
Improved Cryptanalysis of APOP-MD4 and

NMAC-MD4 using New Differential Paths

Donghoon Chang1, Jaechul Sung2, Seokhie Hong1, Sangjin Lee1

1 Center for Information and Security Technologies
Korea University, Seoul, Korea

{dhchang, hsh, sangjin}@cist.korea.ac.kr
2 Department of Mathematics, University of Seoul, Korea

jcsung@uos.ac.kr

Abstract. In case of security analysis of hash functions, finding a good
collision-inducing differential paths has been only focused on. However,
it is not clear how differential paths of a hash function influence the
securities of schemes based on the hash function. In this paper, we show
that any differential path of a hash function can influence the securities of
schemes based on the hash function. We explain this fact with the MD4
hash function. We first show that APOP-MD4 with a nonce of fixed
length can be analyzed efficiently with a new differential path. Then we
improve the result of the key-recovery attack on NMAC-MD4 described
by Fouque et al. [4] by combining new differential paths. Our results
mean that good hash functions should have the following property : It
is computationally infeasible to find differential a path of hash functions
with a high probability.

Keywords : MD4, Differential Path, APOP, NMAC.

1 Introduction

The key recovery attack on block ciphers focuses mainly on finding a good prop-
erty (of a block cipher) independent from a secret random key with a high proba-
bility and then recovers partial information of a round key with the property. On
the other hand, security analyses of hash functions [9, 10, 12–17] focus on find-
ing a collision-inducing differential path and then obtain a second-preimage or a
collision with the path. When the securities of schemes based on hash functions
such as HMAC and APOP protocol are analyzed, collision-inducing differential
paths of the underlying hash function of the schemes are also used. However,
we can ask the following questions ; how can any differential path of a hash

function influence the securities of schemes based on the hash function? How

come the problem of finding any good differential path of hash functions doesn’t

be concerned?

In fact, the method that finds collisions by connecting differential paths with
high probabilities was utilized for collision-finding attacks of MD5 and SHA-1

[14, 16]. However, we can say that the method is also to find collision-inducing
differential paths for multi blocks. To the best of our knowledge, there is no
result on how any differential path of a hash function influences the securities of
schemes based on the hash function. In this paper, we show that good differential
paths can be used to reduce the attack complexity of schemes based on hash
functions. For concrete examples, we propose new MD4 differential paths. Then
we analyze APOP-MD4 and NMAC-MD4 with them. Our results show that good
hash functions should have the property that it is difficult to find a differential
path with a high probability. Table 1 and 2 summarizes our results.

Table 1. The Comparison of previous results with our result on a partial key-recovery
attack on APOP-MD4

the length of a nonce attack ? ♯ of bits discovered ♯ of queries

Leurent [5] arbitrary Yes 56 57

Leurent [5] fixed No · ·

This paper fixed Yes 56 213

Table 2. The Comparison of previous results with our result on a partial key-recovery
attack on NMAC-MD4 : Given K1, the second column indicates the number of bits of
K2 recovered with query-complexity in the third column.

♯ of bits recovered ♯ of queries success prob. attack type

Fouque et al. [4] 1 280 1 standard

This paper 4 223 2−3 related-key setting

2 Notations and Definitions

NMAC and HMAC. Fig. 1 and 2 show NMAC and HMAC based on a com-
pression function f from {0, 1}n × {0, 1}b to {0, 1}n. K1 and K2 are n bits.
K = K||0b−n where K is n bits. opad is formed by repeating the byte ‘0x36’ as
many times as needed to get a b-bit block, and ipad is defined similarly using
the byte ‘0x5c’. H : {IV } × ({0, 1}b)∗ → {0, 1}n is the iterated hash function.
H is defined as follows : Hf (IV, x1||x2|| · · · ||xt) = f(· · · f(f(IV, x1), x2) · · · , xt)
where xi is b bits. Let g be a padding method. g(x) = x||10t||bin64(x) where t is
smallest non-negative integer such that g(x) is a multiple of b and bini(x) is the
i-bit binary representation of x. Then, NMAC and HMAC are defined as follows.
M is a any message of an arbitrary length. each Mi is b-bits. For example, in
case of MD4, b is 512, n is 128 and f is the compression function of MD4.

NMACK1,K2
(M) = H(K2, g(H(K1, g(M))))

HMACK(M) = H(IV, g(K ⊕ opad||H(IV, g(K ⊕ ipad||M)))).

f f f

f

…

M1 M2 Mt

padding

K1

K2

h1 h2 ht

ht+1

ht-1

Fig. 1. NMAC (g(M) = M1||M2|| · · · ||Mt)

f f f f

ff

…

⊕K

IV

M1 M2 Mt

⊕K

IV

padding
h1 h2

ht+1

htht-1

Fig. 2. HMAC (g(K ⊕ ipad||M) = K ⊕ ipad||M1||M2|| · · · ||Mt)

MD4. The hash function MD4 uses a 128-bit fixed initial value IV . We write the
MD4 hash value of a message M by MD4(M) or MD4(IV ,M). The compression
function f of MD4 is denoted by coMD4. Then MD4(IV ,M) can be described
by MD4(IV ,M)=HcoMD4(IV, g(M)).

