
Reducing the CRS Size in Registered ABE Systems

Rachit Garg
1
, George Lu

1
, Brent Waters

1,2
, and David J. Wu

1

1
UT Austin

{rachg96, gclu, bwaters, dwu4}@cs.utexas.edu
2
NTT Research

Abstract

Attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access

control to encrypted data. In (ciphertext-policy) ABE, a central trusted authority issues decryption keys for attributes

𝑥 to users. In turn, ciphertexts are associated with a decryption policy P. Decryption succeeds and recovers the

encrypted message whenever P(𝑥) = 1. Recently, Hohenberger, Lu, Waters, and Wu (Eurocrypt 2023) introduced

the notion of registered ABE, which is an ABE scheme without a trusted central authority. Instead, users generate

their own public/secret keys (just like in public-key encryption) and then register their keys (and attributes) with

a key curator. The key curator is a transparent and untrusted entity.

Currently, the best pairing-based registered ABE schemes support monotone Boolean formulas and an a priori

bounded number of users 𝐿. A major limitation of existing schemes is that they require a (structured) common

reference string (CRS) of size 𝐿2 · |U| where |U| is the size of the attribute universe. In other words, the size of the CRS
scales quadraticallywith the number of users andmultiplicatively with the size of the attribute universe. The large CRS

makes these schemes expensive in practice and limited to a small number of users and a small universe of attributes.

In this work, we give two ways to reduce the CRS size in pairing-based registered ABE schemes. First, we

introduce a combinatoric technique based on progression-free sets that enables registered ABE for the same class of

policies but with a CRS whose size is sub-quadratic in the number of users. Asymptotically, we obtain a scheme where

the CRS size is nearly linear in the number of users 𝐿 (i.e., 𝐿1+𝑜 (1)). If we take a more concrete-efficiency-oriented

focus, we can instantiate our framework to obtain a construction with a CRS of size 𝐿log2 3 ≈ 𝐿1.6. For instance, in
a scheme for 100,000 users, our approach reduces the CRS by a factor of over 115× compared to previous approaches

(and without incurring any overhead in encryption/decryption time). Our second approach for reducing the CRS

size is to rely on a partitioning-based argument when arguing security of the registered ABE scheme. Previous

approaches took a dual-system approach. Using a partitioning-based argument yields a registered ABE scheme

where the size of the CRS is independent of the size of the attribute universe. The cost is the resulting scheme satisfies

a weaker notion of static security. Our techniques for reducing the CRS size can be combined, and taken together,

we obtain a pairing-based registered ABE scheme that supports monotone Boolean formulas with a CRS size of

𝐿1+𝑜 (1) . Notably, this is the first pairing-based registered ABE scheme that does not require imposing a bound on

the size of the attribute universe during setup time.

As an additional application, we also show how to apply our techniques based on progression-free sets to the

batch argument (BARG) for NP scheme of Waters and Wu (Crypto 2022) to obtain a scheme with a nearly-linear

CRS without needing to rely on non-black-box bootstrapping techniques.

1 Introduction
Attribute-based encryption (ABE) [SW05, GPSW06] is a cryptographic primitive that enables fine-grained access

control to encrypted data. Specifically, in (ciphertext-policy) ABE, secret keys are associated with a set of attributes

𝑆 and ciphertexts are associated with a decryption policy P and a message𝑚. Decryption recovers the message𝑚

1

mailto:rachg96@cs.utexas.edu
mailto:gclu@cs.utexas.edu
mailto:bwaters@cs.utexas.edu
mailto:dwu4@cs.utexas.edu

if the attributes 𝑆 satisfy the decryption policy P (i.e., if P(𝑆) = 1). Conversely, a user who does not have a key for

a satisfying collection of attributes should not learn anything about the message.

While ABE is a versatile generalization of public-key encryption, it comes with a significant drawback of intro-

ducing a central authority who is responsible for generating keys for individual users. To issue keys to users, a central

authority must hold on to a long-term master secret key for the lifetime of the system. If an attacker compromises the

central authority and exfiltrates its secret key, then the attacker is able to decrypt every ciphertext in the system, both

in the past and in the future. This is in stark contrast to traditional public-key encryption where users are individually

responsible for generating and safeguarding their own secret keys. In exchange for expressivity, ABE has introduced

a central point of failure, and this vulnerability to key-exfiltration attacks introduces significant hurdles for deploying

ABE in practice.

The registration model of cryptography. A recent line of works has introduced a new registration model

of cryptography whose goal is to replace the trusted key-issuer in identity-based encryption (IBE) [GHMR18,

GHM
+
19, GV20, CES21, GKMR22, DKL

+
23, FKdP23], ABE [HLWW23, FWW23, FFM

+
23, ZZGQ23], broadcast en-

cryption [BZ14, FWW23, KMW23, GLWW23], and functional encryption (FE) [FFM
+
23, DP23, DPY23, BLM

+
24] with

a transparent and untrusted key curator whose sole job is to aggregate users’ public keys. Specifically, in the setting

of registered ABE, users independently generate their own public/secret key-pairs, exactly as in vanilla public-key

encryption. They then register their public keys with a key curator along with the set of attributes they possess. Like

the key-issuer in ABE or the certificate authority in a classic public-key infrastructure, the key curator is responsible

for validating the attributes the user claims. The key curator then takes the public keys pk
1
, . . . , pk𝐿 from the different

users along with their respective attribute sets 𝑆1, . . . , 𝑆𝐿 , and aggregates them together into a single short master

public key mpk. Critically, the size of the aggregated mpk must be polylogarithmic in the number of users 𝐿. Like

many traditional ABE schemes [GPSW06, LOS
+
10, Att14, Wee14, CGW15], we do allow the length of the master

public key to scale with the size of the attribute universe. The aggregated master public keympk now functions as the

public key for a standard ABE scheme. Namely, a ciphertext encrypted with respect to a policy P can be decrypted

by any registered user whose set of attributes 𝑆𝑖 satisfy the policy.

As users register in a registered IBE or ABE scheme, the master public key is continually updated. Thus, regis-

tered users must periodically return to the key curator to request helper decryption keys that they will use during

decryption. The number of times each user needs to update their key should be small, and we specifically require

it to be polylogarithmic in the number of users 𝐿; in fact, under mild assumptions, Ω(log𝐿/log log𝐿) updates are
needed [MQR22]. Finally, the key curator in a registered IBE or ABE scheme is transparent. It is a deterministic
algorithm and maintains no long-term secrets. Even if the key curator is compromised, the secret keys of existing

registered users remain secret and are not compromised. An adversary that corrupts a key curator cannot decrypt

any past ciphertext. Of course, such an adversary would be able to register a key that decrypts all future ciphertexts,

but such behavior is publicly detectable by auditing the state of the key curator [GV20].

Constructions of registered ABE. Hohenberger et al. [HLWW23] introduced the notion of registered ABE and

gave a construction from assumptions over composite-order pairing groups. Their scheme supports all monotone

Boolean formula policies and an a priori bounded number of users 𝐿. Moreover, the scheme relies on a structured

common reference string (CRS) whose size scales quadratically with the number of users 𝐿 (and linearly with the size

of the attribute universe). Subsequently, a number of constructions of registered ABE have been introduced [DP23,

DPY23, FWW23, ZZGQ23, FFM
+
23] that expand on both the functionality and the security of the original scheme.

These constructions generally fall into two categories: ones which require non-black-box use of cryptography (i.e.,

obfuscation-based or witness-encryption-based approaches) [FFM
+
23, DP23, DPY23, FWW23], or pairing-based

constructions [FFM
+
23, ZZGQ23] that only require black box use of cryptography. The latter set of constructions

enable more concretely efficient realizations, but thus far, all of them inherit the quadratic-size CRS from the original

[HLWW23] construction. The size of the CRS in [FFM
+
23] does not depend on the size of the attribute universe, but the

scheme supports a different and incomparable class of policies (inner products). The size of the CRS in the [HLWW23,

ZZGQ23] constructions for Boolean formulas (and extensions thereof) also scale linearly with the size of the attribute

universe. Our goal in this work is to develop new techniques to reduce the size of the CRS for registered ABE schemes.

2

1.1 Our Contributions
In this work we introduce two techniques to reduce the CRS size in registered ABE. The first is a combinatoric

approach to reduce the CRS size from quadratic in the number of users 𝐿 to nearly linear (specifically, 𝐿1+𝑜 (1)). The
second is a new partitioning-based proof strategy that enables a construction where the CRS size is independent of the
number of attributes. The two techniques are complementary and can be used simultaneously to obtain a construction

with a CRS whose size is nearly linear in the number of users and independent of the number of attributes. Previous

pairing-based registered ABE schemes [HLWW23, FFM
+
23, ZZGQ23] had a CRS whose size was quadratic in the

number of users, and for the schemes that supported general Boolean formulas, also linear in the number of attributes.

We now summarize our main contributions and provide a comparison in Table 1.

Sub-quadratic size CRS using progression-free sets. First, we introduce a new combinatoric approach based

on progression-free sets [ET36, Beh46, SS46, Elk10] to construct a registered ABE scheme whose CRS size is nearly
linear in the number of users. As we discuss in Section 1.2, existing group-based constructions of registered ABE

[HLWW23, FFM
+
23, ZZGQ23] aggregate user public keys by multiplying them together. Thus, when a user encrypts

to the master public key, they are technically encrypting to the product of every users’ key. To enable decryption,

the CRS contains “cross terms” that can be used to remove the interactions across different users’ public keys. The

cross terms allow a user to take a ciphertext encrypted to the master public key and cancel out the components from

the other users, leaving only a ciphertext encrypted to her own secret key, which she can then decrypt normally.

The CRS in recent pairing-based constructions of registered ABE include cross terms for every pair of users in

the system. This leads to a quadratic-size CRS. The starting point in our work is to observe that we do not necessarily
require a different cross term for each distinct pair of users. It can be the case that different pairs of users use a common

cross term during decryption. In this work, we take a combinatoric approach and “embed” a progression-free set into

the CRS of the registered ABE scheme. On the one hand, the progression-free set allows us to simultaneously reduce

the number of cross terms in the CRS, and by extension, the size of the CRS. On the other hand, the “progression-free”

property ensures that the components in the CRS do not allow unauthorized users to decrypt ciphertexts. Our security

reduction will critically rely on the progression-free property; we provide more details in Section 1.2. The idea of

using progression-free sets to improve the efficiency of cryptographic constructions was also previously used in a

work of Lipmaa [Lip12] who focused on succinct non-interactive zero-knowledge arguments.

Using the state-of-the-art progression-free set constructions [Beh46, SS46, Elk10], we obtain a registered ABE

scheme (for monotone Boolean formulas) where the size of the structured CRS for 𝐿 users is nearly linear: 𝐿1+𝑜 (1) .
If we take a more concrete-efficiency-oriented view, we can use a lightweight progression-free set construction of

Erdös and Turán [ET36] to obtain a registered ABE scheme with a CRS size of size 𝐿log2 3 ≈ 𝐿1.6. As we illustrate in
Section 6, for a scheme that supports 100,000 users, the use of progression-free sets yields a 115× reduction in the

size of the CRS compared to a construction with a quadratic-size CRS (from 447 GB to 3.8 GB).
1
We also note that the

use of progression-free sets does not incur any overhead in the size of the master public key, the helper decryption

keys, or the running time of the encryption/decryption algorithms. In Sections 4 and 5, we show how to combine the

techniques from [HLWW23] with progression-free sets to obtain registered ABE schemes with a nearly-linear-size

CRS in both prime-order groups (satisfying static security) and composite-order groups (satisfying adaptive security).

A partitioning proof strategy to support an arbitrary number of attributes. In this work, we also show how to

use a partitioning-based strategy (similar to [BB04, Wat05, Wat11]) to argue the security of our constructions (in con-

trast to the dual-system approaches taken in previous works [HLWW23, ZZGQ23]). The advantage of using a partition-

ing proof strategy is it avoids the need to fix the universe of attributes at the time the CRS is generated. Instead, only the

number of users needs to be declared in advance. Correspondingly, the size of the CRS no longer growswith the number

of attributes. Previous pairing-based registered ABE schemes for formulas [HLWW23, ZZGQ23] relied on a dual-

system methodology for the security analysis, which in turn required the universe of attributes to be fixed a priori. In
these constructions, the size of the CRS also scaled linearly with the size of the attribute universe. The downside of a par-

titioning proof is that the scheme achieves a weaker notion of static security where the adversary is not allowed tomake

1
For fairness, we compare against a prime-order analog of the [HLWW23] construction (Appendix B), so the improvement in CRS size is purely

from the use of progression-free sets. The actual level of improvement over the composite-order construction of [HLWW23] is even larger.

3

|crs | |st | 𝑇reg |mpk | |hsk | |ct | Policy Assumption Security

[HLWW23] |U | 𝐿2 |U | 𝐿2 |U | 𝐿 |U | |U | | P | Formulas
†

Composite-order Adaptive

[FWW23] | P |𝛿 𝐿 | P |𝛿 | P |𝛿 | P |𝛿 | P |𝛿 Circuits Witness encryption Static

[HLWW23] 1 𝐿 1 1 1 | P |𝛿 Circuits 𝑖O Adaptive

[ZZGQ23] |U |𝐿2 |U |𝐿2 |U |𝐿 |U | |U| | P | ABP Prime-Order Adaptive

Construction 4.3 𝐿1+𝑜 (1) |U | 𝐿 |U | 𝐿 |U | |U | | P | Formulas Prime-order Static

Construction 5.5 |U | 𝐿1+𝑜 (1) |U | 𝐿 |U | 𝐿 |U | |U | | P | Formulas
†

Composite-order Adaptive

Construction B.3 𝐿2 |U | 𝐿 |U | 𝐿 |U | |U | | P | Formulas Prime-order Static

†
Construction 5.5 and [HLWW23] require an a-priori bound on the number of times an attribute is used in the formula (due to only

supporting single-use LSSS), while the other constructions allow unbounded reuse of attributes in the policy.

Table 1: Comparison with previous registered ABE schemes. Here, crs denotes the size of the common reference string,

st denotes the auxiliary information maintained by the key curator (excluding the CRS), 𝑇reg denotes the registration
time,mpk denotes the size of themaster public key, hsk denotes the size of the helper decryption key, and ct denotes the
size of the ciphertext. We consider a systemwith 𝐿 users, an attribute universeU, and a policyP. The schemes that sup-

port formulas are restricted tomonotone formulas; we write “ABP” to denote arithmetic branching programs. We write

“composite-order” to refer to schemes based on composite-order pairing groups and “prime-order” to refer to ones based

on prime-order pairing groups. We write 𝛿 > 1 to denote some constant (corresponding to the overhead in the underly-

ing obfuscation or witness encryption scheme). In our asymptotic statements, we suppress polynomials in the security

parameter _ and all polylogarithmic terms. We say a scheme is statically secure if the adversary is not allowed to make

any corruption queries in the security game (Definition 3.7) and that it is adaptively secure otherwise (Definition 3.6).

any corruption queries.
2
Previous approaches (based on the dual-system methodology [Wat09, LW10]) achieved adap-

tive security. While static security is a weaker security notion, the work of [FWW23] showed how to transform a regis-

tered ABE scheme that does not allow corruption queries into one that does in the random oracle model. Our partition-

ing proof strategy is compatible with the use of progression-free sets and in Section 4, we describe a construction with

both techniques over prime-order pairing groups. (For comparison purposes, we also describe a variant of [HLWW23]

with a quadratic-size CRS that supports an arbitrary polynomial-size attribute universe in Appendix B). Our construc-

tion is the first pairing-based registered ABE scheme for Boolean formulas that does not require an a priori bound on

the number of attributes at setup time. We summarize the main constructions we introduce in this work in Table 1.

Application to batch arguments. Our approach of using progression-free sets to reduce the CRS size can also

be applied to the pairing-based batch arguments of Waters and Wu [WW22]. Like the registered ABE scheme of

[HLWW23], the basic version of Waters-Wu batch argument has a CRS whose size is quadratic in the number of

instances. The quadratic overhead there is also due to the presence of “cross terms.” Using our combinatoric techniques,

we obtain a version of [WW22] where the CRS has size 𝑂 (𝑁 1+𝑜 (1)) and 𝑁 is the number of instances. Notably, this

gives a BARG from pairings with a sub-quadratic CRS that does not rely on non-black-box use of cryptography. While

there are approaches to generically reduce the size of the CRS in batch arguments [KPY19, WW22, KLVW23], all

of these rely heavily on non-black-box use of cryptography. Our approach is purely algebraic and incurs minimal

overhead over the original [WW22] construction.

Additional applications. A number of recent works have focused on batching cryptographic primitives using

cross-term cancellation techniques. This includes (sub)-vector commitments [CF13, LM19], batch arguments [WW22],

and registered ABE [HLWW23, FFM
+
23, ZZGQ23]. In each of these settings, the batching capability is enabled

through a large CRS whose size scales quadratically with the number of users. Our work provides a direct path to

reducing the size of the CRS in such constructions, and we expect that our techniques can be used to improve the

asymptotic and concrete efficiency of existing and future constructions that rely on cross term cancellation.

2
Note that the static adversary is allowed to register keys of its own. However, it is not allowed to request the secret key for an honest user

(i.e., “corrupt” an honest user) in the static security game.

4

Recently, the work of [BLM
+
24] showed how to construct a registered quadratic functional encryption scheme

with a linear-size CRS. However, this scheme comes with the caveat that the function key associated with each user

need to be determined at setup time. This is sufficient for their application to registered traitor tracing, but is a

departure from the standard notions of registered ABE and FE where the user (or key curator) can determine the

attribute or function at registration time (i.e., when users join the system).

1.2 Technical Overview
We now provide an overview of our techniques for reducing the CRS size in registered ABE schemes. Throughout this

work, we primarily focus on the simpler notion of slotted registered ABE introduced by Hohenberger et al. [HLWW23].

We consider ciphertext-policy ABE where each secret key is associated with a set of attributes 𝑆 and each ciphertext

is associated with a decryption policy; decryption is allowed whenever the attributes satisfy the policy. In a slotted

registered ABE scheme, we additionally assume an a priori bound on the number of users or slots 𝐿 and the size of the

CRS can depend on 𝐿. Instead of users dynamically registering as in a standard registered ABE scheme, there is instead

a single aggregation algorithm that takes as input a tuple of 𝐿 public keys pk
1
, . . . , pk𝐿 along with their associated

attributes 𝑆1, . . . , 𝑆𝐿 , and outputs a succinct master public key mpk. The aggregation algorithm also outputs a set of 𝐿

helper decryption keys, one for each user. Typically, the key curator would be responsible for running the aggregation

algorithm. The master public key allows a user to encrypt to an arbitrary decryption policy, and all registered users

whose set of attributes satisfy the decryption policy are able to decrypt. While the slotted primitive seems weaker

than a registered ABE scheme, Hohenberger et al. showed that a slotted scheme can be generically compiled into

a standard registered ABE scheme that supports dynamic registration (i.e., where users can register at any point in

time) with only polylogarithmic overhead. Previous works [HLWW23, ZZGQ23] constructed slotted registered ABE

schemes that support monotone Boolean formulas (and more) from pairings. However, these constructions required

a CRS whose size scales quadratically with the number of users 𝐿 and linearly with the size of the attribute universe.

In this work, we develop techniques to achieve a CRS whose size scales nearly linearly with the number of users

and independently of the size of the attribute universe.

Starting point: the [HLWW23] construction. The starting point of our work is the registered ABE scheme for

monotone Boolean formulas from [HLWW23] based on composite-order pairing groups. We begin by describing

a slimmed-down version of their scheme where the attribute universe contains a single attribute (denoted a) and
the only supported policy is checking whether the user possesses the attribute or not. Moreover, we describe the

scheme using a prime-order pairing group. The full [HLWW23] construction operates over a composite-order pairing

group, but for correctness, we only need to consider the scheme in a single (prime-order) subgroup of the full group.

The additional subgroups in their construction are used for re-randomization and implementing a dual-system proof

strategy [Wat09, LW10]. In this work, we show that if we adopt a partitioning proof strategy, then a version of this

slimmed-down prime-order construction is (statically)-secure.

Let 𝐿 be the number of slots (or users) for the slotted registered ABE scheme. Let (G,G𝑇 , 𝑒, 𝑝, 𝑔) be a (symmetric)

prime-order pairing group, where G,G𝑇 are groups of prime-order 𝑝 , 𝑔 is a generator of G, and 𝑒 : G × G→ G𝑇 is

an efficiently-computable non-degenerate bilinear map. The scheme now proceeds as follows:

• CRS components: The common reference string includes a description of the group along with the following

set of components (grouped together by their semantic properties):

– Slot-specific components: Each slot 𝑖 ∈ [𝐿] is associated with three group elements:

𝐴𝑖 = 𝑔
𝑡𝑖

and 𝐵𝑖 = 𝑔
𝛼ℎ𝑡𝑖 and 𝑃𝑖 = 𝑔

𝛿𝑖 .

Here, 𝛼 and ℎ (randomly sampled) are common to all of the slots while 𝑡𝑖 , 𝛿𝑖
r← Z𝑝 are random slot-specific

exponents. The slot-specific components (𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖) ensure that decryption is possible only in settings

where the user possesses a secret key associated with some slot 𝑖 ∈ [𝐿] (i.e., that the decrypter is a

registered user).

5

– Attribute-specific components: Each slot also includes a group element 𝑈𝑖 = 𝑔
𝑢𝑖
associated with the

(single) attribute in the scheme.
3
The attribute-specific components ensure that decryption is only possible

if the user has a key for a slot 𝑖 where the associated set of attributes satisfy the decryption policy.

– Cross terms: Each slot-attribute pair is also associated with a “cross term”𝑊𝑗,𝑖 = 𝑔
𝑡 𝑗𝑢𝑖

for all 𝑖 ≠ 𝑗 . These

will be used to construct helper decryption keys and facilitate decryption.

– General components: Finally, the CRS also contains a random group element ℎ
r← G and 𝑍 = 𝑒 (𝑔,𝑔)𝛼 .

These are used to encrypt the message and for linking together the slot-specific and attribute-specific

components during decryption.

• User key-generation: To generate a key for a slot 𝑖 , the user starts by sampling a secret exponent 𝑟𝑖
r← Z𝑝 .

The public key then consists of the group elements

𝑇𝑖 = 𝑔
𝑟𝑖 , 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖

, ∀𝑗 ≠ 𝑖 : 𝑉𝑗,𝑖 = 𝐴𝑟𝑖𝑗 .

Here𝑇𝑖 can be viewed as the user’s main public key,𝑉𝑗,𝑖 are the “cross terms” (used to generate helper decryption

keys at aggregation time), and 𝑄𝑖 is auxiliary information about the user’s public key used for facilitating the

security analysis.

• Aggregation: Given pk
1
, . . . , pk𝐿 and attributes 𝑆1, . . . , 𝑆𝐿 ⊆ {a} for each user (recall that we are considering

the simplified setting where the attribute universe consists of a single attribute a), the aggregation algorithm

computes the master public key as

𝑇 =
∏
𝑖∈[𝐿]

𝑇𝑖 and 𝑈 =
∏

𝑖∈[𝐿]:a∉𝑆𝑖

𝑈𝑖

Here𝑇 functions as the attribute-independent public key and𝑈 the attribute-specific public key for the attribute

a. When there are multiple attributes, each attribute will have its own attribute-specific public key. Moreover,

observe that the attribute-specific public key 𝑈 for the attribute a is the product of the attribute-specific

components𝑈𝑖 for the slots 𝑖 that do not contain the attribute a (i.e., the indices 𝑖 ∈ [𝐿] where a ∉ 𝑆𝑖). For each

slot 𝑖 ∈ [𝐿], the aggregation algorithm also computes the cross terms

𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 and �̂�𝑖 =
∏

𝑗≠𝑖:a∉𝑆 𝑗

𝑊𝑖, 𝑗 . (1.1)

The helper decryption for user 𝑖 contains both 𝑉𝑖 and �̂�𝑖 .

• Encryption: To encrypt a message `, the encrypter samples encryption randomness 𝑠
r← Z𝑝 and ℎ1, ℎ2 r← G

such that ℎ1ℎ2 = ℎ. The ciphertext is then

ct =
(
𝐶1,𝐶2,𝐶3,𝐶4) =

(
` · 𝑍𝑠 , 𝑔𝑠 , ℎ𝑠

2
𝑈 −𝑠 , ℎ𝑠

1
𝑇 −𝑠

)
.

We often refer to 𝐶3 as the “attribute-specific” component and 𝐶4 as the “slot-specific” component.

• Decryption: The decryption process affirms two main properties: (1) that the users’ purported secret key is

associated with some slot 𝑖 ∈ [𝐿] and (2) that the attributes associated with slot 𝑖 satisfy the challenge policy.

At a high level, if the user possesses a secret key for a public key registered to slot 𝑖 , then it is able to compute

𝑒 (𝑔, ℎ1)𝑠𝑡𝑖 , where 𝑠 is the encryption randomness and 𝑡𝑖 is the slot-specific exponent for slot 𝑖 . Moreover, if the

attributes associated with slot 𝑖 satisfy the challenge policy, then the user will be able to compute 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖 .
Taken together, the user is able to compute

𝑒 (𝑔, ℎ1)𝑠𝑡𝑖𝑒 (𝑔, ℎ2)𝑠𝑡𝑖 = 𝑒 (𝑔, ℎ1ℎ2)𝑠𝑡𝑖 = 𝑒 (𝑔, ℎ)𝑠𝑡𝑖 .

Now, pairing the ciphertext component 𝐶2 = 𝑔
𝑠
with the component 𝐵𝑖 = 𝑔

𝛼ℎ𝑡𝑖 from the CRS, the user obtains

𝑒 (𝐶2, 𝐵𝑖) = 𝑒 (𝑔,𝑔)𝛼𝑠𝑒 (𝑔, ℎ)𝑠𝑡𝑖 , which can be used to recover the message. We provide more details below:

3
When the attribute universe U contains more than one attribute, then there is a group element 𝑈𝑤,𝑖 = 𝑔

𝑢𝑖,𝑤 for each attribute 𝑤 ∈ U and

each slot index 𝑖 ∈ [𝐿].

6

– Slot check: Suppose the user know the secret key 𝑟𝑖 associated with slot 𝑖 . Then, to compute 𝑒 (𝑔, ℎ1)𝑠𝑡𝑖 ,
the user computes

𝑒 (𝐴𝑖 ,𝐶4) = 𝑒 (𝑔𝑡𝑖 , ℎ𝑠1𝑇 −𝑠) = 𝑒 (𝑔, ℎ1)𝑠𝑡𝑖
∏
𝑗∈[𝐿]

𝑒 (𝑔,𝑇𝑗)−𝑠𝑡𝑖 = 𝑒 (𝑔, ℎ1)𝑠𝑡𝑖
∏
𝑗∈[𝐿]

𝑒 (𝑔,𝑔)−𝑠𝑡𝑖𝑟 𝑗 .

Using 𝑟𝑖 as well as its cross term 𝑉𝑖 =
∏

𝑗≠𝑖 𝑉𝑖, 𝑗 =
∏

𝑗≠𝑖 𝑔
𝑡𝑖𝑟 𝑗

, the user can now compute

𝑒 (𝐶2, 𝐴𝑖)𝑟𝑖𝑒 (𝐶2,𝑉𝑖) = 𝑒 (𝑔𝑠 , 𝑔𝑡𝑖)𝑟𝑖
∏
𝑗≠𝑖

𝑒 (𝑔𝑠 , 𝑔𝑡𝑖𝑟 𝑗) = 𝑒 (𝑔,𝑔)𝑠𝑡𝑖𝑟𝑖
∏
𝑗≠𝑖

𝑒 (𝑔,𝑔)𝑠𝑡𝑖𝑟 𝑗 =
∏
𝑗∈[𝐿]

𝑒 (𝑔,𝑔)𝑠𝑡𝑖𝑟 𝑗

In particular, this means that

𝐷slot = 𝑒 (𝐴𝑖 ,𝐶4)𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖) = 𝑒 (𝑔, ℎ1)𝑠𝑡𝑖 .

– Policy check: Next, if the attributes 𝑆𝑖 associated with slot 𝑖 contains attribute a (i.e., satisfies the

decryption policy), then the user is able to compute 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖 . Here, the user relies on the cross terms �̂�𝑖 :

𝑒 (𝐴𝑖 ,𝐶3) = 𝑒 (𝑔𝑡𝑖 , ℎ𝑠2𝑈 −𝑠) = 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖
∏

𝑗∈[𝐿]:a∉𝑆 𝑗

𝑒 (𝑔,𝑈 𝑗)−𝑠𝑡𝑖 = 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖
∏

𝑗∈[𝐿]:a∉𝑆 𝑗

𝑒 (𝑔,𝑔)−𝑠𝑡𝑖𝑢 𝑗 .

When a ∈ 𝑆𝑖 and using the fact that the cross terms �̂�𝑖 =
∏

𝑗≠𝑖:a∉𝑆 𝑗𝑊𝑖, 𝑗 =
∏

𝑗≠𝑖:a∉𝑆 𝑗 𝑔
𝑡𝑖𝑢 𝑗

, we have

𝑒 (𝐴𝑖 ,𝐶3) = 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖
∏

𝑗≠𝑖:a∉𝑆 𝑗

𝑒 (𝑔,𝑔)−𝑠𝑡𝑖𝑢 𝑗 = 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖
∏

𝑗≠𝑖:a∉𝑆 𝑗

𝑒 (𝑔𝑠 , 𝑔𝑡𝑖𝑢 𝑗)−1 = 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖𝑒 (𝐶2,�̂�𝑖)−1. (1.2)

This means that

𝐷attrib = 𝑒 (𝐴𝑖 ,𝐶3)𝑒 (𝐶2,�̂�𝑖) = 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖 .

Given both 𝐷slot = 𝑒 (𝑔, ℎ1)𝑠𝑡𝑖 and 𝐷attrib = 𝑒 (𝑔, ℎ2)𝑠𝑡𝑖 and using the fact that ℎ1ℎ2 = ℎ, the user can now recover

the message by computing

𝐶1 · 𝐷slot · 𝐷attrib

𝑒 (𝐶2, 𝐵𝑖)
=
` · 𝑒 (𝑔,𝑔)𝛼𝑠 · 𝑒 (𝑔, ℎ)𝑠𝑡𝑖

𝑒 (𝑔𝑠 , 𝑔𝛼ℎ𝑡𝑖) = `.

Progression-free sets. The size of the CRS in the above variant of [HLWW23] is quadratic in the number of slots

because it contains a “cross term”𝑊𝑗,𝑖 = 𝑔
𝑡 𝑗𝑢𝑖

for all 𝑖 ≠ 𝑗 . In fact, when there are multiple attributes in the attribute

universe, there needs to be a separate set of (quadratically-many) cross terms for each attribute. These cross terms

are needed to generate the attribute-specific helper decryption key for each user (i.e., the �̂�𝑖 in Eq. (1.1)), which are in

turn used in the “policy check” step during decryption (Eq. (1.2)). For correctness, it is essential that the CRS contains

the term𝑊𝑗,𝑖 for all 𝑗 ≠ 𝑖 (to cancel out the interaction between an attribute registered to slot 𝑗 and the decryption

process with respect to slot 𝑖). For security, it is critical that the CRS does not contain the non-cross-term𝑊𝑖,𝑖 = 𝑔
𝑡𝑖𝑢𝑖

.
4

Our first technique for reducing the CRS size is observing that the cross terms𝑊𝑗,𝑖 = 𝑔
𝑡 𝑗𝑢𝑖

do not have to be distinct

for every pair 𝑖 ≠ 𝑗 . For instance, suppose we choose the slot-specific exponents 𝑡1, . . . , 𝑡𝐿 and the attribute-specific

exponents 𝑢1, . . . , 𝑢𝐿 from a distribution where 𝑡𝑖𝑢 𝑗 = 𝑡𝑖′𝑢 𝑗 ′ for many pairs (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′). In this case, we only need

to publish a single group element𝑊𝑖, 𝑗 that can be shared across all pairs of indices (𝑖′, 𝑗 ′) where 𝑡𝑖′𝑢 𝑗 ′ = 𝑡𝑖𝑢 𝑗 . Of
course, we still require the invariant that we never give out a non-cross-term: namely, there does not exist an index

𝑘 ∈ [𝐿] and a pair 𝑖 ≠ 𝑗 such that 𝑡𝑘𝑢𝑘 = 𝑡𝑖𝑢 𝑗 .

Specifically, we choose the exponents 𝑡𝑖 and 𝑢𝑖 to be powers of a (random) value 𝑎
r← Z𝑝 . We set 𝑡𝑖 B 𝑎𝑑𝑖 for

some integer 𝑑𝑖 ∈ N and 𝑢𝑖 = 𝑏 · 𝑎𝑑𝑖 , where 𝑏 r← Z𝑁 is a randomizing term (shared across 𝑢1, . . . , 𝑢𝐿). Observe now

that 𝑢𝑖𝑡 𝑗 = 𝑏𝑎
𝑑𝑖𝑎𝑑 𝑗 = 𝑏𝑎𝑑𝑖+𝑑 𝑗 . We need to choose a set of powersD = {𝑑𝑖 : 𝑖 ∈ [𝐿]} ⊂ N. so as to satisfy the following

correctness and security properties:

4
If the non-cross-term𝑊𝑖,𝑖 was given out, then a user who does not satisfy the ciphertext policy would also be able to decrypt.

7

• Security: For security, it should be the case that 𝑑𝑘 +𝑑𝑘 ≠ 𝑑𝑖 +𝑑 𝑗 for any distinct 𝑖, 𝑗, 𝑘 ∈ [𝐿]. This ensures that
even if the CRS contains𝑊𝑗,𝑖 = 𝑔

𝑏𝑎
𝑑𝑖+𝑑𝑗

for all 𝑖 ≠ 𝑗 , it never contains a non-cross-term of the form 𝑔𝑏𝑎
𝑑𝑘 +𝑑𝑘

. IfD
is a set of non-negative integers with the property that for all distinct 𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 ∈ D, it holds that 𝑑𝑖 + 𝑑 𝑗 ≠ 2𝑑𝑘 ,

then the set D does not contain any arithmetic progressions of length 3. Such sets are often referred to as

“progression-free sets.”

• Efficiency: The second property we desire is that there should be many overlaps in the values of 𝑑𝑖 + 𝑑 𝑗
for distinct 𝑖 ≠ 𝑗 . This is because the number of cross terms in the CRS scales with the size of the set

{𝑑𝑖 + 𝑑 𝑗 : 𝑖, 𝑗 ∈ [𝐿], 𝑖 ≠ 𝑗}. Observe that we can always bound the size of this set (and thus, the number of cross

terms) by 2 ·max(D) where max(D) denotes the largest element in the set D. Thus, it suffices to construct a

progression-free set D with small values.

Progression-free sets are a well-studied combinatoric object [ET36, Beh46, Elk10] and state-of-the-art constructions

show how to construct a progression-free set D ⊂ N of size 𝐿 where the maximum element has magnitude 𝐿1+𝑜 (1) .
Translating back to the setting of registered ABE, this means the number of cross terms we need to include in the CRS

is also 𝐿1+𝑜 (1) (i.e., nearly linear in the number of users 𝐿). This is a substantial improvement over the quadratic-size

CRS from [HLWW23].

On the flip side, choosing the slot-specific exponents 𝑡𝑖 and the attribute-specific exponents 𝑢𝑖 to be of the form 𝑎𝑑𝑖

and 𝑏𝑎𝑑𝑖 for some fixed 𝑎, 𝑏
r← Z𝑁 will require us to make a more complex computational assumption when analyzing

security. Specifically, we rely on “𝑞-type” assumptions (c.f., [BBG05, BGW05]) where the size of the assumption grows

with the number of users 𝐿, and moreover, where the terms given out in the assumption are parameterized by a

progression-free set. While these are new and non-standard assumptions, it is straightforward to show that they

hold in a generic (bilinear) group model [Sho97, BBG05, Boy08] and we refer to Appendix D for further discussion.

CRS size dependence on the number of attributes. Progression-free sets allow us to reduce the number of cross-

terms in the CRS from quadratic to nearly linear in the number of users 𝐿. However, as described, we still need to give

out a set of cross-terms for each attribute in the attribute universe. In the simplified scheme described above, there is

only a single attribute, and as such, only one set of cross terms𝑊𝑗,𝑖 = 𝑔
𝑡 𝑗𝑢𝑖

. However, when there are multiple attributes,

the [HLWW23] scheme associates a different exponent 𝑢𝑤,𝑖 for each attribute𝑤 ∈ U in the attribute universeU and

each slot 𝑖 ∈ N, and there is a cross term𝑊𝑤,𝑗,𝑖 = 𝑔
𝑡 𝑗𝑢𝑤,𝑖

for each attribute𝑤 and each pair of distinct slots 𝑖 ≠ 𝑗 . Having

a different exponent 𝑢𝑤,𝑖 for each attribute-slot index (𝑤, 𝑖) is important for implementing the dual-system security

proof (specifically, these exponents are used to switch the parameters from slot 𝑖 from normal mode to semi-functional

mode for the setting where the attributes associated with slot 𝑖 do not satisfy the challenge policy). More broadly, the

fact that we need a set of cross-terms for each attribute means that the size of the CRS scales with |U| ·𝐿2 in the case of

[HLWW23]. Using progression-free sets, we can reduce the size of each collection of cross terms from 𝐿2 to 𝐿1+𝑜 (1) , but
if the CRS needs to contain |U| collections of cross terms, then the overall size of the CRS still scales with |U| ·𝐿1+𝑜 (1) .

As noted above, the main reason [HLWW23] needed |U| sets of cross terms in the CRS is to facilitate a dual-system

proof of adaptive security. Specifically, in the adaptive security game, the adversary is able to corrupt any slot 𝑖 (i.e.,

request the secret key for an honest user registered to slot 𝑖). This is permitted as long as the adversary later specifies

a set of attributes 𝑆 which does not satisfy the challenge policy with slot 𝑖 . Thus, when the reduction algorithm

generates a key for a slot 𝑖 , it needs to be prepared to give out the associated secret key for slot 𝑖 . At the same time, the

reduction algorithm should not be able to generate keys that would allow it to decrypt the challenge ciphertext itself

(as otherwise, it would not need the adversary at all). In the dual-system argument, there are two types of slots: normal

slots (whose parameters are generated according to the real scheme) and “semi-functional” slots whose parameters

are generated in a special way. Similarly, there are normal ciphertexts and semi-functional ciphertexts. The proof

maintains the invariant that keys registered to semi-functional slots can be used to decrypt normal ciphertexts and

keys registered to normal slots can decrypt semi-functional ciphertexts. However, keys registered to semi-functional

slots cannot decrypt semi-functional ciphertexts. The proof then consists of a sequence of hybrid experiments where

the challenge ciphertext is first replaced by a semi-functional ciphertext; next, the proof carefully switches each slot

from normal mode to semi-functional mode. At the very end of the proof, all of the slots as well as the challenge

ciphertext are semi-functional and it is straightforward to argue that the adversary cannot break semantic security.

In order to switch slot 𝑖 from normal to semi-functional, the reduction algorithm critically relies on there being a

8

different set of attribute exponents 𝑢𝑤,𝑖 associated with each attribute𝑤 ∈ U and slot 𝑖 . For this reason, the size of

the CRS in the previous adaptively secure constructions scaled multiplicatively with the size of the attribute universe.

A partitioning-based proof strategy. To achieve a shorter CRS (whose size is independent of the size of the
attribute universe), we take a different approach for arguing security. In particular, we consider a weaker “static”

security model where the adversary must declare the set of corrupted slots 𝑖 ∈ [𝐿] at the very beginning of the game.

In this model, the reduction algorithm “knows” in advance which slots it needs to be able to generate the secret key

for and which ones it does not. This enables us to use a “partitioning” strategy to argue security, where the indices

of the corrupted slots are programmed into the CRS itself. The programming ensures that the adversary is able to

generate secret keys for all of the corrupted slots (but not for the non-corrupted slots). While this is a weaker security

notion that adaptive security, it still captures a meaningful security property, and moreover, the work of [FWW23]

show how generically compile a registered ABE scheme that does not allow corruption queries into a scheme that

supports adaptive corruptions in the random oracle model. The advantage of using a partitioning-based argument is

we no longer require a different sets of attribute exponents for each slot, and in fact, all of the attribute can share the

same set of attribute-slot components. This means the size of the CRS becomes independent of the size of the attribute
universe. This has the added benefit that the size of the attribute universe no longer needs to be fixed at setup time.

Note however that the size of the public key still grows with the number of attributes since we still need to associate

a group element with each attribute which encodes which slots in the scheme are associated with the attribute.

Our partitioning-based approach can be applied with or without progression-free sets. For completeness, we

describe both versions. In Section 4, we describe the scheme with both of our techniques for CRS size reduction.

This yields a scheme with a CRS of size 𝐿1+𝑜 (1) . Then, in Appendix B, we show an adaptation of [HLWW23] with

a quadratic-size CRS and a partitioning-based security analysis. Since we use a partitioning-based proof strategy,

we can rewrite the scheme over prime-order groups, and moreover, use a single set of attribute-slot exponents. The

CRS size in both constructions is independent of the size of the attribute universe. We refer to Table 1 for a detailed

comparison between our schemes as well as to those of previous works.

Proving adaptive security via a dual system approach. As noted above, using a partitioning-based proof

strategy allows us to eliminate the dependence on the size of the attribute universe from the CRS. However, it comes

at the cost of being able to prove adaptive security. In Section 5, we show how to integrate progression-free sets into

the construction of [HLWW23] to obtain an adaptively-secure scheme where the CRS size scales nearly linearly with

the number of slots. Adaptive security relies on a similar dual system argument as in [HLWW23], and consequently,

we require an independent set of attribute exponents for each slot. As such, the size of the CRS in this construction

scales multiplicatively with the size of the attribute universe.

Note that integrating progression-free sets into the construction of [HLWW23] requires making additional

adjustments to the scheme. Notably, since we now sample exponents from a correlated set (as opposed to uniformly

random), our modified scheme (Construction 5.5) requires an additional subgroup for re-randomization. Moreover,

we also need to introduce additional re-randomization for the ciphertexts in order to facilitate the dual-system proof

strategy; we refer to Section 5.3 for more technical details.

Incremental aggregation. Thus far, we have focused primarily on a slotted registered ABE scheme where the

system is initialized with a fixed number of slots 𝐿. Instead of users joining dynamically, the slotted notion assumes

that all 𝐿 keys are provided together (to the aggregation algorithm). The work of [HLWW23] show how to generically

transform any slotted registered ABE scheme into a normal registered ABE scheme that supports dynamic user

registrations. In the normal setting, a key curator would be responsible for registering users, updating the scheme

parameters, and issuing helper decryption keys. Thus, applied naïvely, the [HLWW23] transformation would require

the key curator to store up to 𝐿 public keys (before it is able to aggregate them together using the slotted registered

ABE scheme). In our slotted registered ABE scheme (and as in previous constructions), the size of each user’s public

key is𝑂 (𝐿), which means the key curator would need to maintain an𝑂 (𝐿2)-size state to support dynamic registrations.

Needing to maintain quadratic state would then remain a bottleneck in registered ABE schemes.

In this work, we show that if the underlying slotted registered ABE scheme supports incremental aggregation
(where the aggregation algorithm operates in a streamingmanner where the user public keys arrive sequentially and re-

9

quires at most a linear-size state), then it is possible to adapt the [HLWW23] transformation to obtain a registered ABE

scheme where the key curator only needs to maintain a linear-size state. All of the schemes we construct (as well as the

original construction of [HLWW23]) support incremental aggregation, and thus, we are able to obtain a (standard) reg-

istered ABE scheme where the key curator only needs a linear amount of storage to support dynamic registrations. We

describe this property in Definition 3.8 and describe our adaptation of the [HLWW23] transformation in Appendix C.

2 Preliminaries
Throughout this work, we write _ to denote the security parameter. For a positive integer 𝑛 ∈ N, we write [𝑛] to
denote the set {1, . . . , 𝑛}, and [0, 𝑛] to denote the set {0, . . . , 𝑛}. We use bold uppercase letters (e.g., M) to denote

matrices and bold lowercase letters (e.g., v) to denote vectors. We use non-boldface letters to refer to their components

(e.g., v = [𝑣1, . . . , 𝑣𝑛]). For a positive integer 𝑁 ∈ N, we write Z𝑁 to denote the integers modulo 𝑁 . For a set 𝑆 , we

write max(𝑆) to denote the maximum element in the set, and min(𝑆) to refer to the minimum element in the set. We

write 2
𝑆
to denote the power set of 𝑆 (i.e., the set containing all subsets 𝑇 ⊆ 𝑆).

We write poly(_) to denote a function that is 𝑂 (_𝑐) for some constant 𝑐 ∈ N and negl(_) to denote a function

that is 𝑜 (_−𝑐) for all 𝑐 ∈ N. We say that an event occurs with overwhelming probability if its complement occurs with

negligible probability. We say an algorithm is efficient if it runs in probabilistic polynomial time in its input length. We

say that two families of distributionsD1 = {D1,_}_∈N andD2 = {D2,_}_∈N are computationally indistinguishable if no

efficient algorithm can distinguish them with non-negligible probability. We say they are statistically indistinguishable

if the statistical distance Δ(D1,D2) is bounded by a negligible function in _.

2.1 Access Structures and Linear Secret Sharing
We also recall the definition of monotone access structures and linear secret sharing which we use in this work. Our

presentation is taken from that of [HLWW23].

Definition 2.1 (Access Structure [Bei96]). Let 𝑆 be a set and let 2𝑆 denote the power set of 𝑆 (i.e., the set of all subsets
of 𝑆). An access structure on 𝑆 is a set A ⊆ 2

𝑆 \ ∅ of non-empty subsets of 𝑆 . We refer to the elements of A as the

authorized sets and those not in A as the unauthorized sets. We say an access structure is monotone if for all sets
𝑆1, 𝑆2 ∈ 2𝑆 , if 𝑆1 ∈ A and 𝑆1 ⊆ 𝑆2, then 𝑆2 ∈ A.

Definition 2.2 (Linear Secret Sharing Scheme [Bei96]). Let P be a set of parties. A linear secret sharing scheme over

a ring Z𝑁 for P is a pair (M, 𝜌), whereM ∈ Zℓ×𝑛
𝑁

is a “share-generating” matrix and 𝜌 : [ℓ] → P is a “row-labeling”

function. The pair (M, 𝜌) satisfy the following properties:

• Share generation: To share a value 𝑠 ∈ Z𝑁 , sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and define the vector v = [𝑠, 𝑣2, . . . , 𝑣𝑛]T.

Then, u = Mv is the vector of shares where 𝑢𝑖 ∈ Z𝑁 belongs to party 𝜌 (𝑖) for each 𝑖 ∈ [ℓ].

• Share reconstruction: Let 𝑆 ⊆ P be a set of parties and let 𝐼𝑆 = {𝑖 ∈ [ℓ] : 𝜌 (𝑖) ∈ 𝑆} be the row indices

associated with 𝑆 . LetM𝑆 ∈ Z |𝐼𝑆 |×𝑛𝑁
be the matrix formed by taking the subset of rows inM that are indexed

by 𝐼𝑆 . If 𝑆 is an authorized set of parties, then there exists a vector 𝝎𝑆 ∈ Z |𝐼𝑆 |𝑁
such that 𝝎T

𝑆
M𝑆 = eT

1
, where

eT
1
= [1, 0, . . . , 0] denotes the first elementary basis vector. Conversely, if 𝑆 ⊆ is an unauthorized sets of parties,

then eT
1
is not in the row-span of M (i.e., there does not exist 𝝎𝑆 ∈ Z |𝑆 |𝑁 where 𝝎T

𝑆
M𝑆 = eT

1
). Equivalently, when

𝑆 is unauthorized, there exists a vector v∗ ∈ Z𝑛 where the first component 𝑣∗
1
= 1 such that M𝑆v∗ = 0 (i.e., the

vector v∗ is orthogonal to the rows of M associated with the attributes in 𝑆).

We say that a policy (M, 𝜌) is one-use if the row-labeling function 𝜌 is injective (i.e., each party appears at most once

in the policy).

Remark 2.3 (Monotone Boolean Formulas). Our pairing-based registered ABE constructions support monotone

access policies that can be described by any linear secret sharing scheme. As a special case, this captures the class

of monotone Boolean formulas. There are multiple ways to take a monotone Boolean formula and express it as a

linear secret sharing scheme; we refer to [LW11, Appendix G] for one such approach.

10

2.2 Progression-Free Sets
The main combinatoric notion we use in this work is a progression-free set [ET36], which are sets that do not contain

any arithmetic progressions of length 3). We provide the formal definition below:

Definition 2.4 (Progression-Free Set [ET36]). A set D ⊂ N is progression-free if for all 𝑖, 𝑗, 𝑘 ∈ D where 𝑖 ≠ 𝑗 , it

follows that 𝑖 + 𝑗 ≠ 2 · 𝑘 .

Theorem 2.5 (Constructions of Progression-Free Sets [Beh46, Elk10]). There exists an efficiently-computable family
of progression-free sets {D𝑛}𝑛∈N where |D𝑛 | = 𝑛 and max(D𝑛) = 𝑛1+𝑜 (1) .

Double-free sets. We will also consider “double-free” sets which are sets of positive integers where there does not

exist 𝑖, 𝑗 where 𝑖 = 2 𝑗 . We define this formally below and then show that any progression-free sets can be converted

into a double-free and progression-free set.

Definition 2.6 (Double-Free Set). We say a set D ⊂ N is double-free if for all 𝑖, 𝑗 ∈ D, it follows that 𝑖 ≠ 2 · 𝑗 .

Corollary 2.7 (Progression-Free and Double-Free Sets). There exists an efficiently-computable family of progression
and double-free sets {D𝑛} where max(D𝑛) ∈ 𝑛1+𝑜 (1) .

Proof. LetD′𝑛+1 be a progression-free set of size 𝑛 + 1. DefineD∗ = {𝑑 −min(D′𝑛+1) | 𝑑 ∈ D′𝑛+1}. Since we are simply

subtracting a constant from the elements in D′𝑛+1, any arithmetic sequence in D∗ corresponds to an arithmetic se-

quence in D′𝑛+1. This means that D∗ is progression-free. Next, by construction, 0 ∈ D∗. Since D∗ is progression-free,
there does not exist any pair of indices 𝑖, 𝑗 ∈ D∗ such that 𝑖 + 0 = 2 · 𝑗 . Now we can take D𝑛 = D∗ \ {0} to be our

progression and double-free set of size 𝑛. □

3 Registered Attribute-Based Encryption
We recall the preliminaries for a registered ABE scheme. The definition and discussion is copied verbatim from

[HLWW23].

Definition 3.1 (Registered Attribute-Based Encryption [HLWW23]). Let _ be a security parameter. LetU = {U_}_∈N
be a universe of attributes and P = {P_}_∈N be a set of policies onU (i.e., every 𝑃 ∈ P_ is a function 𝑃 : 2U_ → {0, 1}).
A registered attribute-based encryption scheme with attribute universe U and policy space P consists of a tuple

of efficient algorithms ΠRABE = (Setup,KeyGen,RegPK, Encrypt,Update,Decrypt) with the following properties:

• Setup(1_, 1 |U_ |) → crs: On input the security parameter _ and the size of the attribute universeU_ , the setup
algorithm outputs a common reference string crs. We assume the crs (implicitly) contains the security parameter

1
_
and a description of the message spaceM_ (where |M_ | ≥ 2).

• KeyGen(crs, aux) → (pk, sk): On input the common reference string crs, and a (possibly empty) state aux, the
key-generation algorithm outputs a public key pk and a secret key sk.

• RegPK(crs, aux, pk, 𝑆pk) → (mpk, aux′): On input the common reference string crs, a (possibly empty) state

aux, a public key pk, and a set of attributes 𝑆pk ⊆ U_ , the registration algorithm deterministically outputs

the master public key mpk and an updated state aux′. We assume that mpk implicitly contains the security

parameter 1
_
and a description of the message spaceM_ (from crs).

• Encrypt(mpk, 𝑃, `) → ct: On input the master public keympk, an access policy 𝑃 ∈ P_ , and a message ` ∈ M_ ,

the encryption algorithm outputs a ciphertext ct.

• Update(crs, aux, pk) → hsk: On input the common reference string crs, a state aux, and a public key pk, the
update algorithm deterministically outputs a helper decryption key hsk. We assume that hsk implicitly contains

the security parameter 1
_
and a description of the message spaceM_ (from crs).

11

• Decrypt(sk, hsk, ct) → M ∪ {⊥,GetUpdate}: On input the master public key mpk, a secret key sk, a helper
decryption key hsk, and a ciphertext ct, the decryption algorithm either outputs a message ` ∈ M_ , a spe-

cial symbol ⊥ to indicate a decryption failure, or a special flag GetUpdate that indicates an updated helper

decryption key is needed to decrypt.

Definition 3.2 (Correctness and Efficiency of Registered ABE). Let ΠRABE = (Setup,KeyGen,RegPK, Encrypt,
Update,Decrypt) be a registered ABE scheme with attribute universeU and policy space P. For a security parameter

_ and an adversary A, we define the following game between A and the challenger:

• Setup phase: The challenger starts by sampling the common reference string crs← Setup(1_, 1 |U_ |). It then
initializes the auxiliary input aux = ⊥ and initial master public key mpk

0
= ⊥. It also initializes a counter

ctr[reg] = 0 to keep track of the number of registration queries and another counter ctr[enc] = 0 to keep track

of the number of encryption queries. Finally, it initializes ctr[reg]∗ = ∞ as the index for the target key (which

will also be updated during the course of the game). Finally, it gives crs to A.

• Query phase: During the query phase, the adversary A is able to make the following queries:

– Register non-target key query: In a non-target-key registration query, the adversaryA specifies a pub-

lic key pk and a set of attributes 𝑆 ⊆ U_ . The challenger first increments the counter ctr[reg] = ctr[reg] +1
and then registers the key by computing (mpkctr[reg], aux

′) ← RegPK(crs, aux, pk, 𝑆). The challenger
updates its auxiliary data by setting aux = aux′ and replies to A with (ctr[reg],mpkctr[reg], aux).

– Register target key query: In a target-key registration query, the adversary specifies a set of attributes

𝑆∗ ⊆ U_ . If the adversary has previously made a target-key registration query, then the challenger

replies with ⊥. Otherwise, the challenger increments the counter ctr[reg] = ctr[reg] + 1, samples

(pk∗, sk∗) ← KeyGen(1_), and registers (mpkctr[reg], aux
′) ← RegPK(crs, aux, pk∗, 𝑆∗). It computes the

helper decryption key hsk∗ ← Update(crs, aux, pk∗). The challenger updates its auxiliary data by set-

ting aux = aux′, stores the index of the target identity ctr[reg]∗ = ctr[reg], and replies to A with

(ctr[reg],mpkctr[reg], aux, pk
∗, hsk∗, sk∗).

