New Composite Operations and Precomputation Scheme
for Elliptic Curve Cryptosystems over Prime Fields
(Full version)

Patrick Longa!, and Ali Miri?

! Department of Electrical and Computer Engineering
University of Waterloo, Canada
plonga@uwaterloo.ca
2 School of Information Technology and Engineering (SITE)
University of Ottawa, Canada

samiri@site.uottawa.ca

Abstract. We present a new methodology to derive faster composite operations of
the form dP+Q, where d is a small integer > 2, for generic ECC scalar
multiplications over prime fields. In particular, we present an efficient Doubling-
Addition (DA) operation that can be exploited to accelerate most scalar
multiplication methods, including multiscalar variants. We also present a new
precomputation scheme useful for window-based scalar multiplications that is
shown to achieve the lowest cost among all known methods using only one
inversion. In comparison to the remaining approaches that use none or several
inversions, our scheme offers higher performance for most common //M ratios. By
combining the benefits of our precomputation scheme and the new DA operation,
we can save up to 6.2% in the scalar multiplication using fractional wNAF.

Keywords: Elliptic curve cryptosystem, scalar multiplication, point operation,
composite operation, precomputation scheme.

1 Introduction

Elliptic curve cryptography (ECC) was independently introduced by Koblitz and Miller in
1985. Since then, this public-key cryptosystem has attracted increasing attention due to its
shorter key size requirement in comparison with other established systems such as RSA
and DL-based cryptosystems. For instance, it is widely accepted that 160-bit ECC offers
equivalent security to 1024-bit RSA. This significant difference makes ECC especially
attractive for applications in constrained environments as shorter key sizes are translated
to less power and storage requirements, and reduced computing times.

Scalar multiplication, denoted by kP, where £ is the secret key (scalar) and P is a point

This manuscript is also available at http://patricklonga.bravehost.com/publications.html

The short version of this paper will appear in the Proceedings of the 11" International Workshop on Practice and
Theory in Public Key Cryptography (PKC 2008), Lecture Notes in Computer Science (LNCS), Vol. 4939,
Springer.

2 P.Longaand A. Miri

on the elliptic curve, is the central operation of elliptic curve cryptosystems. Methods to
efficiently compute such operation have traditionally exploited the binary expansion of
numbers (e.g., NAF and wNAF). This is mainly due to the fact that the binary expansion
directly translates to computations using the simplest elementary ECC point operations,
namely point doubling and addition.

However, recent developments in the field suggest that it is possible to use more
complex operations to accelerate the scalar multiplication [4,7,8,24]. For instance, Ciet et
al. [4] introduced the ternary/binary method using radices 2 and 3 for the representation of
the scalar. Dimitrov et al. [7] proposed the double-base number system for the scalar
multiplication using mixed powers of 2 and 3. Radix 5 was added to the previous
approach by Mishra et al. [21] to represent scalars with mixed powers of 2, 3 and 5. More
recently, Longa and Miri [18] have proposed the multibase non-adjacent form (mbNAF)
method, which uses a very efficient representation of integers using multiple bases.
Efficiency of the previous methods strongly depends on the costs of such operations as
tripling (3P, denoted by T) or quintupling (5P, denoted by Q) of a point, unified doubling-
addition (2P+Q, denoted by DA), unified tripling-addition (3P+Q, denoted by TA),
unified quintupling-addition (5P+Q, denoted by QA), among others. Thus, it is a critical
task to reduce the computing cost of these operations, which are referred to as composite
operations since they are inherently based on basic doubling and addition, to further speed
up the execution time of the scalar multiplication.

In the first part, we propose a new technique to derive faster composite operations of
the form dP+Q, where d is a small integer > 2 and P, Q are points on the elliptic curve in
Jacobian and affine coordinates, respectively. As pointed out, operations of this form are
highly common in all known scalar multiplication methods, including multiscalar versions
which are used in the ECDSA signature verification [12]. For instance, DA is a recurrent
operation in NAF, wNAF and Shamir’s trick, where each mixed Jacobian-affine addition
is always computed right after a doubling. In addition to DA, TA is used in the double-
base method [7], and TA and QA in the triple-base [21] and mbNAF methods [16,18].

Our technique makes use of Meloni’s idea of adding two points with the same z
coordinates [19] (which we will refer to as special addition with identical z-coordinate) to
have an iterative computation of the form dP+Q = P+...+P+(P+(Q), which is computed
backwards and where only the first addition shown in parentheses is computed with a
traditional mixed addition. Every extra addition can then be efficiently computed with the
addition with identical z-coordinate. We show that our new composite operations are more
efficient than formulas using the cheapest operations existent in current literature. See
[17] for the state-of-the-art point formulas in Jacobian coordinates.

In the second part, we modify the previous methodology to yield a new scheme for the
precomputation of points in window-based methods such as wNAF and fractional wNAF
(denoted by Frac-wNAF). Using pre-stored points is a practical technique to accelerate the
scalar multiplication when there is extra memory available. However, for scalar
multiplications kP with P unknown, the precomputation of such points is necessarily done
on-line and its time execution included in the whole time estimation of the scalar
multiplication. Examples of this case can be found during decryption in the ElGamal

New Composite Operations and Precomputation Scheme 3

encryption scheme or in the Diffie-Hellman key exchange. Thus, it is crucial to reduce the
time for the precomputation to boost the savings achieved by window-based methods.

Given that precomputations follow the form d;P, where d; are the odd integers in the
range [3, m] with m > 3, we modify our original approach to the iterative computation of
the form d;P = 2P+...+2P+2P+P, which is again computed backwards, and requires one
point doubling followed by cheaper additions with identical z-coordinate. Following, and
to keep advantage of the efficient mixed addition during the scalar multiplication, points
are converted to affine representation using the well-known Montgomery’s method which
permits to reduce the number of expensive inversions to only one. Moreover, this method
is further sped up by efficiently using values computed during the first stage of our
methodology. For the latter, two variants with different memory requirements are
presented, which will be shown to be suitable for different window widths.

Our precomputation scheme is compared with the best previous approaches using only
one inversion, and shown to deliver the lowest cost. In comparison to methods using none
or several inversions, our scheme is shown to offer the highest performance for most
common //M ratios.

Our work is organized as follows. In Section 2, we detail some background about ECC
over prime fields. Then, we present our methodology based on the special addition with
identical z-coordinate, and apply it to derive efficient composite operations of the form
dP+Q, whose costs are compared to previous formulae right after. In Section 4, a variant
of the previous methodology is used to build a new precomputation scheme for window-
based scalar multiplications. The cost and memory requirements of our scheme are then
discussed and compared with previous efforts. Some conclusions summarizing the
contributions of this work are presented at the end.

2 Preliminaries

An elliptic curve E over a prime field F (denoted by E(F)) is defined by the reduced
Weierstrass equation [12]:

E: y =x"+ax+b. (1

Where: a,b € Fp and A=4a>+270° %0,

The set of pairs (x, y) that solves (1), where x,y €F , and the point at infinity O,
which is the identify for the group law, form an abelian group (E(F)),+), on top of which
the ECC computations are performed.

The main operation in ECC is known as scalar multiplication, which is denoted by Q =
kP, where P and Q are points in E(F), and & is the secret scalar.

