
GENERATORS OF JACOBIANS OF GENUS TWO CURVES

CHRISTIAN ROBENHAGEN RAVNSHØJ

Abstract. We prove that in most cases relevant to cryptography, the Fro-
benius endomorphism on the Jacobian of a genus two curve is represented
by a diagonal matrix with respect to an appropriate basis of the subgroup of
`-torsion points. From this fact we get an explicit description of the Weil-
pairing on the subgroup of `-torsion points. Finally, the explicit description of
the Weil-pairing provides us with an e�cient, probabilistic algorithm to �nd
generators of the subgroup of `-torsion points on the Jacobian of a genus two
curve.

1. Introduction

In [9], Koblitz described how to use elliptic curves to construct a public key cryp-
tosystem. To get a more general class of curves, and possibly larger group orders,
Koblitz [10] then proposed using Jacobians of hyperelliptic curves. After Boneh and
Franklin [1] proposed an identity based cryptosystem by using the Weil-pairing on
an elliptic curve, pairings have been of great interest to cryptography [5]. The next
natural step was to consider pairings on Jacobians of hyperelliptic curves. Gal-
braith et al [6] survey the recent research on pairings on Jacobians of hyperelliptic
curves.

Miller [12] uses the Weil-pairing to determine generators of E(Fq), where E
is an elliptic curve de�ned over a �nite �eld Fq. Let JC be the Jacobian of
a genus two curve de�ned over Fq. In [14], the author describes an algorithm
based on the Tate-pairing to determine generators of the subgroup JC(Fq)[m] of
points of order m on the Jacobian, where m is a number dividing q − 1. The
key ingredient of the algorithm is a �diagonalization� of a set of randomly chosen
points {P1, . . . , P4, Q1, . . . , Q4} on the Jacobian with respect to the (reduced) Tate-
pairing ε; i.e. a modi�cation of the set such that ε(Pi, Qj) 6= 1 if and only if i = j.
This procedure is based on solving the discrete logarithm problem in JC(Fq)[m].
Contrary to the special case when m divides q − 1, this is infeasible in general.
Hence, in general the algorithm in [14] does not apply.

In the present paper, we generalize the algorithm in [14] to subgroups of points
of prime order `, where ` does not divide q−1. In order to do so, we must somehow
alter the diagonalization step. We show and exploit the fact that the q-power
Frobenius endomorphism on JC has a diagonal representation on JC [`]. Hereby,
computations of discrete logarithms are avoided, yielding the desired altering of
the diagonalization step.
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Setup. Consider a genus two curve C de�ned over a �nite �eld Fq. Let ` be an odd
prime number dividing the number of Fq-rational points on the Jacobian JC , and
with ` dividing neither q nor q−1. Assume that the Fq-rational subgroup JC(Fq)[`]
of points on the Jacobian of order ` is cyclic. Let k be the multiplicative order
of q modulo `. Write the characteristic polynomial of the qk-power Frobenius
endomorphism on JC as

Pk(X) = X4 + 2σkX3 + (2qk + σ2
k − τk)X2 + 2σkqkX + q2k,

where 2σk, 4τk ∈ Z. Let ωk ∈ C be a root of Pk(X). Finally, if ` divides 4τk, we
assume that ` is unrami�ed in Q(ωk).

Remark. Notice that in most cases relevant to cryptography, the considered genus
two curve C ful�lls these assumptions. Cf. Remark 7 and 14.

The algorithm. First of all, we notice that in the above setup, the q-power Frobe-
nius endomorphism ϕ on JC can be represented on JC [`] by a diagonal matrix with
respect to an appropriate basis B of JC [`]; cf. Theorem 11. (In fact, to show this we
do not need the Fq-rational subgroup JC(Fq)[`] of points on the Jacobian of order `
to be cyclic.) From this observation it follows that all non-degenerate, bilinear,
anti-symmetric and Galois-invariant pairings on JC [`] are given by the matrices

Ea,b =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 , a, b ∈ (Z/`Z)×

with respect to B; cf. Theorem 12. By using this description of the pairing, the
desired algorithm is given as follows.

Algorithm 17. On input the considered curve C, the numbers `, q, k and τk and a

number n ∈ N, the following algorithm outputs a generating set of JC [`] or �failure�.
(1) If ` does not divide 4τk, then do the following.