Initial Value (IV) of MD4. The initial value of MD4 is as follows.

IV = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)

Boolean Functions of MD4. coMD4 consists of 48 steps (the first step is
called step 1). The first 16 steps are called round 1, the second 16 steps are
called round 2 and the last 16 steps are called round 3. The boolean function of
each round is as follows.

f1(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
f2(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

f3(x, y, z) = x⊕ y ⊕ z

The Ordering of Message Words of MD4. The compression function coMD4
processes a 512-bit message block M per each compression function. A message
block M is divided by 16 words as M = m1||m2|| · · · ||m16 where each mi is

32-bit. The leftmost bit of a word is called 32-th bit of the word. The rightmost
bit of a word is called 1-th bit of the word. The ordering of message words of
coMD4 is as follows.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ψ(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ψ(i+ 16) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
ψ(i+ 32) 1 9 5 13 3 11 7 15 2 10 6 14 4 12 8 16

The Shift Rotations of MD4. The shift rotation Si at step i is defined as
follows.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Si 3 7 11 19 3 7 11 19 3 7 11 19 3 7 11 19
Si+16 3 5 9 13 3 5 9 13 3 5 9 13 3 5 9 13
Si+32 3 9 11 15 3 9 11 15 3 9 11 15 3 9 11 15

Round Constants of MD4. Round constants are as follows.

K1 = 0,K2 = 0x5a827999,K3 = 0x6ed9eba1

the Step Function of MD4. Let Ai be a updated value in step i. The ini-
tial value IV or the output of previous compression function is denoted by
(Ai−3, A0, A−1, A−2). Ai at round j is updated as follows.

Ai = (Ai−4 + fj(Ai−1, Ai−2, Ai−3) +mψ(i) +Kj)
≪Si ,

where Si is the value of the left rotation in step i.
And the final output value of the compression function coMD4 is computed

as follows.

coMD4(IV,M) = (A−3 +A45, A0 +A48, A−1 +A47, A−2 +A46).

APOP [6]. APOP is a protocol for the authentication between a client and a
mail server. The client and the mail server share a secret password. The mail
server wants to identify the client with the shared password. Let H be a public
hash function and P be a shared password. In order to authenticate the identity
of the client, the mail server generates a random number Nonce and sends it to
the client. If the client knows the password exactly, he can generate the hash
value H(Nonce||P) and return it to the mail server. Finally, the mail server can
check if the value is correct, and then authenticate the identity of the client.

Notations in Table 4 ∼ 9 in the Appendix. Let Ai be the updated value
in step i when a message M is processed. Let A′

i be the updated value in step
i when a message M ′ is processed. Ai = gh means that all bits from g-th bit of
Ai to (g + h − 1)-th bit of Ai are the bit ‘1’ and (g + h)-th bit of Ai is the bit
‘0’. And Ai = g means that g-th bit of Ai is the bit ‘0’. Reversely, Ai = −gh

means that all bits from g-th bit of Ai to (g + h− 1)-th bit of Ai are the bit ‘0’

and (g+ h)-th bit of Ai is the bit ‘1’. And Ai = −g means that g-th bit of Ai is
the bit ‘1’. ∆Ai = gh means that Ai is gh and A′

i is −gh. Reversely, ∆Ai = −gh

means that Ai is −gh and A′

i is gh. Also, the output of boolean function in each
step and message words are defined in the same way. From the third column to
the sixth column in Table 5, 7 and 9 in the appendix are conditions on Ai. The
last column in Table 5, 7 and 9 say the number of conditions of Ai. Ai,j = a

means that the j-th bit of Ai is same as the j-th bit of Ai−1. Ai,j = b means
that the j-th bit of Ai is same as the j-th bit of Ai−2.

3 A New MD4 Differential Path I and Its Application to

APOP-MD4

In 2007, Gaetan Leurent [5] proposed an attack method to recover a partial
key of a secret password used in APOP-MD4 and APOP-MD5 authentication
protocols. Sasaki et al. [11] also discovered independently a partial key-recovery
attack on APOP-MD5. Their works are based on the collision-inducing differen-
tial paths discovered by Wang et al. [12, 14]. In their attack scenario, an attacker
is a forged mail server who doesn’t know a target-client’s secret password but
wants to know a partial information of the password by the communication with
the client. their attack idea is based on the fact that the length of the nonce
generated by a mail server has no limit. In other words, an attacker can choose
a nonce of an arbitrary length. On the other hand, in case when the nonce has
a fixed length, their attack doesn’t work.