The simplest representation of points on the elliptic curve E with two coordinates
(x,y), namely affine coordinates (denoted by .A4), introduces field inversions into the
computation of point doubling and addition. Inversions over prime fields are the most
expensive field operation and are avoided as much as possible. Although their relative
cost depends on the characteristics of a particular implementation, it has been observed

4 P.Longaand A. Miri

that, especially in the case of efficient forms for the prime p as recommended by [11], the
inversion can result as computationally expensive as 1/ > 30M. For instance, benchmarks
presented by [15] and [2,12] show /M ratios between 30-40 and 50-100, respectively.

Projective coordinates (X, Y, Z) solve the previous problem by adding the third
coordinate Z to replace inversions with a few other field operations. The foundation of
these inversion-free coordinate systems can be explained by the concept of equivalence
class, which is defined in the following in the context of Jacobian coordinates (7), a
special case of projective coordinates that has yielded very efficient point formulae [10].

Given a prime field F , there is an equivalence relation = among non-zero triplets over
F , such that [1]:

(X,.Y,Z)=(X,,Y,,Z))= X, =2X,, Y, =21, and Z, = AZ,, forsome A €F,.
Thus, the equivalence class of a (Jacobian) projective point, denoted by (X : Y : Z), is:
(X:Y:Z):{(AZX,/VKAZ):AGIF;}. 2)

It is important to remark that any (X, Y, Z) in the equivalence class (2) can be used as a
representative of a given projective (Jacobian) point.

In the following, we succinctly summarize costs of the improved formulae in J
introduced by [17], which applied an effective technique to speed up the traditional point
operations. The improved formulae will be later used for comparison with our new
composite operations in Section 3. For further details about point formulae the reader is
referred to [17]. Also, to ease the work of implementers, we keep a record of the most
efficient point formulas in J at: http.//patricklonga.bravehost.com/jacobian.html.

The cost of using the Jacobian representation for the doubling formula has been found
to be 2M + 8S (reduced from the traditional 4M + 6S5). When w successive executions of
several doublings are used, the cost is (3w)M + (Sw+ 2)S by combining our strategy in
[17] to accelerate operations with the approach by [14], which means that doublings are
performed with only 3M + 585, with exception of the first one that costs 3M + 7.

Also, it is important to note that it has been suggested that the parameter a (see (1)) be
fixed at —3 for efficiency purposes. In fact, most curves recommended by public-key
standards [13] use a= —3, which has been shown to not impose significant restrictions to
the cryptosystem [3]. In this case, the cost of point doubling is reduced to only 3M + 5S.

In the remainder of this work, we will refer to the special case when a = -3, and the
general case when the parameter is not fixed and can be any value in the field.

In the case of addition, representing one of the points in J and the other in 4 has
yielded the most efficient addition formula, which is known as mixed Jacobian-affine
addition and presents a cost of 8M + 35 [5]. In [17], the cost of this operation was reduced
further to only 7M + 4S. If one considers both points to be added in 7, then the cost is
12M + 4S (reduced to 11M + 55 by [17]). We will refer to the latter as general addition in
J.

New Composite Operations and Precomputation Scheme 5

In the case of the tripling, Longa and Miri improved the formula proposed by [7] and
reduced its cost from 10M + 6S to 6M + 10S in the general case, and to only 7M + 7S if
one fixes a =-3 [17]. Similarly, an efficient quintupling was presented by the same
authors [18] with costs of 10M + 14S in the general case and only 11M + 115 when
a = -3, improving the formulae by [21] that cost 15M + 10§ and 15M + 8S for the
corresponding cases.

Variants of 7 have also been proposed. In particular, the four-tuple (X,Y,Z,aZ*) and
five-tuple (X,Y,Z,Z°,Z°), known as modified Jacobian (7") and Chudnovsky (C)
coordinates, respectively, permit to save some operations by passing recurrent values
between point operations. Also, a technique that combines different representations
(known as mixed coordinates) to yield efficient schemes for the scalar multiplication
including precomputation was presented by [5]. We discuss the application of these mixed
representations in Section 4. The reader is referred to [1,5] for further details.

3 Composite Operations dP + Q

Our strategy to yield cheaper composite operations of the form dP+Q is based on the
efficient use of the new addition formula with identical z-coordinate introduced by Meloni
[19], which is described in the following.

Let P=(X,,Y,Z) and Q =(X,,Y,,Z) be two points with the same z coordinates in J
on the elliptic curve E. The addition P+Q = (X,,Y,,Z,) can be obtained as follows:
X3 = (Yz _K)z _(Xz _Xl)3 _2X1 (Xz _X])2'

2 3

Y3 :(Yz _Y;)(Xl(Xz _Xl) _X3)_Y;(X2 _Xl) :
Z3:Z(X2_X1)' 3)

This new addition only costs 5M + 25, which represents a significant reduction in
comparison with 7M+4S corresponding to the mixed Jacobian-affine addition. Sadly, it is
not possible to directly replace traditional additions with this special operation since,
obviously, it is expected that additions are computed over operands with different z
coordinates during the scalar multiplication.

The author in [19] applied his formula to the context of scalar multiplication with star
addition chains, where the particular sequence of operations allows the replacement of
each traditional addition by (3). However, we noticed that the new addition can in fact be
applied to a wider context with traditional scalar multiplication methods.

In the following, we develop faster composite operations by exploiting the advantages
of this special addition on ECC using generic scalar multiplications over prime fields.

6 P.Longaand A. Miri

3.1 Our Methodology

We propose to compute dP + Q as follows:
dP+Q=P+...+P+ P+ (P+Q), @)

where d is a small integer > 2, and P, Q are points in Jand A on E(F), respectively.
Strategy (4) would lead to high costs if computed with mixed and general additions.
However, we will show in the following that only the first addition in parentheses needs to
be computed with a mixed addition. Then, every extra addition can be computed with (3).
First, we compute P+Q=(X,Y,Z)+(X,,Y))=(X,,Y,Z,) as mixed Jacobian-
affine addition with the following [17]:

3 2 2 3 2 2
X3:4(21Y2_Y;) —4(Z]X2—X]) _8X1(21X2_X1) .
2 3
v, =227, -v)(4x,(zx, - x,) —XJQ—SYI(ZIZXZ—X]) .
2 2 2 2 2
z,=22(z}x,-X,)=(2,+2'x,-x,) -z -(Z'x,-Xx,) . (5)

The main observation from (5) is that if we assume the next new representation for P:

2 3
(x".r".z")= (4)((zix,-x,) .8v(z)x,-X,) .22, (Zsz—Xl))E(XI,YI,ZI), (6)
we can use the special addition (3) to perform the next addition between P and (P+Q)
because both points would have the same z coordinate. It is important to note that the
equivalence relation in (6) holds by fixing A= Z X,-X, in the equivalence class for J
given in (2). Most importantly, the equivalent pomt (X) DALVA ”) does not require any
extra computation because its coordinates have already been computed in (5).

Similarly, every extra addition with P according to (4) can be performed with the
special addition (3) as P always has an equivalent point with the same z coordinate as the
resultant point of the previous computation. In fact, we observe that every addition outside
the parentheses in (4) adjusts to the next generic formulae for j =1 to (d —-1):

1 j+22 7 j+272 j+32 7 432

P+(P+...+P+(P+Q)):(X,(f),Y(f),Z(/)) (X Y Z/+2) (X Y Z/+3)

(j-1) terms

X, =(v,-1") -(x,-x") —2X‘”(-x"Y,
YM N (Y"*z _Y;(,))(X‘(j) (X _X(j)) X/'+3)_](/) (X/'+2 _Xl(j))S,
7, -2 (x,,-x") o

where (X o Y A)) denotes the equivalent point to P for the /™ addition.