– Encryption query: In an encryption query, the adversary submits the index ctr[reg]∗ ≤ 𝑖 ≤ ctr[reg]
of a public key,

5
a message `ctr[enc] ∈ M_ (whereM_ is the message space associated with crs), and a

policy 𝑃ctr[enc] ∈ P_ . If the adversary has not yet registered a target key, or if the target set of attributes

𝑆∗ does not satisfy the policy 𝑃ctr[enc] , the challenger replies with ⊥. Otherwise, the challenger increments

the counter ctr[enc] = ctr[enc] + 1 and computes ctctr[enc] ← Encrypt(mpk𝑖 , 𝑃ctr[enc], `ctr[enc]). The
challenger replies to A with (ctr[enc], ctctr[enc]).

– Decryption query: In a decryption query, the adversary submits a ciphertext index 1 ≤ 𝑗 ≤ ctr[enc].
The challenger computes 𝑚′𝑗 ← Decrypt(sk∗, hsk∗, ct𝑗). If 𝑚′𝑗 = GetUpdate, then the challenger

computes an updated helper decryption key hsk∗ ← Update(crs, aux, pk∗) and recomputes 𝑚′𝑗 ←
Decrypt(sk∗, hsk∗, ct𝑗). If𝑚′𝑗 ≠𝑚 𝑗 , the experiment halts with outputs 𝑏 = 1.

If the adversary has finished making queries and the experiment has not halted (as a result of a decryption

query), then the experiment outputs 𝑏 = 0.

We say that ΠRABE is correct and efficient if for all (possibly unbounded) adversaries A making at most a polynomial

number of queries, the following properties hold:

• Correctness: There exists a negligible function negl(·) such that for all _ ∈ N, Pr[𝑏 = 1] = negl(_) in the

above game. We say the scheme satisfies perfect correctness if Pr[𝑏 = 1] = 0.

• Compactness: Let 𝑁 be the number of registration queries the adversary makes in the above game. There

exists a universal polynomial poly(·, ·, ·) such that for all 𝑖 ∈ [𝑁], |mpk𝑖 | = poly(_, |U_ |, log 𝑖). We also require

that the size of the helper decryption key hsk∗ satisfy |hsk∗ | = poly(_, |U_ |, log𝑁) (at all points in the game).

5
Since we are requiring correctness to hold with respect to the target key, we only consider ciphertexts encrypted to master public keys constructed

after the target key has been registered.

12

• Update efficiency: Let 𝑁 be the number of registration queries the adversary makes in the above game. Then,

in the course of the above game, the challenger invokes the update algorithm Update at most 𝑂 (log𝑁) times,

where each invocation runs in poly(log𝑁) time in the RAM model of computation. Specifically, we model

Update as a RAM program that has random access to its input; thus, the running time of Update in the RAM

model can be smaller than the input length.

Security. The security requirement for a registered ABE scheme asserts that a user with keys for attribute sets

𝑆1, . . . , 𝑆𝑘 should not be able to learn anything about the message associated with a ciphertext encrypted to a policy

𝑃 where 𝑃 (𝑆𝑖) = 0 for all 𝑖 ∈ [𝑘]. We give the formal definition from [HLWW23]:

Definition 3.3 (Registered ABE Security [HLWW23]). Let ΠRABE = (Setup,KeyGen,RegPK, Encrypt,Update,
Decrypt) be a registered ABE scheme with attribute universe U and policy space P. For a security parameter

_, an adversary A, and a bit 𝑏 ∈ {0, 1}, we define the following game between A and the challenger:

• Setup phase: The challenger samples the common reference string crs← Setup(1_, 1 |U_ |). It then initializes

the auxiliary input aux = ⊥, the initial master public key mpk = ⊥, a counter ctr = 0 for the number of

honest-key-registration queries the adversary has made, an empty set of keys C = ∅ (to keep track of corrupted

public keys), and an empty dictionary mapping public keys to registered attribute sets Dict = ∅. For notational
convenience, if pk ∉ Dict, then we define Dict[pk] B ∅. to be the empty set. The challenger gives the crs toA.

• Query phase: Adversary A can now issue the following queries:

– Register corrupted key query: In a corrupted-key-registration query, the adversaryA specifies a public

key pk and a set of attributes 𝑆 ⊆ U_ . The challenger registers the key by computing (mpk′, aux′) ←
RegPK(crs, aux, pk, 𝑆). The challenger updates its copy of the public key mpk = mpk′, its auxiliary data

aux = aux′, adds pk to C, and updates 𝐷 [pk] = 𝐷 [pk] ∪ {𝑆}. It replies to A with (mpk′, aux′).
– Register honest key query: In an honest-key-registration query, the adversary specifies a set of attributes
𝑆 ⊆ U_ . The challenger increments the counter ctr = ctr+1 and samples (pkctr, skctr) ← KeyGen(1_), and
registers (mpk′, aux′) ← RegPK(crs, aux, pkctr, 𝑆). The challenger updates its public key mpk = mpk′, its
auxiliary data aux = aux′, and 𝐷 [pkctr] = 𝐷 [pkctr] ∪ {𝑆}. It replies to A with (ctr,mpk′, aux′, pkctr).

– Corrupt honest key query: In a corrupt-honest-key query, the adversary specifies an index 1 ≤ 𝑖 ≤ ctr.
Let (pk𝑖 , sk𝑖) be the 𝑖th public/secret key the challenger samples when responding to the 𝑖th honest-key-

registration query. The challenger adds pk𝑖 to C and replies to A with sk𝑖 .

• Challenge phase: The adversary A chooses two messages `∗
0
, `∗

1
∈ M_ (whereM_ is the message space

associated with crs) and an access policy 𝑃∗ ∈ P_ . The challenger replies with the challenge ciphertext

ct∗ ← Encrypt(mpk, 𝑃∗, `∗
𝑏
).

• Output phase: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

Let S = {𝑆 ∈ Dict[pk] : pk ∈ C} be the set of corrupted attributes. We say that an adversary A is admissible if the

challenge policy 𝑃∗ is not satisfied by any attribute set 𝑆 ∈ S. Note that it could be the case that 𝑃∗ is satisfied by the

attributes 𝑆 from an honest key query (that was not subsequently corrupted). We say that a registered ABE scheme

is secure if for all efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all

_ ∈ N, we have that | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(_) in the above security game.

Definition 3.4 (Bounded Registered ABE). As in [HLWW23], we say a registered ABE scheme ΠRABE is bounded
if there is an a priori bound on the number of registered users in the system. In this setting, the Setup algorithm

takes as input an additional bound parameter 1
𝐿
which specifies the maximum number of registered users. In the

correctness and security definitions (Definitions 3.2 and 3.3), the adversary specifies the bound 1
𝐿
at the beginning

of the experiment, and is then allowed to make a maximum of 𝐿 registration queries.

Definition 3.5 (Static Security). In this work, we also also consider the weaker notion of static security for a registered

ABE scheme. In the static security game, the adversary must pre-commit to the number 𝑁 of registration queries

13

that it will make, and moreover, for each index 𝑖 ∈ [𝑁], the adversary must also declare upfront whether its 𝑖th

registration query will be to register a “corrupted key” or an “honest key.” Note that the adversary does not need to

choose the corrupted keys themselves at the beginning of the game (which may not even be possible as the structure

of a public key may depend on the common reference string). In addition, in this model, the adversary is not allowed

to make “corrupt honest key” queries during the query phase. While static security is considerably weaker than the

security definition in Definition 3.3, this relaxation will enable more efficient constructions.

3.1 Slotted Registered Attribute-Based Encryption
Similar to [HLWW23], we focus on constructing the simpler notion of a slotted registered ABE scheme. A slotted

registered ABE scheme is simpler in the sense that it does not have to support dynamic registrations where users

register their public keys (and attribute sets) one at a time. Instead, the scheme is initialized with a fixed number

of slots 𝐿, and there is a single aggregation algorithm that takes all 𝐿 public keys (together with their attribute sets)

and outputs the aggregated public key. While the slotted version of the scheme may seem to provide a weaker

functionality than a full registered ABE scheme (Definition 3.1), previous works have shown that the slotted version

implies a scheme with dynamic registration via a powers-of-two compiler [GHM
+
19, GHM

+
19, HLWW23].

Definition 3.6 (Slotted Registration-Based Encryption [HLWW23]). Let _ be a security parameter. LetU = {U_}_∈N
be a universe of attributes and P = {P_}_∈N be a set of policies onU (i.e., every 𝑃 ∈ P_ is a function 𝑃 : 2U_ → {0, 1}).
A slotted registered ABE scheme with attribute universe U and policy space P is a tuple of efficient algorithms

ΠsRABE = (Setup,KeyGen, IsValid,Aggregate, Encrypt,Decrypt) with the following properties:

• Setup(1_, 1 |U_ | , 1𝐿) → crs: On input the security parameter _, the size of the attribute universeU_ , and the

number of slots 𝐿, the setup algorithm outputs a common reference string crs. We assume that crs implicitly

contains the security parameter 1
_
as well as a description of the message spaceM_ associated with the scheme

(where |M_ | ≥ 2).

• KeyGen(crs, 𝑖) → (pk𝑖 , sk𝑖): On input the common reference string crs, a slot index 𝑖 ∈ [𝐿], the key-generation
algorithm outputs a public key pk𝑖 and a secret key sk𝑖 for slot 𝑖 .

• IsValid(crs, 𝑖, pk𝑖) → {0, 1}: On input the common reference string crs, a slot index 𝑖 ∈ [𝐿], and a public key

pk𝑖 , the key-validation algorithm outputs a bit 𝑏 ∈ {0, 1} indicating whether pk𝑖 is valid or not. This algorithm

is deterministic.

• Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)) → (mpk, hsk1, . . . , hsk𝐿): On input the common reference string crs

and a list of public keys and the associated attributes (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿), the aggregate algorithm outputs the

master public keympk and a collection of helper decryption keys hsk1, . . . , hsk𝐿 . This algorithm is deterministic.
We assume that the master public key mpk and the helper decryption keys hsk𝑖 also contain (implicitly) the

security parameter 1
_
as well as a description of the message spaceM_ (from crs).

• Encrypt(mpk, 𝑃, `) → ct: On input the master public keympk, an access policy 𝑃 ∈ P_ , and a message ` ∈ M_ ,

the encryption algorithm outputs a ciphertext ct.

• Decrypt(sk, hsk, ct) → 𝑚: On input a decryption key sk, the helper decryption key hsk, and a ciphertext ct,
the decryption algorithm outputs a message ` ∈ M_ ∪ {⊥}. This algorithm is deterministic.

Moreover, the above algorithms should satisfy the following properties:

• Completeness: For all parameters _ ∈ N, 𝐿 ∈ N, and all indices 𝑖 ∈ [𝐿],

Pr

[
IsValid(crs, 𝑖, pk𝑖) = 1 : crs← Setup(1_, 1 |U_ | , 1𝐿); (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖)

]
= 1.

• Correctness: We say ΠsRABE is correct if for all security parameters _ ∈ N, all slot lengths 𝐿 ∈ N, all indices
𝑖 ∈ [𝐿], if we sample crs← Setup(1_, 1 |U_ | , 1𝐿), (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖), then for all collections of public

keys {pk𝑗 } 𝑗≠𝑖 (which may be correlated with pk𝑖) where IsValid(crs, 𝑗, pk𝑗) = 1, all messages ` ∈ M_ (where

14

M_ is the message space associated with crs), all sets of attributes 𝑆1, . . . , 𝑆𝐿 ⊆ U_ , all policies 𝑃 ∈ P_ where
𝑆𝑖 satisfies policy 𝑃 , the following holds:

Pr

[
Decrypt(sk𝑖 , hsk𝑖 , ct) = ` :

(mpk, hsk1, . . . , hsk𝐿) ← Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿))

ct← Encrypt(mpk, 𝑃, `)

]
= 1,

where the probability is taken over the randomness in Setup, KeyGen, and Encrypt.

• Compactness: There exists a universal polynomial poly(·, ·, ·) such that the length of the master public key

and individual helper secret keys output by Aggregate are poly(_, |U_ |, log𝐿).

• Security: Let 𝑏 ∈ {0, 1} be a bit. For an adversary A, define the following security game between A and a

challenger:

– Setup phase: The adversary A sends a slot count 1
𝐿
to the challenger. The challenger then samples

crs← Setup(1_, 1 |U_ | , 1𝐿) and gives crs toA. The challenger also initializes a counter ctr = 0, a dictionary

Dict, and a set of slot indices C = ∅.
– Pre-challenge query phase: Adversary A can now issue the following queries:

∗ Key-generation query: In a key-generation query, the adversary specifies a slot index 𝑖 ∈ [𝐿].
The challenger responds by incrementing the counter ctr = ctr + 1, sampling (pkctr, skctr) ←
KeyGen(crs, 𝑖) and replieswith (ctr, pkctr) toA. The challenger adds themapping ctr ↦→ (𝑖, pkctr, skctr)
to the dictionary Dict.

∗ Corruption query: In a corruption query, the adversary specifies an index 1 ≤ 𝑐 ≤ ctr. In response,

the challenger looks up the tuple (𝑖′, pk′, sk′) = Dict[𝑐] and replies to A with sk′.
– Challenge phase: For each slot 𝑖 ∈ [𝐿], adversary A specifies a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖) where either 𝑐𝑖 ∈
{1, . . . , ctr} to reference a challenger-generated key or 𝑐𝑖 = ⊥ to reference a key outside this set. The

adversary also specifies a challenge policy 𝑃∗ ∈ P_ and two messages `∗
0
, `∗

1
∈ M_ (whereM_ is the

message space associated with crs). The challenger responds by first constructing pk𝑖 as follows:
∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, then the challenger looks up the entry Dict[𝑐𝑖] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, then the

challenger sets pk𝑖 = pk′. Moreover, if the adversary previously issued a “corrupt identity” query on

index 𝑐𝑖 , then the challenger adds the slot index 𝑖 to C. Otherwise, if 𝑖 ≠ 𝑖′, then the experiment halts.

∗ If 𝑐𝑖 = ⊥, then the challenger checks that IsValid(crs, 𝑖, pk∗𝑖) outputs 1. If not, the experiment halts.

If the key is valid, the challenger sets pk𝑖 = pk∗𝑖 and adds the slot index 𝑖 to C.
The challenger computes (mpk, hsk1, . . . , hsk𝐿) ← Aggregate(crs, (pk

1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)) and replies

with the challenge ciphertext ct∗ ← Encrypt(mpk, 𝑃∗, `∗
𝑏
). Note that because Aggregate is deterministic

and can be run by A itself, there is no need to additionally provide (mpk, hsk1, . . . , hsk𝐿) to A. Similarly,

there is no advantage to allowing the adversary to select the challenge policy and messages after seeing
the aggregated key.

– Post-challenge query phase: Adversary A can now issue the following queries:

∗ Corruption query: In a corruption query, the adversary specifies an index 𝑐 ∈ {1, . . . , ctr}. In
response the challenger looks up the tuple (𝑖′, pk′, sk′) = Dict[𝑐] and replies toA with sk′. Moreover,

if the adversary registered a tuple of the form (𝑐, 𝑆, pk∗) in the challenge phase for some choice of

𝑆 ⊆ U_ and pk∗, then the challenger adds the slot index 𝑖′ ∈ [𝐿] to C.
– Output phase: At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output

of the experiment.

We say an adversaryA is admissible if for all corrupted slot indices 𝑖 ∈ C, the set 𝑆𝑖 does not satisfy 𝑃∗ (i.e., the
attributes associated with a corrupted slot does not satisfy the challenge policy). Finally, we say that a slotted

registration-based encryption scheme is secure if for all polynomials 𝐿 = 𝐿(_) and all efficient and admissible

adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_)

in the above security experiment.

15

Definition 3.7 (Static Security). Similar to Definition 3.5, we say that a slotted registered ABE scheme satisfies static
security if the adversary has to declare upfront (at the beginning of the security game before the challenger samples

the CRS) the slot indices 𝑖 ∈ [𝐿] where it will provide its own key during the challenge phase (i.e., the set of indices

𝑖 ∈ [𝐿] where 𝑐𝑖 = ⊥). In addition, in the static security game, the adversary is not allowed to make any corruption

queries in either query phase.

Incremental aggregation. Finally, we introduce the notion of incremental aggregation for a slotted registered

ABE scheme. As mentioned above, the work of [HLWW23] describes a transformation from slotted registered ABE

to registered ABE. However, a naïve implementation of this transformation would require the key curator to store

a large amount of auxiliary data. Specifically, in the [HLWW23] transformation, as users join the system, their public

keys and attribute sets are assigned to a collection of slotted registered ABE schemes (where the number of slots

in each scheme are consecutive powers of two). Once a public key has been assigned to every slot of a particular

scheme, the key curator runs the aggregation algorithm to derive an updated master public key for the slotted scheme.

Since the key curator cannot run the aggregation algorithm for the slotted scheme until a key has been assigned

to every slot, the key curator will need to cache a large number of public keys (up to 𝐿 of them if there are 𝐿 slots).

In the [HLWW23] scheme (and our system), each user’s public key in the slotted scheme also has size Ω(𝐿). As
a result, if the key curator has to store 𝐿 public keys, this means the key curator needs to maintain a state of size

Ω(𝐿2). However, in algebraic constructions of registered ABE such as [HLWW23] and our scheme, the underlying

slotted registered ABE scheme supports “incremental aggregation.” Namely, the aggregation algorithm for the slotted

scheme essentially reads in a single public key and attribute set and uses them to “update” the master public key

and helper decryption components. Once a public key and attribute set has been incorporated into the master public

key and helper decryption components, the key curator no longer needs to keep the user public key around. In our

setting, this will bring now the key curator set from Ω(𝐿2) to 𝑂 (𝐿). We describe this transformation in Appendix C.

We now define the incremental aggregation property we rely on formally:

Definition 3.8 (Incremental Aggregation). Let 𝑓 (·, ·) be a function. We say a slotted registered ABE scheme

ΠsRABE = (Setup,KeyGen, IsValid,Aggregate, Encrypt,Decrypt) supports 𝑓 -incremental aggregation if there exists

an efficient algorithm AggregateUpdate with the following syntax:

• AggregateUpdate(crs, st, (pk, 𝑆)) → st′: On input the common reference string crs, state st, public key pk, and
an associated set of attributes, the aggregate update algorithm outputs an updated state st′.

Then, we say that ΠsRABE supports 𝑓 -incremental aggregation if Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)) can be imple-

mented as follows:

1. Initialize st0 = ⊥.

2. For each 𝑖 ∈ [𝐿], compute st𝑖 ← AggregateUpdate(crs, st𝑖−1, (pk𝑖 , 𝑆𝑖)).

3. Output (mpk, hsk1, . . . , hsk𝐿) ← AggregateUpdate(crs, st𝐿,⊥).

Moreover, we require that max𝑖∈𝐿 |st𝑖 | ≤ 𝑓 (𝐿, |U_ |) · poly(_).

4 Statically-Secure Registered ABE via Progression-Free Sets
In this section, we show how to construct a statically-secure slotted registered ABE scheme over prime-order

pairing groups. By instantiating the construction with state-of-the-art progression-free sets (Theorem 2.5), we

obtain a scheme whose CRS size is 𝑂 (𝐿1+𝑜 (1)). This improves upon the schemes with a quadratic CRS from prior

work [HLWW23, FFM
+
23, ZZGQ23]. Similarly, by using a partitioning argument in the security proof, the CRS in

our scheme does not grow with the size of the attribute universe. Previous registered ABE schemes for monotone

Boolean formulas require a CRS whose size scales linearly with the size of the attribute universe.

16

4.1 Prime-Order Pairing Groups
Our construction of slotted registered ABE will rely on prime-order pairing groups. We recall the formal definition

below:

Definition 4.1 (Prime-Order Bilinear Group). A (symmetric) prime-order bilinear group generator is an efficient

algorithm PrimeGroupGen that takes as input the security parameter _ and outputs a description (G,G𝑇 , 𝑝, 𝑔, 𝑒)
of a bilinear group where 𝑝 = 2

Ω (_)
is a prime, G and G𝑇 are cyclic groups of order 𝑝 , 𝑔 is a generator of G, and

𝑒 : G × G→ G𝑇 is a non-degenerate bilinear map (called the “pairing”). We require that the group operation in G
and G𝑇 as well as the pairing operation be efficiently computable.

Set-consistent decisional bilinear Diffie-Hellman exponent assumption. The security of our construction

relies on a new assumption on prime-order bilinear groups, which we call the set-consistent bilinear Diffie-Hellman

exponent assumption. This is a variant of the bilinear Diffie-Hellman exponent (BDHE) assumption from [BBG05].

In the 𝑞-BDHE assumption from [BBG05], the adversary’s goal is to distinguish 𝑒 (𝑔,𝑔)𝑎𝑞+1𝑠 from random given the

group elements (
𝑔,𝑔𝑠 , 𝑔𝑎, 𝑔𝑎

2

, . . . , 𝑔𝑎
𝑞

, 𝑔𝑎
𝑞+2
, . . . , 𝑔𝑎

2𝑞)
.

In the 𝑞-set-consistent bilinear Diffie-Hellman exponent assumption, the adversary’s goal is to distinguish the element

𝑒 (𝑔,𝑔)𝑎𝑞𝑠 from random given 𝑔,𝑔𝑠 , and for each 𝑖 ∈ [𝑞 − 1], either the element 𝑔𝑎
𝑖

or the element 𝑔𝑎
𝑞−𝑖𝑠

. Similar

to the 𝑞-BDHE assumption, the adversary also gets additional group elements corresponding to the powers of 𝑎

beyond 𝑞. Observe that if the adversary had both 𝑔𝑎
𝑖

and 𝑔𝑎
𝑞−𝑖𝑠

for a particular index 𝑖 ∈ [𝑞 − 1], the adversary
can trivially distinguish by pairing these two elements together. However, given only one element from each pair,

the adversary cannot trivially compute 𝑒 (𝑔,𝑔)𝑎𝑞𝑠 . We give the formal statement of the assumption below, and in

Appendix D (Theorem D.6), we show that this assumption holds unconditionally in the generic bilinear group model.

Assumption 4.2 (Set-Consistent Bilinear Diffie-Hellman Exponent). Let PrimeGroupGen be a prime-order group

generator. For a security parameter _ and a bit 𝑏 ∈ {0, 1}, we define the 𝑞-set-consistent bilinear Diffie-Hellman

exponent game between an adversary A and a challenger:

• On input the security parameter 1
_
, the adversary A starts by outputting set 𝑆 ⊆ [𝑞 − 1].

• The challenger samples G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeGroupGen(1_) and exponents 𝑎, 𝑠
r← Z𝑝 .

• The challenger computes 𝑌 = 𝑔𝑠 and for each 𝑖 ∈ [2𝑞], let 𝑋𝑖 = 𝑔𝑎
𝑖

and 𝑍𝑖 = 𝑔𝑎
𝑖𝑠
. Let 𝑄 = 𝑒 (𝑔,𝑔)𝑎𝑞 . The

challenger also computes 𝑇0 = 𝑒 (𝑔,𝑔)𝑎
𝑞𝑠

and samples 𝑇1
r← G𝑇 .

• The challenger gives the following challenge to A:

G , 𝑔 , 𝑌 ,
{
𝑋𝑖

}
𝑖∈𝑆∪[𝑞+1,2𝑞] ,

{
𝑍𝑞−𝑖

}
𝑖∈[𝑞−1]\𝑆 ,

{
𝑍𝑖

}
[𝑞+1,2𝑞] , 𝑄 , 𝑇𝑏 .

• The adversary outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

We say the 𝑞-set-consistent bilinear Diffie-Hellman exponent assumption holds with respect to PrimeGroupGen if

for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_)

in the 𝑞-set-consistent bilinear Diffie-Hellman exponent game.

4.2 Slotted Registered ABE Construction
We now give the construction and analysis of our slotted registered ABE scheme from prime-order pairing groups.

17

Construction 4.3 (Slotted Attribute-Based Registration-Based Encryption). Let PrimeGroupGen be a prime-order

bilinear group generator. LetU = {U_}_∈N be a (polynomial-size) attribute space. LetP = {P_}_∈N be a set of policies
that can be described by a linear secret sharing scheme (Definition 2.2) overU, where each policy 𝑃 ∈ P_ is defined
over a maximum of 𝐾 = 𝐾 (_) attributes. We construct a slotted attribute-based registration-based encryption scheme

ΠRABE = (Setup,KeyGen, IsValid,Aggregate, Encrypt,Decrypt) with attribute spaceU and policy space P as follows:

• Setup(1_, 1𝐿):6 On input the security parameter _, and the number of slots 𝐿, the setup algorithm starts by sam-

pling G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeGroupGen(1_). The setup algorithm now constructs the following quantities:

– LetD = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set of size 𝐿 (Corollary 2.7).

In the following, we define 𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 and the set E of all distinct pairwise sums of elements in D:

E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

Let 𝑑max = 3 ·max(D).
– Sample random exponents 𝑎, 𝑏

r← Z𝑝 and set 𝛼 = −𝑎𝑑max
. Compute ℎ =

∏
𝑖∈[𝐿] 𝑔

𝑎𝑑max−𝑑𝑖
.

– For each index 𝑖 ∈ [𝐿], sample 𝛿𝑖
r← Z𝑝 , and let 𝑡𝑖 = 𝑎

𝑑𝑖
. Then, define the following group elements:

𝐴𝑖 = 𝑔
𝑡𝑖 , 𝐵𝑖 = 𝑔

𝛼ℎ𝑡𝑖 , 𝑃𝑖 = 𝑔
𝛿𝑖 , 𝑈𝑖 = 𝑔

𝑏𝑡𝑖 .

Then, for each 𝑧 ∈ E, let𝑊𝑧 = 𝑔
𝑏𝑎𝑧

.

– Finally let 𝑍 = 𝑒 (𝑔,𝑔)𝛼 . Output the common reference string

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑧}𝑧∈E

)
(4.1)

The associated message spaceM_ is defined to beM_ B G𝑇 .

• KeyGen(crs, 𝑖): On input the common reference string crs (with components given by Eq. (4.1)) and a slot index

𝑖 ∈ [𝐿], the key-generation algorithm samples 𝑟𝑖
r← Z𝑝 and computes

𝑇𝑖 = 𝑔
𝑟𝑖 , 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
.

Then for each 𝑗 ≠ 𝑖 , it computes the cross terms 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
. Finally, it outputs the public key pk𝑖 and the secret

key sk𝑖 defined as follows:

pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and sk𝑖 = 𝑟𝑖 .

Note that this key-generation algorithm does not depend on the set of attributes.

• IsValid(crs, 𝑖, pk𝑖): On input the common reference string crs (with components given by Eq. (4.1)), a slot index

𝑖 ∈ [𝐿], and a purported public key pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖), the key-validation algorithm first affirms that each

of the components in pk𝑖 is a valid group element (i.e., an element in G). If so, it then checks

𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔,𝑄𝑖)

Next, for each 𝑗 ≠ 𝑖 , the algorithm checks that

𝑒
(
𝑔,𝑉𝑗,𝑖

)
= 𝑒 (𝑇𝑖 , 𝐴 𝑗)

If all checks pass, it outputs 1; otherwise, it outputs 0.

6
Since the setup algorithm does not depend on the size of the attribute universe, we omit the parameter 1

U_ to this algorithm.

18

• Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)): On input the common reference string crs (with components given by

Eq. (4.1)), a collection of 𝐿 public keys pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) together with their attribute sets 𝑆𝑖 ⊆ U_ , the
aggregation algorithm starts by computing the attribute-independent public key𝑇 and the attribute-independent

slot key 𝑉𝑖 for each 𝑖 ∈ [𝐿]:
𝑇 =

∏
𝑗∈[𝐿]

𝑇𝑗 and 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Next, for each attribute𝑤 ∈ U_ , it computes the attribute-specific public key𝑈𝑤 and the attribute-specific slot

key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿]:

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗 and �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑓 (𝑖, 𝑗) .

Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk𝑖 where

mpk =
(
G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_

)
and hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
.

• Encrypt(mpk, (M, 𝜌), `): On input the master public key mpk = (G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_), a policy (M, 𝜌)
whereM ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function, and a message ` ∈ G𝑇 , the encryption algorithm

starts by sampling a secret exponent 𝑠
r← Z𝑝 and ℎ1, ℎ2

r← G such that ℎ = ℎ1ℎ2. Then, it constructs the

ciphertext components as follows:

– Message-embedding components: First, let 𝐶1 = ` · 𝑍𝑠 and 𝐶2 = 𝑔
𝑠
.

– Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑝 for the linear secret sharing scheme and let

v = [1, 𝑣2, . . . , 𝑣𝑛]T. Then, for each 𝑘 ∈ [𝐾], sample 𝑠𝑘
r← Z𝑝 and set 𝐶3,𝑘 = ℎ

𝑠mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘) and 𝐶4,𝑘 = 𝑔𝑠𝑘 ,

where mT
𝑘
∈ Z𝑛𝑝 denotes the 𝑘 th row of M.

– Slot-specific component: Set 𝐶5 = (ℎ1𝑇 −1)𝑠 .

It then outputs the ciphertext

ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

• Decrypt(sk, hsk, ct): On input the secret key sk = 𝑟 , the helper key hsk =
(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
,

where mpk = (G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_), and the ciphertext ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
where

M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function, the decryption algorithm proceeds as follows:

– If the set of attributes 𝑆𝑖 is not authorized by (M, 𝜌), then the decryption algorithm outputs ⊥.
– Otherwise, let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆𝑖 } be the indices of the rows of M associated with the attributes

𝑆𝑖 ⊆ U_ . Write the elements as 𝐼 = {𝑘1, . . . , 𝑘 |𝐼 | }.
– LetM𝑆𝑖 be the matrix formed by taking the subset of rows inM indexed by 𝐼 . Since 𝑆𝑖 is authorized, let

𝝎𝑆𝑖 ∈ Z
|𝐼 |
𝑝 be a vector such that 𝝎T

𝑆𝑖
M𝑆𝑖 = eT

1
.

– Then, compute and output

𝐶1

𝑒 (𝐶2, 𝐵𝑖)
· 𝑒 (𝐶5, 𝐴𝑖) · 𝑒 (𝐶2, 𝐴

𝑟
𝑖𝑉𝑖)︸ ︷︷ ︸

𝐷slot

·
∏

1≤ 𝑗≤ |𝐼 |

(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))

)𝜔𝑆𝑖 ,𝑗
︸ ︷︷ ︸

𝐷attrib

. (4.2)

Wewill refer to𝐷slot as the slot-specific decryption component and𝐷attrib as the attribute-specific decryption
component.

Theorem 4.4 (Completeness). Construction 4.3 is complete.

19

Proof. Take any security parameter _ ∈ N and slot parameter 𝐿 ∈ N. Let crs← Setup(1_, 1𝐿). Then, we can write

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑧}𝑧∈E

)
.

Take any index 𝑖 ∈ [𝐿] and let (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖). By construction of KeyGen, we can write pk𝑖 =(
𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
, where

𝑇𝑖 = 𝑔
𝑟𝑖 , 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗

for some 𝑟𝑖 ∈ Z𝑝 . We now consider each of the pairing checks in IsValid:

• 𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔𝑟𝑖 , 𝑃𝑖) = 𝑒 (𝑔, 𝑃𝑟𝑖𝑖) = 𝑒 (𝑔,𝑄𝑖).

• 𝑒 (𝑔,𝑉𝑗,𝑖) = 𝑒 (𝑔,𝐴𝑟𝑖𝑗) = 𝑒 (𝑔𝑟𝑖 , 𝐴 𝑗) = 𝑒 (𝑇𝑖 , 𝐴 𝑗).

Since all of the pairing checks pass, IsValid(crs, 𝑖, pk𝑖) outputs 1 and completeness holds. □

Theorem 4.5 (Correctness). Construction 4.3 is correct.

Proof. Take any security parameter _ ∈ N, slot parameter 𝐿 ∈ N, and index 𝑖 ∈ [𝐿]. Consider the following

components in the correctness experiment:

• Let crs← Setup(1_, 1𝐿) where crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑧}𝑧∈E

)
. Recall that the slot compo-

nents can be written as 𝐴𝑖 = 𝑔
𝑡𝑖
, 𝐵𝑖 = 𝑔

𝛼ℎ𝑡𝑖 , and 𝑃𝑖 = 𝑔
𝛿𝑖
. The attribute components can be written as 𝑈𝑖 = 𝑔

𝑏𝑡𝑖
1

and𝑊𝑧 = 𝑔
𝑏𝑎𝑧

1
(where 𝑡𝑖 = 𝑎

𝑑𝑖
).

• Let (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖). Then, we can write sk𝑖 = 𝑟𝑖 and pk𝑖 =
(
𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
where

𝑇𝑖 = 𝑔
𝑟𝑖 , 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
= 𝑔𝑡 𝑗𝑟𝑖 . (4.3)

• Take any set of public keys {pk𝑗 } 𝑗≠𝑖 where IsValid(crs, 𝑗, pk𝑗) = 1. Since pk𝑗 satisfies the IsValid predicate, we

can write pk𝑗 =
(
𝑇𝑗 , 𝑄 𝑗 , {𝑉ℓ, 𝑗 }ℓ≠𝑗

)
.

• For each 𝑗 ∈ [𝐿], let 𝑆 𝑗 ⊆ U_ be the attributes associated with pk𝑗 .

• Let (mpk, hsk1, . . . , hsk𝐿) ← Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)). Then, the master public key mpk and the

𝑖th slot-specific helper decryption key hsk𝑖 can be written as follows:

mpk =
(
G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_

)
and hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
,

where 𝑇 =
∏

𝑗∈[𝐿] 𝑇𝑗 , 𝑉𝑖 =
∏

𝑗≠𝑖 𝑉𝑖, 𝑗 , and

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑔𝑏𝑡 𝑗

�̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑓 (𝑖, 𝑗) =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑔𝑎
𝑓 (𝑖,𝑗)𝑏

• Let (M, 𝜌) be the challenge policy where M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function. Take any

message ` ∈ G𝑇 . The challenge ciphertext ct can be written as

ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
where 𝐶1 = ` · 𝑍𝑠 , 𝐶2 = 𝑔

𝑠
, 𝐶3,𝑘 = ℎ

mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘) , 𝐶4,𝑘 = 𝑔𝑠𝑘 , and 𝐶5 = ℎ

𝑠
1
𝑇 −𝑠 .

We now show that Decrypt(sk𝑖 , hsk𝑖 , ct) outputs `. Let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆𝑖 } be the indices of the rows of M
associated with the attributes 𝑆𝑖 . Write the elements of 𝐼 as 𝐼 = {𝑘1, . . . , 𝑘 |𝐼 | }. Let M𝑆𝑖 be the matrix formed by taking

the subset of rows inM indexed by 𝐼 , and let 𝝎𝑆𝑖 ∈ Z
|𝐼 |
𝑁

be a vector such that 𝝎T
𝑆𝑖
M𝑆𝑖 = eT

1
. We break up the decryption

relation (Eq. (4.2)) into several pieces and analyze them individually:

20

• Policy check: First, consider 𝐷attrib =
∏

1≤ 𝑗≤ |𝐼 |
(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))

)𝜔𝑆𝑖 ,𝑗
. By definition,

𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) = 𝑒
(
ℎ
𝑠mT

𝑘𝑗
v

2
𝑈
−𝑠𝑘𝑗
𝜌 (𝑘 𝑗) , 𝑔

𝑡𝑖

)
= 𝑒 (ℎ2, 𝑔)

𝑠𝑡𝑖mT
𝑘𝑗
v ∏
ℓ∈[𝐿]:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔,𝑔)−𝑠𝑘𝑗 𝑡𝑖𝑡ℓ𝑏

𝑒
(
𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗)

)
=

∏
ℓ≠𝑖:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒
(
𝑔
𝑠𝑘𝑗 ,𝑊𝑓 (𝑖,ℓ)

)
=

∏
ℓ≠𝑖:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔,𝑔)𝑎
𝑓 (𝑖,ℓ)𝑠𝑘𝑗 𝑏

By construction, 𝜌 (𝑘 𝑗) ∈ 𝑆𝑖 and by definition, 𝑡𝑖𝑡ℓ = 𝑎
𝑑𝑖+𝑑ℓ = 𝑎𝑓 (𝑖,ℓ) , so∏

ℓ∈[𝐿]:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔,𝑔)−𝑠𝑘𝑗 𝑡𝑖𝑡ℓ𝑏 =
∏

ℓ≠𝑖:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔,𝑔)−𝑎
𝑓 (𝑖,ℓ)𝑠𝑘𝑗 𝑏,

and so we can write

𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖)𝑒
(
𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗)

)
= 𝑒 (ℎ2, 𝑔)

𝑠𝑡𝑖mT
𝑘𝑗
v
.

Finally noting that eT
1
v = 1, we have

𝐷attrib =
∏

1≤ 𝑗≤ |𝐼 |

(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))

)𝜔𝑆𝑖 ,𝑗
= 𝑒 (ℎ2, 𝑔)

𝑠𝑡𝑖
∑

1≤ 𝑗≤|𝐼 | 𝜔𝑆𝑖 ,𝑗m
T
𝑘𝑗
v

= 𝑒 (ℎ2, 𝑔)𝑠𝑡𝑖𝝎
T
𝑆𝑖
M𝑆𝑖 v

= 𝑒 (ℎ2, 𝑔)𝑠𝑡𝑖e
T
1
v = 𝑒 (ℎ2, 𝑔)𝑠𝑡𝑖 .

• Slot check: Next, consider the component 𝐷slot = 𝑒 (𝐶5, 𝐴𝑖)𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖). By definition

𝑒 (𝐶5, 𝐴𝑖) = 𝑒
(
ℎ𝑠
1
𝑇 −𝑠 , 𝑔𝑡𝑖

)
= 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖

∏
𝑗∈[𝐿]

𝑒 (𝑇𝑗 , 𝑔)−𝑠𝑡𝑖 = 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖
∏
𝑗∈[𝐿]

𝑒 (𝑇𝑗 , 𝐴𝑖)−𝑠

𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖) = 𝑒

(
𝑔𝑠 , 𝑔𝑟𝑖𝑡𝑖𝑉𝑖

)
= 𝑒 (𝑔,𝑔)𝑠𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔,𝑉𝑖, 𝑗)𝑠 .

Now, since we know for all 𝑗 ∈ [𝐿], IsValid(crs, 𝑗, pk𝑗) = 1, we have that for all 𝑗 ≠ 𝑖 , 𝑒 (𝑔,𝑉𝑖, 𝑗) = 𝑒 (𝑇𝑗 , 𝐴𝑖).
Thus, using Eq. (4.3), we can now write

𝐷slot = 𝑒 (𝐶5, 𝐴𝑖)𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖) =

(
𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (𝑇𝑖 , 𝐴𝑖)−𝑠

∏
𝑗≠𝑖

𝑒 (𝑇𝑗 , 𝐴𝑖)−𝑠
) (
𝑒 (𝑔,𝑔)𝑠𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔,𝑉𝑖, 𝑗)𝑠
)

= 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (𝑇𝑖 , 𝐴𝑖)−𝑠𝑒 (𝑔,𝑔)𝑠𝑟𝑖𝑡𝑖

= 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (𝑔𝑟𝑖 , 𝑔𝑡𝑖)−𝑠𝑒 (𝑔,𝑔)𝑠𝑟𝑖𝑡𝑖 = 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖 . □

• Message reconstruction: Using the fact that ℎ = ℎ1ℎ2, and combining the above relations, we have that

𝐷slot · 𝐷attrib = 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (ℎ2, 𝑔)𝑠𝑡𝑖 = 𝑒 (ℎ, 𝑠)𝑠𝑡𝑖 .

Next, we can see that have

𝑒 (𝐶2, 𝐵𝑖) = 𝑒 (𝑔𝑠 , 𝑔𝛼ℎ𝑡𝑖) = 𝑒 (𝑔,𝑔)𝛼𝑠𝑒 (ℎ,𝑔)𝑠𝑡𝑖 .

Thus, putting everything together, Eq. (4.2) becomes

𝐶1 · 𝐷slot · 𝐷attrib

𝑒 (𝐶2, 𝐵𝑖)
=
` · 𝑒 (𝑔,𝑔)𝛼𝑠𝑒 (ℎ,𝑔)𝑠𝑡𝑖
𝑒 (𝑔,𝑔)𝛼𝑠𝑒 (ℎ,𝑔)𝑠𝑡𝑖 = `. □

21

Theorem 4.6 (Compactness). Construction 4.3 is compact.

Proof. This follows by inspection. The master public key mpk consists of the group description and 𝑂 (|U_ |) group
elements. Since the group description and each individual group element can be represented in poly(_) bits, the size
of the master public key is bounded by poly(_, |U_ |, log𝐿) bits. Likewise, the helper decryption key consists of the

master public key along with 𝑂 (|U_ |) group elements. Thus, the size of hsk𝑖 is also poly(_, |U_ |, log𝐿) bits. □

Theorem 4.7 (Incremental Aggregation). Construction 4.3 supports 𝑓 -incremental aggregation for 𝑓 (𝐿, |U_ |) =

𝑂 (𝐿 · |U_ |).

Proof. We construct the AggregateUpdate algorithm as follows:

• AggregateUpdate(crs, st, (pk, 𝑆)): On input the common reference string

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑧}𝑧∈E

)
,

a state st (which could be ⊥), and a public key (pk, 𝑆) (or the special symbol ⊥), the update algorithm proceeds

as follows:

1. If st = ⊥, then the update algorithm initializes 𝑘 = 0 and 𝑇 (𝑘) = 1, 𝑉
(𝑘)
𝑖

= 1 for all 𝑖 ∈ [𝐿], 𝑈 (𝑘)𝑤 = 1 for

all𝑤 ∈ U_ , and �̂� (𝑘)
𝑖,𝑤

= 1 for all 𝑖 ∈ [𝐿] and𝑤 ∈ U_ . Otherwise, the update algorithm parses

st =
(
𝑘 , 𝑇 (𝑘) ,

{
𝑉
(𝑘)
𝑖

}
𝑖∈[𝐿] ,

{
𝑈
(𝑘)
𝑤

}
𝑤∈U_ ,

{
�̂�
(𝑘)
𝑖,𝑤

}
𝑖∈[𝐿],𝑤∈U_

)
2. If (pk, 𝑆) = ⊥, then the algorithm outputs

mpk =
(
G, 𝑔, ℎ, 𝑍,𝑇 (𝑘) ,

{
𝑈
(𝑘)
𝑤

}
𝑤∈U_

)
, ∀𝑖 ∈ [𝐿] : hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉

(𝑘)
𝑖

,
{
�̂�
(𝑘)
𝑖,𝑤

}
𝑤∈U_

)
.

3. Otherwise, the update algorithm parses pk =
(
𝑇𝑘+1, 𝑄𝑘+1, {𝑉𝑖,𝑘+1}𝑖≠𝑘+1

)
and updates the state as follows:

– 𝑇 (𝑘+1) = 𝑇 (𝑘) ·𝑇𝑘+1.
– For each 𝑖 ∈ [𝐿], if 𝑖 ≠ 𝑘 + 1 then𝑉 (𝑘+1)

𝑖
= 𝑉

(𝑘)
𝑖
·𝑉𝑖,𝑘+1. Otherwise, if 𝑖 = 𝑘 + 1, then set𝑉

(𝑘+1)
𝑖

= 𝑉
(𝑘)
𝑖

.

– For each𝑤 ∈ U_ , if𝑤 ∉ 𝑆𝑘+1, then𝑈
(𝑘+1)
𝑤 = 𝑈

(𝑘)
𝑤 ·𝑈𝑘+1. Otherwise, if𝑤 ∈ 𝑆𝑘+1, then𝑈 (𝑘+1)𝑤 = 𝑈

(𝑘)
𝑤 .

– For each 𝑖 ∈ [𝐿] and 𝑤 ∈ U_ , if 𝑖 ≠ 𝑘 + 1 and 𝑤 ∉ 𝑆𝑘+1, then �̂�
(𝑘+1)
𝑖,𝑤

= �̂�
(𝑘)
𝑖,𝑤
·𝑊𝑓 (𝑖,𝑘+1) . Otherwise,

set �̂�
(𝑘+1)
𝑖,𝑤

= �̂�
(𝑘)
𝑖,𝑤

.

4. Output the updated state

st =
(
𝑘 + 1 , 𝑇 (𝑘+1) ,

{
𝑉
(𝑘+1)
𝑖

}
𝑖∈[𝐿] ,

{
𝑈
(𝑘+1)
𝑤

}
𝑤∈U_ ,

{
�̂�
(𝑘+1)
𝑖,𝑤

}
𝑖∈[𝐿],𝑤∈U_

)
.

To complete the proof, we show that this incremental aggregation procedure implements the same behavior as the

standard aggregation procedure. Specifically, we show inductively that for all 𝑘 ≤ 𝐿, the following properties hold
for the elements in the AggregateUpdate algorithm:

• 𝑇 (𝑘) =
∏

𝑗∈[𝑘] 𝑇𝑗 .

• For all 𝑖 ∈ [𝐿], 𝑉 (𝑘)
𝑖

=
∏

𝑗∈[𝑘]\{𝑖 } 𝑉𝑖, 𝑗 .

• For all𝑤 ∈ U_ ,𝑈 (𝑘)𝑤 =
∏

𝑗∈[𝑘]:𝑤∉𝑆 𝑗 𝑈 𝑗 .

• For all 𝑖 ∈ [𝐿] and𝑤 ∈ U_ , �̂� (𝑘)
𝑖,𝑤

=
∏

𝑗∈[𝑘]\{𝑖 }:𝑤∉𝑆 𝑗𝑊𝑓 (𝑖, 𝑗) .

By construction, all of these properties hold for 𝑘 = 0. Moreover, the inductive step follows by inspection: namely,

each of the updates in Step 3 simply multiplies in the next component into the product (if present). When 𝑘 = 𝐿, the

components 𝑇 (𝐿) , 𝑉 (𝐿)
𝑖

, 𝑈
(𝐿)
𝑤 , and �̂�

(𝐿)
𝑖,𝑤

precisely coincide with the quantities in the Aggregate algorithm. Finally,

the intermediate state st always contains 𝑂 (𝐿 · |U_ |) group elements, which proves the claim. □

22

Theorem 4.8 (Static Security). Let 𝐿 be a bound on the number of slots and let 𝑞 = 4 · 𝑑max · 𝐿 · 𝐾 . If the 𝑞-set-
consistent bilinear Diffie-Hellman exponent assumption (Assumption 4.2) holds with respect to PrimeGroupGen, then
Construction 4.3 is statically secure (for up to 𝐿 slots).

Proof. Our security proof relies on a partitioning strategy where we program the indices of the corrupted slots into

the common reference string. We begin by defining a sequence of hybrid experiments. Each of our experiments is

parameterized by a bit a ∈ {0, 1} (and implicitly, by the security parameter _). We refer to Section 1.2 for a high-level

overview of the reduction strategy.

• Hyb(a)real: This is the real security game where the challenger encrypts message `∗a . We recall the main steps here:

– Setup phase: At the beginning of the game, the adversary A specifies the number of slots 1
𝐿
and

the indices of the corrupted slots C ⊆ [𝐿].7 (In the description, we will also define the indices of the

non-corrupted slots as N B [𝐿] \ C.) The challenger then constructs the common reference string as

follows according to the specification of Setup:

∗ Specifically, the challenger initializes a counter ctr = 0 and an (empty) dictionary Dict.
∗ The challenger samples G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeGroupGen(1_).
∗ Let D = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set. As in Construc-

tion 4.3, we define 𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 , E B {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}, and 𝑑max B 3 ·max(D).
∗ The challenger samples random exponents 𝑎, 𝑏

r← Z𝑝 and sets 𝛼 = −𝑎𝑑max
. It also computes

ℎ =
∏
𝑖∈[𝐿] 𝑔

𝑎𝑑max−𝑑𝑖
. Then, for each index 𝑖 ∈ [𝐿], the challenger also samples 𝛿𝑖

r← Z𝑝 , and

lets 𝑡𝑖 = 𝑎
𝑑𝑖
. Then, it defines the following group elements:

𝐴𝑖 = 𝑔
𝑡𝑖 , 𝐵𝑖 = 𝑔

𝛼ℎ𝑡𝑖 , 𝑃𝑖 = 𝑔
𝛿𝑖 , 𝑈𝑖 = 𝑔

𝑏𝑡𝑖 .

For each 𝑧 ∈ E, it also sets𝑊𝑧 = 𝑔
𝑏𝑎𝑧

.

∗ Finally compute 𝑍 = 𝑒 (𝑔,𝑔)𝛼 . The challenger constructs the common reference string

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑧}𝑧∈E

)
(4.4)

and gives crs to A.

– Query phase: The challenger responds to the adversary’s key-generation queries as follows:

∗ Key-generation query: Whenever algorithm A makes a key-generation query on a non-corrupted

slot index 𝑖 ∈ N , the challenger starts by incrementing the counter ctr = ctr + 1 and samples 𝑟𝑖
r← Z𝑝 .

It then computes 𝑇𝑖 = 𝑔
𝑟𝑖
, 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
for 𝑗 ≠ 𝑖 . The challenger sets the public key to

be pkctr = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It adds the mapping ctr ↦→ (𝑖, pkctr) to the

dictionary Dict.

Recall that in the static security game, the adversary is not allowed to make any corruption queries.

– Challenge phase: In the challenge phase, the adversary specifies a challenge policy 𝑃∗ = (M, 𝜌) ∈ P_ ,
whereM ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function and two messages `∗

0
, `∗

1
∈ G𝑇 .8 In addition,

the adversary specifies a key for for each slot 𝑖 ∈ [𝐿] as follows:
∗ For each corrupted slot 𝑖 ∈ C the adversary specifies a public key pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and an

attribute set 𝑆𝑖 . The challenger checks that IsValid(crs, 𝑖, pk𝑖) = 1 and halts with output ⊥ if not.

Specifically, the challenger checks that 𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔,𝑄𝑖) and for each 𝑗 ≠ 𝑖 , that 𝑒 (𝑔,𝑉𝑗,𝑖) = 𝑒 (𝑇𝑖 , 𝐴 𝑗).
7
We assume that the adversary A chooses a fixed value 𝐿 = 𝐿 (_) for each security parameter _. This is without loss of generality since any

algorithm A that succeeds with non-negligible advantage Y implies a (non-uniform) adversary B that chooses a fixed value of 𝐿 = 𝐿 (_) for
each security parameter _ and succeeds with advantage at least Y/𝐿.

8
Recall that the policy family P_ consists of policies (M, 𝜌) that depend on at most 𝐾 (_) attributes (i.e., where the share-generation matrix

M has at most 𝐾 rows). For ease of exposition, we will assume that M has exactly 𝐾 rows (since we can always pad the share-generation matrix

M with dummy rows of all-zeroes).

23

∗ For each non-corrupted slot 𝑖 ∈ N , the adversary specifies an index 𝑐𝑖 ∈ [ctr]. The challenger looks
up the entry Dict[𝑐𝑖] = (𝑖′, pk′). If 𝑖 = 𝑖′, the challenger sets pk𝑖 = pk′. If pk𝑖 ≠ pk′, the challenger
halts with output ⊥.

For each slot 𝑖 ∈ [𝐿], the challenger parses it as pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖). The challenger computes the

attribute-independent public key 𝑇 and the attribute-independent slot key 𝑉𝑖 for each 𝑖 ∈ [𝐿]:

𝑇 =
∏
𝑗∈[𝐿]

𝑇𝑗 and 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Then, for each attribute𝑤 ∈ U_ , it computes the attribute-specific public key𝑈𝑤 and the attribute-specific

slot key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿] as follows:

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗 and �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑓 (𝑖, 𝑗) .

The challenger then constructs the challenge ciphertext by sampling a secret exponent 𝑠
r← Z𝑝 and

ℎ1, ℎ2
r← G such that ℎ = ℎ1ℎ2. It constructs the ciphertext components as follows:

∗ Message-embedding components: First, let 𝐶1 = `
∗
a · 𝑍𝑠 and 𝐶2 = 𝑔

𝑠
.

∗ Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑝 for the linear secret sharing scheme and

let v = [1, 𝑣2, . . . , 𝑣𝑛]T. Then, for each 𝑘 ∈ [𝐾], sample 𝑠𝑘
r← Z𝑝 , let 𝐶3,𝑘 = ℎ

𝑠mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘) and 𝐶4,𝑘 = 𝑔𝑠𝑘 ,

where mT
𝑘
denotes the 𝑘 th row of M.

∗ Slot-specific component: Let 𝐶5 = (ℎ1𝑇 −1)𝑠 .
The challenger replies to A with the challenge ciphertext

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

– Output phase: At the end of the game, the adversary outputs a bit a ′ ∈ {0, 1}, which is also the output

of the experiment.

• Hyb(a)
1

: Same as Hyb(a)
0

, except the challenger makes the following syntactic changes:

– Setup phase: In the setup phase, the challenger additionally samples 𝛽𝑖,𝑘
r← Z𝑝 for all 𝑖 ∈ [𝐿] and

𝑘 ∈ [𝐾]. Then, instead of sampling 𝑏
r← Z𝑝 , the challenger sets

𝑏 =
∑︁
𝑖∈[𝐿]

∑︁
𝑘∈[𝐾]

1

𝛽𝑖,𝑘
𝑎𝑑max−2𝑑𝑖 .

Finally, instead of sampling the encryption randomness 𝑠 ∈ Z𝑝 in the challenge phase, the challenger

now samples 𝑠
r← Z𝑝 in the setup phase. For the corrupted slots 𝑖 ∈ C, the challenger now sets 𝑃𝑖 = 𝑔

𝑠𝛿𝑖

(instead of 𝑃𝑖 = 𝑔
𝛿𝑖
).

