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Abstract

We propose a new architecture for performing Elliptic CuBgalar Multiplication (ECSM) on elliptic curves over
GF(2™). This architecture maximizes the parallelism that thequtdje version of the Montgomery ECSM algorithm
can achieve. It completes one ECSM operation in aBoui—1)([m/D]+4)+m cycles, and is at least three times the
speed of the best known result currently available. Wherlémpnted on a Virtex-4 FPGA, it completes one ECSM
operation ovelGF (2'%3) in 12.5us with the maximum achievable frequency of 222MHz. Two otfeplementation
variants for less resource consumption are also proposadirét variant reduces the resource consumption by almost
50% while still maintaining the utilization efficiency, wdhi is measured by a performance to resource consumption
ratio. Our second variant achieves the best utilizatioriefiicy and in our actual implementation on an elliptic curve
group overG' F'(2'9%), it gives more than 30% reduction on resource consumptidfewmaintaining almost the same
speed of computation as that of our original design. Foreaihg this high performance, we also propose a modified
finite field inversion algorithm which takes oniy. cycles to invert an element ové¥F'(2™), rather thar2m cycles
as the traditional Extended Euclid algorithm does, and tieiw design yields much better utilization of the cycle

time.
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|. INTRODUCTION

Elliptic Curve Cryptography (ECC), independently intreéd by Miller [1] and Koblitz [2] in 1980’s, is a
promising technology for new cryptographic applicatioliscan achieve high security levels as that of RS [
but with much smaller key sizes and faster computation, whésult in lower power consumption as well as better
memory and bandwidth savings. A 163-bit elliptic curve d¢ogystem is known to provide a comparable security
level to that of a 1024-bit RSA-based cryptosystem; and al#P4lliptic curve cryptosystem is comparable to
a 2048-bit RSA-based cryptosysted,[[5]. We refer readers tof], [4], [7], [8] for its general background and

recent applications.
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In ECC, Elliptic Curve Scalar Multiplication (ECSM) is th@m® and also the most expensive operation, just as
the modular exponentiation does in RSA. The study of its am@ntation performance has attracted great interest
due to the rapid development and deployment of ECC lat@lyQn software implementation, there are several
open-source libraries such as Crypto++ and MIRAGlvailable. They have been widely used and deployed, and
also been used as the up-to-date benchmarks for the sofitwalementation performance of ECSM. According to
MIRACL, one ECSM operation on an elliptic curve ov&#'(21%%) takes1.05ms on a 3GHz Pentium IV system.

On the hardware implementation of ECSM, many different iectures have been proposé, [10], [11], [12].

One of the most efficient FPGA implementation of ECSM on &tigurves overGF(2™) is due to Ansari and

Hasan 2. Their implementation forn = 163 takes41us with 100MHz the maximum achievable frequency on a
Virtex2-2000 FPGA to compute one ECSM operation in the mtdje coordinate, and that is more than 25 times
faster than software implementation. In this paper, we psem new architecture for ECSM on elliptic curves over
GF(2™). Our design maximizes the execution parallelism of indialdmodules and also improves the utilization
of cycle time for some of the modules. When implemented onrteX44 FPGA, it completes one ECSM operation

on an elliptic curve ovetZ F'(2153) in just 12.5us, which is at least three times the speed 1|

A. Our Results

We propose a new architecture for doing ECSM on elliptic esraverGF(2™). Our architecture maximizes the
parallelism of the execution of independent functional med and results in taking onB(m—1)([m/D]+4)+m
cycles to complete one ECSM operation, whérés the digit size of the underlying digit-serial finite fielcuitiplier.
This is about one third of the number of cycles required by sigtedue to Ansari and Hasahd], which has been
known as one of the most efficient designs previously aviglalhen implemented, our design also achieves at least
three times the speed of the one P and reaches a much higher maximum achievable frequengeimented
on a Virtex4-LX200 FPGA, our implementation completes oS operation on an elliptic curve overF'(2163)
in 12.5us with a maximum frequency of 222MHz achieved.

In our design, we also maximize the parallelism that the lontery ECSM algorithm in projective coordinate
can achieve. Based on our analysis, we find that the optimpleimentation of Montgomery ECSM algorithm
in terms of speed requires two serial finite field multiplicas. In our proposed ECSM architecture, we employ
this optimized design. We hope that our design will also seas a useful reference for estimating how fast the
Montgomery algorithm can achieve on FPGA in the future.

Higher resource consumption implies higher cost of praduadfi.e. larger chip area). For reducing the resource
consumption, we investigate two other architecture vasia®ur first variant reduces the number of finite field
multiplication modules from three to one, the number of gl modules from two to one and eliminates the
inversion module. It turns out that the resource consumgsaeduced by almost 50% while still maintaining the

utilization efficiency (i.e. the ratio of performance to eesce consumption, or, the performance-to-chip-area):ati

1Crypto++: htt p: / / www. cr ypt opp. com
MIRACL: http://ww. shanus.ie



Our second variant is similar to the first variant but haviag tmultiplication modules instead of one. This
modification is significant because it allows much higherafialism to be achieved than the first variant does. It
actually yields the best utilization efficiency, by achimyi3.16:1 performance-area ratio, while which is 2.37:1
for our original architecture. This variant also gives usrenthan 30% reduction on resource consumption while
maintaining almost the same speed of computation as thatiobidginal architecture when implemented on an
elliptic curve group oveG F(2163).

Besides proposing a highly optimized architecture thropgtellelism, we also propose a new implementation
method for carrying out an Extended Euclid algorithm basedefifield inversion operation ove®F'(2™). By
unrolling two iterations into one, our method takes onlycycles to invert an element rather thzm cycles in the
traditional implementation of the Extended Euclid algamit More importantly, each iteration in our method has
much better utilization of the time of one clock cycle thaa traditional one. This gives a significant improvement
on the number of cycles required for completing one finitedfiaversion while without increasing the cycle time.
This improved implementation contributes significantlyth@ high performance and high performance-area ratio

of our proposed ECSM architecture.