As we can see in (7) it holds that one always gets an equivalent point to P for the
following addition by fixing:
(X(Hl)’Y(Hl)’Z](Hl)) _ (X(") (X_ _y)2 y (X_ _y)3 Lz (X_ —X("’)),

1 1 1 j+2 1 1 j+2 1 1 j+2 1

New Composite Operations and Precomputation Scheme 7

which is equivalent to (X](’), Y](/), Zl(!)) according (2), and has the same z coordinate as (7).

The cost of (4) is given by 1A + (d — 1)A’, where d € Z* ,d > 2, A and A’ denote the
cost of the mixed and special additions, respectively. Thus, strategy (4) would cost
(TM + 4S) + (d — 1) (5M + 2S). However, in the following section we will show that by
merging the mixed addition between parentheses (see (4)) with the first special addition it
is possible to achieve additional savings.

Unified Doubling-Addition (DA) Operation

When d = 2, the strategy (4) can be used to perform a doubling-addition (DA) operation as
P + (P+Q). We can reduce further the cost of this operation by unifying the first two point
additions (i.e., mixed and special additions) into the following unified DA formulae:

X, =0 -0 -2X"0", Y, = co(Xf”Hz -X,)-Y"0", z,=2"6. ®)

Where: a=ZY,-Y, B=ZX -X,,
Xl(l) = 4X1ﬂ2, YI(I) = 8YIﬂ; > Zl(l) = (Z] +ﬂ)2 _le _ﬂz >
0=X-X" =4’ - -3x /],

0=Y-Y"=a"+0 —(a+0) -16Yp’.

Note that we directly compute =X —X](” and w=Y - Yl“) to avoid the
intermediate computations of X, Y; and Z; from the first addition (5), saving some field
additions and trading one multiplication for one squaring. Thus, the cost of the unified DA
is fixed at only (6 M + 55) + (SM + 28) = 11M+7S.

Based on this formula, we can now define the total cost of our methodology for
computing composite operations of the form dP+Q.

Using (8) to perform the mixed addition and the first special addition, the methodology
(4) costs:

(6M+58)+(d—1)(5M+2S), 9)

where d >2 € Z* for a composite operation of the form dP+Q.

Note that, after executing the DA operation as P + (P+Q), the procedure described in
Section 3.1 still applies. Hence, the cost of a special addition (i.e., SM + 2§) is added at
every extra addition with P in (4).

Let us now compare the cost of the methodology (4) with previous formulae. For
instance, when d = 2, (4) computes the DA operation with a cost of 11M+ 7S, which is
superior to the traditional execution consisting of a doubling followed by a mixed
addition: 12M + 78 if a =-3. In this case, the proposed DA reduces the cost in one
multiplication. The new operation is even superior to the improved formulas by [17]: 3M
+58) + (TM + 4S) = 10M + 9, trading one multiplication for fwo squarings.

8 P.Longaand A. Miri

Remarkably, because our strategy does not involve a traditional doubling, the same
aforementioned cost for DA is achieved when the parameter « in (1) is randomly chosen.
In contrast, a general doubling followed by a mixed addition costs 12M + 9, or (2M + 8S)
+ (TM + 48) = OM + 128 with the formulas by [17]. In this case, the new DA reduces the
cost in one multiplication and two squarings (or trades two multiplications for five
squarings, in the second case).

We remark that 2P+(Q is a recurrent operation in efficient scalar multiplications. Thus,
the new DA can be used to speed up well-known methods such as NAF, wNAF and the
Shamir’s trick [12] by directly replacing every doubling followed by a mixed addition.

Also, it is important to remark that, as expected, adding one point P at a time in the
methodology (4) results efficient for small values of d, specifically when d = 2 and 3. For
higher values of d it is better to take advantage of the already efficient doubling, tripling
and quintupling operations. In this case, we propose to first perform some computation on
the point P using these operations and then apply our approach to the result. For instance,
ford =4, 6,7 and 8, dP+Q would be computed as follows:

e 4P+Q=2P+ (2P+Q), which involves a point doubling followed by a DA.

e OP+Q =3P+ (3P+Q), which involves a point tripling followed by a DA.
7P+Q = P + (3P + (3P+Q)), which involves a point tripling followed by DA and
a general addition.

o 8P+Q=4P + (4P+Q), which involves two point doublings followed by DA.

3.2 Performance Comparison

Cost estimates using our strategy (4) and the traditional formulae for different composite
operations of the form dP+Q are summarized in Table 1. Since we could not find in the
literature any effort to accelerate composite operations of the form dP+Q in the case of
projective (Jacobian) coordinates over prime fields, new composite operations are
compared against operations combining the fastest point operations of form dP (i.e.,
improved doubling, tripling and quintupling by [17,18]) with addition, in the most
efficient way. Thus, 2P+Q, 3P+Q and 50+P are computed by a doubling, tripling and
quintupling, respectively, followed by a mixed addition; 4P+Q and 8P+Q, by two and
three consecutive doublings, respectively, and a mixed addition; 6P+Q, by one doubling,
one tripling and one mixed addition; and 7P+(Q, by three doublings, one general addition
(with —P) and one mixed addition. Note that approaches in Table 1 have been slightly
improved for the general case by saving some operations during computation of
consecutive doublings (d = 4, 8), as detailed in Section 2. Also, for the general case, d = 6,
we have reduced the cost further by saving fwo squarings during computation of a
doubling followed by a tripling (see details in Appendix A).

In the case of the proposed composite operations, we show performance when
applying the methodology (4) in cases d = 2, 3 and 5, whose cost is given by (9). For d =

New Composite Operations and Precomputation Scheme 9

4, 6, 7 and 8, we use the already efficient DA in combination with the fast doubling,
tripling or quintupling by [17,18], as described in Section 3.1.

Table 1. Performance of proposed composite operations of the form dP+Q in comparison with
previous formulae.

Method | 2P+Q 3P+Q 4P+Q 5P+Q 6P+Q 7P+Q 8P+Q
14M + 128 @ 18M+148 @D 200 +19S @ 17M + 178 ©
+ + +
Ours (3) | 1IM+7S | 16MHF9S |00/ yse | 2OMF13S | 001790 a8+ 225 | 160+ 208

Previous | 10M+ 9S8 @ |14M +118 @] 13M +148 @ |18M +155@[17M+16S @ | 28M +21S @[16M +19S @
[17,18] OM+ 128 [13M+14S® | 13M+ 165 [17TM+185© | 16M+19S | 27M +24S | 16M+21S

(a) Parameter « is fixed to -3, (b) Using tripling by [17], (c¢) Using quintupling by [18].

As we can see, our methodology reduces costs in comparison with the best
implementations using previous operation formulae. The only exception is when d = 3
(special case) or 5, where the efficient tripling and quintupling formulas previously
presented in [17] and [18], respectively, permit to achieve the lowest costs. In the most
frequent scenario, our new composite operations introduce some savings by trading one
multiplication for two squarings (special case, d = 2, 4, 8; both cases, d = 6, 7). In other
cases, we trade up to five squarings for only two multiplications (general case, d = 2), or
save one squaring (general case, d = 4, §). The reader must note that the savings are more
dramatic if we compare the presented cases with the traditional formulae [12] or the
composite operations by [7,21].