– Query phase: When responding to a key-generation query for a slot 𝑖 ∈ N , instead of sampling 𝑟𝑖
r← Z𝑝 ,

the challenger samples 𝑟 ′𝑖
r← Z𝑝 and sets 𝑟𝑖 = 𝑎

𝑑max−𝑑𝑖 + 𝑟 ′𝑖 .
– Challenge phase: After the adversary outputs its challenge policy 𝑃∗ = (M, 𝜌), the challenger computes

for each 𝑖 ∈ C a vector v∗𝑖 ∈ Z𝑛𝑝 with first entry 1 and which is orthogonal to every row mT
𝑘
ofM where

𝜌 (𝑘) ∈ 𝑆𝑖 . Note that such a vector exists (see also Definition 2.2) since the attributes in 𝑆𝑖 (for a corrupted

slot) do not satisfy the challenge policy 𝑃∗ = (M, 𝜌). When generating the challenge ciphertext, the

challenger generates the attribute-specific components𝐶3,𝑘 and𝐶4,𝑘 as well as the slot-specific component

𝐶5 using the following modified procedure:

24

∗ Attribute-specific components: The challenger sets

𝑠∗
𝑘
= 𝑠 ·

∑︁
𝑖∈C:𝜌 (𝑘)∉𝑆𝑖

𝛽𝑖,𝑘 ·mT
𝑘
v∗𝑖

and constructs the attribute-specific components as

𝐶′
3,𝑘

= 𝑔𝑠m
T
𝑘

∑
𝑖∈C 𝑎

𝑑max−𝑑𝑖 v∗𝑖 ·𝑈 −𝑠
∗
𝑘

𝜌 (𝑘) and 𝐶′
4,𝑘

= 𝑔𝑠
∗
𝑘

∗ Slot-specific component: The challenger sets the slot-specific component as

𝐶′
5
= 𝑔𝑠 ·

∑
𝑖∈N 𝑎

𝑑max−𝑑𝑖
∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

Finally, the challenger rerandomizes the attribute-specific and slot-specific ciphertext components using

the following rerandomization procedure:

Rerand
(
{𝑈𝑤}𝑤∈U_ , (M, 𝜌), {𝐶′3,𝑘 ,𝐶

′
4,𝑘
}𝑘∈[𝐾],𝐶′5

)
:

1. Sample 𝛾, 𝑣 ′
2
, 𝑣 ′

3
, . . . 𝑣 ′𝑛

r← Z𝑝 and set v′ = [1, 𝑣 ′
2
, 𝑣 ′

3
, . . . , 𝑣 ′𝑛] and 𝑠′𝑘

r← Z𝑝 for each 𝑘 ∈ [𝐾].
2. Compute the rerandomized ciphertext:

𝐶3,𝑘 = 𝐶′
3,𝑘
· 𝑔𝛾mT

𝑘
v′ ·𝑈 −𝑠

′
𝑘

𝜌 (𝑘) and 𝐶4,𝑘 = 𝐶′
4,𝑘
· 𝑔𝑠′𝑘 and 𝐶5 = 𝐶

′
5
𝑔−𝛾 .

3. Output

(
{𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

Figure 1: Ciphertext rerandomization algorithm.

The challenger then computes(
{𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
= Rerand

(
{𝑈𝑤}𝑤∈U_ , (M, 𝜌), {𝐶′3,𝑘 ,𝐶

′
4,𝑘
}𝑘∈[𝐾],𝐶′5

)
and gives the rerandomized ciphertext to the adversary:

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

– Output phase: At the end of the game, the adversary outputs a bit a ′ ∈ {0, 1}, which is also the output

of the experiment.

• Hyb(a)rand: Same as Hyb(a)
1

except when constructing the challenge ciphertext, the challenger samples 𝐶1

r← G𝑇 .
Importantly, this distribution is independent of the message.

For a hybrid experiment Hyb and an adversaryA, we write Hyb(A) to denote the output distribution of an execution

of Hyb with adversaryA. In the following, we argue that each the output distribution of each adjacent pair of hybrid

is indistinguishable.

Lemma 4.9. For all adversaries A and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��
Pr[Hyb(a)real (A) = 1] − Pr[Hyb(a)

1
(A) = 1]

�� = negl(_).

Proof. We show that Hyb(a)real and Hyb
(a)
1

are statistically close by showing that the adversary’s view (i.e., the crs from
the setup phase, the public keys in the query phase, and the challenge ciphertext ct∗ in the challenge phase) in the

two distributions is statistically close. We consider each phase separately.

25

Setup phase. The only difference is how the challenger samples 𝑏 and 𝑃𝑖 . In Hyb(a)
1

, the challenger sets

𝑏 =
∑︁
𝑖∈[𝐿]

∑︁
𝑘∈[𝐾]

1

𝛽𝑖,𝑘
𝑎𝑑max−2𝑑𝑖 ,

where 𝛽𝑖,𝑘
r← Z𝑝 for all 𝑖 ∈ [𝐿] and 𝑘 ∈ [𝐾]. We consider the distribution of 𝑏:

• Since the challenger samples 𝑎
r← Z𝑝 and 𝑝 is prime, the probability 𝑎 is a zero to the polynomial 𝑥 (𝑑max−2𝑑1

- i.e. 𝑎 (𝑑max−2𝑑1 = 0 has probability at most ((𝑑max − 2𝑑1)/𝑝 . Since D is efficiently-computable, it follows that

𝑑max ≤ poly(𝐿) = poly(_). Since 𝑝 = 2
−Ω (_)

, we conclude that (𝑑max − 2𝑑1)/𝑝 = negl(_) and so, 𝑎𝑑max−2𝑑𝑖
is

non-zero with overwhelming probability.

• Since each 𝛽𝑖,𝑘 is uniform over Z𝑝 , they are non-zero with overwhelming probability. In this case, the distribution

of each 𝛽−1
𝑖,𝑘

is independent and uniform over Z𝑝 .

Thus, with overwhelming probability, 𝑎𝑑max−2𝑑𝑖 ≠ 0 and each 𝛽−1
𝑖,𝑘

is an uniform (non-zero) value over Z𝑝 . We conclude

that the distribution of 𝑏 is statistically close to uniform over Z𝑝 , which is the distribution of 𝑏 in Hyb(a)real. Next,

consider the distribution of 𝑃𝑖 for 𝑖 ∈ C. In Hyb(a)
0

, the challenger sets 𝑃𝑖 = 𝑔
𝛿𝑖
while in Hyb(a)

1
, the challenger sets

𝑃𝑖 = 𝑔
𝑠𝛿𝑖

, where 𝑠
r← Z𝑝 and 𝛿𝑖

r← Z𝑝 . As long as 𝑠 ≠ 0, these two distributions are identical. Since 𝑠 is sampled

uniformly, these two distributions are statistically close.

Query phase. The only change is how the challenger samples 𝑟𝑖 for 𝑖 ∈ N . In Hyb(a)real, the challenger samples

𝑟𝑖
r← Z𝑝 . In Hyb(a)

1
, the challenger samples 𝑟 ′𝑖

r← Z𝑝 and sets

𝑟𝑖 = 𝑎
𝑑max−𝑑𝑖 + 𝑟 ′𝑖 .

These two distributions are identical.

Challenge phase. In Hyb(a)
1

, the distribution of the attribute-specific and slot-specific ciphertext components can

be written as follows:

𝐶3,𝑘 = 𝑔𝑠m
T
𝑘

∑
𝑖∈C 𝑎

𝑑max−𝑑𝑖 v∗𝑖 ·𝑈 −𝑠
∗
𝑘

𝜌 (𝑘) · 𝑔
𝛾mT

𝑘
v′ ·𝑈 −𝑠

′
𝑘

𝜌 (𝑘) = 𝑔
𝑠mT

𝑘 ((𝛾/𝑠) ·v′+
∑
𝑖∈C 𝑎

𝑑max−𝑑𝑖 v∗𝑖)𝑈 −(𝑠
∗
𝑘
+𝑠′
𝑘
)

𝜌 (𝑘)

𝐶4,𝑘 = 𝑔𝑠
∗
𝑘𝑔𝑠

′
𝑘 = 𝑔𝑠

∗
𝑘
+𝑠′
𝑘

𝐶5 = 𝑔
𝑠 ·∑𝑖∈N 𝑎𝑑max−𝑑𝑖

∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

𝑔−𝛾 = 𝑔𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝑑max−𝑑𝑖

) ∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

,

where 𝛾, 𝑣 ′
2
, . . . , 𝑣 ′𝑛

r← Z𝑝 , 𝑠′𝑘
r← Z𝑝 for all 𝑘 ∈ [𝐾], and v′ = [1, 𝑣 ′

2
, . . . , 𝑣 ′𝑛]. For each 𝑖 ∈ C, let (pk𝑖 , 𝑆𝑖) be the public

key and set of attributes the adversary chooses for slot 𝑖 ∈ C. Parse pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖), and let 𝑟𝑖 ∈ Z𝑝 be the
discrete log of 𝑇𝑖 (i.e., 𝑇𝑖 = 𝑔

𝑟𝑖
). Without loss of generality, we can assume that for all 𝑖 ∈ C, IsValid(crs, 𝑖, pk𝑖) = 1.

Otherwise, the output in both experiments is ⊥. In Hyb(a)
1

, the challenger sets 𝑃𝑖 = 𝑔
𝑠𝛿𝑖

, so by construction of IsValid,

𝑒 (𝑔,𝑄𝑖) = 𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔,𝑔)𝑠𝛿𝑖𝑟𝑖 .

In particular, 𝑄𝑖 = 𝑔
𝑠𝛿𝑖𝑟𝑖

. Thus, we can rewrite 𝐶5 as

𝐶5 = 𝑔
𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝑑max−𝑑𝑖

) ∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

= 𝑔𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝑑max−𝑑𝑖

) ∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑔−𝑠𝑟𝑖

= 𝑔𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝑑max−𝑑𝑖

) ∏
𝑗∈[𝐿]

𝑇 −𝑠𝑗

= 𝑔𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝑑max−𝑑𝑖

)
𝑇 −𝑠 .

26

We claim now that the distribution in Hyb(a)
1

is equivalent to an execution of Hyb(a)real with the following variable

assignments:

ℎ1 B 𝑔−𝛾/𝑠+
∑
𝑖∈N 𝑎

𝑑max−𝑑𝑖
and ℎ2 B 𝑔𝛾/𝑠+

∑
𝑖∈C 𝑎

𝑑max−𝑑𝑖
,

and for all 𝑘 ∈ [𝐾], 𝑠𝑘 B 𝑠∗
𝑘
+ 𝑠′

𝑘
, and

v B
(𝛾/𝑠)v′ +∑

𝑖∈C 𝑎
𝑑max−𝑑𝑖v∗𝑖

𝛾/𝑠 +∑
𝑖∈C 𝑎𝑑max−𝑑𝑖

.

For this assignment of variables, observe that

ℎ
𝑠mT

𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘) = 𝑔

𝑠
(
𝛾/𝑠+∑𝑖∈C 𝑎𝑑max−𝑑𝑖

)
mT
𝑘
v𝑈
−(𝑠∗

𝑘
+𝑠′
𝑘
)

𝜌 (𝑘)

= 𝑔𝑠m
T
𝑘

(
(𝛾/𝑠)v′+∑𝑖∈C 𝑎𝑑max−𝑑𝑖 v∗𝑖

)
·𝑈 −(𝑠

∗
𝑘
+𝑠′
𝑘
)

𝜌 (𝑘) = 𝐶3,𝑘 ,

𝑔𝑠𝑘 = 𝑔𝑠
∗
𝑘
+𝑠′
𝑘 = 𝐶4,𝑘 , and (ℎ1𝑇 −1)𝑠 = 𝐶5, which coincides with the definitions in Hyb(a)real. To complete the proof, it

suffices to argue that this choice of assignments are distributed according to the specification in Hyb(a)real. We analyze

each component as follows:

• In Hyb(a)
1

, the challenger samples 𝛾, 𝑠
r← Z𝑝 . As long as 𝑠 ≠ 0 (which happens with overwhelming probability),

then over the random choice of 𝛾 , the distribution of 𝛾/𝑠 is uniform. Thus, with overwhelming probability over

the choice of 𝑠 , the distribution of ℎ1 is uniform over G. Moreover,

ℎ1ℎ2 = 𝑔
∑
𝑖∈N 𝑎

𝑑max−𝑑𝑖 +∑𝑖∈C 𝑎𝑑max−𝑑𝑖
= 𝑔

∑
𝑖∈ [𝐿] 𝑎

𝑑max−𝑑𝑖
= ℎ,

since C and N are a partition of [𝐿].

• Since the challenger samples 𝑠′
𝑘

r← Z𝑝 , the distribution of 𝑠𝑘 is also uniform over Z𝑝 , which matches the

distribution in Hyb(a)real.

• Write v = [𝑣1, 𝑣2, . . . , 𝑣𝑛] and v′ = [1, 𝑣 ′
2
, . . . , 𝑣 ′𝑛]. By construction, the first component of v′ and v∗𝑖 for all 𝑖 ∈ C

is 1. This means 𝑣1 = 1, just as in Hyb(a)real. For 𝑖 > 1, the challenger in Hyb(a)
2

samples 𝑣 ′𝑖
r← Z𝑝 . Thus, as

long as 𝛾, 𝑠 ≠ 0, the distribution of 𝛾/𝑠 · 𝑣 ′𝑖 is uniformly random (and independent of all other components).

Correspondingly, this means that the distributions of 𝑣2, . . . , 𝑣𝑛 are independent and uniform over Z𝑝 , exactly as

required in Hyb(a)real. Since the challenger samples 𝛾, 𝑠
r← Z𝑝 , they are non-zero with overwhelming probability.

Thus, with overwhelming probability over the choice of 𝑎, 𝛾 , and 𝑠 , the challenge ciphertext Hyb(a)
1

is distributed

exactly according to the distribution in Hyb(a)real. We conclude that the adversary’s view in the two experiments are

statistically indistinguishable, and the claim holds. □

Analyzing Hyb(a)
1

and Hyb(a)
2

. Next, we show that under the set-consistent decisional bilinear Diffie-Hellman

exponent assumption (Assumption 4.2), the output distributions of Hyb(a)
1

and Hyb(a)
2

are computationally indis-

tinguishable. To simplify this analysis, we start by defining the following intermediate assumption which is implied

by Assumption 4.2. The structure of the intermediate assumption enables a more direct reduction. This intermediate

assumption can be viewed as a generalization of the parallel bilinear Diffie-Hellman exponent assumption introduced

in [Wat11]. In Appendix E (Lemma E.1), we show that the intermediate assumption directly reduces to (a suitably

parameterized version of) Assumption 4.2.

Assumption 4.10 (Intermediate Set-Consistent Bilinear Diffie Hellman Exponent). Let PrimeGroupGen be a prime-

order group generator. For a security parameter _ and a bit 𝑏 ∈ {0, 1} we define the (𝑞1, 𝑞2)-intermediate set-consistent

bilinear Diffie-Hellman exponent game between an adversary A and a challenger as follows:

• On input the security parameter 1
_
, adversary A outputs a set 𝑆 ⊆ [𝑞1 − 1].

27

• The challenger samples G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeGroupGen(1_) and exponents 𝑎, 𝑠, 𝛽1, . . . 𝛽𝑞2
r← Z𝑝 .

• The challenger then constructs the following components:

– For each 𝑖 ∈ [2𝑞1], it sets 𝑋𝑖 = 𝑔𝑎
𝑖

and 𝑍𝑖 = 𝑔
𝑎𝑖𝑠

.

– For each 𝑖 ∈ [2𝑞1] and 𝑗, 𝑘 ∈ [𝑞2], it sets 𝑌 (𝑗) = 𝑔𝑠𝛽 𝑗 , 𝑋 (𝑗)𝑖
= 𝑔𝑎

𝑖/𝛽 𝑗
, and 𝑍

(𝑗,𝑘)
𝑖

= 𝑔𝑎
𝑖𝑠𝛽𝑘/𝛽 𝑗

.

– Finally, it computes 𝑄 = 𝑒 (𝑔,𝑔)𝑎𝑞1 , 𝑇0 = 𝑒 (𝑔,𝑔)𝑎
𝑞
1𝑠
, and samples 𝑇1

r← G𝑇 .

The challenger gives the following components to the adversary:

– G , 𝑔 , 𝑌 , {𝑋𝑖 }𝑖∈𝑆∪[𝑞1+1,2𝑞1] , {𝑍𝑞1−𝑖 }𝑖∈[𝑞1−1]\𝑆 , {𝑍𝑖 }𝑖∈[𝑞1+1,2𝑞1] ; and

– {𝑌 (𝑗) } 𝑗∈[𝑞2] , {𝑋
(𝑗)
𝑖
}𝑖∈[2𝑞1]\{𝑞1 }, 𝑗∈[𝑞2] , {𝑍

(𝑗,𝑘)
𝑖
}𝑖∈[2𝑞1]\{𝑞1 }, 𝑗≠𝑘 , 𝑄 , 𝑇𝑏 .

• The adversary outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

We say the (𝑞1, 𝑞2)-intermediate set-consistent bilinear Diffie-Hellman exponent assumption holds with respect to

PrimeGroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_)

in the (𝑞1, 𝑞2)-intermediate set-consistent bilinear Diffie-Hellman exponent game.

Lemma 4.11. Let 𝑞 = 4 ·𝑑max ·𝐿 ·𝐾 . Suppose the 𝑞-set-consistent bilinear Diffie-Hellman exponent assumption (Assump-
tion 4.2) holds with respect to PrimeGroupGen. Then, the (𝑞1, 𝑞2)-intermediate set-consistent bilinear Diffie-Hellman
exponent assumption holds with respect to PrimeGroupGen for 𝑞1 = 𝑑max and 𝑞2 = 𝐿 · 𝐾 .

Proof. We give the proof in Appendix E (see Lemma E.1). □

Lemma 4.12. Suppose Assumption 4.2 holds for 𝑞 = 4 · 𝑑max · 𝐿 · 𝐾 with respect to PrimeGroupGen. Then, for all
efficient adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(a)
1
(A) = 1] − Pr[Hyb(a)rand (A) = 1]

�� = negl(_).

Proof. Take any a ∈ {0, 1} and suppose there exists an efficient adversary A where��
Pr[Hyb(a)

1
(A) = 1] − Pr[Hyb(a)rand (A) = 1]

�� = Y
for some non-negligible Y. We use A to construct an adversary B for the (𝑞1, 𝑞2)-intermediate set-consistent BDHE

assumption, where 𝑞1 = 𝑑max and 𝑞2 = 𝐿 · 𝐾 . In the following, we will refer to elements of the set [𝑞2] = {1, . . . , 𝑞2}
by a pair of indices (𝑖, 𝑘) ∈ [𝐿] × [𝐾]. We now give the description of B:

• Setup phase: Algorithm B starts running algorithm A. Algorithm A starts by specifying the number of slots

1
𝐿
and the indices of the corrupted slots C ⊆ [𝐿]. Algorithm B then initializes the following quantities:

– AlgorithmB initializes a counter ctr = 0 and an (empty) dictionaryDict to keep track of the key-generation
queries.

– Let D = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently computable progression and double-free set. As in Construction 4.3,

we define 𝑓 (𝑖, 𝑗) = 𝑑𝑖 + 𝑑 𝑗 and the set E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}. Let 𝑑max = 3 ·max(D).

Algorithm B sends the set

𝑆 = D ∪ {𝑑max − 𝑑𝑖 }𝑖∈[𝐿] ∪ {𝑑max − 𝑑𝑖 + 𝑑 𝑗 }𝑖≠𝑗∈[𝐿]

to the (𝑞1, 𝑞2)-intermediate set-consistent BDHE challenger and receives the challenge:

– G , 𝑔 , 𝑌 , {𝑋 𝑗 } 𝑗∈𝑆∪[𝑑max+1,2𝑑max] , {𝑍𝑑max− 𝑗 } 𝑗∈[𝑑max−1]\𝑆 , {𝑍 𝑗 } 𝑗∈[𝑑max+1,2𝑑max] ; and

28

– {𝑌 (𝑖,𝑘) }𝑖∈[𝐿],𝑘∈[𝐾] , {𝑋 (𝑖,𝑘)𝑗
} 𝑗∈[2𝑑max]\{𝑑max },𝑖∈[𝐿],𝑘∈[𝐾] , {𝑍

((𝑖,𝑘),(𝑖′,𝑘 ′))
𝑗

} 𝑗∈[2𝑑max]\{𝑑max },(𝑖,𝑘)≠(𝑖′,𝑘 ′) ∈ [𝐿]×[𝐾] ; and

– 𝑄 , 𝑇 .

For emphasis, we color the components from the challenge in green. Next, algorithm B computes ℎ =∏
𝑖∈[𝐿] 𝑋𝑑max−𝑑𝑖 . Then, for each slot 𝑖 ∈ [𝐿], it computes

𝐴𝑖 = 𝑋𝑑𝑖 and 𝐵𝑖 =
∏

𝑗∈[𝐿], 𝑗≠𝑖
𝑋𝑑max−𝑑 𝑗+𝑑𝑖 and 𝑈𝑖 =

∏
𝑗∈[𝐿],𝑘∈[𝐾]

𝑋
(𝑗,𝑘)
𝑑max−2𝑑 𝑗+𝑑𝑖

Next, for each 𝑖 ∈ [𝐿] it samples 𝛿𝑖
r← Z𝑝 . If 𝑖 ∈ N , it sets 𝑃𝑖 = 𝑔

𝛿𝑖
, and if 𝑖 ∈ C, it sets 𝑃𝑖 = 𝑌𝛿𝑖 . For each

𝑧 ∈ E, algorithm B computes𝑊𝑧 =
∏

𝑗∈[𝐿],𝑘∈[𝐾] 𝑋
(𝑗,𝑘)
𝑑max−2𝑑 𝑗+𝑧 . Finally, algorithm B sets 𝑍 = 𝑄−1 and defines the

common reference string to be

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑧}𝑧∈E

)
. (4.5)

Algorithm B gives crs to A.

• Query phase: During the query phase, whenever algorithm A makes a key-generation query on a non-

corrupted slot index 𝑖 ∈ N , algorithm B starts by incrementing the counter ctr = ctr + 1 and samples 𝑟 ′𝑖
r← Z𝑝 .

It then sets

𝑇𝑖 = 𝑋𝑑max−𝑑𝑖𝑔
𝑟 ′𝑖 and 𝑄𝑖 =

(
𝑋𝑑max−𝑑𝑖𝑔

𝑟 ′𝑖
)𝛿𝑖

and 𝑉𝑗,𝑖 = 𝑋𝑑max−𝑑𝑖+𝑑 𝑗𝑋
𝑟 ′𝑖
𝑑 𝑗
,

for all 𝑗 ≠ 𝑖 . Then B sets the public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It adds
the mapping ctr ↦→ (𝑖, pkctr) to the dictionary Dict.

• Challenge phase: In the challenge phase, algorithm A specifies a challenge policy 𝑃∗ = (M, 𝜌), where
M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function, along with two messages `∗

0
, `∗

1
∈ G𝑇 . In addition,

algorithm A specifies a key for for each slot 𝑖 ∈ [𝐿] as follows:

– For each corrupted slot 𝑖 ∈ C, algorithm A specifies a public key pk𝑖 and an attribute set 𝑆𝑖 . Algorithm

B checks that IsValid(crs, 𝑖, pk𝑖) and halts with output ⊥ if not.

– For each non-corrupted slot 𝑖 ∈ N , the adversary specifies an index 𝑐𝑖 ∈ [ctr]. AlgorithmB looks up the en-

try Dict[𝑐𝑖] = (𝑖′, pk′). If 𝑖 = 𝑖′, algorithm B sets pk𝑖 = pk′. If 𝑖 ≠ 𝑖′, then algorithm B halts with output ⊥.

For each slot 𝑖 ∈ [𝐿], algorithm B parses the associated public key pk𝑖 as pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖). Algorithm
B then computes the attribute-independent public key 𝑇 and attribute-independent slot key 𝑉𝑖 for each 𝑖 ∈ [𝐿]
as follows:

𝑇 =
∏
𝑗∈[𝐿]

𝑇𝑗 and 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Then, for each attribute 𝑤 ∈ U_ , it computes the attribute-specific public key 𝑈𝑤 and the attribute-specific

slot key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿] as follows:

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗 and �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑓 (𝑖, 𝑗) .

Next, algorithm B constructs the challenge ciphertext. Since A is admissible, the attributes 𝑆𝑖 for all corrupted

indices 𝑖 ∈ C do not satisfy the challenge policy 𝑃∗. Thus, for each 𝑖 ∈ C, there exists a vector v∗𝑖 with first

entry 1 and which is orthogonal to every row mT
𝑘
of M where 𝜌 (𝑘) ∈ 𝑆𝑖 . Algorithm B now proceeds as follows:

– Message-embedding components: First, algorithm B sets 𝐶1 = `
∗
a/𝑇 and 𝐶2 = 𝑌 .

29

– Attribute-specific components: For ease of notation, for each 𝑘 ∈ [𝐾], we define the following sets
of indices Υ (𝑘)

1
, Υ (𝑘)

2
, and Υ3:

Υ (𝑘)
1

= {𝑖 ∈ [𝐿] : 𝜌 (𝑘) ∉ 𝑆𝑖 } and Υ (𝑘)
2

= {𝑖 ∈ C : 𝜌 (𝑘) ∉ 𝑆𝑖 } and Υ3 = [𝐿] × [𝐾] (4.6)

Then, algorithm B computes 𝐶′
3,𝑘

as

𝐶′
3,𝑘

=

©«
∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2

∏
(𝑗 ′,𝑘 ′) ∈Υ3
(𝑗 ′,𝑘 ′)≠(𝑗,𝑘)

(
𝑍
((𝑗 ′,𝑘 ′),(𝑗,𝑘))
𝑑max−2𝑑 𝑗+𝑑𝑖

)−mT
𝑘
v∗𝑗

ª®®®¬
©«

∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2
\{𝑖 }

𝑍
−mT

𝑘
v∗𝑗

𝑑max−2𝑑 𝑗+𝑑𝑖

ª®®¬ ,
and 𝐶′

4,𝑘
as

𝐶′
4,𝑘

=
∏

𝑖∈C:𝜌 (𝑘)∉𝑆𝑖

(
𝑌 (𝑖,𝑘)

)mT
𝑘
v∗𝑖 .

– Slot-specific component: Algorithm B computes 𝐶′
5
as

𝐶′
5
=

∏
𝑖∈N

𝑌 −𝑟
′
𝑖

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

.

Finally, algorithm B computes(
{𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
= Rerand

(
{𝑈𝑤}𝑤∈U_ , (M, 𝜌), {𝐶′3,𝑘 ,𝐶

′
4,𝑘
}𝑘∈[𝐾],𝐶′5

)
.

Algorithm B responds to A with the challenge ciphertext

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

• Output phase: At the end of the game, algorithm A outputs a bit a ′ ∈ {0, 1}, which B also outputs.

We start by showing that algorithm B is able to simulate all of the parameters for A using the group elements

from the (𝑞1, 𝑞2)-intermediate set-consistent BDHE challenge. This will crucially rely on the progression-free and

double-free properties of the set D.

• CRS components: First, we consider the components of the CRS.

– Computing ℎ, 𝐴𝑖 , and 𝐵𝑖 for 𝑖 ∈ [𝐿] requires knowledge of the elements 𝑋𝑑max−𝑑𝑖 , 𝑋𝑑𝑖 , and 𝑋𝑑max−𝑑𝑖+𝑑 𝑗
for all 𝑗 ∈ [𝐿] \ {𝑖}. These are precisely the components of the set S, so each of these components are

included as part of the challenge.

– Next, the component 𝑈𝑖 depends on 𝑋
(𝑗,𝑘)
𝑑max−2𝑑 𝑗+𝑑𝑖 for all 𝑖, 𝑗 ∈ [𝐿] and 𝑘 ∈ [𝐾]. By construction, the

challenge contains 𝑋
(𝑖,𝑘)
ℓ

for all 𝑖 ∈ [𝐿], 𝑘 ∈ [𝐾], and ℓ ∈ [2𝑑max] \ {𝑑max}. Thus, it suffices to show that

𝑑max − 2𝑑 𝑗 +𝑑𝑖 ∈ [2𝑑max] \ {𝑑max}. Since 𝑑max = 3 ·max(D) and 𝑑𝑖 , 𝑑 𝑗 ∈ D ⊂ N, this means 𝑑max − 2𝑑 𝑗 > 0

and 𝑑max + 𝑑𝑖 ≤ 2𝑑max. Correspondingly, this means that 𝑑max − 2𝑑 𝑗 + 𝑑𝑖 ∈ [2𝑑max]. It remains to argue

that 𝑑max − 2𝑑 𝑗 + 𝑑𝑖 ≠ 𝑑max. Suppose otherwise. Then, it must be the case that 𝑑𝑖 = 2𝑑 𝑗 , which contradicts

the fact that D is double-free (Definition 2.6). Hence, 𝑑max − 2𝑑 𝑗 + 𝑑𝑖 ∈ [2𝑑max] \ {𝑑max}, and algorithm

B is able to construct𝑈𝑖 for all 𝑖 ∈ [𝐿].
– The component 𝑃𝑖 = 𝑌

𝛿𝑖
can be simulated using 𝑌 .

– For each 𝑧 ∈ E where E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}, the term𝑊𝑧 depends on 𝑋
(𝑗,𝑘)
𝑑max−2𝑑 𝑗+𝑧 for 𝑗 ∈ [𝐿] and

𝑘 ∈ [𝐾]. As in the previous case, it suffices to show that 𝑑max − 2𝑑 𝑗 + 𝑧 ∈ [2𝑑max] \ {𝑑max}. Since 𝑧 ∈ E, it
can be written as 𝑑𝑖′ +𝑑 𝑗 ′ for some choice of 𝑖′ ≠ 𝑗 ′ ∈ [𝐿]. Thus, 𝑧 ≤ 2max(D). Since 𝑑max = 3 ·max(D),
this means 𝑑max − 2𝑑 𝑗 > 0 and 𝑑max + 𝑧 < 2𝑑max. Hence, 𝑑max − 2𝑑 𝑗 + 𝑧 ∈ [2𝑑max]. It remains to argue that

𝑑max−2𝑑 𝑗+𝑧 ≠ 𝑑max. Suppose otherwise. Then, it must be the case that 2𝑑 𝑗 = 𝑧. Since 𝑧 ∈ E, there exists 𝑖′ ≠
𝑗 ′ ∈ [𝐿] such that 𝑑𝑖′ +𝑑 𝑗 ′ = 𝑧 = 2𝑑 𝑗 , which contradicts the fact thatD is progression-free (Definition 2.4).

Hence, 𝑑max − 2𝑑 𝑗 + 𝑧 ∈ [2𝑑max] \ {𝑑max}, and algorithm B is able to construct𝑊𝑧 for all 𝑧 ∈ E.

30

– Finally, algorithm B sets 𝑍 = 𝑄−1 which can be computed from the challenge.

• Key-generation queries: Next, we consider the elements algorithm B uses to simulate public keys when

responding to the adversary’s key-generation queries. For each 𝑖 ∈ N , the elements 𝑇𝑖 , 𝑄𝑖 , and 𝑉𝑗,𝑖 for 𝑗 ≠ 𝑖

require knowledge of 𝑋𝑑max−𝑑𝑖 , 𝑋𝑑max−𝑑𝑖+𝑑 𝑗 , and 𝑋𝑑 𝑗 . Once again, these are the components of S, and thus part

of the challenge.

• Challenge ciphertext: Finally, we consider the components of the challenge ciphertext:

– To construct 𝐶1 and 𝐶2, algorithm B requires 𝑇 and 𝑌 , which are part of the challenge.

– To construct 𝐶′
3,𝑘
, algorithm B requires 𝑍

((𝑗 ′,𝑘 ′),(𝑗,𝑘))
𝑑max−2𝑑 𝑗+𝑑𝑖 and 𝑍𝑑max−2𝑑 𝑗+𝑑𝑖 for all 𝑖 ∈ Υ (𝑘)

1
, 𝑗 ∈ Υ (𝑘)

2
, and

(𝑗 ′, 𝑘 ′) ∈ Υ3 where (𝑗 ′, 𝑘 ′) ≠ (𝑗, 𝑘). We consider the two terms individually:

∗ Consider 𝑍𝑑max−2𝑑 𝑗+𝑑𝑖 where 𝑖 ∈ Υ (𝑘)
1
⊆ [𝐿] and 𝑗 ∈ Υ (𝑘)

2
⊆ [𝐿]. By construction, the challenge

contains 𝑍𝑑max−ℓ if ℓ ∈ [𝑑max − 1] \ S and 𝑍ℓ for ℓ ∈ [𝑑max + 1, 2𝑑max]. As argued previously, since

𝑑max = 3 ·max(D) and 𝑑𝑖 , 𝑑 𝑗 ∈ D and D is double-free, it follows that

𝑑max − 2𝑑 𝑗 + 𝑑𝑖 ∈ [2𝑑max] \ {𝑑max}.

If 𝑑max − 2𝑑 𝑗 +𝑑𝑖 ≥ 𝑑max + 1, then we are done. It suffices to consider the case where 𝑑max − 2𝑑 𝑗 +𝑑𝑖 ≤
𝑑max − 1. In this case, the challenge contains 𝑍𝑑max−2𝑑 𝑗+𝑑𝑖 as long as 2𝑑 𝑗 − 𝑑𝑖 ∈ [𝑑max − 1] \ S. Since
𝑑max = 3 · max(D), it follows that 2𝑑 𝑗 − 𝑑𝑖 < 3 · max(D) = 𝑑max. We only need to show that

2𝑑 𝑗 − 𝑑𝑖 ∉ S. Here, we consider three possibilities:
· Suppose 2𝑑 𝑗 − 𝑑𝑖 ∈ D. Then, there exists some 𝑖′ ∈ [𝐿] such that 2𝑑 𝑗 = 𝑑𝑖 + 𝑑𝑖′ . When 𝑖 = 𝑖′, this
contradicts the assumption that D is double-free. When 𝑖 ≠ 𝑖′, this contradicts the assumption

that D is progression-free. Thus, this cannot happen.

· Suppose 2𝑑 𝑗 − 𝑑𝑖 = 𝑑max − 𝑑𝑖′ for some 𝑖′ ∈ [𝐿] ↔ 2𝑑 𝑗 + 𝑑𝑖′ ≠ 𝑑max + 𝑑𝑖 . This means that

2𝑑 𝑗 +𝑑𝑖′−𝑑𝑖 = 𝑑max. SinceD ⊂ N, we have 𝑑𝑖 > 0. Then 𝑑max = 2𝑑 𝑗 +𝑑𝑖′−𝑑𝑖 < 3 ·max(D) = 𝑑max,

which is a contradiction.

· Suppose 2𝑑 𝑗 −𝑑𝑖 = 𝑑max−𝑑𝑖′ +𝑑 𝑗 ′ for some 𝑖′ ≠ 𝑗 ′ ∈ [𝐿]. This means that 2𝑑 𝑗 +𝑑𝑖′ = 𝑑max+𝑑𝑖 +𝑑 𝑗 ′ .
Similar to the previous case, we appeal to the fact that 𝑑max = 3 ·max(D) to obtain a contradiction.

We conclude that whenever 𝑑max − 2𝑑 𝑗 + 𝑑𝑖 ≤ 𝑑max − 1, it holds that 2𝑑 𝑗 − 𝑑𝑖 ∉ S. In this case, the

challenge contains the term 𝑍𝑑max−2𝑑 𝑗+𝑑𝑖 , as required.

∗ Consider 𝑍
((𝑗 ′,𝑘 ′),(𝑗,𝑘))
𝑑max−2𝑑 𝑗+𝑑𝑖 . By construction, the challenge contains 𝑍

((𝑗 ′,𝑘 ′),(𝑗,𝑘))
ℓ

for all ℓ ∈ [2𝑑max] \
{𝑑max} and (𝑗 ′, 𝑘 ′) ≠ (𝑗, 𝑘). It suffices to argue that for all 𝑖 ∈ Υ (𝑘)

1
⊆ [𝐿] and 𝑗 ∈ Υ (𝑘)

2
⊆ [𝐿], it holds

that 𝑑max − 2𝑑 𝑗 +𝑑𝑖 ∈ [2𝑑max] \ {𝑑max}. As in the previous case, this follows when 𝑑max = 3 ·max(D)
and 𝑑𝑖 , 𝑑 𝑗 ∈ D, and D is double-free.

– To construct 𝐶′
4,𝑘
, algorithm B requires 𝑌 (𝑖,𝑘) for all 𝑖 ∈ C where 𝜌 (𝑘) ∉ 𝑆𝑖 . Since the challenge contains

𝑌 (𝑖,𝑘) for all 𝑖 ∈ [𝐿] and 𝑘 ∈ [𝐾], algorithm B can construct this term.

– To construct 𝐶′
5
, algorithm B needs 𝑌 , which is included in the challenge.

We conclude that the challenge contains all of the components algorithm B needs for simulating the CRS, the key-

generation queries, and the challenge ciphertext. To complete the proof, we show that depending on the distribution of

𝑇 , algorithm B either simulates an execution of Hyb(a)
1

or Hyb(a)rand forA. Let 𝑎, 𝑠, 𝛽𝑖,𝑘 ∈ Z𝑝 for 𝑖 ∈ [𝐿] and 𝑘 ∈ [𝐾] be
the exponents sampled by the (𝑞1, 𝑞2)-intermediate set-consistent BDHE challenger. Then, the challenge components

are defined as follows:

𝑌 = 𝑔𝑠 , 𝑋𝑖 = 𝑔
𝑎𝑖 , 𝑍𝑖 = 𝑔

𝑎𝑖𝑠 , 𝑌 (𝑖,𝑘) = 𝑔𝑠𝛽𝑖,𝑘 , 𝑋 (𝑖,𝑘)
𝑗

= 𝑔𝑎
𝑗 /𝛽𝑖,𝑘 , 𝑍 (𝑖,𝑘),(𝑖

′,𝑘 ′)
𝑗

= 𝑔𝑎
𝑗𝑠𝛽𝑖′,𝑘′ /𝛽𝑖,𝑘 , 𝑄 = 𝑒 (𝑔,𝑔)𝑎𝑑max

.

We claim that algorithm B simulates an execution of Hyb(a)
1

or Hyb(a)rand where the exponents 𝑎, 𝑠, 𝛽𝑖,𝑘 are the cor-

responding ones sampled by the (𝑞1, 𝑞2)-intermediate set-consistent BDHE challenger.

31

CRS components. Consider first the components of the CRS. Then in an execution of Hyb(a)
1

and Hyb(a)rand where

the randomness is 𝑎, 𝑠, {𝛽𝑖,𝑘 }𝑖∈[𝐿],𝑘∈[𝐾] , the challenger constructs the components of the CRS as follows. First, the

challenger sets 𝛼 = −𝑎𝑑max
and 𝑡𝑖 = 𝑎

𝑑𝑖
. It also computes

ℎ =
∏
𝑖∈[𝐿]

𝑔𝑎
𝑑max−𝑑𝑖

=
∏
𝑖∈[𝐿]

𝑋𝑑max−𝑑𝑖 ,

which matches the behavior of algorithm B. Then, for each 𝑖 ∈ [𝐿], the challenger would compute

𝐴𝑖 = 𝑔
𝑡𝑖 = 𝑔𝑎

𝑑𝑖
= 𝑋𝑑𝑖

𝐵𝑖 = 𝑔
𝛼ℎ𝑡𝑖 = 𝑔−𝑎

𝑑max ©«
∏
𝑗∈[𝐿]

𝑔𝑎
𝑑max−𝑑𝑗 ª®¬

𝑎𝑑𝑖

=
∏

𝑗∈[𝐿], 𝑗≠𝑖
𝑔𝑎

𝑑max−𝑑𝑗 +𝑑𝑖
=

∏
𝑗∈[𝐿], 𝑗≠𝑖

𝑋𝑑max−𝑑 𝑗+𝑑𝑖 ,

which matches the behavior of algorithm B. In both Hyb(a)
1

and Hyb(a)rand, the challenger sets

𝑏 =
∑︁
𝑗∈[𝐿]

∑︁
𝑘∈[𝐾]

1

𝛽 𝑗,𝑘
𝑎𝑑max−2𝑑 𝑗 =

∑︁
(𝑗,𝑘) ∈Υ3

1

𝛽 𝑗,𝑘
𝑎𝑑max−2𝑑 𝑗 , (4.7)

where Υ3 = [𝐿] × [𝐾] from Eq. (4.6). The challenger then computes

𝑈𝑖 = 𝑔
𝑏𝑡𝑖 = 𝑔

(∑
𝑗 ∈ [𝐿],𝑘∈ [𝐾]

1

𝛽𝑗,𝑘
𝑎
𝑑max−2𝑑𝑗

)
𝑎𝑑𝑖

=
∏

𝑗∈[𝐿],𝑘∈[𝐾]
𝑔

1

𝛽𝑗,𝑘

(
𝑎
𝑑max−2𝑑𝑗 +𝑑𝑖

)
=

∏
𝑗∈[𝐿],𝑘∈[𝐾]

𝑋
(𝑗,𝑘)
𝑑max−2𝑑 𝑗+𝑑𝑖 ,

which againmatches the behavior ofB. Next, for each 𝑖 ∈ [𝐿], the challenger inHyb(a)
1

andHyb(a)rand sets 𝑃𝑖 = 𝑔
𝑠𝛿𝑖 = 𝑌𝛿𝑖

if 𝑖 ∈ C and 𝑃𝑖 = 𝑔
𝛿𝑖
if 𝑖 ∈ N . This is the same procedure used by algorithm B. Next, for each 𝑧 ∈ E, the challenger

would set

𝑊𝑧 = 𝑔
𝑏𝑎𝑧 = 𝑔

(∑
𝑗 ∈ [𝐿],𝑘∈ [𝐾]

1

𝛽𝑗,𝑘
𝑎
𝑑max−2𝑑𝑗

)
𝑎𝑧

=
∏

𝑗∈[𝐿],𝑘∈[𝐾]
𝑔

1

𝛽𝑗,𝑘

(
𝑎
𝑑max−2𝑑𝑗 +𝑧

)
=

∏
𝑗∈[𝐿],𝑘∈[𝐾]

𝑋
(𝑗,𝑘)
𝑑max−2𝑑 𝑗+𝑧 .

Finally, the challenger sets

𝑍 = 𝑒 (𝑔,𝑔)𝛼 = 𝑒 (𝑔,𝑔)−𝑎𝑑max

= 𝑄−1.

We conclude that algorithm B constructs the components in the CRS using the identical procedure as the challenger

in Hyb(a)
1

and Hyb(a)rand.

Key-generation queries. For the key-generation queries on indices 𝑖 ∈ N , the challenger in Hyb(a)
1

and Hyb(a)rand
generates pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) by first sampling 𝑟 ′𝑖

r← Z𝑝 , setting 𝑟𝑖 = 𝑎𝑑max−𝑑𝑖 + 𝑟 ′𝑖 and then setting

• 𝑇𝑖 = 𝑔
𝑟𝑖 = 𝑔𝑎

𝑑max−𝑑𝑖 +𝑟 ′𝑖 = 𝑋𝑑max−𝑑𝑖𝑔
𝑟 ′𝑖 .

• 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖
= 𝑔𝛿𝑖 (𝑎

𝑑max−𝑑𝑖 +𝑟 ′𝑖) = (𝑋𝑑max−𝑑𝑖𝑔
𝑟 ′𝑖)𝛿𝑖 . Recall that 𝑖 ∈ N so 𝑃𝑖 = 𝑔

𝛿𝑖
.

• 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
= 𝑔𝑎

𝑑𝑗 (𝑎𝑑max−𝑑𝑖 +𝑟 ′𝑖) = 𝑋𝑑max−𝑑𝑖+𝑑 𝑗𝑋
𝑟 ′𝑖
𝑑 𝑗
.

Again, algorithm B perfectly simulates the responses to the key-generation queries.

32

Challenge ciphertext. We now analyze the challenge ciphertext components. First, we consider the distribution

of 𝐶1. We have two possibilities:

• Suppose 𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑑max𝑠

. Then algorithm B sets 𝐶1 = `
∗
a/𝑇 = `∗a · 𝑒 (𝑔,𝑔)−𝑎

𝑑max𝑠 = `∗a · 𝑍𝑠 , which matches the

distribution of 𝐶1 in Hyb(a)
1

.

• Suppose the challenger samples𝑇
r← G𝑇 . Then,𝐶1 = `

∗
a/𝑇 is also uniform over G𝑇 , and algorithm B simulated

the distribution of 𝐶1 in Hyb(a)rand.

To complete the proof, it suffices to argue that the remaining components in the challenge ciphertext are simulated

exactly according to the specification of Hyb(a)
1

and Hyb(a)rand. First, in Hyb(a)
1

and Hyb(a)rand, the challenger would set

𝐶2 = 𝑔𝑠 = 𝑌 . which coincides with the behavior of algorithm B. Next, consider 𝐶′
3,𝑘

for 𝑘 ∈ [𝐾]. In Hyb(a)
1

and

Hyb(a)rand, the challenger would first set

𝑠∗
𝑘
= 𝑠 ·

∑︁
𝑖∈C:𝜌 (𝑘)∉𝑆𝑖

𝛽𝑖,𝑘 ·mT
𝑘
v∗𝑖 = 𝑠 ·

∑︁
𝑖∈Υ (𝑘)

2

𝛽𝑖,𝑘 ·mT
𝑘
v∗𝑖 , (4.8)

using the definition of Υ (𝑘)
2

= {𝑖 ∈ C : 𝜌 (𝑘) ∉ 𝑆𝑖 } from Eq. (4.6). Then, the challenger computes

𝐶′
3,𝑘

= 𝑔𝑠m
T
𝑘

∑
𝑖∈C 𝑎

𝑑max−𝑑𝑖 v∗𝑖 ·𝑈 −𝑠
∗
𝑘

𝜌 (𝑘) = 𝑈
−𝑠∗
𝑘

𝜌 (𝑘)

∏
𝑖∈C

𝑔𝑎
𝑑max−𝑑𝑖 ·mT

𝑘
v∗𝑖 𝑠 = 𝑈

−𝑠∗
𝑘

𝜌 (𝑘)

∏
𝑖∈Υ (𝑘)

2

𝑔𝑎
𝑑max−𝑑𝑖 ·mT

𝑘
v∗𝑖 𝑠 , (4.9)

using the fact that in Hyb(a)
1

and Hyb(a)rand, the challenger chooses v∗𝑖 such that mT
𝑘
v∗𝑖 = 0 for all 𝑘 ∈ [𝐾] where

𝜌 (𝑘) ∈ 𝑆𝑖 . Consider the term𝑈
−𝑠∗
𝑘

𝜌 (𝑘) . By definition,

𝑈𝜌 (𝑘) =
∏

𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑈𝑖 =
∏
𝑖∈Υ (𝑘)

1

𝑔𝑏𝑡𝑖 =
∏
𝑖∈Υ (𝑘)

1

𝑔𝑏𝑎
𝑑𝑖

using the definition of Υ (𝑘)
1

= {𝑖 ∈ [𝐿] : 𝜌 (𝑘) ∉ 𝑆𝑖 } from Eq. (4.6). For ease of notation, let𝑈
−𝑠∗
𝑘

𝜌 (𝑘) = 𝑔
b
for some b ∈ Z𝑝 .

Then, substituting in the definitions of 𝑏 from Eq. (4.7) and 𝑠∗
𝑘
from Eq. (4.8), we have

b =
∑︁
𝑖∈Υ (𝑘)

1

−𝑏𝑎𝑑𝑖𝑠∗
𝑘

=
∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2

−𝑏𝛽 𝑗,𝑘𝑎𝑑𝑖mT
𝑘
v∗𝑗𝑠 by Eq. (4.8)

=
∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2

∑︁
(𝑗 ′,𝑘 ′) ∈Υ3

−
𝛽 𝑗,𝑘

𝛽 𝑗 ′,𝑘 ′
𝑎𝑑max−2𝑑 𝑗 ′+𝑑𝑖mT

𝑘
v∗𝑗𝑠 by Eq. (4.7).

We decompose b into the terms b1 where (𝑗 ′, 𝑘 ′) ≠ (𝑗, 𝑘) and the terms b2 where (𝑗 ′, 𝑘 ′) ≠ (𝑗, 𝑘). Then, we have

b =
∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2

∑︁
(𝑗 ′,𝑘 ′) ∈Υ3
(𝑗 ′,𝑘 ′)≠(𝑗,𝑘)

(
−
𝛽 𝑗,𝑘

𝛽 𝑗 ′,𝑘 ′
𝑎𝑑max−2𝑑 𝑗 ′+𝑑𝑖mT

𝑘
v∗𝑗𝑠

)
︸ ︷︷ ︸

b1

+
∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2

−𝑎𝑑max−2𝑑 𝑗+𝑑𝑖mT
𝑘
v∗𝑗𝑠

︸ ︷︷ ︸
b2

. (4.10)

We further decompose b2 into terms b2,1 where 𝑖 ≠ 𝑗 and terms b2,2 where 𝑖 = 𝑗 :

b2 =
∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2

−𝑎𝑑max−2𝑑 𝑗+𝑑𝑖mT
𝑘
v∗𝑗𝑠 =

∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2
\{𝑖 }

−𝑎𝑑max−2𝑑 𝑗+𝑑𝑖mT
𝑘
v∗𝑗𝑠︸ ︷︷ ︸

b2,1

+
∑︁

𝑖∈Υ (𝑘)
1
∩Υ (𝑘)

2

−𝑎𝑑max−𝑑 𝑗mT
𝑘
v∗𝑖 𝑠︸ ︷︷ ︸

b2,2

. (4.11)

33

From Eq. (4.6), we have that Υ (𝑘)
2
⊆ Υ (𝑘)

1
, so we can write

b2,2 =
∑︁

𝑖∈Υ (𝑘)
1
∩Υ (𝑘)

2

−𝑎𝑑max−𝑑 𝑗mT
𝑘
v∗𝑖 𝑠 =

∑︁
𝑖∈Υ (𝑘)

2

−𝑎𝑑max−𝑑 𝑗mT
𝑘
v∗𝑖 𝑠 . (4.12)

Combining Eqs. (4.10) to (4.12), we can write

𝑔b1 =
∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2

∏
(𝑗 ′,𝑘 ′) ∈Υ3
(𝑗 ′,𝑘 ′)≠(𝑗,𝑘)

𝑔

(
−

𝛽𝑗,𝑘

𝛽𝑗 ′,𝑘′
𝑎
𝑑max−2𝑑𝑗 ′ +𝑑𝑖mT

𝑘
v∗𝑗𝑠

)
=

∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2

∏
(𝑗 ′,𝑘 ′) ∈Υ3
(𝑗 ′,𝑘 ′)≠(𝑗,𝑘)

(
𝑍
((𝑗 ′,𝑘 ′),(𝑗,𝑘))
𝑑max−2𝑑 ′𝑗+𝑑𝑖

)−mT
𝑘
v∗𝑗

𝑔b2,1 =
∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2
\{𝑖 }

𝑔
−𝑎𝑑max−2𝑑𝑗 +𝑑𝑖mT

𝑘
v∗𝑗𝑠 =

∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2
\{𝑖 }

𝑍
−mT

𝑘
v∗𝑗

𝑑max−2𝑑 𝑗+𝑑𝑖

𝑔b2,2 =
∏
𝑖∈Υ (𝑘)

2

𝑔−𝑎
𝑑max−𝑑𝑗mT

𝑘
v∗𝑖 𝑠 .

Substituting back into Eq. (4.9) and using the fact that𝑈
−𝑠∗
𝑘

𝜌 (𝑘) = 𝑔
b = 𝑔b1+b2,1+b2,2 , we conclude that

𝐶′
3,𝑘

= 𝑈
−𝑠∗
𝑘

𝜌 (𝑘)

∏
𝑖∈Υ (𝑘)

2

𝑔𝑎
𝑑max−𝑑𝑖 ·mT

𝑘
v∗𝑖 𝑠 = 𝑔b1𝑔b2,1𝑔b2,2

∏
𝑖∈Υ (𝑘)

2

𝑔𝑎
𝑑max−𝑑𝑖 ·mT

𝑘
v∗𝑖 𝑠

= 𝑔b1𝑔b2,1
©«

∏
𝑖∈Υ (𝑘)

2

𝑔𝑎
𝑑max−𝑑𝑖 ·mT

𝑘
v∗𝑖 𝑠

ª®®¬
−1 ∏

𝑖∈Υ (𝑘)
2

𝑔𝑎
𝑑max−𝑑𝑖 ·mT

𝑘
v∗𝑖 𝑠

=

©«
∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2

∏
(𝑗 ′,𝑘 ′) ∈Υ3
(𝑗 ′,𝑘 ′)≠(𝑗,𝑘)

(
𝑍
((𝑗 ′,𝑘 ′),(𝑗,𝑘))
𝑑max−2𝑑 ′𝑗+𝑑𝑖

)−mT
𝑘
v∗𝑗

ª®®®¬
©«

∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2
\{𝑖 }

𝑍
−mT

𝑘
v∗𝑗

𝑑max−2𝑑 𝑗+𝑑𝑖

ª®®¬ .
This is precisely how algorithm B constructs 𝐶′

3,𝑘
. Next, consider 𝐶′

4,𝑘
. The challenger in Hyb(a)

1
and Hyb(a)rand sets

𝐶′
4,𝑘

= 𝑔𝑠
∗
𝑘 = 𝑔𝑠 ·

∑
𝑖∈C:𝜌 (𝑘)∉𝑆𝑖 𝛽𝑖,𝑘 ·m

T
𝑘
v∗𝑖 =

∏
𝑖∈C:𝜌 (𝑘)∉𝑆𝑖

(
𝑌 (𝑖,𝑘)

)mT
𝑘
v∗𝑖 ,

which is how algorithm B constructs 𝐶′
4,𝑘
. Finally, consider 𝐶′

5
. The challenger in Hyb(a)

1
and Hyb(a)rand sets

𝐶′
5
= 𝑔𝑠 ·

∑
𝑖∈N 𝑎

𝑑max−𝑑𝑖
∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

. (4.13)

By construction, for all 𝑖 ∈ N , the challenger sets 𝑇𝑖 = 𝑔
𝑟𝑖 = 𝑔𝑎

𝑑max−𝑑𝑖 +𝑟 ′𝑖 . Thus, we can write∏
𝑖∈N

𝑇 −𝑠𝑖 =
∏
𝑖∈N

𝑔−𝑠𝑎
𝑑max−𝑑𝑖 −𝑠𝑟 ′𝑖 = 𝑔−𝑠

∑
𝑖∈N 𝑎

𝑑max−𝑑𝑖
∏
𝑖∈N

𝑔−𝑟
′
𝑖 𝑠 .

Substituting back into Eq. (4.13), this means

𝐶′
5
= 𝑔𝑠 ·

∑
𝑖∈N 𝑎

𝑑max−𝑑𝑖
∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

= 𝑔𝑠 ·
∑
𝑖∈N 𝑎

𝑑max−𝑑𝑖
(
𝑔𝑠 ·

∑
𝑖∈N 𝑎

𝑑max−𝑑𝑖
)−1 ∏

𝑖∈N
𝑔−𝑟

′
𝑖 𝑠

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

=
∏
𝑖∈N

𝑌 −𝑟
′
𝑖

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

,

34

which is how algorithm B constructs 𝐶′
5
. Finally, algorithm B computes(

{𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
= Rerand

(
{𝑈𝑤}𝑤∈U_ , (M, 𝜌), {𝐶′3,𝑘 ,𝐶

′
4,𝑘
}𝑘∈[𝐾],𝐶′5

)
,

which exactly coincides with the challenger’s behavior in Hyb(a)
1

and Hyb(a)real. We conclude that if 𝑇 = 𝑒 (𝑔,𝑔)𝑎𝑑max𝑠
,

then algorithm B perfectly simulates an execution of Hyb(a)
1

whereas if 𝑇
r← G𝑇 , algorithm B perfectly simulates

an execution of Hyb(a)rand. Thus, algorithm B succeeds with the same advantage of A, and the claim follows. □

By construction the adversary’s view inHyb(a)rand is independent of a . As such, for all adversariesA, the output distribu-

tions Hyb(0)rand (A) and Hyb(1)rand (A) are identically distributed. The claim now follows from Lemmas 4.9 and 4.12. □

Summary. Putting all the pieces together (and invoking the generic compiler from a slotted registered ABE scheme

to a standard registered ABE scheme in Appendix C), we obtain the following corollary:

Corollary 4.13 (Bounded Registered ABE from Prime-Order Pairing Groups). Let _ be a security parameter. Let
U = {U_}_∈N be any (polynomial-size) attribute space, and let P = {P_}_∈N be a set of policies that can be described
by a linear secret sharing scheme overU of size at most 𝐾 (i.e., each policy is over at most 𝐾 attributes). Then, under
Assumption 4.2, for every polynomial 𝐿 = 𝐿(_), there exists a statically-secure bounded registered ABE scheme with
attribute universeU, policy space P, and supporting up to 𝐿 users with the following properties:

• The size of the CRS is 𝐿1+𝑜 (1) · poly(_).