B. Related Work

In 2000, Orlando and Paa#][proposed an FPGA-based processor for ECSM on ellipticesioverGF(2™).
Their implementation require®[167/D] + 24) = 166 4+ 20[167/D] + 764 clock cycles to complete one ECSM
operation ove7 F(2'67), whereD is the word size of the underlying finite field multiplier. Treported performance
on a Virtex-E-400 FPGA i210us. In their design, the finite field multiplication operatioimseach iteration of the
main loop of ECSM are carried out serially.

In 2003, Eberle et al.10] proposed an FPGA-based processor for ECSM on ellipticesioverGF'(2™) where
m is configurable up to the value of 255. Several standardizedes have also been preloaded for optimized
implementation. They reported the speed of their impleatent is 3025 for ECSM on generic elliptic curves
over GF(2'%%) on a Virtex-E 2000 FPGA, anti4 s for preloaded curves. However, as their design has to ieclud
additional logics for handling generic curves, its reseuconsumption (i.e. chip area) is noticeably high when
compared with the corresponding speed it can achieve. As Waee later, in order to get a better performance-
area ratio, in our design, we provide developers a slighdls Ifreedom on choosing parameters without any
reconfiguration, but in return, we improve the performangeriore thanl0 times. On the parameters that we still
allow developers to choose without any reconfigurationy thelude the choice of elliptic curves, base points and
certain finite field parameters. Reconfiguration is needégdibthe underlying finite field is fundamentally changed,
for example, fromG F(2163) to GF(225%). As there are usually many suitable elliptic curves for epatfticular
finite field, developers do not need to do reconfiguration diftgn in practice, while the gain on performance of
our design is much significant.

Another FPGA-based processor for ECSM proposed recentdyésto Mentens et allfl]. The algorithms they

used are not the optimized ones, and hence it takes longerttincompute. The reported resultdss01ms for



completing one ECSM operation on elliptic curves ogaf (2169).

In [12], Ansari and Hasan proposed a hardwired logic for perfogr@©SM on elliptic curves ove@ F'(2™).

In their design, a pseudo-pipelined finite field multipliereo GF(2™) was constructed in such a way that the
multiplier can complete one finite field multiplication inastly [/ D] cycles rather thafim/D|+c cycles, where

D is the word size of the multiplier and is some non-zero positive constant, which is needed for ditivaal
implementation of the finite field multiplier. This optimizan and several others make their design efficient. To
complete one ECSM operation on an elliptic curve o@dr(2™) in the projective coordinatetheir design takes
approximately6(m — 1)[m/D] clock cycles, ordlus with a maximum achievable frequency of 100MHz on a
Virtex2-2000 FPGA whenn = 163. In their design, six finite field multiplications are cadieut serially. As we
will see in subsequent sections, our design allows someesktfinite field multiplication operations to be carried
out in parallel and hence reduces the effective sequentialations to two.

Paper Organization. The rest of the paper is organized as follows. In Sécwe introduce the individual
algorithms that constitute our ECSM system. Optimizatithreg we have done on some of the algorithms are also
described. In particular, we propose an improved finite fielcersion implementation method ovérF'(2™) in
Sec.lI-C and show that it doubles the performance of the traditional and yields better utilization of the cycle
time. The design of our ECSM architecture is described in. 8éc This is followed by performance analysis,
complexity analysis, and comparison with previous resultSec.IV. Two variants of our architecture for reducing
resource consumption are proposed and analyzed in\§e&nd the second variant is shown to achieve the best

performance-area ratio. The paper is concluded in 8ec.

II. ALGORITHMS AND OPTIMIZATIONS

The most commonly used elliptic curves are defined over pfielés GF'(p) and binary fields7F(2™). In this
paper, we focus on the latter one, where an eleme6tfit{2™) can be represented as= 7" a;2", a; € {0,1}.
An elliptic curveC over GF(2™) is a Weierstrass equation and is defined/by- vy = 23 + az* + b, wherea and
b # 0 are elements of#F'(2™) [7]. Each curve also includes an imaginary paintcalled point at infinity, which
acts as the identity element in the corresponding ellipticve additive group.

A point P on an elliptic curveC over GF'(2™) can be represented iffine Coordinateor Projective Coordinate
[7]. In the affine coordinatel’ is denoted by two elements, y) of GF(2™); in the projective coordinate? needs
three elements to represent, namek, Y, Z), whereX,Y, Z € GF(2™) and Z # 0. Therefore, affine coordinate
representation can help reduce network bandwidth and mespaice for transmission and storage, respectively. On
the other hand, performing ECSM in affine coordinate invsladarge number of finite field inversion operatigns
whose performance is much poorer than that of finite field iplidation operationsT], [9].

In projective coordinate, it is known7], [13], [14] that much more efficient ECSM algorithms which do

not involve any finite field inversion operation can be camsted. Therefore, almost all of the recent hardware

20ne of the most commonly used finite field multiplication altjons in affine coordinate is double-and-adf. [



implementations (such as those reviewed in $&).[9], [10], [11], [12] of ECSM are in the projective coordinate.
In our design, we also have the core ECSM operation carrigdnothe projective coordinate, but we use the
affine coordinate for the input and output of the whole systenthat the network bandwidth and storage space
of elliptic curve points can be reduced. This implies that design also has two conversion modules included for
transforming elliptic curve points from affine coordinatefrojective coordinate and vice versa.