In this paper, even when the nonce has a fixed length, we show that we can
recover efficiently a partial information of the password with the MD4 differen-

tial path I explained in the appendix. The differential paths used in previous
partial-key recovery attack are all collision-inducing differential paths. However,
any good differential path with a high probability is enough for analyzing APOP.
This is because, even though the output difference of a path is not zero, we can
check if two messages satisfy conditions in the path just by checking if the out-
put difference satisfies the pattern of the output difference of the path. By this
idea, we can recover efficiently a partial information of the secret password. We
can write this problem as follows.Here, we consider only a case that the secret
password P is 96-bit and the nonce is 416-bit.

Problem 1. Let IV be the fixed initial value of MD4. The secret password
P is 96-bit and the nonce is 416-bit. An attacker can ask queries to a target-
client, where each query Nonce is a nonce in APOP. Then the client returns
coMD4(IV,Nonce||P) to the attacker. In this scenario, the attacker can recover
56 bits of the password P with 213 queries and with the time complexity that
corresponds to the time of sorting 212 elements 230 times.

Proof. Problem 1 can be solved by the idea discovered by Contini and Yin [2].
We write P = P1||P2||P3 where each Pi is 32-bit. We want to recover 56 bits of
P . More precisely, we will recover lower 30 bits of P1 and lower 26 bits of P2.

See Table 4 and 5. There are only six conditions from step 14 to the last step.
MD4’s IV also satisfies one condition corresponding to the initial value in Table
4 and 5. Since the attacker can choose nonces arbitrarily by himself, he choose
two nonces which satisfy all conditions corresponding to from step 1 to step 13
in Table 4 and 5. We denote such two nonces by N = (n1||n2|| · · · ||n13) and
N ′ = (n′

1||n
′

2|| · · · ||n
′

13) such that n′

1 − n1 = −24, n′

4 − n4 = 2 and n′

i = ni for
i 6= 1, 4. Next, he sends them to the client, and then obtains coMD4(N ||P) and
coMD4(N ′||P). Since there are only six conditions from step 14 to the last step
in Table 4 and 5, the following statements hold with the probability 2−6.

coMD4(N ′||P)-coMD4(N ||P)=(24, ?, ?, ?) · · · · · · (1)

See Table 4 and 5. If we obtain (N,N ′) satisfying (1) with probability 2−6, then
such (N,N ′) also satisfies all conditions in Table 2 and 3 with the probability
almost 1. This is because if (N,N ′) doesn’t satisfy just one condition in Table 4
and 5, the probability that (N,N ′) satisfies (1) is 2−32. Based on this observa-
tion, we can recover lower 30 bits of P1 with the following algorithm 1.

Algorithm 1. Recovery of lower 30 bits of P1.

1. The attacker chooses 212 (N,N ′) pairs such that n′

1−n1 = −24, n′

4−n4 = 2
and n′

i = ni for i 6= 1, 4. Then he gives them to the client and obtains
coMD4(N ′||P) and coMD4(N ||P) for all 213 (N,N ′) pairs from the client.

2. He guesses lower 30 bits of P1 used in step 14.
3. He selects all (N,N ′) pairs which make the fifth bit of A14 be ‘1’, where A14

is the updated value in step 14.
4. If there is no (N,N ′) (which is selected in the phase 3) satisfying the state-

ment (1), then outputs the guessed 30 bits of P1 and stops this algorithm,
otherwise go to the phase 2.

Now we explain how the algorithm 1 works. See Table 4 and 5 in the appendix.
According to the Table 5, there is a condition that the fifth bit of A14 is ‘0’.
Since the value of the shift rotation in step 14 is 7, lower 30 bits of P1 influence
the fifth bit of A14 in step 14. Therefore, if the attacker guesses the password
wrongly, in the phase 3 of the algorithm 1, 210 (N,N ′) pairs among 211 (N,N ′)
pairs selected on average in the phase 3 make the fifth bit of A14 be ‘0’ on average
when the corrected lower 30 bits of P1 is applied to such 210 (N,N ′). So, in case
of a wrong guess, each (N,N ′) among 210 (N,N ′) pairs satisfies the statement
(1) with the probability 2−5. We expect that 25(= 2−5 ·210) (N,N ′) pairs satisfy
the statement (1).

Now, let’s compute the number of wrong passwords such that there is no
(N,N ′) pair satisfies the statement (1). The probability that there is no (N,N ′)
(which is selected in the phase 3 satisfying the statement (1) in case of a wrong-

guessed password is (1 − 2−5)2
10

. Since there are 230 − 1 wrong passwords, the
number of wrong passwords that there is no (N,N ′) (which is selected in the

phase 3 satisfying the statements (1) is (230 − 1) · (1 − 2−5)2
10

< 2−19. On the

other hand, in case of the correct-guessed password, since we select correctly
(N,N ′) pairs which make the fifth bit of A14 be ‘1’ in the phase 3, no (N,N ′)
(which is selected in the phase 3 follows the differential path I in Table 4 and
5. So, the number of (N,N ′) (which is selected in the phase 3) satisfying the
statements (1) becomes 2−21(= 2−32 · 211). Therefore, we can recover correctly
lower 30 bits of P1 by the phase 4 of the algorithm 1.

