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Abstract. We present and analyze two algorithms for computing the
Hilbert class polynomial HD. The first is a p-adic lifting algorithm for
inert primes p in the order of discriminant D < 0. The second is an im-
proved Chinese remainder algorithm which uses the class group action on
CM-curves over finite fields. Our run time analysis gives tighter bounds
for the complexity of all known algorithms for computing HD, and we
show that all methods have comparable run times.

1 Introduction

For an imaginary quadratic order O = OD of discriminant D < 0, the j-invariant
of the complex elliptic curve C/O is an algebraic integer. Its minimal polynomial
HD ∈ Z[X ] is called the Hilbert class polynomial . It defines the ring class field
KO corresponding to O, and within the context of explicit class field theory, it
is natural to ask for an algorithm to explicitly compute HD.

Algorithms to compute HD are also interesting for elliptic curve primality
proving [2] and for cryptographic purposes [6]; for instance, pairing-based cryp-
tosystems using ordinary curves rely on complex multiplication techniques to
generate the curves. The classical approach to compute HD is to approximate the
values j(τa) ∈ C of the complex analytic j-function at points τa in the upper half
plane corresponding to the ideal classes a for the order O. The polynomial HD

may be recovered by rounding the coefficients of
∏

a∈Cl(O) (X − j(τa)) ∈ C[X ] to

the nearest integer. It is shown in [9] that an optimized version of that algorithm
has a complexity that is essentially linear in the output size.

Alternatively one can compute HD using a p-adic lifting algorithm [7, 3].
Here, the prime p splits completely in KO and is therefore relatively large: it
satisfies the lower bound p ≥ |D|/4. In this paper we give a p-adic algorithm
for inert primes p. Such primes are typically much smaller than totally split
primes, and under GRH there exists an inert prime of size only O((log |D|)2).
The complex multiplication theory underlying all methods is more intricate for
inert primes p, as the roots of HD ∈ Fp2 [X ] are now j-invariants of supersingular

elliptic curves. In Section 2 we explain how to define the canonical lift of a



supersingular elliptic curve, and in Section 4 we describe a method to explicitly
compute this lift.

In another direction, it was suggested in [1] to compute HD modulo several
totally split primes p and then combine the information modulo p using the
Chinese remainder theorem to compute HD ∈ Z[X ]. The first version of this
algorithm was quite impractical, and in Section 3 we improve this ‘multi-prime
approach’ in two different ways. We show how to incorporate inert primes, and
we improve the original approach for totally split primes using the class group
action on CM-curves. We analyze the run time of the new algorithm in Section 5
in terms of the logarithmic height of HD, its degree, the largest prime needed to
generate the class group of O and the discriminant D. Our tight bounds on the
first two quantities from Lemmata 1 and 2 apply to all methods to compute HD.
For the multi-prime approach, we derive the following result.

Theorem 1. The algorithm presented in Section 3 computes, for a discriminant

D < 0, the Hilbert class polynomial HD. If GRH holds true, the algorithm has

an expected run time O
(
|D|(log |D|)7+o(1)

)
. Under heuristic assumptions, the

complexity becomes O
(
|D|(log |D|)3+o(1)

)
.

We conclude by giving examples of the presented algorithms in Section 6.

2 Complex multiplication in characteristic p

Throughout this section, D < −4 is any discriminant, and we write O for the
imaginary quadratic order of discriminant D. Let E/KO be an elliptic curve
with endomorphism ring isomorphic to O. As O has rank 2 as a Z-algebra, there
are two isomorphisms ϕ : End(E)

∼−→ O. We always assume we have chosen the
normalized isomorphism, i.e., for all y ∈ O we have ϕ(y)∗ω = yω for all invariant
differentials ω. For ease of notation, we write E for such a ‘normalized elliptic
curve,’ the isomorphism ϕ being understood.

For a field F , let EllD(F ) be the set of isomorphism classes of elliptic curves
over F with endomorphism ring O. The ideal group of O acts on EllD(KO) via

j(E) 7→ j(E)a = j(E/E[a]),

where E[a] is the group of a-torsion points, i.e., the points that are annihilated
by all α ∈ a ⊂ O = End(E). As principal ideals act trivially, this action factors
through the class group Cl(O). The Cl(O)-action is transitive and free, and
EllD(KO) is a principal homogeneous Cl(O)-space.

Let p be a prime that splits completely in the ring class field KO. We can
embed KO in the p-adic field Qp, and the reduction map Zp → Fp induces a
bijection EllD(Qp) → EllD(Fp). The Cl(O)-action respects reduction modulo p,
and the set EllD(Fp) is a Cl(O)-torsor, just like in characteristic zero. This ob-
servation is of key importance for the improved ‘multi-prime’ approach explained
in Section 3.