(a) Choose points O 6= x1 ∈ JC(Fq)[`], x2 ∈ JC(Fqk)[`]\JC(Fq)[`] and x′3 ∈
U := JC [`]\JC(Fqk)[`]; compute x3 = x′3−ϕk(x′3). If ε(x3, ϕ(x3)) 6= 1,
then output {x1, x2, x3, ϕ(x3)} and stop.

(b) Let i = j = 0. While i < n do the following

(i) Choose a random point x4 ∈ U .
(ii) i := i+ 1.
(iii) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

(c) If j = 0 then output �failure�. Else output {x1, x2, x3, x4}.
(2) If ` divides 4τk, then do the following.

(a) Choose a random point O 6= x1 ∈ JC(Fq)[`]
(b) Let i = j = 0. While i < n do the following

(i) Choose random points y3, y4 ∈ JC [`]; compute xν := q(yν −
ϕ(yν))− ϕ(yν − ϕ(yν)) for ν = 3, 4.

(ii) If ε(x3, x4) = 1 then i := i+ 1. Else i := n and j := 1.
(c) If j = 0 then output �failure� and stop.

(d) Let i = j = 0. While i < n do the following

(i) Choose a random point x2 ∈ JC [`].
(ii) If ε(x1, x2) = 1 then i := i+ 1. Else i := n and j := 1.

(e) If j = 0 then output �failure�. Else output {x1, x2, x3, x4} and stop.
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Algorithm 17 �nds generators of JC [`] with probability at least (1 − 1/`n)2 and
in expected running time O(log `); cf. Theorem 18.

Remark. To implement Algorithm 17, we need to �nd a qk-Weil number (cf. De�-
nition 2). On Jacobians generated by the complex multiplication method [17, 7, 3],
we know the Weil numbers in advance. Hence, Algorithm 17 is particularly well
suited for such Jacobians.

Assumption. In this paper, a curve is an irreducible nonsingular projective variety
of dimension one.

2. Genus two curves

A hyperelliptic curve is a projective curve C ⊆ Pn of genus at least two with a
separable, degree two morphism φ : C → P1. It is well known, that any genus two
curve is hyperelliptic. Throughout this paper, let C be a curve of genus two de�ned
over a �nite �eld Fq of characteristic p. By the Riemann-Roch Theorem there exists
a birational map ψ : C → P2, mapping C to a curve given by an equation of the
form

y2 + g(x)y = h(x),
where g, h ∈ Fq[x] are of degree deg(g) ≤ 3 and deg(h) ≤ 6; cf. [2, chapter 1].

The set of principal divisors P(C) on C constitutes a subgroup of the degree zero
divisors Div0(C). The Jacobian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).

The Jacobian is an abelian group. We write the group law additively, and denote
the zero element of the Jacobian by O.

Let ` 6= p be a prime number. The `n-torsion subgroup JC [`n] ⊆ JC of points of
order dividing `n is a Z/`nZ-module of rank four, i.e.

JC [`n] ' Z/`nZ× Z/`nZ× Z/`nZ× Z/`nZ;

cf. [11, Theorem 6, p. 109].
The multiplicative order k of q modulo ` plays an important role in cryptography,

since the (reduced) Tate-pairing is non-degenerate over Fqk ; cf. [8].

De�nition 1 (Embedding degree). Consider a prime number ` 6= p dividing the
number of Fq-rational points on the Jacobian JC . The embedding degree of JC(Fq)
with respect to ` is the least number k, such that qk ≡ 1 (mod `).

3. The Frobenius endomorphism

Since C is de�ned over Fq, the mapping (x, y) 7→ (xq, yq) is a morphism on C.
This morphism induces the q-power Frobenius endomorphism ϕ on the Jacobian JC .
Let P (X) be the characteristic polynomial of ϕ; cf. [11, pp. 109�110]. P (X) is called
the Weil polynomial of JC , and

|JC(Fq)| = P (1)

by the de�nition of P (X) (see [11, pp. 109�110]); i.e. the number of Fq-rational
points on the Jacobian is P (1).