Next, we can recover lower 26 bits of P2 with the algorithm 2.

Algorithm 2. Recovery of lower 26 bits of P2.

1. The attacker guesses higher two bits of P1.
2. He guesses lower 26 bits of P1 used in step 15.
3. Among 212 (N,N ′) pairs obtained in the algorithm 1, he selects all (N,N ′)

pairs which make the fifth bit of A15 be ‘0’, where A15 is the updated value
in step 15.

4. If there is no (N,N ′) (which is selected in the phase 3) satisfying the state-
ment (1), then outputs the guessed 30 bits of P1 and stops this algorithm,
otherwise go to next phase.

5. For a fixed higher two bits of P1, if he has not yet searched all 226 candidates
of lower 26 bits of P1, go to the phase 2, otherwise go to the phase 1.

According to the Table 5, there is a condition that the fifth bit of A15 is ‘0’.
Since the value of the shift rotation in step 15 is 11, lower 26 bits of P2 influence
the fifth bit of A15 in step 15. Similarly, we can recover correctly lower 26 bits
of P2 with the algorithm 2. �

4 New MD4 Differential Paths II-A,B and Their

Applications to NMAC-MD4

Fouque, Leurent and Nguyen [4] constructed 22 collision-inducing differential
paths. Their differential paths have eighty conditions per each path. Among
eigthty conditions, one condition is for the initial value. In case of NMAC and
HMAC, on the assumption that the values of K1 and coMD4(IV, K̄ ⊕ ipad)
are known, they could find one bit of K2 or coMD4(IV, K̄ ⊕ opad) with the
time complexity 280 because the initial value has one condition in the path.
The assumption is reasonable because Contini et al. [2] introduced a method to
recover K1 and coMD4(IV, K̄ ⊕ ipad) with complexity 263. So, if we find two
messages which produce the same MAC value with their path, we know that one
bit of K2 or coMD4(IV, K̄⊕opad) satisfies the condition in their path, otherwise
one bit of K2 or coMD4(IV, K̄⊕opad) doesn’t satisfy the condition in their path,
that is, satisfies the opposite condition of a given condition. Since 280 is so big,
their attack seems to be impossible to implement their attack in the current
computing power.

In this paper, we show that the complexity that requires to recover four bits
can be improved very efficiently if we use our new differential paths II-A,B in the
appendix and the attacker model is in the related-key setting and K1 is known.
More precisely, we can recover four bits ofK2 of NMAC with the time complexity
223 and the probability 2−3 in the related-key setting. Since 223 is much less than
280, our attack scenario can be implemented efficiently. Our attack result shows
that the analyzing method based on differential paths is more powerful than
that based on collision-inducing differential paths. In the following subsection,
we will explain our attack scenario in detail.

4.1 Attack Scenario on NMAC-MD4

The following two figures in Fig. 3 are the expressions of NMAC-MD4K1,K2
(M) =

h2, where the bit length of M is less than 448 and g is the padding method ex-
plained in section 2. For |M | < 448, two expressions are identical.

MD4

MD4

M

K1

K2

h1

h2

coMD4

coMD4

g(M)

K1

K2

h1

h2

g

Fig. 3. Identical Two Expressions : NMAC-MD4K1,K2
(M) = h2, |M | < 448

The goal of this subsection is to describe an efficient partial-key recovery
attack on K2 in the related-key setting, on the assumption that K1 is known
and satisfies two conditions corresponding to the initial value in Table 6 and 7.
For this goal, only messages of bit length 447 are used as NMAC-MD4 queries.
This is because we want to simulate NMAC-MD4 with using coMD4 two times
and control bits as many as possible, where at least lower 65 bits of g(M) is
determined by the length of M . In case of |M | = 447, the lower 65 bits of g(M)
is fixed as 1||bin64(447). See Fig. 4. We make queries M and M ′, where α1 =
g(M ′)− g(M), β1 = h′1 −h1, α2 = g(h′1)− g(h1), β2 = h′2 −h2, ∆K1 = K ′

1−K1

and ∆K2 = K ′

2 −K2.
For fixed values α1(6= 0), β1(6= 0), β2, ∆K1 and ∆K2, we denote the prob-

ability that M ′ and M satisfy the relation α1 →∆K1
β1 by p and the relation

α2 →∆K2
β2 by q, on the assumption that ∆K1 = K ′

1−K1 and ∆K2 = K ′

2−K2

in the related-key setting. Here, α2 is determined by β1 from the relations
β1 = h′1 − h1 and α2 = g(h′1) − g(h1). Then, the equation β2 = h′2 − h2 holds
with the probability p · q in Fig. 4. For example, according to Table 6, α1, β1

and ∆K1 are defined as follows. ∗ can be + or −.

