
Speeding Up Multi-Scalar Multiplications for
Pairing-Based zkSNARKs

Xinxin Fan1, Veronika Kuchta2, Francesco Sica2, and Lei Xu3

1IoTeX, Menlo Park, CA 94025
2Department of Mathematics and Statistics

Florida Atlantic University, Boca Raton, FL 33431
3Department of Computer Science

Kent State University, Kent, OH 44242

Abstract. Multi-scalar multiplication (MSM) is one of the core compo-
nents of many zero-knowledge proof systems, and a primary performance
bottleneck for proof generation in these schemes. One major strategy
to accelerate MSM is utilizing precomputation. Several algorithms (e.g.,
Pippenger and BGMW) and their variants have been proposed in this di-
rection. In this paper, we revisit the recent precomputation-based MSM
calculation method proposed by Luo, Fu and Gong at CHES 2023 [10]
and generalize their approach. In particular, we presented a general con-
struction of optimal buckets. This improvement leads to significant per-
formance improvements, which are verified by both theoretical analysis
and experiments.

1 Introduction

The concept of zero-knowledge proof (ZKP) was introduced by Goldwasser,
Micali, and Rackoff in 1985 [6]. Terms like ZKP or zero-knowledge arguments
(ZKA) satisfy the three security properties, such as correctness - meaning that
an honest prover will always convince a verifier of knowing a secret to a pub-
lic statement, soundness—ensuring that a dishonest prover cannot prove a false
statement—and zero-knowledge—indicating that the proof reveals no extra infor-
mation beyond the truthfulness of the statement the prover aims to prove. While
in ZKP systems the soundness property holds for provers with unbounded (sta-
tistical) capabilities, it is assumed that the prover is computationally bounded
in ZKA systems.

There has been a surge of interest in putting ZKP into practice in the past
few years, which was first triggered by the demands for privacy protection in
the blockchain environment (e.g., Zerocash (zcash) [1]), and then more general
applications such as verifiable computation.

An advanced version of ZKPs with short proofs and efficient verification is
known as zkSNARKs (zero-knowledge Succinct Non-interactive ARguments of

Author list in alphabetical order; see https://www.ams.org/about-us/governance/
committees/Statement_JointResearchanditsPublication.pdf

1

Knowledge). They can be seen as a composition of the Non-Interactive Zero-
Knowledge proofs (NIZKs) and succinct Arguments of Knowledge. NIZKs were
introduced by Blum, Feldman and Micali [3] while Kilian [9] provided a definition
on efficient zero-knowledge arguments. In a proof system, the prover’s computa-
tional power may be unbounded, but in an argument system, it is assumed that
the prover is computationally bounded.

While many zkSNARK schemes have been proposed since then, pairing-based
zkSNARK is still one of the most attractive options in practice. While the veri-
fication in zkSNARKs is fast, the construction of such proof systems is usually
time-consuming and hinders their wide adoption. In pairing-based zkSNARK
constructions (e.g., [5,7,8,11]), the proof consists of several points in an elliptic
curve group which operate with each other within of this group.

The main computational bottleneck of such zkSNARK constructions lies in
multiscalar multiplication (MSM). Let Sn,r be the following n-scalar multiplica-
tion over fixed points P1, . . . , Pn,

Sn,r “

n
ÿ

i“1

aiPi, (1)

where ai P r0, rq , i “ 1, . . . , n are integers. In the following, r will denote the
order of the (elliptic curve) group where all these computations take place.

1.1 Existing MSM Computation Methods

In the last three decades, various methods have been proposed to accelerate
MSM computation, and most of them utilize precomputation.

Straus Method To compute Sn,r, the Straus method this method precomputes
2nc points

!

n
ÿ

i“1

biPi|@bi P r0, 2c ´ 1s, i P r1, ns

)

where c is a small integer. Next, the algorithm divides each ai from (1) into
segments of length c, i.e.

ai “ ai,h´1}ai,h´2} ¨ ¨ ¨ }ai,1}ai,0 “

h´1
ÿ

j“0

ai,j2
jc, i P r1, ns

where h “ rlog2prq{cs and 0 ď aij ă 2c for j P r1, h ´ 1s for 1 ď j ď h ´ 1. The
algorithm retrieves the point

Sn,2c “

n
ÿ

i“1

ai,h´1Pi

2

from the precomputation table, doubles it c times, adds the precomputed point
řn

i“1 ai,h´2Pi to obtain

Sn,22c “

n
ÿ

i“1

pai,h´1}ai,h´2qPi.

After h´ 1 repetitions, we obtain

Sn,2hc “

n
ÿ

i“1

pai,h´1}ai,h´2} . . . }ai,0qP0 (2)

Pippenger’s Bucket Method This method proceeds in the same way as in
Straus method except for computing

Sn,2c “

n
ÿ

i“1

ai,jPi

where j P r0, h´1s, h “ rlog2prq{cs. First, the method sorts all points into p2c´1q

buckets with respect to their scalars. Let Si denote the intermediate subsum of
points corresponding to scalar i. The algorithm computes all Si, for i P r1, 2c´1s

and finally it computes Sn,2c “
ř2c´1

i“1 i ¨ Si using at most 2p2c ´ 2q additions.

Luo-Fu-Gong (LFG) MSM Method [10] Let M be a set of integers, B a
set of non-negative integers containing zero. Given scalars ai, 0 ď ai ă r, the
LFG method first computes [10, Algorithm 6] a radix q representation

ai “

h´1
ÿ

j“0

aijq
j

where h “ rlogq rs, and for every i P r1, ns, j P r0, h´ 1s,

aij “ ϵijmijbij , where ϵij P t˘1u,mij P M, bij P B .

Then, Sn,r can be computed as:

Sn,r “

n
ÿ

i“0

aiPi “

n
ÿ

i“1

`

h´1
ÿ

j“0

aijq
j
˘

Pi (3)

“

n
ÿ

i“1

`

h´1
ÿ

j“0

ϵijmijbijq
j
˘

Pi “

n
ÿ

i“1

h´1
ÿ

j“0

bijϵijmijq
jPi

Let Pij “ ϵijmijq
jPi. Then Sn,r can be computed as follows.

Sn,r “

n
ÿ

i“1

h´1
ÿ

j“0

bijPij “

n
ÿ

i“1

h´1
ÿ

j“0

`

ÿ

kPB

k ¨
ÿ

i,j s.t. bij“k

Pij

˘

(4)

“
ÿ

kPB

k ¨
`

n
ÿ

i“1

h´1
ÿ

j“0

ÿ

i,j s.t. bij“k

Pij

˘

.

3

Assume that there are nh|M | such points which are defined as

tmqjPi|1 ď i ď n, 0 ď j ď h´ 1,m P Mu

These points are precomputed (we don’t need to precompute their opposites, see
below). Then define intermediate subsums

Sk “

n
ÿ

i“1

h´1
ÿ

j“0

ÿ

i,j s.t. bij“k

Pij , k P B .

All Sk’s can be computed with at most nh´p|B|´1q additions and the remainder
is computed by Algorithm 1 with at most 2p|B| ´1q `d´3 additions, where d is
the maximum difference between the two neighboring elements in B. The total
cost of computing Sn,r is therefore at most

nh` |B| ` d´ 4 (5)

elliptic curve additions.

Algorithm 1 Subsum accumulation algorithm [10]

Input: 1 ď b1 ď b2 ď . . . ď b|B|, S1, S2, . . . , S|B|

Output: S “ b1S1 ` ¨ ¨ ¨ ` b|B|S|B|

1: Define a length-pd ` 1q array tmp “ r0s ˆ pd ` 1q

2: for i “ |B| to 1 by ´1 do
3: tmpr0s “ tmpr0s ` Si

4: k “ bi ´ bi´1

5: if k ě 1 then
6: tmprks “ tmprks ` tmpr0s

7: return 1 ¨ tmpr1s ` 2 ¨ tmpr2s ` ¨ ¨ ¨ ` d ¨ tmprds

LetM denote a set of multipliers which are used to generate the precomputed
points. Furthermore, the set B is called a bucket set which contains sorted points.
In Algorithm 2 we recall the MSM algorithm of [10]. Note that Luo, Fu and Gong
merge the multiplier set with the units ˘1, so that their M is in fact what for
us will be M Y ´M .

1.2 Our contribution

In summary, our contribution in this paper is threefold:

(1) We point out a problem with Property 1 in the MSM method in [10] which
proposes a new decomposition of scalars in base q “ 2c. The original property
in [10] states the following: given a power of two integer q “ 2c (for 10 ď c ď

31), for all 0 ď t ď q there exists a value b P B and a multiplier m P t1, 2, 3u

such that t “ mb or q ´ t “ mb. This decomposition is then used in a

4

Algorithm 2 Multi-scalar multiplication over fixed points [10]

Input: Scalars a1, a2, . . . , an, fixed points P1, P2, . . . , Pn, radix q, scalar length h, mul-
tiplier set M “ tm0,m1, . . . ,m|M |´1u, bucket set B “ tb0, b1, . . . , b|B|´1u.