We now consider a prime p that is inert in O, fixed for the remainder of this
section. As the principal prime (p) ⊂ O splits completely in KO, all primes of



KO lying over p have residue class degree 2. We view KO as a subfield of the
unramified degree 2 extension L of Qp. It is a classical result, see [8] or [14,
Th. 13.12], that for [E] ∈ EllD(L), the reduction Ep is supersingular . It can be
defined over the finite field Fp2 , and its endomorphism ring is a maximal order in
the unique quaternion algebra Ap,∞ which is ramified at p and ∞. The reduction
map ZL → Fp2 also induces an embedding f : O →֒ End(Ep). This embedding
is not surjective, as it is in the totally split case, since End(Ep) has rank 4 as a
Z-algebra, and O has rank 2.

We let EmbD(Fp2 ) be the set of isomorphism classes of pairs (Ep, f) with
Ep/Fp2 a supersingular elliptic curve and f : O →֒ End(Ep) an embedding. Here,
(Ep, f) and (E′

p, f
′) are isomorphic if there exists an isomorphism h : Ep

∼−→ E′
p

of elliptic curves with h−1f ′(α)h = f(α) for all α ∈ O. As an analogue of
picking the normalized isomorphism O ∼−→ End(E) in characteristic zero, we
now identify (Ep, f) and (E′

p, f
′) if f equals the complex conjugate of f ′.

Theorem 2. Let D < −4 be a discriminant. If p is inert in O = OD, the re-

duction map π : EllD(L) → EmbD(Fp2) is a bijection. Here, L is the unramified

extension of Qp of degree 2.

Proof. By the Deuring lifting theorem, see [8] or [14, Th. 13.14], we can lift an
element of EmbD(Fp2) to an element of EllD(L). Hence, the map is surjective.

Suppose that we have π(E) = π(E′). As E and E′ both have endomorphism
ring O, they are isogenous. We let ϕa : E → Ea = E′ be an isogeny. Writing
O = Z[τ ], we get

f ′ = fa : τ 7→ ϕaf(τ)ϕ̂a ⊗ (deg ϕa)
−1 ∈ End(Ep) ⊗ Q.

The map ϕa commutes with f(τ) and is thus contained in S = f(End(E))⊗Q.
Write O′ = S ∩ End(Ep), and let m be the index [O′ : f(End(E))]. For any

δ ∈ O′, there exists γ ∈ End(E) with mδ = f(γ). As f(γ) annihilates the m-
torsion Ep[m], γ annihilates E[m], thus it is a multiple of m inside End(E). We
derive that δ is contained in f(End(E)), and O′ = f(End(E)). Hence, ϕa is an
endomorphism of E, and E and Ea are isomorphic. �

The canonical lift Ẽ of a pair (Ep, f) ∈ EmbD(Fp2) is defined as the inverse
π−1(Ep, f) ∈ EllD(L). This generalizes the notion of a canonical lift for ordinary
elliptic curves, and the main step of the p-adic algorithm described in Section 4 is
to compute Ẽ: its j-invariant is a zero of the Hilbert class polynomial HD ∈ L[X ].

The reduction map EllD(L) → EmbD(Fp2) induces a transitive and free
action of the class group on the set EmbD(Fp2). For an O-ideal a, let ϕa :
E → Ea be the isogeny of CM-curves with kernel E[a]. Writing O = Z[τ ], let
β ∈ End(E) be the image of τ under the normalized isomorphism O ∼−→ End(E).
The normalized isomorphism for Ea is now given by

τ 7→ ϕaβϕ̂a ⊗ (deg ϕa)
−1.

We have Ea
p = (Ea)p and fa is the composition O ∼−→ End(Ea) →֒ End(Ea

p ).
Note that principal ideals indeed act trivially: ϕa is an endomorphism in this
case and, as End(E) is commutative, we have f = fa.



To explicitly compute this action, we fix one supersingular curve Ep/Fp2

and an isomorphism iEp
: Ap,∞

∼−→ End(Ep) ⊗ Q and view the embedding f

as an injective map f : O →֒ Ap,∞. Let R = i−1
Ep

(End(Ep)) be the maximal
order of Ap,∞ corresponding to Ep. For a an ideal of O, we compute the curve
Ea

p = ϕ
a
(Ep) and choose an auxiliary isogeny ϕb : Ep → Ea

p . This induces an
isomorphism gb : Ap,∞

∼−→ End(Ea
p ) ⊗ Q given by

α 7→ ϕbiEp
(α)ϕ̂b ⊗ (deg ϕb)−1.

