplet
in Tg, implying that the unexpected event U2 occurred. If the chain were created using a
backward query f−1, then as the answer query (x, y, z) completed a chain, we know that
x appears in a triplet in the Tf list or x = IV . Since (x, y, z) did not appear in Tf prior
to the query (otherwise the chain would have been completed before) this implies that the
unexpected event U3 has occurred. Therefore, if no unexpected events occur all chains are
created by forward queries. ut

Corollary 1. If no unexpected events occur, the chain data structure is a tree containing
all chains.

Proof. If a forward call creates a cycle in the chain data structure, then unexpected event
U1 occurs. Hence, the chain data structure is a tree. Notice that if more that one chain is
created during a forward call, then unexpected event U1 has occurred previously (as there
are two identical nodes in the chain tree). Therefore, at most a single chain is created
during each forward call and the simulator tracks them correctly. ut

Lemma 4. Unless an unexpected event occurs, then for every distinguisher the view when
interacting with the pair (RRO, S1

RO) is indi�erentiable from the view when interacting
with the pair (R1

S1 , S1
RO).

Proof. The proof will demonstrate the following three points:
1. Unless an unexpected event occurs when interacting with the pair (RRO, S1

RO), the
answers given by S1 are consistent with those given by RRO.

2. Unless an unexpected event occurs when interacting with the pair (R1
S1 , S1

RO), the
answers given by S1 are consistent with those given by R1

S .
3. Unless an unexpected event occurs when interacting either with the pair (RRO, S1

RO)
or with the pair (R1

S1 , S1
RO), the answers given by RRO are exactly the same as those

given by R1
S .

Proof of point 1 Notice that from Lemma 3 we know that chains are only completed
by forward queries. This implies that the simulator's answers are consistent with the value
RO(M) for any message M . Since RRO(M) simply replies with RO(M), the answers given
by both oracles are consistent.
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Proof of point 2 The proof is similar to the proof of the previous point. The simulator's
answers are always consistent with the value RO(M) for any message M and R1

S1(M) =
RO(M) since the behavior of S1 ensures this result.

Proof of point 3 This point is obvious since RRO(M) = RO(M) and also R1
S1(M) =

RO(M).
It now follows that unless an unexpected event occurs, the views generated by any distin-
guisher's interaction with the pairs (RRO, S1

RO) and (R1
S1 , S1

RO) are indi�erentiable. ut
We are now ready for the proof of our main theorem:
Theorem 1. The construction C(M) = F (M) ⊕ G(M), where F, G are iterated hash
functions based on the compression function f and g respectively, is indi�erentiable in
q ¿ 2n/2 queries from a random oracle even in the presence of f−1, f∗, g−1 and g∗ oracles.

Proof. Let S be the simulator de�ned above and let Γ be an oracle encapsulating f , g,
f−1, f∗, g−1 and g∗. We will prove that for any distinguisher D

|Pr[DC,Γ = 1]− Pr[DRO,SRO

= 1]| = O
(

q2

2n

)

The lemmas so far have shown that |Pr[DR
S1
1 ,S1 = 1]−Pr[DRO,SRO

= 1]| = O
(

q2

2n

)
and

that S can be implemented in time polynomial in the number of queries q. It remains to
show that for any possible distinguisher the pairs (RS1

1 , S1
RO) and (C, Γ ) are indi�eren-

tiable. Notice however that unless an unexpected event occurs, S exactly simulates Γ and
R1

S exactly computes C. This completes the proof. ut
We have shown that the construction C(M) = F (M)⊕G(M) (or any n-bit function of F
and G which is uniquely invertible when its output and any one of its input parameters is
known) is indi�erentiable in q ¿ 2n/2 queries from a random oracle even in the presence of
f−1, f∗, g−1 and g∗ oracles and hence �nding collisions in H(M) = F (M)‖G(M) requires
O

(
2n/2

)
queries, matching the known upper bound of Joux. Notice that the construction

C(M) = F (M) ⊕ G(M) requires the same amount of underlying function calls as the
zipper hash of Liskov, albeit having a larger internal state, while having the advantage of
being streamable.

3.3 Comments
Note that even though we have proved a lower bound on the number of calls to the
compression functions and hence on the running time of a collision �nding attack, this
does not give a corresponding lower bound on the amount of memory required for the
attack. In fact we can use Pollard's rho algorithm to �nd such a collision using only a
linear amount of memory. Let M0,1

1 M0,1
2 ...M0,1

n and N0,1
1 N0,1

2 ...N0,1
n be Joux multicollisions

for F and G respectively. We de�ne two functions r1, r2 s.t. r1(x) = F (Nx1
1 Nx2

2 ...Nxn
n )

and r2(x) = G(Mx1
1 Mx2

2 ...Mxn
n ). We now use the rho algorithm to �nd a cycle in the

path generated by iteratively alternating between applications of r1 and r2. The memory
complexity is O(n) while the time complexity is O(n2

n
2 ).

4 Application to Lucks' Double Pipe Proposal
The same proof framework can be used to prove other indi�erentiability results. For ex-
ample, the double pipe hash from [12] can also be proved indi�erentiable from a random
oracle in the model of weak compression functions. Given a compression function f , the
double pipe hash has a 2n bit internal state (r, s) and is de�ned as follows:
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• Split a message M into k blocks each of size (m− n) bits, x1, . . . , xk.
• Set r0 = IV1, s0 = IV2 where IV1 and IV2 are the initialization vectors.
• For each message block xi compute ri = f (ri−1, si−1‖xi) and si = f (si−1, ri−1‖xi).
• Output DP f (M) = f(IV3, rk‖sk‖om−2n).