• The size of the auxiliary data maintained by the key curator is 𝐿 · |U_ | · poly(_, log𝐿)

• The running time of key-generation is 𝐿 · poly(_, log𝐿).

• The running time of registration is 𝐿 · poly(_, |U_ |, log𝐿).

• The size of the master public key and the helper decryption keys are both |U_ | · poly(_, log𝐿).

• The size of a ciphertext is 𝐾 · poly(_, log𝐿).

5 Adaptively-Secure Registered ABE via a Dual System Proof
Construction 4.3 from Section 4 gives an efficient construction of registered ABE where the size of the CRS scales

nearly linearly with the bound on the number of users (when instantiated with state-of-the-art progression-free

sets) and independently of the size of the attribute universe. In contrast, previous schemes that support monotone

Boolean formulas [HLWW23, ZZGQ23] required a CRS whose size scaled quadratically with the number of users

and linearly with the size of the attribute universe. The downside is the construction achieves a weaker notion of

static security (Definition 3.5). In this section, we show that using a dual system approach [Wat09, LW11] similar

to the one taken in [HLWW23, ZZGQ23], we can obtain adaptive security with a nearly-linear-sized CRS through the

use of progression-free sets. However, similar to previous adaptively-secure constructions, the CRS in this scheme

scales linearly with the size of the attribute universe.

5.1 Composite-Order Preliminaries
Similar to the registered ABE construction from [HLWW23], our construction relies on a composite-order pairing

group. To incorporate progression-free sets into our construction, we will work over a composite-order pairing

group where the modulus 𝑁 is a product of four primes. We recall the definition below and then state the concrete

computational assumptions we use in our construction.

Definition 5.1 (Four-Prime Composite-Order Bilinear Group [BGN05]). A (symmetric) four-prime composite-order

bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter _ and

outputs a description (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑔, 𝑒) of a bilinear group where 𝑝1, 𝑝2, 𝑝3, 𝑝4 are distinct primes, G and G𝑇
are cyclic groups of order 𝑁 = 𝑝1𝑝2𝑝3𝑝4, 𝑔 is a generator of G, and 𝑒 : G × G→ G𝑇 is a non-degenerate bilinear map.

We require that the group operation in G and G𝑇 as well as the pairing operation be efficiently computable.

35

Notation. Let G be a cyclic group with order 𝑁 = 𝑝1𝑝2𝑝3𝑝4 and generator 𝑔. In the following, we will write

G1 = ⟨𝑔𝑝2𝑝3𝑝4⟩ to denote the subgroup of G of order 𝑝1. We define G2, G3, G4 analogously. By the Chinese Remainder

Theorem, if 𝑔1, 𝑔2, 𝑔3, 𝑔4 are generators of G1,G2,G3,G4, respectively, then 𝑔1𝑔2𝑔3𝑔4 ∈ G is a generator of G, and
moreover, every element ℎ ∈ G can be uniquely written as 𝑔

𝑥1
1
𝑔
𝑥2
2
𝑔
𝑥3
3
𝑔
𝑥4
4
where 𝑥𝑖 ∈ Z𝑝𝑖 for all 𝑖 ∈ {1, 2, 3, 4}. In the

following description, we will say ℎ ∈ G has a non-trivial component in the G𝑖 subgroup if 𝑥𝑖 ≠ 0.

Generalized subgroup assumptions. Security of our construction relies on several variants of the subgroup deci-

sion assumptions introduced by Lewko and Waters [LW10] for constructing adaptively-secure (hierarchical) identity-

based encryption, and subsequently by Lewko et al. [LOS
+
10] for constructing adaptively-secure attribute-based en-

cryption. The first four assumptions are special cases of the generalized subgroup decision assumption from [BWY11].

The final assumption is a variant of the corresponding assumption from [LW10, HLWW23]. Finally, we state a simple

implication (Lemma 5.3) which is similar to one shown in [LW10] that will be useful in our security analysis.

Assumption 5.2 (Subgroup Decision Assumptions). Let CompGroupGen be a four-prime composite-order bilinear

group generator. Let (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑔, 𝑒) ← CompGroupGen(1_), 𝑁 = 𝑝1𝑝2𝑝3𝑝4, G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), and
𝑔1

r← G1, 𝑔2
r← G2, 𝑔3

r← G3, and 𝑔4
r← G4. We now define several pairs of assumptions D0,D1 where each

distribution D𝑏 = (𝐷,𝑇𝑏) consists of a set of common components 𝐷 together with a challenge element 𝑇𝑏 . We

say that such an assumption holds with respect to CompGroupGen if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all _ ∈ N,

| Pr[A(𝐷,𝑇0) = 1] − Pr[A(𝐷,𝑇1) = 1] | = negl(_),

where the probability is taken over the choice of the common components 𝐷 , the challenge element 𝑇𝑏 , and the

adversary’s randomness.

Assumption 5.2a: Sample 𝑟
r← Z𝑁 , and let

𝐷 = (G, 𝑔1, 𝑔3, 𝑔4) , 𝑇0 = 𝑔
𝑟
1
, 𝑇1 = (𝑔1𝑔2)𝑟 .

Assumption 5.2b: Sample 𝑠12, 𝑠23, 𝑟
r← Z𝑁 , and let

𝐷 = (G, 𝑔1, 𝑔3, 𝑔4, (𝑔1𝑔2)𝑠12 , (𝑔2𝑔3)𝑠23) , 𝑇0 = (𝑔1𝑔3)𝑟 , 𝑇1 = (𝑔1𝑔2𝑔3)𝑟 .

Assumption 5.2c: Sample 𝑠12, 𝑠24, 𝑟
r← Z𝑁 , and let

𝐷 = (G, 𝑔1, 𝑔3, 𝑔4, (𝑔1𝑔2)𝑠12 , (𝑔2𝑔4)𝑠24) , 𝑇0 = (𝑔1𝑔4)𝑟 , 𝑇1 = (𝑔1𝑔2𝑔4)𝑟 .

Assumption 5.2d: Sample 𝑠12, 𝑠23, 𝑠24, 𝑟
r← Z𝑁 , and let

𝐷 = (G, 𝑔1, 𝑔3, 𝑔4, (𝑔1𝑔2)𝑠12 , (𝑔2𝑔3)𝑠23 , (𝑔2𝑔4)𝑠24) , 𝑇0 = 𝑔
𝑟 , 𝑇1 = (𝑔1𝑔3𝑔4)𝑟 .

Assumption 5.2e: Sample 𝛼, 𝑠, 𝑡1, 𝑡2, 𝑟
r← Z𝑁 , and let

𝐷 =
(
G, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔𝛼1𝑔

𝑡1
2
, 𝑔𝑠

1
𝑔
𝑡2
2

)
, 𝑇0 = 𝑒 (𝑔1, 𝑔1)𝛼𝑠 , 𝑇1 = 𝑒 (𝑔,𝑔)𝑟 .

Lemma 5.3 (Hardness of Factoring). Let CompGroupGen be a four-prime composite-order bilinear group generator
where Assumption 5.2d holds. Then, for all efficient adversaries A, there exists a negligible function negl(·) such that
for all _ ∈ N,

Pr

1 < gcd(𝑥, 𝑁) < 𝑁 :

(G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑔, 𝑒) ← CompGroupGen(1_),
𝑁 = 𝑝1𝑝2𝑝3𝑝4 , G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),

𝑔1
r← G1, 𝑔3

r← G3, 𝑔4
r← G4, 𝑠12, 𝑠23

r← Z𝑁
𝑥 ← A

(
G, 𝑔1, 𝑔3, 𝑔4, (𝑔1𝑔2)𝑠12 , (𝑔2𝑔3)𝑠23

)
,

 = negl(_).

In words, given
(
G, 𝑔1, 𝑔3, 𝑔4, (𝑔1𝑔2)𝑠12 , (𝑔2𝑔3)𝑠23

)
, no efficient adversary can output a non-trivial factor of 𝑁 .

36

Proof. This is a 4-prime analogue of [LW10, Lemma 5]. To show this, consider an adversary A where the probability

in Lemma 5.3 is Y for some non-negligible Y. We use A to construct an adversary B that breaks Assumption 5.2d:

1. On input the challenge

(
G, 𝑔1, 𝑔3, 𝑔4, 𝑋1, 𝑋3, 𝑋4,𝑇

)
, algorithm B forwards

(
G, 𝑔1, 𝑔3, 𝑔4, 𝑋1, 𝑌3

)
to A. By con-

struction, we can write 𝑋1 = (𝑔1𝑔2)𝑠12 , 𝑋3 = (𝑔2𝑔3)𝑠23 , and 𝑋4 = (𝑔2𝑔4)𝑠24 for some choice of exponents

𝑠12, 𝑠13, 𝑠14 ∈ Z𝑁 .

2. Algorithm A outputs a value 𝛼 . If gcd(𝑥, 𝑧) ∈ {1, 𝑁 }, then algorithm B halts with output ⊥ Otherwise,

algorithm B constructs 𝛽 as follows:

• If 𝑋𝛼
𝑖
= 1 for some 𝑖 ∈ {1, 3, 4}, then set 𝛽 = 𝑁 /𝛼 .

• If 𝑋
𝑁 /𝛼
𝑖

= 1 for some 𝑖 ∈ {1, 3, 4}, then set 𝛽 = 𝛼 .

• Otherwise, output 1 if 𝑇𝛼 = 1 or 𝑇𝑁 /𝛼 = 1 and 0 otherwise.

If algorithm B has not halted, then it sets 𝑖 ∈ {1, 3, 4} to be an index where 𝑔
𝛽

𝑖
= 1 and outputs 1 if 𝑒

(
𝑇,𝑋

𝛽

𝑖

)
= 1

and 0 otherwise.

First, algorithm B perfectly simulates an execution of the game in Lemma 5.3 for algorithmA. Thus, with probability

at least Y, algorithm A outputs a non-trivial factor 𝛼 of 𝑁 . We consider several possibilities:

• Suppose 𝛼 = 𝑝2 or 𝛼 = 𝑝1𝑝3𝑝4. In this case, 𝑋𝛼 , 𝑌𝛼 , 𝑍𝛼 ≠ 1 and similarly 𝑋𝑁 /𝛼 , 𝑌𝑁 /𝛼 , 𝑍𝑁 /𝛼 ≠ 1. Suppose𝑇 = 𝑔𝑟 .

In this case, 𝑇𝛼 ≠ 1 and 𝑇𝑁 /𝛼 ≠ 1, so algorithm B always outputs 0. Suppose 𝑇 = (𝑔1𝑔3𝑔4)𝑟 . In this case, either

𝑇𝛼 = 1 or 𝑇𝑁 /𝛼 = 1, so algorithm B always outputs 1.

• Suppose 𝑝𝑖𝑝2 | 𝛼 for some 𝑖 ∈ {1, 3, 4}. Then, algorithm B sets 𝛽 = 𝑁 /𝛼 . In particular, this means that 𝑝2 ∤ 𝛽 .

Suppose there exists an index 𝑗 ∈ {1, 3, 4} where 𝑔𝛽
𝑗
= 1. Note such an index exists since other 𝛽 = 1 (and 𝛼 = 𝑁

which is a trivial factorization). Since 𝑝2 ∤ 𝛽 , this means that 𝑋
𝛽

𝑗
∈ G2. Correspondingly, when 𝑇 = 𝑔𝑟 , this

means 𝑒
(
𝑇,𝑋

𝛽

𝑗

)
≠ 1 and algorithm B outputs 0. If 𝑇 = (𝑔1𝑔3𝑔4)𝑟 , then 𝑒

(
𝑇,𝑋

𝛽

𝑗

)
= 1 and algorithm B outputs 1.

• Suppose 𝑝𝑖𝑝2 | 𝑁 /𝛼 for some 𝑖 ∈ {1, 3, 4}. Then algorithm B sets 𝛽 = 𝛼 , which means 𝑝2 ∤ 𝛽 . The claim now

follows as in the previous case.

We conclude that if 𝑇 = 𝑔𝑟 , algorithm B always outputs 0 and if 𝑇 = (𝑔1𝑔3𝑔4)𝑟 , then algorithm B always outputs

1. Correspondingly, algorithm B breaks Assumption 5.2d with advantage Y and the claim follows. □

Progression-free sets in composite-order groups. Security of our composite-order construction will also rely

on a new hardness assumption related to progression-free sets. We state our assumption below and show that it

holds in the generic bilinear group model in Appendix D (Lemma D.8).

Assumption 5.4 (Progression-Free Indistinguishability). Let CompGroupGen be a four-prime composite-order

bilinear group generator. We define the following game between an adversary A and a challenger. The game is

parameterized by a security parameter _ and a bit 𝛽 ∈ {0, 1}.

1. On input the security parameter 1
_
, algorithmA chooses an input length 1

𝐿
, a progression-free and double-free

set D = {𝑑𝑖 }𝑖∈[𝐿] together with a challenge index 𝑖∗ ∈ [𝐿]. Define the function 𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 .

2. The challenger samples a group (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑝3, 𝑝4, 𝑔, 𝑒) ← CompGroupGen(1_). It then sets𝑁 = 𝑝1𝑝2𝑝3𝑝4
and samples 𝑔𝑖

r← G𝑖 for 𝑖 ∈ {1, 2, 3, 4}. The challenger first samples 𝑟
r← Z𝑁 and sets 𝑔23 = (𝑔2𝑔3)𝑟 . The

challenger also samples exponents 𝑎, 𝑏, 𝑠, 𝜏
r← Z𝑁 . For 𝑖 ∈ [𝐿], the challenger sets 𝑡𝑖 = 𝑎𝑑𝑖 and defines the

following elements for indices 𝑖, 𝑗 ∈ [𝐿]:

𝐴′𝑖 = 𝑔
𝑡𝑖
1

, 𝑈 ′𝑖 = 𝑔
𝑏𝑡𝑖
1

, 𝑊 ′
𝑓 (𝑖, 𝑗) = 𝑔

𝑏𝑡𝑖𝑡 𝑗
1

, 𝑋 = (𝑔1𝑔2)𝑠 , ∀𝑖 ≠ 𝑖∗ : 𝑌𝑖 = 𝑔𝑠𝑏𝑡𝑖
1

, 𝑌𝑖∗ = (𝑔1𝑔2)𝑠𝑏𝑡𝑖∗ .

37

Then the challenger computes the challenge elements

𝑇0 = 𝑔
𝑡𝑖∗
1
𝑔𝜏
3

and 𝑇1 = 𝑔
𝑡𝑖∗
1
(𝑔2𝑔3)𝜏

The challenger then gives the following to A:(
G, 𝑔1, 𝑔3, 𝑔4, 𝑔23, {𝐴′𝑖 }𝑖∈[𝐿]\{𝑖∗ } , {𝑈 ′𝑖 }𝑖∈[𝐿] , {𝑊 ′𝑓 (𝑖, 𝑗) }𝑖≠𝑗∈[𝐿] , 𝑋 , {𝑌𝑖 }𝑖∈[𝐿]\{𝑖∗ } , 𝑌𝑖∗ , 𝑇𝛽

)
.

3. Adversary A outputs a bit 𝛽 ′ ∈ {0, 1}, which is the output of the experiment.

We say that the progression-free indistinguishability assumption holds with respect to CompGroupGen if for all

efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[𝛽 ′ = 1 : 𝛽 = 0] − Pr[𝛽 ′ = 1 : 𝛽 = 1] | = negl(_).

5.2 Adaptively-Secure Registered ABE with Progression-Free Sets
In this section, we give our construction of an adaptively-secure (slotted) registered ABE scheme for monotone

Boolean formulas with a sub-quadratic CRS by relying on progression-free sets.

Construction 5.5 (Slotted Attribute-Based Registration-Based Encryption). Let CompGroupGen be a four-prime

composite-order bilinear group generator. LetU = {U_}_∈N be a (polynomial-size) attribute space. Let P = {P_}_∈N
be a set of policies that can be described by a one-use linear secret sharing scheme over U (Definition 2.2). We

construct a slotted attribute-based registration-based encryption scheme ΠRABE = (Setup,KeyGen, IsValid,Aggregate,
Encrypt,Decrypt) with attribute spaceU and policy space P as follows:

• Setup(1_, 1 |U_ | , 1𝐿): On input the security parameter _, the size of the attribute space |U_ |, and the num-

ber of slots 𝐿, the setup algorithm starts by sampling (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑔, 𝑒) ← CompGroupGen(1_). Let
G1,G2,G3,G4 be the subgroups of G of orders 𝑝1, 𝑝2, 𝑝3, 𝑝4, respectively. The setup algorithm now constructs

the following quantities:

– Let 𝑁 = 𝑝1𝑝2𝑝3𝑝4 and let G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) be the (public) group description.

– LetD = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set of size 𝐿 (Theorem 2.5).

In the following, we define 𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 and the set E of all distinct pairwise sums of elements in D:

E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

– Sample generators 𝑔1
r← G1, 𝑔3

r← G3, 𝑔4
r← G4 and exponents 𝛼, 𝛽, 𝑎

r← Z𝑁 . Let ℎ = 𝑔
𝛽

1
.

– For each slot index 𝑖 ∈ [𝐿], let 𝑡𝑖 = 𝑎𝑑𝑖 . Then, sample 𝛿𝑖
r← Z𝑁 , 𝜏𝑖 , 𝜏 ′𝑖

r← Z𝑁 . Define the slot components

as follows:

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 .

For each attribute𝑤 ∈ U_ , sample 𝑏𝑤
r← Z𝑁 . For each𝑤 ∈ U_ , slot index 𝑖 ∈ [𝐿], and cross term index

𝑧 ∈ E, define the attribute-specific slot components𝑈𝑖,𝑤 and𝑊𝑧,𝑤 as follows:

𝑈𝑖,𝑤 = 𝑔
𝑏𝑤𝑡𝑖
1

, 𝑊𝑧,𝑤 = 𝑔
𝑏𝑤𝑎

𝑧

1
.

– Finally, the setup algorithm sets 𝑍 = 𝑒 (𝑔1, 𝑔1)𝛼 and outputs the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
(5.1)

38

• KeyGen(crs, 𝑖): On input the common reference string crs (with components given by Eq. (5.1)) and a slot index

𝑖 ∈ [𝐿], the key-generation algorithm samples 𝑟𝑖
r← Z𝑁 and computes

𝑇𝑖 = 𝑔
𝑟𝑖
1

, 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

, 𝑅𝑖 = 𝑔
𝑟𝑖
3
.

Then for each 𝑗 ≠ 𝑖 , it computes the cross terms 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
. Finally, it outputs the public key pk𝑖 and the secret

key sk𝑖 defined as follows:

pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and sk𝑖 = 𝑟𝑖 .

Note that this particular key-generation algorithm does not depend on the set of attributes.

• IsValid(crs, 𝑖, pk𝑖): On input the common reference string crs (with components given by Eq. (5.1)), a slot index

𝑖 ∈ [𝐿], and a purported public key pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖), the key-validation algorithm first affirms that

each of the components in pk𝑖 is a valid group element (i.e., an element in G). If so, it then checks

𝑒 (𝑔3,𝑇𝑖) = 1 = 𝑒 (𝑔1, 𝑅𝑖) and 𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔1, 𝑄𝑖) and 𝑒 (𝑅𝑖 , 𝑃𝑖) = 𝑒 (𝑔3, 𝑄𝑖).

Next, for each 𝑗 ≠ 𝑖 , the algorithm checks that

𝑒
(
𝑔1,𝑉𝑗,𝑖

)
= 𝑒 (𝑇𝑖 , 𝐴 𝑗) and 𝑒

(
𝑔3,𝑉𝑗,𝑖

)
= 𝑒 (𝑅𝑖 , 𝐴 𝑗).

Finally, the algorithm checks that none of the public key components have a component in the G4 subgroup.

Namely for all 𝑗 ≠ 𝑖:

𝑒 (𝑔4,𝑇𝑖) = 𝑒 (𝑔4, 𝑄𝑖) = 𝑒 (𝑔4, 𝑅𝑖) = 𝑒 (𝑔4,𝑉𝑗,𝑖) = 1

If all checks pass, the key-validation algorithm outputs 1; otherwise, it outputs 0.

• Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)): On input the common reference string crs (with components given by

Eq. (5.1)), a collection of 𝐿 public keys pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) together with their attribute sets 𝑆𝑖 ⊆ U_ , the
aggregation algorithm starts by computing the attribute-independent public key𝑇 and the attribute-independent

slot key 𝑉𝑖 for each 𝑖 ∈ [𝐿]:
𝑇 =

∏
𝑗∈[𝐿]

𝑇𝑗 , 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Next, for each attribute𝑤 ∈ U_ , it computes the attribute-specific public key𝑈𝑤 and the attribute-specific slot

key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿]:

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗,𝑤 , �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑓 (𝑖, 𝑗),𝑤

Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk𝑖 where

mpk =
(
G, 𝑔1, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_

)
and hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
.

• Encrypt(mpk, (M, 𝜌), `): On input the master public key mpk = (G, 𝑔1, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_), a policy (M, 𝜌)
whereM ∈ Z𝐾×𝑛

𝑁
and 𝜌 : [𝐾] → U_ is an injective row-labeling function, and a message ` ∈ G𝑇 , the encryption

algorithm starts by sampling a secret exponent 𝑠
r← Z𝑁 and ℎ1, ℎ2

r← G1 such that ℎ = ℎ1ℎ2. Then, it constructs

the ciphertext components as follows:

– Message-embedding components: First, let 𝐶1 = ` · 𝑍𝑠 and 𝐶2 = 𝑔
𝑠
1
.

– Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 for the linear secret sharing scheme and

let v = [𝑠, 𝑣2, . . . , 𝑣𝑛]T. Then, for each 𝑘 ∈ [𝐾], sample 𝑠𝑘 , [𝑘
r← Z𝑁 , and let 𝐶3,𝑘 = ℎ

mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘)𝑔

[𝑘
4

and

𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 , where mT
𝑘
∈ Z𝑛

𝑁
denotes the 𝑘 th row of M.

– Slot-specific component: Let 𝐶5 = (ℎ1𝑇 −1)𝑠

39

It then outputs the ciphertext

ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

• Decrypt(sk, hsk, ct): On input the secret key sk = 𝑟 , the helper key hsk =
(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
,

where mpk = (G, 𝑔1, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_), and the ciphertext ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
where

M ∈ Z𝐾×𝑛
𝑁

and 𝜌 : [𝐾] → U_ is an injective row-labeling function, the decryption algorithm proceeds as follows:

– If the set of attributes 𝑆𝑖 is not authorized by (M, 𝜌), then the decryption algorithm outputs ⊥.
– Otherwise, let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆𝑖 } be the indices of the rows of M associated with the attributes

𝑆𝑖 ⊆ U_ . Write the elements as 𝐼 = {𝑘1, . . . , 𝑘 |𝐼 | }.
– LetM𝑆𝑖 be the matrix formed by taking the subset of rows inM indexed by 𝐼 . Since 𝑆𝑖 is authorized, let

𝝎𝑆𝑖 ∈ Z
|𝐼 |
𝑁

be a vector such that 𝝎T
𝑆𝑖
M𝑆𝑖 = eT

1
.

– Then, compute and output

𝐶1

𝑒 (𝐶2, 𝐵𝑖)
· 𝑒 (𝐶5, 𝐴𝑖) · 𝑒 (𝐶2, 𝐴𝑟𝑖𝑉𝑖)︸ ︷︷ ︸

𝐷slot

·
∏

1≤ 𝑗≤ |𝐼 |

(
𝑒 (𝐶

3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))
)𝜔𝑆𝑖 ,𝑗

︸ ︷︷ ︸
𝐷attrib

. (5.2)

Wewill refer to𝐷slot as the slot-specific decryption component and𝐷attrib as the attribute-specific decryption
component.

Correctness. We now show that Construction 5.5 satisfies completeness, correctness, compactness, and incremental

aggregation.

Theorem 5.6 (Completeness). Construction 5.5 is complete.

Proof. Fix a security parameter _ and the number of slots 𝐿. Let crs← Setup(1_, 1 |U_ | , 1𝐿). Take any index 𝑖 ∈ [𝐿]
and let (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖). By construction of KeyGen, we can write pk𝑖 =

(
𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
, where

𝑇𝑖 = 𝑔
𝑟𝑖
1

, 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

, 𝑅𝑖 = 𝑔
𝑟𝑖
3

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗

for some 𝑟𝑖 ∈ Z𝑁 and where 𝐴𝑖 and 𝑃𝑖 are components from crs. We now consider each of the pairing checks in

IsValid and appeal to orthogonality:

• 𝑒 (𝑔3,𝑇𝑖) = 𝑒 (𝑔3, 𝑔𝑟𝑖
1
) = 𝑒 (𝑔3, 𝑔1)𝑟𝑖 = 1.

• 𝑒 (𝑔1, 𝑅𝑖) = 𝑒 (𝑔1, 𝑔𝑟𝑖
3
) = 𝑒 (𝑔1, 𝑔3)𝑟𝑖 = 1.

• 𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔𝑟𝑖
1
, 𝑃𝑖) = 𝑒 (𝑔1, 𝑃𝑟𝑖𝑖) = 𝑒 (𝑔1, 𝑄𝑖).

• 𝑒 (𝑅𝑖 , 𝑃𝑖) = 𝑒 (𝑔𝑟𝑖
3
, 𝑃𝑖) = 𝑒 (𝑔3, 𝑃𝑟𝑖𝑖) = 𝑒 (𝑔3, 𝑄𝑖).

• 𝑒 (𝑔1,𝑉𝑗,𝑖) = 𝑒 (𝑔1, 𝐴𝑟𝑖𝑗) = 𝑒 (𝑔
𝑟𝑖
1
, 𝐴 𝑗) = 𝑒 (𝑇𝑖 , 𝐴 𝑗).

• 𝑒 (𝑔3,𝑉𝑗,𝑖) = 𝑒 (𝑔3, 𝐴𝑟𝑖𝑗) = 𝑒 (𝑔
𝑟𝑖
3
, 𝐴 𝑗) = 𝑒 (𝑅𝑖 , 𝐴 𝑗).

Finally, since 𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 ,𝑇𝑖, 𝑗 do not have non-zero components in the G4 subgroup, it follows that

𝑒 (𝑔4,𝑇𝑖) = 𝑒 (𝑔4, 𝑄𝑖) = 𝑒 (𝑔4, 𝑅𝑖) = 𝑒 (𝑔4,𝑉𝑗,𝑖) = 1.

We conclude that IsValid(crs, 𝑖, pk𝑖) outputs 1 and completeness holds. □

Theorem 5.7 (Correctness). Construction 5.5 is correct.

40

Proof. Take any security parameter _ ∈ N, slot parameter 𝐿 ∈ N, and index 𝑖 ∈ [𝐿]. Consider the following

components in the correctness experiment:

• Let crs← Setup(1_, 1 |U_ | , 1𝐿) where

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
.

By construction, the slot components can be written as 𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3
, 𝐵𝑖 = 𝑔

𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , and 𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 . The

attribute components can be written as𝑈𝑖,𝑤 = 𝑔
𝑏𝑤𝑡𝑖
1

and𝑊𝑧,𝑤 = 𝑔
𝑏𝑤𝑎

𝑧

1
.

• Let (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖). Then, we can write sk𝑖 = 𝑟𝑖 and pk𝑖 =
(
𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
where

𝑇𝑖 = 𝑔
𝑟𝑖
1

, 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

, 𝑅𝑖 = 𝑔
𝑟𝑖
3

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
= (𝑔1𝑔3)𝑡 𝑗𝑟𝑖 . (5.3)

• Take any set of public keys {pk𝑗 } 𝑗≠𝑖 where IsValid(crs, 𝑗, pk𝑗) holds. Since pk𝑗 satisfies the IsValid predicate,

we can write pk𝑗 =
(
𝑇𝑗 , 𝑄 𝑗 , 𝑅 𝑗 , {𝑉ℓ, 𝑗 }ℓ∈[𝐿]\{ 𝑗 }

)
. For each 𝑗 ∈ [𝐿], let 𝑆 𝑗 ⊆ U_ be the attributes associated with

pk𝑗 . Let (mpk, hsk1, . . . , hsk𝐿) ← Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)). Then, the master public key mpk

and the 𝑖th slot-specific helper decryption key hsk𝑖 can be written as follows:

mpk =
(
G, 𝑔1, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_

)
and hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
,

where 𝑇 =
∏

𝑗∈[𝐿] 𝑇𝑗 , 𝑉𝑖 =
∏

𝑗≠𝑖 𝑉𝑖, 𝑗 , and

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗,𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑔
𝑏𝑤𝑡 𝑗
1

and �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑓 (𝑖, 𝑗),𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑔
𝑏𝑤𝑎

𝑓 (𝑖,𝑗)

1
.

• Take any message ` ∈ G𝑇 and any policy (M, 𝜌) ∈ P_ where M ∈ Z𝐾×𝑛𝑁
and 𝜌 : [𝐾] → U_ is an injective

row-labeling function. Let ct← Encrypt(mpk, 𝑃, `). Then,

ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
,

where

𝐶1 = ` · 𝑍𝑠 , 𝐶2 = 𝑔
𝑠
1
, 𝐶3,𝑘 = ℎ

mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘)𝑔

[𝑘
4
, 𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 , 𝐶5 = ℎ

𝑠
1
𝑇 −𝑠 .

We now show that Decrypt(sk𝑖 , hsk𝑖 , ct) outputs `. Let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆𝑖 } be the indices of the rows of M
associated with the attributes 𝑆𝑖 . Write the elements of 𝐼 as 𝐼 = {𝑘1, . . . , 𝑘 |𝐼 | }. Let M𝑆𝑖 be the matrix formed by taking

the subset of rows inM indexed by 𝐼 . By assumption, we know that 𝑆𝑖 satisfies the policy, so let 𝝎𝑆𝑖 ∈ Z
|𝐼 |
𝑁

be a vector

such that𝝎T
𝑆𝑖
M𝑆𝑖 = eT

1
. We break up the decryption relation (Eq. (5.2)) into several pieces and analyze them individually:

• Policy check: First, consider 𝐷attrib =
∏

1≤ 𝑗≤ |𝐼 |
(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))

)𝜔𝑆𝑖 ,𝑗
. First, since ℎ2,𝑈𝜌 (𝑘 𝑗) ∈ G1,

we can write

𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) = 𝑒
(
ℎ
mT
𝑘𝑗
v

2
𝑈
−𝑠𝑘𝑗
𝜌 (𝑘 𝑗)𝑔

[𝑘
4
, (𝑔1𝑔3)𝑡𝑖

)
= 𝑒 (ℎ2, 𝑔1)

𝑡𝑖mT
𝑘𝑗
v ∏
ℓ∈[𝐿]:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔1, 𝑔1)−𝑠𝑘𝑗 𝑡𝑖𝑡ℓ𝑏𝜌 (𝑘𝑗)

𝑒
(
𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗)

)
=

∏
ℓ≠𝑖:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒

(
𝑔
𝑠𝑘𝑗
1
,𝑊𝑓 (𝑖,ℓ),𝜌 (𝑘 𝑗)

)
=

∏
ℓ≠𝑖:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔1, 𝑔1)𝑎
𝑓 (𝑖,ℓ)𝑠𝑘𝑗 𝑏𝜌 (𝑘𝑗) .

By construction, 𝜌 (𝑘 𝑗) ∈ 𝑆𝑖 and by definition, 𝑡𝑖𝑡ℓ = 𝑎
𝑑𝑖+𝑑 𝑗 = 𝑎𝑓 (𝑖,ℓ) , so∏

ℓ∈[𝐿]:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔1, 𝑔1)−𝑠𝑘𝑗 𝑡𝑖𝑡ℓ𝑏𝜌 (𝑘𝑗) =
∏

ℓ≠𝑖:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔1, 𝑔1)−𝑎
𝑓 (𝑖,ℓ)𝑠𝑘𝑗 𝑏𝜌 (𝑘𝑗) ,

41

and so we can write

𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖)𝑒
(
𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗)

)
= 𝑒 (ℎ2, 𝑔1)

𝑡𝑖mT
𝑘𝑗
v
.

Finally noting that eT
1
v = 𝑠 , we have

𝐷attrib =
∏

1≤ 𝑗≤ |𝐼 |

(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))

)𝜔𝑆𝑖 ,𝑗 = 𝑒 (ℎ2, 𝑔1)𝑡𝑖 ∑1≤ 𝑗≤|𝐼 | 𝜔𝑆𝑖 ,𝑗m
T
𝑘𝑗
v

= 𝑒 (ℎ2, 𝑔1)𝑡𝑖𝝎
T
𝑆𝑖
M𝑆𝑖 v

= 𝑒 (ℎ2, 𝑔1)𝑡𝑖e
T
1
v = 𝑒 (ℎ2, 𝑔1)𝑠𝑡𝑖 .

(5.4)

• Slot check: Next, consider the component 𝐷slot = 𝑒 (𝐶5, 𝐴𝑖)𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖). Since ℎ1 ∈ G1,

𝑒 (𝐶5, 𝐴𝑖) = 𝑒
(
ℎ𝑠
1
𝑇 −𝑠 , 𝐴𝑖

)
= 𝑒

(
ℎ𝑠
1
, 𝐴𝑖

)
𝑒
(
𝑇 −𝑠 , 𝐴𝑖

)
= 𝑒

(
ℎ𝑠
1
, 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

) ∏
𝑗∈[𝐿]

𝑒 (𝑇𝑗 , 𝐴𝑖)−𝑠 = 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖
∏
𝑗∈[𝐿]

𝑒 (𝑇𝑗 , 𝐴𝑖)−𝑠

𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖) = 𝑒

(
𝑔𝑠
1
, 𝐴

𝑟𝑖
𝑖

)
𝑒
(
𝑔𝑠
1
,𝑉𝑖

)
= 𝑒

(
𝑔𝑠
1
, 𝑔
𝑟𝑖𝑡𝑖
1
𝑔
𝑟𝑖𝜏
′
𝑖

3

)
𝑒
(
𝑔𝑠
1
,𝑉𝑖

)
= 𝑒 (𝑔1, 𝑔1)𝑠𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔1,𝑉𝑖, 𝑗)𝑠 .

Now, for all 𝑗 ∈ [𝐿], IsValid(crs, 𝑗, pk𝑗) = 1. Thus, for all 𝑗 ≠ 𝑖 , we have 𝑒 (𝑔1,𝑉𝑖, 𝑗) = 𝑒 (𝑇𝑗 , 𝐴𝑖). Thus, we can
now write

𝐷slot = 𝑒 (𝐶5, 𝐴𝑖)𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖) =

(
𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖𝑒 (𝑇𝑖 , 𝐴𝑖)−𝑠

∏
𝑗≠𝑖

𝑒 (𝑇𝑗 , 𝐴𝑖)−𝑠
) (
𝑒 (𝑔1, 𝑔1)𝑠𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔1,𝑉𝑖, 𝑗)𝑠
)

= 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖𝑒 (𝑇𝑖 , 𝐴𝑖)−𝑠𝑒 (𝑔1, 𝑔1)𝑠𝑟𝑖𝑡𝑖

= 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖𝑒
(
𝑔
𝑟𝑖
1
,
(
𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

)−𝑠)
𝑒 (𝑔1, 𝑔1)𝑠𝑟𝑖𝑡𝑖

= 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖 .

(5.5)

• Message reconstruction: Using the fact that ℎ = ℎ1ℎ2, and combining Eqs. (5.4) and (5.5), we have that

𝐷slot · 𝐷attrib = 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (ℎ2, 𝑔1)𝑠𝑡𝑖 = 𝑒 (ℎ, 𝑠)𝑠𝑡𝑖 .

Next, using the fact that ℎ = 𝑔
𝛽

1
, we have

𝑒 (𝐶2, 𝐵𝑖) = 𝑒 (𝑔𝑠1, 𝑔𝛼1𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖) = 𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒

(
𝑔𝑠
1
,
(
𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

)𝛽)
= 𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒 (ℎ,𝑔1)𝑠𝑡𝑖 .

Thus, putting everything together, Eq. (5.2) becomes

𝐶1 · 𝐷slot · 𝐷attrib

𝑒 (𝐶2, 𝐵𝑖)
=
` · 𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒 (ℎ,𝑔1)𝑠𝑡𝑖
𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒 (ℎ,𝑔1)𝑠𝑡𝑖

= `. □

Theorem 5.8 (Compactness). Construction 5.5 is compact.

Proof. This follows by inspection. The master public key mpk consists of the group description and 𝑂 (|U_ |) group
elements. Since the group description and each individual group element can be represented in poly(_) bits, the size
of the master public key is bounded by poly(_, |U_ |, log𝐿) bits. Likewise, the helper decryption key consists of the

master public key along with 𝑂 (|U_ |) group elements. Thus, the size of hsk𝑖 is also poly(_, |U_ |, log𝐿) bits. □

Theorem 5.9 (Incremental Aggregation). Construction 5.5 suppose 𝑓 -incremental aggregation for 𝑓 (𝐿, |U_ |) =

𝑂 (𝐿 · |U_ |).

Proof. We construct the AggregateUpdate function as follows:

42

• AggregateUpdate(crs, st, (pk, 𝑆)): On input the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
,

a state st (which could be ⊥), and a public key (pk, 𝑆) (or the special symbol ⊥), the update algorithm proceeds

as follows:

1. If st = ⊥, then the update algorithm initializes 𝑘 = 0 and 𝑇 (𝑘) = 1. Then, for all 𝑖 ∈ [𝐿] and 𝑤 ∈ U_ ,
𝑉
(𝑘)
𝑖

= 1,𝑈
(𝑘)
𝑤 = 1, and �̂�

(𝑘)
𝑖,𝑤

= 1. Otherwise, the update algorithm parses

st =
(
𝑘, 𝑇 (𝑘) ,

{
𝑉
(𝑘)
𝑖

}
𝑖∈[𝐿],

{
𝑈
(𝑘)
𝑤

}
𝑤∈U_ ,

{
�̂�
(𝑘)
𝑖,𝑤

}
𝑖∈[𝐿],𝑤∈U_

)
.

2. If (pk, 𝑆) = ⊥, then the algorithm outputs

mpk =
(
G, 𝑔, ℎ, 𝑍,𝑇 𝐿, {𝑈 (𝑘)𝑤 }𝑤∈U_

)
and ∀𝑖 ∈ [𝐿] : hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉

(𝑘)
𝑖

, {�̂� (𝑘)
𝑖,𝑤
}𝑤∈U_

)
.

3. Otherwise, the update algorithm parses pk =
(
𝑇𝑘+1, 𝑄𝑘+1, 𝑅𝑘+1, {𝑉𝑖,𝑘+1}𝑖≠𝑘+1

)
and updates the state as

follows:

– 𝑇 (𝑘+1) = 𝑇 (𝑘) ·𝑇𝑘+1.
– For each 𝑖 ∈ [𝐿], if 𝑖 ≠ 𝑘 + 1 then𝑉 (𝑘+1)

𝑖
= 𝑉

(𝑘)
𝑖
·𝑉𝑖,𝑘+1. Otherwise, if 𝑖 = 𝑘 + 1, then set𝑉

(𝑘+1)
𝑖

= 𝑉
(𝑘)
𝑖

.

– For each𝑤 ∈ U_ , if𝑤 ∉ 𝑆𝑘+1, then𝑈
(𝑘+1)
𝑤 = 𝑈

(𝑘)
𝑤 ·𝑈𝑘+1,𝑤 . Otherwise, if𝑤 ∈ 𝑆𝑘+1, then𝑈 (𝑘+1)𝑤 = 𝑈

(𝑘)
𝑤 .

– For each 𝑖 ∈ [𝐿] and𝑤 ∈ U_ , if 𝑖 ≠ 𝑘 + 1 and𝑤 ∉ 𝑆𝑘+1, then �̂�
(𝑘+1)
𝑖,𝑤

= �̂�
(𝑘)
𝑖,𝑤
·𝑊𝑓 (𝑖,𝑘+1),𝑤 . Otherwise,

set �̂�
(𝑘+1)
𝑖,𝑤

= �̂�
(𝑘)
𝑖,𝑤

.

4. Output the updated state

st =
(
𝑘 + 1, 𝑇 (𝑘+1) ,

{
𝑉
(𝑘+1)
𝑖

}
𝑖∈[𝐿],

{
𝑈
(𝑘+1)
𝑤

}
𝑤∈U_ ,

{
�̂�
(𝑘+1)
𝑖,𝑤

}
𝑖∈[𝐿],𝑤∈U_

)
.

To complete the proof, we show that this incremental aggregation procedure implements the same behavior as the

standard aggregation procedure. Specifically, we show inductively that for all 𝑘 ≤ 𝐿, the following properties hold
for the elements in the AggregateUpdate algorithm:

• 𝑇 (𝑘) =
∏

𝑗∈[𝑘] 𝑇𝑗 .

• For all 𝑖 ∈ [𝐿], 𝑉 (𝑘)
𝑖

=
∏

𝑗∈[𝑘]\{𝑖 } 𝑉𝑖, 𝑗 .

• For all𝑤 ∈ U_ ,𝑈 (𝑘)𝑤 =
∏

𝑗∈[𝑘]:𝑤∉𝑆 𝑗 𝑈 𝑗,𝑤 .

• For all 𝑖 ∈ [𝐿] and𝑤 ∈ U_ , �̂� (𝑘)
𝑖,𝑤

=
∏

𝑗∈[𝑘]\{𝑖 }:𝑤∉𝑆 𝑗𝑊𝑓 (𝑖, 𝑗),𝑤 .

By construction, all of these properties hold for 𝑘 = 0. Moreover, the inductive step follows by inspection: namely,

each of the updates in Step 3 simply multiplies in the next component into the product (if present). When 𝑘 = 𝐿, the

components 𝑇 (𝐿) , 𝑉 (𝐿)
𝑖

, 𝑈
(𝐿)
𝑤 , and �̂�

(𝐿)
𝑖,𝑤

precisely coincide with the quantities in the Aggregate algorithm. Finally,

the intermediate state st always contains 𝑂 (𝐿 · |U_ |) group elements, which proves the claim. □

Theorem 5.10 (Security). Suppose Assumption 5.2 and Assumption 5.4 holds with respect to CompGroupGen. Then,
Construction 5.5 is secure.

Proof. Similar to the proof of [HLWW23, Theorem 5.9], our proof follows the dual-systemmethodology [Wat09, LW10].

Some of our description and structure is directed adapted from that of [HLWW23]. Specifically, in the proof, we

define two types of ciphertexts: normal ciphertexts (as output by the honest Encrypt algorithm) and “semi-functional

ciphertexts.” Similarly, there are two types of slots: normal slots (where the slot parameters in the CRS are generated

according to the honest Setup algorithm) and “semi-functional slots.” The keys that are registered to a semi-functional

43

slot can be used to decrypt normal ciphertexts and the keys registered to a normal slot can be used to decrypt semi-

functional ciphertexts. However, a key registered to a semi-functional slot is not able to decrypt a semi-functional

ciphertext. The proof leverages a hybrid argument where we iteratively replace the challenge ciphertext as well as

the components associated with each slot with semi-functional analogs. In the final hybrid experiment, the slots

parameters and the challenge ciphertext are semi-functional. In this setting, we show it is computationally infeasible

for the adversary to win the semantic security game. Before describing the hybrid argument, we give a high-level

description of the semi-functional ciphertexts and the semi-functional slot components in our construction. We

follow with a description of the main set of hybrid experiments.

• Semi-functional ciphertext: Semi-functional ciphertexts contain an additional component in the G2 sub-

group. Specifically, suppose ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
← Encrypt(crs,mpk, id, `). Then, a

semi-functional ciphertext has the following structure:

ct′ =
(
(M, 𝜌) , 𝐶1 , 𝐶2𝑔

Z2
2
,
{
𝐶3,𝑘𝑔

Z3,𝑘
2

, 𝐶4,𝑘

}
𝑘∈[𝐾] , 𝐶5𝑔

Z5
2

)
for some choice of exponents Z2, {Z3,𝑘 }, Z5 ∈ Z𝑁 . The exact definition of Z2, Z3,𝑘 , Z5 in terms of other scheme

parameters is complex, so we defer their exact specification to the description of the hybrid experiments. Here,

our goal is to illustrate the general structure of the components of the semi-functional ciphertext.

• Semi-functional slot: The slot components (𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖) for a semi-functional slot at index 𝑖 ∈ [𝐿] are generated
like the normal slot components, except we also introduce G2 components into 𝐵𝑖 and 𝑃𝑖 . Specifically, we

construct the semi-functional slot components as follows:

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔2𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑔1𝑔2𝑔3)𝛿𝑖 .

Outer hybrids. We start by defining our primary sequence of hybrid experiments. The outer sequence is intended

to convey the general structure of the argument, and arguing indistinguishability between specific pairs of adjacent

distributions will require an additional sequence of hybrid experiments (which we defer to the subsequent sections).

Each of our hybrids is defined with respect to an (implicit) security parameter _, a bit a ∈ {0, 1}, and an adversary A.

• Hyb(a)real: This is the real security game where the challenger encrypts message `∗a . We recall the main steps here:

– Setup phase: In the setup phase, the adversary A sends the number of slots 1
𝐿
to the challenger. The

challenger then samples the common reference string crs according to the specification of the real setup

algorithm:

∗ The challenger initializes a counter ctr ← 0 and an (empty) dictionary Dict to keep track of the

key-generation queries.

∗ The challenger samples (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑔, 𝑒) ← CompGroupGen(1_). Let 𝑁 = 𝑝1𝑝2𝑝3𝑝4 and

G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) be the group description.

∗ Let D = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set. We define

𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 and the set E B {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.
∗ The challenger samples generators 𝑔1

r← G1, 𝑔3
r← G3, 𝑔4

r← G4 as well as exponents 𝛼, 𝛽, 𝑎
r← Z𝑁 ,

and sets ℎ = 𝑔
𝛽

1
.

∗ For each slot 𝑖 ∈ [𝐿], the challenger samples 𝛿𝑖 , 𝜏𝑖 , 𝜏
′
𝑖

r← Z𝑁 and sets 𝑡𝑖 = 𝑎
𝑑𝑖
. Then, the challenger

constructs the slot components as follows:

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 .

For each attribute 𝑤 ∈ U_ , the challenger samples 𝑏𝑤
r← Z𝑁 . Then, for each 𝑤 ∈ U_ , slot index

𝑖 ∈ [𝐿], and cross term index 𝑧 ∈ E, the challenger constructs the attribute-specific slot components

𝑈𝑖,𝑤 and𝑊𝑧,𝑤 as follows:

𝑈𝑖,𝑤 = 𝑔
𝑏𝑤𝑡𝑖
1

, 𝑊𝑧,𝑤 = 𝑔
𝑏𝑤𝑎

𝑧

1
.

44

∗ Finally, the challenger computes 𝑍 = 𝑒 (𝑔1, 𝑔1)𝛼 and gives algorithm A the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
. (5.6)

– Query phase: The challenger responds to the adversary’s queries as follows:

∗ Key-generation query: When algorithmA makes a key-generation query on a slot 𝑖 , the challenger

starts by incrementing the counter ctr ← ctr + 1 and samples 𝑟𝑖
r← Z𝑁 . It then computes 𝑇𝑖 = 𝑔

𝑟𝑖
1
,

𝑄𝑖 = 𝑃
𝑟𝑖
𝑖
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
. The challenger sets the public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖)

and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the mapping ctr ↦→ (𝑖, pkctr, skctr) to the

dictionary Dict.
∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ 𝑖 ≤ ctr, the challenger
looks up the entry (𝑖′, pk′, sk′) = Dict[𝑖] and replies to A with sk′.

– Challenge phase: In the challenge phase, the adversary specifies a challenge policy 𝑃∗ = (M, 𝜌), where
M ∈ Z𝐾×𝑛

𝑁
and 𝜌 : [𝐾] → U_ is an injective row-labeling function, two messages `∗

0
, `∗

1
∈ G𝑇 , and for

each slot 𝑖 ∈ [𝐿], a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖). The challenger sets up the public keys pk𝑖 as follows:

∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry Dict[𝑐𝑖] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, the challenger
sets pk𝑖 = pk′. Otherwise, the challenger aborts with output 0.

∗ If 𝑐𝑖 = ⊥, then the challenger checks that IsValid(crs, 𝑖, pk∗𝑖) outputs 1. If not, the challenger aborts
with output 0. Otherwise, it sets pk𝑖 = pk∗𝑖 .

For each public key pk𝑖 , the challenger parses it as pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖). Next, the challenger

computes the attribute-independent public key𝑇 and the attribute-independent slot key𝑉𝑖 for each 𝑖 ∈ [𝐿]:

𝑇 =
∏
𝑗∈[𝐿]

𝑇𝑗 , 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Then, for each attribute𝑤 ∈ U_ , it computes the attribute-specific public key𝑈𝑤 and the attribute-specific

slot key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿] as follows:

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗,𝑤 , �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑓 (𝑖, 𝑗),𝑤 .

The challenger then constructs the challenge ciphertext by sampling a secret exponent 𝑠
r← Z𝑁 and

ℎ1, ℎ2
r← G1 such that ℎ = ℎ1ℎ2. It then constructs the challenge ciphertext components as follows:

∗ Message-embedding components: First, it sets let 𝐶1 = `
∗
a · 𝑍𝑠 and 𝐶2 = 𝑔

𝑠
1
.

∗ Attribute-specific components: The challenger samples 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 for the linear secret

sharing scheme and let v = [𝑠, 𝑣2, . . . , 𝑣𝑛]T. Then, for each 𝑘 ∈ [𝐾], it samples 𝑠𝑘 , [𝑘
r← Z𝑁 and sets

𝐶3,𝑘 = ℎ
mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘)𝑔

[𝑘
4

and 𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 , where mT
𝑘
denotes the 𝑘 th row ofM.

∗ Slot-specific component: Let 𝐶5 = (ℎ1𝑇 −1)𝑠 .
It replies to A with the challenge ciphertext

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

– Output phase: At the end of the game, the adversary outputs a bit a ′ ∈ {0, 1}, which is also the output

of the experiment.

• Hyb(a)
1

: Same as Hyb(a)real except for the following (primarily syntactic) changes:

– Setup phase: The challenger samples 𝛽1, 𝛽2
r← Z𝑁 and sets 𝛽 = 𝛽1 + 𝛽2. It sets ℎ = 𝑔

𝛽

1
as in Hyb(a)real. In

addition, instead of sampling the secret exponent 𝑠 during the challenge phase, the challenger samples

𝑠
r← Z𝑁 during the setup phase and sets 𝑃𝑖 = (𝑔𝑠1𝑔3)𝛿𝑖 for all 𝑖 ∈ [𝐿].

45

– Challenge phase: When simulating the challenge ciphertext, the challenger sets ℎ1 = 𝑔
𝛽1
1

and ℎ2 = 𝑔
𝛽2
1
,

where 𝛽1, 𝛽2 ∈ Z𝑁 are the exponents sampled during the setup phase. Then it constructs the challenge

ciphertext components as follows:

∗ Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. Then, for

each 𝑘 ∈ [𝐾], sample 𝑠𝑘 , [𝑘
r← Z𝑁 and set

𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 , 𝐶3,𝑘 = (𝑔𝑠
1
)𝛽2mT

𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4
.

∗ Slot-specific component: Set

𝐶5 = (𝑔𝑠1)𝛽1
©«
∏
𝑖∈[𝐿]

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬.
• Hyb(a)

2
: Same as Hyb(a)

1
, except the challenge ciphertext is replaced by a semi-functional ciphertext. Simul-

taneously, the challenger add a G2 component into the 𝑃𝑖 component. Namely, during the setup phase, the

challenger constructs 𝑃𝑖 as follows for each 𝑖 ∈ [𝐿] as 𝑃𝑖 = ((𝑔1𝑔2)𝑠𝑔3)𝛿𝑖 . Then, in the challenge phase, after

the adversary has chosen its attribute sets 𝑆𝑖 and corresponding public keys pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) for each
slot 𝑖 ∈ [𝐿], the challenger constructs the challenge ciphertext components as follows:

– Message-embedding components: Let 𝐶1 = `
∗
a · 𝑍𝑠 and 𝐶2 = (𝑔1𝑔2)𝑠 .

– Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. Then, for each

𝑘 ∈ [𝐾], sample 𝑠𝑘 , [𝑘
r← Z𝑁 and set

𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 , 𝐶3,𝑘 = ((𝑔1𝑔2)𝑠)𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4
.

– Slot-specific component: Set

𝐶5 = ((𝑔1𝑔2)𝑠)𝛽1
©«
∏
𝑖∈[𝐿]

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬ .
• Hyb(a)

3,ℓ
for each ℓ ∈ [𝐿]: Same as Hyb(a)

2
, except we change the first ℓ slots to be semi-functional. Specifically,

during the setup phase, for 𝑖 ≤ ℓ , the challenger samples the slot components 𝐴𝑖 , 𝐵𝑖 , and 𝑃𝑖 as follows:

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔2𝑔3𝑔4)𝜏𝑖 , 𝑃ℓ = ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ .

The remaining slot components 𝐴𝑖 , 𝐵𝑖 , and 𝑃𝑖 for 𝑖 > ℓ are generated as in Hyb(a)
2

.

• Hyb(a)rand: Same as Hyb(a)
3,𝐿

except when constructing the challenge ciphertext, the challenger samples 𝐶1

r← G𝑇 .
Importantly, this distribution is independent of the message.

For a hybrid Hyb(a)
𝑖

and an adversary A, we write Hyb(a)
𝑖
(A) to denote the output distribution of an execution of

Hyb(a)
𝑖

with adversary A. We now show that the distributions of each pair of hybrids are indistinguishable.

Proof structure. The analysis from the initial experiment Hyb(a)real to experiment Hyb(a)
3,0

as well as the final transi-

tion from Hyb(a)
3,𝐿

to Hyb(a)rand follow very similarly to the hybrid experiments in the proof of [HLWW23, Theorem 5.9].

As such, we defer their formal analysis (adapted to the use of progression-free sets) to Appendix A. The transition

between Hyb(a)
3,0

to Hyb(a)
3,𝐿

is where we will critically rely on the progression-free indistinguishability assumption

(Assumption 5.4), and we include its proof in the following section (Section 5.3). We start by stating the lemmas

asserting indistinguishability of each pair of adjacent hybrid experiments.