The left R-ideals Rf(a) and b are left-isomorphic by [22, Th. 3.11] and thus we
can find x ∈ Ap,∞ with Rf(a) = bx. As y = f(τ) is an element of Rf(a), we
get the embedding τ 7→ xyx−1 into the right order Rb of b. By construction, the
induced embedding fa : O →֒ End(Ea

p ) is precisely

fa(τ) = gb(xyx−1) ∈ End(Ea

p ),

and this is independent of the choice of b. For example, if Ea
p = Ep, then choosing

ϕb as the identity, we find x with Rf(a) = Rx to get the embedding fa : τ 7→
iEp

(xyx−1) ∈ End(Ep).

3 The multi-prime approach

This section is devoted to a precise description of the new algorithm for comput-
ing the Hilbert class polynomial HD ∈ Z[X ] via the Chinese remainder theorem.

Algorithm 1

Input: an imaginary quadratic discriminant D
Output: the Hilbert class polynomial HD ∈ Z[X ]

0. Let (Ai, Bi, Ci)
h(D)
i=1 be the set of primitive reduced binary quadratic forms of

discriminant B2
i − 4AiCi = D representing the class group Cl(O). Compute

n =



log2



2.48 h(D) + π
√
|D|

h(D)∑

i=1

1

Ai








+ 1, (1)

which by [9] is an upper bound on the number of bits in the largest coefficient
of HD.

1. Choose a set P of primes p such that N =
∏

p∈P p ≥ 2n and each p is either
inert in O or totally split in KO.

2. For all p ∈ P , depending on whether p is split or inert in O, compute
HD mod p using either Algorithm 2 or 3.

3. Compute HD mod N by the Chinese remainder theorem, and return its rep-
resentative in Z[X ] with coefficients in

(
−N

2 , N
2

)
.

The choice of P in Step 1 leaves some room for different flavors of the al-
gorithm. Since Step 2 is exponential in log p, the primes should be chosen as
small as possible. The simplest case is to only use split primes, to be analyzed
in Section 5. As the run time of Step 2 is worse for inert primes than for split
primes, we view the use of inert primes as a practical improvement.



3.1 Split primes

A prime p splits completely in KO if and only if the equation 4p = u2 − v2D
has a solution in integers u, v. For any prime p, we can efficiently test if such a
solution exists using an algorithm due to Cornacchia. In practice, we generate
primes satisfying this relation by varying u and v and testing if (u2 − v2D)/4 is
prime.

Algorithm 2

Input: an imaginary quadratic discriminant D and a prime p that splits com-
pletely in KO

Output: HD mod p

1. Find a curve E over Fp with endomorphism ring O. Set j = j(E).
2. Compute the Galois conjugates ja for a ∈ Cl(O).
3. Return HD mod p =

∏
a∈Cl(O)(X − ja).

Note: The main difference between this algorithm and the one proposed in [1] is
that the latter determines all curves with endomorphism ring O via exhaustive
search, while we search for one and obtain the others via the action of Cl(O) on
the set EllD(Fp).

Step 1 can be implemented by picking j-invariants at random until one with
the desired endomorphism ring is found. With 4p = u2 − v2D, a necessary
condition is that the curve E or its quadratic twist E′ has p + 1 − u points. In
the case that D is fundamental and v = 1, this condition is also sufficient. To
test if one of our curves E has the right cardinality, we pick a random point
P ∈ E(Fp) and check if (p + 1 − u)P = 0 or (p + 1 + u)P = 0 holds. If neither
of them does, E does not have endomorphism ring O. If E survives this test,
we select a few random points on both E and E′ and compute the orders of
these points assuming they divide p + 1± u. If the curve E indeed has p + 1± u
points, we quickly find points P ∈ E(Fp), P ′ ∈ E′(Fp) of maximal order, since
we have E(Fp) ∼= Z/n1Z × Z/n2Z with n1 | n2 and a fraction ϕ(n2)/n2 of the
points have maximal order. For P and P ′ of maximal order and p > 457, either
the order of P or the order of P ′ is at least 4

√
p, by [18, Theorem 3.1], due to

J.-F. Mestre. As the Hasse interval has length 4
√

p, this then proves that E has
p + 1 ± u points.

Let ∆ = D
f2 be the fundamental discriminant associated to D. For f 6= 1 or

v 6= 1 (which happens necessarily for D ≡ 1 mod 8), the curves with p + 1 ± u
points admit any order Og2∆ such that g|fv as their endomorphism rings. In this
case, one possible strategy is to use Kohel’s algorithm described in [12, Th. 24]
to compute g, until a curve with g = f is found. This variant is easiest to analyze
and enough to prove Theorem 1.

In practice, one would rather keep a curve that satisifes f |g, since by the
class number formula g = vf with overwhelming probability. As v and thus fv

g
is small, it is then possible to use another algorithm due to Kohel and analyzed
in detail by Fouquet–Morain [12, 11] to quickly apply an isogeny of degree fv

g
leading to a curve with endomorphism ring O.