In the following, we introduce the individual algorithmsathwe have chosen in our ECSM implementation. We
start our presentation with the highest level ECSM algaritfirst, which is followed by the algorithms for the

lower level finite field element operations such as additrnltiplication, square and inversion overF'(2™).

A. Elliptic Curve Scalar Multiplication (ECSM)

ECSM is an operation which on input an integeand a pointP on an elliptic curveC, computes another point
Q@ such thatQ) = kP. In our ECSM architecture, we use a variant of the algorithra tb Lépez and Dahald §],
which is an improvement of the traditional Montgomery ECSMoaithm [15]. The algorithm consists of three
stages: (1) conver® from affine coordinate to projective coordinate; (2) conggdt= kP in projective coordinate;

and (3) converty from projective coordinate back to affine coordinate. Ttgoathm is shown in Algorithm 1.

Input: Point P = (z,y) andk, wherez,y, k € GF(2™)
Output: Point@Q = (x4,yq) = kP, wherexq,yq, € GF(2™)
/* Affine to Projective/
Xi=z,Z1=1,Xo=a2"+b, Zo =2
/*Projective Scalar Multiplicatiot
for ¢ from { — 2 downto 0 do

[*Point Additiort/
A=X17-X271 + I(Xle + X2Z1)2
B = (X1Z>+ X221)*

/*Point Doubling/

if (ki =1)thenC = X3 +b2Z3, D = X372
elseC = X} +bZt, D = X 73

endif

if (ki=1)thenX, =A, Z1 =B, Xo=C,Z>=D
elseXo =A,Zy=B, X1 =C,Z1=D
endif
endfor
/*Projective to Affing/
Tgq = Xl/Zly
Yo = (X1/Z1 +2)(Xa/Z2 + ) + (2 +9))(X1/Z1 +2) [z +y
Return (x4, yq)
Algorithm 1. Our ECSM Algorithm - A Variant of [ 13]




In the algorithm k; represents théth bit of k&, fori = 0,--- ,[—1 andk;_; is the most significant bit of. The
symbolb represents the constant of the underlying elliptic curiat ts,y? + zy = 2 + az? + b over GF(2™). In
practice, it is possible thdt< m, but for analyzing the worst-case performance of an ECSMitacture, in the
rest of the paper, we assume that m.

In each iteration of the main loop of Algorithm Ppint Additionand Point Doublingcan be run in parallel. We
modify the algorithm of 13] slightly to Algorithm 1 solely for making the parallelisnf ®oint Additionand Point
Doubling explicit. Readers may refer to Appendix (pa®@ for the original one.

B. Finite Field Algorithms

In Algorithm 1, finite field element operations such as additimultiplication, square, inversion and/or division
over GF'(2™) are used. Addition oveZF'(2™) is merely the bitwise exclusive-or operation, and therefervery
efficient.

The finite field multiplication algorithm used in our designthe LSD-first digit-serial multiplication algorithm
proposed by Song and Parfif]. Let f(x) = xm+2?:01fia:i, fi € {0,1}, be an irreducible polynomial. The finite

field multiplication operation ove& F'(2™) is defined byc(x) = a(z)b(x) mod f(x), or in short,c = ab mod f.

The algorithm is shown in Algorithm 2.

Input: a,b € GF(2™)
Output: ¢ € GF(2™), ¢ = ab over GF(2™)
Set: A9 = 4,0 =0,d = [m/D]
for ¢ from 1 to d do
AD = ACD 2D mod f(z), (1)
W = A=V, | 4 ol 2

where
i) _ yym—1 4(i) j
AW =3 P A 5,
CW = xmiP=20Wyi | and
S bpiy e, 0<i<d—2
Bi = sym—1-D(d-1)p i
=0 Di4jX7, 1= d—1

endfor

returnC‘Y mod f(x)
Algorithm 2. LSD-first Digit-Serial Multiplication over GF(2™)

The algorithm divides the two operandsand b into digit blocks, with word/block sizé). Operations in each
block are performed in parallel, while the blocks are preedsserially. Therefore, it takés:/ D cycles to compute
one multiplication ovelGF(2™).

The multiplication algorithm can be used for performingtéirfield square and it takésn /D] cycles to compute.
For efficiency, cryptosystems usually choose to use irritiipolynomials which have low Hamming weight, for
example, 3, 5 or 7. In this case, the square operation cathygbeEasimplified, for example, by using the algorithm

proposed by Wu17] with low Hamming weight irreducible polynomials, we canngplete one finite field square



operation ovelGF(2™) in just one cycle. We refer readers tb7] for details. In our design, we use this algorithm

to do finite field square.

C. Finite Field Inversion Algorithm

Inverting an element ove F'(2™) is much more expensive than multiplying two elements togetand this
is also the reason why almost all recent ECSM hardware acthites have chosen to implement it in projective
coordinate. This can help avoid hundreds of finite field ieigr operations by introducing only a few additional
finite field multiplication operations, and only a few invierss or divisions are needed at the end of the computation,
for converting the result back to affine coordinate. One efdcbmmonly used inversion algorithms is the Extended

Euclid Algorithm. In Algorithm 3, it shows the implementatti of the algorithm in 18].