4 New Method for Precomputation

Precomputed points are extensively used to accelerate the scalar multiplication in
applications where extra memory is available. Well-known methods in this category are
wNAF and Frac-wNAF, which rely on precomputations to reduce the Hamming weight of
the binary expansion of the scalar, and thus, reduce the cost of the scalar multiplication. In
particular, Frac-wNAF requires building the following table with digits d; [22]:

d €D ={1,3,5,...m}. (10)
Using the digit set (10), the average non-zero density D for Frac-wNAF is [22]:
(m+1) "
D=||log, m | + el I (11)

It is important to remark that Frac-wNAF is a generalization of wNAF and covers all
the possibilities in terms of memory requirements.
We propose a variation to strategy (4) and compute the precomputed table as follows:

10 P.Longa and A. Miri

dP=..+2P+2P+2P+P. (12)

We will show that all the additions in (12) can be computed with the special addition
with identical z-coordinate (3), reducing costs in comparison with previous approaches.
Further, some values computed during the mentioned additions are efficiently exploited to
minimize costs. In this regard, we present two schemes with different memory
requirements that achieve high performance. For the remainder of this work, we refer to
them as Schemes 1 and 2.

Our method can be summarized in the following two steps.

Step 1: Computation of precomputed points in Jacobian coordinates

Point P is assumed to be originally in 4. Thus, if we want to use the special addition, we
should translate computations to 7.

By applying the mixed coordinates approach proposed in [5], we can compute the
doubling 2P in (12) in A and yield the result in 7 as follows:

X,=0Gx2+a) =2a, Y,=0x+a)(a-X,)-8y", Z,=2y, . (13)
With: a:4x1y12=2[(x1+y12)2—x12—yl4]7

where the input and result are P = (x,, y,) and 2P = (X,,Y,,Z,), respectively.

Formula (13) is easily derived from the doubling formula in A [12] by applying (2)
with 4 =2y, , and has a cost of only 1M + 5S. Note that we have reduced the cost of (13)
by replacing the multiplication 4x, - y; by one squaring and other cheaper operations.

Then, by fixing 4 =2y, in (2) we can assume the following equivalent point to P:

P - (le’ Yl(l)’Z:”) _ (4)‘1)’12’8)’14’2%) - (XI’YI’ZI) ’ (14)

which does not introduce extra costs since its coordinates have already been computed in
(13). Following additions to compute digits d; would be performed using (4) as follows:

1 3p=2p+ PV =(x,.v,z)+(x". 7", 2")= (x,.7.2) :

1
3 T (Yx“) 7Yz)z 7(X|m - X,)3 72Xz (le - X,)z .

X
= (o) (n ()) (xx)
Z

-z (x"-x,).

3
2 Having 2P"= (x!",v".,2") = (XZ (x"-x) .y (x"-x),z (x"- Xz)) =(x,.7.2),

(1)

sp=2P"+3p=(x"x".2")+ (x,.v.2) = (x,.¥.2,) :

x= () (o - a) —ax! (x o)

3 2

Y, = (Y *Yzm)(sz (Xl 7Xm)2 7X4)7Y2m (Xl 7X2(”)3,

3 2

New Composite Operations and Precomputation Scheme 11

(1) (1)

2)’ B4=(X3_X2)2’ CA:(XS_XZ(”)S'

Z, = (”(XJ_X;“) > A4=(X3—X

4 2

2 2

3
(m=5)/2) (m=5)/2) (m=5)/2) ((m=5)/2) (m=5)/2) _ (m=5)/2) _ ((m=5)/2)
.Y (X -X) ,Z (X -X))E(X Y, Z),
2 (m-1)/2 2 2 (m-1)/2 2 2 2 2

th . ((m=3)/2) ((m=3)/2) ((m=3)/2) ((m=3)/2) ((m=5)/2) (m-51/2)\?
(m-1)/2)" Having 2P" % = (X2 y o0 g) (x (x x Y

(m=3)/2)

((m=3)/2) (m=3)/2) ((m=3)/2)
mP = 2P +(m_2)P=(X’ ’Y; Z)+(X(m+1)'z’Y:m~1)”Z«mq)’)

2
m=3)/2)

mp=2P""" w(m-2)P = (x

(m+3)/2° T (m+3)/2° rm-x)/z) °

2

2 3 2
((m=3)/2) ((m=3)/2) ((m=3)/2) ((m=3)/2)
X :(Y -Y) —(X -X)—2X (X -X),
(m+3)/2 (m+1)/2 2 (m+1)/2 2 2 (m+1)/2 2

2 3
((m=3)/2) ((m=3)/2) ((m=3)/2) ((m=3)/2) ((m=3)/2)
voo=(r, -y)(X (x . .-x) -x)—Y (x,.,.-x).
(m+3)/2 (m+1)/2 2 2 (m+1)/2 2 (m+3)/2 2 (m+1)/2 2
((m=3)/2) ((m=3)/2)
z =z (x,,,.-x),
(m+1)/2 2

(m+3)/2 2

2 3
(m=3)/2) (m=3)/2) ((m=3)/2)
A :(X -X),B :(X -X),C :(X -X)
(m+3)/2 (m+1)/2 2 (m+3)/2 (m+1)/2 2 (m+3)/2 (m+1)/2 2

Values A4; and (B;, C)), for i = 4 to (m+3)/2, are stored for Schemes 1 and 2, respectively,
and used in Step 2 to save some computations when converting points to A.

Step 2: Conversion to affine coordinates

Points (Xt_,Y, ,Zt_) from Step 1, for i from 3 to (m+3)/2, have to be converted back to A
since this would allow the use of the efficient mixed addition during the scalar
multiplication. This can be achieved by means of the following:

XJZLYIZ, 1), (15)

To avoid the computation of several expensive inversions when using (15) for each
point in the case m > 3 (10), we use the method due to Montgomery, called simultaneous
inversion [12], to limit the requirement to only one inversion.

In Scheme 1, we first compute the inverse » = Z_ and then recover every point
using (15) as follows:

(m+3)/2

2 3
mP : x(m+3)/2 =r .X(I}H»:S)/Z ’ y(m+3)/2 =r 'Y(m+3)/2 .

2 3
(m_z)P’ r _r'A(m+3)/2’ x(m+l)/2 =r- (m+1)/2 2 y(m+l)/2 =r- (m+)/2 °

3P: r=r-4, xS:r2~X3, y3:r3~Y.

3

It is important to observe that Z =Z, XH A, for j =4 to (m+3)/2, according to Step 1,

i=4

12 P.Longa and A. Miri

and hence, for i = (m-2) down to 3, Z .

multiplication r-4 . , ,
For Scheme 2, we first compute 7, = (Z(:m,z) and 7, = (Z(;im/z) , and then recover
every point using (15) as follows:

for each point iP is recovered at every

mP x(m+3)/2 =n 'X(m+3)’2 ’ y(m+3)’2 =7 .}/(m+3)/2 .
(m_z)P - h =1 'B(mwz’ L= 'C(m+3)/2’ x(m+])’2 =1 .X(m+l)’2’ y(m+])’2 =7 .Y(m+l)/2 .

3P n=n-B, r,=n-C, x=nX, y=n1.