Lemma 5.11. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A
and a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(a)real (A) = 1] − Pr[Hyb(a)
1
(A) = 1]

�� = negl(_).

46

We give the proof of Lemma 5.11 in Appendix A.1.

Lemma 5.12. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A
and a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(a)
1
(A) = 1] − Pr[Hyb(a)

2
(A) = 1]

�� = negl(_).

We give the proof of Lemma 5.12 in Appendix A.2.

Lemma 5.13. For all efficient adversaries A, a ∈ {0, 1}, and _ ∈ N,��
Pr[Hyb(a)

2
(A) = 1]

�� = ��
Pr[Hyb(a)

3,0
(A) = 1]

��.
Proof. The slot components 𝐵𝑖 in Hyb(a)

3,0
are distributed identically to those in Hyb(a)

2
, so the experiments are

identical. □

Lemma 5.14. Suppose Assumption 5.4 and Assumption 5.2 hold with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿],
all efficient adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(a)
3,ℓ−1 (A) = 1] − Pr[Hyb(a)

3,ℓ
(A) = 1]

�� = negl(_).

We give the proof of Lemma 5.14 in Section 5.3.

Lemma 5.15. Suppose Assumption 5.2e holds with respect to CompGroupGen. Then, for efficient adversaries A, and
all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(a)
3,𝐿
(A) = 1] − Pr[Hyb(a)rand (A) = 1]

�� = negl(_).

We give the proof of Lemma 5.15 in Appendix A.3.

Completing the proof. To complete the proof of Theorem 5.10, we observe that the distribution Hyb(a)rand is

independent of the bit a ∈ {0, 1}. Thus, for all adversaries A, it holds that Hyb(0)rand (A) ≡ Hyb(1)rand (A). Combining

Lemmas 5.11 to 5.15, security follows via a hybrid argument. □

Summary. Putting all the pieces together (and invoking the generic compiler from a slotted registered ABE scheme

to a standard registered ABE scheme in Appendix C), we obtain the following corollary:

Corollary 5.16 (Bounded Registered ABE from Composite-Order Pairing Groups). Let _ be a security parameter. Let
U = {U_}_∈N be any (polynomial-size) attribute space, and let P = {P_}_∈N be a set of policies that can be described by
a one-use linear secret sharing scheme overU of size at most 𝐾 (i.e., each policy is over at most 𝐾 attributes). Then, under
Assumptions 5.2 and 5.4, for every polynomial 𝐿 = 𝐿(_), there exists a bounded registered ABE scheme with attribute
universeU, policy space P, and supporting up to 𝐿 users with the following properties:

• The size of the CRS is 𝐿1+𝑜 (1) · |U_ | · poly(_).

• The size of the auxiliary data maintained by the key curator is 𝐿 · |U_ | · poly(_, log𝐿).

• The running time of key-generation and registration is 𝐿 · |U_ | · poly(_, log𝐿).

• The size of the master public key and the helper decryption keys are both |U_ | · poly(_, log𝐿).

• The size of a ciphertext is 𝐾 · poly(_, log𝐿).

47

5.3 Proof of Lemma 5.14
In this section, we give the formal proof of Lemma 5.14. The difference between experiments Hyb(a)

3,ℓ−1 and Hyb(a)
3,ℓ

is the distribution of the parameters for slot ℓ . In experiment Hyb(a)
3,ℓ−1, the parameters for slot ℓ are normal while

in experiment Hyb(a)
3,ℓ

, they are semi-functional.

Per-row randomization. Before giving the proof, we first remark on a key difference between Construction 5.5

and the previous dual-system registered ABE scheme from [HLWW23, Construction 5.4]. Construction 5.5 introduces

per-row randomization in the ciphertexts. In more detail, the attribute-specific components 𝐶3,𝑘 and 𝐶4,𝑘 of the

ciphertext in Construction 5.5 are each associated with an independent randomization factor 𝑠𝑘
r← Z𝑁 . In contrast,

in the previous construction of [HLWW23], all of the attribute-specific components shared a single randomizing

exponent (in that case, there was also no need for 𝐶4,𝑘). As we discuss below, having independent randomizing

components for each row of the policy matrix is essential for proving security from Assumption 5.4:

• In the progression-free indistinguishability assumption (Assumption 5.4), the 𝑌𝑖 terms for 𝑖 ≠ 𝑗 all live in the

G1 subgroup. Only the 𝑌𝑖∗ terms for the challenge index 𝑖∗ contains a component in the G2 subgroup. Note

that this is inherent because if any 𝑌𝑖 for 𝑖 ≠ 𝑖
∗
contained a non-zero component in the G2 subgroup, then the

assumption is trivially broken: namely, the adversary can decide whether the challenge element 𝑇𝛽 contains

a G2 component or not by by checking whether 𝑒 (𝑌𝑖 ,𝑇) = 𝑒
(
𝑊 ′
𝑓 (𝑖,𝑖∗) , 𝑋

)
.

• When giving a reduction to the progression-free indistinguishability assumption, the reduction algorithm (see

Lemma 5.19) will use the 𝑌𝑖 terms from the challenge to simulate the attribute-specific components 𝐶3,𝑘 in

the challenge ciphertext. However, to leverage a similar statistical argument as that used in [HLWW23] (see

Lemma A.14), each component 𝐶3,𝑘 where 𝜌 (𝑘) ∉ 𝑆𝑖∗ must be independently uniform in the G2 subgroup (here

𝜌 : [𝐾] → U_ is the row-labeling function associated with the challenge policy and 𝑆𝑖∗ is the set of attributes

associated with slot 𝑖∗). If we take the [HLWW23] approach where the same exponent 𝑠 ∈ Z𝑁 is shared across all

of the attribute-specific ciphertext components𝐶3,𝑘 , then the ciphertext components will be correlated in theG2

subgroup. This in turn breaks the final information-theoretic analysis (Lemma A.14). In contrast, with per-row

randomization, we are able to use𝑌
𝑠𝑘
𝑖∗ to introduce a randomG2 component into each𝐶3,𝑘 where 𝜌 (𝑘) ∉ 𝑆𝑖∗ . This

in turn allows us to (eventually) leverage a similar statistical argument as in the previous proof from [HLWW23].

We now proceed with the formal argument. We start by defining an additional sequence of (simpler) hybrid exper-

iments:

• iHyb(a)
ℓ,0

: Same as Hyb(a)
3,ℓ−1 except the challenger introduces a component in the G2 subgroup in the challenge ci-

phertext components𝐶4,𝑘 whenever 𝜌 (𝑘) ∉ 𝑆ℓ . Specifically, the challenger constructs𝐶4,𝑘 for 𝑘 ∈ [𝐾] as follows:

– If 𝜌 (𝑘) ∉ 𝑆ℓ , it sets 𝐶4,𝑘 = ((𝑔1𝑔2)𝑠𝑔4)𝑠𝑘 .
– If 𝜌 (𝑘) ∈ 𝑆ℓ , it sets 𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 as in Hyb(a)

3,ℓ−1.

• iHyb(a)
ℓ,1

: Same as iHyb(a)
ℓ,0

, except the challenger changes how it constructs 𝐶3,𝑘 in the challenge ciphertext:

𝐶3,𝑘 =

{
(𝑔1𝑔2)𝑠 (𝛽2m

T
𝑘
v′−𝑠𝑘𝑏𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈ [𝐿]\{ℓ }:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[𝑘
4

if 𝜌 (𝑘) ∉ 𝑆ℓ
(𝑔1𝑔2)𝑠𝛽2m

T
𝑘
v′𝑔
−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[𝑘
4

if 𝜌 (𝑘) ∈ 𝑆ℓ .

• iHyb(a)
ℓ,2

: Same as iHyb(a)
ℓ,1

except the challenger sets 𝐴ℓ = 𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ in the setup phase.

• iHyb(a)
ℓ,3

: Same as iHyb(a)
ℓ,2

except the challenger sets

𝐶3,𝑘 = ((𝑔1𝑔2)𝑠)𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4
.

• iHyb(a)
ℓ,4

: Same as iHyb(a)
ℓ,3

except the challenger sets 𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ in the setup phase.

48

Hybrid 𝑨ℓ 𝑩ℓ 𝑪3,𝒌 for 𝝆 (𝒌) ∉ 𝑺ℓ Justification Analysis

Hyb(a)
3,ℓ−1 𝑔

𝑡ℓ
1
𝑔
𝜏 ′
ℓ
3

𝑔𝛼
1
𝐴
𝛽

ℓ (𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ (𝑔1𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈Cℓ∪{ℓ } 𝑡𝑖𝑔

[𝑘
4

iHyb(a)
ℓ,0

𝑔
𝑡ℓ
1
𝑔
𝜏 ′
ℓ
3

𝑔𝛼
1
𝐴
𝛽

ℓ (𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈Cℓ∪{ℓ } 𝑡𝑖𝑔

[𝑘
4

Assumption 5.2c Lemma 5.17

iHyb(a)
ℓ,1

𝑔
𝑡ℓ
1
𝑔
𝜏 ′
ℓ
3

𝑔𝛼
1
𝐴
𝛽

ℓ (𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠 (𝛽2m
T
𝑘
v′−𝑠𝑘𝑏𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈Cℓ 𝑡𝑖

1
𝑔
[𝑘
4

Statistical Lemma 5.18

iHyb(a)
ℓ,2

𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ 𝑔𝛼

1
𝐴
𝛽

ℓ (𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠 (𝛽2m
T
𝑘
v′−𝑠𝑘𝑏𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈Cℓ 𝑡𝑖

1
𝑔
[𝑘
4

Assumption 5.4 Lemma 5.19

iHyb(a)
ℓ,3

𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ 𝑔𝛼

1
𝐴
𝛽

ℓ (𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈Cℓ∪{ℓ } 𝑡𝑖𝑔

[𝑘
4

Statistical Lemma 5.20

iHyb(a)
ℓ,4

𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ 𝑔𝛼

1
𝐴
𝛽

ℓ (𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈Cℓ∪{ℓ } 𝑡𝑖𝑔

[𝑘
4

Assumption 5.2 Appendix A.4

iHyb(a)
ℓ,5

𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ 𝑔𝛼

1
𝐴
𝛽

ℓ (𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠 (𝛽2m
T
𝑘
v′−𝑠𝑘𝑏𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈Cℓ 𝑡𝑖

1
𝑔
[𝑘
4

Statistical Lemma 5.22

iHyb(a)
ℓ,6

𝑔
𝑡ℓ
1
𝑔
𝜏 ′
ℓ
3

𝑔𝛼
1
𝐴
𝛽

ℓ (𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠 (𝛽2m
T
𝑘
v′−𝑠𝑘𝑏𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈Cℓ 𝑡𝑖

1
𝑔
[𝑘
4

Assumption 5.4 Lemma 5.23

iHyb(a)
ℓ,7

𝑔
𝑡ℓ
1
𝑔
𝜏 ′
ℓ
3

𝑔𝛼
1
𝐴
𝛽

ℓ (𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈Cℓ∪{ℓ } 𝑡𝑖𝑔

[𝑘
4

Statistical Lemma 5.24

Hyb(a)
3,ℓ

𝑔
𝑡ℓ
1
𝑔
𝜏 ′
ℓ
3

𝑔𝛼
1
𝐴
𝛽

ℓ (𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ (𝑔1𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈Cℓ∪{ℓ } 𝑡𝑖𝑔

[𝑘
4

Assumption 5.2c Lemma 5.25

Table 2: Structure of the slot parameters𝐴ℓ , 𝐵ℓ and the challenge ciphertext components𝐶3,𝑘 for 𝜌 (𝑘) ∉ 𝑆ℓ in the inter-

mediate hybrid experiments in the proof of Lemma 5.14. We write Cℓ to denote the set Cℓ B {𝑖 ∈ [𝐿]\{ℓ} : 𝜌 (𝑘) ∉ 𝑆ℓ }.
For each pair of adjacent hybrids, we indicate whether they are statistically indistinguishable or computationally

indistinguishable.

• iHyb(a)
ℓ,5

: Same as iHyb(a)
ℓ,4

except the challenger samples 𝐶3,𝑘 as in iHyb(a)
ℓ,1

𝐶3,𝑘 =

{
(𝑔1𝑔2)𝑠 (𝛽2m

T
𝑘
v′−𝑠𝑘𝑏𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈ [𝐿]\{ℓ }:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[𝑘
4

if 𝜌 (𝑘) ∉ 𝑆ℓ
(𝑔1𝑔2)𝑠𝛽2m

T
𝑘
v′𝑔
−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[𝑘
4

if 𝜌 (𝑘) ∈ 𝑆ℓ .

• iHyb(a)
ℓ,6

: Same as iHyb(a)
ℓ,5

except the challenger sets 𝐴ℓ = 𝑔
𝑡ℓ
1
𝑔
𝜏 ′ℓ
3
in the setup phase.

• iHyb(a)
ℓ,7

: Same as iHyb(a)
ℓ,6

except the challenger sets

𝐶3,𝑘 = ((𝑔1𝑔2)𝑠)𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4
.

We provide a summary of the hybrid experiments in Table 2. We now show that each pair of adjacent hybrids are

either computationally or statistically indistinguishable.

Lemma 5.17. Suppose Assumption 5.2c holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(a)
3,ℓ−1 (A) = 1] − Pr[iHyb(a)

ℓ,0
(A) = 1]

�� = negl(_) .

Proof. The only difference between these two hybrids is how some of the challenge ciphertext components 𝐶4,𝑘 are

sampled. Suppose that there exists an efficient adversary A that can distinguish these two experiments with non-

negligible probability Y. We useA to construct an adversary B that breaks Assumption 5.2c with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, 𝑔1, 𝑔3, 𝑔4, 𝑋,𝑌 ,𝑇) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, 𝑔4 ∈ G4, 𝑋 = (𝑔1𝑔2)𝑠12 , 𝑌 = (𝑔2𝑔4)𝑠24 for some 𝑠12, 𝑠24

r← Z𝑁 , and either 𝑇 = (𝑔1𝑔4)𝑡 or
𝑇 = (𝑔1𝑔2𝑔4)𝑡 for some 𝑡

r← Z𝑁 . The components that depend on the challenge elements 𝑋,𝑌,𝑇 are colored

for clarity.

2. Algorithm B starts by running algorithm A to obtain the number of slots 1
𝐿
. Algorithm B then samples

𝛼, 𝛽1, 𝛽2, 𝑎
r← Z𝑁 and sets 𝑍 = 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 = 𝛽1 + 𝛽2, and ℎ = 𝑔

𝛽

1
.

49

3. Let D = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set of size 𝐿. As in Construc-

tion 5.5, we write 𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 and E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

4. For each slot 𝑖 ∈ [𝐿], algorithm B samples 𝛿𝑖 , 𝜏𝑖 , 𝜏
′
𝑖

r← Z𝑁 , and sets 𝑡𝑖 = 𝑎𝑑𝑖 . It then constructs the slot

parameters as follows:

• For 𝑖 < ℓ , algorithm B sets

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
𝑌𝜏𝑖𝑔

𝜏𝑖
3

, 𝑃𝑖 = (𝑋𝑔3)𝛿𝑖 .

• For 𝑖 ≥ ℓ , algorithm B sets

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑋𝑔3)𝛿𝑖 .

Then, for each attribute𝑤 ∈ U_ , algorithm B samples 𝑏𝑤
r← Z𝑁 . For each𝑤 ∈ U_ , slot index 𝑖 ∈ [𝐿], and cross

term index 𝑧 ∈ E, algorithm B constructs the attribute-specific slot components𝑈𝑖,𝑤 and𝑊𝑧,𝑤 as in Hyb(a)
3,ℓ−1:

𝑈𝑖,𝑤 = 𝑔
𝑏𝑤𝑡𝑖
1

, 𝑊𝑧,𝑤 = 𝑔
𝑏𝑤𝑎

𝑧

1
.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the

key-generation queries.

5. In the query phase, algorithm B responds to the adversary’s queries as in Hyb(a)
3,ℓ−1 and iHyb

(a)
ℓ,0

. Namely, when

algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr = ctr + 1
and samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 = 𝑔
𝑟𝑖
1
, 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary Dict. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) = Dict[𝑖] and replies to A with sk′.

6. In the challenge phase, after A specifies the challenge policy 𝑃∗ = (M, 𝜌), messages `∗
0
, `∗

1
∈ G𝑇 , and for each

slot 𝑖 ∈ [𝐿], a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖). For each 𝑖 ∈ [𝐿], algorithm B constructs pk𝑖 as in Hyb(a)
2,ℓ−1 and iHyb(a)

ℓ
:

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry Dict[𝑐𝑖] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 = pk′. Otherwise, algorithm B aborts with output 0.

• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 = pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖).

7. Algorithm B parses the challenge policy as 𝑃∗ = (M, 𝜌) where M ∈ Z𝐾×𝑛
𝑁

and 𝜌 : [𝐾] → U_ . Algorithm B
constructs the challenge ciphertext as follows:

• Message-embedding components: Set 𝐶1 = `
∗
a · 𝑒 (𝑔1, 𝑋)𝛼 and 𝐶2 = 𝑋 .

• Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. For each 𝑘 ∈ [𝐾],

sample 𝑠𝑘 , [𝑘
r← Z𝑁 . If 𝜌 (𝑘) ∈ 𝑆ℓ , set 𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 . Otherwise, set 𝐶4,𝑘 = 𝑇 𝑠𝑘 . Finally, algorithm B sets

𝐶3,𝑘 = 𝑋 𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

• Slot-specific component: Set

𝐶5 = 𝑋
𝛽1 ©«

∏
𝑖∈[𝐿]

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬
50

Algorithm B gives the challenge ciphertext to A:

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

8. At the end of the game, algorithm A outputs a bit a ′ ∈ {0, 1}, which B also outputs.

In the reduction, the exponent 𝑠12
r← Z𝑁 plays the role of 𝑠

r← Z𝑁 in Hyb(a)
3,ℓ−1 and iHyb

(a)
ℓ,0

. Note that in the reduction,

𝐶1 = `
∗
𝑏
· 𝑒 (𝑔1, (𝑔1𝑔2)𝑠12)𝛼 = `∗

𝑏
· 𝑒 (𝑔1, 𝑔1)𝛼𝑠12 = 𝑍𝑠12 ,

which matches the distribution inHyb(a)
3,ℓ−1 and iHyb

(a)
ℓ,0

. Similarly, the components𝐶3,𝑘 and𝐶5 are constructed exactly

as they would be in Hyb(a)
3,ℓ−1 and iHyb(a)

ℓ,0
. Next, consider the distribution of 𝐵𝑖 for 𝑖 < ℓ . As long as 𝑠24 is coprime

to 𝑝2𝑝4 (which holds with overwhelming probability over the choice of 𝑠24
r← Z𝑁), then the distributions{

𝑌𝜏𝑖 = (𝑔2𝑔4)𝑠24𝜏𝑖 : 𝜏𝑖 r← Z𝑁
}

and

{
(𝑔2𝑔4)𝜏𝑖 : 𝜏𝑖 r← Z𝑁

}
are identical. Finally, consider the distribution of 𝐶4,𝑘 when 𝜌 (𝑘) ∉ 𝑆ℓ :

• If𝑇 = (𝑔1𝑔4)𝑟 and 𝑟 is coprime to 𝑝1𝑝4 (which holds with overwhelming probability over the choice of 𝑟
r← Z𝑁),

then 𝑇 𝑠
′
𝑘 is identically distributed to (𝑔1𝑔4)𝑠𝑘 for uniform 𝑠𝑘 . This matches the distribution of 𝐶4,𝑘 in Hyb(a)

3,ℓ−1

• If 𝑇 = (𝑔1𝑔2𝑔4)𝑟 and 𝑟, 𝑠 are coprime to 𝑝1𝑝2𝑝4 (which holds with overwhelming probability over the choice

of 𝑟, 𝑠
r← Z𝑁), then 𝑇 𝑠𝑘 is identically distributed to ((𝑔1𝑔2)𝑠𝑔4)𝑠𝑘 for uniform 𝑠𝑘

r← Z𝑁 . This matches the

distribution of 𝐶4,𝑘 in iHyb(a)
ℓ,0

.

Thus, we conclude that the distinguishing advantage of algorithm B is negligibly smaller than the advantage of A.

The claim holds. □

Lemma 5.18. For all ℓ ∈ [𝐿], all adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N, ���Pr[iHyb(a)ℓ,1 (A) = 1] − Pr[iHyb(a)

ℓ,0
(A) = 1]

��� = negl(_).

Proof. We argue that these two experiments are statistically indistinguishable. The only difference in these two

experiments is the distribution of 𝐶3,𝑘 . In the following, we write 𝐶
(0)
3,𝑘

to denote the component 𝐶3,𝑘 computed

according to the specification in iHyb(a)
ℓ,0

and 𝐶
(1)
3,𝑘

to denote the component computed according to the specification

of iHyb(a)
ℓ,1

. For each 𝑘 ∈ [𝐾], we consider two possible cases:

• Suppose 𝜌 (𝑘) ∈ 𝑆ℓ . Then, by definition,

𝐶
(0)
3,𝑘

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ (𝑔1𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

𝐶
(1)
3,𝑘

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′𝑔
−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[𝑘
4
.

The only difference between 𝐶
(0)
3,𝑘

and 𝐶
(1)
3,𝑘

is the extra 𝑔
−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4
term in 𝐶

(0)
3,𝑘

. However, since the

challenger in both experiments sample [𝑘
r← Z𝑁 , and moreover the only terms that depend on [𝑘 is𝐶3,𝑘 in both

experiments, we conclude that the distribution of𝐶
(0)
3,𝑘

and𝐶
(1)
3,𝑘

in the G4 subgroup is uniform and independent.

We conclude that 𝐶
(0)
3,𝑘

and 𝐶
(1)
3,𝑘

are identically distributed in this case.

• Suppose 𝜌 (𝑘) ∉ 𝑆ℓ . Then, by definition

𝐶
(0)
3,𝑘

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

𝐶
(1)
3,𝑘

= (𝑔1𝑔2)𝑠 (𝛽2m
T
𝑘
v′−𝑠𝑘𝑏𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈ [𝐿]\{ℓ }:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[𝑘
4
.

(5.7)

To show that these two distributions are statistically indistinguishable, consider the following “alternative”

sampling procedure for 𝑏𝜌 (𝑘) and [
′
𝑘
in iHyb(a)

ℓ,0
:

51

– Let b (𝑏) ∈ Z𝑁 be the unique value where b (𝑏) = 1 mod 𝑝1𝑝3𝑝4 and b
(𝑏) = 𝑡ℓ

(∑
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

)−1
mod 𝑝2.

The challenger samples 𝑏′
𝜌 (𝑘)

r← Z𝑁 and sets 𝑏𝜌 (𝑘) = 𝑏
′
𝜌 (𝑘) · b

(𝑏)
. In the following analysis, we will argue

that b (𝑏) is well-defined with overwhelming probability (i.e.,

∑
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖 is invertible modulo 𝑝2 with

overwhelming probability).

– Let b ([) ∈ Z𝑁 be the unique value where b ([) = 0 mod 𝑝1𝑝2𝑝3 and b
([) = 𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖 mod 𝑝2.

The challenger samples [′
𝑘

r← Z𝑁 and sets [𝑘 = [′
𝑘
+ b ([) .

We now argue that if 𝑏′
𝜌 (𝑘) and [

′
𝑘
are uniform over Z𝑁 , then the same holds for 𝑏𝜌 (𝑘) and [𝑘 . In other words,

the alternative sampling procedure exactly coincides with the actual sampling procedure in iHyb(a)
ℓ,0

.

– Since 𝑏′
𝜌 (𝑘)

r← Z𝑁 , the distribution of 𝑏𝜌 (𝑘) = 𝑏
′
𝜌 (𝑘) · b

(𝑏)
is uniform as long as b (𝑏) ≠ 0 mod 𝑝2. First,

𝑡ℓ = 𝑎
𝑑ℓ
, where 𝑎

r← Z𝑁 . Over the randomness of 𝑎
r← Z𝑁 , the probability that 𝑎𝑑ℓ = 0 mod 𝑝2 is at most

𝑑ℓ/𝑝2 = negl(_), since 𝑑ℓ ≤ max(D) = poly(𝐿) = poly(_). Next, consider the term∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖 =
∑︁

𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑎𝑑𝑖 .

By construction, the view of adversary A prior to the challenge phase is independent of the value of
𝑎 mod 𝑝2. In particular, the challenger in iHyb(a)

ℓ,0
can defer the sampling of 𝑎 mod 𝑝2 until after the

adversary has chosen the challenge policy (M, 𝜌). In this case, over the choice of 𝑎 mod 𝑝2, the probability

that

∑
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑎

𝑑𝑖 = 0 mod 𝑝2 is at mostmax(D)/𝑝2 = negl(_). We conclude that with overwhelming

probability (over the choice of 𝑎), the distribution of 𝑏𝜌 (𝑘) is uniform over Z𝑁 .

– Since [′
𝑘

r← Z𝑁 and is independent of b ([) , it follows that [𝑘 is uniform over Z𝑁 .

Now consider the view of the adversary in iHyb(a)
ℓ,0

under this particular variable substitution:

– First, consider the slot components𝑈ℓ,𝜌 (𝑘) and𝑊𝑧,𝜌 (𝑘) for all 𝑖 ∈ [𝐿], 𝑧 ∈ E. By definition,

𝑈𝑖,𝜌 (𝑘) = 𝑔
𝑏𝜌 (𝑘) 𝑡𝑖
1

= 𝑔
𝑏′
𝜌 (𝑘) 𝑡𝑖

1

𝑊𝑧,𝜌 (𝑘) = 𝑔
𝑏𝜌 (𝑘)𝑎

𝑧

1
= 𝑔

𝑏′
𝜌 (𝑘)𝑎

𝑧

1
,

since b (𝑏) = 1 mod 𝑝1. The remaining components in the CRS do not depend on [𝑘 or 𝑏𝜌 (𝑘) and are

unaffected.

– Next, the components the challenger constructs when responding to key-generation queries do not depend

on the exponents [𝑘 or 𝑏𝜌 (𝑘) , so their distributions (given the components in the CRS) are unchanged

with this substitution.

– Finally, consider the components in the challenge ciphertext. The components 𝐶1,𝐶2,𝐶4,𝑘 ,𝐶5 are all

unchanged (i.e., they are independent of [𝑘 , 𝑏𝜌 (𝑘)). It suffices to consider the ciphertext component 𝐶3,𝑘 .

By definition of 𝑏𝜌 (𝑘) , we can write

−𝑠𝑘𝑏𝜌 (𝑘)
∑︁

𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖 = −𝑠𝑘𝑏′𝜌 (𝑘)
∑︁

𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖 mod 𝑝1

−𝑠𝑘𝑏𝜌 (𝑘)
∑︁

𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖 = −𝑠𝑘𝑏′𝜌 (𝑘)𝑡ℓ
©«

∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖
ª®¬
−1 ©«

∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖
ª®¬ = −𝑠𝑘𝑏′𝜌 (𝑘)𝑡ℓ mod 𝑝2.

Substituting into Eq. (5.7), we now have

𝐶
(0)
3,𝑘

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′𝑔
−𝑠𝑠𝑘𝑏′𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
−𝑠𝑠𝑘𝑏′𝜌 (𝑘) 𝑡ℓ
2

𝑔
−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4
𝑔
[′
𝑘
+𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4

= (𝑔1𝑔2)𝑠 (𝛽2m
T
𝑘
v′−𝑠𝑘𝑏′𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏′𝜌 (𝑘)
∑
𝑖∈ [𝐿]\{ℓ }:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[′
𝑘

4
.

52

Under this variable substitution, we have recovered the distribution in iHyb(a)
ℓ,1

(with 𝑏′
𝜌 (𝑘) , [

′
𝑘

r← Z𝑁). Thus,
the distributions of 𝐶

(0)
3,𝑘

and 𝐶
(1)
3,𝑘

are statistically indistinguishable and the claim holds. □

Lemma 5.19. Suppose the progression-free indistinguishability assumption (Assumption 5.4) holds with respect to
CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient adversaries A, and all a ∈ {0, 1}, there exists a negligible function
negl(·) such that for all _ ∈ N,��

Pr[iHyb(a)
ℓ,2
(A) = 1] − Pr[iHyb(a)

ℓ,1
(A) = 1]

�� = negl(_).

Proof. Suppose that there exists an efficient adversary A that can distinguish these two experiments with non-

negligible probability Y. We use A to construct an adversary B that breaks Assumption 5.4 with the same advantage:

1. Algorithm B starts by running algorithmA to obtain the number of slots 1
𝐿
. LetD = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently

computable progression-free and double-free set. We define 𝑓 (𝑖, 𝑗) B 𝑑𝑖 +𝑑 𝑗 and E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

2. Algorithm B sends the input length 1
𝐿
, the set D, and the index ℓ to its challenger. It receives a challenge of

the form (
G, 𝑔1, 𝑔3, 𝑔4, 𝑔23, {𝐴′𝑖 }𝑖∈[𝐿]\{𝑖∗ } , {𝑈 ′𝑖 }𝑖∈[𝐿] , {𝑊 ′𝑓 (𝑖, 𝑗) }𝑖≠𝑗∈[𝐿] , 𝑋 , {𝑌𝑖 }𝑖∈[𝐿]\{𝑖∗ } , 𝑌𝑖∗ , 𝑇𝛽

)
,

where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒). In the following, we highlight the variables from the challenge in green for clarity.

3. Algorithm B starts by sampling 𝛼, 𝛽1, 𝛽2
r← Z𝑁 . It sets 𝑍 = 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 = 𝛽1 + 𝛽2, and ℎ = 𝑔

𝛽

1
.

4. For each slot 𝑖 ∈ [𝐿], algorithm B samples 𝛿𝑖 , 𝜏𝑖 , 𝜏
′
𝑖

r← Z𝑁 . It then constructs the slot components as follows:

• For 𝑖 < ℓ , algorithm B sets

𝐴𝑖 = 𝐴
′
𝑖𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔23𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑋𝑔3)𝛿𝑖 .

• For 𝑖 = ℓ , algorithm B sets

𝐴ℓ = 𝑇 , 𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ , 𝑃ℓ = (𝑋𝑔3)𝛿ℓ .

• For 𝑖 > ℓ , algorithm B sets

𝐴𝑖 = 𝐴
′
𝑖𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑋𝑔3)𝛿𝑖 .

Then, for each attribute 𝑤 ∈ U_ , algorithm B samples 𝑏′𝑤
r← Z𝑁 . For each 𝑖 ∈ [𝐿] and 𝑧 ∈ E, algorithm B

constructs the attribute-specific slot components as

𝑈𝑖,𝑤 = (𝑈 ′𝑖)𝑏
′
𝑤 , 𝑊𝑧,𝑤 = (𝑊 ′𝑧)

𝑏′𝑤 .

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the

key-generation queries.

5. In the query phase, algorithm B responds to the adversary’s queries as in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

. Namely, when

algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr = ctr + 1
and samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 = 𝑔
𝑟𝑖
1
, 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary Dict. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) = Dict[𝑖] and replies to A with sk′.

53

6. In the challenge phase, after A specifies the challenge policy 𝑃∗ = (M, 𝜌) where M ∈ Z𝐾×𝑛
𝑁

and 𝜌 : [𝐾] → U_
is an injective row-labeling function, two messages `∗

0
, `∗

1
, and for each slot 𝑖 ∈ [𝐿], a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖). For

each 𝑖 ∈ [𝐿], algorithm B constructs pk𝑖 as in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry Dict[𝑐𝑖] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 = pk′. Otherwise, algorithm B aborts with output 0.

• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 = pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖).

7. Algorithm B constructs the challenge ciphertext as follows:

• Message-embedding components: First, algorithm B sets 𝐶1 = `
∗
a · 𝑒 (𝑔1, 𝑋)𝛼 and 𝐶2 = 𝑋 .

• Attribute-specific components: Algorithm B samples 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and sets v′ = [1, 𝑣2, . . . , 𝑣𝑛]T.

For each 𝑘 ∈ [𝐾], it samples 𝑠𝑘 , [𝑘
r← Z𝑁 and depending on whether 𝜌 (𝑘) ∈ 𝑆ℓ , proceeds as follows:

– If 𝜌 (𝑘) ∉ 𝑆ℓ , set

𝐶3,𝑘 = 𝑋 𝛽2m
T
𝑘
v′

∏
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑌
−𝑠𝑘𝑏′𝜌 (𝑘)
𝑖

𝑔
[𝑘
4

, 𝐶4,𝑘 = (𝑋𝑔4)𝑠𝑘 .

– If 𝜌 (𝑘) ∈ 𝑆ℓ , set
𝐶3,𝑘 = 𝑋 𝛽2m

T
𝑘
v′

∏
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑈
−𝑠𝑘
𝑖,𝜌 (𝑘)𝑔

[𝑘
4

, 𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 .

• Slot-specific component: Algorithm B sets

𝐶5 = 𝑋
𝛽1 ©«

∏
𝑖∈[𝐿]

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬
Algorithm B gives the challenge ciphertext to A:

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

8. At the end of the game, algorithm A outputs a bit a ′ ∈ {0, 1}, which B also outputs.

We now analyze the advantage of algorithm B. First, the progression-free indistinguishability challenger samples

𝑟
r← Z𝑁 and sets 𝑔23 = (𝑔2𝑔3)𝑟 . It also samples exponents 𝑎, 𝑏, 𝑠, 𝜏

r← Z𝑁 and sets 𝑡𝑖 = 𝑎
𝑑𝑖
for 𝑖 ∈ [𝐿]. It also sets

𝐴′𝑖 = 𝑔
𝑡𝑖
1

, 𝑈 ′𝑖 = 𝑔
𝑏𝑡𝑖
1

, 𝑊 ′
𝑓 (𝑖, 𝑗) = 𝑔

𝑏𝑡𝑖𝑡 𝑗
1

, 𝑋 = (𝑔1𝑔2)𝑠 , ∀𝑖 ≠ ℓ : 𝑌𝑖 = 𝑔𝑠𝑏𝑡𝑖
1

, 𝑌ℓ = (𝑔1𝑔2)𝑠𝑏𝑡ℓ .

We now consider the different components in the reduction and argue that algorithm B correctly simulates an

execution of either iHyb(a)
ℓ,1

or iHyb(a)
ℓ,2

depending on the structure of the challenge component 𝑇 :

• CRS components: In the reduction, the exponents 𝑠, 𝑎, 𝑡𝑖 chosen by the challenger map to the analogous

exponents in the execution of iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

. We consider each of the components in the CRS individually:

– First, for 𝑖 ≠ ℓ , algorithm B sets 𝐴𝑖 = 𝐴
′
𝑖𝑔
𝜏 ′𝑖
3
= 𝑔

𝑡𝑖
1
𝑔
𝜏 ′𝑖
3
where 𝜏 ′𝑖

r← Z𝑁 . This matches the distribution of

𝐴𝑖 in both experiments. When 𝑖 = ℓ , algorithm B sets 𝐴ℓ = 𝑇 . If 𝑇 = 𝑔
𝑡ℓ
1
𝑔𝜏
3
, then this corresponds to the

distribution of 𝐴ℓ in iHyb(a)
ℓ,1

. If 𝑇 = 𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏 , then this matches the distribution of 𝐴ℓ in iHyb(a)

ℓ,2
.

54

– Next, for 𝑖 < ℓ , algorithm B sets 𝐵𝑖 = 𝑔𝛼
1
𝐴
𝛽

𝑖
(𝑔23𝑔4)𝜏𝑖 . By construction, 𝑔23 = (𝑔2𝑔3)𝑟 . As long as

𝑟 ≠ 0 mod 𝑝2 and 𝑟 ≠ 0 mod 𝑝3, then the distribution of ((𝑔2𝑔3)𝑟𝑔4)𝜏𝑖 is distributed identically to (𝑔2𝑔3𝑔3)𝜏𝑖
over the choice of 𝜏𝑖

r← Z𝑁 . Importantly, the randomizing exponent 𝜏𝑖 is only used to randomize 𝐵𝑖 and

no other components. Thus, with overwhelming probability over the choice of 𝑟 , the distribution of 𝐵𝑖
in the reduction is distributed correctly. For 𝑖 ≥ ℓ , the challenger constructs 𝐵𝑖 using the same procedure

as in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

– Next, the exponent 𝑠 sampled by the challenger plays the same role in the simulation of iHyb(a)
ℓ,1

and

iHyb(a)
ℓ,2

. As such, algorithm B in reduction sets 𝑃 = (𝑋𝑔3)𝛿𝑖 = ((𝑔1𝑔2)𝑠𝑔3)𝛿𝑖 , which matches the speci-

fication in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

– For the attribute-specific slot components, the reduction algorithm implicitly defines 𝑏𝑤 B 𝑏′𝑤𝑏, where
𝑏 ∈ Z𝑁 is the exponent chosen by the challenger. Since the challenger samples 𝑏

r← Z𝑁 , with over-

whelming probability, 𝑏 is co-prime to 𝑁 . As such, the distribution of 𝑏𝑤 = 𝑏′𝑤𝑏 is uniform over Z𝑁 when

𝑏′𝑤
r← Z𝑁 . Now, algorithm B defines

𝑈𝑖,𝑤 = (𝑈 ′𝑖)𝑏
′
𝑤 = 𝑔

𝑏𝑏′𝑤𝑡𝑖
1

= 𝑔
𝑏𝑤𝑡𝑖
1

𝑊𝑓 (𝑖, 𝑗),𝑤 = (𝑊𝑓 (𝑖, 𝑗) ′)𝑏
′
𝑤) = 𝑔𝑏𝑏

′
𝑤𝑡𝑖𝑡 𝑗

1
= 𝑔

𝑏𝑤𝑡𝑖𝑡 𝑗
1

= 𝑔
𝑏𝑤𝑎

𝑓 (𝑖,𝑗)

1
,

which coincides with the distribution in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

– Finally, the remaining components ℎ and 𝑍 are constructed exactly as in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

• Key-generation queries: By construction, algorithm B responds to key-generation queries using the identical

procedure as in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

• Challenge query: We consider each term in the challenge ciphertext. Recall from above that the exponent

𝑠 ∈ Z𝑁 chosen by the challenger plays its corresponding role in the simulated execution of iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

First,

𝐶1 = `
∗
a · 𝑒 (𝑔1, 𝑋)𝛼 = `∗a · 𝑒 (𝑔1, (𝑔1𝑔2)𝑠)𝛼 = `∗a · 𝑒 (𝑔1, 𝑔1)𝛼𝑠 = `∗a · 𝑍𝑠 ,

which matches the distribution in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

. Next, algorithm B constructs the components 𝐶2, 𝐶4,𝑘 ,

and 𝐶5 exactly as required in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

. It suffices to consider the distribution of 𝐶3,𝑘 . We consider

the two possibilities:

– If 𝜌 (𝑘) ∉ 𝑆ℓ , algorithm B computes

𝐶3,𝑘 = 𝑋 𝛽2m
T
𝑘
v′

∏
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑌
−𝑠𝑘𝑏′𝜌 (𝑘)
𝑖

𝑔
[𝑘
4

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′𝑌
−𝑠𝑘𝑏′𝜌 (𝑘)
ℓ

∏
𝑖∈[𝐿]\{ℓ }:𝜌 (𝑘)∉𝑆𝑖

𝑌
−𝑠𝑘𝑏′𝜌 (𝑘)
𝑖

𝑔
[𝑘
4

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′ (𝑔1𝑔2)−𝑠𝑠𝑘𝑏𝑏

′
𝜌 (𝑘) 𝑡ℓ

∏
𝑖∈[𝐿]\{ℓ }:𝜌 (𝑘)∉𝑆𝑖

𝑔
−𝑠𝑠𝑘𝑏𝑏′𝜌 (𝑘) 𝑡𝑖
1

𝑔
[𝑘
4

= (𝑔1𝑔2)𝑠 (𝛽2m
T
𝑘
v′−𝑠𝑘𝑏𝜌 (𝑘) 𝑡ℓ)𝑔

−𝑠𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈ [𝐿]\{ℓ }:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[𝑘
4
,

which precisely coincides with the distribution of 𝐶3,𝑘 in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

55

– If 𝜌 (𝑘) ∈ 𝑆ℓ , algorithm B computes

𝐶3,𝑘 = 𝑋 𝛽2m
T
𝑘
v′

∏
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑈
−𝑠𝑘
𝑖,𝜌 (𝑘)𝑔

[𝑘
4

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′

∏
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

(𝑈 ′𝑖)
−𝑠𝑘𝑏′𝜌 (𝑘)𝑔

[𝑘
4

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′

∏
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑔
−𝑠𝑘𝑏𝑏′𝜌 (𝑘) 𝑡𝑖
1

𝑔
[𝑘
4

= (𝑔1𝑔2)𝑠𝛽2m
T
𝑘
v′𝑔
−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

1
𝑔
[𝑘
4
,

which precisely coincides with the distribution of 𝐶3,𝑘 in iHyb(a)
ℓ,1

and iHyb(a)
ℓ,2

.

We conclude that with overwhelming probability, algorithm B either perfectly simulates an execution of iHyb(a)
ℓ,1

(when 𝑇 = 𝑔
𝑡ℓ
1
𝑔𝜏
3
) and an execution of iHyb(a)

ℓ,2
(when 𝑇 = 𝑔

𝑡ℓ
1
(𝑔2𝑔3)𝜏). Thus algorithm B breaks the progression-free

indistinguishability assumption with advantage Y − negl(_), which completes the proof. □

Lemma 5.20. For all ℓ ∈ [𝐿], all adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N, ���Pr[iHyb(a)ℓ,3 (A) = 1] − Pr[iHyb(a)

ℓ,2
(A) = 1]

��� = negl(_).

Proof. This follows by a similar argument as the proof of Lemma 5.18. □

Lemma 5.21. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,���Pr[iHyb(a)ℓ,4 (A) = 1] − Pr[iHyb(a)

ℓ,3
(A) = 1]

��� = negl(_).

Proof. The analysis here closely parallels the proof strategy from [HLWW23, Lemma 5.16]. Namely, the analysis

depends on whether the adversary knows the secret key associated with slot ℓ or not. Due to the similarities with

the proof from [HLWW23], we defer the formal argument to Appendix A.4. □

Lemma 5.22. For all ℓ ∈ [𝐿], all adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N, ���Pr[iHyb(a)ℓ,5 (A) = 1] − Pr[iHyb(a)

ℓ,4
(A) = 1]

��� = negl(_).

Proof. This follows by a similar argument as the proof of Lemma 5.18. □

Lemma 5.23. Suppose the progression-free indistinguishability assumption (Assumption 5.4) holds with respect to
CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient adversaries A, and all a ∈ {0, 1}, there exists a negligible function
negl(·) such that for all _ ∈ N,��

Pr[iHyb(a)
ℓ,6
(A) = 1] − Pr[iHyb(a)

ℓ,5
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as the proof of Lemma 5.19. □

Lemma 5.24. For all ℓ ∈ [𝐿], all adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N, ���Pr[iHyb(a)ℓ,7 (A) = 1] − Pr[iHyb(a)

ℓ,6
(A) = 1]

��� = negl(_).

Proof. This follows by a similar argument as the proof of Lemma 5.18. □

56

Lemma 5.25. Suppose Assumption 5.2c holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(a)
3,ℓ
(A) = 1] − Pr[iHyb(a)

ℓ,7
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as the proof of Lemma 5.17. □

Combining Lemmas 5.17 to 5.25, Lemma 5.14 now follows by a hybrid argument. □

6 Concrete Efficiency Evaluation
In Sections 4 and 5, we showed how to leverage progression-free sets to construct new registered ABE schemes with

a CRS whose size is nearly linear in the number of parties (when instantiated with the best-known progression-free

sets [Beh46, SS46, Elk10]). In this section, we present a simple comparison to show that the improvements also

translate into substantial concrete reductions in the size of the CRS in registered ABE schemes (when instantiated

with a asymptotically-worse, but concretely-efficient progression-free set [ET36]). To allow for an apples-to-apples

comparison where we specifically focus on the use of progression-free sets, we compare the following two schemes:

• The first construction is Construction 4.3, which gives a (statically-secure) registered ABE scheme that relies

on progression-free sets.

• The second construction is a (statically-secure) variant of Construction 4.3 with a quadratic-size CRS that we

describe in Construction B.3 (Construction B.3). Here, instead of sampling the exponents associated with each

slot from a progression-free set (as in Construction 4.3), the slot components are sampled randomly (similar to

earlier constructions [HLWW23, ZZGQ23]). As a result, the size of the CRS scales quadratically with the number

of users. Note that we do not directly compare against [HLWW23, ZZGQ23] because these schemes have a

dual-system proof and achieve adaptive security; the extra structure (in the forms of subgroups [HLWW23]

or subspaces [ZZGQ23]) needed to implement the dual-system proof results in additional overhead. Our goal

in this comparison is to highlight the efficiency gains from using progression-free sets, and for this reason,

we elect to compare two schemes that are essentially identical except for how the individual slot components

are chosen (from a progression-free set as in Construction 4.3 or randomly as in Construction B.3).

Evaluation methodology. In the following, we consider an instantiation of Constructions 4.3 and B.3 with the

asymmetric BLS-381 pairing curve [BGM17, SKSW20]. We write G1,G2 to denote the two base groups and G𝑇 to

denote the target group. The group is defined over a 381-bit field (48 bytes), and the representation size of a G1, G2,

and G𝑇 element is 48 bytes, 96 bytes, and 576 bytes, respectively.

Instantiating the progression-free set. For Construction 4.3, we instantiate the progression-free set with the

classic ternary construction by Erdös and Turán [ET36]. To construct a progression-free set of size 𝐿, the set E
contains the first 𝐿 integers whose ternary representation only uses the digits 0 and 1. Thus max(E) ≤ 𝐿log2 3. To
obtain a progression-free and double-free set of size 𝐿, we can use the approach from Corollary 2.7 and instantiate

with a progression-free set of size (𝐿 + 1)log2 3. Note that when comparing concrete efficiency, we do not use the
asymptotically-better constructions from [Beh46, SS46, Elk10]. While these constructions satisfy max(E) = 𝐿1+𝑜 (1) ,
if we consider the concrete size of the resulting progression-free sets for parameters of (practical) interest, they are

significantly worse than using the progression-free sets based on the ternary encoding. As an example if we set

𝐿 = 10
5
users, then the size of the largest element in the progression-free set from [Beh46] is 5.1 × 1010, which is

over 600× larger than the progression-free set obtained using the Erdös-Turán scheme.

Working over asymmetric groups. As written, Constructions 4.3 and B.3 operate over symmetric pairing groups,

whereas the most efficient instantiations of pairing groups are asymmetric pairing groups. However, it is straight-

forward to translate both constructions to work using asymmetric pairing groups (and security will reduce to a

57

corresponding asymmetric analog of the current assumptions). First, we describe how to assign the different com-

ponents of the CRS, the public keys, and the ciphertexts to G1, G2, and G𝑇 . Since elements in G1 have shorter

representations, we prefer assigning base-group elements to G1 rather than G2.

• Common reference string: In Construction 4.3, the common reference string consists of

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑧}𝑧∈E

)
.

The same holds for Construction B.3, except the “cross-terms” {𝑊𝑧}𝑧∈E are now {𝑊𝑖, 𝑗 }𝑖≠𝑗∈[𝐿] . We assign the

components to G1 and G2 as follows:

– The following terms are computed in G1:𝑊𝑧 (or𝑊𝑖, 𝑗), 𝐴𝑖 , 𝐵𝑖 , and 𝑃𝑖 .

– The following terms are computed in G2: ℎ and𝑈𝑖 .

– The following terms are computed in G𝑇 : 𝑍 .

As described, Constructions 4.3 and B.3 set 𝐵𝑖 = 𝑔
𝛼ℎ𝑡𝑖 . As described above, we assign ℎ to G2 but 𝐵𝑖 to G1.

However, since these components are sampled as part of Setup, the algorithm “knows” the discrete log 𝛽 of ℎ

and thus it can compute 𝐵𝑖 B 𝑔
𝛼+𝛽𝑡𝑖
1

and ℎ B 𝑔
𝛽

2
where 𝑔1 and 𝑔2 are the generators of G1 and G2, respectively.

• User public key: For each slot 𝑖 ∈ [𝐿], the user’s public key in both schemes can be written as pk𝑖 =

(𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖).

– The following terms are computed in G1: 𝑄𝑖 and 𝑉𝑗,𝑖

– The following terms are computed in G2: 𝑇𝑖 .

• Master public key: In both schemes, the master public key can be written as mpk =
(
G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_

)
.

– The following terms are computed in G2: ℎ, 𝑇 , and𝑈𝑤 .

– The following terms are computed in G𝑇 : 𝑍 .

• Helper decryption key: For each slot 𝑖 ∈ [𝐿], the helper decryption key in both schemes can be written as

hsk𝑖 =
(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
.

– The following terms are computed in G1: 𝐴𝑖 , 𝐵𝑖 , 𝑉𝑖 , �̂�𝑖,𝑤 .

• Ciphertext: In both schemes, the ciphertext can be written as ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

– The following terms are computed in G2: 𝐶2, 𝐶3,𝑘 ,𝐶4,𝑘 ,𝐶5.

– The following terms are computed in G𝑇 : 𝐶1.

In Table 3, we report the number of group elements in each of these components as a function of the number of users

the scheme supports, the size of the policy, and the size of the attribute universe. Then, in Table 4, we give estimated

sizes for a concrete setting where we fix an attribute universe with 100 and policies over at most 25 attributes. Notably

for a system with 10
5
users, the use of progression-free sets reduces the CRS size by over 115× (from over 447 GB

to just 3.8 GB).

The Brown-Gallant-Cheon attacks. The curve BLS-381 provides roughly 128 bits of security. However, when

using bilinear Diffie-Hellman exponent assumptions (e.g., Assumption 4.2) where the challenge contains terms

of the form 𝑔𝑎, 𝑔𝑎
2

, . . . , 𝑔𝑎
𝑞

, the hardness of the assumption degrades with 𝑞. Specifically, Brown, Gallant, and

Cheon [BG04, Che06]. showed how to recover the secret exponent 𝑎 from
(
𝑔𝑎, 𝑔𝑎

2

, . . . , 𝑔𝑎
𝑞)

with an algorithm that

runs in time �̃�
(√︁
𝑝/𝑑 +

√
𝑑
)
, where 𝑑 ≤ 𝑞 can be any factor of either 𝑝 − 1 or 𝑝 + 1 less than 𝑞 and 𝑝 is the group order.

58

G |crs| |mpk| |hsk| |ct|

Construction 4.3

G1 (𝐿 + 1)log2 3 + 3𝐿 0 3 + |U| 0

G2 𝐿 + 1 2 + |U| 0 2𝐾 + 2
G𝑇 1 1 0 1

Construction B.3

G1 𝐿2 + 3𝐿 0 3 + |U| 0

G2 𝐿 + 1 2 + |U| 0 2𝐾 + 2
G𝑇 1 1 0 1

Table 3: Number of group elements needed to instantiate the slotted registered ABE schemes from Constructions 4.3

and B.3 as a function of the number of users 𝐿, the size of the attribute universe |U|, and the number of attributes𝐾 that

each policy can depend on. We instantiate Construction 4.3 with a progression-free set based on the ternary encoding.

𝐿 |crs| |mpk| |hsk| |ct|
Construction 4.3

10
3

3 MB

10 KB 5 KB 5 KB

Construction B.3 46 MB

Construction 4.3

10
4

102 MB

10 KB 5 KB 5 KB

Construction B.3 4580 MB

Construction 4.3

10
5

3.8 GB

10 KB 5 KB 5 KB

Construction B.3 447 GB

Construction 4.3

10
6

145 GB

10 KB 5 KB 5 KB

Construction B.3 44 TB

Table 4: Estimated size of different components of the slotted registered ABE schemes from Constructions 4.3 and B.3

as a function of the number of users 𝐿. For the comparisons, we fix the size of the attribute universe to be |U| = 100

and consider a policy over 25 attributes. For simplicity, we only report the size of the group elements in the respective

components (based on an instantiation with the BLS-381 pairing group). We do not include “auxiliary information”

such as the size of the group description G or the description length of the policy 𝑃 .

Since 𝑑 ≤ 𝑞 ≪ 𝑝 , the Brown-Gallant-Cheon attack effectively reduces the security by a factor

√
𝑞.9 Concretely, for

a scheme with 𝐿 = 10
6
users, and policies with up to 25 attributes (i.e., corresponding to the last row of Table 4), the

largest power we give out in the CRS is 𝑞 = 𝑑max = (𝐿 + 1)log2 (3) ≈ 2
32
. Conservatively, in the target group, the largest

power the adversary could compute is 2
33
which results in a security loss of 17 bits (degrading security from 128 bits

to around 111 bits).
10

We can compensate for the Brown-Gallant-Cheon attack by working over a larger pairing group

(e.g., BLS-477 or BLS-581). Using a larger curve to achieve 128 bits of security would only affect the parameters by

a small constant factor. Given the margins from Table 4, using progression-free sets still yields significant reductions

in the CRS size relative to constructions that require a quadratic-size CRS.

7 Batch Arguments for NP from Composite-Order Bilinear Groups
In this section, we describe another setting where progression-free sets can be used to reduce the CRS size. Specifically,

we focus on the Waters-Wu non-interactive batch arguments (BARG) for NP [WW22]. Very briefly, a batch argument

for NP allows a prover to demonstrate that a set of 𝐿 NP statements 𝑥1, . . . , 𝑥𝐿 are true with a proof whose size scales

9
Technically, if 𝑝 − 1 and 𝑝 + 1 do not contain small prime factors (i.e., neither 𝑝 − 1 nor 𝑝 + 1 is smooth), then the Brown-Gallant-Cheon attacks

would not apply. However, this may not be the case for elliptic curves used in practice, and in particular, is not true for the BLS-381 curve. In

these settings, these attacks will indeed reduce the security level of the scheme.

10
Alternatively, if we applied the Brown-Gallant-Cheon attack to our underlying assumption (Assumption 4.2), then the adversary is given 𝑔𝑎

𝑞

where 𝑞 = 4 · 𝑑max · ℓ · 𝐾 ≈ 2
58

(Lemma 4.11). In this case, the security level of the assumption over the BLS-381 curve would be at most 99 bits.

Note however that an attack on the assumption does not necessarily translate to an attack on the construction.

59

sublinearlywith 𝐿. The base version of the Waters-Wu construction requires a CRS with size 𝐿2. The quadratic blowup

was due to the need to include “cross terms” in the CRS. Here, we show that using progression-free sets, we can reduce

the number of cross terms, and correspondingly, the size of the CRS, from 𝐿2 to 𝐿1+𝑜 (1) . Note here that in this setting, al-
ternative bootstrapping techniques [WW22, KLVW23] can also be used to reduce the CRS size, but these techniques all

rely on recursive composition and as such, need to make non-black-box use of the group. In contrast, using progression-
free sets, we can obtain a sub-quadratic CRS with minimal modifications to the original scheme. We believe this illus-

trates the general applicability of our techniques for reducing the parameter sizes in different cryptographic schemes.