Input: @ € GF(2™), irreducible f
Output: ¢~ ! mod f
S=fR=a,U=1,V=0,=0,¢q=0,t=0
for ¢ from 0 to 2m — 1 do
if (7, = 0) then
R=2zR, U= (2U)mod f, d=0+1
else /*r,, = 1*
q=8m, S=S—qR, V=V —qU, S=x5
if (6 = 0) then
t=R, R=S, S=t, t=U, U=V, V=t U= (zU)mod f, 6§ =6+ 1
else
U=U/z)mod f, §=56—-1
endif
endif
endfor

returnU

Algorithm 3. Extended Euclid Algorithm over GE'(2™)

We notice that the maximum path delay in Algorithm 3 is vergrshthat is, consisting of only one LUT (lookup
table) and one FF (flip-flop). As a result, when implementbd, module corresponding to Algorithm 3 is idle for
most of the time in a cycle as some other simultaneous opegatire still running in the same clock cycle. This
implies that the corresponding clock cycle for performimg dgteration of the main loop of Algorithm 3 is not fully
utilized. In consideration of this, we propose to unroll thain loop so that every two iterations are now combined
into one. As a result, the main loop of our modified algoritrakeis onlym iterations rather tham iterations.
More importantly, the maximum path delay of each iterationour revised algorithm is now corresponding to
five LUTs and one FF. They are comparable to the time elapseh@fclock cycle. As a result, the clock cycle
for performing one iteration in the main loop of our algonittcan be fully utilized. Algorithm 4 summarizes the

modified algorithm.



Input: a € GF(2™), irreducible f
Output: ¢! mod f
Set:S=f,R=a,U=1,V=0,6=0,t=0,¢g=0,e=0
for ¢ from 0 to m — 1 do
if (rmrm—1 = 00) then
R=2a°R, U= (2*U) mod f, § =35+ 2
else if ¢rnrm—1 = 01) then
q=5m, R=zR, S=z(S—qR), V=V —q(zU mod f)
else M*r,, = 1*
if (6 > 2) then
§=0-2, ¢=5m, €=8m-1—SmTm—1, S=2z°(S —qR) — z(eR),
V=V —qU —e(U/z mod f), U=U/z*mod f
else if ¢ = 1) then
4= Sm, €= S8m-1—Smrm-1, t =R, R=xz(x(S—qR)—¢eR), S=t,
t=U/zmod f, U=2(V—-qU —et)mod f,V =t
else /0 = 0%/

q=S8m, €=3S8m—-1—SmTm-1

if (e = 0) then
§=0+2, t=R, R=2*(S—qR), S=t, t=U, U=2>(V—-qU)mod f, V=t
else /e = 1*/
t=2R—2%(S—qR), R=2(S—qR), S=t, t=U—e(@(V—qU)mod f), U=V —qU, V=t
endif
endif
endif
endfor
returnU

Algorithm 4. Our Modified Inversion Algorithm Over GF(2™)

To divide one element by another, the finite field divisionoaithm over GF'(2™) proceeds almost identically
the same as that of the inversion algorithm, with the exoepthat the variabld/ should be initialized by the

dividend, rather than by.

IIl. OUR ECSM ARCHITECTURE

In this section, we describe our ECSM architecture and eséirthe execution time as well as the computational

complexity of each individual module.

A. Implementation of Our ECSM Algorithm (Algorithm 1)
As explained in Secll and also shown in Algorithm 1 (page®), our ECSM architecture consists of three
stages: (LAffine-to-Projectiveconversion of input poinf’; (2) Projective-Scalar-Multiplicatiorto get output point

@ = kP; and (3)Projective-to-Affineconversion of the output poir®. Let A, M, S and D be the number of



clock cycles required for finite field addition, multiplioat, square and division ove&r F'(2™), respectively. They
are used for analyzing the execution time of individual mMedusuch a#\ffine-to-Projectivenodule, etc.

1) Affine-to-Projective:According to Algorithm 1, this stage has the following ogemas involved.
Xi=z, Z1=1, Xo=a2*+0b, Zy=2?

Most of them can be carried out in parallel, except the comatmri of X5. In the following, the time steps of our

implementation are given.

Affine-to-Projective2S + 1A

1: Zy=22 Xi==z Zi=1; (15)

2: Ty=1272 (18)

3: Xo=T1+0b. (14)
In time step 1, three operations are carried out in paralleis is followed by time step 2 and 3 for computing
X5. The execution time offfine-to-Projectivas 2.5 + 1 A.

2) Projective-Scalar-Multiplication:In the main loop of this module, the two sub-modules carriatlio each

iteration arePoint-Additionand Point-Doubling The time steps of our implementations of these two sub-riesdu

are given as below.

Point Addition 2M + 1S + 24

1: Ty =X1Zy, To= X271, (1M)
T3 =T+ T, (14)

B=T$; (19)

Ty =TT, Ts = zB; (1M)
A=T,+T5. (14)

a A wWN

Point Doubling 2M + 1S+ 1A+ 1MUX
1: X =(k=1)7Xy: X,
Z = (ki =1)?Zy: Z1;, (IMUX)

2: Te= X2 Tr=22% (15)

3: Ty=T2 To=T2 D=TsTs (1M)

4 Tyo=bTy, (1M)

5: C=Tg+Ti. (14)
In time step 1 ofPoint-Doubling the operationb?a; : as) corresponds to a multiplexé/ U X . Its delay is one
LUT (lookup table), which is equivalent to that of one finiteléi addition. Therefore, the execution timeRdint-
Doubling and Point-Additionare the same, that &1/ + 1.5 + 2A. As shown in Algorithm 1 (pagé), there is a
set of conditional assignments at the end of each iteralibis set of assignments incurs an additional/ X for
each iteration. Since the execution time of ahWd/ X is equivalent to oned, the total execution time for each

iteration is2M + 15 + 3A.
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3) Projective-to-Affine:Below are the time steps of the third stage of our ECSM implaaten.
Projective-to-Affine1D + 3A + 2M

Ty =X1/Z1, To=X2/Zs, T3 =271, Ty=2% (1D)

Ts=T+x Ts=To+x, Tr=Ti+y; (LA)

Ty =T5Ts, To =T5T3;, (1M)

Tio =T7 + Tg; (14)

Ty = ToTho;, (1M)

Tio =T +y. (1A)

The execution time idD + 3A + 2M. Note that we comput&y by one inversion and one multiplication rather

o o~ W N P

than one division. The reason of making this implementatather than using division is that the execution time
will becomes2D + 3A + 1M if we use division, which results in larger execution timéefefore, we ‘divide’ the

division into inversion and multiplication so that the imsi®n part can be computed in time step 1.