coMD4

coMD4

g(M)

K1

K2

h1

h2

gcoMD4

coMD4

g(M)

K1

K2

h1

h2

g

Fig. 4. Processing M and M ′ : |M |, |M ′| < 448

• α1 = g(M ′) − g(M)
: m′

1-m1=∗231, m′

i = mi for i 6= 1, where g(M ′) = m′

1|| · · · ||m
′

16 and
g(M) = m1|| · · · ||m16.

• β1 = h′1 − h1

: h′1 − h1=coMD4(K ′

1, g(M
′))−coMD4(K1, g(M))=(∗231, 0, 0,−228).

• ∆K1 = K ′

1 −K1

: K ′

1 −K1 = (∗231, 0, 0,−228) and K1 satisfies two condition in Table 7.

And according to Table 8, α2, β2 and ∆K2 are also defined as follows. ∗ can
be + or −. Here, α2 is determined by β1 from the relations β1 = h′1 − h1 and
α2 = g(h′1) − g(h1).

• α2 = g(h′1) − g(h1)
: l′1-l1=∗231, l′4-l4=−228 and l′i = li for i 6= 1, 4, where g(h′1) = l′1|| · · · ||l

′

16

and g(h1) = l1|| · · · ||l16.
• β2 = h′2 − h2

: h′2 − h2=coMD4(IV ′, g(h′1))−coMD4(IV, g(h1))=((−1)t · 219, ?, ?, ∗28).
• ∆K2 = K ′

2 −K2

: K ′

2 −K2 = (∗231 + (−1)t · 219, 228, 0, 0). And the 29th bit of the second
word of K2 is ‘0’ and the 20th bit of the first word of K2 is ‘t’.

Since we analyze NMAC-MD4 when K1 is known and satisfies two conditions
in Table 6 and 7, we can get easilyM and M ′ satisfying the relation α1 →∆K1

β1

with the probability 1 by the advanced modification method explained in [12,
10], where ∆K1 = K ′

1 − K1 in the related-key setting. Then, if K2 satisfies
three conditions in Table 8 and 9, then a (h′1, h1) pair satisfies the relation
α2 →∆K2

β2 with the probability 2−22 by twenty-two conditions corresponding
to the updated values from step 1 to step 48 in Table 8 and 9. In other words,
the following equation (2) holds with the probability 2−22.

h′2 − h2 = ((−1)t · 219, ?, ?, ∗28) · · · · · · (2)

If K2 doesn’t satisfy three conditions corresponding to the initial value in Ta-
ble 8 and 9, the equation (2) holds with the probability 2−64. Therefore, whenK1

is given and K1 satisfies two conditions in Table 6 and 7, if there exists a (M ,M ′)
pair (among 222 (M ′,M) pairs) satisfying the above relation α1 →∆K1

β1) such

that NMAC-MD4(M ′)−NMAC-MD4(M)=((−1)t · 219, ?, ?, ∗28), we can know
that K2 satisfies three conditions in Table 8 and 9, that is, we can recover three
bits of K2 with the probability 2−3. From the equation (2), we can also get the
value of t which is one bit ofK2. Therefore, we can recover four bits ofK2 in total.

Remark 1. Fouque, Leurent and Nguyen [4] had to simulate coMD4 264· 1
22 times

(which is based on the birthday attack complexity) in order to get (M,M ′) such
that g(coMD4(K1,M

′)) − g(coMD4(K1,M)) is same as the message difference
according to a path among their twenty-two paths. On the other hands, as we
said above, in the related-key setting we can find (M,M ′) very easily with the
path in Table 4 and 5 such that g(coMD4(K1,M

′))−g(coMD4(K1,M)) is same
as the message difference according to the path in Table 8 and 9. This means
that the attack method based on differential paths is more powerful than that
based on collision-inducing differential paths.

5 Conclusion

In this paper, we described how differential paths of a hash function influence
the security of schemes based on the hash function. Good differential paths can
be used to reduce the security of schemes based hash functions. It seems that
finding good differential paths with a high probability is easier than finding a
collision-inducing differential path with a high probability. Our results show that
good hash function should have the property that it is difficult to find any good

differential path with a high probability. Full key-recovery attacks on APOP-MD4
and NMAC-MD4 with using ideas explained in this paper are future works.

References

1. M. Bellare, R. Canetti and H. Krawczyk, Keying Hash Functions for Message
Authentication, Advances in Cryptology-Crypto’96, LNCS 1109, pp. 1–15, Springer-
Verlag, 1996.