In this case: Zj :Z; XH B, and Zj :Z; XH C, ,for j=4 to (m+3)/2, according to

i=4 i=4
Step 1, and hence, for i = (m—2) down to 3, the pair (Z(:_i}),z,
recovered with .- B and r,-C_ .

The reader is referred to Appendix B for the pseudocodes of Schemes 1 and 2.

Z(’i}m) for each point iP is

4.1 Cost Analysis

In total, Scheme 1 has the following cost when computing the precomputed table (10):

Cost =1 +OL)M +(3L+5)S, (16)

Scheme 1

where L=(m—1)/2 represents the number of points. In terms of memory usage, Scheme
1 requires (3L+3) registers for temporary calculations and storing the precomputed points.
We will show later that this requirement does not exceed the number of available registers
for the scalar multiplication for practical values of L.

In the case of Scheme 2, the cost is as follows:

Costgmes =1 +(OL)M +(2L+6)S, (17)

For this scheme, we require (4L+1) registers when L > 1. For L = 1, the requirement is
fixed at 6 registers. It will be shown that this requirement does not exceed the memory
allocated for scalar multiplication for small values of L. For a detailed description of the
estimation of costs and memory requirements for Schemes 1/2, we refer to Appendix C.

As we can see from (16) and (17), Scheme 2 reduces further the cost to compute the
precomputed table at the expense of some extra memory. In the following, we analyze the
memory requirements for the scalar multiplication and determine if our method adjusts to
such constrains.

Considering that the precomputed table requires 2L registers for storing L points, the
total requirement of the scalar multiplication is given by (2L+R) registers, where R is the
number of registers needed by the most memory-consuming point operation in a given
implementation. On scalar multiplications using solely radix 2, addition is usually such

New Composite Operations and Precomputation Scheme 13

operation. Depending on the used coordinates and/or implementation details, point
addition can require from 7/8 registers in J[12] and J", respectively, to 8 registers for
an SSCA-protected version [20]. If the scalar multiplication includes radix 3 in its
expansion, then tripling becomes the most expensive operation with a requirement of up
to 9/10 registers [7,17]. Consequently, Scheme 2 adjusts to the previous requirements for
small precomputed tables with L = 1 to 3 if addition is the main operation. If we also
consider tripling, Scheme 2 is suitable for values L = 1 to 4. In the case of Scheme 1, it
follows the memory constrains for values L =1 to 5 and L = 1 to 7 for radix-2 and radix-3
cases, respectively, which demonstrates that this scheme is efficient for practical Frac-
wNAF implementations. The reader must note that, in general, values L > 7 are not
efficient since the cost of computing the precomputed table results more expensive than
the savings achieved by precomputation during the scalar multiplication.

In the following section, we analyze the performance of our method in comparison
with previous efforts.

4.2 Performance Comparison

There are different efficient schemes to compute precomputed points in the literature. The
simplest approaches suggest performing computations in A or C using the chain P — 3P
— 5P — ... = mP. The latter requires one doubling and L=(m—1)/2 additions, which
can be expressed as follows in terms of field operations for the mentioned cases:

Cost , = (L+) +(2L+2)M +(L+2)S. (18)
Cost, = (10L)M +(4L+5)S . (19)

Note that (19) shows a better performance than the estimated cost given by [6] since we
are considering that the doubling 2P is computed as 2.4 — C with a cost of 2M + 58, the
first addition P + 2P computed with a mixed addition as A + C — C (7M + 45), and the
following (L—1) additions as C + C — C (10M +4S). The new operation costs are obtained
by applying the technique of replacing multiplications by squarings introduced in [17].
The memory requirements of the .A- and C-based methods are 2L+R and 5L+R registers,
respectively.

Other methods that achieve better performance in scenarios where inversion is
relatively expensive, perform computations in Projective (P), J or C coordinates and,
then, convert the points to .4 by using the Montgomery’s method to reduce the number of
required inversions to only one. Cost for these methods are shown in the following [6,9],
considering the general assumption 1S = 0.8M:

Cost, , = U+(16L-3)M+(BL+5)S = I +(184L+1)M . (20)
Cost, = U+(16L—-5M+(5L+5)S = 1 +(20L—-1)M . Q1)
Cost, = U+(16L—4)M +(5L—5)S = 1[+(20L)M . 22)

14 P.Longa and A. Miri

Recently, Dahmen et al. [6] proposed a new scheme, whose computations were
efficiently performed using solely formulae in .A. Also, the number of inversions was
limited to only one by means on the Montgomery’s method. This scheme costs:

Cost, = 1/ +(10L-1)M +(4L+4)S = U +(132L+22)M , 23)

that shows its superiority when compared with all the previous methods requiring only
one inversion. However, our method achieves even lower costs as shown in Section 4.1:

Cost = 1+({14L+4)M, Cost

Scheme 1

= 1/ +(10.6L+4.8) M .

Scheme 2

which make our approach, and specifically Scheme 2, the fastest in the literature when the
number of inversions is limited to one.

For comparing with the approach (18), which includes several field inversions in their
computation, it is better to specify the range of I/M ratios for which each method is
superior. Table 2 shows the I/M values for which our schemes and the .4-based scheme
are the most efficient for a given number of precomputed points. To present a fair
comparison, methods are compared according to the memory constrains for the scalar
multiplication using radix-2. As analyzed in Section 4.1, Schemes | and 2 are suitable for
values L =1to 5 and L = 1 to 4, respectively.

Table 2. I/M ranges for which each method achieves the lowest cost.

Points 1 2 3
Scheme 1 - - - >8.1 >8.7
Scheme 2 >9 >8.4 >82 - _
Affine (18) < < < <8.1 <87

As it can be seen, our schemes outperform the .A-based approach for the most
commonly found //M ratios, where inversion is relatively expensive. In average, Schemes
1 and 2 are superior when inversion is more than 9 times the cost of multiplication. As
discussed in Section 2, it is usually expected that /M > 30.

Finally, we compare performance of our schemes with the C-based approach, whose
cost is given by (19). In this case, we should also consider the scalar multiplication cost in
our comparisons since precomputations in C require different computing and memory
requirements to the .4 case. When precomputations are in C, [5] proposed the use of J+ C
— J" to perform additions (10M + 6S), 2J" — J to every doubling preceding an
addition M + 5S), and 27" — J" (3M + 55) to the rest of doublings. Note that we
have reduced further the cost of the mentioned operations by applying the same technique
introduced in [17] to replace multiplications by squarings. Following this scheme, the
scalar multiplication cost including precomputations is as follows:

New Composite Operations and Precomputation Scheme 15

[nD(AOM +6S)+(2M +58)) +n(1-D)3M +58)]+[(10L -)M + (4L +5)S], (24)

where D represents the Hamming weight as expressed in (11).

For our approach, we consider an improved scheme taking advantage of the faster DA
operation proposed in Section 3.1. Thus, we use J + (J +.4) — J to perform doubling-
addition operations following the form P + (P+Q) with a cost of 11M + 7S, and the fast
point operations by [17]. With this scheme, the scalar multiplication cost including
precomputations is as follows:

[#DA1IM +78)+n(1-D)3M +58)]+ Cost (25)

Schemel/2 *

We also include in our comparison a traditional scheme using 7 and only one inversion
to assess the advantages of our improved scheme (25). By using (21) and the point
operations by [17], the cost of the scalar multiplication including precomputations is given
by:

[nD(TM +4S) +n(3M +58)]+[11 +(20L-1) M], (26)

Figure 1. Cost performance of the proposed scheme and previous methods to perform the scalar
multiplication including precomputation (17 = 30M, 15= 0.8M, n = 160 bits).