Output: Sn,r “
n
ř

i“1

aiPi

1: Precompute a length-nh|M | point array precomputation, s.t. precomputation
r|M |ppi ´ 1qh ` jq ` ks “ mkqjPi.

2: Precompute a hash table mindex to record the index of every multiplier, s.t.
mindexrmks “ k. Precompute a hash table bindex to record the index of every
bucket, such that bindexrbks “ k.

3: Convert every ai to its standard q-ary form, then convert it to ai “
h´1
ř

j“0

mijbijq
j .

4: Create a length-nh scalar array scalars, s.t. scalarsrpi ´ 1qh ` js “ bij . Create a
length-nh array points recording the index of points, such that pointsrpi´1qh`js “

|M |ppi ´ 1qh ` jq ` mindexrmijs. n-scalar multiplication Sn,r is equivalent to the
following nh-scalar multiplication

nh´1
ÿ

i“0

scalarsris ¨ precomputationrpointsriss,

where every scalar in scalars is from bucket set B.
5: Create a length-|B| point array buckets to record the intermediate subsums, and ini-

tialize every point to infinity. For 0 ď i ď nh´1, add point precomputationrpointsriss
to bucket bucketsrbindexrscalarsrisss.

6: Invoke Algorithm 1 to compute
|B|´1
ř

i“0

bi ¨ bucketsris, return the result.

modified Pippenger bucket algorithm. The main idea behind this property
is to remove redundant points from an initially defined set B0 to obtain a
new set B1. This can be done for the purpose of saving computational costs,
since in an elliptic curve group, ´Pi “ pxi,´yiq can be determined on the fly
from the computed points Pi “ pxi, yiq. The algorithm provided by Luo, Fu,
and Gong [10] for constructing B1 from B0 discards all elements of the form
q´2i and q´3j for all values i, j P B0 and q{4 ď i ă q{2 and q{6 ď j ă q{4.
We provide a counterexample that shows Property 1 of [10] (we will denote
it the “LFG Property 1”) does not always hold. Furthermore, we provide a
general construction of counterexamples and prove that the LFG Property
1 is false for at least q{p216q ` Op1q integers. We also show that the LFG
Property 1 is correct for all odd t, where 0 ă t ă q.

(2) Our second contribution is to provide a method to fix the LFG Property
1. We present a new construction of the set B1 by first removing elements
of the form q ´ 2i and q ´ 3j from the initial set B0 and then adding all
elements of the form q´ 6k P B0 with k R B0. Next, we show how to modify
the LFG Property 1 to obtain a MSM algorithm with optimal runtime. The
modification involves an element ϵt P t˘1u such that t ” ϵtmtbt mod q for a
multiplier mt P M and a bucket element bt P B. While the achieved running

5

time of the MSM algorithm in [10] is pnh ` 0.21qq ¨ Add, for q “ 2c and
10 ď c ď 31 and Add denoting the number of point additions on an elliptic
curve, we stress out that the LFG Property 1 leaves out some values of t,
therefore the time complexity of the LFG bucket method cannot be taken as
a benchmark. In contrast to [10] the scalars decomposition property holds
for all 0 ă t ă q and achieves the same space and running time complexity
for q “ pc and 4 ď c ď 11 (see Table 1).

(3) In our third contribution we use efficient endomorphisms to achieve better
running time complexity and to save storage space. We use an endomorphism
ω such that ω3pP q “ P for all elliptic curve points P . Since it holds that
ωpx, yq “ pζ3x, yq for a complex cube root of unity ζ3 P Fp, i.e. ζ

3
3 “ 1, the

computation of ωpP q can be done on the fly leading to significant savings
of the storage cost of these points. The endomorphism ring of such ellip-
tic curves is isomorphic to Zrωs. With this in mind we update the scalar
decomposition property to adapt it to the new setting, where t P Zrws.
We implement our idea with p “ 2 ´ ω, the multiplier set M “ t1u and
q “ pc, where p | 7 in Zrωs. With this approach we reduce the storage cost
from 3nh ` n to nh curve points and the time complexity is reduced from
pnph` 1q ` 0.21875qq ¨ Add to pnh` 0.167q ` 20q ¨ Add.

Finally we confirm our result for the fixed LFG Property 1 and the new bucket
set constructions by implementing the MSM algorithm in C++. To enable a fair
comparison with the LFG approach we use the same elliptic curve BLS12-381.
We measure the space complexity in terms of the number of stored elliptic curve
points P . Therefore, the expression nh ¨ P indicates that a total of nh curve
points are stored.

Table 1. Comparison of Different MSM Algorithms, for q “ pc, 4 ď c ď 11.

Method Space Complexity Time Complexity (Worst Case)

Pippenger [2, 12] n ¨ P hpn ` 0.5qq ¨ Add

Pippenger variant [4] nh ¨ P pnh ` 0.5qq ¨ Add

LFG [10], p “ 21 3nh ¨ P pnh ` 0.21qq ¨ Add

Repaired LFG Method, p “ 2 ppp3nh `̀̀ nqqq ¨̈̈ P pppnppph `̀̀ 1qqq `̀̀ 0.21875qqqq ¨̈̈ Add

Our Method for a prime p ą 2 nppph `̀̀ 1qqq|||M ||| ¨̈̈ P pppnppph `̀̀ 1qqq `̀̀ q{{{ppp2|||M |||qqq `̀̀ p ´́́ 4qqq ¨̈̈ Add

Our Method with endomorphisms for |M | “ t1u nh ¨̈̈ P pppnh `̀̀ 0.167q `̀̀ 20qqq ¨̈̈ Add

2 Analysis of the LGF MSM Algorithm

In this section, we first point out an issue with the MSMmethod of [10], especially
with their Property 1 on p. 369, and then propose a fix.

1 Notice that the time and space complexities in [10] are provided for their incomplete
bucket set B. Since the repaired bucket set B contains more points, the complexities
would be comparable to our results.

6

2.1 Background of Property 1 in [10]

For a prime p and a positive integer n, define ordppnq to be the integer e ě 0
such that n “ pek with p ∤ k. Luo, Fu and Gong define a new decomposition of
scalars in base q “ 2c for c P N to which they can apply a modified Pippenger
bucket algorithm.

They start by first defining the set B0 as follows:

B0 “ t0u Y tb P N : 1 ď b ď q{2, ord2pbq ` ord3pbq ” 0 pmod 2qu .

Note that for any integer 1 ď t ď q{2, there exists an m P t1, 2, 3u and b P B0

such that t “ mb. Indeed, if t R B0, then 2 | t, in which case b “ t{2 P B0 or
3 | t, in which case b “ t{3 P B0.

The authors want to take advantage of the fact that, in an elliptic curve
group, opposites of points can be computed on the fly at virtually no cost,
allowing for m to be chosen from t˘1,˘2,˘3u. This leads to the removal of
redundant representations from B0 as shown in Algorithm 3 by discarding from
B0 all elements of the form q´2i and q´3j for i, j P B0, with q{4 ď i ă q{2 and
q{6 ď j ă q{4. The resulting set carved out of B0 will be called Bold

1 (B1 in [10],
but we will reserve this notation to our later fix), and the following property is
claimed computationally for B “ Bold

1 .

Algorithm 3 Construction of auxiliary set Bold
1 in [10]

Input: B0, q
Output: Bold

1

1: Bold
1 “ B0

2: for i “
q
4
to q

2
´ 1 do

3: if i P B0 and q ´ 2i P B0 then
4: Bold

1 “ Bold
1 ´ tq ´ 2iu

5: for i “ t
q
6

u to q
4

´ 1 do
6: if i P B0 and q ´ 3i P B0 then
7: Bold

1 “ Bold
1 ´ tq ´ 3iu

8: return Bold
1

Property 1 (Property 1 in [10]). Given q “ 2c p10 ď c ď 31q, for all 0 ď t ď q,
there exist b P B and m P t1, 2, 3u such that

t “ mb or q ´ t “ mb . (6)

We now provide counterexamples to this property, when B “ Bold
1 . In fact,

large families of counterexamples can be constructed for all such q. For instance,
let q “ 210 “ 1024 and t “ 292. Note that

t “ 22 ¨ 73 P B0 and q ´ t “ 732 “ 3 ¨ 22 ¨ 61 “ 3j ,

7

with j “ 244 “ 22 ¨ 61 P B0, 170 “ tq{6u ă j ă q{4 “ 256. Hence t P B0, so that
m “ 1 in t “ mb in (6), but t R Bold

1 .
On the other hand,

j “ 22 ¨ 61 “ q ´ 22 ¨ 3 ¨ 5 ¨ 13 “ q ´ 2i ,

with i “ 390 “ 2 ¨ 3 ¨ 5 ¨ 13 P B0, 256 “ q{4 ď i ă q{2 “ 512, hence j R Bold
1 .