Concerning Step 2, let Cl(O) =
⊕〈li〉 be a decomposition of the class group

into a direct product of cyclic groups generated by invertible degree 1 prime
ideals li of order hi and norm ℓi not dividing pv. The ja may then be obtained
successively by computing the Galois action of the li on j-invariants of curves
with endomorphism ring O over Fp, otherwise said, by computing ℓi-isogenous

curves: h1 − 1 successive applications of l1 yield jl1 , . . . , jl
h1−1

1 ; to each of them,
l2 is applied h2 − 1 times, and so forth.

To explicitly compute the action of l = li, we let Φℓ(X, Y ) ∈ Z[X ] be the clas-
sical modular polynomial. It is a model for the modular curve Y0(ℓ) parametriz-
ing elliptic curves together with an ℓ-isogeny, and it satisfies Φℓ(j(z), j(ℓz)) = 0
for the modular function j(z). If j0 ∈ Fp is the j-invariant of some curve with
endomorphism ring O, then all the roots in Fp of Φℓ(X, j0) are j-invariants of
curves with endomorphism ring O by [12, Prop. 23]. If l is unramified, there are

two roots, jl
0 and jl

−1

0 . For ramified l, we find only one root jl
0 = jl

−1

0 . So Step 2
is reduced to determining roots of univariate polynomials over Fp.

3.2 Inert primes

Algorithm 3

Input: an imaginary quadratic discriminant D and a prime p that is inert in O
Output: HD mod p

1. Compute the list of supersingular j-invariants over Fp2 together with their
endomorphism rings inside the quaternion algebra Ap,∞.

2. Compute an optimal embedding f : O →֒ Ap,∞ and let R be a maximal
order that contains f(O).

3. Select a curve E/Fp2 in the list with End(E) ∼= R, and let j be its j-invariant.
4. Compute the Galois conjugates ja for a ∈ Cl(O).
5. Return HD mod p =

∏
a∈Cl(O)(X − ja).

As the number of supersingular j-invariants grows roughly like (p − 1)/12, this
algorithm is only feasible for small primes. For the explicit computation, we use
an algorithm due to Cerviño [4] to compile our list. The list gives a bijection
between the set of Gal(Fp2/Fp)-conjugacy classes of supersingular j-invariants
and the set of maximal orders in Ap,∞.

In Step 2 we compute an element y ∈ Ap,∞ satisfying the same minimal
polynomial as a generator τ of O. For non-fundamental discriminants we need
to ensure that the embedding is optimal, i.e., does not extend to an embedding of
the maximal overorder of O into Ap,∞. Using standard algorithms for quaternion
algebras, Step 2 poses no practical problems. To compute the action of an ideal a

in Step 4, we note that the right order R′ of the left R-ideal Rf(a) is isomorphic to
the endomorphism ring End(E′) of a curve E′ with j(E′) = ja by [22, Prop. 3.9].
The order R′ is isomorphic to a unique order in the list, and we get a conjugacy
class of supersingular j-invariants. Since roots of HD mod p which are not in Fp

come in conjugate pairs, this allows us to compute all the Galois conjugates ja.



4 Computing the canonical lift of a supersingular curve

In this section we explain how to compute the Hilbert class polynomial HD of
a discriminant D < −4 using a p-adic lifting technique for an inert prime p ≡
1 mod 12. Our approach is based on the outline described in [7]. The condition
p ≡ 1 mod 12 ensures that the j-values 0, 1728 ∈ Fp are not roots of HD ∈
Fp[X ]. The case where one of these two values is a root of HD ∈ Fp[X ] is more
technical due to the extra automorphisms of the curve, and will be explained in
detail in the first author’s PhD thesis.

Under GRH, we can take p to be small . Indeed, our condition amounts to
prescribing a Frobenius symbol in the degree 8 extension Q(ζ12,

√
D)/Q, and by

effective Chebotarev [13] we may take p to be of size O((log |D|)2).
The first step of the algorithm is the same as for Algorithm 3 in Section 3: we

compute a pair (j(Ep), f0) ∈ EmbD(Fp2). The main step of the algorithm is to

compute to sufficient p-adic precision the canonical lift Ẽp of this pair, defined
in Section 2 as the inverse under the bijection π of Theorem 2.

For an arbitrary element η ∈ EmbD(Fp2), let

XD(η) = {(j(E), f) | j(E) ∈ Cp, (j(E) mod p, f) = η}

be a ‘disc’ of pairs lying over η. Here, Cp is the completion of an algebraic closure
of Qp. The disc XD(η) contains the points of EllD(L) that reduce modulo p to
the j-invariant corresponding to η.