De�nition 2 (Weil number). Let notation be as above. Let Pk(X) be the charac-
teristic polynomial of the qm-power Frobenius endomorphism ϕm on JC . A complex
number ωm ∈ C with Pm(ωm) = 0 is called a qm-Weil number of JC .
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Remark 3. Note that JC has four qm-Weil numbers. If P1(X) =
∏
i(X − ωi), then

Pm(X) =
∏
i(X−ωmi ). Hence, if ω is a q-Weil number of JC , then ω

m is a qm-Weil
number of JC .

4. Non-cyclic subgroups

Consider a genus two curve C de�ned over a �nite �eld Fq. Let Pm(X) be
the characteristic polynomial of the qm-power Frobenius endomorphism ϕm on the
Jacobian JC . Pm(X) is of the form Pm(X) = X4 + sX3 + tX2 + sqmX + q2m,
where s, t ∈ Z. Let σ = s

2 and τ = 2qm + σ2 − t. Then

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

and 2σ, 4τ ∈ Z. In [15], the author proves the following Theorem 4 and 5.

Theorem 4. Consider a genus two curve C de�ned over a �nite �eld Fq. Write

the characteristic polynomial of the qm-power Frobenius endomorphism on the Jaco-

bian JC as Pm(X) = X4+2σX3+(2qm+σ2−τ)X2+2σqmX+q2m, where 2σ, 4τ ∈ Z.
Let ` be an odd prime number dividing the number of Fq-rational points on JC , and

with ` - q and ` - q − 1. If ` - 4τ , then
(1) JC(Fqm)[`] is of rank at most two as a Z/`Z-module, and

(2) JC(Fqm)[`] is bicyclic if and only if ` divides qm − 1.

Theorem 5. Let notation be as in Theorem 4. Furthermore, let ωm be a qm-Weil

number of JC , and assume that ` is unrami�ed in Q(ωm). Now assume that ` | 4τ .
Then the following holds.

(1) If ωm ∈ Z, then ` | qm − 1 and JC [`] ⊆ JC(Fqm).
(2) If ωm /∈ Z, then ` - qm − 1, JC(Fqm)[`] ' (Z/`Z)2 and JC [`] ⊆ JC(Fqmk) if

and only if ` | qmk − 1.

Inspired by Theorem 4 and 5 we introduce the following notation.

De�nition 6. Consider a curve C with Jacobian JC . We call C a C(`, q, k, τk)-
curve, and write C ∈ C(`, q, k, τk), if the following holds.

(1) C is of genus two and de�ned over the �nite �eld Fq.
(2) ` is an odd prime number dividing the number of Fq-rational points on JC ,

` divides neither q nor q − 1, and JC(Fq) is of embedding degree k with
respect to `.

(3) The characteristic polynomial of the qk-power Frobenius endomorphism
on JC is given by Pk(X) = X4 +2σkX3 +(2qk+σ2

k−τk)X2 +2σkqkX+q2k,
where 2σk, 4τk ∈ Z.

(4) Let ωk be a qk-Weil number of JC . If ` divides 4τk, then ` is unrami�ed
in Q(ωk).

Remark 7. Since ` is rami�ed in Q(ωk) if and only if ` divides the discriminant
of Q(ωk), ` is unrami�ed in Q(ωk) with probability approximately 1 − 1/`. Hence,
in most cases relevant to cryptography a genus two curve C is a C(`, q, k, τk)-curve.

5. Matrix representation of the Frobenius endomorphism

An endomorphism ψ : JC → JC induces a linear map ψ̄ : JC [`] → JC [`] by
restriction. Hence, ψ is represented by a matrix M ∈ Mat4(Z/`Z) on JC [`]. If ψ
can be represented on JC [`] by a diagonal matrix with respect to an appropriate
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basis of JC [`], then we say that ψ is diagonalizable or has a diagonal representation

on JC [`].
Let f ∈ Z[X] be the characteristic polynomial of ψ (see [11, pp. 109�110]),

and let f̄ ∈ (Z/`Z)[X] be the characteristic polynomial of ψ̄. Then f is a monic
polynomial of degree four, and by [11, Theorem 3, p. 186],

f(X) ≡ f̄(X) (mod `).

We wish to show that in most cases, the q-power Frobenius endomorphism ϕ is
diagonalizable on JC [`]. To do this, we need to describe the matrix representation
in the case when ϕ is not diagonalizable on JC [`].