Computational Complexity. A summary of the resources that are used in the three stagesiroECSM

implementation is shown in Table

Complexity Affine to Proj. | Proj. Scalar Mul.| Proj. to Affine
Square 2 5(m —1) 1
Addition 1 3(m —1) 5
Multiplication 0 6(m —1) 3
Division/ Inversion 0 0 3

TABLE |
RESOURCECONSUMPTION OF THEECSM ARCHITECTURE(UNOPTIMIZED)

In each iteration of the main loop, we need 5 finite field squaoelules, 3 addition modules and 6 multiplication
modules, while most of them can be reused for reducing theures consumption (i.e. chip area). More details
on resource reuse are given in SH&C.

Next, we describe our implementation of the finite field elabm@perations and estimate their performance and

complexity.

B. Finite Field Multiplication overGF'(2)

Our implementation of finite field multiplication is based tre LSD-first digit-serial algorithm described in
Sec.ll-A. In Fig. 1, one iteration of our implementation is shown. In the figuhe value next to each signal line
represents the width of the corresponding signal.

In this implementation, there are two loops correspondintié two steps in the LSD-first digit-serial algorithm:
the loop on the right performs step (1), and the loop on thiedefputes step (2) where finite field addition is
implemented by XOR gates.
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B<B>>D *
‘ >>(reg) ‘ ‘ A(reg) ‘
K |
B[D-I.O]" A[m-1-0] *
R
m+D-1] A=AX
¥ y
LA MUX
m+
y
! mod f
C(reg)
m
C[m+D-2:0] ¥ Output

Fig. 1. Our Implementation of LSD-First Digit-Serial Mytication Algorithm OverGF (2™)

By considering the two extra clock cycles for initializingputs and uploading outputs, our implementation takes
[m/D] + 2 clock cycles to complete one finite field multiplication ow&F'(2™). Note that the pseudo-pipelined
design of [LZ] cannot be applied in our architecture as the output of oritefiield multiplication is used immediately

as the input to the next one.

C. Resource Utilization and Performance of Finite Field raent Operation Modules

In our implementation, besides focusing on optimizing therall performance, we also emphasize on the reuse
of modules. In hardware architecture design, resourcizatibn is one of the most important issues that need to
be considered. The reuse of some large modules will helpceetksource consumption or chip area tremendously.
In this section, we discuss the resource utilization of the basic finite field element operation modules in our
implementation and also the reuse of them. They are finitd feldition (ADD), square (SQU), multiplication

(MUL), division (DIV) and inversion (INV). In Tablél, the complexity and performance of these five modules are

shown.
LUTs | FFs | Clock Cycles
ADD 163 0 1
SQU 165 0 1
MUL | 6200 | 1937 | [m/D]+2
DIV 4909 | 1506 m
INV 4456 | 1456 m
TABLE 1l

COMPLEXITY AND PERFORMANCE OFFIVE FINITE FIELD ELEMENT OPERATIONMODULES OVERGF(2163)
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ADD and SQU modules use much less resource than the otherrimdules. Also, only a few SQUs and ADDs
are required, so we choose not to optimize the reusabilitthe$e two modules. In fact, to reuse a module, one
additional multiplexer (MUX) is required, and too many MUXsay counteract the advantage of reusing modules
when these modules are small and already efficient enough.

We put much effort on reusing the other three modules. In€Tdb] it shows the utilization of the SQU, ADD,

DIV and INV modules in our implementation.

Stage 1 Stage 2 Stage 3
s1|s2]s3|si|s2|s3|sa]ss]s1]s2]s3]| s4]ss5] s6
sQui |l z | 1 Ty
SQuU2 B
SQuU3 Ty
SQU4 Te
SQU5 Ts
SQU6 T
ADD1 X
ADD2 c
ADD3 Ty A
ADD4 s
ADD5 Te
ADD6 T
ADD7 Tho
ADDS8 T12
DIV1 T
DIV2 T
INVL Ts

TABLE Il
UTILIZATION OF SQU, ADD, DIV AND INV MODULES IN OUR ECSM IMPLEMENTATION

In the table, Stage 1, Stage 2 and Stage 3 correspordfitte-to-Projective Projective-Scalar-Multiplication
and Projectibe-to-Affingrespectively, where Stage 2 includes-1 iterations.T; corresponds to the variable in the
analysis of execution time in Sell-A . We use 6 SQU modules and 8 ADD modules in our implementatioly,
one SQU module and one ADD module are reused.

Since two division modules are required to perform in patdthr shortening the execution time, in our imple-
mentation, we choose not to reuse the DIV module in preferefidast computation.

On the MUL modules, we make extra effort in allocating thiggyof modules. The reason is that MUL modules
not only occupy large resources, but are also used very éretyu As we can see in Setil-A, 6 MUL modules
(unoptimized) are needed for carrying out one iterationhef main loop of theProjective-Scalar-Multiplication

For reducing the number of MUL modules in this stage, we divige 6 finite field multiplication operations over
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GF(2™) in the time steps oPoint Additionand Point Doublinginto two groups:
1) In Step 4 of bothPoint AdditionandPoint Doubling altogether three finite field multiplications can be catrie
out in parallel;
2) In Step 1 ofPoint Additionand Step 3 oPoint Doubling altogether three finite field multiplications can be
carried out in parallel.
Therefore, we only require three MUL modules to run in p&iah each group and they can be reused in the other
group. In addition, in the last stage, that Brpjective-to-Affineconversion, three MUL modules are needed and
only two are required to be run in parallel. Therefore, thmeaset of MUL modules can also be reused in this
stage. As a result, there are only three MUL modules in outlémpntation and TabéV shows the details of the

utilization of these MUL modules.