Similarly,
q ´ t “ 2i1 ,

where i1 “ 366 “ 2 ¨ 3 ¨ 61 P B0, and

i1 “ q ´ 2 ¨ 7 ¨ 47 “ q ´ 2 ¨ i2 ,

with i2 “ 329 “ 7 ¨ 47 P B0, 256 “ q{4 ď i2 ă q{2 “ 512, hence i1 R Bold
1 . Since

q ´ t “ mb in (6) implies that m “ 2 (resp. 3), and b “ j (resp. b “ i1) is not in
Bold

1 , we conclude that t “ 292 doesn’t satisfy Property 1 for q “ 1024.

2.2 General Construction of Counterexamples

We show the general construction of counterexamples for Property 1 of [10].

Proposition 1. Property 1 is false for at least
q

216
`Op1q integers 0 ď t ď q.

Proof. As above, we let q “ 2c for an integer c ě 10. Pick any integer n that is
coprime to 6, with 4q

72 ă n ă
5q
72 . Note that among six consecutive integers, at

least two will be coprime to 6, i.e. the neighbors of a multiple of 6. Hence, there
are at least

q

216
`Op1q

such values of n. Define j “ 6n and θ “ 3pq{2 ´ jq. Note that

q

3
ă j ă

5q

12
and ord2pjq ” ord3pjq ” 1 pmod 2q ,

hence
q

4
ă θ ă

q

2
and ord2pθq ” ord3pθq ” 1 pmod 2q ,

so that j, θ P B0. Note that in particular, 3 | θ. Let t “ q ´ 2θ. We will show
0 ă t ă q{2 does not satisfy Property 1.

First, 3 ∤ t and ord2ptq “ ord2pθq`1 ” 0 pmod 2q, therefore t P B0. However,
since θ P B0, t R Bold

1 . Any expression t “ mb with m P t1, 2, 3u and b P B1 must
therefore be excluded in Property 1. We now exclude that

q ´ t “ mb, for some b P Bold
1 and m P t1, 2, 3u .

Since q ´ t ą q{2, q ´ t R B0, hence q ´ t R Bold
1 .

We have q ´ t “ 2θ. Write θ “ q ´ 2i and note 3 ∤ i, ord2piq ” 0 pmod 2q.
Also 0 ă i ă q{2, therefore i P B0 and θ R Bold

1 .

8

Finally, define ψ “
q´t
3 “ 2θ{3. Then ord2pψq ” ord3pψq ” 0 pmod 2q, and

since trivially 0 ă ψ ă q{3, we get ψ P B0. On the other hand, by definition of
θ,

ψ “ q ´ 2j ,

where we saw j P B0. Therefore ψ R Bold
1 thus concluding our proof.

2.3 Property 1 Holds for Odd 0 ă t ă q

We can nevertheless show that the following is true.

Proposition 2. Property 1 in [10] with B “ Bold
1 holds whenever 0 ď t ď q is

odd.

Proof. Replacing t by q ´ t if necessary, we can suppose that t ă q{2. There are
several cases to consider.

3 ∤ t and 3 ∤ q ´ t: In this case, t P B0 and, since we can’t write t “ q ´ 2n or
q ´ 3n with n P N, it follows that t P Bold

1 .

3 ∤ t and 3 | q ´ t: Again, t P B0. If t R Bold
1 , then we could write

t “ q ´ 3i3 , i3 ă
q

4
, i3 P B0 .

Similarly, if q ´ t “ 3i3 and i3 R Bold
1 , then

i3 “ q ´ 3i13 , i13 ă
q

4
, i13 P B0 .

We reach a contradiction, since

q “ i3 ` 3i13 ă
q

4
`

3q

4
“ q .

3 | t and 3 ∤ q ´ t: This is the last possible case. Either t P B0 and then we can
reason as in the first case to deduce that t P Bold

1 ; or

t “ 3b , b P B0 .

If b R Bold
1 , then

b “ q ´ 3j3 , j3 ă
q

4
, j3 P B0 .

This is again impossible, since b “ t{3 ă q{6, resulting in

q “ b` 3j3 ă
q

6
`

3q

4
ă q .

9

3 Repairing Property 1 of [10]

We show in this section how to change the definition of Bold
1 so that Property 1

holds.
We construct the new set B1 in Algorithm 4, by first removing from B0 as

before all elements of the form q ´ 2i ą 0 and q ´ 3j, for i, j P B0, and j ă q{4.
We then add back all elements q ´ 6k P B0 with k R B0.

Proposition 3. Property 1 with B “ B1 holds for all 0 ď t ď q.

Proof. Because Property 1 is symmetric in t Ø q ´ t, we can suppose 3 ∤ t.
Also, in view of Proposition 2 we only need suppose that 0 ‰ t is even, since
Bold

1 Ď B1. We have two cases:

ord2ptq even: If t ď q{2, then t P B0. If t R Bold
1 , then either t “ q ´ 3j with

j P B0, j ă q{4, or t “ q ´ 2i with i P B0.
In the first case, we have 2 | j, hence

t “ q ´ 3j ùñ t “ q ´ 2i with i “
3j

2
P B0 .

We therefore only need focus on t “ q ´ 2i, where i P B0. Since ord2ptq “

ord2p2iq “ ord2piq ` 1 we deduce that ord3piq ” 1 pmod 2q, in particular
that 3 | i. Calling k “ i{3, we have k R B0 and t “ q ´ 6k, therefore t P B1.
On the other hand, if t ą q{2, then, since q´t ă q{2 and ord2pq´tq “ ord2ptq,
if ord3pq ´ tq is even, then, reasoning as above with q ´ t P B0 in place of t,
we find that q ´ t P B1.
If t ą q{2 and ord3pq ´ tq is odd, then q ´ t “ 3b with b P B0. If b R Bold

1 ,
then either b “ q ´ 3j with j P B0, j ă q{4, or b “ q ´ 2i with i P B0. The
former case is impossible, since we would get the contradiction

q “ b` 3j ă
q

6
`

3q

4
ă q .

In the latter case,
b “ q ´ 2i with i P B0 .

As above ord2piq ` 1 “ ord2pbq “ ord2pq ´ tq “ ord2ptq, therefore ord2piq is
odd and ord3piq is odd; in particular 3 | i. Writing k “ i{3, we have k R B0

and b “ q ´ 6k, therefore b P B1.
ord2ptq odd: Then t “ 2b, where b P B0. If b R Bold

1 , then either b “ q ´ 3j
with j P B0, j ă q{4, or b “ q ´ 2i with i P B0. In the latter case, as before,
ord2piq ” 1 pmod 2q and therefore 3 | i. Calling k “ i{3, we have k R B0 and
b “ q ´ 6k, therefore b P B1.
The former case is slightly more complicated, where we have

b “ q ´ 3j , j ă
q

4
, j P B0 . (7)

If 2 | j, then, calling k “ j{2 R B0, we find that b P B1 as before. It
may however be the case that 2 ∤ j, that is 2 ∤ b. By (7), b ” q pmod 3q,

10

hence q ı t “ 2b pmod 3q. In this case, ord2pq ´ tq “ ord2ptq “ 1, hence
b1 “ pq ´ tq{2 P B0. If b

1 R Bold
1 , then, noticing that 2 ∤ b1,

b1 “ q ´ 3j1 , j1 ă
q

4
, j1 P B0 . (8)

Putting (7) and (8) together,

q ´ 3j1 “ b1 “
q ´ t

2
“
q

2
´ b “ 3j ´

q

2
,

from which

3j ` 3j1 “
3q

2
ðñ j ` j1 “

q

2
,

which is impossible because j, j1 ă q{4.

We define the new B “ B1, which will allow us to prove a precise estimate
of its cardinality, as now B no longer depends on the elliptic curve. Table 4 in
the appendix lists our new bucket set constructions for q “ 2c, 10 ď c ď 31.

Algorithm 4 Construction of the new auxiliary set B1

Input: B0, q
Output: B1

1: B1 “ B0

2: for q
4

ď i ă
q
2
do

3: if i P B0 and q ´ 2i P B0 then
4: B1 “ B1.removepq ´ 2iq

5: for q
6

ď i ă
q
4
do

6: if i P B0 and q ´ 3i P B0 then
7: B1 “ B1removepq ´ 3iq

8: for q
12

ď i ă
q
6
do

9: if i R B0 and q ´ 6i P B0 then
10: B1 “ B1.appendpq ´ 6iq

11: return B1

3.1 Analysis of the Size of B

The set B “ B1 can also be constructed by removing the following two subsets
from B0:

1. B2 “ tt “ q ´ 2i P B0 : i P B0, i ă q{2, 3 ∤ iu, and
2. B3 “ tθ “ q ´ 3j P B0 : j P B0, j ă q{4, 2 ∤ ju.

The sets B2 and B3 are disjoint, since all elements of the former are even, while
all elements of the latter are odd.

11

Lemma 1. The cardinalities of the sets B2 and B3 (denoted as |B2| and |B3|)
satisfy

|B2| “

ˇ

ˇ

ˇ

!