Lemma 8. Consider a curve C ∈ C(`, q, k, τk). Let ϕ be the q-power Frobenius

endomorphism on the Jacobian JC . If ϕ is not diagonalizable on JC [`], then ϕ is

represented on JC [`] by a matrix of the form

(1) M =


1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c


with respect to an appropriate basis of JC [`].

Proof. Let P̄k ∈ (Z/`Z)[X] be the characteristic polynomial of the restriction of
the qk-power Frobenius endomorphism ϕk to JC [`]. Since ` divides the number of
Fq-rational points on JC , 1 is a root of P̄k. Assume that 1 is an root of P̄k with
multiplicity ν. Then

P̄k(X) = (X − 1)νQ̄k(X),
where Q̄k ∈ (Z/`Z)[X] is a polynomial of degree 4 − ν, and Q̄k(1) 6= 0. Since the
roots of P̄k occur in pairs (α, 1/α), ν is an even number. Let Uk = ker(ϕk − 1)ν

and Wk = ker(Q̄k(ϕk)). Then Uk and Wk are ϕk-invariant submodules of the
Z/`Z-module JC [`], rankZ/`Z(Uk) = ν, and JC [`] ' Uk ⊕Wk.

Assume at �rst that ` does not divide 4τk. Then JC(Fq)[`] is cyclic and JC(Fqk)[`]
bicyclic; cf. Theorem 4. By [16, Theorem 3.1], ν = 2. Choose points x1, x2 ∈ JC [`],
such that ϕ(x1) = x1 and ϕ(x2) = qx2. Then {x1, x2} is a basis of JC(Fqk)[`]. Now,
let {x3, x4} be a basis of Wk, and consider the basis B = {x1, x2, x3, x4} of JC [`].
If x3 and x4 are eigenvectors of ϕk, then ϕk is represented by a diagonal matrix
on JC [`] with respect to B. Assume x3 is not an eigenvector of ϕk. Then B′ =
{x1, x2, x3, ϕk(x3)} is a basis of JC [`], and ϕk is represented by a matrix of the
form (1).

Now, assume ` divides 4τk. Since ` divides qk−1, it follows that JC [`] ⊆ JC(Fqk);
cf. Theorem 5. Let P̄ ∈ (Z/`Z)[X] be the characteristic polynomial of the restriction
of ϕ to JC [`]. Since ` divides the number of Fq-rational points on JC , 1 is a root
of P̄ . Assume that 1 is an root of P̄ with multiplicity ν. Since the roots of P̄ occur
in pairs (α, q/α), it follows that

P̄ (X) = (X − 1)ν(X − q)νQ̄(X),

where Q̄ ∈ (Z/`Z)[X] is a polynomial of degree 4−2ν, Q̄(1) 6= 0 and Q̄(q) 6= 0. Let
U = ker(ϕ− 1)ν , V = ker(ϕ− q)ν and W = ker(Q̄(ϕ)). Then U , V and W are ϕ-
invariant submodules of the Z/`Z-module JC [`], rankZ/`Z(U) = rankZ/`Z(V ) = ν,
and JC [`] ' U ⊕ V ⊕ W . If ν = 1, then it follows as above that ϕ is either
diagonalizable on JC [`] or represented by a matrix of the form (1) with respect to



6 C.R. RAVNSHØJ

some basis of JC [`]. Hence, we may assume that ν = 2. Now choose x1 ∈ U , such
that ϕ(x1) = x1, and expand this to a basis (x1, x2) of U . Similarly, choose a basis
(x3, x4) of V with ϕ(x3) = qx3. With respect to the basis B = {x1, x2, x3, x4}, ϕ is
represented by a matrix of the form

M =


1 α 0 0
0 1 0 0
0 0 q β
0 0 0 q

 .
Notice that

Mk =


1 kα 0 0
0 1 0 0
0 0 1 kqk−1β
0 0 0 1

 .
Since JC [`] ⊆ JC(Fqk), we know that ϕk = ϕk is the identity on JC [`]. Hence,

Mk = I. So α ≡ β ≡ 0 (mod `), i.e. ϕ is represented by a diagonal matrix with
respect to B. �

The next step is to determine when the Weil polynomial splits modulo `.