2. S. Contini and Y. L. Yin, Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions, Asiacrypt’06, LNCS 4284, pp. 37–53, Springer-Verlag,
2006.

3. FIPS 180-1, Secure Hash Standard, US Department of Commerce, Washington D.
C, 1996.

4. P. A. Fouque, G. Leurent, and P. Q. Nguyen, Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5, Advances in Cryptology-Crypto’07, LNCS
4622, pp. 13–30, Springer-Verlag, 2007.

5. G. Leurent, Message Freedom in MD4 and MD5 Collisions: Application to APOP,
FSE 2007, LNCS 4593, pp. 309–328, Springer-Verlag, 2007.

6. J. Myers and M. Rose, Post Office Protocol - Version 3, RFC 1939 (Standard)
(May 1996) Updated by RFCc 1957, 2449.

7. Ronald L. Rivest, The MD4 message-digest algorithm, Request for comments (RFC
1320), Internet Activities Board, Internet Privacy Task Force, 1992.

8. Ronald L. Rivest, The MD5 message-digest algorithm, Request for comments (RFC
1321), Internet Activities Board, Internet Privacy Task Force, 1992.

9. Y. Sasaki, Y. Naito, N. Kunihiro and K. Ohta, Improved Collision Attacks on MD4
and MD5, IEICE TRANS. FUNDAMENTALS, VOL. E90-A, NO. 1, pp. 36–47, Jan.
, 2007.

10. Y. Sasaki, L. Wang, K. Ohta and N. Kunihiro, New Message Difference for MD4,
FSE 2007, LNCS 4593, pp. 329–348, Springer-Verlag, 2007.

11. Y. Sasaki, Go. Yamamoto and K. Aoki, Practical Password Recovery on an MD5
Challenge and Response, Cryptology ePrint Archive, Report 2007/101, 2007.

12. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, Cryptanalysis of the Hash Functions
MD4 and RIPEMD, Advances in Cryptology-Eurocrypt’05, LNCS 3494, pp. 1–18,
Springer-Verlag, 2005.

13. X. Wang, A. C. Yao and F. Yao, Cryptanalysis on SHA-1, CRYPTOGRAPHIC
HASH WORKSHOP, October 31-November 1, 2005.

14. X. Wang and H. Yu, How to Break MD5 and Other Hash Functions, Advances in
Cryptology-Eurocrypt’05, LNCS 3494, pp. 19–35, Springer-Verlag, 2005.

15. X. Wang, H. Yu and Y. L. Yin, Efficient Collision Search Attacks on SHA-0,
Advances in Cryptology-Crypto’05, LNCS 3621, pp. 1–16, Springer-Verlag, 2005.

16. X. Wang, Y. L. Yin and H. Yu, Finding Collisions in the Full SHA-1, Advances
in Cryptology-Crypto’05, LNCS 3621, pp. 17–36, Springer-Verlag, 2005.

17. H. Yu, G. Wang, G. Zhang and X. Wang, The Second-Preimage Attack on MD4,
SCN 2005, LNCS 3810, pp. 1–12, Springer-Verlag, 2005.

Appendix

5.1 New MD4 Differential Path I

In this subsection, we propose a new MD4 differential path I which has a specific
output difference. Our proposed differential path has four conditions correspond-
ing from step 16 to step 48. This is smaller than the number of conditions of
any other known paths. Table 3 shows the differences between our path and
previous known paths. Table 4 and 5 show our new MD4 differential path I and

Table 3. The Comparison of the Numbers of Conditions of MD4

Step 14 ∼ 48 Step 15 ∼ 48 Step 16 ∼ 48 Step 17 ∼ 48

Wang et al. [12] 43 37 31 25

Yu et al. [17] 44 42 40 38

Sasaki et al. [10] 29 22 16 12

Table 4 and 5 in Our paper 6 5 4 4

conditions corresponding to the initial value and the updated values. Here, M
and M ′ are 512-bit. The notations in Table 4 and 5 were already described in

section 2. 2i in the following statements 1) and 2) means i multiples of two.

1) The relation between M and M ′ : m′

1 −m1 = −24, m′

4 −m4 = 2 and
m′

i = mi for i 6= 1, 4.
2) The output difference : coMD4(IV , M ′)−coMD4(IV , M)=(24, ?, ?, ?).

5.2 New MD4 Differential Path II-A

Table 6 and 7 show our new MD4 differential path II-A and conditions cor-
responding to the initial value and the updated values. Here, M and M ′ are
512-bit. The notations in Table 6 and 7 were already described in section 2. 2i

in the following statements 1), 2) and 3) means i multiples of two.

1) The relation between M and M ′ : m′

1 −m1 = ∗231, m′

i = mi for i 6= 1.
2) The difference of initial values : IV ′ − IV = (∗231, 0, 0,−228),

and the 29th bit of the forth word of IV is ‘1’.
3) The output difference : coMD4(IV ,M ′)−coMD4(IV ,M)=(∗231, 0, 0,−228).