These discs are similar to the discs used for the split case in [7, 3]. The main
difference is that now we need to keep track of the embedding as well. We can
adapt the key idea of [7] to construct a p-adic analytic map from the set of discs
to itself that has the CM-points as fixed points in the following way. Let a be
an O-ideal of norm N that is coprime to p. We define a map

ρa :
⋃

η

XD(η) →
⋃

η

XD(η)

as follows. For (j(E), f) ∈ XD(η), the ideal f(a) ⊂ End(Ep) defines a subgroup
Ep[f(a)] ⊂ Ep[N ] which lifts canonically to a subgroup E[a] ⊂ E[N ]. We define
ρa((j(E), f)) = (j(E/E[a]), fa), where fa is as in Section 2. If the map f is
clear, we also denote by ρa the induced map on the j-invariants.

For principal ideals a = (α), the map ρa = ρα stabilizes every disc. Fur-

thermore, as Ẽp[(α)] determines an endomorphism of Ẽp, the map ρα fixes the

canonical lift j(Ẽp). As j(Ep) does not equal 0, 1728 ∈ Fp, the map ρα is p-adic
analytic by [3, Theorem 4.2].

Writing α = a+bτ , the derivative of ρα in a CM-point j(Ẽ) equals α/α ∈ ZL

by [3, Lemma 4.3]. For p ∤ a, b this is a p-adic unit and we can use a modified

version of Newton’s method to converge to j(Ẽ) starting from a random lift
(j1, f0) ∈ XD(η) of the chosen point η = (j(Ep), f0) ∈ Fp2 . Indeed, the sequence

jk+1 = jk − ρα((jk, f0)) − jk

α/α − 1
(2)



converges quadratically to j(Ẽ). The run time of the resulting algorithm to com-

pute j(Ẽ) ∈ L up to the necessary precision depends heavily on the choice of α.
We find a suitable α by sieving in the set {a + bτ | a, b ∈ Z, gcd(a, b) = 1, a, b 6=
0 mod p}. We refer to the example in Section 6.3 for the explicit computation of
the map ρα.

Once the canonical lift has been computed, the computation of the Ga-
lois conjugates is easier. To compute the Galois conjugate j(Ẽp)

l of an ideal
l of prime norm ℓ 6= p, we first compute the value j(Ep)

l ∈ Fp2 as in Algo-
rithm 3 in Section 3. We then compute all roots of the ℓ-th modular polynomial
Φℓ(j(Ẽp), X) ∈ L[X ] that reduce to j(Ep)

l. If there is only one such root, we are
done: this is the Galois conjugate we are after. In general, if m ≥ 1 is the p-adic
precision required to distinguish the roots, we compute the value ρl((j(Ẽp), f0))
to m + 1 p-adic digits precision to decide which root of the modular polynomial
is the Galois conjugate. After computing all conjugates, we expand the product∏

a∈Cl(O)

(
X − j(Ẽp)

a

)
∈ ZL[X ] and recognize the coefficients as integers.

5 Complexity analysis

This section is devoted to the run time analysis of Algorithm 1 and the proof
of Theorem 1. To allow for an easier comparison with other methods to com-
pute HD, the analysis is carried out with respect to all relevant variables: the
discriminant D, the class number h(D), the logarithmic height n of the class
polynomial and the largest prime generator ℓ(D) of the class group, before de-
riving a coarser bound depending only on D.

5.1 Some number theoretic bounds

For the sake of brevity, we write llog for log log and lllog for log log log.
The bound given in Algorithm 1 on n, the bit size of the largest coefficient

of the class polynomial, depends essentially on two quantities: the class number
h(D) of O and the sum

∑
[A,B,C]

1
A , taken over a system of primitive reduced

quadratic forms representing the class group Cl(O).

Lemma 1. We have h(D) = O(|D|1/2 log |D|). If GRH holds true, we have

h(D) = O(|D|1/2 llog |D|).

Proof. By the analytic class number formula, we have to bound the value of the
Dirichlet L-series L(s, χD) associated to D at s = 1. The unconditional bound
follows directly from [19], the conditional bound follows from [15]. �

Lemma 2. We have
∑

[A,B,C]
1
A = O((log |D|)2). If GRH holds true, we have∑

[A,B,C]
1
A = O(log |D| llog |D|).

Proof. The bound
∑

[A,B,C]
1
A = O((log |D|)2) is proved in [17] with precise

constants in [9]; the argument below will give a different proof of this fact.



By counting the solutions of B2 ≡ D mod 4A for varying A and using the
Chinese remainder theorem, we obtain

∑

[A,B,C]

1

A
≤

∑

A≤
√

|D|

∏
p|A

(
1 +

(
D
p

))

A
.

The Euler product expansion bounds this by
∏

p≤
√

|D|

(
1 + 1

p

) (
1 +

(
D
p

)

p

)
. By

Mertens theorem, this is at most c log |D|
∏

p≤
√

|D|
1

1−
(

D
p

)
/p

for some constant

c > 0. This last product is essentially the value of the Dirichlet L-series L(1, χD)
and the same remarks as in Lemma 1 apply. �

Lemma 3. If GRH holds true, the primes needed for Algorithm 1 are bounded

by O
(
h(D)max(h(D)(log |D|)4, n)

)
.