Stage 1 Stage 2 Stage 3
s1|s2| s3] si|s2][s3| s4|s5] s1]s2|s3|sa] s5]se
MUL1 Ty Ty I
MUL2 Ty Ts Ty
MUL3 D | T EN
TABLE IV

UTILIZATION OF MUL MODULES IN OURECSM IMPLEMENTATION

D. The Complete Architecture and Total Execution Time of BAEM Implementation

P, V2N
1
Output of SQUSs,
Output of ADDs| ¥
—

Output of MUL3

clk
sclr

Fig. 2. Our ECSM Architecture
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The architecture of our ECSM implementation is shown in Eigln the diagramglk, sclr andinit represent
global clock signal, synchronous reset signal and glohi#ibirsignal, respectively. Inputs for each MUL module
are shown in the figure, and there are only three MUL modulesuindesign.

We now estimate the total execution time in terms of the numbelock cycles. In one iteration of the main loop
of Projective-Scalar-Multiplicatior{Sec.llI-A2), the execution time i8 M + 15+ 3 A. Therefore, the execution time
of Projective-Scalar-Multiplications (m—1)(2([m/D1]+2) +4). For the two conversions, i.Affine-to-Projective
(Sec.llI-Al) and Projective-to-AffingSec.111-A3), the total execution time is1 + 2([m/D] + 2) + 6 which is
aboutm for large D. Hence, the total number of clock cycles taken to computeE®@8M operation ovef: F'(2™)

is about2(m—1)([m/D] +4) + m.

IV. PERFORMANCE OF ANACTUAL IMPLEMENTATION

We use Xilinx Integrated Software Environment (ISE) 9.1d&velop our ECSM hardwired logic. Simulation is
done using Modelsim XE. The implementation is tested on &XiVirtex-4 LX200 FPGA.

The finite field chosen in our actual implementationd(2163) with the irreducible polynomial being set to
f(z) = 219 + 27+ 25+ 23 + 1. The elliptic curve issect163r1°. When choosing the digit sizB of the finite field
multiplication (i.e. LSD-first Digit-Serial Multiplicatin) as 42, the whole system takes 39,584 lookup tables (LUTS)
and 6,948 flip flops (FFs). The corresponding number of ASItegyastimated by the ISE is 303,822. One ECSM
operation can be completed 1R2.5..s with the maximum achievable frequency of 222MHz. This resatresponds
to the case when integéris taken a2'%—1, that is, al163-bit integer with all bits set td. This implies that in

practice, our implementation will take less thé25us to perform on ECSM operation ové#F'(2163).

ECSM Max Achievable | Resources
FPGA over GF(2163) Frequency Occupied
(us) (MHz)
Our Virtex-4 12.5 222 39,584 LUTs
Implementation LX 200 (~303,822 gates)
[12] Virtex-Il 41 100 8,300 LUTs,
2000 7 RAM blocks
[9] Virtex-E 210 76.7 3,002 LUTs
400-8BG432 10 RAM blocks
[10] Virtex-E 2000-7 144 66.4 20,068 LUTs
[17] Virtex 3,801 47 150,678 gates
800-4HQ240
TABLE V

ABSOLUTEPERFORMANCECOMPARISON

SStandards for Efficient Cryptography Group, "RecommendeliptE Curve Domain Parameters”, September 2000. Avédlalat
http://ww. secg. or g/ i ndex. php?acti on=secg, docs_secg
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In TableV, several recent results in hardware implementation of EG®/given along with our result. We can
see that our resultl@.5us) is at least three times the speed of the best result prdyidaswn (i.e.41us) [12]%.
On the resource consumption (or chip area requirementgeins that our implementation requires much more
resources, for example, when compared with thatl@f.[Actually, this is not the case. In fact, our implementatio
gives better performance-area ratio. This implies thatimpiementation yields faster computation than thatld [
if the same amount of chip area is given. In Tablg the performance-area ratios of our implementation when

compared with the best known results are given.

Computation | Resources Performance-Area
Time Occupied Ratio
Ours : [12] 3.28 : 1t 2.42: 11 1.36 : 1f
Ours : P 16.8:1 7.1:1% 2.37:1
Ours : 0] 11.5:1 1.94:1 5.93:1
Ours : 1] 304:1 2.02:1 150.5:1

T Incomparable aslp] does not consider coordinate conversion.
® One 18:-bit RAM block in Virtex-1l corresponds to 1,152 LUTSs.
¥ One 4-bit RAM block is approximately equivalent to 256 LUTSs.

TABLE VI
RELATIVE PERFORMANCECOMPARISON

We can see in Tablél, our implementation also outperforms that d#] even when considering the performance-
area ratio. We should emphasize that &P][ Affine-to-Projectiveand Projective-to-Affineconversions are not
implemented. Input and output of the ECSM itP] are all in projective coordinate. Therefore, our implenation
is actually much better in both absolute performance as aglperformance-area ratio when compared with. [
Comparing with 9], [10] and [11], the utilization efficiency of our implementation, i.e eqformance-area ratio, is

also much better.

V. OPTIMIZATION FOR RESOURCECONSUMPTION

The estimated number of ASIC gates of our implementatiorbaut 303,822 (SedV). Higher the number of
gates is, more expensive the ASIC chips are. For low-costymts, the resource consumption of our design may
need to be reduced. In this section, we discuss how it can duecee without introducing too much tradeoff on

the performance.