Lemma 9. Consider a curve C ∈ C(`, q, k, τk). Let ϕ be the q-power Frobenius

endomorphism on the Jacobian JC . Assume that ϕ is not diagonalizable on JC [`],
and let ϕ be represented on JC [`] by the matrix

M =


1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c


with respect to an appropriate basis of JC [`]. Let Pn(X) be the characteristic polyno-
mial of the qn-power Frobenius endomorphism on JC . Then Pn(X) splits modulo `
if and only if c2− 4q is a quadratic residue modulo `. In particular, if Pn(X) splits

modulo ` for some n ∈ N, then Pn(X) splits modulo ` for any n ∈ N.

Proof. Let M1 =
[

0 −q
1 c

]
, and write

Mn
1 =

[
m11 m12

m21 m22

]
.

Since Mn
1 M1 = M1M

n
1 , it follows that m12 = −qm21 and m22 = m11 + cm21. But

then Pn(X) ≡ (X − 1)(X − qn)Fn(X) (mod `), where

Fn(X) ≡ X2 − (2m11 + cm21)X +m2
11 + qm2

21 + cm11m21 (mod `).

The discriminant of Fn(X) is given by ∆ ≡ (c2−4q)m2
21 (mod `); hence the lemma.

�

Theorem 10. The Weil polynomial of the Jacobian JC of a curve C ∈ C(`, q, k, τk)
splits modulo `.

Proof. For some n ∈ N, JC [`] ⊆ JC(Fqn). But then ϕn acts as the identity on JC [`],
i.e. Pn(X) ≡ (X − 1)4 (mod `). In particular, Pn(X) splits modulo `. But then
P (X) splits modulo ` by Lemma 9. �

We are now ready to prove the desired result.
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Theorem 11. The q-power Frobenius endomorphism on the Jacobian JC of a

curve C ∈ C(`, q, k, τk) is diagonalizable on JC [`].

Proof. Cf. Theorem 10, we may write the Weil polynomial of JC as

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `).

If α 6≡ 1, q, q/α (mod `), then the theorem follows. If α ≡ 1, q (mod `), then

P (X) ≡ (X − 1)2(X − q)2 (mod `);

in this case, the theorem follows by the last part of the proof of Lemma 8.
Assume that α ≡ q/α (mod `), i.e. that α2 ≡ q (mod `). Then the q-power

Frobenius endomorphism is represented on JC [`] by a matrix of the form

M =


1 0 0 0
0 q 0 0
0 0 α β
0 0 0 α


with respect to an appropriate basis of JC [`]. Notice that

M2k =


1 0 0 0
0 1 0 0
0 0 1 2kα2k−1β
0 0 0 1

 .
Thus, P2k(X) ≡ (X−1)4 (mod `). By Theorem 5, it follows that JC [`] ⊆ JC(Fq2k).
But then M2k = I, i.e. β ≡ 0 (mod `). Hence, the q-power Frobenius endomor-
phism on JC is diagonalizable on JC [`] also in this case. The theorem is proved. �

6. Anti-symmetric pairings on the Jacobian

On JC [`], a non-degenerate, bilinear, anti-symmetric and Galois-invariant pairing

ε : JC [`]× JC [`]→ µ` = 〈ζ〉 ⊆ F×
qk
.

exists, e.g. the Weil-pairing. Here, µ` is the group of `th roots of unity. Since ε is
bilinear, it is given by

ε(x, y) = ζx
TEy,

for some matrix E ∈ Mat4(Z/`Z) with respect to a basis B = {x1, x2, x3, x4}
of JC [`]. Let ϕ denote the q-power Frobenius endomorphism on JC . Since ε is
Galois-invariant,

∀x, y ∈ JC [`] : ε(x, y)q = ε(ϕ(x), ϕ(y)).

This is equivalent to

∀x, y ∈ JC [`] : q(xTEy) = (Mx)TE(My),

where M is the matrix representation of ϕ on JC [`] with respect to B. Since
(Mx)TE(My) = xTMTEMy, it follows that

∀x, y ∈ JC [`] : xT qEy = xTMTEMy,

or equivalently, that qE = MTEM .
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Now, let ε(xi, xj) = ζaij . By anti-symmetry,

E =


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

 .
Assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α) with respect
to B. Then it follows from MTEM = qE, that

a13(α− q) ≡ a14(α− 1) ≡ a23(α− 1) ≡ a24(α− q) ≡ 0 (mod `).