7.1 Batch Arguments for NP
In this section, we recall the notion of a batch argument for NP. Our exposition is taken mostly verbatim from

[WW22, §2.1]. We consider the NP-complete language of Boolean circuit satisfiability. We assume that the Boolean

circuits are built from NAND gates. For a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} with 𝑡 wires, we associate
wires 1, . . . , 𝑛 with the bits of the statement 𝑥1, . . . , 𝑥𝑛 , and wires 𝑛 + 1, . . . , 𝑛 +ℎ with the bits of the witness𝑤1, . . . ,𝑤ℎ ,

respectively. We associate wire 𝑡 with the output wire. We measure the size 𝑠 of 𝐶 by the number of NAND gates it

has. By construction, 𝑡 ≤ 𝑛 + ℎ + 𝑠 . We now define the (batch) circuit satisfiability language we consider in this work:

Definition 7.1 (Circuit Satisfiability). We define LCSAT = {(𝐶, x) | ∃w ∈ {0, 1}ℎ : 𝐶 (x,w) = 1} to be the language
of Boolean circuit satisfiability, where 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} is a Boolean circuit and x ∈ {0, 1}𝑛 is a statement.

For a positive integer 𝐿 ∈ N, we define the batch circuit satisfiability language LBatchCSAT,𝐿 as follows:

LBatchCSAT,𝐿 = {(𝐶, x1, . . . , x𝐿) | ∀𝑖 ∈ [𝐿] : ∃w𝑖 ∈ {0, 1}ℎ : 𝐶 (x𝑖 ,w𝑖) = 1},

where 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} is a Boolean circuit and x1, . . . , x𝐿 ∈ {0, 1}𝑛 are the instances.

Definition 7.2 (Batch Argument for Circuit Satisfiability). A non-interactive batch argument (BARG) for circuit

satisfiability is a tuple of three efficient algorithms ΠBARG = (Setup, Prove,Verify) with the following properties:

• Setup(1_, 1𝐿, 1𝑠) → crs: On input the security parameter _ ∈ N, the number of instances 𝐿 ∈ N, and a bound

on the circuit size 𝑠 ∈ N, the setup algorithm outputs a common reference string crs.

• Prove(crs,𝐶, (x1, . . . , x𝐿), (w1, . . . ,w𝐿)) → 𝜋 : On input the common reference string crs, a Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, statements x1, . . . , x𝐿 ∈ {0, 1}𝑛 , and witnesses w1, . . . ,w𝐿 ∈ {0, 1}ℎ , the prove
algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, (x1, . . . , x𝐿), 𝜋) → 𝑏: On input the common reference string crs, the Boolean circuit 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x𝐿 ∈ {0, 1}𝑛 and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Definition 7.3 (Completeness). A BARG ΠBARG = (Setup, Prove,Verify) is complete if for all _, 𝐿, 𝑠 ∈ N, all
Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , all statements x1, . . . , x𝐿 ∈ {0, 1}𝑛 , and all witnesses

w1, . . . ,w𝐿 ∈ {0, 1}ℎ where 𝐶 (x𝑖 ,w𝑖) = 1 for all 𝑖 ∈ [𝐿],

Pr

[
Verify(crs,𝐶, (x1, . . . , x𝐿), 𝜋) = 1 :

crs← Setup(1_, 1𝐿, 1𝑠);
𝜋 ← Prove(crs,𝐶, (x1, . . . , x𝐿), (w1, . . . ,w𝐿))

]
= 1.

Definition 7.4 (Somewhere Argument of Knowledge [CJJ21]). A BARG ΠBARG = (Setup, Prove,Verify) is a some-

where argument of knowledge if there exists a pair of efficient algorithms (TrapSetup, Extract) with the following

properties:

• TrapSetup(1_, 1𝐿, 1𝑠 , 𝑖∗) → (crs∗, td): On input the security parameter _ ∈ N, the number of instances 𝐿 ∈ N,
the size of the circuit 𝑠 ∈ N, and an index 𝑖∗ ∈ [𝐿], the trapdoor setup algorithm outputs a common reference

string crs∗ and an extraction trapdoor td.

• Extract(td,𝐶, (x1, . . . , x𝐿), 𝜋) → w∗ On input the trapdoor td, statements x1, . . . , x𝐿 , and a proof 𝜋 , the extrac-

tion algorithm outputs a witness w∗ ∈ {0, 1}ℎ . The extraction algorithm is deterministic.

60

We require (TrapSetup, Extract) to satisfy the following two properties:

• CRS indistinguishability: For a bit 𝑏 ∈ {0, 1}, and an adversary A, we define the CRS indistinguishability

game as follows:

1. On input the security parameter 1
_
, algorithm A outputs the number of statements 1

𝐿
, the size of the

circuit 1
𝑠
, and an index 𝑖∗ ∈ [𝐿].

2. If 𝑏 = 0, the challenger gives crs ← Setup(1_, 1𝐿, 1𝑠) to A. If 𝑏 = 1, the challenger gives crs∗ ←
TrapSetup(1_, 1𝐿, 1𝑠 , 𝑖∗) to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satisfies CRS indistinguishability if for every efficient adversary A, there exists a negligible

function negl(·) such that for all _ ∈ N,

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_)

in the above CRS indistinguishability game.

• Somewhere extractable in trapdoor mode: For an adversary A, we define the somewhere extractable

security game as follows:

– On input the security parameter 1
_
, algorithm A starts by outputting the number of statements 1

𝐿
, the

size of the circuit 1
𝑠
, and an index 𝑖∗ ∈ [𝐿].

– The challenger samples (crs∗, td) ← TrapSetup(1_, 1𝐿, 1𝑠 , 𝑖∗) and gives crs∗ to A.

– Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , statements

x1, . . . , x𝐿 ∈ {0, 1}𝑛 , and a proof 𝜋 . Let w∗ ← Extract(td,𝐶, (x1, . . . ,w𝐿), 𝜋).
– The output of the game is 𝑏 = 1 if Verify(crs∗,𝐶, (x1, . . . , x𝐿), 𝜋) = 1 and 𝐶 (x𝑖∗ ,w∗) ≠ 1. Otherwise, the

output is 𝑏 = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every efficient adversary A, there exists a

negligible function negl(·) such that for all _ ∈ N, Pr[𝑏 = 1] = negl(_) in the somewhere extractable game.

Definition 7.5 (Succinctness). A BARG ΠBARG = (Setup, Prove,Verify) is succinct if there exists a fixed poly-

nomial poly(·, ·, ·) such that for all _, 𝐿, 𝑠 ∈ N, all crs in the support of Setup(1_, 1𝐿, 1𝑠), and all Boolean circuits

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} of size at most 𝑠 , the following properties hold:

• Succinct proofs: The proof 𝜋 output by Prove(crs,𝐶, ·, ·) satisfies |𝜋 | ≤ poly(_, log𝐿, 𝑠).

• Succinct CRS: |crs| ≤ poly(_, 𝐿, 𝑛) + poly(_, log𝐿, 𝑠).

• Succinct verification: The verification algorithm runs in time poly(_, 𝐿, 𝑛) + poly(_, log𝐿, 𝑠).

7.2 BARG for NP from Composite-Order Bilinear Maps
We now show how to use progression-free sets to reduce the size of the CRS in the BARG from [WW22]. For ease of

exposition, we just consider the construction from composite-order groups. Like [WW22], we work with a two-prime

composite-order group which we define formally below:

Definition 7.6 (Two-Prime Composite-Order Bilinear Group [BGN05]). A (symmetric) two-prime composite-order

bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter _ and

outputs a description (G,G𝑇 , 𝑝1, 𝑝2, 𝑔, 𝑒) of a bilinear group where 𝑝1, 𝑝2 are distinct primes, G and G𝑇 are cyclic

groups of order 𝑁 = 𝑝1𝑝2, 𝑔 is a generator of G, and 𝑒 : G × G → G𝑇 is a non-degenerate bilinear map (called the

“pairing”). We require that the group operation in G and G𝑇 as well as the pairing operation be efficiently computable.

61

Progression-free indistinguishability assumption. The security of our variant of the BARG from [WW22] will

rely on a new progression-free indistinguishability assumption. This is the analog of the progression-free assumptions

we introduced when reasoning about our registered ABE schemes (Assumptions 4.2 and 5.4). We state the assumption

here and in Appendix D (Lemma D.9), show that it holds in the generic group model.

Assumption 7.7 (Progression-Free Indistinguishability). Let CompGroupGen be a two-prime composite-order

bilinear group generator. For a security parameter _ and a bit 𝑏 ∈ {0, 1}, we define the following game between an

adversary A and a challenger:

1. On input the security parameter 1
_
, algorithmA chooses an input length 1

𝐿
, a progression-free and double-free

set D = {𝑑𝑖 }𝑖∈[𝐿] together with a challenge index 𝑖∗ ∈ [𝐿]. Define the function 𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 .

2. Challenger samples a group (G,G𝑇 , 𝑝1, 𝑝2, 𝑔, 𝑒). Let 𝑁 = 𝑝1𝑝2 and 𝑔1, 𝑔2 be generators of the corresponding

subgroups. The challenger sets the public group description G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), and samples exponents

𝑎, 𝑠
r← Z𝑁 . It also sets 𝑡𝑖 = 𝑎

𝑑𝑖
for all 𝑖 ∈ [𝐿]. Then, for each 𝑖, 𝑗 ∈ [𝐿], it defines

𝐴′𝑖 = 𝑔
𝑠𝑡𝑖
1

and 𝐵′
𝑓 (𝑖, 𝑗) = 𝑔

𝑠2𝑡𝑖𝑡 𝑗
1

.

It also defines 𝑇0 = 𝑔
𝑠𝑡𝑖∗
1

and 𝑇1 = 𝑔
𝑠𝑡𝑖∗ . The challenger gives the challenge(
G , 𝑔1 , {𝐴′𝑖 }𝑖∈[𝐿]\{𝑖∗ } , {𝐵′𝑓 (𝑖, 𝑗) }𝑖≠𝑗∈[𝐿] , 𝑇𝑏

)
to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that the progression-free indistinguishability assumption holds with respect to CompGroupGen if for all

efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_).

BARG for NP using progression-free sets. We now show how to adapt [WW22, Construction 3.3] to use

progression-free sets.

Construction 7.8 (BARG for NP with Progression-Free Sets). We construct a BARG for the language of circuit

satisfiability as follows:

• Setup(1_, 1𝐿, 1𝑠): On input the security parameter _, the number of instances 𝐿, and the bound on the circuit

size 𝑠 , the setup algorithm proceeds as follows:

– Sample (G,G𝑇 , 𝑝1, 𝑝2, 𝑔, 𝑒) ← CompGroupGen(1_). Let G1,G2 be the subgroups of G of orders 𝑝1, 𝑝2,

respectively. Let 𝑁 = 𝑝1𝑝2 and G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒).
– Let D = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set. We define 𝑓 (𝑖, 𝑗) B
𝑑𝑖 + 𝑑 𝑗 and the set of cross terms E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

– Sample 𝑔1
r← G1 and exponents 𝑎, 𝑠

r← Z𝑁 . For each 𝑖 ∈ [𝐿], compute 𝑡𝑖 = 𝑎𝑑𝑖 and let 𝐴𝑖 = 𝑔
𝑠𝑡𝑖
1
. Let

𝐴 =
∏
𝑖∈[𝐿] 𝐴𝑖 . Then, for each 𝑧 ∈ E, compute 𝐵𝑧 = 𝑔

𝑠2𝑎𝑧

1
.

Finally, output the common reference string

crs =
(
G, 𝑔1, 𝐴, {𝐴𝑖 }𝑖∈[𝐿], {𝐵𝑧}𝑧∈E

)
.

• Prove(crs,𝐶, (x1, . . . , x𝐿), (w1, . . . ,w𝐿)): On input crs =
(
G, 𝑔1, 𝐴, {𝐴𝑖 }𝑖∈[𝐿], {𝐵𝑧}𝑧∈E

)
, a circuit 𝐶 : {0, 1}𝑛 ×

{0, 1}ℎ → {0, 1}, instances x1, . . . , x𝐿 ∈ {0, 1}𝑛 , and witnesses w1, . . . ,w𝐿 ∈ {0, 1}ℎ , define 𝑡 to be the number

of wires in 𝐶 and 𝑠 to be the number of gates in 𝐶 . Then, for 𝑖 ∈ [𝐿] and 𝑗 ∈ [𝑡], let 𝑦𝑖, 𝑗 ∈ {0, 1} be the value
of wire 𝑗 in 𝐶 (x𝑖 ,w𝑖). The prover proceeds as follows:

62

– Encoding wire values: For each 𝑘 ∈ [𝑡], let𝑈𝑘 =
∏
𝑖∈[𝐿] 𝐴

𝑦𝑖,𝑘
𝑖

– Validity of wire assignments: For each 𝑘 ∈ [𝑡], let 𝑉𝑘 =
∏
𝑖≠𝑗 𝐵

(1−𝑦𝑖,𝑘)𝑦 𝑗,𝑘
𝑓 (𝑖, 𝑗) .

– Validity of gate computation: For each NAND gate 𝐺ℓ = (𝑘1, 𝑘2, 𝑘3) ∈ [𝑡]3 (where ℓ ∈ [𝑠]), compute

𝑊ℓ =
∏
𝑖≠𝑗 𝐵

1−𝑦𝑖,𝑘
1
𝑦 𝑗,𝑘

2
−𝑦 𝑗,𝑘

3

𝑓 (𝑖, 𝑗)

Output the proof 𝜋 =
(
{𝑈𝑘 ,𝑉𝑘 }𝑘∈[𝑡], {𝑊ℓ }ℓ∈[𝑠]

)
.

• Verify(crs,𝐶, (x1, . . . , x𝐿), 𝜋): On input crs =
(
G, 𝑔1, 𝐴, {𝐴𝑖 }𝑖∈[𝐿], {𝐵𝑧}𝑧∈E

)
, a circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1},

instances x1, . . . , x𝐿 ∈ {0, 1}𝑛 , and the proof 𝜋 =
(
{𝑈𝑘 ,𝑉𝑘 }𝑘∈[𝑡], {𝑊ℓ }ℓ∈[𝑠]

)
, the verification algorithm checks

the following:

– Validity of statement: For each input wire 𝑘 ∈ [𝑛],𝑈𝑘 =
∏
𝑖∈[𝐿] 𝐴

𝑥𝑖,𝑘
𝑖

.

– Validity of wire assignments: For each 𝑘 ∈ [𝑡],

𝑒 (𝐴,𝑈𝑘) = 𝑒 (𝑔1,𝑉𝑘)𝑒 (𝑈𝑘 ,𝑈𝑘). (7.1)

– Validity of gate computation: For each gate 𝐺ℓ = (𝑘1, 𝑘2, 𝑘3) ∈ [𝑡]3,

𝑒 (𝐴,𝐴) = 𝑒 (𝑈𝑘1 ,𝑈𝑘2)𝑒 (𝐴,𝑈𝑘3)𝑒 (𝑔1,𝑊ℓ). (7.2)

– Output satisfiability: The output encoding𝑈𝑡 satisfies𝑈𝑡 = 𝐴.

The algorithm outputs 1 if all checks pass, and outputs 0 otherwise.

Theorem 7.9 (Completeness). Construction 7.8 is complete.

Proof. Take any circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, instances x1, . . . , x𝐿 ∈ {0, 1}𝑛 and witnessesw1, . . . ,w𝐿 ∈ {0, 1}ℎ
such that 𝐶 (x𝑖 ,w𝑖) = 1 for all 𝑖 ∈ [𝐿]. Let 𝑡 be the number of wires in 𝐶 and 𝑠 be the number of gates in 𝐶 . Let

crs ← Setup(1_, 1𝐿, 1𝑠) and 𝜋 ← Prove(crs, (x1, . . . , x𝐿), (w1, . . . ,w𝐿)). We show that Verify(crs,𝐶, (x1, . . . , x𝐿), 𝜋)
outputs 1. Let 𝜋 =

(
{𝑈𝑘 ,𝑉𝑘 }𝑘∈[𝑡], {𝑊ℓ }ℓ∈[𝑠]

)
. Consider each of the verification relations:

• Validity of statement: By construction of Prove, 𝑈𝑘 =
∏
𝑖∈[𝐿] 𝐴

𝑦𝑖,𝑘
𝑖

. By definition, the first 𝑛 wires in 𝐶

coincide with the wires to the statement, so 𝑦𝑖,𝑘 = 𝑥𝑖,𝑘 for 𝑘 ∈ [𝑛]. Thus, the first verification check passes.

• Validity of wire assignments: To show Eq. (7.1), take any 𝑘 ∈ [𝑡]. Recall that𝑈𝑘 =
∏
𝑖∈[𝐿] 𝐴

𝑦𝑖,𝑘
𝑖

= 𝑔
𝑠
∑
𝑖∈ [𝐿] 𝑡𝑖𝑦𝑖,𝑘

1

Now, ©«𝑠
∑︁
𝑖∈[𝐿]

𝑡𝑖
ª®¬ ©«𝑠

∑︁
𝑗∈[𝐿]

𝑡 𝑗𝑦 𝑗,𝑘
ª®¬ = 𝑠2

∑︁
𝑖∈[𝐿]

𝑡2𝑖 𝑦𝑖,𝑘 + 𝑠2
∑︁
𝑖≠𝑗

𝑡𝑖𝑡 𝑗𝑦 𝑗,𝑘 ,

and

©«𝑠
∑︁
𝑖∈[𝐿]

𝑡𝑖𝑦
2

𝑖,𝑘

ª®¬ ©«𝑠
∑︁
𝑗∈[𝐿]

𝑡 𝑗𝑦 𝑗,𝑘
ª®¬ = 𝑠2

∑︁
𝑖∈[𝐿]

𝑡2𝑖 𝑦
2

𝑖,𝑘
+ 𝑠2

∑︁
𝑖≠𝑗

𝑡𝑖𝑡 𝑗𝑦𝑖,𝑘𝑦 𝑗,𝑘 = 𝑠2
∑︁
𝑖∈[𝐿]

𝑡2𝑖 𝑦𝑖,𝑘 + 𝑠2
∑︁
𝑖≠𝑗

𝑡𝑖𝑡 𝑗𝑦𝑖,𝑘𝑦 𝑗,𝑘 ,

using the fact that 𝑦𝑖,𝑘 ∈ {0, 1} so 𝑦2𝑖,𝑘 = 𝑦𝑖,𝑘 . Finally 𝑉𝑘 =
∏
𝑖≠𝑗 𝐵

(1−𝑦𝑖,𝑘)𝑦 𝑗,𝑘
𝑓 (𝑖, 𝑗) = 𝑔

𝑠2
∑
𝑖≠𝑗 𝑡𝑖𝑡 𝑗 (1−𝑦𝑖,𝑘)𝑦 𝑗,𝑘

1
. Thus, we

can write

𝑒 (𝑔1,𝑉𝑘)𝑒 (𝑈𝑘 ,𝑈𝑘) = 𝑒 (𝑔1, 𝑔1)𝑠
2
∑
𝑖≠𝑗 𝑡𝑖𝑡 𝑗 (1−𝑦𝑖,𝑘)𝑦 𝑗,𝑘+𝑠2

∑
𝑖∈ [𝐿] 𝑡

2

𝑖 𝑦𝑖,𝑘+𝑠2
∑
𝑖≠𝑗 𝑡𝑖𝑡 𝑗 𝑦𝑖,𝑘𝑦 𝑗,𝑘

= 𝑒 (𝑔1, 𝑔1)𝑠
2 (∑𝑖∈ [𝐿] 𝑡2𝑖 𝑦𝑖,𝑘+∑𝑖≠𝑗 𝑡𝑖𝑡 𝑗 𝑦 𝑗,𝑘)

= 𝑒 (𝐴,𝑈𝑘).

63

• Validity of gate computation: Take any gate 𝐺ℓ = (𝑘1, 𝑘2, 𝑘3) ∈ [𝑡]3. Consider first the exponents for the
terms 𝑒 (𝑈𝑘1 ,𝑈𝑘2), 𝑒 (𝐴,𝑈𝑘3), and 𝑒 (𝐴,𝐴):

©«𝑠
∑︁
𝑖∈[𝐿]

𝑡𝑖𝑦𝑖,𝑘1
ª®¬ ©«𝑠

∑︁
𝑗∈[𝐿]

𝑡 𝑗𝑦 𝑗,𝑘2
ª®¬ = 𝑠2

©«
∑︁
𝑖∈[𝐿]

𝑡2𝑖 𝑦𝑖,𝑘1𝑦𝑖,𝑘2 +
∑︁
𝑖≠𝑗

𝑡𝑖𝑡 𝑗𝑦𝑖,𝑘1𝑦 𝑗,𝑘2
ª®¬©«𝑠

∑︁
𝑖∈[𝐿]

𝑡𝑖
ª®¬ ©«𝑠

∑︁
𝑗∈[𝐿]

𝑡 𝑗𝑦 𝑗,𝑘3
ª®¬ = 𝑠2

©«
∑︁
𝑖∈[𝐿]

𝑡2𝑖 𝑦𝑖,𝑘3 +
∑︁
𝑖≠𝑗

𝑡𝑖𝑡 𝑗𝑦 𝑗,𝑘3
ª®¬©«𝑠

∑︁
𝑖∈[𝐿]

𝑡𝑖
ª®¬ ©«𝑠

∑︁
𝑗∈[𝐿]

𝑡 𝑗
ª®¬ = 𝑠2

©«
∑︁
𝑖∈[𝐿]

𝑡2𝑖 +
∑︁
𝑖≠𝑗

𝑡𝑖𝑡 𝑗
ª®¬ .

By definition 𝑦𝑖,𝑘3 = NAND(𝑦𝑖,𝑘1 , 𝑦𝑖,𝑘2). This means that for each 𝑖 ∈ [𝐿], either (𝑦𝑖,𝑘1𝑦𝑖,𝑘2 = 1 and 𝑦𝑖,𝑘3 = 0) or

(𝑦𝑖,𝑘1𝑦𝑖,𝑘2 = 0 and 𝑦𝑖,𝑘3 = 1). This means that∑︁
𝑖∈[𝐿]

𝑡2𝑖 (𝑦𝑖,𝑘1𝑦𝑖,𝑘2 + 𝑦𝑖,𝑘3) =
∑︁
𝑖∈[𝐿]

𝑡2𝑖 .

Combining the above relations in the exponent, we have that

𝑒 (𝐴,𝐴)
𝑒 (𝑈𝑘1 ,𝑈𝑘2)𝑒 (𝐴,𝑈𝑘3)

=
𝑒 (𝑔1, 𝑔1)𝑠

2 (∑𝑖∈ [𝐿] 𝑡2𝑖 +∑𝑖≠𝑗 𝑡𝑖𝑡 𝑗)
𝑒 (𝑔1, 𝑔1)𝑠

2 (∑𝑖∈ [𝐿] 𝑡2𝑖 +∑𝑖≠𝑗 𝑡𝑖𝑡 𝑗 (𝑦𝑖,𝑘1𝑦 𝑗,𝑘2+𝑦 𝑗,𝑘3))
=

∏
𝑖≠𝑗

𝑒 (𝑔1, 𝐵𝑓 (𝑖, 𝑗))1−𝑦𝑖,𝑘1𝑦 𝑗,𝑘2−𝑦 𝑗,𝑘3

= 𝑒 (𝑔1,𝑊ℓ).

• Output satisfiability: Since 𝐶 (x𝑖 ,w𝑖) = 1, it follows that 𝑦𝑖,𝑡 = 1 for all 𝑖 ∈ [𝐿]. By definition, 𝑈𝑡 =∏
𝑖∈[𝐿] 𝐴

𝑦𝑖,𝑡
𝑖

=
∏
𝑖∈[𝐿] 𝐴𝑖 = 𝐴. □

Theorem 7.10 (Somewhere Argument of Knowledge). Suppose the progression-free indistinguishability assumption
(Assumption 7.7) holds with respect to CompGroupGen. Then, Construction 7.8 is a somewhere argument of knowledge.

Proof. We start by defining the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1𝐿, 1𝑠 , 𝑖∗): On input the security parameter _, the number of instances 𝐿, the size of the circuit 𝑠 ,

and the index 𝑖∗, the trapdoor setup algorithm proceeds as follows (with differences relative to Setup highlighted
in green):

1. Sample (G,G𝑇 , 𝑝1, 𝑝2, 𝑔, 𝑒) ← CompGroupGen(1_). Let G1,G2 be the subgroups of G of orders 𝑝1, 𝑝2,

respectively. Let 𝑁 = 𝑝1𝑝2 and G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒).
2. Let D = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set. We define 𝑓 (𝑖, 𝑗) B
𝑑𝑖 + 𝑑 𝑗 and the set of cross terms E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

3. Sample 𝑔1
r← G1 and exponents 𝑎, 𝑠

r← Z𝑁 . For each 𝑖 ∈ [𝐿] \ {𝑖∗}, compute 𝑡𝑖 = 𝑎
𝑑𝑖
and let 𝐴𝑖 = 𝑔

𝑠𝑡𝑖
1
. Let

𝐴𝑖∗ = 𝑔
𝑠𝑡𝑖∗ . Then, compute 𝐴 =

∏
𝑖∈[𝐿] 𝐴𝑖 . Then, for each 𝑧 ∈ E, compute 𝐵𝑧 = 𝑔

𝑠2𝑎𝑧

1
.

Finally, output the common reference string crs =
(
G, 𝑔1, 𝐴, {𝐴𝑖 }𝑖∈[𝐿], {𝐵𝑧}𝑧∈E

)
and the trapdoor td = 𝑔2.

• Extract(td,𝐶, (x1, . . . , x𝐿), 𝜋): On input the trapdoor td = 𝑔2, the Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
statements x1, . . . , x𝐿 ∈ {0, 1}𝑛 , and the proof 𝜋 =

(
{𝑈𝑘 ,𝑉𝑘 }𝑘∈[𝑡], {𝑊ℓ }ℓ∈[𝑠]

)
, the extraction algorithm sets

𝑤∗
𝑘
= 0 if 𝑒 (𝑔2,𝑈𝑘) = 1 and𝑤∗

𝑘
= 1 otherwise for all 𝑘 = 𝑛 + 1, . . . , 𝑛 + ℎ. It outputs w∗ = (𝑤∗𝑛+1, . . . ,𝑤∗𝑛+ℎ).

We now show the CRS indistinguishability and somewhere extractable in trapdoor mode properties.

64

Lemma 7.11 (CRS Indistinguishability). If the progression-free indistinguishability assumption (Assumption 7.7) holds
with respect to CompGroupGen, then Construction 7.8 satisfies CRS indistinguishability.

Proof. Suppose there exists an efficient adversaryA that has non-negligible advantage Y in the CRS indistinguishability

game. We useA to construct an adversaryB for the progression-free indistinguishability assumption (Assumption 7.7):

1. Algorithm B starts by runningA to receive the number of instances 1
𝐿
, the circuit size 1

𝑠
, and a challenge index

𝑖∗ ∈ [𝐿]. Algorithm B constructs an efficiently-computable progression-free and double-free set D = {𝑑𝑖 }𝑖∈[𝐿]
of size 𝐿. As usual, we write 𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 and the set of cross terms E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

2. Algorithm B sends 1
𝐿
, D, and 𝑖∗ to the challenger. The challenger replies with the challenge(

G , 𝑔1 , {𝐴′𝑖 }𝑖∈[𝐿]\{𝑖∗ } , {𝐵′𝑓 (𝑖, 𝑗) }𝑖≠𝑗∈[𝐿] , 𝑇
)
.

3. Algorithm B sets 𝐴𝑖∗ = 𝑇 . For 𝑖 ≠ 𝑖
∗
, it sets 𝐴𝑖 = 𝐴

′
𝑖 and 𝐴 =

∏
𝑖∈[𝐿] 𝐴𝑖 . For 𝑧 ∈ E, algorithm B sets 𝐵𝑧 = 𝐵

′
𝑧 .

Algorithm B gives crs =
(
G, 𝑔1, 𝐴, {𝐴𝑖 }𝑖∈[𝐿], {𝐵𝑧}𝑧∈E

)
to A.

4. After algorithm A outputs a bit 𝑏′ ∈ {0, 1}, algorithm B outputs the same bit.

We now consider the advantage of B. The progression-free indistinguishability challenger samples 𝑎, 𝑠
r← Z𝑁 , sets

𝑡𝑖 = 𝑎
𝑑𝑖
, and sets 𝐴′𝑖 = 𝑔

𝑠𝑡𝑖
1

and 𝐵′
𝑓 (𝑖, 𝑗) = 𝑔

𝑠2𝑡𝑖𝑡 𝑗
1

. We consider two possibilities:

• Suppose 𝑇 = 𝑔
𝑠𝑡𝑖∗
1

. Then, the common reference string crs is sampled according to Setup(1_, 1𝐿, 1𝑠).

• Suppose 𝑇 = 𝑔𝑠𝑡𝑖∗ . Then, the common reference string crs is sampled according to TrapSetup(1_, 1𝐿, 1𝑠 , 𝑖∗).

We conclude that algorithm B wins the progression-free indistinguishability game with the same advantage asA. □

Lemma 7.12 (Somewhere Extractable in Trapdoor Mode). Construction 7.8 is somewhere extractable in trapdoor mode.

Proof. Take any adversary A and let (1𝐿, 1𝑠 , 𝑖∗) ← A(1_). Let (crs∗, td) ← TrapSetup(1_, 1𝐿, 1𝑠 , 𝑖∗). By construction,

crs∗ =
(
G, 𝑔1, 𝐴, {𝐴𝑖 }𝑖∈[𝐿], {𝐵𝑧}𝑧∈E

)
and td = 𝑔2,

where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), 𝑁 = 𝑝1𝑝2, and 𝑔1, 𝑔2 are generators of the subgroups G1,G2, respectively. Let 𝐶 : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1} be the Boolean circuit, x1, . . . , x𝐿 ∈ {0, 1}𝑛 be the statements, and 𝜋 =

(
{𝑈𝑘 ,𝑉𝑘 }𝑘∈[𝑡], {𝑊ℓ }ℓ∈[𝑠]

)
be the proof the adversary outputs. Suppose Verify(crs∗, (x1, . . . , x𝐿), 𝜋) = 1. By construction of TrapSetup, we can
write 𝐴𝑖∗ = 𝑔

𝛼𝑖∗ = 𝑔
𝛼𝑖∗,1
1

𝑔
𝛼𝑖∗,2
2

for some 𝛼𝑖∗,1 ∈ Z𝑝1 and 𝛼𝑖∗,2 ∈ Z𝑝2 . By construction of TrapSetup, 𝛼𝑖∗ = 𝑠 · 𝑎𝑑𝑖∗ , where
𝑠, 𝑎

r← Z𝑁 . Since 𝑑𝑖∗ ≤ max(D) = poly(_), it follows that 𝛼𝑖∗,2 ≠ 0 mod 𝑝2 with overwhelming probability over the

choice of 𝑠, 𝑎
r← Z𝑁 . Then the following properties hold:

• For all 𝑘 ∈ [𝑡], either 𝑈𝑘 ∈ G1 or 𝑈𝑘/𝑔
𝛼𝑖∗,2
2
∈ G1. This follows from the wire validity checks. Specifically,

suppose𝑈𝑘 = 𝑔
𝛽1
1
𝑔
𝛽2
2
∈ G. We can write 𝐴 = 𝑔

∑
𝑖∈ [𝐿] 𝛼𝑖

1
𝑔
𝛼𝑖∗,2
2

. Since verification succeeds, it must be the case that

𝑒 (𝐴,𝑈𝑘) = 𝑒 (𝑔1,𝑉𝑘)𝑒 (𝑈𝑘 ,𝑈𝑘).

Consider the projection into the order-𝑝2 subgroup of G𝑇 . This relation requires that 𝛼𝑖∗,2 · 𝛽2 = 𝛽22 mod 𝑝2.

This means that either 𝛽2 = 0 (in which case𝑈𝑘 ∈ G1) or 𝛽2 = 𝛼𝑖∗,2 (in which case𝑈𝑘/𝑔
𝛼𝑖∗,2
2
∈ G1).

• For each 𝑘 ∈ [𝑡], if 𝑈𝑘 ∈ G1, then set 𝑦𝑘 = 0. If 𝑈𝑘/𝑔
𝛼𝑖∗,2
2
∈ G1, then set 𝑦𝑘 = 1. Then, for all gates 𝐺ℓ =

(𝑘1, 𝑘2, 𝑘3) ∈ [𝑡]3 in the circuit,𝑦𝑘3 = NAND(𝑦𝑘1 , 𝑦𝑘2). This follows from the gate validity checks. In particular, if

verification succeeds, then Eq. (7.2) holds. From the above analysis, we can write𝑈𝑘 = 𝑔
𝛽𝑘,1
1
𝑔
𝑦𝑘𝛼𝑖∗,2
2

for all 𝑘 ∈ [𝑡]
and some 𝛽𝑘,1 ∈ Z𝑁 . Consider the projection of Eq. (7.2) into the order-𝑞 subgroup ofG𝑇 . This yields the relation

𝛼2𝑖∗,2 = (𝑦𝑘1𝛼𝑖∗,2) (𝑦𝑘2𝛼𝑖∗,2) + 𝛼𝑖∗,2 (𝑦𝑘3𝛼𝑖∗,2) = 𝛼2𝑖∗,2 (𝑦𝑘1𝑦𝑘2 + 𝑦𝑘3).

Since 𝛼𝑖∗,2 ≠ 0 mod 𝑝2, this means that 1 = 𝑦𝑘1𝑦𝑘2 +𝑦𝑘3 mod 𝑝2. Equivalently, 𝑦𝑘3 = 1−𝑦𝑘1𝑦𝑘2 = NAND(𝑦𝑘1 , 𝑦𝑘2).

65

• Let x𝑖∗ = (𝑥𝑖∗,1, . . . , 𝑥𝑖∗,𝑛). For 𝑘 ∈ [𝑛], 𝑦𝑘 = 𝑥𝑖∗,𝑘 . This follows from the statement validity check. Namely, for

all 𝑘 ∈ [𝑛], the verifier checks that 𝑈𝑘 = 𝐴
𝑥𝑖∗,𝑘
𝑖∗

∏
𝑖≠𝑖∗ 𝐴

𝑥𝑖,𝑘
𝑖

. Since 𝐴𝑖 ∈ G1 for 𝑖 ≠ 𝑖
∗
, it follows that if 𝑥𝑖∗,𝑘 = 0,

then 𝑈𝑘 ∈ G1 (and 𝑦𝑘 = 0 = 𝑥𝑖∗,𝑘). Otherwise, if 𝑥𝑖∗,𝑘 = 1, then the component of 𝑈𝑘 in G2 is exactly 𝑔
𝛼𝑖∗,2
2

, in

which case 𝑦𝑘 = 1 = 𝑥𝑖∗,𝑘 .

• Finally 𝑦𝑡 = 1. This follows from the output satisfiability check. Namely, the verifier checks that 𝑈𝑡 = 𝐴 =

𝑔

∑
𝑖∈ [𝐿] 𝛼𝑖

1
𝑔
𝛼𝑖∗,2
2

. If the verifier accepts, then this relation holds and 𝑦𝑡 = 1.

The above properties show that 𝑦1, . . . , 𝑦𝑡 ∈ {0, 1} is a valid assignment to the wires of 𝐶 on input x𝑖∗ and witness

w = (𝑦𝑛+1, . . . , 𝑦𝑛+ℎ). Moreover, 𝐶 (x𝑖∗ ,w) = 𝑦𝑡 = 1. To complete the proof, let w∗ ← Extract(td,𝐶, (x1, . . . , x𝐿), 𝜋).
We claim that w∗ = w. In particular, for 𝑘 ∈ [ℎ], if 𝑈𝑛+𝑘 ∈ G1, then 𝑒 (𝑔2,𝑈𝑘) = 1 and 𝑤∗

𝑘
= 0 = 𝑦𝑛+𝑘 . Alternatively,

if 𝑈𝑛+𝑘/𝑔
𝛼𝑖∗,2
2
∈ G1, then 𝑒 (𝑔2,𝑈𝑘) = 𝑒 (𝑔2, 𝑔2)𝛼𝑖∗,2 ≠ 1, so 𝑤∗

𝑘
= 1 = 𝑦𝑛+𝑘 . Thus, with probability 1 − negl(_) over the

randomness of TrapSetup, either Verify(crs∗,𝐶, (x1, . . . , x𝐿), 𝜋) = 0 or 𝐶 (x,w∗) = 1 and the claim holds. □

By Lemmas 7.11 and 7.12, Construction 7.8 is a somewhere argument of knowledge. □

Theorem 7.13 (Succinctness). Construction 7.8 is succinct.

Proof. Take any _, 𝐿, 𝑠 ∈ N and consider a Boolean circuit𝐶 : {0, 1}𝑛×{0, 1}ℎ → {0, 1} of size at most 𝑠 . Let 𝑡 = poly(𝑠)
be the number of wires in 𝐶 . We check each property:

• Proof size: A proof 𝜋 consists of 2𝑡 + 𝑠 elements in G, each of which can be represented in poly(_) bits. Thus,
the proof size satisfies |𝜋 | = (2𝑡 + 𝑠) · poly(_) = poly(_, 𝑠)

• CRS size: The common reference string crs consists of the group description G, and 𝐿 + 1 + |D| elements

in G. Using state-of-the-art progression-free sets (Corollary 2.7), we have that max(D) ≤ 𝐿1+𝑜 (1) . Thus,

|crs| = 𝐿1+𝑜 (1) · poly(_).

• Verification time: Checking the statements requires time 𝐿𝑛 group operations. The remaining checks require

𝑂 (𝑡 + 𝑠) additional group operations. Thus, the total verification cost is poly(_, 𝑠) + poly(_, 𝐿, 𝑛) operations. □

Acknowledgments
We thank Jonathan Bootle and Hoeteck Wee for helpful conversations about progression-free sets. Brent Waters is

supported by NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J. Wu is supported by NSF

CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References
[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure

functional encryption for regular languages, and more. In EUROCRYPT, 2014.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random

oracles. In EUROCRYPT, pages 223–238, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size

ciphertext. In EUROCRYPT, 2005.

[Beh46] F. Behrend. On sets of integers which contain no three terms in arithmetical progression. Proceedings
of the National Academy of Sciences, 32(12), 1946.

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion, 1996.

[BG04] Daniel R. L. Brown and Robert P. Gallant. The static diffie-hellman problem. IACR Cryptol. ePrint Arch.,
page 306, 2004.

66

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-snark parameters

in the random beacon model. IACR Cryptol. ePrint Arch., page 1050, 2017.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In TCC, 2005.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short

ciphertexts and private keys. In CRYPTO, 2005.

[BLM
+
24] Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Ivy K. Y.

Woo. Traitor tracing without trusted authority from registered functional encryption. IACR Cryptol.
ePrint Arch., page 179, 2024.

[Boy08] Xavier Boyen. The uber-assumption family: A unified complexity framework for bilinear groups. In

International Conference on Pairing-Based Cryptography, pages 39–56, 2008.

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against selective opening

attack. In TCC, 2011.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from

indistinguishability obfuscation. In CRYPTO, 2014.

[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption. In

IMACC, 2021.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC, 2013.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups via

predicate encodings. In EUROCRYPT, 2015.

[Che06] Jung Hee Cheon. Security analysis of the strong diffie-hellman problem. In EUROCRYPT, pages 1–11, 2006.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, pages
68–79, 2021.

[DKL
+
23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza

Rahimi. Efficient laconic cryptography from learning with errors. In EUROCRYPT, pages 417–446, 2023.

[DP23] Pratish Datta and Tapas Pal. Registration-based functional encryption. IACR Cryptol. ePrint Arch., page
457, 2023.

[DPY23] Pratish Datta, Tapas Pal, and Shota Yamada. Registered fe beyond predicates:(attribute-based) linear

functions and more. Cryptology ePrint Archive, 2023.

[Elk10] Michael Elkin. An improved construction of progression-free sets. In SODA, 2010.

[ET36] Paul Erdös and Paul Turán. On some sequences of integers. Journal of the London Mathematical Society,
1(4), 1936.

[FFM
+
23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele

Venturi. Registered (inner-product) functional encryption. In ASIACRYPT, pages 98–133, 2023.

[FKdP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-based

encryption and key-value map commitments for large spaces. In ASIACRYPT, 2023.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered ABE,

flexible broadcast, and more. In CRYPTO, pages 498–531, 2023.

[GHM
+
19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar.

Registration-based encryption from standard assumptions. In PKC, 2019.

67

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-

based encryption: Removing private-key generator from IBE. In TCC, 2018.

[GKMR22] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient registration-based

encryption. IACR Cryptol. ePrint Arch., 2022.

[GLWW23] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Realizing flexible broadcast encryption: How

to broadcast to a public-key directory. In ACM CCS, pages 1093–1107, 2023.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained

access control of encrypted data. In ACM CCS, 2006.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In CRYPTO, 2020.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based encryption.

In EUROCRYPT, 2023.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments and

RAM delegation. In STOC, pages 1545–1552, 2023.

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast encryption from bilinear

groups. In ASIACRYPT, pages 407–441, 2023.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In STOC,
pages 1115–1124, 2019.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial

equations, and inner products. In EUROCRYPT, 2008.

[KSW13] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial

equations, and inner products. J. Cryptol., 26(2):191–224, 2013.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge

arguments. In TCC, 2012.

[LM19] Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct arguments.

In CRYPTO, 2019.

[LOS
+
10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure

functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In

EUROCRYPT, 2010.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE

with short ciphertexts. In TCC, 2010.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EUROCRYPT, 2011.

[MQR22] Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi. Lower bounds for the number of decryption

updates in registration-based encryption. In TCC, 2022.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT, pages
256–266, 1997.

[SKSW20] Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad Wahby. Pairing-friendly curves. I-d,

IETF, 9 2020.

[SS46] R. Salem and D. C. Spencer. On sets of integers which contain no three in arithmetic progression.

Proceedings of the National Academy of Sciences, 32(12), 1946.

68

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pages
114–127, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.

In CRYPTO, 2009.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably

secure realization. In PKC, 2011.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In TCC, 2014.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group

assumptions. In CRYPTO, 2022.

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via predicate encodings. In

ASIACRYPT, 2023.

A Analysis of Construction 5.5
In this section, we provide the formal proofs of Lemmas 5.11, 5.12, 5.15 and 5.21 underlying the security analysis of

Construction 5.5. The structure of these proofs arguments directly parallels the corresponding proof from [HLWW23,

Theorem 5.9]. As such, we reuse the prose and notation as the corresponding proofs from [HLWW23].

A.1 Proof of Lemma 5.11
This follows from an adaptation of the proof from [HLWW23, Lemma 5.10]. As noted previously, we reuse the same

or similar prose and exposition from [HLWW23]. These two experiments are statistically indistinguishable if all of
the public keys pk∗𝑖 the adversary specifies in the challenge phase either satisfy pk∗𝑖 = ⊥ or pk∗𝑖 is in the support of

the honest key-generation algorithm (i.e., for every 𝑖 ∈ [𝐿], there exists 𝑟𝑖 such that pk∗𝑖 is the public key output by

KeyGen(crs, 𝑖)). We start by showing that under Assumption 5.2a, the only public keys pk∗𝑖 that an efficient adversary
can construct and which satisfy the validity check IsValid(crs, 𝑖, pk𝑖) are those that are in the support of the honest

key-generation algorithm. To do so, we start by characterizing the set of possible strategies available to an efficient ad-

versary. Here, we extend the proof strategy of [HLWW23] by allowing our reduction to handle structured distributions.

Claim A.1. For a security parameter _, we define the following game between an adversary A and a challenger:

1. On input the security parameter 1_ , algorithm A outputs 1𝑄 and 1𝑞
∗
. We require that 𝑞∗ > 0.

2. Then, the challenger samples (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑔, 𝑒) ← CompGroupGen(1_). It sets 𝑁 = 𝑝1𝑝2𝑝3𝑝4, G =

(G,G𝑇 , 𝑁 , 𝑔, 𝑒) and samples 𝑔1
r← G1, 𝑔3

r← G3, 𝑔4
r← G3, and 𝑎, 𝜏

r← Z𝑁 . Then, for all 𝑖 ∈ [𝑄], it sets 𝑍𝑖 = 𝑔𝑎
𝑖

1

and 𝑍 ∗ = 𝑔𝑎
𝑞∗

1
𝑔𝜏
3
. The challenger gives the tuple

(
G, 𝑔1, 𝑔3, 𝑔4, {𝑍𝑖 }𝑖∈[𝑄], 𝑍 ∗

)
to A.

3. Algorithm A outputs a tuple (𝐴, 𝐵,𝐶) ∈ G3.

4. The challenger outputs 𝑏 = 1 if the following relations are satisfied:

𝑒 (𝑔3, 𝐴) = 1 = 𝑒 (𝑔1, 𝐵) , 𝑒 (𝐴,𝑍 ∗) = 𝑒 (𝑔1,𝐶) , 𝑒 (𝐵, 𝑍 ∗) = 𝑒 (𝑔3,𝐶) , 𝑒 (𝑔4, 𝐴) = 𝑒 (𝑔4, 𝐵) = 𝑒 (𝑔4,𝐶) = 1, (A.1)

and moreover, there does not exist 𝑟 ∈ Z𝑁 such that 𝐴 = 𝑔𝑟
1
, 𝐵 = 𝑔𝑟

3
, and 𝐶 = (𝑍 ∗)𝑟 .

Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A, there exists a
negligible function negl(·) such that for all _ ∈ N, Pr[𝑏 = 1] = negl(_) in the above security game.

69

Proof. Suppose there exists an efficient adversary A such that Pr[𝑏 = 1] = Y for some non-negligible Y. We use A
to construct an adversary B that breaks Assumption 5.2a:

1. At the beginning of the game, algorithm B receives a challenge (G, 𝑔1, 𝑔3, 𝑔4,𝑇), where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, 𝑔4 ∈ G4, and either 𝑇 = 𝑔𝑟

1
or 𝑇 = (𝑔1𝑔2)𝑟 .

2. Algorithm B starts running algorithm A to obtain 1
𝑄
and 1

𝑞∗
.

3. Algorithm B samples exponents 𝛾𝐴, 𝛾𝐵
r← Z𝑁 and for each 𝑖 ∈ [𝑄], computes 𝑍𝑖 = 𝑔

𝛾𝑖
𝐴

1
and 𝑍 ∗ = 𝑔

𝛾
𝑞∗
𝐴

1
𝑔
𝛾𝐵
3
.

4. Algorithm B starts running algorithm A on input (G, 𝑔1, 𝑔3, 𝑔4, {𝑍𝑖 }𝑖∈[𝑄], 𝑍 ∗) to obtain a triple (𝐴, 𝐵,𝐶).

5. Algorithm B computes 𝑍 ′ = 𝐶/(𝐴𝛾
𝑞∗
𝐴 𝐵𝛾𝐵) and outputs 1 if 𝑒 (𝑍 ′,𝑇) = 1 and 0 otherwise.

First, we argue that algorithm B perfectly simulates an execution of the security game from Claim A.1 for A. This

follows by construction: namely, in the reduction, the exponent 𝛾𝐴
r← Z𝑁 plays the role of 𝑎 and the exponent

𝛾𝐵
r← Z𝑁 plays the role of 𝜏 in Claim A.1. Thus, with probability at least Y, algorithm A outputs a tuple (𝐴, 𝐵,𝐶)

such that Eq. (A.1) holds:

𝑒 (𝑔3, 𝐴) = 1 = 𝑒 (𝑔1, 𝐵) , 𝑒 (𝐴,𝑍 ∗) = 𝑒 (𝑔1,𝐶) , 𝑒 (𝐵, 𝑍 ∗) = 𝑒 (𝑔3,𝐶) , 𝑒 (𝑔4, 𝐴) = 𝑒 (𝑔4, 𝐵) = 𝑒 (𝑔4,𝐶) = 1.

Moreover, there does not exist 𝑟 ∈ Z𝑁 such that 𝐴 = 𝑔𝑟
1
, 𝐵 = 𝑔𝑟

3
, and 𝐶 = (𝑍 ∗)𝑟 . We now argue that in this case, over

the choice of 𝛾𝐴, 𝛾𝐵
r← Z𝑁 , it will be the case that 𝑍 ′ ∈ G2 \ {1} with overwhelming probability.

• First, we show that 𝑍 ′ does not have any non-trivial component in the G1,G3 and G4 subgroups (i.e., 𝑍
′ ∈ G2).

First, 𝑍 ′ is a product of 𝐴, 𝐵,𝐶 . Since 𝑒 (𝑔4, 𝐴) = 𝑒 (𝑔4, 𝐵) = 𝑒 (𝑔4,𝐶) = 1, it holds that 𝑒 (𝑔4, 𝑍 ′) = 1. We now

show that 𝑒 (𝑔1𝑔3, 𝑍 ′) = 1. First, using the fact that 𝑒 (𝑔1,𝐶) = 𝑒 (𝐴,𝑍 ∗), 𝑒 (𝑔3,𝐶) = 𝑒 (𝐵, 𝑍 ∗), and 𝑍 ∗ = 𝑔
𝛾
𝑞∗
𝐴

1
𝑔
𝛾𝐵
3
,

we can write

𝑒 (𝑔1𝑔3, 𝑍 ′) =
𝑒 (𝑔1𝑔3,𝐶)

𝑒
(
𝑔1𝑔3, 𝐴

𝛾
𝑞∗
𝐴

)
𝑒
(
𝑔1𝑔3, 𝐵

𝛾𝐵
) =

𝑒 (𝐴,𝑍 ∗)𝑒 (𝐵, 𝑍 ∗)

𝑒
(
𝑔1𝑔3, 𝐴

𝛾
𝑞∗
𝐴

)
𝑒
(
𝑔1𝑔3, 𝐵

𝛾𝐵
) =

𝑒
(
𝐴,𝑔

𝛾
𝑞∗
𝐴

1
𝑔
𝛾𝐵
3

)
𝑒
(
𝐵,𝑔

𝛾
𝑞∗
𝐴

1
𝑔
𝛾𝐵
3

)
𝑒
(
𝑔1𝑔3, 𝐴

𝛾
𝑞∗
𝐴

)
𝑒
(
𝑔1𝑔3, 𝐵

𝛾𝐵
) .

Next, since 𝑒 (𝑔1, 𝐵) = 1 = 𝑒 (𝑔3, 𝐴), we have

𝑒 (𝑔1𝑔3, 𝑍 ′) =
𝑒
(
𝐴,𝑔

𝛾
𝑞∗
𝐴

1
𝑔
𝛾𝐵
3

)
𝑒
(
𝐵,𝑔

𝛾
𝑞∗
𝐴

1
𝑔
𝛾𝐵
3

)
𝑒
(
𝑔1𝑔3, 𝐴

𝛾
𝑞∗
𝐴

)
𝑒
(
𝑔1𝑔3, 𝐵

𝛾𝐵
) =

𝑒 (𝐴,𝑔1)𝛾
𝑞∗
𝐴 𝑒 (𝐵,𝑔3)𝛾𝐵

𝑒 (𝑔1, 𝐴)𝛾
𝑞∗
𝐴 𝑒 (𝑔3, 𝐵)𝛾𝐵

= 1.

Hence, we conclude that 𝑒 (𝑔1𝑔3𝑔4, 𝑍 ′) = 1, so 𝑍 ′ ∈ G2. It remains to show that 𝑍 ′ ≠ 1.

• Next, at least one of the group elements 𝐴, 𝐵,𝐶 must contain a non-trivial component in the G2 subgroup.

Suppose otherwise: namely that 𝐴 = (𝑔1𝑔3)𝑟𝐴 , 𝐵 = (𝑔1𝑔3)𝑟𝐵 , and 𝐶 = (𝑔1𝑔3)𝑟𝐶 for some 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 ∈ Z𝑁 . Note
that 𝑒 (𝑔4, 𝐴) = 𝑒 (𝑔4, 𝐵) = 𝑒 (𝑔4,𝐶) = 1 so 𝐴, 𝐵,𝐶 cannot contain non-trivial components in the G4 subgroup.

Then, Eq. (A.1) imply the following:

– Since 𝑒 (𝑔3, 𝐴) = 𝑒 (𝑔3, 𝑔3)𝑟𝐴 mod 𝑝3 = 1, it must be the case that 𝑟𝐴 mod 𝑝3 = 0. Thus, 𝐴 = 𝑔
𝑟𝐴 mod 𝑝1
1

.

– Since 𝑒 (𝑔1, 𝐵) = 𝑒 (𝑔1, 𝑔1)𝑟𝐵 mod 𝑝1 = 1, it must be the case that 𝑟𝐵 mod 𝑝1 = 0. Thus, 𝐵 = 𝑔
𝑟𝐵 mod 𝑝3
3

.

– Finally, 𝑒 (𝑔1,𝐶) = 𝑒 (𝐴,𝑍 ∗) means that 𝑒 (𝑔1, 𝑔1)𝑟𝐶 mod 𝑝1 = 𝑒 (𝐴,𝑍 ∗) = 𝑒 (𝑔1, 𝑔1)𝛾
𝑞∗
𝐴
𝑟𝐴 mod 𝑝1

. Analogously,

𝑒 (𝑔3,𝐶) = 𝑒 (𝐵, 𝑍 ∗) means that 𝑒 (𝑔3, 𝑔3)𝑟𝐶 mod 𝑝3 = 𝑒 (𝐵, 𝑍 ∗) = 𝑒 (𝑔3, 𝑔3)𝛾𝐵𝑟𝐵 mod 𝑝3
. Putting these together,

this means that 𝑟𝐶 = 𝛾
𝑞∗

𝐴
𝑟𝐴 mod 𝑝1 and 𝑟𝐶 = 𝛾𝐵𝑟𝐵 mod 𝑝3. Take any 𝑟 ∈ Z𝑁 such that 𝑟 = 𝑟𝐴 mod 𝑝1 and

𝑟 = 𝑟𝐵 mod 𝑝3. Then, we can write

𝐶 = (𝑔1𝑔3)𝑟𝐶 = 𝑔
𝑟𝐶 mod 𝑝1
1

𝑔
𝑟𝐶 mod 𝑝3
3

= 𝑔
𝛾
𝑞∗
𝐴
𝑟𝐴 mod 𝑝1

1
𝑔
𝛾𝐵𝑟𝐵 mod 𝑝3
3

= (𝑔𝛾
𝑞∗
𝐴

1
𝑔
𝛾𝐵
3
)𝑟 = (𝑍 ∗)𝑟 .

70

This contradicts the assumption that there does not exist 𝑟 ∈ Z𝑁 such that 𝐴 = 𝑔𝑟
1
, 𝐵 = 𝑔𝑟

3
, and 𝐶 = (𝑍 ∗)𝑟 .