1 ď t ď
q

2
: ord2ptq ” ord3ptq ” 1 pmod 2q

)
ˇ

ˇ

ˇ
,

and

|B3| “

ˇ

ˇ

ˇ

ˇ

"

q

2
ă u ď

3q

4
: 2 ∤ u, ord3puq ” 1 pmod 2q

*
ˇ

ˇ

ˇ

ˇ

.

Proof. If t P B2, ord2ptq ” ord2piq ` 1 ” 1 pmod 2q, hence ord3ptq ” 1 pmod 2q.
Vice-versa, if 0 ă t ď q{2 satisfies ord2ptq ” ord3ptq ” 1 pmod 2q, then t P B2.
This shows that B2 can in fact be described by the set on the right-hand side of
the first equation of the lemma.

Regarding B3, whenever θ “ q ´ 3j P B0 with j P B0, j ă q{4 and j odd,
then q{4 ă θ ď q{2, and therefore q{2 ď u “ q ´ θ ă 3q{4, ord2puq “ 0
and ord3puq ” 1 pmod 2q. Vice-versa, any odd q{2 ď u ă 3q{4 (note that u
cannot equal any of those end values) such that ord3puq is odd will correspond
to θ “ q ´ u P B3.

Lemma 2. Let Q P N, e, f be nonnegative integers. Define

Se,f
Q “ t1 ď t ď Q : ord2ptq “ e, ord3ptq “ fu,

then

|Se,f
Q | “

Q

2e3f`1
`Op1q .

Proof. By the inclusion-exclusion principle,

Se,f
Q “ t1 ď t ď Q : 2e3f | tu ´ t1 ď t ď Q : 2e`13f | tu

´ t1 ď t ď Q : 2e3f`1 | tu Y t1 ď t ď Q : 2e`13f`1 | tu .

Taking cardinalities,

|Se,f
Q | “

Z

Q

2e3f

^

´

Z

Q

2e`13f

^

´

Z

Q

2e3f`1

^

`

Z

Q

2e`13f`1

^

“

ˆ

1

2e3f
´

1

2e`13f
´

1

2e3f`1
`

1

2e`13f`1

˙

Q`Op1q

“
Q

2e3f

ˆ

1 ´
1

2

˙ˆ

1 ´
1

3

˙

`Op1q

“
Q

2e3f`1
`Op1q .

12

The Size of B0zB2 Applying Lemma 2 with Q “ q{2, we compute

|B0zB2| “
ÿ

e ě 0 even
f ě 0 even

|Se,f
q{2 | “

q

2

ÿ

0ďeďlog2 q
e even

ÿ

0ďfďlog3 q
f even

1

2e3f`1
`Oplog2 qq

“
q

6

ÿ

ϵě0

1

4ϵ

ÿ

ϕě0

1

9ϕ
`Oplog2 qq “

q

4
`Oplog2 qq . (9)

The Size of B3 Similarly, by applying Lemma 2 with Q “ 3q{4, q{2, and we
have,

|B3| “
ÿ

f ě 0 odd

|S0,f
3q{4| ´ |S0,f

q{2 |

“

ˆ

3q

4
´
q

2

˙

ÿ

f ě 0 odd

1

3f`1
`Oplog qq

“
q

32
`Oplog qq . (10)

Computation of the Size of B Since B “ pB0zB2qzB3 and B2 X B3 “ H,
using (9) and (10), we compute

|B| “ |B0zB2| ´ |B3| “
q

4
´

q

32
`Oplog2 qq “

7q

32
`Oplog2 qq ,

where q “ 2c. Note that 7{32 “ 0.21875.

3.2 The Maximum Difference Between Neighbors of B

Proposition 4. Let b1 ă b2 ă ¨ ¨ ¨ ă b|B| denote the elements of B, sorted in
increasing order. Then for all 1 ď r ă |B|,

br`1 ´ br ď 6.

Proof. Consider the set

S “ tm ď q{2: m ” ˘1 pmod 6qu .

Then S Ď B0, since integers in S are coprime to 6. Let m P S. If m R B, then
m P B3 so that m ” q pmod 3q. The neighbors m´ ă m ă m` of m in S are
spaced in such a way that

tm´m´,m` ´mu “ t2, 4u .

But then m˘ ı q pmod 3q, hence m˘ R B3 and therefore m˘ P B. This shows
that consecutive elements of B are never more than 6 integers apart.

13

3.3 On the Length of the Recoding

The original LFG method called for an additional set (called B2 in [10]) to specif-
ically force the scalar recoding to be of the same length as its q-ary expansion,
see [10, Algorithm 6]. With our modification (Algorithm 5), the length can be
one digit longer, namely h ` 1. However, this last digit ah can only be 0 or 1,
therefore, only points mqjPi and q

hPi for m P M, 0 ď j ď h´ 1, 1 ď i ď n need
to be precomputed, for a total of 3nh` n points.

Algorithm 5 Adjusted scalar recoding

Input: taju0ďjďh´1, 0 ď aj ă q such that a “
řh´1

j“0 ajq
j .

Output: tpϵjmj , bjqu0ďjďh, ϵj P t˘1u, mj P M , bj P B such that a “
řh

j“0 ϵjmjbjq
j .

1: ah Ð 0
2: for j “ 0 to h ´ 1 do
3: Obtain ϵj P t˘1u,mj P M, bj P B,αj P t0, 1u such that aj “ ϵjmjbj ` αjq

in (1)
4: aj`1 “ αj ` aj`1 Ź Note that ah “ 0 or 1

5: return tpϵjmj , bjqu0ďjďh

4 Construction of Optimal Bucket Sets for Efficient
MSM Computation

We want to generalize the LFG construction of bucket sets B to provide examples
of optimal-sized sets. We first start by generalizing Property 1.

Property 2. Let p be a prime. Given q “ pc, for all 0 ď t ď q, there exist b P B
and m P M such that

t “ mb or q ´ t “ mb .

We refer to B as the bucket set and M as the (unsigned) multiplier set. In
the previous sections, B “ B1,M “ t1, 2, 3u and p “ 2. In this context, a simple
cardinality argument shows the following.

Theorem 1 (Lower bound on the bucket set size). If Property 2 holds, then

2 ¨ |B| ¨ |M | ě q .

Proof. We remark that there are at most |B| ¨ |M | integers t of the form mb
for m P M, b P B, and similarly for the t’s of the form q ´ mb. The conclusion
follows: if Property 2 holds, all 0 ď t ď q must be representable in one of these
two ways.

14

The set M determines the number of precomputed points2, which, in the
notation of LFG is |M |nh. Hence, if |M | “ 2, then |B| ě q{4 and if |M | “ 3,
|B| ě q{6. The case |M | “ 1 is Pippenger’s variant, which is therefore op-
timal [10, Table 1]. We now describe an optimal bucket set B for |M | “ 2,
satisfying |B| “ q{4 `Op1q.

4.1 Optimal Bucket Set for |M | “ 2

Let p be an odd prime and q “ pc for c P N. Define M “ t1, 2u and let B
consist of 0 together with all integers 0 ă b ă q{2 of the form b “ pkβ, where
0 ď k ď c´ 1 is an integer and β is a quadratic residue mod q (in particular, it
is coprime to p). We show the following.

Theorem 2 (Optimal Bucket for 2-Multipliers). If p is an odd prime such that

ˆ

´1

p

˙

“ ´

ˆ

2

p

˙

“ 1 ,

then Property 2 holds for M “ t1, 2u and B as described above.

Remark. p “ 5 is the first such prime; the requirement of the theorem is equiv-
alent to p ” 5 pmod 8q.

Remark. Note that β P Z coprime to p is a quadratic residue mod pc if and only
if it is a quadratic residue mod p. This follows from Hensel’s lemma, as any root
of the equation x2 ” β pmod pq is simple, hence lifts to a unique root mod pc.

Proof. We divide the proof into several cases. We first deal with 0 ă t ă q
coprime to p.

t ă q{2 and p t
p q “ 1: t P B, so there’s nothing to show.

t ă q{2 even and p t
p q “ ´1: t{2 “ b P B, so t “ 2b.

t ă q{2 odd and p t
p q “ ´1: q´t is even and p

q´t
p q “ ´1. Therefore, pq´tq{2 “

b P B and q ´ t “ 2b.
t ą q{2 even and p t

p q “ 1: in this case q ´ t P B.

t ą q{2 even and p t
p q “ ´1: here, t{2 “ b P B, so t “ 2b.

t ą q{2 odd: q ´ t is even and either q ´ t P B or pq ´ tq{2 P B.

Now to the general case (we suppose t ‰ 0, q), when t “ pkτ (0 ď k ă c), where
p ∤ τ . The condition

t “ mb or q ´ t “ mb

is equivalent to

pkτ “ mb or pc ´ pkτ “ mb .

2 Since precomputed points are of the form mqjPi, for m P M , 0 ď j ď h ´ 1 and
1 ď i ď n, it is not important to require that q be a power of 2.

15

Choosing b ă q{2 of the form pkβ, with p ∤ β and β ă pc´k{2 quadratic residue
mod pc (equivalently, mod pc´k), the previous equation reads

τ “ mβ or pc´k ´ τ “ mβ .