—4— J-based
1750 ©— C-based |
g —E— Proposed
S 1700F
2 D
.S 1650 5
=
= 1600 © =
S € ©
= T i R 2
3 1550 e
[™~
~5_
1500 - e —
| | I I | | |
1 2 3 4 5 6 7 8

Number of Precomputed Points

Figure 1 plots the costs of our scheme (25), and the C- and J-based approaches as
given by (24) and (26), assuming 1/ = 30M, 1S = 0.8M and n = 160 bits. As we can see,
our proposed scheme outperforms both methods, introducing an improvement of up to
6.2% in comparison with the already optimized J-based approach, when assuming
unrestricted availability of memory (optimal case when using the Frac-wNAF method
with 7 precomputed points). We remark that the given estimation is a lower bound as
additions and other operations are not included in the cost. The new DA offers a reduced

16 P.Longa and A. Miri

number of these operations, and thus, a real implementation would achieve a higher
performance improvement. Also, it is important to note that the improvement would be
even more significant in implementations where a hardware multiplier executes both
squarings and multiplications (i.e., 1.5 = 1M).

The previous analysis does not take into consideration memory consumption when
comparing the C-based approach and our method. Recalling that the former has a memory
requirement of (5L+R) and assuming R = 8, Table 3 summarizes the //M break even points
at which both methods perform equivalently for a given number of available registers.
Similarly, costs have been derived according to (24) and (25). Notice that our method is
superior in any case the /M ratio is below the displayed numbers, which makes it superior
for typical //M ratios, as discussed in Section 2.

Table 3. I/M break even points for which our schemes and the C-based approach perform
equivalently for a given number of registers (n = 160 bits).

Registers <10 12 13 14 -16 17 18-20 | 21-23
Break point 33702 369 @ 201 @ 224 @ 228 @ 180 ™ 183 @
Registers 24 25-28 | 29-32 | 33-37 | 38-42 >43
Break point 144 ® 149 @ 141 @ 136 @ 131 @ 128 @
(1) Scheme 1.
(2) Scheme 2.

5 Conclusions

We have described an innovative methodology to derive composite operations of the form
dP+Q by applying the special addition with identical z-coordinate to the setting of generic
scalar multiplications over prime fields. These new operations are shown to be faster than
operations built on top of previous formulae, which would potentially speed up
computations in all known binary methods and in new scalar multiplications using other
radices beside 2 such as double-base [7], triple-base [21] or mbNAF [18]. Our record of
point formulas available at: http.//patricklonga.bravehost.com/jacobian.html has been
updated to reflect these new developments.

In the second part of this work, we presented two variants of a new precomputation
scheme for window-based scalar multiplications, and showed that our methods offer the
lowest costs, given by 1/+(9L)M +(BL+5)S and 1/+(9L)M +(2L+6)S , when using
only one inversion. For the rest of cases, we demonstrated that they achieve superior
performance for most common //M ratios found in practical implementations.

New Composite Operations and Precomputation Scheme 17

References

1. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren,
“Handbook of Elliptic and Hyperelliptic Curve Cryptography,” CRC Press, 2005.

2. M. Brown, D. Hankerson, J. Lopez and A. Menezes, “Software Implementation of the
NIST elliptic curves over prime fields,” in Progress in Cryptology CT-RSA 2001 , LNCS
Vol. 2020, pp. 250-265, Springer-Verlag, 2001.

3. O. Billet and M. Joye, “Fast Point Multiplication on Elliptic Curves through
Isogenies,” Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, LNCS
Vol. 2643, pp. 4350, Springer-Verlag, 2003.

4. M. Ciet, M. Joye, K. Lauter and P. L. Montgomery, “Trading Inversions for
Multiplications in Elliptic Curve Cryptography,” in Designs, Codes and Cryptography,
Vol. 39, No 2, pp. 189-206, 2006.

5. H. Cohen, A. Miyaji and T. Ono, “Efficient Elliptic Curve Exponentiation using
Mixed Coordinates,” Advances in Cryptology — ASIACRYPT ’98, LNCS Vol. 1514, pp.
51-65, Springer-Verlag, 1998.

6. E. Dahmen, K. Okeya and D. Schepers, “Affine Precomputation with Sole Inversion
in Elliptic Curve Cryptography,” in Australasian Conference on Information Security and
Privacy (ACISP’07), LNCS Vol. 4586, pp. 245-258, Springer-Verlag, 2007.

7. V. Dimitrov, L. Imbert and P.K. Mishra, “Efficient and Secure Elliptic Curve Point
Multiplication using Double-Base Chains,” Advances in Cryptology — ASIACRYPT 05,
LNCS Vol. 3788, pp. 59-78, Springer-Verlag, 2005.

8. C. Doche, T. Icart and D. Kohel, “Efficient Scalar Multiplication by Isogeny
Decompositions,” in Proc. PKC 2006, LNCS Vol. 3958, 191-206, Springer-Verlag, 2006.
9. K. Eisentraeger, K. Lauter and P. Montgomery, “Fast Elliptic Curve Arithmetic and
Improved Weil Pairing Evaluation,” in Topics in Cryptology — CT-RSA°2003, LNCS Vol.
2612, pp. 343-354, Springer-Verlag, 2003.

10. L. Elmegaard-Fessel, “Efficient Scalar Multiplication and Security against Power
Analysis in Cryptosystems based on the NIST Elliptic Curves over Prime Fields,” Master
Thesis, University of Copenhagen, 2006.

11. FIPS PUB 186-2. Digital Signature Standard (DSS). National Institute of Standards
and Technology (NIST), 2000.

12. D. Hankerson, A. Menezes and S. Vanstone, “Guide to Elliptic Curve Cryptography,”
Springer-Verlag, 2004.

13.IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography. The
Institute of Electrical and Electronics Engineers (IEEE), 2000.

14. K. Itoh, M. Takenaka, N. Torii, S. Temma and Y. Kurihara, “Fast Implementation of
Public-Key Cryptography on a DSP TMS320C6201,” in CHES 1999, LNCS Vol. 1717,
pp. 61-72, Springer-Verlag, 1999.

18 P. Longa and A. Miri

15. C.H. Lim and H.S. Hwang, “Fast implementation of Elliptic Curve Arithmetic in
GF(p"),” in Public Key Cryptography (PKC’00), LNCS Vol. 1751, pp. 405-421, Springer-
Verlag, 2000.

16. P. Longa, “Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems
over Prime Fields,” Master’s Thesis, University of Ottawa, June 2007.

17.P. Longa and A. Miri, “Fast and Flexible Elliptic Curve Point Arithmetic over Prime
Fields,” to appear in [EEE Transactions on Computers, 2007. Also available at
http://doi.ieeecomputersociety.org/10.1109/TC.2007.70815.

18. P. Longa and A. Miri, “New Multibase Non-Adjacent Form Scalar Multiplication and
its Application to Elliptic Curve Cryptosystems,” submitted, 2007.

19.N. Meloni, “Fast and Secure Elliptic Curve Scalar Multiplication over Prime Fields
using Special Addition Chains,” Cryptology ePrint Archive, Report 2006/216, 2006.

20.P. Mishra, “Scalar Multiplication in Elliptic Curve Cryptosystems: Pipelining with
Precomputations,” Cryptology ePrint Archive, Report 2004/191, 2004.