• Thus, at least one of 𝐴, 𝐵,𝐶 must contain a non-trivial component in the G2 subgroup. Denote these by 𝑔
𝑎′
2
, 𝑔𝑏

′
2

and𝑔𝑐
′
2
, respectively. We have that at least one of 𝑎′, 𝑏′, 𝑐′ ≠ 0 mod 𝑝2. Next, by the Chinese Remainder Theorem,

the exponents 𝛾𝐴 and 𝛾𝐵 are uniform over Z𝑁 , so 𝛾𝐴 mod 𝑝2 and 𝛾𝐵 mod 𝑝2 are uniform over Z𝑝2 and more

importantly, independent of the view of the adversary, as they are not revealed by {𝑍𝑖 }𝑖∈[𝑄], 𝑍 ∗. Thus, we can

write the G2 components of 𝑍 ′ as 𝑔
𝑐−𝑎𝛾𝑞

∗
𝐴
−𝑏𝛾𝐵

2
. Consider the exponent 𝑐 −𝑎𝛾𝑞

∗

𝐴
−𝑏𝛾𝐵 mod 𝑝2. Since 𝑎, 𝑏, 𝑐 are not

all identically 0, this is a non-zero polynomial in 𝛾𝐴, 𝛾𝐵 with degree at most 𝑞∗. By the Schwartz-Zippel lemma,

Pr

[
𝑐 − 𝑎𝛾𝑞

∗

𝐴
− 𝑏𝛾𝐵 = 0 mod 𝑝2 : 𝛾𝐴, 𝛾𝐵

r← Z𝑝2
]
≤ 𝑞

∗

𝑝2
= negl(_),

since 𝑞∗ = poly(_). Correspondingly, this means that with probability 1 − negl(_), 𝑍 ′ has a non-trivial G2

component.

Putting the pieces together, if algorithm A succeeds, then with overwhelming probability, 𝑍 ′ ∈ G2 \ {1}. In this case,

if 𝑇 = 𝑔𝑟
1
, then 𝑒 (𝑍 ′,𝑇) = 1 and if 𝑇 = (𝑔1𝑔2)𝑟 , then 𝑒 (𝑍 ′,𝑇) ≠ 1 (unless 𝑟 = 0). Correspondingly, algorithm B breaks

Assumption 5.2a with probability Y − negl(_). □

Using Claim A.1, we now show that the only public keys pk∗𝑖 the efficient adversary can construct that pass the

validity check are those in the support of the honest key-generation algorithm.

Lemma A.2. For each index 𝑖 ∈ [𝐿], let pk∗𝑖 be the public key algorithm A outputs for slot 𝑖 in the challenge phase
in Hyb(a)real. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all indices 𝑖 ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, if IsValid(crs, 𝑖, pk𝑖) = 1, then with probability 1 − negl(_), there exists 𝑟𝑖 ∈ Z𝑁 such
that pk∗𝑖 is the public key output of KeyGen(crs, 𝑖; 𝑟𝑖).

Proof. Take any index 𝑖 ∈ [𝐿]. Let pk∗𝑖 be the public key algorithm A chooses for index 𝑖 in Hyb(a)real. Parse

pk∗𝑖 =
(
𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
. Suppose IsValid(crs, 𝑖, pk∗𝑖) = 1.

• We first show that there exists 𝑟𝑖 ∈ Z𝑁 such that 𝑇𝑖 = 𝑔
𝑟𝑖
1
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
where 𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 is the

component from the CRS. Suppose otherwise. Then, we use A to construct an efficient algorithm B that wins

the game in Claim A.1:

1. At the beginning of the game, algorithm B sets 𝑄 = 0 and 𝑞∗ = 1 and outputs 1
𝑄
and 1

𝑞∗
. It receives

a tuple (G, 𝑔1, 𝑔3, 𝑔4, 𝑍 ∗) from the challenger, where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) and 𝑍 ∗ = (𝑔1𝑔3)𝛿 for some

𝛿
r← Z𝑁 . (Technically, the challenger sets 𝑍 ∗ = 𝑔𝑎1𝑔𝜏3 where 𝑎, 𝜏

r← Z𝑁 , but it is easy to see that these two

distributions are identical via the Chinese Remainder Theorem).

2. Algorithm B starts running algorithm A and receives the number of slots 1
𝐿
. Algorithm B guesses an

index 𝑖∗ r← [𝐿] and uses (G, 𝑔1, 𝑔3, 𝑔4) to construct the components of crs according to Setup(1_, 1 |U_ | , 1𝐿).
It uses 𝑍 ∗ in place of 𝑃𝑖∗ in crs. All of the other components are sampled according to the procedure in

Setup. Algorithm B gives crs to A.

3. Algorithm B responds to the key-generation queries exactly as described in Hyb(a)real. All of the logic only

requires knowledge of the crs (and none of the specific exponents).

4. During the challenge phase, algorithm B constructs the public keys pk𝑖 for each 𝑖 ∈ [𝐿] using the same

procedure as inHyb(a)real. Again, the procedure here only depends on the components of the crs and does not
require any knowledge of exponents. It parses pk𝑖∗ =

(
𝑇𝑖∗ , 𝑄𝑖∗ , 𝑅𝑖∗ , {𝑉𝑗,𝑖∗ } 𝑗≠𝑖∗

)
and outputs (𝑇𝑖∗ , 𝑅𝑖∗ , 𝑄𝑖∗).

By construction, algorithm B perfectly simulates the distribution of the common reference string. Thus, with

probability Y, there exists an index 𝑖 ∈ [𝐿] where IsValid(crs, 𝑖, pk𝑖) = 1 and there does not exist 𝑟𝑖 ∈ Z𝑁 where

pk𝑖 = KeyGen(crs, 𝑖; 𝑟𝑖). Since 𝑖∗ is perfectly hidden fromA, with probability 1/𝐿 over the choice of 𝑖∗, it holds
that 𝑖 = 𝑖∗. If IsValid(crs, 𝑖∗, pk∗𝑖∗) = 1, then

𝑒 (𝑔3,𝑇𝑖∗) = 1 = 𝑒 (𝑔1, 𝑅𝑖∗) , 𝑒 (𝑇𝑖∗ , 𝑃𝑖∗) = 𝑒 (𝑔1, 𝑄𝑖∗) , 𝑒 (𝑅𝑖∗ , 𝑃𝑖∗) = 𝑒 (𝑔3, 𝑄𝑖∗),

71

and

𝑒 (𝑔4,𝑇𝑖∗) = 𝑒 (𝑔4, 𝑄𝑖∗) = 𝑒 (𝑔4, 𝑅𝑖∗) = 1.

Suppose now that there does not exist 𝑟𝑖∗ ∈ Z𝑁 where 𝑇𝑖∗ = 𝑔
𝑟𝑖∗
1
, 𝑅𝑖∗ = 𝑔

𝑟𝑖∗
3
, and 𝑄𝑖∗ = 𝑃

𝑟𝑖∗
𝑖∗ . Then B wins

the game in Claim A.1. Correspondingly, if algorithm A outputs a malformed key with probability Y, then

algorithm B succeeds with probability Y/𝐿, which proves the claim.

• Next, we show that for all 𝑗 ≠ 𝑖 , there exists 𝑟 𝑗,𝑖 ∈ Z𝑁 such that 𝑇𝑖 = 𝑔
𝑟 𝑗,𝑖
1

, 𝑅𝑖 = 𝑔
𝑟 𝑗,𝑖
3

, 𝑉𝑗,𝑖 = 𝐴
𝑟 𝑗,𝑖
𝑗

where 𝐴 𝑗 is

the component from the CRS. Against, suppose this was not the case. Once again, we use A to construct an

adversary B that wins the game in Claim A.1:

1. Algorithm B starts running algorithm A and receives the number of slots 1
𝐿
. Let D = {𝑑𝑖 }𝑖∈[𝐿] be an

efficiently-computable progression-free and double-free set. As usual, we define 𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 and the

set E B {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}. Let 𝑑max = max(D). Algorithm B sets 𝑄 = 2𝑑max and 𝑞
∗ = 𝑑 𝑗 and

outputs 1
𝑄
and 1

𝑞∗
.

2. Algorithm B receives a tuple (G, 𝑔1, 𝑔3, 𝑔4, {𝑍𝑖 }𝑖∈[𝑄], 𝑍 ∗) from the challenger, where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑍𝑖 = 𝑔

𝑎𝑖

1
and 𝑍 ∗ = 𝑔𝑎

𝑞∗

1
𝑔
𝜏 ′𝑗
3
, and where the challenger sampled 𝑎, 𝜏 ′𝑗

r← Z𝑁 .

3. Algorithm B now constructs the crs according to Setup(1_, 1 |U_ | , 1𝐿). Specifically, algorithm B samples

𝛼, 𝛽
r← Z𝑁 . Then, for each 𝑖 ∈ [𝐿], it samples 𝛿𝑖 , 𝜏𝑖 , 𝜏

′
𝑖

r← Z𝑁 and for each𝑤 ∈ U_ , it samples 𝑏𝑤
r← Z𝑁 .

Algorithm B sets 𝐴 𝑗 = 𝑍
∗
and the remaining elements for 𝑖 ∈ [𝐿],𝑤 ∈ U_ , and 𝑧 ∈ E as

𝐴𝑖 = 𝑍𝑑𝑖𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 , 𝑈𝑖,𝑤 = 𝑍

𝑏𝑤
𝑑𝑖

, 𝑊𝑧,𝑤 = 𝑍𝑏𝑤𝑧 .

Finally, algorithm B sets ℎ = 𝑔
𝛽

1
and 𝑍 = 𝑒 (𝑔1, 𝑔1)𝛼 and gives crs to A where

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
.

4. Algorithm B responds to the key-generation queries exactly as described in Hyb(a)real. All of the logic only

requires knowledge of the crs (and none of the specific exponents).

5. During the challenge phase, algorithm B constructs the public keys pk𝑖 for each 𝑖 ∈ [𝐿] using the same

procedure as in Hyb(a)real. Again, the procedure here only depends on the components of the crs and
does not require any knowledge of exponents. Finally, algorithm B samples a random 𝑖∗ r← [𝐿], parses
pk𝑖∗ =

(
𝑇𝑖∗ , 𝑄𝑖∗ , 𝑅𝑖∗ , {𝑉𝑗,𝑖∗ } 𝑗≠𝑖∗

)
and outputs (𝑇𝑖∗ , 𝑅𝑖∗ ,𝑉𝑗,𝑖∗).

We claim that algorithm B perfectly simulates an execution of Hyb(a)real for A, where the exponents 𝑎, 𝜏 𝑗
r← Z𝑁

sampled by the challenger for Claim A.1 plays the role of the corresponding exponents in Hyb(a)real. It suffices

to consider the distribution of 𝐴 𝑗 . In the reduction, algorithm B sets 𝐴 𝑗 = 𝑍
∗ = 𝑔𝑎

𝑑𝑗

1
𝑔
𝜏 ′𝑗
3
, which is precisely the

distribution of𝐴 𝑗 in Hyb(a)real. Thus, with probability Y, there exists an index 𝑖 ∈ [𝐿] where IsValid(crs, 𝑖, pk𝑖) = 1

and there does not exist 𝑟𝑖 ∈ Z𝑁 where pk𝑖 = KeyGen(crs, 𝑖; 𝑟𝑖). Since 𝑖∗ is randomly sampled at the very end,

with probability 1/𝐿 over the choice of 𝑖∗, it holds that 𝑖 = 𝑖∗. If IsValid(crs, 𝑖∗, pk∗𝑖∗) = 1, then

𝑒 (𝑔3,𝑇𝑖∗) = 1 = 𝑒 (𝑔1, 𝑅𝑖∗) , 𝑒 (𝑇𝑖∗ , 𝐴 𝑗) = 𝑒 (𝑔1,𝑉𝑗,𝑖∗) , 𝑒 (𝑅𝑖∗ , 𝐴 𝑗) = 𝑒 (𝑔3,𝑉𝑗,𝑖∗),

and

𝑒 (𝑔4,𝑇𝑖∗) = 𝑒 (𝑔4, 𝑅𝑖∗) = 𝑒 (𝑔4,𝑉𝑗,𝑖∗) = 1.

Suppose now that there does not exist 𝑟 𝑗,𝑖∗ ∈ Z𝑁 where 𝑇𝑖∗ = 𝑔
𝑟 𝑗,𝑖∗
1

, 𝑅𝑖∗ = 𝑔
𝑟 𝑗,𝑖∗
3

, and 𝑉𝑗,𝑖∗ = 𝐴
𝑟 𝑗,𝑖∗
𝑗

. Since

𝐴 𝑗 = 𝑍
∗
, we conclude that algorithm B wins the game in Claim A.1. Correspondingly, if algorithm A outputs

a malformed key with probability Y, then algorithm B succeeds with probability Y/𝐿, which proves the claim.

72

Thus, we have shown that for all tuples (𝑖, pk∗𝑖) where IsValid(crs, 𝑖, pk∗𝑖) = 1 and which are output by an efficient

adversary A, it must be the case that there exists 𝑟𝑖 , 𝑟 𝑗,𝑖 ∈ Z𝑁 for all 𝑗 ≠ 𝑖 such that

𝑇𝑖 = 𝑔
𝑟𝑖
1
= 𝑔

𝑟 𝑗,𝑖
1

and 𝑅𝑖 = 𝑔
𝑟𝑖
3
= 𝑔

𝑟 𝑗,𝑖
3

and 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

and 𝑉𝑗,𝑖 = 𝐴
𝑟 𝑗,𝑖
𝑗
.

The requirement on 𝑇𝑖 ensures that 𝑟𝑖 = 𝑟 𝑗,𝑖 mod 𝑝1 for all 𝑗 ≠ 𝑖 . Similarly, the requirement on 𝑅𝑖 ensures that

𝑟𝑖 = 𝑟 𝑗,𝑖 mod 𝑝3. By construction, each of the 𝐴 𝑗 ’s are contained in G1 × G3. Then,

𝑇𝑖 = 𝑔
𝑟𝑖
1

and 𝑅𝑖 = 𝑔
𝑟𝑖
3

and 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

and 𝑉𝑗,𝑖 = 𝐴
𝑟 𝑗,𝑖
𝑗

= 𝐴
𝑟 𝑗,𝑖 mod 𝑝1𝑝3
𝑗

= 𝐴
𝑟𝑖 mod 𝑝1𝑝3
𝑗

= 𝐴
𝑟𝑖
𝑗
,

for all 𝑗 ≠ 𝑖 , and the claim follows. □

Returning now to the proof of Lemma 5.11, we can first appeal to Lemma A.2 to conclude that for all efficient

adversariesA, in Hyb(a)real, the public keys pk
∗
1
, . . . , pk∗𝐿 chosen byA in the challenge phase are either ⊥, do not satisfy

the IsValid predicate, or are in the support of the honest key-generation algorithm. Thus, if the challenger does

not abort, then it must be the case that for all 𝑖 ∈ [𝐿], there exists 𝑟𝑖 ∈ Z𝑁 such that pk𝑖 is the public key output of

KeyGen(crs, 𝑖; 𝑟𝑖). In particular, all of the keys pk𝑖 sampled by the challenger in an (honest) key-generation query

already satisfy this property. Thus, for each 𝑖 ∈ [𝐿], we can write

𝑇𝑖 = 𝑔
𝑟𝑖
1

, 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

, 𝑅𝑖 = 𝑔
𝑟𝑖
3

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
. (A.2)

Then, in both Hyb(a)real and Hyb(a)
1

, the following relations hold:

𝑇 =
∏
𝑖∈[𝐿]

𝑇𝑖 =
∏
𝑖∈[𝐿]

𝑔
𝑟𝑖
1

and 𝑈𝑤 =
∏

𝑖∈[𝐿]:𝑤∉𝑆𝑖

𝑈𝑖,𝑤 = 𝑔
𝑏𝑤

∑
𝑖∈ [𝐿]:𝑤∉𝑆𝑖

𝑡𝑖

1
. (A.3)

We now consider the components in the two experiments:

• In both experiments, ℎ,ℎ1, ℎ2 is uniform overG1 subject to the constraintℎ = ℎ1ℎ2. Moreover, since 𝛽1, 𝛽2
r← Z𝑁 ,

𝛽 = 𝛽1 + 𝛽2 is also uniform over Z𝑁 in Hyb(a)
1

, so the distribution of 𝛽 matches that in Hyb(a)real.

• Consider the distribution of 𝑃𝑖 in the two experiments. In Hyb(a)real,

𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 = 𝑔𝛿𝑖 mod 𝑝1
1

𝑔
𝛿𝑖 mod 𝑝3
3

.

Since 𝛿𝑖 is uniform over Z𝑁 (and independent of all other quantities), 𝛿𝑖 mod 𝑝1 and 𝛿𝑖 mod 𝑝3 are independently

uniform over Z𝑝1 and Z𝑝3 , respectively, by the Chinese Remainder Theorem. In Hyb(a)
1

,

𝑃𝑖 = (𝑔𝑠1𝑔3)𝛿𝑖 = 𝑔
𝑠𝛿𝑖 mod 𝑝1
1

𝑔
𝛿𝑖 mod 𝑝3
3

.

Since 𝛿𝑖 is still uniform over Z𝑁 (and independent of all other quantities), the distribution of 𝑠𝛿𝑖 mod 𝑝1 is

uniform over Z𝑝1 as long as 𝑠 ≠ 0 mod 𝑝1 (which holds with overwhelming probability since 𝑠
r← Z𝑁). As such,

the distribution of 𝑃𝑖 in these two experiments is statistically indistinguishable.

• Consider the attribute-specific components 𝐶3,𝑘 in the challenge ciphertext. In Hyb(a)
1

, for each 𝑘 ∈ [𝐾],

𝐶3,𝑘 = (𝑔𝑠
1
)𝛽2mT

𝑘
v′ (𝐶4,𝑘)−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

= (𝑔𝑠
1
)𝛽2mT

𝑘
v (𝑔1𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

Since ℎ2 = 𝑔
𝛽2
1

and appealing to Eq. (A.3), this can be rewritten as

𝐶3,𝑘 = ℎ
mT
𝑘
v′′

2
𝑈
−𝑠𝑘
𝜌 (𝑘)𝑔

[′
𝑘

4
,

where v′′ = 𝑠v′ = [𝑠, 𝑠𝑣2, . . . , 𝑠𝑣𝑛]T and [′𝑘 = [𝑘 − 𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖 . In Hyb(a)

1
, the challenger samples

𝑣2, . . . , 𝑣𝑛, [𝑘
r← Z𝑁 . Moreover, since [𝑘 is only used to randomize 𝐶3,𝑘 , the distribution of [′

𝑘
in the above

expression is uniform over and independent over Z𝑁 . We conclude that the distribution of 𝐶3,𝑘 in Hyb(a)
1

matches the distribution in Hyb(a)real with the substitution v ↦→ v′′ and [𝑘 ↦→ [′
𝑘
.

73

• Finally, consider the slot-specific component 𝐶5 in the challenge ciphertext in Hyb(a)
1

. By Eq. (A.2),

𝑄
𝛿−1𝑖
𝑖

𝑅𝑖
=
𝑃
𝑟𝑖𝛿
−1
𝑖

𝑖

𝑔
𝑟𝑖
3

=
𝑔
𝑠𝑟𝑖
1
𝑔
𝑟𝑖
3

𝑔
𝑟𝑖
3

= 𝑔
𝑠𝑟𝑖
1
.

By Eq. (A.3), in Hyb(a)
1

,

𝐶5 = (𝑔𝑠1)𝛽1
©«
∏
𝑖∈[𝐿]

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬ = ℎ𝑠
1

∏
𝑖∈[𝐿]

𝑔
−𝑠𝑟𝑖
1

= ℎ𝑠
1
𝑇 −𝑠 .

Thus, 𝐶5 is distributed identically to Hyb(a)real. □

A.2 Proof of Lemma 5.12
This follows from an adaptation of the proof from [HLWW23, Lemma 5.13]. As noted previously, we follow and

reuse much of the same prose and exposition from [HLWW23]. Suppose there exists an efficient adversary A that

distinguishes between Hyb(a)
1

and Hyb(a)
2

with non-negligible advantage Y. We use A to construct an adversary B
that breaks Assumption 5.2a with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, 𝑔1, 𝑔3, 𝑔4,𝑇) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, 𝑔4 ∈ G4, and either 𝑇 = 𝑔𝑠

1
or 𝑇 = (𝑔1𝑔2)𝑠 for some 𝑠

r← Z𝑁 . The components that depend

on the challenge element 𝑇 are colored for clarity.

2. Algorithm B starts running algorithm A and receives the number of slots 1
𝐿
. Then, algorithm B samples

𝛼, 𝛽1, 𝛽2, 𝑎
r← Z𝑁 . It sets 𝑍 = 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 = 𝛽1 + 𝛽2, and ℎ = 𝑔

𝛽

1
.

3. Let D = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set. As usual, we define

𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 and the set of cross terms E = {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

4. For each slot 𝑖 ∈ [𝐿], algorithm B samples 𝛿𝑖 , 𝜏𝑖 , 𝜏
′
𝑖

r← Z𝑁 and sets 𝑡𝑖 = 𝑎𝑑𝑖 . It then constructs the slot

components as follows:

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑇𝑔3)𝛿𝑖 .

Then, for each attribute𝑤 ∈ U_ , algorithm B samples 𝑏𝑤
r← Z𝑁 . For each𝑤 ∈ U_ , slot index 𝑖 ∈ [𝐿], and cross

term index 𝑧 ∈ E, algorithm B constructs the attribute-specific slot components𝑈𝑖,𝑤 and𝑊𝑧,𝑤 as in Hyb(a)
1

:

𝑈𝑖,𝑤 = 𝑔
𝑏𝑤𝑡𝑖
1

, 𝑊𝑧,𝑤 = 𝑔
𝑏𝑤𝑎

𝑧

1
.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the

key-generation queries.

5. In the query phase, algorithm B responds to the adversary’s queries as in Hyb(a)
1

and Hyb(a)
2

. Namely, when

algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr = ctr + 1
and samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 = 𝑔
𝑟𝑖
1
, 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary Dict. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) = Dict[𝑖] and replies to A with sk′.

74

6. In the challenge phase, after A specifies the challenge policy 𝑃∗ = (M, 𝜌) where M ∈ Z𝐾×𝑛
𝑁

and 𝜌 : [𝐾] → U_ ,
two messages `∗

0
, `∗

1
∈ G𝑇 , and for each slot 𝑖 ∈ [𝐿], a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖). For each 𝑖 ∈ [𝐿], algorithm B constructs

the public key pk𝑖 as in Hyb(a)
1

and Hyb(a)
2

:

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry Dict[𝑐𝑖] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 = pk′. Otherwise, algorithm B aborts with output 0.

• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 = pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖).

7. Algorithm B then constructs the challenge ciphertext as follows:

• Message-embedding components: Set 𝐶1 = `
∗
a · 𝑒 (𝑔1,𝑇)𝛼 and 𝐶2 = 𝑇 .

• Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. For each 𝑘 ∈ [𝐾],

sample 𝑠𝑘 , [𝑘
r← Z𝑁 and set

𝐶3,𝑘 = 𝑇 𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

, 𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 .

• Slot-specific component: Set

𝐶5 = 𝑇
𝛽1 ©«

∏
𝑖∈[𝐿]

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬
Algorithm B gives the challenge ciphertext to A:

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

8. At the end of the game, algorithm A outputs a bit a ′ ∈ {0, 1}, which B also outputs.

Observe that 𝑒 (𝑔1,𝑇)𝛼 = 𝑒 (𝑔1, 𝑔1)𝛼𝑠 regardless of whether𝑇 = 𝑔𝑠
1
or𝑇 = (𝑔1𝑔2)𝑠 . If𝑇 = 𝑔𝑠

1
, then algorithm B perfectly

simulates an execution of Hyb(a)
1

. Alternatively, when 𝑇 = (𝑔1𝑔2)𝑠 , algorithm B perfectly simulates Hyb(a)
2,0

. Thus,

algorithm B breaks Assumption 5.2a with the same advantage Y. □

A.3 Proof of Lemma 5.15
This follows from an adaptation of the proof from [HLWW23, Lemma 5.33]. As noted previously, we reuse the same

prose and exposition from [HLWW23]. Suppose there exists an efficient adversary A where��
Pr[Hyb(a)

3,𝐿
(A) = 1] − Pr[Hyb(a)rand (A) = 1]

�� = Y
for some non-negligible Y. We useA to construct an adversaryB that breaks Assumption 5.2e with the same advantage:

1. First, algorithm B receives a challenge (G, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑋,𝑌 ,𝑇) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), 𝑔1 ∈ G1, 𝑔2 ∈ G2,

𝑔3 ∈ G3, 𝑔4 ∈ G4, 𝑋 = 𝑔𝛼
1
𝑔
𝛾1
2
, 𝑌 = 𝑔𝑠

1
𝑔
𝛾2
2
for some 𝛼,𝛾1, 𝛾2

r← Z𝑁 , and either 𝑇 = 𝑒 (𝑔1, 𝑔1)𝛼𝑠 or 𝑇 = 𝑒 (𝑔,𝑔)𝑟 ,
where 𝑟

r← Z𝑁 . The components that depend on the challenge elements 𝑋,𝑌,𝑇 are colored for clarity.

2. Algorithm B starts running algorithm A and receives the number of slots 1
𝐿
. Then, algorithm B samples

𝛽1, 𝛽2, 𝑎
r← Z𝑁 and sets 𝑍 = 𝑒 (𝑔1, 𝑋), 𝛽 = 𝛽1 + 𝛽2, and ℎ = 𝑔

𝛽

1
.

3. Let D = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-computable progression-free and double-free set. As usual, we define

𝑓 (𝑖, 𝑗) B 𝑑𝑖 + 𝑑 𝑗 and E B {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

75

4. For each slot 𝑖 ∈ [𝐿], sample 𝛿𝑖 , 𝜏𝑖 , 𝜏
′
𝑖

r← Z𝑁 and compute 𝑡𝑖 = 𝑎
𝑑𝑖
. Algorithm B constructs the (semi-functional)

slot components as follows:

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑋𝐴
𝛽

𝑖
(𝑔2𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑌𝑔3)𝛿𝑖 .

Then, for each attribute 𝑤 ∈ U_ , algorithm B samples 𝑏𝑤
r← Z𝑁 . For each 𝑤 ∈ U_ , slot index 𝑖 ∈ [𝐿] and

cross term index 𝑧 ∈ E, algorithm B constructs the attribute-specific slot components𝑈𝑖,𝑤 and𝑊𝑧,𝑤 as follows:

𝑈𝑖,𝑤 = 𝑔
𝑏𝑤𝑡𝑖
1

, 𝑊𝑧,𝑤 = 𝑔
𝑏𝑤𝑎

𝑧

1
.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the

key-generation queries.

5. In the query phase, algorithm B responds to the adversary’s queries as in Hyb(a)
3,𝐿

and Hyb(a)rand. Namely, when

algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr = ctr + 1
and samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 = 𝑔
𝑟𝑖
1
, 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary Dict. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) = Dict[𝑖] and replies to A with sk′.

6. In the challenge phase, after A specifies the challenge policy 𝑃∗ = (M, 𝜌) where M ∈ Z𝐾×𝑛
𝑁

and 𝜌 : [𝐾] → U_
is an injective row-labeling function, two messages `∗

0
, `∗

1
, and for each slot 𝑖 ∈ [𝐿], a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖). For

each 𝑖 ∈ [𝐿], algorithm B constructs pk𝑖 as in Hyb(a)
3,𝐿

and Hyb(a)rand:

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry Dict[𝑐𝑖] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 = pk′. Otherwise, algorithm B aborts with output 0.

• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 = pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖).

7. Algorithm B constructs the challenge ciphertext as follows:

• Message-embedding components: First, algorithm B sets 𝐶1 = `
∗
a ·𝑇 and 𝐶2 = 𝑌 .

• Attribute-specific components: Algorithm B samples 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and sets v′ = [1, 𝑣2, . . . , 𝑣𝑛]T.

For each 𝑘 ∈ [𝐾], it samples 𝑠𝑘 , [𝑘
r← Z𝑁 and sets

𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 , 𝐶3,𝑘 = 𝑌 𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4
.

• Slot-specific component: Algorithm B sets

𝐶5 = 𝑌
𝛽1 ©«

∏
𝑖∈[𝐿]

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬
Algorithm B gives the challenge ciphertext to A:

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

8. At the end of the game, algorithm A outputs a bit a ′ ∈ {0, 1}, which B also outputs.

76

In the reduction, the exponents 𝛼 mod 𝑝1 and 𝑠 mod 𝑝1 play their corresponding roles in Hyb(a)
3,𝐿

and Hyb(a)rand. The

exponent 𝛾2 mod 𝑝2 (in𝑌) plays the role of 𝑠 mod 𝑝2. We now argue that algorithm B perfectly simulates an execution

of either Hyb(a)
3,𝐿

and Hyb(a)rand:

• CRS components: First, 𝑍 = 𝑒 (𝑔1, 𝑋) = 𝑒 (𝑔1, 𝑔𝛼
1
𝑔
𝛾1
2
) = 𝑒 (𝑔1, 𝑔1)𝛼 . Consider the remaining components of the

CRS. Algorithm B sets 𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3
where 𝑡𝑖 = 𝑎

𝑑𝑖
and 𝜏 ′𝑖

r← Z𝑁 , which matches the distribution in Hyb(a)
3,𝐿

and

Hyb(a)rand. Next, algorithm B sets

𝐵𝑖 = 𝑋𝐴
𝛽

𝑖
(𝑔2𝑔3𝑔4)𝜏𝑖 = 𝑔𝛼1𝑔

𝛾1
2
𝐴
𝛽

𝑖
(𝑔2𝑔3)𝜏𝑖 = 𝑔𝛼1𝐴

𝛽

𝑖
𝑔
𝛾1+𝜏𝑖
2
(𝑔3𝑔4)𝜏𝑖 .

Since 𝜏𝑖
r← Z𝑁 , the distribution of 𝛾1 + 𝜏𝑖 is also uniform over Z𝑁 . Moreover, no other term depends on the

value of 𝜏𝑖 , so the distribution of 𝐵𝑖 is correctly simulated. Finally, algorithm B sets

𝑃𝑖 = (𝑌𝑔3)𝛿𝑖 = ((𝑔𝑠1𝑔
𝛾2
2
)𝑔3)𝛿𝑖 ,

which matches the distribution in Hyb(a)
3,𝐿

and Hyb(a)rand when 𝛾2 mod 𝑝2 plays the role of 𝑠 mod 𝑝2. Since the

challenger samples 𝛾2
r← Z𝑁 , this matches the distribution of 𝑠 in Hyb(a)

3,𝐿
and Hyb(a)rand. Finally, the attribute-

specific components in the CRS are sampled exactly as in Hyb(a)
3,𝐿

or Hyb(a)rand.

• Key-generation queries: By construction, algorithm B responds to key-generation queries using the identical

procedure as in Hyb(a)
3,𝐿

and Hyb(a)rand.

• Challenge query: By construction, the challenge ciphertext components𝐶2,𝐶3,𝑘 ,𝐶4,𝑘 ,𝐶5 are distributed exactly

as in Hyb(a)
3,𝐿

or Hyb(a)rand where 𝛾2 mod 𝑝2 plays the role of 𝑠 mod 𝑝2. Consider now the distribution of 𝐶1:

– If 𝑇 = 𝑒 (𝑔1, 𝑔2)𝛼,𝑠 , then 𝐶1 = `
∗
𝑏
·𝑇 = `∗

𝑏
· 𝑍𝑠 . This corresponds to the distribution in Hyb(a)

3,𝐿
.

– If 𝑇 = 𝑒 (𝑔1, 𝑔2)𝑟 , where 𝑟 r← Z𝑁 , the distribution of 𝐶1 is uniform in G𝑇 , which corresponds to the

distribution in Hyb(a)rand.

We conclude that algorithm B either simulates an execution of Hyb(a)
3,𝐿

or Hyb(a)rand. Thus, algorithm B breaks

Assumption 5.2e with the same distinguishing advantage as A and the claim follows. □

A.4 Proof of Lemma 5.21
Our analysis follows a very similar style as the proof of [HLWW23, Lemma 5.16]. Like the proof from [HLWW23],

our analysis depend on whether the adversary knows the secret key associated with slot ℓ or not. We begin with

a general sketch of our argument (with some of the prose taken directly from [HLWW23]).

Proof overview. Let (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖) be the tuples adversary A outputs for each slot 𝑖 ∈ [𝐿] in the challenge phase.

Let ctr be the number of key-generation queries the adversary has made at the beginning of the challenge phase.

We say that event NonCorrupt occurs if

𝑐ℓ ∈ {1, . . . , ctr} and A did not make a corruption query on index 𝑐ℓ ,

Let pk
1
, . . . , pk𝐿 be the public keys the challenger constructs during the challenge phase. If event NonCorrupt occurs,

then the public key pkℓ was honestly sampled by the challenger in a key-registration query, and moreover, the

adversary did not corrupt the key to learn its associated secret key. We write NonCorrupt to denote the complement

of event NonCorrupt. Now, we can write

Pr

[
iHyb(a)

ℓ,3
(A) = 1

]
= Pr

[
iHyb(a)

ℓ,3
(A) = 1 ∧ NonCorrupt

]
+ Pr

[
iHyb(a)

ℓ,3
(A) = 1 ∧ NonCorrupt

]
Pr

[
iHyb(a)

ℓ,4
(A) = 1

]
= Pr

[
iHyb(a)

ℓ,4
(A) = 1 ∧ NonCorrupt

]
+ Pr

[
iHyb(a)

ℓ,4
(A) = 1 ∧ NonCorrupt

]
.

77

It suffices then to show that���Pr [
iHyb(a)

ℓ,3
(A) = 1 ∧ NonCorrupt

]
− Pr

[
iHyb(a)

ℓ,4
(A) = 1 ∧ NonCorrupt

] ��� = negl(_) (A.4)���Pr [
iHyb(a)

ℓ,3
(A) = 1 ∧ NonCorrupt

]
− Pr

[
iHyb(a)

ℓ,4
(A) = 1 ∧ NonCorrupt

] ��� = negl(_). (A.5)

Lemma 5.21 then follows by the triangle inequality. Our proof strategy for showing Eqs. (A.4) and (A.5) will construct

a sequence of hybrid experiment culminating in an information-theoretic step that ensures the adversary cannot tell

that ℓ th slot has switched from normal mode to semi-functional mode. These two information-theoretic components

critically relies on different admissibility properties on the adversary:

• If event NonCorrupt occurs, then the adversary does not know the secret key skℓ = 𝑟ℓ associated with slot

ℓ (i.e., 𝑟ℓ
r← Z𝑁 is the secret exponent the challenger sampled when responding to the 𝑐 thℓ key-generation

query). The final information-theoretic argument (Lemma A.7) in the proof of Eq. (A.4) critically relies on

the distribution of 𝑟ℓ mod 𝑝2 being uniform and hidden from the view of the adversary. The full sequence of

hybrids is described in the proof of Claim A.3.

• If event NonCorrupt occurs, then the adversary may know the secret key skℓ = 𝑟ℓ associated with slot ℓ , and

as such, we cannot rely on the same information-theoretic argument as above. In this case, the admissibility

requirement ensures that the set of attributes 𝑆ℓ associatedwith slot ℓ do not satisfy the challenge policy. The final
information-theoretic argument (LemmaA.14) in the proof of Eq. (A.5) relies on information-theoretic security of

the underlying linear secret sharing scheme. The full sequence of hybrids is described in the proof of Claim A.11.

Analysis for the case where slot ℓ is not corrupted. We now show that Eq. (A.4) holds. As noted previously,

when the public key pkℓ associated with slot ℓ is not corrupted, our analysis will (eventually) rely on the secret key

skℓ = 𝑟ℓ associated with slot ℓ being hidden to argue that the semi-functional slot components look computationally

indistinguishable from normal slot components. We state the precise claim below:

ClaimA.3. Suppose Assumption 5.2b holds with respect toCompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient adversaries
A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[iHyb(a)
ℓ,3
(A) = 1 ∧ NonCorrupt] − Pr[iHyb(a)

ℓ,4
(A) = 1 ∧ NonCorrupt]

�� = negl(_).

Proof. To prove this claim, we introduce an additional sequence of (simpler) hybrid experiments:

• ncHyb(a)
ℓ,0

: Same as iHyb(a)
ℓ,3

except during the challenge phase, the challenger constructs the challenge ciphertext

as follows:

– If event NonCorrupt did not occur, then the experiment halts with output 0.

– Otherwise, if event NonCorrupt occurs, let pkℓ be the public key associated with slot ℓ . Since NonCorrupt
occurs, the public key pkℓ was constructed by the challenger in response to the 𝑐 thℓ key-generation query

the adversary made in the query phase. Let 𝑟ℓ ∈ Z𝑁 be the randomness the challenger used to construct

pkℓ (i.e., this is the secret key stored inDict[𝑐ℓ]). Then, pkℓ = KeyGen(crs, ℓ ; 𝑟ℓ). The challenger constructs
the challenge ciphertext exactly as in iHyb(a)

ℓ,3
, except it computes 𝐶5 as follows:

𝐶5 = (𝑔1𝑔2)𝑠𝛽1 (𝑔1𝑔2)−𝑠𝑟ℓ ©«
∏

𝑖∈[𝐿]\{ℓ }

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬.
The other components of the challenge ciphertext are constructed as in iHyb(a)

ℓ,3
. The output of the

experiment is the output of A, exactly as in iHyb(a)
ℓ,3

.

Importantly, in this experiment, the only component that depends on the exponent 𝛿ℓ ∈ Z𝑁 is 𝑃ℓ . The challenge

ciphertext no longer depends on 𝛿ℓ .

78

Hybrid 𝑩ℓ 𝑷ℓ Justification

iHyb(a)
ℓ,3

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ

ncHyb(a)
ℓ,0

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ Identical Lemma A.4

ncHyb(a)
ℓ,1

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2𝑔3)𝛿ℓ Statistical Lemma A.5

ncHyb(a)
ℓ,2

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ (𝑔1𝑔3)𝛿ℓ Assumption 5.2b Lemma A.6

ncHyb(a)
ℓ,3

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔3)𝛿ℓ Statistical Lemma A.7

ncHyb(a)
ℓ,4

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2𝑔3)𝛿ℓ Assumption 5.2b Lemma A.9

ncHyb(a)
ℓ,5

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ Statistical Lemma A.10

iHyb(a)
ℓ,4

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ Identical Lemma A.10

Table 5: Structure of slot parameters 𝐵ℓ , 𝑃ℓ in the hybrid experiments for analyzing the NonCorrupt branch
(Claim A.3). For each pair of adjacent hybrids, we indicate whether they are identically distributed, statistically

indistinguishable, or computationally indistinguishable. The highlighted row is the information-theoretic step that

relies on event NonCorrupt occurring (i.e., that the adversary does not know the secret key for slot ℓ).

• ncHyb(a)
ℓ,1

: Same as ncHyb(a)
ℓ,0

, except the challenger sets 𝑃ℓ = (𝑔1𝑔2𝑔3)𝛿ℓ in the setup phase.

• ncHyb(a)
ℓ,2

: Same as ncHyb(a)
ℓ,1

except the challenger sets 𝑃ℓ = (𝑔1𝑔3)𝛿ℓ in the setup phase.

• ncHyb(a)
ℓ,3

: Same as ncHyb(a)
ℓ,2

except the challenger sets 𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ in the setup phase.

• ncHyb(a)
ℓ,4

: Same as ncHyb(a)
ℓ,3

except the challenger sets 𝑃ℓ = (𝑔1𝑔2𝑔3)𝛿ℓ in the setup phase

• ncHyb(a)
ℓ,5

: Same as ncHyb(a)
ℓ,4

except the challenger sets 𝑃ℓ = ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ in the setup phase

We provide a summary of the hybrid experiments in Table 5. We now show that each pair of adjacent hybrids are

computationally indistinguishable.

Lemma A.4. For all adversaries A and a ∈ {0, 1}, Pr[iHyb(a)
ℓ,3
(A) = 1 ∧ NonCorrupt] = Pr[ncHyb(a)

ℓ,0
(A) = 1].

Proof. By construction, the output of ncHyb(a)
ℓ,0
(A) is 1 only if eventNonCorrupt occurs. By definition ofNonCorrupt,

this means pkℓ =
(
𝑇ℓ , 𝑄ℓ , 𝑅ℓ , {𝑉𝑗,ℓ } 𝑗≠ℓ

)
= KeyGen(crs, ℓ ; 𝑟ℓ). By construction of KeyGen, this means that

𝑄ℓ = 𝑃
𝑟ℓ
ℓ

= ((𝑔1𝑔2)𝑠)𝑔3)𝛿ℓ𝑟ℓ

and 𝑅ℓ = 𝑔
𝑟ℓ
3
. In particular, this means that

𝑅ℓ

𝑄
𝛿−1ℓ
ℓ

=
𝑔
𝑟ℓ
3

(𝑔1𝑔2)𝑟ℓ𝑠𝑔𝑟ℓ
3

= (𝑔1𝑔2)−𝑟ℓ𝑠 .

Thus, if event NonCorrupt occurs, then 𝐶5 in ncHyb(a)
ℓ,0

satisfies

𝐶5 = (𝑔1𝑔2)𝑠𝛽1 (𝑔1𝑔2)−𝑠𝑟ℓ
©«

∏
𝑖∈[𝐿]\{ℓ }

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬ = (𝑔1𝑔2)𝑠𝛽1
©« 𝑅ℓ

𝑄
𝛿−1ℓ
ℓ

ª®¬ ©«
∏

𝑖∈[𝐿]\{ℓ }

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬ = (𝑔1𝑔2)𝑠𝛽1
©«
∏
𝑖∈[𝐿]

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬ .
79

This is exactly the distribution of 𝐶5 in iHyb(a)
ℓ
(A). Therefore, conditioned on event NonCorrupt, the output

distribution of ncHyb(a)
ℓ,0
(A) is identical to the output distribution of iHyb(a)

ℓ,3
(A). Correspondingly,

Pr[ncHyb(a)
ℓ,0
(A) = 1] = Pr[NonCorrupt] · Pr[iHyb(a)

ℓ,3
(A) = 1 | NonCorrupt]

= Pr[iHyb(a)
ℓ,3
(A) = 1 ∧ NonCorrupt],

and the claim follows. □

Lemma A.5. For all ℓ ∈ [𝐿], all adversaries A and all a ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N,

��
Pr[ncHyb(a)

ℓ,1
(A) = 1] − Pr[ncHyb(a)

ℓ,0
(A) = 1]

�� = negl(_).

Proof. The only difference between ncHyb(a)
ℓ,0

and ncHyb(a)
ℓ,1

is the distribution of 𝑃ℓ . In ncHyb(a)
ℓ,1

, 𝑃ℓ = (𝑔1𝑔2𝑔3)𝛿ℓ

whereas in ncHyb(a)
ℓ,0

, 𝑃ℓ = 𝑔
𝛿ℓ𝑠
1
𝑔
𝛿ℓ𝑠
2
𝑔
𝛿ℓ
3
. In both experiments, 𝛿ℓ

r← Z𝑁 , so as long as 𝑠 mod 𝑝1 and 𝑠 mod 𝑝2 are

both non-zero, then these two distributions are identical. Since 𝑠
r← Z𝑁 , 𝑠 mod 𝑝1 and 𝑠 mod 𝑝2 are non-zero with

probability at least 1− 1/𝑝1 − 1/𝑝2 = 1−negl(_). Thus, the marginal distribution of 𝑃ℓ is statistically indistinguishable

in ncHyb(a)
ℓ,0

and ncHyb(a)
ℓ,1

. None of the other components in ncHyb(a)
ℓ,0

and ncHyb(a)
ℓ,1

depend on the exponent 𝛿ℓ , so

the outputs of the two experiments are statistically indistinguishable. □

Lemma A.6. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[ncHyb(a)
ℓ,2
(A) = 1] − Pr[ncHyb(a)

ℓ,1
(A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversary A where��
Pr[ncHyb(a)

ℓ,1
(A) = 1] − Pr[ncHyb(a)

ℓ,2
(A) = 1]

�� = Y
for some non-negligible Y. We use A to construct an adversary B for Assumption 5.2b:

1. At the beginning of the game, algorithm B receives a challenge (G, 𝑔1, 𝑔3, 𝑔4, 𝑋,𝑌 ,𝑇) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, 𝑔4 ∈ G4, 𝑋 = (𝑔1𝑔2)𝑠12 , 𝑌 = (𝑔2𝑔3)𝑠23 for some 𝑠12, 𝑠23

r← Z𝑁 , and either 𝑇 = (𝑔1𝑔3)𝛿 or

𝑇 = (𝑔1𝑔2𝑔3)𝛿 for some 𝛿
r← Z𝑁 . The components that depend on the challenge components 𝑋,𝑌,𝑇 are colored

for clarity.

2. AlgorithmB starts running algorithmA and receives the number of slots 1
𝐿
. LetD = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-

computable progression-free and double-free set. We define 𝑓 (𝑖, 𝑗) B 𝑑𝑖+𝑑 𝑗 and E B {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

3. Algorithm B samples 𝛼, 𝛽1, 𝛽2, 𝑎
r← Z𝑁 . It sets 𝑍 = 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 = 𝛽1 + 𝛽2, and ℎ = 𝑔

𝛽

1
.

4. For each 𝑖 ∈ [𝐿], algorithm B samples 𝛿𝑖 , 𝜏𝑖 , 𝜏
′
𝑖

r← Z𝑁 and computes 𝑡𝑖 = 𝑎
𝑑𝑖
.

• For 𝑖 < ℓ , algorithm B sets

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑌𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑋𝑔3)𝛿𝑖 .

• For 𝑖 = ℓ , algorithm B sets

𝐴ℓ = 𝑔
𝑡𝑖
1
(𝑔2𝑔3)𝜏

′
𝑖 , 𝐵ℓ = 𝑔

𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ , 𝑃ℓ = 𝑇 .

• For 𝑖 > ℓ , algorithm B sets

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑋𝑔3)𝛿𝑖 .

80

Then, for each attribute 𝑤 ∈ U_ , algorithm B samples 𝑏𝑤
r← Z𝑁 . For each 𝑤 ∈ U_ , slot index 𝑖 ∈ [𝐿], and

cross term index 𝑧 ∈ E, algorithm B then constructs the attribute-specific slot components 𝑈𝑖,𝑤 and𝑊𝑧,𝑤 as

in ncHyb(a)
ℓ,1

ncHyb(a)
ℓ,2

:

𝑈𝑖,𝑤 = 𝑔
𝑏𝑤 ·𝑡𝑖
1

, 𝑊𝑧,𝑤 = 𝑔
𝑏𝑤𝑎

𝑧

1
.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the

key-generation queries.

5. In the query phase, algorithm B responds to the adversary’s key-generation queries as in ncHyb(a)
ℓ,1

and

ncHyb(a)
ℓ,2

. Namely, when algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the

counter ctr = ctr + 1 and samples 𝑟𝑖
r← Z𝑁 . It then computes 𝑇𝑖 = 𝑔

𝑟𝑖
1
, 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
. The

challenger sets the public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖
and adds the mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary Dict. If the adversaryA makes a corruption query

on an index 1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) = Dict[𝑖] and replies to A with sk′.

6. In the challenge phase, after the adversary specifies a challenge policy 𝑃∗ = (M, 𝜌), where M ∈ Z𝐾×𝑛
𝑁

and

𝜌 : [𝐾] → U_ is an injective row-labeling function, two messages `∗
0
, `∗

1
∈ G𝑇 , and for each slot 𝑖 ∈ [𝐿], a tuple

(𝑐𝑖 , 𝑆𝑖 , pk∗𝑖), algorithm B constructs pk𝑖 as in ncHyb(a)
ℓ,1

and ncHyb(a)
ℓ,2

:

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry Dict[𝑐𝑖] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 = pk′. Otherwise, algorithm B aborts with output 0.

• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 = pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖).

7. Algorithm B constructs the challenge ciphertext as follows:

• Message-embedding components: Set 𝐶1 = `
∗
a · 𝑒 (𝑔1, 𝑋)𝛼 and 𝐶2 = 𝑋 .

• Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. For each 𝑘 ∈ [𝐾],

algorithm B samples 𝑠𝑘 , [𝑘
r← Z𝑁 . If 𝜌 (𝑘) ∈ 𝑆ℓ , algorithm B sets 𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 . Otherwise, if 𝜌 (𝑘) ∉ 𝑆ℓ ,

it sets 𝐶4,𝑘 = (𝑋𝑔4)𝑠𝑘 . Next, algorithm B sets

𝐶3,𝑘 = 𝑋 𝛽2m
T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

• Slot-specific component: Algorithm B sets

𝐶5 = 𝑋
𝛽1−𝑟ℓ ©«

∏
𝑖∈[𝐿]\{ℓ }

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬
Algorithm B gives the challenge ciphertext to A:

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

8. At the end of the game, algorithm A outputs a bit a ′ ∈ {0, 1}, which B also outputs.

81

In the reduction algorithm, the exponent 𝑠12 plays the role of 𝑠 in ncHyb(a)
ℓ,1

and ncHyb(a)
ℓ,2

. Next, consider the dis-

tribution of 𝐵𝑖 for 𝑖 < ℓ . As long as 𝑠23 ≠ 0 mod 𝑝2 and 𝑠23 ≠ 0 mod 𝑝3 (which holds with overwhelming probability

over the choice of 𝑠23
r← Z𝑁), then the distributions

{𝑌𝜏𝑖 = (𝑔2𝑔3)𝑠23𝜏𝑖 : 𝜏𝑖 r← Z𝑁 } and {(𝑔2𝑔3)𝜏𝑖 : 𝜏𝑖 r← Z𝑁 }

are identical. Note this is the only place where 𝜏𝑖 is revealed in the G2 or G3 subgroups. Thus, with overwhelming

probability over the choice of 𝑠23, algorithm B constructs 𝐵𝑖 according to the same distribution as ncHyb(a)
ℓ,1

and

ncHyb(a)
ℓ,2

. Finally, consider the distribution of 𝑃ℓ :

• If 𝑇 = (𝑔1𝑔2𝑔3)𝛿 for some 𝛿
r← Z𝑁 , then algorithm B simulates the distribution in ncHyb(a)

ℓ,1
.

• If 𝑇 = (𝑔1𝑔3)𝛿 for some 𝛿
r← Z𝑁 , then algorithm B simulates the distribution in ncHyb(a)

ℓ,2
.

Thus, we conclude that algorithm B breaks Assumption 5.2b with advantage at least Y − negl(_). □

Lemma A.7. For all ℓ ∈ [𝐿], all adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N,

��
Pr[ncHyb(a)

ℓ,3
(A) = 1] − Pr[ncHyb(a)

ℓ,2
(A) = 1]

�� = negl(_).

Proof. We show that the distributions ncHyb(a)
ℓ,2
(A) and ncHyb(a)

ℓ,3
(A) are statistically close. Let (𝑐ℓ , 𝑆ℓ , pk∗ℓ) be the

tuple the adversary chooses for slot ℓ during the challenge phase. Let 𝑟ℓ
r← Z𝑁 be the randomness the challenger

used to answer the 𝑐 thℓ key-generation query. For either experiment to output 1, event NonCorrupt must occur, which

means the adversary does not issue a corruption query on index 𝑐ℓ . Correspondingly, the challenger never gives 𝑟ℓ
to the adversary. This property will be critical for arguing that the two distributions are statistically indistinguishable.

Consider the distributions ncHyb(a)
ℓ,2
(A) and ncHyb(a)

ℓ,3
(A). By construction, the only difference between them is

the distribution of component 𝐵ℓ in the G2 subgroup:

ncHyb(a)
ℓ,2

: 𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ

ncHyb(a)
ℓ,3

: 𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ

In both experiments, 𝐴ℓ = 𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ . Suppose that 𝜏 ′ℓ ≠ 0 mod 𝑝2. Since 𝜏

′
ℓ

r← Z𝑁 , this holds with probability

1 − 1/𝑝2 = 1 − negl(_). Consider the following relabeling of the variables 𝛽1 and 𝑟ℓ in ncHyb(a)
ℓ,2

:

• Let 𝜎 ∈ Z𝑁 be the unique value where 𝜎 = 0 mod 𝑝1𝑝3𝑝4 and 𝜎 = (𝜏 ′ℓ)−1𝜏ℓ mod 𝑝2.

• Suppose we now set 𝛽1 = 𝛽
′
1
+ 𝜎 and 𝑟ℓ = 𝑟

′
ℓ + 𝜎 where 𝛽 ′

1
, 𝑟 ′ r← Z𝑁 . Observe that the distribution of 𝛽1 and

𝑟ℓ is still uniform over Z𝑁 under this relabeling.

Consider now the other components in the adversary’s view in ncHyb(a)
ℓ,2

with the above relabeling. It suffices to

only consider the components that depend on 𝛽1 or 𝑟ℓ since the other components are unchanged. Note also that

by design, 𝛽1 = 𝛽
′
1
mod 𝑝1𝑝3𝑝4 and 𝑟ℓ = 𝑟

′
ℓ mod 𝑝1𝑝3𝑝4.

• Consider the components in the common reference string. First, ℎ = 𝑔
𝛽1+𝛽2
1

= 𝑔
𝛽 ′
1
+𝛽2

1
. Next 𝐴𝑖 = 𝑔

𝑡𝑖
1
𝑔
𝜏 ′𝑖
3
for all

𝑖 ≠ ℓ and 𝐴ℓ = 𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ . Consider the distribution of each 𝐵𝑖 :

– If 𝑖 < ℓ , then 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
𝑖
(𝑔2𝑔3𝑔4)𝜏𝑖 = 𝑔𝛼

1
𝐴
𝛽 ′
1
+𝛽2

𝑖
(𝑔2𝑔3𝑔4)𝜏𝑖 .

– If 𝑖 = ℓ , then

𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
ℓ
(𝑔3𝑔4)𝜏ℓ = 𝑔𝛼1𝑔

𝑡ℓ (𝛽1+𝛽2)
1

𝑔
𝜏 ′ℓ (𝛽1+𝛽2)
2

𝑔
𝜏 ′ℓ (𝛽1+𝛽2)
3

(𝑔3𝑔4)𝜏ℓ = 𝑔𝛼1𝐴
𝛽 ′
1
+𝛽2

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ ,

since 𝛽1 = 𝛽
′
1
mod 𝑝1𝑝3𝑝4 and 𝛽1 = 𝛽

′
1
+ (𝜏 ′ℓ)−1𝜏ℓ mod 𝑝2.

– If 𝑖 > ℓ , then 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
𝑖
(𝑔3𝑔4)𝜏𝑖 = 𝑔𝛼

1
𝐴
𝛽 ′
1
+𝛽2

𝑖
(𝑔3𝑔4)𝜏𝑖 .

82

The remaining components in the CRS do not depend on either 𝛽1 or 𝑟ℓ and are thus unchanged.