5.3 New MD4 Differential Path II-B

Table 8 and 9 show our new MD4 differential path II-B and conditions cor-
responding to the initial value and the updated values. Here, M and M ′ are
512-bit. The notations in Table 8 and 9 were already described in section 2. 2i

in the following statements 1), 2) and 3) means i multiples of two. ± means ‘all
are +’ or ‘all are −’. In Table 9, all t’s are 1 or 0.

1) The relation between M and M ′ : m′

1 −m1 = ∗231, m′

4 −m4 = −228,
and m′

i = mi for i 6= 1, 4.
2) The difference of initial values : IV ′ − IV = (∗231 + (−1)t · 219, 228, 0, 0),

and the 29th bit of the second word of IV is ‘0’ and the
20th bit of the first word of IV is ‘t’.

3) The output difference : coMD4(IV ,M ′)−coMD4(IV ,M)=((−1)t·219, ?, ?, ∗28).

Table 4. New MD4 Differential Path I : i is any value.

Step Output Diff. of Bool. Func. Diff. of Message Word Diff. of Updated Value

∆A0

1 -5 ∆A1 = −8

2 ∆A2

3 ∆A3

4 2 ∆A4 = 219

5 28 ∆A5 = 312,−111

6 ∆A6

7 -29,-32 ∆A7 = −8, 11

8 ∆A8 = 8

9 11 ∆A9 = 210

10 ∆A10

11 8,-11 ∆A11

12 -8 ∆A12

13 ∆A13 = 5

14 ∆A14

15 ∆A15

16 ∆A16

17 -5 ∆A17

18 ∆A18

...
...

...
...

27 ∆A27

28 ∆A28

29 2 ∆A29 = 5

30 ∆A30

31 ∆A31

32 ∆A32

33 -5 ∆A33

34 ∆A34

35 ∆A35

36 ∆A36

...
...

...
...

41 ∆A41

42 ∆A42

43 ∆A43

44 ∆A44

45 2 ∆A45

46 ? ∆A46 =?

47 ? ∆A47 =?

48 ? ∆A48 =?

∆(A−3 + A45) = 5i

∆(A0 + A48) =?

∆(A−1 + A47) =?

∆(A−2 + A46) =?

Table 5. Conditions of New MD4 Differential Path I : i is any value.

Step Updated Value 32 ∼ 25 24 ∼ 17 16 ∼ 9 8 ∼ 1 ♯ of
Conditions

A0 a 1

1 A1 = −8 1 1

2 A2 1 0 2

3 A3 a a 0 a a a a a a a 1 11

4 A4 = 219 a a 0 1 1 1 1 1 1 1 1 1 a a a 15

5 A5 = 312,−111 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 16

6 A6 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 16

7 A7 = −8, 11 1 1 1 0 1 1 6

8 A8 = 8 a 1 a a 0 a a a a a a 11

9 A9 = 210 0 1 1 1 1 1 1 1 1 1 1 11

10 A10 0 1 0 0 0 0 0 0 0 0 0 11

11 A11 1 1 1 1 0 1 1 1 1 1 1 11

12 A12 a 1

13 A13 = 5 0 1

14 A14 0 1

15 A15 1 1

16 A16

17 A17

18 A18

...
...

...
...

...
...

...

27 A27

28 A28 a 1

29 A29 = 5 0 1

30 A30 b 1

31 A31 a 1

32 A32

33 A33

34 A34

35 A35

36 A36

...
...

...
...

...
...

...

41 A41

42 A42

43 A43

44 A44

45 A45

46 A46 =? ?

47 A47 =? ?

48 A48 =? ?

A−3 + A45 = 5i

A0 + A48 =? ?

A−1 + A47 =? ?

A−2 + A46 =? ?

Table 6. New MD4 Differential Path II-A

Step Output Diff. of Bool. Func. Diff. of Message Word Diff. of Updated Value

∆A−3 = ∗32

∆A−2 = −29

∆A−1

∆A0

1 *32 ∆A1

2 ∆A2 = −41

3 ∆A3

4 ∆A4

5 ∆A5

6 ∆A6 = −1116

7 ∆A7

8 24 ∆A8 = 11

9 14,26 ∆A9 = 29, 173

10 11,-17,-18,-19,20 ∆A10 = 24

11 -19 ∆A11 = −30

12 ∆A12 = 30

13 ∆A13 = 32, 2011

14 -24 ∆A14

15 30 ∆A15

16 -30 ∆A16

17 *32 ∆A17 = 23

18 ∆A18

19 ∆A19

20 ∆A20

21 ∆A21 = 26

22 ∆A22

23 ∆A23

24 ∆A24

25 ∆A25 = 29

26 ∆A26

27 ∆A27

28 ∆A28

29 ∆A29 = 32

30 ∆A30

31 ∆A31

32 ∆A32

33 *32 ∆A33

...
...