If α ≡ 1, q (mod `), then JC(Fq)[`] is bi-cyclic. Hence the following theorem holds.

Theorem 12. Consider a curve C ∈ C(`, q, k, τk). Let ϕ be the q-power Frobenius
endomorphism on the Jacobian JC . Now choose a basis B of JC [`], such that ϕ
is represented by a diagonal matrix diag(1, q, α, q/α) with respect to B. If the Fq-
rational subgroup JC(Fq)[`] of points on the Jacobian of order ` is cyclic, then all

non-degenerate, bilinear, anti-symmetric and Galois-invariant pairings on JC [`] are
given by the matrices

Ea,b =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 , a, b ∈ (Z/`Z)×

with respect to B.

Remark 13. Let notation and assumptions be as in Theorem 12. Let ε be a non-
degenerate, bilinear, anti-symmetric and Galois-invariant pairing on JC [`], and let ε
be given by Ea,b with respect to a basis {x1, x2, x3, x4} of JC [`]. Then ε is given
by E1,1 with respect to {a−1x1, x2, b

−1x3, x4}.

Remark 14. In most cases relevant to cryptography, we consider a prime divisor `
of size q2. Assume ` is of size q2. Then ` divides neither q nor q − 1. The number
of Fq-rational points on the Jacobian is approximately q2. Thus, JC(Fq)[`] is cyclic
in most cases relevant to cryptography.

7. Generators of JC [`]

Consider a curve C ∈ C(`, q, k, τk) with Jacobian JC . Assume the Fq-rational
subgroup JC(Fq)[`] of points on the Jacobian of order ` is cyclic. Let ϕ be the
q-power Frobenius endomorphism on JC . Let ε be a non-degenerate, bilinear, anti-
symmetric and Galois-invariant pairing

ε : JC [`]× JC [`]→ µ` = 〈ζ〉 ⊆ F×
qk
.

We consider the cases ` - 4τk and ` | 4τk separately.

7.1. The case ` - 4τk. If ` does not divide 4τk, then JC(Fqk)[`] is bicyclic; cf. Theo-
rem 4. Choose a random point O 6= x1 ∈ JC(Fq)[`], and expand {x1} to a basis
{x1, y2} of JC(Fqk)[`], where ϕ(y2) = qy2. Let x′2 ∈ JC(Fqk)[`] \ JC(Fq)[`] be a
random point. Write x′2 = α1x1 + α2y2. Then

x2 = x′2 − ϕ(x′2) = α2(1− q)y2 ∈ 〈y2〉,
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i.e. ϕ(x2) = qx2. Now, let JC [`] ' JC(Fqk)[`] ⊕ W , where W is a ϕ-invariant
submodule of rank two. Choose a random point x′3 ∈ JC [`] \ JC(Fqk)[`]. Then

x3 = x′3 − ϕk(x′3) ∈W

as above. Notice that

JC [`] = 〈x1, x2, x3, ϕ(x3)〉 if and only if ε(x3, ϕ(x3)) 6= 1;

cf. Theorem 12.
Assume ε(x3, ϕ(x3)) = 1. Then x3 is an eigenvector of ϕ. Expand {x1, x2, x3}

to a basis B = {x1, x2, x3, x4} of JC [`], such that ϕ is represented by a diagonal
matrix on JC [`] with respect to B. We may assume that ε is given by E1,1 with
respect to B; cf. Remark 13.

Now, choose a random point x ∈ JC [`] \ JC(Fqk)[`]. Write x = α1x1 + α2x2 +
α3x3 + α4x4. Then ε(x3, x) = ζα4 . So ε(x3, x) 6= 1 if and only if ` does not
divide α4. On the other hand, {x1, x2, x3, x} is a basis of JC [`] if and only ` does
not divide α4. Hence, {x1, x2, x3, x} is a basis of JC [`] if and only if ` does not
divide α4. Thus, if ` does not divide 4τk, then the following Algorithm 15 outputs
generators of JC [`] with probability 1− 1/`n.

Algorithm 15. The following algorithm takes as input a C(`, q, k, τk)-curve C, the
numbers `, q, k and τk and a number n ∈ N.