By our initial work, this condition is satisfied for some β P B when p ” 5
pmod 8q.

We now show |B| “ q{4 `Op1q.

Theorem 3. The bucket set B in this section has cardinality

|B| “
q ´ 1

4
` 1 .

Proof. We begin with a lemma.

Lemma 3. Let p ” 1 pmod 4q be prime and k P N. The number of quadratic
residues mod pk less than pk{2 is pk´1pp´ 1q{4.

Proof. The number of quadratic residues mod pk is pk´1pp ´ 1q{2, since they
form a cyclic group of index 2 inside the group of invertible classes mod pk, of
order φppkq “ pk´1pp ´ 1q. Also, the subset of those quadratic residues ă pk{2
is in bijection with its complement, via the map t ÞÑ pk ´ t, using the fact that
´1 is a quadratic residue mod pk. This leads to the result.

Returning to the proof of the theorem, we partition B as

B “ t0u
ď

c´1
ď

k“0

tt “ pkβ : 0 ă β ă pc´k{2 is a quadratic residue mod pc´ku .

Taking cardinalities, and using the previous lemma, we find

|B| “ 1 `

c´1
ÿ

k“0

pc´k´1pp´ 1q

4
“ 1 `

p´ 1

4
¨
pc ´ 1

p´ 1
“ 1 `

pc ´ 1

4
.

Remark. Since b is a quadratic residue mod pc if and only if it is a quadratic
residue mod p, we deduce that elements of B are never more than p integers
apart, generalizing Proposition 4 to this context (where we can take p “ 5).

4.2 A General Construction of Optimal Buckets

Here we show the way to modify Property 1 (or 2) in order to obtain a scalar
multiplication algorithm with a runtime of essentially nph ` 1q `

q
2|M |

point

operations, by precomputing |M |nph` 1q points.
We propose the following modification. As usual, we let q “ pc, where p is

prime and c P N.

16

Property 3. For all t P Z, there exist ϵt P t˘1u, mt P M, bt P B, such that

t ” ϵtmtbt pmod qq .

We now let B Ď r0, q ´ 1s be a bucket set such that 0 P B and

M “ t1, 2, . . . , |M |u . (11)

Assuming Property 3 holds in this case, we rewrite [10, Algorithm 6] to accom-
modate a recoding without a priori restricting αj :

aj “ ϵjmjbj ` αjq , ϵj P t˘1u, mj P M, bj P B, αj P Z . (12)

The result is the following new scalar recoding Algorithm 6.

Algorithm 6 New scalar recoding

Input: taju0ďjďh´1, 0 ď aj ă q such that a “
řh´1

j“0 ajq
j .

Output: tpϵjmj , bjqu0ďjďh, ϵj P t˘1u, mj P M , bj P B such that a “
řh

j“0 ϵjmjbjq
j .

1: ah Ð 0
2: for j “ 0 to h ´ 1 do
3: Obtain ϵj ,mj , bj , αj as in (12) such that aj “ ϵjmjbj ` αjq Ź |αj | ď |M |

4: aj`1 “ αj ` aj`1 Ź Now |aj`1| ă q ` |M |

5: Obtain ϵh,mh, bh such that ah “ ϵhmhbh Ź |ah| ď |M |, bh “ 0, 1, αh “ 0
6: return tpϵjmj , bjqu0ďjďh

We need to show that Algorithm 6 terminates after Line 5. This is done by
addressing the statements found in the comments.

Proposition 5. In Algorithm 6, we have, for ´1 ď j ď h´ 1 (where we define
α´1 “ 0), after Line 4,

$

’

&

’

%

|αj | ď |M | ,

|aj`1| ă q ` |M | ,

|ah| ď |M | .

Proof. The first two statements are proved together by induction on j ě ´1.
The base step is clear, since α´1 “ 0 and a0 is not modified in Line 4. Supposing
|αj | ď |M | and |aj`1| ă q ` |M |, from Line 3 we deduce

|αj`1| ď
mj`1bj`1

q
`

|aj`1|

q
ď |M |

ˆ

1 ´
1

q

˙

` 1 ´
1

q
`

|M |

q
“ |M | ` 1 ´

1

q
,

and therefore, since αj`1 is an integer, |αj`1| ď |M |. In addition, in Line 4, the
new value of aj`2 is aj`2 ` αj`1, therefore we can bound the updated value as

|aj`2| ă |M | ` q .

This completes the inductive step. Finally, note that, as the initial value ah “ 0
is updated in Line 4 to ah ` αh´1 “ αh´1, we have the stricter bound |ah| “

|αh´1| ď |M |.

17

The new scalar recoding allows us to run Pippenger’s algorithm as before
[10, Algorithms 4 and 3] with at most

`

nph` 1q ` |B| ` d´ 4
˘

curve additions – where d is the maximal distance between consecutive elements
of B – and the help of

nph` 1q|M |

precomputed points. The main advantage of the recoding given by Algorithm 6
is that it allows us to use a bucket set B of optimal size q

2|M |
`Op1q.

Theorem 4. Let µ be a positive integer, p ą 2 be prime with p ” 1 pmod 2µq.
Assume t˘1, ¨ ¨ ¨ ,˘µu form a complete set of representatives of pZ{pq˚ modulo
2µ-th powers. Then, for any c P N, Property 3 holds for q “ pc, the multiplier
set M “ t1, 2, . . . , µu and the bucket set

B “ t0u

c´1
ď

k“0

!

0 ă b ă q : b “ pkβ,where 0 ă β ă pc´k is a 2µ-th power modulo pc´k
)

.

Moreover, the maximal distance between consecutive integers in B is p and

|B| “
q

2µ
`Op1q “

q

2 |M |
`Op1q .

Proof. We claim that, for any κ P N, the set S “ t˘1, ¨ ¨ ¨ ,˘µu constitutes a
complete set of representatives of pZ{pκqˆ (the invertible classes modulo pκ)
modulo 2µ-th powers. Indeed, since 2µ | pκ´1pp ´ 1q, knowing that pZ{pκqˆ is
cyclic, the group

pZ{pκqˆ{
`

pZ{pκqˆ
˘2µ

has order 2µ. Moreover, for r, s P S, by Hensel’s lemma, the equation

r ” sx2µ pmod pκq is solvable in Z ðñ r ” sx2µ pmod pq is solvable in Z .

By assumption, this shows that if r ‰ s, they represent different classes and thus
proving our claim. In other words, we have a partition

pZ{pκqˆ “
ď

1ďmďµ

´

m
`

pZ{pκqˆ
˘2µď

´m
`

pZ{pκqˆ
˘2µ

¯

.

Let t P Z. As seen in the proof of Theorem 2, write t “ pkτ where p ∤ τ . If k ě c,
then t ” 0 ” 1 ¨ 1 ¨ 0 pmod qq. Otherwise, let κ “ c ´ k P N. From our claim,
solving in β (a 2µ-th power modulo pκ) the equation

τ ” ϵmβ pmod pκq

18

for some 1 ď m ď µ and ϵ P t˘1u will yield, for b “ pkβ P B, an expression

t ” pkτ ” ϵmpkβ ” ϵmb pmod qq ,

thus showing Property 3.
To count the elements of B, as in Theorem 3 note that B is already defined

as a disjoint union. Therefore

|B| “ 1 `

c
ÿ

κ“1

pκ´1pp´ 1q

2µ
“ 1 `

pc ´ 1

p´ 1
¨
p´ 1

2µ
“ 1 `

pc ´ 1

2µ
“

q

2µ
`Op1q .

Finally,
`

pZ{pcqˆ
˘2µ

Ď B ,

where on the left we consider representatives in r1, q ´ 1s, and we have seen via
Hensel’s lemma that the condition that b be a 2µ-th power mod q is equivalent
to b being a 2µ-th power mod p. This proves the claim on the maximal distance
of elements of B.

Remark. A simple cardinality argument similar to Theorem 1 shows that any
bucket set B satisfying Property 3 is such that |B| ě q{p2 |M |q. Therefore The-
orem 4 is optimal.

We want to provide a criterion for finding primes p satisfying the hypotheses
of Theorem 4.

Proposition 6. Let µ P N and suppose that p “ 2µ`1 is prime. Then t˘1, ¨ ¨ ¨ ,˘µu

form a complete set of representatives of pZ{pqˆ{ ppZ{pqˆq
2µ
.

Proof. We have, by Fermat’s little theorem,

`

pZ{pqˆ
˘2µ

“ t1u ,

and µ “
p´1
2 , so

t˘1, ¨ ¨ ¨ ,˘µu “

"

˘1, ¨ ¨ ¨ ,˘
p´ 1

2

*

“ pZ{pqˆ .

Remark. The first few values of µ, namely 1, 2, 3, 5, 6, 8, 9, 11, provide via Propo-
sition 6 optimal bucket sets of cardinality q{p2µq `Op1q in Theorem 4. Table 5
in the appendix lists our new bucket set constructions for q “ 7c, 4 ď c ď 11.