Proof. Let k(D) be the required number of splitting primes. We have k(D) ∈
O

(
n

log |D|

)
, since each prime has at least log2 |D| bits.

Let π1(x, KO/Q) be the number of primes up to x ∈ R>0 that split com-
pletely in KO/Q. By [13, Th. 1.1] there is an effectively computable constant
c ∈ R>0, independent of D, such that

∣∣∣∣π1(x, KO/Q) − Li(x)

2h(D)

∣∣∣∣ ≤ c

(
x1/2 log(|D|h(D)x2h(D))

2h(D)
+ log(|D|h(D))

)
, (3)

where we have used the bound disc(KO/Q) ≤ |D|h(D) proven in [3, Lemma 3.1].
It suffices to find an x ∈ R>0 for which k(D) − Li(x)/(2h(D)) is larger than
the right hand side of (3). Using the estimate Li(x) ∼ x/ log x, we see that the
choice x = O

(
max(h(D)2 log4 |D|, h(D)n)

)
works. �

5.2 Complexity of Algorithm 2

Let us fix some notation and briefly recall the complexities of the asymptotically
fastest algorithms for basic arithmetic. Let M(log p) ∈ O(log p llog p lllog p) be
the time for a multiplication in Fp and MX(ℓ, log p) ∈ O(ℓ log ℓ M(log p)) the
time for multiplying two polynomials over Fp of degree ℓ.

As the final complexity will be exponential in log p, we need not worry about
the detailed complexity of polynomial or subexponential steps. Writing 4p = u2−
v2D takes polynomial time by the Cornacchia and Tonelli–Shanks algorithms [5,
Sec 1.5]. By Lemma 3, we may assume that v is polynomial in log |D|.

Concerning Step 2, we expect to check O(p/h(D)) curves until finding one
with endomorphism ring O. To test if a curve has the desired cardinality, we
need to compute the orders of O(llog p) points, and each order computation
takes time O

(
(log p)2 M(log p)

)
. Among the curves with the right cardinality,

a fraction of h(D)
H(v2D) , where H(v2D) is the Kronecker class number, has the



desired endomorphism ring. So we expect to apply Kohel’s algorithm with run

time O(p1/3+o(1)) an expected H(v2D)
h(D) ∈ O(v llog v) times. As p1/3 is dominated

by p/h(D) of order about p1/2, Step 2 takes time altogether

O

(
p

h(D)
(log p)2 M(log p) llog p

)
. (4)

Heuristically, we only check if some random points are annihilated by p + 1 ± u
and do not compute their actual orders. The (log p)2 in (4) then becomes log p.

In Step 3, the decomposition of the class group into a product of cyclic groups
takes subexponential time. Furthermore, since all involved primes ℓi are of size
O((log |D|)2) under GRH, the time needed to compute the modular polynomi-
als is negligible. Step 3 is thus dominated by O(h(D)) evaluations of reduced
modular polynomials and by the computation of their roots.

Once Φℓ mod p is computed, it can be evaluated in time O(ℓ2M(log p)). Find-
ing its roots is dominated by the computation of Xp modulo the specialized
polynomial of degree ℓ +1, which takes time O(log p MX(ℓ, log p)). Letting ℓ(D)
denote the largest prime needed to generate the class group, Step 3 takes time

O (h(D)ℓ(D)M(log p)(ℓ(D) + llog |D| log p)) . (5)

Under GRH, ℓ(D) ∈ O((log |D|)2), and heuristically, ℓ(D) ∈ O
(
(log |D|)1+ε

)
.

By organizing the multiplications of polynomials in a tree of height O(log h),
Step 4 takes O(log h(D)MX(h(D), log p)), which is dominated by Step 3. We
conclude that the total complexity of Algorithm 2 is dominated by Steps 2
and 3 and given by the sum of (4) and (5).

5.3 Proof of Theorem 1

We assume that P = {p1, p2, . . .} is chosen as the set of the smallest primes p
that split into principal ideals of O. Notice that log p, log h(D) ∈ O(log |D|), so
that we may express all logarithmic quantities with respect to D.

The dominant part of the algorithm are the O(n/ log |D|) invocations of
Algorithm 2 in Step 2. Specializing (4) and (5), using the bound on the largest
prime of Lemma 3 and assuming that ℓ(D) ∈ Ω(log |D|llog |D|), this takes time

O

(
n M(log |D|)

(
h(D)

ℓ(D)2

log |D| + log |D|llog|D|max
(
h(D)(log |D|)4, n

)))
. (6)

Finally, the fast Chinese remainder algorithm takes O(M(log N)llog N) by
[21, Th. 10.25], so that Step 3 can be carried out in O(h(D)M(n) log |D|), which
is also dominated by Step 2. Plugging the bounds of Lemmata 1 and 2 into (6)
proves the rigorous part of Theorem 1.