4Note that in [L2], only the ECSM in projective coordinate was implementedilsvithe two conversions between affine coordinate and
projective coordinate are not considered, while in our enmntation, both conversions have been taken into account.



16

A. Variant 1

Our original ECSM implementation has three MUL modules. Asntioned, the MUL module is expensive and
it gives significant reduction on resource consumption Ve MUL modules are needed. As a result, our first
variant from the original implementation is to reduce thenier of MUL modules to only one. In other words,
there is only one MUL module available fd?rojective-Scalar-MultiplicationBelow are the time steps of the
Projective-Scalar-Multiplicatiorstage of this variant.

Variant 1: Projective-Scalar-Multiplication6 M + 1A
Ty = (ki = 1)?X021 : X129, X = (ki =1)?Xy: X1, Z = (ks = 1)?Z2 : Z1; (1M)
To = (ki =1)?X1Zy : XoZy, Te = X2, Ty = 7%, (1M)
D=TT7, Ts =T+ T, Ts =T3, To="TZ (1M)
T, =TT», B=T§; (1M)
T = bTy; (1M)
Ts = 2B, C =Ts+ Ty, (1M)
7. A=T,+Ts. (14)
We can see that the execution time of one iteration in the hoaip become$ M + 1 A. Different from our original

o O~ W N P

design in Seclll and 1V, the pseudo-pipelined techniqu&Z] can now be employed, that is, the clock cycle for
preparing the output of the previous execution of the MUL mlectan be done simultaneously with the loading
of the input for the current execution of the MUL module. Henthe effective number of clock cycles required
for completing one finite field multiplication can be reduded[m/D] + 1. Also note that registers storing the
values of B, C' and D are ready before the last time step of one iteration. Hemeeatdition {A) in step 7 can
be carried out simultaneously with the first time stép/() of the next iteration. As a result, the effective execution
time of one iteration is onlyM rather than6 M + 1A for the Projective-Scalar-Multiplicatiorstage.

In addition to the above, iRrojective-to-Affineonversion, we also reduce the number of DIV modules from two
in our original design to one, and eliminate the INV moduleldv are the time steps of tHerojective-to-Affine
conversion of this variant.

Variant 1: Projective-to-Affine3D + 2M + 2A
Ty =X1/Z1, Ty =ux9; (1D)
To=Xo/Zo, Ts =T1+x, Ty =T4s+y; (1D)
To=To+x, Tg=1Ts5/z; (1D)
Ts = T5Ts; (1M)
Ty = T7 + Tg; (1A)
T1 = TyTro; (1M)
Ty =T +y; (14)
The execution time of this stage is increased o+ 2M + 2A (in our original design, the time of this stage is

N o o b~ o WwN P

1D + 2M + 3A). The first stage, that is, thaffine-to-Projectiveconversion, remains unchanged. Therefore, the
total execution time of this ECSM variant is abdifin — 1)([m/D] + 1) + 3m.
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B. Variant 2

Another variant is to use two MUL modules rather than one adaiiant 1. The pseudo-pipelined techniqdé][
can also be applied in this variant. In tReojective-to-Affineconversion, similar to Variant 1, we only keep one
DIV module, while having the INV module removed. The followiis the time steps of the parts corresponding
to Point Additionand Point Doublingin the Projective-Scalar-Multiplicatiorstage (also refer to Algorithm 1 on
pageb).

Variant 2: Point Addition and Point Doublingg MU X + 3M + 1A

10 X=(k=17?Xy:X1, Z=(ki=1)?Zy: Z1; IMUX)

20 Ty=X1Zy To=Xo7Zy, Ts=X2 Ty =22 (1M)

3: D=TsTy, Two=0bTy, Ts =T, +Ts, Tx=T2, To=T2 (1M)

4: B=T2 T,=TT, Ts=zB; (1M)

6: A=Ty+Ts, C=Ts+Tio; (1A)
In our implementation, step 1 in the time steps above is pexd in parallel with the two multiplications of step
2. Before time step 2 ends, the remaining two finite field sguerations can also be completed. Therefore, the
execution time ofPoint Additionand Point Doublingin one iteration of the main loop in therojective-Scalar-
Multiplication stage is3M + 1 A. As described in Algorithm 1, this is followed by a set of ca@imhal assignments.
Therefore,1MU X has to be added for completing one iterationPimjective-Scalar-MultiplicationAs a result,
the total execution time of thBrojective-Scalar-Multiplicatiorstage in Variant 2 igm — 1)(3([m/D] + 1) + 2).

On the two coordinate conversions, they remain unchangeshwbmpared with Variant 1. As a result, the total

execution time of Variant 2 is aboytn — 1)(3[m/D] + 5) + 3m.

C. Comparison

TableVIl shows the resource consumption and performance of theseatvamts for different values ab, where
D is the digit size of the underlying LSD-first digit-serial itiplication operation. The resource consumption of
LUTs and FFs varies witlD and the MUL module is corresponding to this variability.

In TableVIl, we can see that the variants, when having appropriate valu® chosen, can provide very good
performance with tremendously reduced resource consamgior example, Variant 2 witlh chosen to be 42 or
32 can complete one ECSM operation oveF (2163) within 20us, which is still more than twice the speed of
the best result previously knownd 2], while having over30% reduction on the estimated number of ASIC gates.
In particular, for Variant 2 wherD = 42, the speed is only slightly lower than our result in S&¢, in which we
use three MUL modules, two DIV modules and one INV module. @atleantage on utilization efficiency becomes
more explicit when we compare the performance-area ratibexfe variants with previous results. Taklél shows
the performance-area ratio of these two variants to thetre{i9].