The double pipe hash is schematically described in Figure 2.

 

Fig. 2. Lucks' double pipe hash (taken from [12])

Note that Lucks proved that the double pipe hash is not vulnerable to multicollision or
multi-(second)-preimage attacks when the underlying compression function is modeled as
a random oracle (or ideal cipher) which has no weaknesses, while Liskov [11] claimed
(without proof) that the construction is indi�erentiable from a random oracle if the two
pipes use two unrelated weak compression functions f and g. We will prove that the original
construction is indi�erentiable from a random oracle even when the same function is used
in both pipes, and it is weak in the sense that the attacker is given both inversion and
bridging oracles. Our proof will also hold if the �nal hash is replaced by a xor operation,
or any function which is uniquely invertible when its output and any one of its input
parameters are known.
The proof outline is identical to the one presented in Section 3; we will therefore only
give the main lemmas required. We start by giving an adequate de�nition of chains in
the double pipe hash, that following the example in section 3 captures the essence of
consistency between the simulator S and the random oracle RO.

De�nition 4 (Double pipe hash chains). A (double pipe hash) chain is a triplet
M, h1, h2, where M is a k block message and h1 and h2 are hash values. In addition
we require that

f(f(...f(IV1, s1‖m1), s2‖m2), ..), sk‖mk) = h1

f(f(...f(IV2, r1‖m1), r2‖m2), ...), rk‖mk) = h2

where ri is the chaining value of the upper pipe after the �rst i blocks and si is the chaining
value of the lower pipe after the same i blocks. We additionally require that all the inter-
mediate links are de�ned in the list of known values (i.e., have been queried previously).

The simulator will be identical to the one introduced in Section 3 with the following
changes: We will change the simulator's behavior when a chain is completed with message
M . Without loss of generality, assume that the query which completed the chain is in the
lower pipe. The simulator computes the value z = RO(M), generates a random value d,
sets the triplet (IV3, rk‖d‖0m−2n, z) and returns d as the response to the query.
The unexpected events will now become:
De�nition 5 (Double pipe unexpected events). Let an unexpected event be the
event that during a S query one of the following occurs:
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V1 During a forward query the answer triplet (x, y, z) is such that there exists a triplet
(x′, y′, z′), (x, y) 6= (x′, y′) and either z = z′, z = x′ or z = IV .

V ∗
1 During a forward query a chain is completed and the random value d generated is such

that there exists a triplet (x′, y′, z′), and y = rk‖d‖0m−2n, z).
V2 During a backward query the answer triplet (x, y, z) is such that there exists a triplet

(x′, y′, z′), (y, z) 6= (y′, z′) and either x = x′, or z = IV .
V3 During a bridging query the answer triplet (x, y, z) is such that there exists a triplet

(x′, y′, z′) and y = y′.
Lemma 5. The probability over the random coins of S and the random oracle RO, that
an unexpected event occurs is O

(
q2

2n

)
.

Proof. As before, we will prove that the probability of an unexpected event occurring,
conditioned on the event that so far no unexpected events have occurred is O (

q
2n

)
. The

proof for events V1, V2 and V3 is identical to the proof for the corresponding events U1, U2

and U3. It remains to bound the probability of V ∗
1 . However, since d is completely uniform,

we have that the probability is at most q
2n . Using a union bound over all queries gives us

the required bound of O
(

q2

2n

)
. ut

As in the proof in Section 3, the main lemma will show that unless an unexpected event
occurs, chains are only created during forward queries.
Lemma 6. If no unexpected events occur, then chains are only created by forward queries.
Proof. As before, notice that when a chain is created, the message M is already deter-
mined. Now, if a chain were created using a bridging query f∗, then the answer triplet
(x, y, z) is such that y ∈ M (as it completes a chain) and in particular y appears in an
existing triplet, implying that the unexpected event V2 occurred. If the chain were created
using a backward query f−1, then as the answer query (x, y, z) completed a chain, we
know that x appears in an existing triplet or x = IV . Since (x, y, z) did not appear in the
list of triplets prior to the query (otherwise the chain would have been completed before)
this implies that the unexpected event V3 has occurred. Therefore, if no unexpected events
occur all chains are created by forward queries. ut
Theorem 2. The double pipe hash construction is indi�erentiable from a random oracle
in the model of weak compression functions.
Proof. The sequence of hybrids is the same as in the proof in Section 3 and culminates
with the required result. ut

5 Conclusion
While the results of Joux [7], Kelsey and Schneier [9] and Kelsey and Kohno [8] have shown
that there are a number of surprising attacks when the attacker is allowed more than 2n/2

time, we have shown that there is a surprising amount of `life' below the 2n/2 barrier: Even
an adversary with the power to invert compression functions on inputs of his choice in unit
time is still unable to di�erentiate between a variety of hash constructions and a random
oracle. It seems that there are two main issues at the heart of our results. The �rst is the
assumed randomness of the compression function, which implies that with less than 2n/2

queries it is not feasible to use in an e�ective way the given inversion oracles. The second
issue is the fact that during the simulation the simulator needs to maintain consistency
with the random oracle. In order to do this, the simulator must somehow `know' when the
queries given so far de�ne some �nal hash value. In all the examples we gave as well as in
the zipper hash[11] of Liskov, the construction of the combined hash function is such that
with overwhelming probability the simulator can always tell when a query determines the
output of the hash.
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