...
...

48 ∆A48

∆(A−3 + A45) = ∗32

∆(A0 + A48)

∆(A−1 + A47)

∆(A−2 + A46) = −29 or − 291 or

− 292 or − 293 or (29, 30, 31, 32)

Table 7. Conditions of New MD4 Differential Path II-A

Step Updated Value 32 ∼ 25 24 ∼ 17 16 ∼ 9 8 ∼ 1 ♯ of
Conditions

A−3 = ∗32

A−2 = −29 1 1

A−1

A0 1 1

1 A1 a a 2

2 A2 = −41 1 0 2

3 A3 0 0 2

4 A4 1 1 2

5 A5 a a a a a a a a a a a a a a a a a 17

6 A6 = −1116 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17

7 A7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 17

8 A8 = 11 a 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 18

9 A9 = 29, 173 0 a 0 1 1 1 1 7

10 A10 = 24 0 0 0 0 1 0 0 1 8

11 A11 = −30 1 1 0 1 1 1 1 7

12 A12 = 30 a a 0 a a a a a 1 a a a a 13

13 A13 = 32, 2011 0 0 1 1 1 1 1 1 1 1 1 1 1 13

14 A14 0 0 0 0 0 0 0 0 0 0 0 0 0 13

15 A15 1 1 0 1 1 1 1 1 1 1 1 1 1 13

16 A16 a 1

17 A17 = 23 0 1

18 A18 b 1

19 A19 a 1

20 A20 a 1

21 A21 = 26 0 1

22 A22 b 1

23 A23 a 1

24 A24 a 1

25 A25 = 29 0 1

26 A26 b 1

27 A27 a 1

28 A28 a 1

29 A29 = 32 0 1

30 A30 b 1

31 A31 a 1

32 A32

33 A33

...
...

...
...

...
...

...

48 A48

A−3 + A45 = ∗32

A0 + A48

A−1 + A47

A−2 + A46 =
−29 or −291 or
−292 or −293 or

(29,30,31,32)

Table 8. New MD4 Differential Path II-B : i and j are any value.

Step Output Diff. of Bool. Func. Diff. of Message Word Diff. of Updated Value

∆A−3 = ∗32, (−1)t · 20

∆A−2

∆A−1

∆A0 = 29

1 *32 ∆A1 = (−1)t · 23

2 ∆A2

3 ∆A3

4 -29 ∆A4

5 ∆A5 = (−1)t · 26

6 ∆A6

7 ∆A7

8 ∆A8

9 ∆A9 = (−1)t · 29

10 ∆A10

11 ∆A11

12 ∆A12

13 ∆A13 = (−1)t · 32

14 ∆A14

15 ∆A15

16 ∆A16

17 *32 ∆A17

18 ∆A18

...
...

...
...

27 ∆A27

28 ∆A28

29 -29 ∆A29 = −32

30 ∆A30

31 ∆A31

32 ∆A32

33 *32 ∆A33

34 ∆A34

35 ∆A35

...
...

...
...

43 ∆A43

44 ∆A44

45 -29 ∆A45 = −32

46 *32 ∆A46 = ∗9

47 ? ∆A47 =?

48 ? ∆A48 =?

∆(A−3 + A45) = (−1)t · 20i

∆(A0 + A48) =?

∆(A−1 + A47) =?

∆(A−2 + A46) = ∗9j

Table 9. Conditions of New MD4 Differential Path II-B : all t’s are same. i is any
value.

Step Updated Value 32 ∼ 25 24 ∼ 17 16 ∼ 9 8 ∼ 1 ♯ of Con
-ditions

A−3 = ∗32, (−1)t · 20 t

A−2

A−1 a 1

A0 = 29 0 a 2

1 A1 = (−1)t · 23 0 t 2

2 A2 1 0 2

3 A3 1 1

4 A4 a 1

5 A5 = (−1)t · 26 t 1

6 A6 0 1

7 A7 1 1

8 A8 a 1

9 A9 = (−1)t · 29 t 1

10 A10 0 1

11 A11 1 1

12 A12 a 1

13 A13 = (−1)t · 32 t 1

14 A14 0 1

15 A15 1 1

16 A16

17 A17

18 A18

...
...

...
...

...
...

...

27 A27

28 A28 a 1

29 A29 = −32 1 1

30 A30 b 1

31 A31 a 1

32 A32

33 A33

34 A34

35 A35

...
...

...
...

...
...

...

43 A43

44 A44

45 A45 = −32 1 1

46 A46 = ∗9

47 A47 =? ?

48 A48 =? ?

A−3 + A45 =
= (−1)t · 20i

A0 + A48 =? ?

A−1 + A47 =? ?

A−2 + A46 = ∗9j