In TableVIIl, significant improvement on the utilization efficiency cam found whenD is set to 42 or 32 for
Variant 2. The performance-area ratio of Variant 2 outpen®our original result in SedV. The table shows that

Variant 2 actual provides the best combination of utili@atefficiency and speed. Similar results can also be found
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LUTs FFs Estimated | Max. Achievable Freq.| Time

ASIC Gates (MHz) (us)

Variant 1 | 18,782 | 4,664 158,482 202.1 26.6
(D = 42)

Variant 1 | 16,747 | 4,640 145,948 200.7 36.5
(D =32)

Variant 1 | 15,210 | 4,512 139,850 205.3 59.4
(D = 16)

Variant 2 | 24,972 | 5,695 201,536 220.2 14.8
(D = 42)

Variant 2 | 22,774 | 5,781 191,385 216.7 19.6
(D = 32)

Variant 2 | 18,416 | 5,597 163,735 217.0 30.8
(D = 16)

TABLE VII

PERFORMANCE AND COMPLEXITY OF TWO VARIANTS OF OUR ECSM ARCHITECTURE

Execution | Resources| Performance-Area

Time Occupied Ratio
Variant 1 (O = 42) : [9] 7.90: 1 3.38:1 2.34:1
Variant 1 (O = 32) : [9] 5.75: 1 3.01:1 1.91:1
Variant 1 (D = 16) : [9] 3.54: 1 2.73:1 1.30:1
Variant 2 (D = 42) : [9] | 14.19:1 4.49:1 3.16:1
Variant 2 (O = 32) : [9] 10.71: 1 4.09:1 2.62:1
Variant 2 (D = 16) : [9] 6.82: 1 3.31:11 2.06:1

TABLE VIl

COMPARISONWITH [9]

when compared with other related results such as thos&Zn[[L0], [11]. We choose not to show the comparison
with [12] in Table VIII, as explained earlier, the result shown ir#][does not include théffine-to-Projectiveand

Projective-to-Affineconversions.

V1. CONCLUSION

We proposed a highly efficient new architecture for perfeignECSM on elliptic curves ove® F'(2""). Main
efforts have been put on maximizing the parallelism of thecexion of independent functional modules. Our
implementation takes abo@{(m —1)([m/D]+4)+m cycles to complete one ECSM operation. This is about
one third of the number of cycles required by another bestknesult due to Anasari and Hansda?]. When

implemented on a Virtex4-LX200 FPGA, our implementatioongetes one ECSM operation on an elliptic curve



19

over GF(2'%%) in 12.5us with a maximum frequency of 222MHz achieved. This is at léhste times the speed
of [12]. Note that our implementation also includes coordinateveosions that are not considered i?].

We also maximized the parallelism that the Montgomery EC3$grithm in projective coordinate can achieve.
By adjusting the maximum delay paths of Point Addition anéhPDBoubling, we eliminated any idle time of Point
Doubling when these two modules are running in parallel. @atimized design consists of only two finite field
multiplications in the maximum delay path. This is much seothan previously proposed designs.

For reducing the resource consumption, we implemented targants. Our first variant reduced the number
of MUL modules from three to one, DIV modules from two to onedailiminated the INV module. Our results
showed that the resource consumption can be reduced bytd@ffdswhile still maintaining the utilization efficiency
(i.e. the performance-area ratio). Our second variantnslai to the first variant but having two MUL modules.
This modification is significant because it allows high pletesim to be achieved by our core ECSM computation.
Through this optimization, we achieved the best resouritization efficiency. It yielded 3.16:1 performance-area
ratio when compared with 2.37:1 in our original implemeiotatIt also gave us more than 30% reduction on resource
consumption while maintaining almost the same speed of atatipn as that of our original implementation.

On the development of underlying finite field element operatj we proposed a highly efficient finite field
inversion algorithm and deploy it in our ECSM implementati®ur algorithm is a variant of the Extended Euclid
algorithm but it takes onlyn cycles to invert an element i6/F'(2™) rather than2m cycles for a traditional
implementation of the Extended Euclid algorithm. More intpatly, it makes one iteration of the main loop of our
algorithm matches to the time elapsed for one clock cyclehmhetter than the traditional one. This modification
helps improve the overall performance of our implementasignificantly without reducing much on the maximum

achievable frequency.
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APPENDIX
ECSM ALGORITHMS OF[13]

Affine-to-Projective(x, y)
SetX1 =x;721 =1; Xo = z* +b; 22 = 2

Montgomery-Scalar-Multiplication( z, vy, k)
Return (X1, Z1, X2, Z2)

Input: Point P = (z,y) andk wherez,y, k € GF(2™)
Output: Point@ = (xq,yq) = kP, xq,yq € GF(2™)
(X1, Z1, X2,Y2) = Affine-to-Projective(z, y);
for ¢ from | — 2 downto0 do

if (k; = 1) then

(X1, Z1) = Point-Addition (X1, Z1, X2, Z2, z);

Point-Addition (X1, Z1, X2, Z2, )

SetX = X1 ZoXoZ1 4+ 2(X1Z2 + XoZ1)?,
Z = (X1Z>+ X2Z1)?,

Return (X, 7)

(X2, Z2) = Point-Doubling(X», Z>);

else
(X2, Z2) = Point-Addition (X2, Z2, X1, Z1, z);
(X1, Z1) = Point-Doubling(X1, Z1);

endif

endfor

Return Projective-to-Affine(X1, Z1, X2, Z2, x,y))

Point-Doubling(X, Z)

SetX = X" +bZ%,
Z=X7

Return(X, Z2)

Projective to Affine(X1, Z1, X2, Z2, z,y)
Setzq = X1 /71,
Yo = (X1/Z1 + 2)(X2/Z2 + @) + (2* +y))
#(X1/Zy+x)/z+y
Return: (x4, yq)
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