21.P. Mishra and V. Dimitrov, “Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication using Multibase Number Representation,” Cryptology
ePrint Archive, Report 2007/040, 2007.

22. B. Moller, “Improved Techniques for Fast Exponentiation,” in International
Conference of Information Security and Cryptology (ICISC), pp. 298-312, 2002.

23.]. Solinas, “Generalized Mersenne Numbers,” Technical Report CORR-99-39, Dept.
of C&O, University of Waterloo, 1999.

24. T. Takagi, S-M. Yen and B-C. Wu, “Radix-r Non-Adjacent Form,” ISC 2004, LNCS
Vol. 3225, pp. 99-110, Springer-Verlag, 2004.

New Composite Operations and Precomputation Scheme 19

Appendix A: Doubling-Tripling formulae

Having P=(X,Y,Z) on the elliptic curve E, the doubling 2P =(X,,Y,,Z)) in
Jacobian coordinates is computed by [17]:

X, =A4"-2B, Y,=4-(B-X,)-8D, Z,=(Y +2,) -C-E,
A4=3G+H, B=2[(X,+C) -G-D|,C=Y, D=C',E=7], F=E,

1

G=X, H=aF,

and followed by the next revised tripling formulae to yield 6P =(X,,Y,,Z,), which
derives from the fast tripling in [17]:

X, =1T+X, Y, =8Y,-V-W), Z,=2Z,-P,

I=Y',J=I", K=16D-H, L=X,, M=3L+K, N=P’,
P=6[(X,+1)'~L-J|-N, R=P", S=(M+P) -N-R, T=16J -5,
U=16J+T, V=-T-U, W=P-R, X=4X -R.

The general doubling still requires 2M + 8, but the tripling reduces its cost to 7M + 7S

by using previously computed values D and H to compute aZ: as 16Yl4 -aZl4 . Thus, the

total cost of a Doubling-Tripling operation when the parameter a is randomly chosen is
OM + 158.

20 P.Longa and A. Miri

Appendix B: Pseudocode of the Proposed Precomputation Scheme

In this section, we present the pseudocode for the precomputation scheme described in
Section 4.

Algorithm 1: Point doubling 24— 7, E: y'=x"+ax+b

INPUT: point P =(x,,y,) on E(F)), Tv¢=x), Th<=y1, a
OUTPUT: point 2P =(X,,Y,,Z))

22722

1. If P = O, then return (O)

2. =21, {Z, =2y}

3. L=T; ey

4 T,=T+T, x + 07}

5. I,=T; {(y+)%)

6. L=T; 'y

7. L=17)

8. TI,=T,-T G+ 07 =7}

9. I,=T,-T, {0+ 000" =x) =0}
10. T, = 4T, 8x,07}

1. 7,=37 3x7}

12. Ty=T,+a (3x +a}

13. I=T7 {3 +a)’}

4. T,=T-T, X, =G +a)’ =8x,y7}
15. 7,=T,/2 (X =4xy7}

16. T, =T, xT, {3} +a)(dxy; - X,)}
17. T, =81, X =8y}

18. ,=T,-T, {Y, = 3x] +a)(4x,y; — X,) -8y}

19. Retumn (T,7,,7,,7,,T.) = (X,,Y,,Z,, X, ,¥'")

1240ty Ly 20 4y9 %,

Algorithm 1 computes the first doubling (13) of Step 1. It costs 1M + 55 and requires 6
temporary registers.

New Composite Operations and Precomputation Scheme 21

Algorithm 2: Special addition with identical z-coordinate J+ J— J, E: y2 =x'+ax+b

22722

INPUT: points 2P = (X,,Y,,Z,) and P = (X,",Y",Z") on E(F),
T\« Xo, o Yo, T3¢ 2, T, < X", T, < Y"
OUTPUT: point 3P =2P+P" =(X,,Y,,Z,)

1. If2P = O, then return (B")
2. If B =0, then return (2P)
3. T,=T,-T, X0 -x,)
4. T,=T;xT, 12,=2,(X" - X,)}
5. T,=T7 (X - X,
6. T,=T,xT, (X=X,
7. T,=TxT, (X0 - X))
8. T,=2T, 2X, (X0 - X))
9. L=+, (X0 - X)) +2X,(x" - X))
10. T, =T,xT, LD - X))
1. T,=T,-T, 5O -,
2. 7,=7 -1
13 T=T.-T, 0 = (0 -1 (XY - X,) - 2X, (X - X))
14, T,=T,-T, =X, - X)
15, T,=T,xT, O - (XD - X, - X, 1)
16. T,=T,-T, = (0 D)X - X, — X]~ KX - X))
17. If m > 3 then:
17.1. RV =T,
172. sV =T,
17. Retumn (T,7,,7,,7,,T,,R",$") = (X,,v,,2,,x.",¥,", X .Y,

Algorithm 2 computes the first addition 2P + P from (12) using the special addition with
identical z-coordinate. It costs 5M + 2S, and requires 6 temporary registers if the
precomputed table contains only one point. Otherwise, Algorithm 2 requires 6 temporary
registers for calculations, and 2 extra registers to store the (X, Y) coordinates of 3P.

22 P.Longa and A. Miri

Algorithm 3: Special addition with identical z-coordinate J+ J— J, E: y2 =x'+ax+b

(i-3)/2) (i-3)/2) ((i-3)/2) ((t 3)/2)

INPUT: 2P = (X, Y, ,) and (i-2)P = (X, LY. Z)
TeX, Lt Bez " nex!™ ney ™ izstom.iodd
OUTPUT: point iP = 2P""""7 4 (1=2)P = (X, 1. Y002 Zysy)
For Scheme 1: For Scheme 2:
2. Fori=5toi< (m+3)/2 do 2. Fori=5toi< (m+1)/2 do
2.1. 1f 2P = 0, then return ((i — 2)P) 2.1 1f 2P = 0, then return ((i - 2)P)
22. If (i —2)P = O, then return (2P"""") 22.If (i —2)P = O, then return (2P"""")
23. A(i+3)/2 =N-T {Atm)/z = X(M)'z _XSH) 2)} 23. T =T-T, {Xml; 2 _XSH) 2)}
24, T= Ao x T, (Zyy) 24 T,=TxT, Zgyn)
25. T =4 {Aizy2) 25. By =T {Blrusyn = (X — X3D)2)
2.6. T,=TxT, (X408 2.6. Ciinyn=T,xBiyn {Ciivzyn = (X = X302))
27, T=T %45, {A(M) 2 27. T,=T,x B, {Xé(iis)/Z)B(im o)
28. I,=T,-T; TS A 28. T,=2T, 2XVB 0}
29. T,=T xT, A 29 =T +Cprspy {Chayn +2X VB 50}
2.10. T, =2T, X4 210. T,=T,-T, Yy — 1L}
211. T,=T,+T, (A yyr +2X57P 45 211 T,=T;xCpyp AL Chusnt
212. T, =T} (Vo —H2) 212. T,=T} HOAMVED AU
2.13. =T, -T {X(i+3)/2} 2.13. I =T,-T {X(i+3) z}
214, T,=T,-T, (s= X348 = Xyyn} 214 T, =T,-T, (5= X8 — Xy
215, T, =T,xT, ERCAPES A Y 215, T,=T,xT, CRCPES S
2.16. T,=T,-T, {Y(i+3)/z} 2.16. Tz = Tz _Ts { (i+3)'2}
3. If i< (m+3)/2 then: 3. Ifi=m
30 Xy, =T, 3.1, 1f 2P = 0, then return ((i - 2)P)
32, Y, =1 32, If (i —2)P = O, then return (2P"""?)
33. ,=T,-T, (X iy — XS
34. T,=TxT, {Zg2}