(1) Choose points O 6= x1 ∈ JC(Fq)[`], x2 ∈ JC(Fqk)[`] \ JC(Fq)[`] and x′3 ∈
U := JC [`] \ JC(Fqk)[`]; compute x3 = x′3 − ϕk(x′3). If ε(x3, ϕ(x3)) 6= 1,
then output {x1, x2, x3, ϕ(x3)} and stop.

(2) Let i = j = 0. While i < n do the following

(a) Choose a random point x4 ∈ U .
(b) i := i+ 1.
(c) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

(3) If j = 0 then output �failure�. Else output {x1, x2, x3, x4}.

7.2. The case ` | 4τk. Assume ` divides 4τk. Then JC [`] ⊆ JC(Fqk); cf. Theo-
rem 5. Choose a random point O 6= x1 ∈ JC(Fq)[`], and let y2 ∈ JC [`] be a point
with ϕ(y2) = qy2. Write JC [`] = 〈x1, y2〉⊕W , where W is a ϕ-invariant submodule
of rank two; cf. the proof of Lemma 8. Let {y3, y4} be a basis of W , such that ϕ
is represented on JC [`] by a diagonal matrix M = diag(1, q, α, q/α) on JC [`] with
respect to the basis

B = {x1, y2, y3, y4}.

Now, choose a random point z ∈ JC [`] \ JC(Fq)[`]. Since z − ϕ(z) ∈ 〈y2, y3, y4〉,
we may assume that z ∈ 〈y2, y3, y4〉. Write z = α2y2 + α3y3 + α4y4. Then

qz − ϕ(z) = α2qy2 + α3qy3 + α4qy4 − (α2qy2 + α3αy3 + α4(q/α)y4)

= α3(q − α)y3 + α4(q − q/α)y4;

so qz − ϕ(z) ∈ 〈y3, y4〉. If qz − ϕ(z) = 0, then it follows that q ≡ 1 (mod `). This
contradicts the choice of the curve C ∈ C(`, q, k, τk). Hence, we have a procedure
to choose a point O 6= w ∈W .

Choose two random points w1, w2 ∈ W . Write wi = αi3y3 + αi4y4 for i = 1, 2.
We may assume that ε is given by E1,1 with respect to B; cf. Remark 13. But then

ε(w1, w2) = ζα13α24−α14α23 .
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Hence, ε(w1, w2) = 1 if and only if α13α24 ≡ α14α23 (mod `). If α13 6≡ 0 (mod `),
then ε(w1, w2) = 1 if and only if α24 ≡ α14α23

α13
(mod `). So ε(w1, w2) 6= 1 with

probability 1− 1/`. Hence, we have a procedure to �nd a basis of W .
Until now, we have found points x1 ∈ JC(Fq)[`] and w3, w4 ∈ W , such that

W = 〈w3, w4〉. Now, choose a random point x2 ∈ JC [`]. Write x2 = α1x1 + α2y2 +
α3y3 +α4y4. Then ε(x1, x2) = ζα2 , i.e. ε(x1, x2) = 1 if and only if α2 ≡ 0 (mod `).
Thus, with probability 1− `3/`4 = 1− 1/`, the set {x1, x2, w3, w4} is a basis of JC [`].

Summing up, if ` divides 4τk, then the following Algorithm 15 outputs generators
of JC [`] with probability (1− 1/`n)2.

Algorithm 16. The following algorithm takes as input a C(`, q, k, τk)-curve C, the
numbers `, q, k and τk and a number n ∈ N.

(1) Choose a random point O 6= x1 ∈ JC(Fq)[`]
(2) Let i = j = 0. While i < n do the following

(a) Choose random points y3, y4 ∈ JC [`]; compute xν := q(yν − ϕ(yν)) −
ϕ(yν − ϕ(yν)) for ν = 3, 4.

(b) If ε(x3, x4) = 1 then i := i+ 1. Else i := n and j := 1.
(3) If j = 0 then output �failure� and stop.

(4) Let i = j = 0. While i < n do the following

(a) Choose a random point x2 ∈ JC [`].
(b) If ε(x1, x2) = 1 then i := i+ 1. Else i := n and j := 1.

(5) If j = 0 then output �failure�. Else output {x1, x2, x3, x4}.