We will now show that, on a j “ 0 elliptic curve (with equation y2 “ x3 ` b),
our new property allows ideally to divide the storage requirement by 3. For in-
stance, with nh stored points (the same as Pippenger’s variant), one can execute
a variant of Pippenger’s algorithm in essentially nh` q{6 point operations. The
result given in Section 5 has to be compared to this section’s results with µ “ 3
and p “ 7.

19

5 Combining Efficient Endomorphisms with Optimal
Buckets for Efficient MSM Computation

Many families of pairing-friendly curves over Fp have j-invariant equal to zero.
They have an equation y2 “ x3 ` b for some b P Fp. Therefore, they are endowed
with an endomorphism ω such that ω3pP q “ P for all P on the elliptic curve. We
can write ωpx, yq “ pζ3x, yq, where ζ3 P Fp such that ζ33 “ 1. The computation
of ω can therefore be done on the fly, and corresponding points do not need to
be stored, which is now what we want to take advantage of.

The endomorphism ring of these curves is isomorphic to Zrωs, where ω is a
complex cube root of unity (using the same letter as for the fast endomorphism).
We need to update the construction of Section 4.2 to work with a recoding where
in Property 3, ϵt can be any unit in Zrωs. We will replace that property with

Property 4. For all t P Zrωs, there exist ϵt P U “ t˘1,˘ω,˘ω2u, mt P M, bt P

B, such that

t ” ϵtmtbt pmod qq .

Let’s consider the first implementation of this idea. Let M “ t1u, q “ pc,
where p “ 2 ´ ω. Note that p | 7 in Zrωs. Also, Zrωs is a (norm-)Euclidean
ring, and hence any t P Zrωs has a representative in Zrωs{q of modulus less than
|q| “ 7c{2. Finally, |Zrωs{q| “ 7c. We now show that any t P Zrωs has a base q

expansion of length bounded by t
log |t|
log |q|

u ` 1. The key point to achieve this is a

controlled Euclidean algorithm.

Lemma 4. Let α, β P Zrωs and β ‰ 0. There exist δ, ρ P Zrωs such that

α “ βδ ` ρ , (13)

where |ρ| ă |β| and in addition

|δ| ď

ˇ

ˇ

ˇ

ˇ

α

β

ˇ

ˇ

ˇ

ˇ

.

Proof. Rewrite (13) as

τ “ δ ` ε , δ P Zrωs , |ε| ă 1 ,

where τ “ α{β and ε “ ρ{β. Multiplying by a unit in U , we can suppose that
0 ď argpτq ă π{3. We analyze the two cases for τ as depicted in Fig.1. Here, we
suppose without loss of generality that π{6 ď argpδ1q ă π{3.

It is easily seen that in this case, δ2 is closer to the origin O than D, and
that in any case, δ1 is closer to O than both.

Case 1: τ “ τ1 lies inside the intersection of the fundamental parallelogram
δ1δ2CD and the disk D centered at δ1 passing through δ2 and D (the boundary
of that region is shown as a red dashed arc). In this case, we let δ “ δ1. Then
|δ1| ď |τ1| and |ε1| “ |τ1 ´ δ1| ă 1.

20

x

y

O

δ1 δ2

CD

τ1

τ2
I

π{3

Fig. 1. Controlled Euclidean Division

Case 2: τ “ τ2 lies in the parallelogram δ1δ2CD but outside D or on its
dashed boundary. In this case, notice that the blue circle C centered at O and
passing through δ2 will intersect

3 the segment rδ2, Ds in a point I. This is because
point D lies further away from O than δ2 (or, if argpδ1q “ π{6, they are both
equidistant from O). Since the radius of D is smaller than that of C, we deduce
that the arc Ňδ2I of C all lies strictly inside D, except possibly at the endpoints.

This analysis shows that, if we let δ “ δ2, we have |δ2| ď |τ2| and |ε2| “

|τ2 ´ δ2| ă 1.

Remark. An algorithmic implementation of this idea is given in Algorithm 7,
where a generic τ “ κ{q is first transported to the first sector so that 0 ď

argpτq ă π{3 before choosing the right δ and finally transported back to the
sector it came from.

Theorem 5. We have

pZrωs{pq
ˆ

“ t˘1,˘ω,˘ω2u .

For any c P N, Property 4 holds for q “ pc, the multiplier set M “ t1u and the
bucket set

B “ t0u Y

c´1
ď

k“0

Bk ,

3 It may happen, but only for δ1 close to the origin, that {Dδ2O ě π{2, in which case
C won’t intersect the segment, but this is without consequence for the sequel, since
the relevant arc of C all lies inside the triangle δ1δ2D, hence inside the disk D.

21

where

Bk “
!

0 ă |b| ă |q| : b “ pkβ,where 0 ă |β|2 ă 7c´k is a 6-th power modulo pc´k
)

.

Moreover,

|B| “
7c

6
`Op1q .

Proof. The proof is similar to the proof of Theorem 4 when µ “ 3. It will only
be necessary to go over the differences. Note initially that,

pZrωs{pq
ˆ

“ t˘1,˘ω,˘ω2u .

Indeed, by the considerations after the statement of Property 4, the cardinalities
of the left- and right-hand sides of the previous equality match. Moreover, any
two distinct elements of t˘1,˘ω,˘ω2u are not congruent modulo p, because
their difference has algebraic norm either 1, 2 or 3, coprime to 7. Also, for any
κ P N,

Oκ “ pZrωs{pκqˆ{
`

pZrωs{pκqˆ
˘6

is cyclic of order 6. A generalized version of Hensel’s lemma will then show
that two elements r, s P Zrωs have distinct reductions in Oκ if and only if their
reductions in O1 are distinct. Moreover, since

O1 “ pZrωs{pqˆ ,

we obtain Property 4 for t P Zrωs coprime to p. The general case is dealt in the
same way as in Theorem 4 by introducing a suitable power of p to multiply the
sixth powers mod pc´k. Note also that an element is a sixth power mod pc´k if
and only if it is congruent to 1 mod p. Since |Oκ| “ 7κ´1, a calculation similar
to the proof of Theorem 4 shows that

|B| “ 1 `

c
ÿ

κ“1

7κ´1 “ 1 `
7c ´ 1

6
“

7c

6
`Op1q .

Algorithm 8 now replaces Algorithm 6 in computing a recoding amenable
to the bucket algorithm, without any additional precomputation than the Pip-
penger variant.

Theorem 5 can be seen as a version of Theorem 4 when µ “ 3, with nh
precomputed points instead of 3nh. However, there is one fundamental difference,
and we show how to deal with it.

Elliptic curve computations take place in a cyclic group G of prime order
N . The parameter h ´ 1 is then defined – when the prime p is chosen in Z (for

22

Algorithm 7 Controlled Euclidean algorithm

Input: κ “ k1 ` k2ω, q “ q1 ` q2ω with k1, k2, q1, q2 P Z.
Output: CEApκ, qq “ pδ, ρq, where δ, ρ P Zrωs with κ “ qδ`ρ, |ρ| ă |q| and |δ| ď |κ{q|.
1: u ` vω Ð κ{q Ź u, v P Q
2: u Ð u ´ v Ź In base t1, θ “ ω ` 1u

3: c0, c1 Ð 0 Ź To track rotation to first π{3 sector, where u, v ě 0
4: if v ă 0 then
5: v Ð ´v, c0 Ð 1

6: while u ă 0 do Ź At most 2 iterations
7: u Ð u ` v, v Ð v ´ u, c1 Ð c1 ` 1

8: if pu ´ tuuq
2

` pv ´ tvuq
2

` pu ´ tuuqpv ´ tvuq ă 1 then Ź Case 1
9: d1 Ð tuu, d2 Ð tvu

10: else
11: if tuu ď tvu then
12: d1 Ð tuu ` 1, d2 Ð tvu

13: else
14: d1 Ð tuu, d2 Ð tvu ` 1

15: while c1 ą 0 do Ź Now rotate back
16: d2 Ð d1 ` d2, d1 Ð d1 ´ d2, c1 Ð c1 ´ 1

17: if c0 ą 0 then
18: d2 Ð ´d2
19: d1 Ð d1 ` d2 Ź Back in base t1, ωu

20: r1 Ð k1 ´ q1d1 ` q2d2, r2 Ð k2 ´ q2d1 ´ q1d2 ` q2d2 Ź ρ “ κ ´ qδ
21: return δ “ d1 ` d2ω, ρ “ r1 ` r2ω

instance p “ 7 when µ “ 3) – as the exponent of the largest power of q not
exceeding N , in other terms,

h “

Z

logN

log q

^

` 1 .

This is because we must be able to represent any scalar multiplier (ď N) in a
base q expansion of length at most h. If we now let p “ 2 ´ ω, and let as before
q “ pc, then, since |q| “ 7c{2, the corresponding h would double, necessitating
twice as many precomputed points (2nh, instead of nh). Although this is below
the 3nh provided by our refinement of the LFG method, we can do better.