For the heuristic result, we note that Lemma 3 overestimates the size of the
primes, since it gives a very high bound already for the first split prime. Heuris-
tically, one would rather expect that all primes are of size O(nh). Combined
with the heuristic improvements to (4) and (5), we find the run time

O

(
n M(log |D|)

(
n + h(D)

ℓ(D)2

log |D|

))
. �



5.4 Comparison

The bounds under GRH of Lemmata 1 and 2 also yield a tighter analysis for other
algorithms computing HD. By [9, Th. 1], the run time of the complex analytic
algorithm turns out to be O(|D|(log |D|)3(llog |D|)3), which is essentially the
same as the heuristic bound of Theorem 1.

The run time of the p-adic algorithm becomes O(|D|(log |D|)6+o(1)). A heuris-
tic run time analysis of this algorithm has not been undertaken, but it seems
likely that again O(|D|(log |D|)3+o(1)) would be reached.

6 Examples and practical considerations

6.1 Inert primes

For very small primes there is a unique supersingular j-invariant in character-
istic p. For example, for D ≡ 5 mod 8, the prime p = 2 is inert in OD and we
immediately have HD mod 2 = Xh(D).

More work needs to be done if there is more than one supersingular j-
invariant in Fp2 , as illustrated by computing H−71 mod 53. The ideal a =
(2, 3 + τ) generates the order 7 class group of O = Z[τ ]. The quaternion algebra
Ap,∞ has a basis {1, i, j, k} with i2 = −2, j2 = −35, ij = k, and the maximal
order R with basis {1, i, 1/4(2− i− k),−1/2(1+ i + j)} is isomorphic to the en-
domorphism ring of the curve with j-invariant 50. We compute the embedding
f : τ 7→ y = 1/2−3/2i+1/2j ∈ R, where y satisfies y2− y+18 = 0. Calculating
the right orders of the left R-ideals Rf(ai) for i = 1, . . . , 7, we get a sequence of
orders corresponding to the j-invariants 28± 9

√
2, 46, 0, 46, 28± 9

√
2, 50, 50 and

compute H−71 mod 53 = X(X − 46)2(X − 50)2(X2 + 50X + 39).

6.2 Totally split primes

For D = −71, the smallest totally split prime is p = 107 = 122+4·71
4 . Any

curve over Fp with endomorphism ring O is isomorphic to a curve with m =
p + 1 ± 12 = 96 or 120 points. By trying randomly chosen j-invariants, we find
that E : Y 2 = X3 + X + 35 has 96 points. We either have End(E) = OD or
End(E) = O4D. In this simple case there is no need to apply Kohel’s algorithm.
Indeed, End(E) equals OD if and only if the complete 2-torsion is Fp-rational.
The curve E has only the point P = (18, 0) as rational 2-torsion point, and
therefore has endomorphism ring O4D. The 2-isogenous curve E′ = E/〈P 〉 given
by Y 2 = X3 + 58X + 59 of j-invariant 19 has endomorphism ring OD.

The smallest odd prime generating the class group is ℓ = 3. The third modu-
lar polynomial Φℓ(X, Y ) has the two roots 46, 63 when evaluated in X = j(E′) =
19 ∈ Fp. Both values are roots of HD mod p. We successively find the other Ga-
lois conjugates 64, 77, 30, 57 using the modular polynomial Φℓ and expand

H−71 mod 107 = X7 + 72X6 + 93X5 + 73X4 + 46X3 + 29X2 + 30X + 19.



6.3 Inert lifting

We illustrate the algorithm of Section 4 by computing HD for D = −56.
The prime p = 37 is inert in O = OD. The supersingular j-invariants in

characteristic p are 8, 3 ± 14
√
−2. We fix a curve E = Ep with j-invariant 8.

We take the basis {1, i, j, k} with i2 = −2, j2 = j − 5, ij = k of the quaternion
algebra Ap,∞. This basis is also a Z-basis for a maximal order R ⊂ Ap,∞ that
is isomorphic to the endomorphism ring End(Ep).

Writing OD = Z[τ ], we compute an element y = [0, 1, 1,−1] ∈ R satisfying
y2 + 56 = 0. This determines the embedding f = f0 and we need to lift the
pair (E, f) to its canonical lift. As element α for the ‘Newton map’ ρα, we use
a generator of a

4 where a = (3, 1 + τ) is a prime lying over 3.
To find the kernel E[f(a)] we check which 3-torsion points P ∈ E[3] are killed

by f(1 + τ) ∈ End(E). We find P = 18± 9
√
−2, and use Vélu’s formulas to find

Ea ∼= E of j-invariant 8. As E and Ea are isomorphic, it is easy to compute fa.
We compute a left-generator x = [1, 1, 0, 0] ∈ R of the left R-ideal Rf(a) to find
fa(τ) = xy/x = [−1, 0, 1, 1] ∈ R.