7.3. The complete algorithm. Combining Algorithm 15 and 16 yields the de-
sired algorithm to �nd generators of JC [`].

Algorithm 17. The following algorithm takes as input a C(`, q, k, τk)-curve C, the
numbers `, q, k and τk and a number n ∈ N.

(1) If ` - τk, run Algorithm 15 on input (C, `, q, k, τk, n).
(2) If ` | τk, run Algorithm 16 on input (C, `, q, k, τk, n).

Theorem 18. Let C be a C(`, q, k, τk)-curve. On input (C, `, τk, n), Algorithm 17

outputs generators of JC [`] with probability at least (1− 1/`n)2 and in expected run-

ning time O(log `).

Proof. We may assume that the time necessary to perform an addition of two
points on the Jacobian, to multiply a point with a number or to evaluate the q-
power Frobenius endomorphism on the Jacobian is small compared to the time
necessary to compute the (Weil-) pairing of two points on the Jacobian. By [4],
the pairing can be evaluated in time O(log `). Hence, the expected running time of
Algorithm 17 is of size O(log `). �

8. Implementation issues

A priori, to implement Algorithm 17, we need to �nd a qk-Weil number ωk of the
Jacobian JC , in order to check if ` rami�es in Q(ωk) in the case when ` divides 4τk.
On Jacobians generated by the complex multiplication method [17, 7, 3], we know
the Weil numbers in advance. Hence, Algorithm 17 is particularly well suited for
such Jacobians.

Fortunately, in most cases ` does not divide 4τk, and then we do not have to �nd
a qk-Weil number. And in fact, we do not even have to compute 4τk. To see this,
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notice that by Theorem 10, the Weil polynomial of JC is of the form

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod `).

Let ϕ be the q-power Frobenius endomorphism on JC , and let Pk(X) be the cha-
racteristic polynomial of ϕk. Since ϕ is diagonalizable on JC [`], it follows that

Pk(X) ≡ (X − 1)2(X − αk)(X − 1/αk) (mod `).

If ` divides 4τk, then JC [`] ⊆ JC(Fqk); cf. Theorem 5. But then Pk(X) ≡ (X − 1)4

(mod `). Hence,

(2) ` divides 4τk if and only if αk ≡ 1 (mod `).

Assume αk ≡ 1 (mod `). Then Pk(X) ≡ (X − 1)4 (mod `). Hence,

(3) ` rami�es in Q(ωk) if and only if ωk /∈ Z;

cf. [13, Proposition 8.3, p. 47]. Here, ω is a q-Weil number of JC .

Consider the case when αk ≡ 1 (mod `) and ωk ∈ Z. Then ω =
√
qe

inπ
k for

some n ∈ Z with 0 < n < k. Assume k divides mn for some m < k. Then
ω2m = qm ∈ Z. Since the q-power Frobenius endomorphism is the identity on
the Fq-rational points on the Jacobian, it follows that ω2m ≡ 1 (mod `). Hence,
qm ≡ 1 (mod `), i.e. k divides m. This is a contradiction. So n and k has no

common divisors. Let ξ = ω2/q = e
in2π
k . Then ξ is a primitive kth root of unity,

and Q(ξ) ⊆ K. Since [K : Q] ≤ 4 and [Q(ξ) : Q] = φ(k), where φ is the Euler phi
function, it follows that k ≤ 12. Hence,

(4) if αk ≡ 1 (mod `), then ωk ∈ Z if and only if k ≤ 12.

The criteria (2), (3) and (4) provides the following e�cient Algorithm 19 to check
whether a given curve is of type C(`, q, k, τk), and whether ` divides 4τk.

Algorithm 19. Let JC be the Jacobian of a genus two curve C. Assume the odd

prime number ` divides the number of Fq-rational points on JC , and that ` divides
neither q nor q − 1. Let k be the multiplicative order of q modulo `.

(1) Compute the Weil polynomial P (X) of JC . Let P (X) ≡
∏4
i=1(X − αi)

(mod `).
(2) If αki 6≡ 1 (mod `) for an i ∈ {1, 2, 3, 4}, then output �C ∈ C(`, q, k, τk)

and ` does not divide 4τk� and stop.

(3) If k > 12 then output �C /∈ C(`, q, k, τk)� and stop.

(4) Output �C ∈ C(`, q, k, τk) and ` divides 4τk� and stop.
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