Note that since N is large, there is no other copy isomorphic to G in the
elliptic curve (over the field of definition of G). Consequently, the endomorphism
ω must act as an isomorphism of G. Therefore, given a point P P G, ωP “ λP
for some λ P Z{N with λ3 ” 1 pmod Nq. This implies that N ” 1 pmod 3q splits
in Zrωs, so N “ ν1ν2, with ν1, ν2 primes in Zrωs. Since, denoting 0 the point at
infinity,

0 “ NP “ ν1ν2P ,

we deduce that either ν1P “ 0 or ν2P “ 0. Let ν represent the corresponding
prime. Then, |ν| “

?
N and, if ρ ” a pmod νq, then aP “ ρP . The bottom

line is that we can represent any scalar a ď N , having an expansion of length h

23

Algorithm 8 Complex scalar recoding

Input: a P Zrωs, q “ pc “ p2 ´ ωq
c with c P N. Ź h “ t

log |a|

log |q|
u ` 1

Output: tpϵj , bjqu0ďjďh´1, ϵj P U , bj P B such that a “
řh´1

j“0 ϵjbjq
j .

1: κ Ð a
2: h Ð t

log |a|

log |q|
u ` 1

3: List Ð tu

4: for j “ 0 to h ´ 1 do
5: pρ, δq Ð CEApκ, qq

6: if ρ “ 0 then
7: ϵj “ 1, bj “ 0
8: else
9: r Ð ρ
10: while p | r do
11: r Ð r{p

12: Define ϵj P U so that ϵj ” r pmod pq

13: bj “ ρϵ´1
j Ź bj P B

14: List Ð List.appendppϵj , bjqq

15: κ Ð δ
16: return: List

in base 7c, by an equivalent expansion (of ρ) in base q “ p2 ´ ωqc of the same
length. In particular, it is sufficient to precompute the same h powers of q.

Proposition 7. In Theorem 5, it is possible to label elements of B as B “

tb1, . . . b|B|u Ď Zrωs, in such a way that

|bk`1 ´ bk|2 ď 7 , for all 1 ď k ď |B| ´ 1 .

Moreover, if |bk`1´bk|2 “ 7, then bk`1´bk “ ϵp, where ϵ P U “ t˘1,˘ω,˘ω2u.

Proof. We first focus on the subset B0 Ď B (see Theorem 5 for the definition of
B0), normalized by dividing B0 ´ 1 (B0 translated by ´1) by p so that all its
points are in Zrωs.

Consider a set S of points of Zrωs inside some (large) disk ∆. Informally, we
say S is a ziggurat if, up to rotation, “horizontal layers away from the center of
∆ are piled up on top of each other”.

Formally, rotate ∆ about its center, so that lines of points of S spaced by
1 are horizontal, then translate to move the center of ∆ to 0. We will suppose
henceforth that S is normalized in this fashion. A layer or level of S corresponds
to points with the same imaginary part.

A neighbor of z P Zrωs is one of the points z` ϵ where ϵ P U . A point on the
boundary BS of S is a point of S which doesn’t have all its neighbors in S. The
points of SzBS are called internal points of S.

The set Stop is called a top ziggurat if Stop Ď ∆ X tz : ℑz ě 0u and, for all
z P Stop with ℜz ď 0 (resp. ℜz ě 0), any ζ P Stop of z with ℑζ ą ℑz has
ℜζ ě ℜz ´ 1{2 (resp. ℜζ ď ℜz ` 1{2); in other words, in a top ziggurat, upper

24

layers are smaller and stacked on top of each other, like in a Hanoi tower game.
In particular, if z P BStop and ℜz ď 0, then either there are no ζ P Stop with
ℑζ ą ℑz (z is in the top layer), or one of z ` ω or z ` ω ` 1 is in BStop.

A bottom ziggurat is symmetric with respect to the origin of a top ziggurat.
A ziggurat is the union of a top and a bottom ziggurat. The ziggurat is full if
there exist points of the bottom ziggurat that are neighbors of points of the top
ziggurat.

It is relatively straightforward to see that the boundary BS of a full ziggurat
S consists of a Hamiltonian cycle of neighboring points. Indeed, start from the
first z1 P S with smallest ℑz1 ě 0 and ℜz1 ď 0 (i.e. at the “bottom left” of the
top ziggurat). Move “along the boundary” of S staying at the same horizontal
level (adding `1) until you can jump up (by adding ω or ω ` 1) in S. Repeat
until you reach the top of the top ziggurat, then come down on the other side of
the imaginary axis. Then move to the bottom ziggurat.

Additionally, SzBS is also a full ziggurat. This is because, when removing a
point z P BS with ℑz ě 0 and ℜz ď 0 such that z`1 P SzBS, then z`1 P BpSzBSq

and, as seen above, one of z ` ω or z ` ω ` 1 belongs to BS – call it zω, with
preference given to the leftmost if both4 belong to BS – so that zω `1 P BpSzBSq

as soon as zω ` 1 P SzBS. In any case, we get that z ` 1 P SzBS implies
z ` 1 P BpSzBSq and there is no point in SzBS left of zω and at the same level;
using symmetric arguments, we derive that SzBS is a ziggurat.

At this point, starting from z0 with the smallest real part, remarking that
z0 P BS, move along the boundary BS until reaching z, the last point before
returning to z0. From the previous discussion5, z`1 P BpSzBSq; since ℜz ą ℜz0,
we have z0 “ z ` ω and z ` ω ` 1 “ z0 ` 1 P BpSzBSq is a neighbor of z. We
can continue the path starting from z0 ` 1 and running along BpSzBSq and so
forth, each time removing an outer layer of the ziggurat and moving towards the
center, as a spider weaves its web.

This construction shows that B0 has a Hamiltonian path (see Fig. 2). The
extension to B is easy, because BzB0 is very sparse therefore, each time a lattice
point of B0 comes close to a point of BzB0, we can just divert our Hamiltonian
path for B0 onto this point before coming back to our original path without
increasing the distance between consecutive points.

The final remark is a consequence of the initial normalization, where dividing
by p gave us integer points.

Thanks to the previous proposition, using this relabeling on the bucket set
B, one can replace Algorithm 1 in the LFG method with Algorithm 9.

Remark. Since the only primes (up to units) of Zrωs with norm at most 7 are
ω´ 1 (above 3) and 2´ω, (above 7, excluding the other prime 3`ω), there are
at most d “ 24 nonzero integers k P Zrωs such that |k|2 ď 7, which explains the
first step in Algorithm 9.

4 That can only happen if ℑz is close to 0.
5 That discussion also holds for layers close to the real axis, which is the case for the
levels of z0 and its neighbors.

25

Algorithm 9 Subsum accumulation algorithm (with endomorphisms)

Input: B “ tb1, b2, . . . , b|B|u as in Prop. 7, S1, S2, . . . , S|B|

Output: S “ b1S2 ` ¨ ¨ ¨ ` b|B|S|B|

1: Define a length 25 array tmp “ r0s ˆ 25
2: for i “ |B| to 1 by ´1 do
3: tmpr0s “ tmpr0s ` Si

4: k “ bi ´ bi´1

5: if |k|
2

ě 1 then
6: tmprks “ tmprks ` tmpr0s

7: return
ř

|k|2ď7
p3`ωq∤k

k ¨ tmprks

Counting Algorithm: Here we provide an algorithm presented in Algorithm 10
to count the points in B. The idea behind it is to start with the point bi closest
to the disk ∆ and move on to the next point closest to bi which lies within the
disk and whose distance from the border of the disk is minimal. The counting
path is shown in Figure 2.

Algorithm 10 Counting Algorithm for B

Input: B “ tb1, . . . , b|B|u unsorted.

Output: B̂ “
␣

b̂1, . . . , b̂|B|

(

, s.t. |b̂j`1 ´ b̂j | ď
?
7

1: for 1 ď k ď |B| do
2: Pick a point bk P B with |bk| ď r with r ´ |bk| “ minjPt1,...,|B|upr ´ |bj |q. Set

b̂1 :“ bk. Add b̂1 to B̂.

3: for 1 ď i ď |B|, i ‰ k do
4: Take zν P t˘1,˘ω,˘ω2

u ¨
?
7 “ tz1, . . . , z6u ¨

?
7, ν P t1, . . . , 6u.

5: Compute b̂i ` zν with r ´ |b̂i ` zν | “ minµPt1,...,6upr ´ |b̂i ` zµ|q

6: Set b̂i`1 :“ b̂i ` zν
7: if |b̂i`1| ą r then discard b̂i`1

8: return: B̂.

6 Performance Analysis and Implementation

In this section, we analyze the performance of the proposed approaches and
present our implementation results.

To conduct evaluation and compare with LFG methd [10] in a fair way, we
choose the BLS12-381 curve and the group order is

r “ 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001,

which determines the upper bound of scalars involved in Sn,r. BLS12-381 is a
pairing-friendly curve with embedded degree 12 and defined by the equation

EpFpq : y2 “ x3 ` 4,

26

Fig. 2. Hamiltonian path for B0

where p is the 381-bit field characteristic. Two additive rational point groups
G1 Ă EpFpq and G2 Ă EpFp2q over which bilinear pairings are defined have the
same prime order r.