Next, we compute the a-action on the pair (Ea, fa) = (E, fa). We find that

P = 19 ± 12
√

a is annihilated by fa(1 + τ) ∈ End(E). The curve Ea
2

of j-

invariant 3−14
√
−2 is not isomorphic to E. We pick a 2-isogeny ϕb : Ea → Ea

2

with kernel 〈19 + 23
√
−2〉. The ideal b has basis {2, i + j, 2j, k} and is left-

isomorphic to Rfa(a) via left-multiplication by x′ = [−1, 1/2, 1/2,−1/2] ∈ R.

We get fa
2

(τ) = x′y/x′ = [0, 1, 1,−1] ∈ Rb and we use the map gb from Section 2

to view this as an embedding into End(Ea
2

).
The action of a

3 and a
4 is computed in the same way. We find a cycle of

3-isogenies

(E, f) → (Ea = E, fa) → (Ea
2

, fa
2

) → (Ea
3

, fa
3

) → (Ea
4

, fa
4

) = (E, f)

where each element of the cycle corresponds uniquely to a root of HD. We have
now also computed HD mod p = (X − 8)2(X2 − 6X − 6).

As a lift of E we choose the curve defined by Y 2 = X3 +210X +420 over the
unramified extension L of degree 2 of Qp. We lift the cycle of isogenies over Fp2

to L in 2 p-adic digits precision using Hensel’s lemma, and update according
to the Newton formula (2) to find j(Ẽ) = −66 + 148

√
−2 + O(p2). Next we

work with 4 p-adic digits precision, lift the cycle of isogenies and update the
j-invariant as before. In this example, it suffices to work with 16 p-adic digits
precision to recover HD ∈ Z[X ].

Since we used a generator of an ideal generating the class group, we get
the Galois conjugates of j(Ẽ) as a byproduct of our computation. In the end

we expand the polynomial H−56 =
∏

a∈Cl(O)(X − j(Ẽ)a) ∈ Z[X ] which has
coefficients with up to 23 decimal digits.

6.4 Chinese remainder theorem

As remarked in Section 5.4, the heuristic run time of Theorem 1 is comparable to
the expected run times of both the complex analytic and the p-adic approaches



from [9] and [7, 3]. To see if the CRT-approach is comparable in practice as well,
we computed an example with a reasonably sized discriminant D = −108708,
the first discriminant with class number 100.

The a posteriori height of HD is 5874 bits, and we fix a target precision
of n = 5943. The smallest totally split prime is 27241. If only such primes are
used, the largest one is 956929 for a total of 324 primes. Note that these primes
are indeed of size roughly |D|, in agreement with Lemma 3. We have partially
implemented the search for a suitable curve: for each 4p = u2 − v2D we look
for the first j-invariant such that for a random point P on an associated curve,
(p + 1)P and uP have the same X-coordinate. This allows us to treat the curve
and its quadratic twist simultaneously. The largest occurring value of v is 5.
Altogether, 487237 curves need to be checked for the target cardinality.

On an Athlon-64 2.2 GHz computer, this step takes roughly 18.5 seconds.
As comparison, the third authors’ complex analytic implementation takes 0.3
seconds on the same machine. To speed up the multi-prime approach, we incor-
porated some inert primes. Out of the 168 primes less than 1000, there are 85
primes that are inert in O. For many of them, the computation of HD mod p is
trivial. Together, these primes contribute 707 bits and we only need 288 totally
split primes, the largest one being 802597. The required 381073 curve cardinal-
ities are tested in 14.2 seconds.

One needs to be careful when drawing conclusions from only few examples,
but the difference between 14.2 and 0.3 seconds suggests that the implicit con-
stants in the O-symbol are worse for the CRT-approach.

6.5 Class invariants

For many applications, we are mostly interested in a generating polynomial for
the ring class field KO. As the Hilbert class polynomial has very large coefficients,
it is then better to use ‘smaller functions’ than the j-function to save a constant
factor in the size of the polynomials. We refer to [16, 20] for the theory of such
class invariants .

There are theoretical obstructions to incorporating class invariants into Al-
gorithm 1. Indeed, if a modular function f has the property that there are class
invariants f(τ1) and f(τ2) with different minimal polynomials, we cannot use
the CRT-approach. This phenomenon occurs for instance for the double eta
quotients described in [10]. For the discriminant D in Section 6.4, we can use
the double eta quotient of level 3 ·109 to improve the 0.3 seconds of the complex
analytic approach. For CRT, we need to consider less favourable class invariants.

Acknowledgement. We thank Dan Bernstein, François Morain and Larry
Washington for helpful discussions.
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