3.5. B(i+3) 2 lez {B(m) 2 = (X(i+l)’2 _Xz((H) 2))2}
3.6. C(”i‘) =T XB(M)/Z {Cu+3)/z = (qu)/z - X;(H)/z))}}
37. I,=T,-T, DR —Y‘“’” 2y
38. T5 = TS XC(M)/Z { P 7)C(,+3) 2}‘
37 T=T,x By X7V B0
3.8. T, =2I, {ZX((I Y 7)B(H:s) 2
39. T, =T22 (Yo -y vy
310, I=T—Cluyy {Xiy2 SR AR Cinint

New Composite Operations and Precomputation Scheme 23

3L =T-T, (Xnya)
3.12. ,=1T,/2 X Z)Buu)/z}
33 T, =T,-1 s= Xé“?})/Z)B(ns) 2~ Xt
3.14. T, =T, xT, {S'(Kimz—Yz((H) 2
315 L=T-T; Wit
4. Return (7,0,15, T, T, Ay Xiisy o5 Yieany) 4. Return (7,75, T, T, Ty, Byrsy s Coronyon Xposyoo Yieay)

Algorithm 3 computes following additions in (12) using the special addition with identical
z-coordinate. It costs SM + 2§ per extra point, and requires 6 temporary registers for
calculations, and 3 / 4 extra registers per each point for Schemes 1 / 2, respectively, to
store the values (X, ¥, 4, B, C). In the last iteration the memory requirement is reduced by
storing (X, Y, B) values in temporary registers. Thus, Scheme 1 and 2 only require the
previous 6 registers plus 1 extra register in this case.

24 P.Longa and A. Miri

Algorithm 4: Modified Montgomery’s method, E : y2 =x'+ax+b

(i-3)/2) (i-3)/2) (i-3)/2) (i-3)/2)
INPUT: 2P = (X, A

8) and (i-2)P = (x
L 207 e x0T iss o m

(i+1)/2? Y(i+])’2 > Z(r+])/2) ’

T « X T, <Y,

1 (i+1)/2° (i+1)/2°

+(i-2)P =(X Y Z<;+3)/2)

(i+3)/2° 1(i+3)/2°

OUTPUT: point iP = 2P "%

For Scheme 1: For Scheme 2:
1. T, = T:;il {Z(7yi+3) 2} L I,= Tsi] {Z(;Lz)/z
2. T, = T32 {Z(ﬁm 2} 2. T,= T}z {Z(j+3)/z
3. =TT, {Xi13y2) 3. =T xI, {X syt
4. T,=T,xT, {Z(iz)/z} 4. T,=T,xT, {Z(iz)/z
5. T,=T,xT, Koo} 5. T,=T,xT, Wy}
6. For i=(m+1)/2 to 3 do 6. For i=(m+1)/2 to 3 do
6.1. T,=T,x4;5), Ziisya} 6.1. T,=T,xB;), Zovr
62. T,=T} {Zmn) 6.2. Ty=T,xClp Zimeyi2)
6.3. Xy =X Xy X0} 6.3. Xipn =X XL {Xint
64. T,=T,xT, {Znyn) 6.4 Yisn =Y T Kzt
6.5. Y =Yinn xXT, {Ym;)/z}
7. Return (73,7, X 1302, Yi32) 7. Return (73,75, X 3,1, Yiiis2)

Algorithm 4 computes the modified Montgomery’s method corresponding to Step 2. It
costs 1L/ + (BM + 1S) + (AM + 1S)(L — 1) and 17+ BM + 1S) + (4M)(L — 1) for Schemes
1 and 2, respectively, and requires 4 / 5 temporary registers for calculations, in addition to
registers for storing the affine coordinates (x,) of the precomputed points.

New Composite Operations and Precomputation Scheme 25

Appendix C: Cost Analysis of Precomputation Scheme

Scheme 1 has the following cost:

Cost =1 +OL)M +(3L+5)S,

Scheme 1

and requires (3L + 3) registers, where L is the number of points in the precomputed table.

Proof: Algorithm 1, 2 and 3 cost IM + 55, SM + 2S and (5M + 2S5)(L — 1), respectively.
Algorithm 4 costs 17+ (3M + 1S) + (4M + 1S)(L — 1). By adding these values, we obtain
the cost for Scheme 1 as presented above.

Regarding memory requirements, Algorithm 1 needs 6 temporary registers 7,,...,T; .
The same registers can be reused by Algorithm 2 for calculations. Additionally, it needs 2
extra registers to store (X, Y) coordinates corresponding to 3P, making a total of §
registers. Algorithm 3 also reuses temporary registers 7,...,T,, and requires 3 registers
per point, excepting the last one, to store (X, Y, 4) values. For the last iteration, we only
require registers 7j,...,7; and 1 extra register to store 4 since the last (X, Y) coordinates
are store in 7; and T, . That makes an accumulated requirement of 6 + 3(L — 1) = 3L + 3 at
the end of Algorithm 3, for L > 2. If L = 1, we do not compute Algorithm 3, and the
requirement is fixed by Algorithm 2 at only 6 registers (note that in this case (X, Y)
coordinates are stored in 7; and T7,). Algorithm 4 only requires 4 registers for
calculations, two of which store the first pair (x, y). The rest of points require 3(L — 1)
registers, making a total requirement of 4 + 3(L — 1) = 3L + 1. In conclusion, Scheme 1
requires 3L + 3 registers.

Scheme 2 has the following cost:
Costgpemes = +(OLYM +(2L+6) S,
and requires (4L + 1) registers to compute the precomputed table.

Proof: Similarly to Scheme 1, Algorithm 1, 2 and 3 also cost 1M + 58, SM + 2§ and (5M
+ 28)(L — 1), respectively. Algorithm 4 costs 17+ (3M + 1S) + (4M)(L — 1). Adding these
costs we obtain the value indicated for Scheme 2.

Regarding memory requirements, Algorithm 1 needs 6 registers 7;,..., T, which can be
reused by Algorithm 2 for temporary calculations. Additionally, Algorithm 2 needs 2
extra registers to store (X, Y) coordinates corresponding to 3P, making a total of §
registers. Algorithm 3 also reuses temporary registers 7,...,T,, and requires 4 registers
per point, excepting the last one, to store (X, Y, B, C) values. For the last iteration, we only
require registers 7j,...,7; and 1 extra register to store C since the last (X, Y) coordinates
are store in 7, and T,, and T, stores B. That makes an accumulated requirement of 6 +

26 P.Longa and A. Miri

4(L —1)—1=4L + 1 at the end of Algorithm 3, for L > 2. If L = 1, we do not compute
Algorithm 3, and the requirement is fixed by Algorithm 2 at only 6 registers as pointed
out in the analysis for Scheme 1. Algorithm 4 only requires 6 registers for calculations,
two of which store the first pair (x,). The rest of points require 3(L — 1) registers, making
a total requirement of 5 + 3(L — 1) + (L —2) = 4L. In conclusion, Scheme 2 requires 4L +
1 registers.