6.1 Theoretical Analysis

The storage cost of precomputation results and the computation complexity of
computing MSM with precomputation of different algorithms are summarized
in Table 2. From the summary given in Table 1, it is easy to see that the choice
of h will affect the overall performance. To evaluate the MSM schemes, we first
search for the optimal value of h to minimize the computation cost, and then
calculate the corresponding storage6 and computation cost. The repaired LFG
algorithm (p “ 2) and our algorithm (p “ 7) have similar performance.

6.2 Implementation

We conducted the performance evaluation on an Apple MacBook Pro with 3.2
GHz M1 Max chip and 64GB memory and built our implementation base on the
same code base7 as that in [10]. Table 3 summarizes our implementation results
of different methods for computing Sn,r over G1. We implemented the repaired

6 Using compression techniques, we need to store one coordinate and one bit.
7 https://github.com/LuoGuiwen/MSM_blst/tree/master

27

Table 2. Comparison of Storage and Computation Cost of Computing Sn,r over G1

with Different Methods

Repaired LFG Ours p “ 7

n q h S C q h S C

210 213 20 2.98 MB 2.33 ˆ 104 75 19 2.93 MB 2.33 ˆ 104

211 214 19 5.67 MB 4.45 ˆ 104 75 19 5.87 MB 4.38 ˆ 104

212 214 19 11.34 MB 8.55 ˆ 104 75 19 11.74 MB 8.47 ˆ 104

213 216 16 19.17 MB 1.54 ˆ 105 76 16 19.95 MB 1.59 ˆ 105

214 216 16 38.33 MB 2.93 ˆ 105 76 16 39.9 MB 2.98 ˆ 105

215 216 16 76.67 MB 5.71 ˆ 105 76 16 79.8 MB 5.77 ˆ 105

216 219 14 134.56 MB 1.10 ˆ 106 77 13 131.43 MB 1.05 ˆ 106

217 220 13 250.35 MB 2.06 ˆ 106 77 13 262.86 MB 1.97 ˆ 106

218 220 13 500.7 MB 3.90 ˆ 106 77 13 525.73 MB 3.81 ˆ 106

219 220 13 1 GB 7.56 ˆ 106 77 13 1.05 GB 7.47 ˆ 106

220 222 12 1.85 GB 1.45 ˆ 107 78 12 1.95 GB 1.46 ˆ 107

221 222 12 3.71 GB 2.82 ˆ 107 78 12 3.91 GB 2.82 ˆ 107

S: storage cost C: computation cost in the number Add operations

LFG method as well as our general optimal bucket construction with p “ 7 and
M “ t1, 2, 3u. As shown in Table 3, the repaired LFG implementation with p “ 2
and M “ t1, 2, 3u is about 15.8% to 40.6% faster than the Pippenger one in the
blst library. In addition, the general optimal bucket construction with p “ 7 can
achieve the similar performance with the repaired LFG method with p “ 2 and
the same multiplier set M “ t1, 2, 3u. For certain values of n our method with
p “ 7 can achieve a modest improvement of up to 4.4% such as for n “ 217,
when compared to the repaired LFG approach.

7 Conclusion

MSM is the major computation bottleneck for the proof generation of many
pairing-based zkSNARK schemes. A major direction for MSM acceleration is
making trade-offs between storage and computation. Both the popular Pippenger
algorithm and the recent LFG algorithm follow this direction.

In this paper, we revised an important property proposed in the LGF algo-
rithm and designed a more efficient MSM algorithm. The performance of the
new algorithm is verified by both theoretical analysis and experiment. Further-
more, we proposed a method to find the optimal bucket size under the LGF
framework.

We also introduced a bucket-amenable recoding using fast endomorphisms
on j “ 0 elliptic curves to divide the storage requirement by 3, at almost no per-
formance penalty, compared to our LFG already optimized algorithm. It would
be interesting to investigate if curve endomorphisms can be used not only for
the benefit of storage, but also to boost the performance of MSM algorithms.

8 https://github.com/supranational/blst

28

Table 3. Experimental Results for Computing Sn,r over G1 with Different Methods

n Pippenger Repaired LFG Our Method
Implementation p “ 2 p “ 7
in blst8 M “ t1, 2, 3u M “ t1, 2, 3u

210 15.28 ms 9.08 ms 9.07 ms
211 27.40 ms 17.70 ms 17.13 ms
212 49.15 ms 32.93 ms 32.78 ms
213 90.50 ms 61.34 ms 62.17 ms
214 166.07 ms 113.27 ms 116.27 ms
215 305.24 ms 217.49 ms 217.49 ms
216 556.75 ms 440.38 ms 423.15 ms
217 1.05 s 849.76 ms 809.67 ms
218 1.95 s 1.54 s 1.51 s
219 3.57 s 2.94 s 2.91 s
220 6.91 s 5.85 s 5.86 s
221 13.3 s 11.2 s 11.2 s

References

1. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: IEEE S&P
2014. pp. 459–474. IEEE (2014)

2. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.J.: Faster batch forgery
identification. In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptology - IN-
DOCRYPT 2012. pp. 454–473. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

3. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA.
pp. 103–112. ACM (1988)

4. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation. In: Rueppel, R.A. (ed.) Advances in Cryptology — EURO-
CRYPT’ 92. pp. 200–207. Springer Berlin Heidelberg, Berlin, Heidelberg (1993)

5. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Advances in Cryptology - EUROCRYPT 2013.
LNCS, vol. 7881, pp. 626–645. Springer (2013)

6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: ACM STOC 1985. pp. 291–304. ACM (1985)

7. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) Advances in Cryptology - ASIACRYPT 2010 - 16th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6477, pp. 321–340. Springer (2010). https://doi.org/10.1007/978-3-642-17373-
8 19, https://doi.org/10.1007/978-3-642-17373-8_19

8. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Lecture Notes in Computer

29

Science, vol. 9666, pp. 305–326. Springer (2016). https://doi.org/10.1007/978-3-
662-49896-5 11, https://doi.org/10.1007/978-3-662-49896-5_11

9. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: ACM STOC 1992. pp. 723–732. ACM (1992)

10. Luo, G., Fu, S., Gong, G.: Speeding up multi-scalar multiplication over fixed points
towards efficient zksnarks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(2),
358–380 (2023). https://doi.org/10.46586/TCHES.V2023.I2.358-380, https://

doi.org/10.46586/tches.v2023.i2.358-380

11. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
snarks from linear-size universal and updatable structured reference strings.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2019, London, UK, November 11-15, 2019. pp. 2111–2128.
ACM (2019). https://doi.org/10.1145/3319535.3339817, https://doi.org/10.

1145/3319535.3339817

12. Pippenger, N.: On the evaluation of powers and related problems. In: 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976). pp. 258–263 (1976).
https://doi.org/10.1109/SFCS.1976.21

30

Appendices

A The New Bucket Set Constructions for
q “ 2c, 10 ď c ď 31

Table 4 lists our new bucket set constructions for q “ 2c, 10 ď c ď 31, where
the maximum difference d between neighbors of |B| is always equal to 6. When
compared to the bucket sets constructed in [10], our bucket sets do not rely
on a specific elliptic curve. Since the time complexity for computing Sn,r is
approximately nh` |B|, a smaller |B| results in lower time complexity given the
same h. Hence, radices 2c for c P t21, 23, 25, 27, 28, 30, 31u are abandoned in the
table.

Table 4. New Bucket Sets Constructions for q “ 2c, 10 ď c ď 31

q h |B| |B|{q

210 26 226 0.22070
211 24 448 0.21875
212 22 897 0.21899
213 20 1791 0.21863
214 19 3587 0.21893
215 17 7167 0.21872
216 16 14340 0.21881
217 15 28672 0.21875
218 15 57346 0.21876
219 14 114686 0.21875
220 13 229380 0.21875
221 13 458750 0.21875
222 12 917508 0.21875
223 12 1835005 0.21875
224 11 3670018 0.21875
225 11 7340030 0.21875
226 10 14680067 0.21875
227 10 29360126 0.21875
228 10 58720261 0.21875
229 9 117440511 0.21875
230 9 234881027 0.21875
231 9 469762045 0.21875

B The New Bucket Set Constructions for
q “ 7c, 4 ď c ď 11

Table 5 lists our new bucket set constructions for q “ 7c, 4 ď c ď 11, where the
maximum difference d between neighbors of |B| is always equal to 7.

31

Table 5. New Bucket Sets Constructions for q “ 7c, 4 ď c ď 11

q h |B| |B|{q

74 23 401 0.167
75 19 2802 0.167
76 16 19609 0.167
77 13 137258 0.167
78 12 960801 0.167
79 11 6725602 0.167
710 10 47079209 0.167
711 9 329554458 0.167

32