• Consider the components in the key-generation queries. The only key-generation query that is affected by this

change of variables is the 𝑐 thℓ query. When the adversary makes the 𝑐 thℓ key-generation query, the challenger

constructs the public key pkℓ = (𝑇ℓ , 𝑄ℓ , 𝑅ℓ , {𝑉𝑗,ℓ } 𝑗≠ℓ) using randomness 𝑟ℓ . Under the above substitution this

means 𝑇ℓ = 𝑔
𝑟ℓ
1
= 𝑔

𝑟 ′ℓ
1
, 𝑄ℓ = 𝑃

𝑟ℓ
ℓ

= 𝑃
𝑟 ′ℓ
ℓ
, 𝑅ℓ = 𝑔

𝑟ℓ
3
= 𝑔

𝑟 ′ℓ
3
, and 𝑉𝑗,ℓ = 𝐴

𝑟ℓ
𝑗
= 𝐴

𝑟 ′ℓ
𝑗
for all 𝑗 ≠ ℓ since 𝑟ℓ = 𝑟

′
ℓ mod 𝑝1𝑝3,

and the components 𝑃ℓ and 𝐴 𝑗 for 𝑗 ≠ ℓ do not contain any non-trivial components in the G2 subgroup. Here,

it is critical that 𝑃ℓ = (𝑔1𝑔3)𝛿ℓ in ncHyb(a)
ℓ,2

does not contain any components in G2.

• Finally, consider the components in the challenge ciphertext. The components 𝐶1,𝐶2,𝐶3,𝑘 ,𝐶4,𝑘 for 𝑘 ∈ [𝐾] are
all unchanged (i.e., they are independent of 𝛽1 and 𝑟ℓ). Consider now ciphertext component 𝐶5. In ncHyb(a)

ℓ,2
,

𝐶5 = (𝑔1𝑔2)𝑠𝛽1 (𝑔1𝑔2)−𝑠𝑟ℓ
©«

∏
𝑖∈[𝐿]\{ℓ }

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬ = (𝑔1𝑔2)𝑠𝛽
′
1 (𝑔1𝑔2)−𝑠𝑟

′
ℓ
©«

∏
𝑖∈[𝐿]\{ℓ }

𝑅𝑖

𝑄
𝛿−1
𝑖

𝑖

ª®¬ ,
since 𝛽1 = 𝛽

′
1
mod 𝑝1 and 𝑟ℓ = 𝑟

′
ℓ mod 𝑝1, and

𝑠𝛽1 − 𝑠𝑟ℓ = 𝑠 (𝛽 ′1 + 𝜎) − 𝑠 (𝑟 ′ℓ + 𝜎)) = 𝑠𝛽 ′1 − 𝑠𝑟 ′ℓ mod 𝑝2.

Observe now that this is precisely the distribution in ncHyb(a)
ℓ,3

(with the relabeling 𝛽1 ↦→ 𝛽 ′
1
and 𝑟ℓ ↦→ 𝑟 ′ℓ). Thus,

whenever 𝜏 ′ℓ ≠ 0 mod 𝑝2, hybrids ncHyb
(a)
ℓ,2

and ncHyb(a)
ℓ,3

are identically distributed. Since this holds with probability

1 − negl(_) over the choice of 𝜏 ′ℓ , the claim holds. Note that this argument critically relies on the fact that 𝑟ℓ is not

given to the adversary in the game, as this allows us to reinterpret 𝑟ℓ as 𝑟
′
ℓ = 𝑟ℓ + 𝜎 . □

Lemma A.8. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[ncHyb(a)
ℓ,4
(A) = 1] − Pr[ncHyb(a)

ℓ,3
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as in the proof of Lemma A.6. □

Lemma A.9. For all ℓ ∈ [𝐿], all adversaries A and all a ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N,

��
Pr[ncHyb(a)

ℓ,5
(A) = 1] − Pr[ncHyb(a)

ℓ,4
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as in the proof of Lemma A.5. □

Lemma A.10. For all adversaries A and all a ∈ {0, 1}, Pr[iHyb(a)
ℓ,4
(A) = 1 ∧ NonCorrupt] = Pr[ncHyb(a)

ℓ,5
(A) = 1].

Proof. This follows by a similar argument as in the proof of Lemma A.4. □

Combining Lemmas A.4 to A.10, Claim A.3 now follows by a hybrid argument. □

Analysis for the case where slot ℓ is corrupted. Next, we show that Eq. (A.5) holds. As noted previously, when

slot ℓ is corrupted (and the adversary knows the associated secret key), we are guaranteed that the set of attributes

𝑆ℓ associated with slot ℓ does not satisfy the challenge policy. Our analysis here will (eventually) rely on the security

of the linear secret sharing scheme to argue that that the semi-functional slot components look computationally

indistinguishable from normal slot components. We state the precise claim below:

Claim A.11. Suppose Assumption 5.2b and Assumption 5.2c holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿],
all efficient adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,���Pr[iHyb(a)ℓ,3 (A) = 1 ∧ NonCorrupt] − Pr[iHyb(a)

ℓ,4
(A) = 1 ∧ NonCorrupt]

��� = negl(_).

83

Proof. Similar to the proof of Claim A.3, we introduce an additional sequence of hybrid experiments:

• cHyb(a)
ℓ,0

: Same as iHyb(a)
ℓ,3

except during the challenge phase, when constructing the challenge ciphertext, the

challenger performs several additional checks:

– If event NonCorrupt occurs, then the experiment halts with output 0.

– Let pkℓ be the public key associated with slot ℓ and 𝑆ℓ ⊆ U_ be the set of associated attributes. Let

𝑃∗ = (M, 𝜌) be the challenge policy where M ∈ Z𝐾×𝑛
𝑁

and 𝜌 : [𝐾] → U_ is an injective row-labeling

function. Let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆ℓ } be the indices of the rows ofM associated with the attributes in

𝑆ℓ , and let M𝐼 be the corresponding submatrix of M. Since event NonCorrupt does not occur, this means

that 𝑆ℓ does not satisfy the policy (M, 𝜌), so eT
1
is not in the row-span of M𝐼 . This means that there exists

a vector v∗ ∈ Z𝑛
𝑁
such that M𝐼v∗ = 0 mod 𝑁 and eT

1
v∗ ≠ 0 mod 𝑁 . In this experiment, the challenger

computes v∗ ∈ Z𝑛
𝑁
using Gaussian elimination.

– If eT
1
v∗ = 0 mod 𝑝2, the experiment halts with output 0.

The rest of the experiment proceeds as in iHyb(a)
ℓ,3

.

• cHyb(a)
ℓ,1

: Same as cHyb(a)
ℓ,0

except the challenger changes how it constructs the𝐶3,𝑘 components in the challenger

ciphertext:

– Sample b
r← Z𝑁 and 𝑣 ′

2
, . . . , 𝑣 ′𝑛

r← Z𝑁 and let v̂′ = [𝛽2 − b𝑣∗1, 𝑣 ′2, . . . , 𝑣 ′𝑛]T.

– For each 𝑘 ∈ [𝐾], sample [𝑘
r← Z𝑁 and set 𝐶3,𝑘 = ((𝑔1𝑔2)𝑠)m

T
𝑘
(v̂′+bv∗)𝐶

−𝑏𝜌 (𝑘)
∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

All of the other components are constructed exactly as in cHyb(a)
ℓ,0

.

• cHyb(a)
ℓ,2

: Same as cHyb(a)
ℓ,1

except the challenger sets 𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ in the setup phase.

• cHyb(a)
ℓ,3

: Same as cHyb(a)
ℓ,2

, except the challenger changes how it constructs the𝐶3,𝑘 components in the challenge

ciphertext:

– Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T.

– For each 𝑘 ∈ [𝐾], sample [𝑘
r← Z𝑁 and set 𝐶3,𝑘 = ((𝑔1𝑔2)𝑠)𝛽2m

T
𝑘
v′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

We provide a summary of the hybrid experiments in Table 6. We now show that each pair of adjacent hybrids are

computationally indistinguishable.

Lemma A.12. Suppose Assumption 5.2d holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that��

Pr[iHyb(a)
ℓ,3
(A) = 1 ∧ NonCorrupt] − Pr[cHyb(a)

ℓ,0
(A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversary A where��
Pr[iHyb(a)

ℓ,3
(A) = 1 ∧ NonCorrupt] − Pr[cHyb(a)

ℓ,0
(A) = 1]

�� = Y
for some non-negligible Y. Since these two experiments are identical except the additional check of whether

eT
1
v∗ = 0 mod 𝑝2, this means that with probability at least Y, algorithm A outputs a challenge (M, 𝜌) such that

eT
1
v∗ ≠ 0 mod 𝑁 but eT

1
v∗ = 0 mod 𝑝2, where v∗ is the vector derived from (M, 𝜌) according to the specification of

cHyb(a)
ℓ,0

. We use A to construct an adversary B that outputs a nontrivial factor of 𝑁 given the inputs of Lemma 5.3

with probability Y − negl(_). Security can in turn be based on the hardness of Assumption 5.2d (Lemma 5.3).

84

Hybrid 𝑩ℓ 𝑪3,𝒌 Justification

iHyb(a)
ℓ,3

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m

T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

cHyb(a)
ℓ,0

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m

T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

Assumption 5.2d Lemma A.12

cHyb(a)
ℓ,1

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠m

T
𝑘
(v̂′+bv∗) ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

Identical Lemma A.13

cHyb(a)
ℓ,2

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠m

T
𝑘
(v̂′+bv∗) ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

Statistical Lemma A.14

cHyb(a)
ℓ,3

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m

T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

Identical Lemma A.15

iHyb(a)
ℓ,4

𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ (𝑔1𝑔2)𝑠𝛽2m

T
𝑘
v′ ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

Assumption 5.2d Lemma A.16

Table 6: Structure of the slot parameter 𝐵ℓ and the challenge ciphertext component 𝐶3,𝑘 (for 𝜌 (𝑘) ∉ 𝑆ℓ) in the hybrid

experiments for analyzing the NonCorrupt branch (Claim A.11). For each pair of adjacent hybrids, we indicate

whether they are identically distributed, statistically indistinguishable, or computationally indistinguishable. The

highlighted row is the information-theoretic step that relies on event NonCorrupt occurring (i.e., that the set of

attributes 𝑆ℓ associated with slot ℓ does not satisfy the challenge policy 𝑃∗). Note that two of the hybrid experiments

either introduce or remove an abort condition (cHyb(a)
ℓ,0

and cHyb(a)
ℓ,4

) without changing the distribution of 𝐵ℓ , and𝐶3,𝑘 .

1. At the beginning of the game, algorithm B is given a challenge (G, 𝑔1, 𝑔3, 𝑔4, 𝑋,𝑌) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, 𝑔4 ∈ G4, 𝑋 = (𝑔1𝑔2)𝑠12 , 𝑌 = (𝑔2𝑔3)𝑠23 for some 𝑠12, 𝑠23

r← Z𝑁 . The components that depend

on the challenge elements 𝑋,𝑌 are colored for clarity.

2. AlgorithmB starts running algorithmA and receives the number of slots 1
𝐿
. LetD = {𝑑𝑖 }𝑖∈[𝐿] be an efficiently-

computable progression-free and double-free set. We define 𝑓 (𝑖, 𝑗) B 𝑑𝑖+𝑑 𝑗 and E B {𝑓 (𝑖, 𝑗) | 𝑖, 𝑗 ∈ [𝐿] : 𝑖 ≠ 𝑗}.

3. Algorithm B samples 𝛼, 𝛽1, 𝛽2, 𝑎
r← Z𝑁 . It sets 𝑍 = 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 = 𝛽1 + 𝛽2, and ℎ = 𝑔

𝛽

1
.

4. For each 𝑖 ∈ [𝐿], algorithm B samples 𝛿𝑖 , 𝜏𝑖 , 𝜏
′
𝑖

r← Z𝑁 and set 𝑡𝑖 = 𝑎
𝑑𝑖

• For 𝑖 < ℓ , algorithm B sets

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑌𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑋𝑔3)𝛿𝑖 .

• For 𝑖 = ℓ , algorithm B sets

𝐴ℓ = 𝑔
𝑡ℓ
1
𝑌𝜏
′
ℓ , 𝐵ℓ = 𝑔

𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ , 𝑃ℓ = (𝑋𝑔3)𝛿ℓ .

• For 𝑖 ≥ ℓ , algorithm B sets

𝐴𝑖 = 𝑔
𝑡𝑖
1
𝑔
𝜏 ′𝑖
3

, 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
(𝑔3𝑔4)𝜏𝑖 , 𝑃𝑖 = (𝑋𝑔3)𝛿𝑖 .

For each attribute 𝑤 ∈ U_ , it samples 𝑏𝑤
r← Z𝑁 . In addition, for each 𝑤 ∈ U_ , slot index 𝑖 ∈ [𝐿], and cross

term index 𝑧 ∈ E, algorithm B constructs the attribute-specific slot components𝑈𝑖,𝑤 and𝑊𝑧,𝑤 as in iHyb(a)
ℓ,3

:

𝑈𝑖,𝑤 = 𝑔
𝑏𝑤𝑡𝑖
1

, 𝑊𝑧,𝑤 = 𝑔
𝑏𝑤𝑎

𝑧

1
.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , 𝑔4 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖)}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑧,𝑤}𝑤∈U_,𝑖∈[𝐿],𝑧∈E

)
to the adversary A. It also initializes a counter ctr = 0 and an (empty) dictionary Dict to keep track of the

key-generation queries.

85

5. In the query phase, algorithm B responds to the adversary’s queries as in iHyb(a)
ℓ,3

and cHyb(a)
ℓ,0

. Namely, when

algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr = ctr + 1
and samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 = 𝑔
𝑟𝑖
1
, 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary Dict. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) = Dict[𝑖] and replies to A with sk′.

6. In the challenge phase, after A specifies the challenge policy 𝑃∗ = (M, 𝜌), the messages `∗
0
, `∗

1
∈ G𝑇 , and for

each slot 𝑖 ∈ [𝐿], a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖). Algorithm B computes v∗ fromM as described in cHyb(a)
ℓ,0

, and outputs

gcd(𝑁, eT
1
v∗).

The exponent 𝑠12 ∈ Z𝑁 plays the role of 𝑠 ∈ Z𝑁 in iHyb(a)
ℓ,3

and cHyb(a)
ℓ,0

. Next, consider the distribution of 𝐵𝑖 for

𝑖 < ℓ as well as the distribution of 𝐴ℓ . As long as 𝑠23 is coprime to 𝑝2𝑝3, (which holds with overwhelming probability

over the choice of 𝑠23
r← Z𝑁), then the distributions of 𝐵𝑖 and 𝐴ℓ are distributed exactly as required in iHyb(a)

ℓ,3
and

cHyb(a)
ℓ,0

. All remaining components are simulated exactly as in iHyb(a)
ℓ,3

and cHyb(a)
ℓ,0

, so with probability at least

Y − negl(_), algorithm A outputs (M, 𝜌) such that eT
1
v∗ ≠ 0 mod 𝑁 but eT

1
v∗ = 0 mod 𝑝2. In this case, gcd(𝑁, eT

1
v∗)

yields a non-trivial factor of 𝑁 , and algorithm B wins the game in Lemma 5.3 with the same advantage. □

Lemma A.13. For all ℓ ∈ [𝐿], all adversaries A, and all a ∈ {0, 1}, Pr[cHyb(a)
ℓ,1
(A) = 1] = Pr[cHyb(a)

ℓ,0
(A) = 1].

Proof. Without loss of generality, we can assume thatNonCorrupt does not occur andmoreover, eT
1
v∗ ≠ 0 mod 𝑝2. Oth-

erwise, the output in both experiments is 0. The only difference between the two distributions is the distribution of the

challenge ciphertext components𝐶3,𝑘 . In cHyb
(a)
ℓ,1

, the challenger replaces 𝛽2v′ with v̂′ +b𝑣∗. By definition, in cHyb(a)ℓ,1 ,

v̂′ + bv∗ = [𝛽2, 𝑣 ′2 + b𝑣∗2, . . . , 𝑣 ′𝑛 + b𝑣∗𝑛] = 𝛽2v̂′′,

where v̂′′ = [1, 𝑣 ′′
2
, . . . , 𝑣 ′′𝑛], and the distribution of 𝑣 ′′2 , . . . , 𝑣 ′′𝑛 are independent and uniform over Z𝑁 (since 𝑣 ′

2
, . . . , 𝑣 ′𝑛

r←
Z𝑁). This is precisely the distribution of 𝐶3,𝑘 in cHyb(a)

ℓ,0
. □

Lemma A.14. For all ℓ ∈ [𝐿], all adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N, ���Pr[cHyb(a)ℓ,2 (A) = 1] − Pr[cHyb(a)

ℓ,1
(A) = 1]

��� = negl(_).

Proof. We show that the distributions cHyb(a)
ℓ,1
(A) and cHyb(a)

ℓ,2
(A) are statistically indistinguishable. This argument

will rely on the fact that the attributes 𝑆ℓ associated with slot ℓ do not satisfy the challenge policy. By construction,

the only difference between the two experiments is the distribution of component 𝐵ℓ in the G2 subgroup. In cHyb(a)
ℓ,1

,

𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
(𝑔3𝑔4)𝜏ℓ while in cHyb(a)

ℓ,2
, 𝐵ℓ = 𝑔

𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ . In both experiments, 𝐴ℓ = 𝑔

𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ = 𝑔𝑎

𝑑ℓ (𝑔2𝑔3)𝜏ℓ . We

start by defining a few quantities that will be useful in our analysis:

• Let 𝑃∗ = (M, 𝜌) be the challenge policy where M ∈ Z𝐾×𝑛
𝑁

and 𝜌 : [𝐾] → U_ is the injective row-labeling

function.

• Let 𝑆ℓ ⊆ U_ be the set of attributes associated with slot ℓ , and let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆ℓ } be the indices of
the rows ofM associated with the attributes in 𝑆ℓ . LetM𝐼 be the corresponding submatrix ofM.

• Let v∗ ∈ Z𝑛
𝑁
be the vector where M𝐼v∗ = 0 mod 𝑝2 and eT

1
v∗ ≠ 0 mod 𝑝2.

Moreover, we have the following:

• Since the challenger in the two experiments sample 𝑠𝑘 , 𝜏
′
ℓ

r← Z𝑁 , it follows that 𝜏 ′ℓ ≠ 0 mod 𝑝2 and 𝑠𝑘 ≠ 0 mod 𝑝2
with overwhelming probability.

86

• Next, we show that

∑
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖 =

∑
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑎

𝑑𝑖 ≠ 0 mod 𝑝2 for all𝑘 ∈ 𝐼 . By construction, in experiments

cHyb(a)
ℓ,1

and cHyb(a)
ℓ,2

, the value of 𝑎 mod 𝑝2 is information-theoretically hidden to the view of A (specifically,

the quantities 𝐴𝑖 ,𝑈𝑖,𝑤,𝑊𝑧,𝑞 that depend on 𝑎 are only given out in the G1 subgroup). In particular, this means

that the labeling function 𝜌 as well as the attribute sets 𝑆𝑖 for all 𝑖 ∈ [𝐿] chosen by the adversary are independent
of the value of 𝑎 mod 𝑝2. In fact, the challenger in these two experiments can defer the sampling of 𝑎 mod 𝑝2
until after the adversary chooses 𝜌 and 𝑆𝑖 for all 𝑖 ∈ [𝐿]. Since the challenger samples 𝑎

r← Z𝑁 , the value of
𝑎 mod 𝑝2 is uniform over Z𝑝2 . By the Schwartz-Zippel lemma, the probability that

∑
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑎

𝑑𝑖 = 0 is then

at most max(D)/𝑝2 = poly(𝐿)/𝑝2 = negl(_). The claim now follows by a union bound over all indices 𝑘 ∈ 𝐼 .

Consider the following relabeling of the variables in cHyb(a)
ℓ,1

:

• Let 𝜎 (𝛽) ∈ Z𝑁 be the unique value where 𝜎 (𝛽) = 0 mod 𝑝1𝑝3𝑝4 and 𝜎
(𝛽) = (𝜏 ′ℓ)−1𝜏ℓ mod 𝑝2. Suppose we write

𝛽2 = 𝛽
′
2
+ 𝜎 (𝛽) for some 𝛽 ′

2

r← Z𝑁 .

• Let 𝜎 (b) ∈ Z𝑁 be the unique value where 𝜎 (b) = 0 mod 𝑝1𝑝3𝑝4 and 𝜎
(b) = (𝑣∗

1
)−1𝜎 (𝛽) mod 𝑝2. Suppose we

write b = b ′ + 𝜎 (b) for some b ′ r← Z𝑁 .

• For each 𝑘 ∈ [𝐾], let 𝜎 (𝑏)
𝑘

be the unique value where

𝜎
(𝑏)
𝑘

= 0 mod 𝑝1𝑝3𝑝4 and 𝜎
(𝑏)
𝑘

=
©«𝑠𝑘

∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖
ª®¬
−1

𝜎 (b)mT
𝑘
v∗ mod 𝑝2.

Suppose we write 𝑏𝜌 (𝑘) = 𝑏
′
𝜌 (𝑘) + 𝜎

(𝑏)
𝑘

for some 𝑏′
𝜌 (𝑘)

r← Z𝑁 .

By construction, these substitutions preserve the distribution of 𝛽2, b , and 𝑏𝜌 (𝑘) in cHyb(a)
ℓ,1

. Consider the remaining

components in the adversary’s view under this variable substitution:

• Consider the components in the common reference string. First, ℎ = 𝑔
𝛽1+𝛽2
1

= 𝑔
𝛽1+𝛽 ′

2

1
. Next 𝐴𝑖 = 𝑔

𝑡𝑖
1
𝑔
𝜏 ′ℓ
3
for all

𝑖 ≠ ℓ and 𝐴ℓ = 𝑔
𝑡ℓ
1
(𝑔2𝑔3)𝜏

′
ℓ . Consider the distribution of each 𝐵𝑖 :

– If 𝑖 < ℓ , then 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
𝑖
(𝑔2𝑔3𝑔4)𝜏𝑖 = 𝑔𝛼

1
𝐴
𝛽1+𝛽 ′

2

𝑖
(𝑔2𝑔3𝑔4)𝜏𝑖 .

– If 𝑖 = ℓ , then

𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
ℓ
(𝑔3𝑔4)𝜏ℓ = 𝑔𝛼1𝑔

𝑡ℓ (𝛽1+𝛽2)
1

𝑔
𝜏 ′ℓ (𝛽1+𝛽2)
2

𝑔
𝜏 ′ℓ (𝛽1+𝛽2)
3

(𝑔3𝑔4)𝜏ℓ

= 𝑔𝛼
1
𝐴
𝛽1+𝛽 ′

2

ℓ
(𝑔2𝑔3𝑔4)𝜏ℓ ,

since 𝛽2 = 𝛽
′
2
mod 𝑝1𝑝3𝑝4 and 𝛽2 = 𝛽

′
2
+ (𝜏 ′ℓ)−1𝜏ℓ mod 𝑝2.

– If 𝑖 > ℓ , then 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
𝑖

𝑔
𝜏𝑖
3
= 𝑔𝛼

1
𝐴
𝛽1+𝛽 ′

2

𝑖
(𝑔3𝑔4)𝜏𝑖 .

Consider the slot components𝑈𝑖,𝜌 (𝑘) and𝑊𝑧,𝜌 (𝑘) for each 𝑖 ∈ [𝐿], 𝑧 ∈ E, and 𝑘 ∈ [𝐾]. By definition,

𝑈𝑖,𝜌 (𝑘) = 𝑔
𝑏𝜌 (𝑘) 𝑡𝑖
1

= 𝑔
𝑏′
𝜌 (𝑘) 𝑡𝑖

1

𝑊𝑧,𝜌 (𝑘) = 𝑔
𝑏𝜌 (𝑘)𝑎

𝑧

1
= 𝑔

𝑏′
𝜌 (𝑘)𝑎

𝑧

1
.

The remaining components in the CRS do not depend on 𝛽2, b , or 𝑏𝜌 (𝑘) , and are thus unchanged.

• Next, the components the challenger constructs when responding to key-generation queries do not depend

on the exponents 𝛽2, b , or 𝑏𝜌 (𝑘) , so their distributions (given the components in the CRS) are unchanged with

this substitution.

87

• Finally, consider the components in the challenge ciphertext. The components 𝐶1,𝐶2,𝐶4,𝑘 ,𝐶5 for 𝑘 ∈ [𝐾] are
all unchanged (i.e., they are independent of 𝛽2, b, 𝑏𝜌 (𝑘)). It suffices to consider the ciphertext components 𝐶3,𝑘 .

First, since 𝛽2 = 𝛽
′
2
+ 𝜎 (𝛽) and b = b ′ + (𝑣∗

1
)−1𝜎 (𝛽) , we have

v̂′ = [𝛽2 − b𝑣∗1, 𝑣 ′2, . . . , 𝑣 ′𝑛] = [𝛽 ′2 − b ′𝑣∗1, 𝑣 ′2, . . . , 𝑣 ′𝑛] mod 𝑁 .

We now consider two possibilities:

– Suppose 𝜌 (𝑘) ∈ 𝑆ℓ . This means that 𝑘 ∈ 𝐼 so mT
𝑘
v∗ = 0 mod 𝑁 . Moreover,𝐶4,𝑘 = (𝑔1𝑔4)𝑠𝑘 , so we can write

𝐶3,𝑘 as

𝐶3,𝑘 = ((𝑔1𝑔2)𝑠)m
T
𝑘
(v̂′+bv∗)𝐶

−𝑏𝜌 (𝑘)
∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

= ((𝑔1𝑔2)𝑠)m
T
𝑘
v̂′𝐶
−𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

= ((𝑔1𝑔2)𝑠)m
T
𝑘
(v̂′+b ′v∗)𝐶

−𝑏′
𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4
.

– Suppose 𝜌 (𝑘) ∉ 𝑆ℓ . First, we have

bmT
𝑘
v∗ − 𝑠𝑘𝑏𝜌 (𝑘)

∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖 = b
′mT

𝑘
v∗ − 𝑠𝑘𝑏′𝜌 (𝑘)

∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖 mod 𝑝1𝑝3𝑝4.

We show the same relation also holds mod𝑝2. Under our change of variables, we have

bmT
𝑘
v∗ − 𝑠𝑘𝑏𝜌 (𝑘)

∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖 =
(
b ′ + 𝜎 (b)

)
mT
𝑘
v∗ − 𝑠𝑘

©«𝑏′𝜌 (𝑘) + ©«𝑠𝑘
∑︁

𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖
ª®¬
−1

𝜎 (b)mT
𝑘
v∗ª®¬

∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖

= b ′mT
𝑘
v∗ − 𝑠𝑘𝑏′𝜌 (𝑘)

∑︁
𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑡𝑖 (mod 𝑝2).

Since 𝜌 (𝑘) ∉ 𝑆ℓ , we have that 𝐶4,𝑘 = ((𝑔1𝑔2)𝑠𝑔4)𝑠𝑘 . We can now rewrite 𝐶3,𝑘 as

𝐶3,𝑘 = ((𝑔1𝑔2)𝑠)m
T
𝑘
(v̂′+bv∗)𝐶

−𝑏𝜌 (𝑘)
∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

= ((𝑔1𝑔2)𝑠)m
T
𝑘
(v̂′+bv∗) ((𝑔1𝑔2)𝑠𝑔4)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘
4

= ((𝑔1𝑔2)𝑠)m
T
𝑘
(v̂′+bv∗)−𝑠𝑘𝑏𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘−𝑠𝑘𝑏𝜌 (𝑘)
∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4

= ((𝑔1𝑔2)𝑠)m
T
𝑘
(v̂′+b ′v∗)−𝑠𝑘𝑏′𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖𝑔

[𝑘−𝑠𝑘𝑏′𝜌 (𝑘)
∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4

= ((𝑔1𝑔2)𝑠)m
T
𝑘
(v̂′+b ′v∗)𝐶

−𝑏′
𝜌 (𝑘)

∑
𝑖∈ [𝐿]:𝜌 (𝑘)∉𝑆𝑖 𝑡𝑖

4,𝑘
𝑔
[𝑘
4

Observe now with this relabeling of variables, we have recovered the ciphertext distribution in cHyb(a)
ℓ,2

(with

randomness 𝛽 ′
2
, b ′ and 𝑏′

𝜌 (𝑘)). Thus, the distributions cHyb
(a)
ℓ,2

and cHyb(a)
ℓ,1

are statistically indistinguishable. □

Lemma A.15. For all ℓ ∈ [𝐿], all adversaries A, and all a ∈ {0, 1}, Pr[cHyb(a)
ℓ,3
(A) = 1] = Pr[cHyb(a)

ℓ,2
(A) = 1].

Proof. This follows by the same argument as in the proof of Lemma A.13. □

Lemma A.16. Suppose Assumption 5.2d holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all a ∈ {0, 1}, there exists a negligible function negl(·) such that��

Pr[cHyb(a)
ℓ,3
(A) = 1] − Pr[iHyb(a)

ℓ,4
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as in the proof of Lemma A.12. □

Combining Lemmas A.12 to A.16, Claim A.11 now follows by a hybrid argument. □

By Claims A.3 and A.11, Eqs. (A.4) and (A.5) both hold. Lemma 5.21 now follows by the triangle inequality. □

88

B Statistically-Secure Registered ABE without Progression-Free Sets
For completeness (and comparison purposes; see Section 6) we describe an analogue of our statically-secure registered

ABE scheme (Construction 4.3) without progression-free sets. This allows us to base security on the less structured

parallel Diffie-Hellman exponent assumption from [Wat11]; on the flip side, the size of the CRS is quadratic in the

number of users (but still independent of the size of the attribute universe). This construction highlights our approach

for reducing the CRS size by employing a partitioning-based proof strategy (which can be leveraged independently

of using progression-free sets).

Parallel Diffie-Hellman exponent assumption. We start by reviewing the parallel Diffie-Hellman exponent

assumption introduced by Waters [Wat11] in the context of constructing ciphertext-policy attribute-based encryption

(in the centralized model).

Assumption B.1 (Parallel Diffie-Hellman Exponent Assumption [Wat11, adapted]). Let PrimeGroupGen be a prime-

order group generator. For a security parameter _ and a bit 𝑏 ∈ {0, 1}, we define the (𝑞1, 𝑞2)-parallel Diffie-Hellman

exponent game between an adversary A and a challenger as follows:

1. The challenger starts by sampling G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeGroupGen(1_). It also samples exponents

exponents 𝑎, 𝑠, 𝛽1, . . . 𝛽𝑞2
r← Z𝑝 . Then the challenger computes the following quantities:

• Let 𝑌 = 𝑔𝑠 .

• For each 𝑖 ∈ [2𝑞1] \ {𝑞1}, let 𝑋𝑖 = 𝑔𝑎
𝑖

.

• For each 𝑗 ∈ [𝑞2], let 𝑌 (𝑗) = 𝑔𝑠𝛽 𝑗 , and for each 𝑖 ∈ [2𝑞1] \ {𝑞1}, let 𝑋 (𝑗)𝑖
= 𝑔𝑎

𝑖/𝛽 𝑗
.

• For each 𝑖 ∈ [2𝑞1] \ {𝑞1} and 𝑗, 𝑘 ∈ [𝑞2] where 𝑗 ≠ 𝑘 , let 𝑍 (𝑗,𝑘)𝑖
= 𝑔𝑎

𝑖𝑠𝛽𝑘/𝛽 𝑗
.

Finally the challenger computes 𝑇0 = 𝑒 (𝑔,𝑔)𝑎
𝑞
1𝑠
and samples 𝑇1

r← G𝑇 . It then gives the following challenge

to the adversary(
G , 𝑔 , 𝑌 , {𝑋𝑖 }𝑖∈[2𝑞1]\{𝑞1 } , {𝑌 (𝑗) , 𝑋

(𝑗)
𝑖
} 𝑗∈[𝑞2],𝑖∈[2𝑞1]\{𝑞1 } , {𝑍

(𝑗,𝑘)
𝑖
} 𝑗≠𝑘,𝑖∈[2𝑞1]\{𝑞1 } , 𝑇𝑏

)
.

2. The adversary outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

We say that the (𝑞1, 𝑞2)-Parallel Diffie-Hellman Exponent assumption holds with respect to PrimeGroupGen if for

all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_)

in the (𝑞1, 𝑞2)-parallel Diffie-Hellman exponent game.

Remark B.2 (Comparison to [Wat11]). Note that the original assumption formulation from [Wat11, §2.4.1] corre-

sponds to the particular case where 𝑞1 = 𝑞2. Allowing different values 𝑞1, 𝑞2 simplifies the analysis of our construction.

For completeness, we prove that our variant of the parallel BDHE assumption holds in the generic bilinear group

model in Appendix D (Lemma D.7).

Slotted registered ABE without progression-free sets. We now give the analog of Construction 4.3 without

relying on progression-free sets. This construction can also be viewed as a prime-order analog of the composite-order

scheme from [HLWW23].

Construction B.3 (Slotted Attribute-Based Registration-Based Encryption). Let PrimeGroupGen be a prime-order

bilinear group generator, letU = {U_}_∈N be a (polynomial-size) attribute space, and let P = {P_}_∈N be a set of poli-
cies that can be described by a linear secret sharing scheme (Definition 2.2) overU, where each policy 𝑃 ∈ P_ is defined
over a maximum of 𝐾 = 𝐾 (_) attributes. We construct a slotted attribute-based registration-based encryption scheme

ΠRABE = (Setup,KeyGen, IsValid,Aggregate, Encrypt,Decrypt) with attribute spaceU and policy space P as follows:

89

• Setup(1_, 1𝐿): On input the security parameter _, and the number of slots 𝐿, the setup algorithm starts by sam-

pling G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeGroupGen(1_). The setup algorithm now constructs the following quantities:

– Sample random exponents 𝑎
r← Z𝑝 and set 𝛼 = −𝑎𝐿+1. Compute ℎ =

∏
𝑖∈[𝐿] 𝑔

𝑎𝐿+1−𝑖
.

– For each slot index 𝑖 ∈ [𝐿], sample exponents 𝑢𝑖 , 𝛿𝑖
r← Z𝑝 and let 𝑡𝑖 = 𝑎𝑖 . Then, define the following group

elements:

𝐴𝑖 = 𝑔
𝑡𝑖 , 𝐵𝑖 = 𝑔

𝛼ℎ𝑡𝑖 , 𝑃𝑖 = 𝑔
𝛿𝑖 , 𝑈𝑖 = 𝑔

𝑢𝑖 .

Then, for each 𝑖, 𝑗 ∈ [𝐿] where 𝑖 ≠ 𝑗 , compute the “cross term”𝑊𝑖, 𝑗 = 𝑔
𝑡𝑖𝑢 𝑗

.

– Finally, let 𝑍 = 𝑒 (𝑔,𝑔)𝛼 . Output the common reference string

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑖, 𝑗 } 𝑗≠𝑖

)
(B.1)

The associated message spaceM_ is defined to beM_ B G𝑇 .

• KeyGen(crs, 𝑖): This is the same algorithm as in Construction 4.3. Namely, on input the common reference

string crs (with components given by Eq. (B.1)) and a slot index 𝑖 ∈ [𝐿], the key-generation algorithm samples

𝑟𝑖
r← Z𝑝 and computes

𝑇𝑖 = 𝑔
𝑟𝑖 , 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
.

Then for each 𝑗 ≠ 𝑖 , it computes the cross terms 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
. Finally, it outputs the public key pk𝑖 and the secret

key sk𝑖 defined as follows:

pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and sk𝑖 = 𝑟𝑖 .

Note that this key-generation algorithm does not depend on the set of attributes.

• IsValid(crs, 𝑖, pk𝑖): This is the same algorithm as in Construction 4.3. Namely, on input the common ref-

erence string crs (with components given by Eq. (B.1)), a slot index 𝑖 ∈ [𝐿], and a purported public key

pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖), the key-validation algorithm first affirms that each of the components in pk𝑖 is a valid
group element (i.e., an element in G). If so, it then checks

𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔,𝑄𝑖)

Next, for each 𝑗 ≠ 𝑖 , the algorithm checks that

𝑒
(
𝑔,𝑉𝑗,𝑖

)
= 𝑒 (𝑇𝑖 , 𝐴 𝑗)

If all checks pass, it outputs 1; otherwise, it outputs 0.

• Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)): On input the common reference string crs (with components given by

Eq. (B.1)), a collection of 𝐿 public keys pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) together with their attribute sets 𝑆𝑖 ⊆ U_ , the
aggregation algorithm starts by computing the attribute-independent public key𝑇 and the attribute-independent

slot key 𝑉𝑖 for each 𝑖 ∈ [𝐿]:
𝑇 =

∏
𝑗∈[𝐿]

𝑇𝑗 and 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Next, for each attribute𝑤 ∈ U_ , it computes the attribute-specific public key𝑈𝑤 and the attribute-specific slot

key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿]:
𝑈𝑤 =

∏
𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗 and �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑖, 𝑗 .

Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk𝑖 where

mpk =
(
G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_

)
and hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
.

90

• Encrypt(mpk, (M, 𝜌), `): On input the master public key mpk = (G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_), a policy (M, 𝜌)
whereM ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function, and a message ` ∈ G𝑇 , the encryption algorithm

starts by sampling a secret exponent 𝑠
r← Z𝑝 and ℎ1, ℎ2

r← G such that ℎ = ℎ1ℎ2. Then, it constructs the

ciphertext components as follows:

– Message-embedding components: First, let 𝐶1 = ` · 𝑍𝑠 and 𝐶2 = 𝑔
𝑠
.

– Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑝 for the linear secret sharing scheme and let

v = [1, 𝑣2, . . . , 𝑣𝑛]T. Then, for each 𝑘 ∈ [𝐾], sample 𝑠𝑘
r← Z𝑝 and let 𝐶3,𝑘 = ℎ

𝑠mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘) and 𝐶4,𝑘 = 𝑔𝑠𝑘 ,

where mT
𝑘
∈ Z𝑛𝑝 denotes the 𝑘 th row of M.

– Slot-specific component: Set 𝐶5 = (ℎ1𝑇 −1)𝑠

It then outputs the ciphertext

ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

• Decrypt(sk, hsk, ct): On input the secret key sk = 𝑟 , the helper key hsk =
(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
,

where mpk = (G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_), and the ciphertext ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
where

M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function, the decryption algorithm proceeds as follows:

– If the set of attributes 𝑆𝑖 is not authorized by (M, 𝜌), then the decryption algorithm outputs ⊥.
– Otherwise, let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆𝑖 } be the indices of the rows of M associated with the attributes

𝑆𝑖 ⊆ U_ . Write the elements as 𝐼 = {𝑘1, . . . , 𝑘 |𝐼 | }.
– LetM𝑆𝑖 be the matrix formed by taking the subset of rows inM indexed by 𝐼 . Since 𝑆𝑖 is authorized, let

𝝎𝑆𝑖 ∈ Z
|𝐼 |
𝑝 be a vector such that 𝝎T

𝑆𝑖
M𝑆𝑖 = eT

1
.

– Then, compute and output

𝐶1

𝑒 (𝐶2, 𝐵𝑖)
· 𝑒 (𝐶5, 𝐴𝑖) · 𝑒 (𝐶2, 𝐴𝑟𝑖𝑉𝑖)︸ ︷︷ ︸

𝐷slot

·
∏

1≤ 𝑗≤ |𝐼 |

(
𝑒 (𝐶

3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))
)𝜔𝑆𝑖 ,𝑗

︸ ︷︷ ︸
𝐷attrib

. (B.2)

Wewill refer to𝐷slot as the slot-specific decryption component and𝐷attrib as the attribute-specific decryption
component.

Correctness. We now show that Construction B.3 satisfies completeness, correctness, compactness, and incremental

aggregation.

Theorem B.4 (Completeness). Construction B.3 is complete.

Proof. Take any security parameter _ ∈ N and the number of slots 𝐿 ∈ N. Let crs← Setup(1_, 1𝐿). Then, we can write

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑖, 𝑗 } 𝑗≠𝑖

)
.

Take any index 𝑖 ∈ [𝐿] and let (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖). By construction of KeyGen, we can write pk𝑖 =(
𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
, where

𝑇𝑖 = 𝑔
𝑟𝑖 , 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗

for some 𝑟𝑖 ∈ Z𝑁 . We now consider each of the pairing checks in IsValid:

• 𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔𝑟𝑖 , 𝑃𝑖) = 𝑒 (𝑔, 𝑃𝑟𝑖𝑖) = 𝑒 (𝑔,𝑄𝑖).

• 𝑒 (𝑔,𝑉𝑗,𝑖) = 𝑒 (𝑔,𝐴𝑟𝑖𝑗) = 𝑒 (𝑔𝑟𝑖 , 𝐴 𝑗) = 𝑒 (𝑇𝑖 , 𝐴 𝑗).

Since all of the pairing checks pass, IsValid(crs, 𝑖, pk𝑖) outputs 1 and completeness holds. □

91

Theorem B.5 (Correctness). Construction B.3 is correct.

Proof. Take any security parameter _ ∈ N, attribute space U, slot length 𝐿 ∈ N, and index 𝑖 ∈ [𝐿]. Consider the
following components in the correctness experiment:

• Let crs← Setup(1_, 1𝐿) where crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑖, 𝑗 } 𝑗≠𝑖

)
. By construction, the slot

components can be written as 𝐴𝑖 = 𝑔
𝑡𝑖
, 𝐵𝑖 = 𝑔

𝛼ℎ𝑡𝑖 , and 𝑃𝑖 = 𝑔
𝛿𝑖
. The attribute components can be written as

𝑈𝑖 = 𝑔
𝑢𝑖

and𝑊𝑖, 𝑗 = 𝑔
𝑡𝑖𝑢 𝑗

(where 𝑡𝑖 = 𝑎
𝑖
).

• Let (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖). Then, we can write sk𝑖 = 𝑟𝑖 and pk𝑖 =
(
𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
where

𝑇𝑖 = 𝑔
𝑟𝑖 , 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
= 𝑔𝑡 𝑗𝑟𝑖 . (B.3)

• Take any set of public keys {pk𝑗 } 𝑗≠𝑖 where IsValid(crs, 𝑗, pk𝑗) = 1 holds. Since pk𝑗 satisfies the IsValid predicate,
we can write pk𝑗 =

(
𝑇𝑗 , 𝑄 𝑗 , {𝑉ℓ, 𝑗 }ℓ≠𝑗

)
.

• For each 𝑗 ∈ [𝐿], let 𝑆 𝑗 ⊆ U_ be the attributes associated with pk𝑗 .

• Let (mpk, hsk1, . . . , hsk𝐿) ← Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)). Then, the master public key mpk and the

𝑖th slot-specific helper decryption key hsk𝑖 can then be written as follows:

mpk =
(
G, 𝑔, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U_

)
and hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U_

)
,

where 𝑇 =
∏

𝑗∈[𝐿] 𝑇𝑗 , 𝑉𝑖 =
∏

𝑗≠𝑖 𝑉𝑖, 𝑗 , and

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑔𝑢 𝑗

�̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑖, 𝑗 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑔𝑡𝑖𝑢 𝑗

• Let (M, 𝜌) be the challenge policy where M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function. Take any

message ` ∈ G𝑇 . The challenge ciphertext ct can be written as

ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
where 𝐶1 = ` · 𝑍𝑠 , 𝐶2 = 𝑔

𝑠
, 𝐶3,𝑘 = ℎ

mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘) , 𝐶4,𝑘 = 𝑔𝑠𝑘 , and 𝐶5 = ℎ

𝑠
1
𝑇 −𝑠 .

We now show that Decrypt(sk𝑖 , hsk𝑖 , ct) outputs `. Let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆𝑖 } be the indices of the rows of M
associated with the attributes 𝑆𝑖 . Write the elements of 𝐼 as 𝐼 = {𝑘1, . . . , 𝑘 |𝐼 | }. Let M𝑆𝑖 be the matrix formed by taking

the subset of rows inM indexed by 𝐼 , and let 𝝎𝑆𝑖 ∈ Z
|𝐼 |
𝑁

be a vector such that 𝝎T
𝑆𝑖
M𝑆𝑖 = eT

1
. We break up the decryption

relation (Eq. (B.2)) into several pieces and analyze them individually:

• Policy check: First, consider 𝐷attrib =
∏

1≤ 𝑗≤ |𝐼 |
(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))

)𝜔𝑆𝑖 ,𝑗
. By definition,

𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) = 𝑒
(
ℎ
𝑠mT

𝑘𝑗
v

2
𝑈
−𝑠𝑘𝑗
𝜌 (𝑘 𝑗) , 𝑔

𝑡𝑖

)
= 𝑒 (ℎ2, 𝑔)

𝑠𝑡𝑖mT
𝑘𝑗
v ∏
ℓ∈[𝐿]:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔,𝑔)−𝑠𝑘𝑗 𝑡𝑖𝑢ℓ

𝑒
(
𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗)

)
=

∏
ℓ≠𝑖:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒
(
𝑔
𝑠𝑘𝑗 ,𝑊𝑖,ℓ

)
=

∏
ℓ≠𝑖:𝜌 (𝑘 𝑗)∉𝑆ℓ

𝑒 (𝑔,𝑔)𝑡𝑖𝑢ℓ𝑠𝑘𝑗

By construction, 𝜌 (𝑘 𝑗) ∈ 𝑆𝑖 , so the latter terms cancel out and we can write

𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖)𝑒
(
𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗)

)
= 𝑒 (ℎ2, 𝑔)

𝑠𝑡𝑖mT
𝑘𝑗
v
.

92

Finally noting that eT
1
v = 1, we have

𝐷attrib =
∏

1≤ 𝑗≤ |𝐼 |

(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗))

)𝜔𝑆𝑖 ,𝑗
= 𝑒 (ℎ2, 𝑔)

𝑠𝑡𝑖
∑

1≤ 𝑗≤|𝐼 | 𝜔𝑆𝑖 ,𝑗m
T
𝑘𝑗
v

= 𝑒 (ℎ2, 𝑔)𝑠𝑡𝑖𝝎
T
𝑆𝑖
M𝑆𝑖 v

= 𝑒 (ℎ2, 𝑔)𝑠𝑡𝑖e
T
1
v = 𝑒 (ℎ2, 𝑔)𝑠𝑡𝑖 .

• Slot check: Next, consider the component 𝐷slot = 𝑒 (𝐶5, 𝐴𝑖)𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖). By definition

𝑒 (𝐶5, 𝐴𝑖) = 𝑒
(
ℎ𝑠
1
𝑇 −𝑠 , 𝑔𝑡𝑖

)
= 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖

∏
𝑗∈[𝐿]

𝑒 (𝑇𝑗 , 𝑔)−𝑠𝑡𝑖 = 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖
∏
𝑗∈[𝐿]

𝑒 (𝑇𝑗 , 𝐴𝑖)−𝑠

𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖) = 𝑒

(
𝑔𝑠 , 𝑔𝑟𝑖𝑡𝑖𝑉𝑖

)
= 𝑒 (𝑔,𝑔)𝑠𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔,𝑉𝑖, 𝑗)𝑠 .

Now, since we know for all 𝑗 ∈ [𝐿], IsValid(crs, 𝑗, pk𝑗) = 1, we have that for all 𝑗 ≠ 𝑖 , 𝑒 (𝑔,𝑉𝑖, 𝑗) = 𝑒 (𝑇𝑗 , 𝐴𝑖).
Thus, using Eq. (B.3), we can now write

𝐷slot = 𝑒 (𝐶5, 𝐴𝑖)𝑒 (𝐶2, 𝐴
𝑟𝑖
𝑖
𝑉𝑖) =

(
𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (𝑇𝑖 , 𝐴𝑖)−𝑠

∏
𝑗≠𝑖

𝑒 (𝑇𝑗 , 𝐴𝑖)−𝑠
) (
𝑒 (𝑔,𝑔)𝑠𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔,𝑉𝑖, 𝑗)𝑠
)

= 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (𝑇𝑖 , 𝐴𝑖)−𝑠𝑒 (𝑔,𝑔)𝑠𝑟𝑖𝑡𝑖

= 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (𝑔𝑟𝑖 , 𝑔𝑡𝑖)−𝑠𝑒 (𝑔,𝑔)𝑠𝑟𝑖𝑡𝑖 = 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖

• Message reconstruction: Using the fact that ℎ = ℎ1ℎ2, and combining the above relations, we have that

𝐷slot · 𝐷attrib = 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (ℎ2, 𝑔)𝑠𝑡𝑖 = 𝑒 (ℎ, 𝑠)𝑠𝑡𝑖 .

Next, we can see that have

𝑒 (𝐶2, 𝐵𝑖) = 𝑒 (𝑔𝑠 , 𝑔𝛼ℎ𝑡𝑖) = 𝑒 (𝑔,𝑔)𝛼𝑠𝑒 (ℎ,𝑔)𝑠𝑡𝑖 .
Thus, putting everything together, Eq. (B.2) becomes

𝐶1 · 𝐷slot · 𝐷attrib

𝑒 (𝐶2, 𝐵𝑖)
=
` · 𝑒 (𝑔,𝑔)𝛼𝑠𝑒 (ℎ,𝑔)𝑠𝑡𝑖
𝑒 (𝑔,𝑔)𝛼𝑠𝑒 (ℎ,𝑔)𝑠𝑡𝑖 = `

□

Theorem B.6 (Compactness). Construction B.3 is compact.

Proof. This follows by inspection. The master public key mpk consists of the group description and 𝑂 (|U_ |) group
elements. Since the group description and each individual group element can be represented in poly(_) bits, the size
of the master public key is bounded by poly(_, |U_ |, log𝐿) bits. Likewise, the helper decryption key consists of the

master public key along with 𝑂 (|U_ |) group elements. Thus, the size of hsk𝑖 is also poly(_, |U_ |, log𝐿) bits. □

Theorem B.7 (Incremental Aggregation). Construction B.3 supports 𝑓 -incremental aggregation for 𝑓 (𝐿, |U_ |) =
𝑂 (𝐿 · |U_ |).

Proof. We construct the AggregateUpdate algorithm as follows:

• AggregateUpdate(crs, st, (pk, 𝑆)): On input the common reference string

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑖, 𝑗 } 𝑗≠𝑖

)
,

a state st (which could be ⊥), and a public key (pk, 𝑆) (or the special symbol ⊥), the update algorithm proceeds

as follows:

93

1. If st = ⊥, then the update algorithm initializes 𝑘 = 0 and 𝑇 (𝑘) = 1, 𝑉
(𝑘)
𝑖

= 1 for all 𝑖 ∈ [𝐿], 𝑈 (𝑘)𝑤 = 1 for

all𝑤 ∈ U_ , and �̂� (𝑘)
𝑖,𝑤

= 1 for all 𝑖 ∈ [𝐿] and𝑤 ∈ U_ . Otherwise, the update algorithm parses

st =
(
𝑘 , 𝑇 (𝑘) ,

{
𝑉
(𝑘)
𝑖

}
𝑖∈[𝐿] ,

{
𝑈
(𝑘)
𝑤

}
𝑤∈U_ ,

{
�̂�
(𝑘)
𝑖,𝑤

}
𝑖∈[𝐿],𝑤∈U_

)
2. If (pk, 𝑆) = ⊥, then the algorithm outputs

mpk =
(
G, 𝑔, ℎ, 𝑍,𝑇 (𝑘) ,

{
𝑈
(𝑘)
𝑤

}
𝑤∈U_

)
, ∀𝑖 ∈ [𝐿] : hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉

(𝑘)
𝑖

,
{
�̂�
(𝑘)
𝑖,𝑤

}
𝑤∈U_

)
.

3. Otherwise, the update algorithm parses pk =
(
𝑇𝑘+1, 𝑄𝑘+1, {𝑉𝑖,𝑘+1}𝑖≠𝑘+1

)
and updates the state as follows:

– 𝑇 (𝑘+1) = 𝑇 (𝑘) ·𝑇𝑘+1.
– For each 𝑖 ∈ [𝐿], if 𝑖 ≠ 𝑘 + 1 then𝑉 (𝑘+1)

𝑖
= 𝑉

(𝑘)
𝑖
·𝑉𝑖,𝑘+1. Otherwise, if 𝑖 = 𝑘 + 1, then set𝑉

(𝑘+1)
𝑖

= 𝑉
(𝑘)
𝑖

.

– For each𝑤 ∈ U_ , if𝑤 ∉ 𝑆𝑘+1, then𝑈
(𝑘+1)
𝑤 = 𝑈

(𝑘)
𝑤 ·𝑈𝑘+1. Otherwise, if𝑤 ∈ 𝑆𝑘+1, then𝑈 (𝑘+1)𝑤 = 𝑈

(𝑘)
𝑤 .

– For each 𝑖 ∈ [𝐿] and𝑤 ∈ U_ , if 𝑖 ≠ 𝑘 + 1 and𝑤 ∉ 𝑆𝑘+1, then �̂�
(𝑘+1)
𝑖,𝑤

= �̂�
(𝑘)
𝑖,𝑤
·𝑊𝑖,𝑘+1. Otherwise, set

�̂�
(𝑘+1)
𝑖,𝑤

= �̂�
(𝑘)
𝑖,𝑤

.

4. Output the updated state

st =
(
𝑘 + 1 , 𝑇 (𝑘+1) ,

{
𝑉
(𝑘+1)
𝑖

}
𝑖∈[𝐿] ,

{
𝑈
(𝑘+1)
𝑤

}
𝑤∈U_ ,

{
�̂�
(𝑘+1)
𝑖,𝑤

}
𝑖∈[𝐿],𝑤∈U_

)
.

To complete the proof, we show that this incremental aggregation procedure implements the same behavior as the

standard aggregation procedure. Specifically, we show inductively that for all 𝑘 ≤ 𝐿, the following properties hold
for the elements in the AggregateUpdate algorithm:

• 𝑇 (𝑘) =
∏

𝑗∈[𝑘] 𝑇𝑗 .

• For all 𝑖 ∈ [𝐿], 𝑉 (𝑘)
𝑖

=
∏

𝑗∈[𝑘]\{𝑖 } 𝑉𝑖, 𝑗 .

• For all𝑤 ∈ U_ ,𝑈 (𝑘)𝑤 =
∏

𝑗∈[𝑘]:𝑤∉𝑆 𝑗 𝑈 𝑗 .

• For all 𝑖 ∈ [𝐿] and𝑤 ∈ U_ , �̂� (𝑘)
𝑖,𝑤

=
∏

𝑗∈[𝑘]\{𝑖 }:𝑤∉𝑆 𝑗𝑊𝑖, 𝑗 .

By construction, all of these properties hold for 𝑘 = 0. Moreover, the inductive step follows by inspection: namely,

each of the updates in Step 3 simply multiplies in the next component into the product (if present). When 𝑘 = 𝐿, the

components 𝑇 (𝐿) , 𝑉 (𝐿)
𝑖

, 𝑈
(𝐿)
𝑤 , and �̂�

(𝐿)
𝑖,𝑤

precisely coincide with the quantities in the Aggregate algorithm. Finally,

the intermediate state st always contains 𝑂 (𝐿 · |U_ |) group elements, which proves the claim. □

Theorem B.8 (Static Security). Let 𝐿 be a bound on the number of slots. Let 𝑞1 = 𝐿 + 1 and 𝑞2 = 𝐿 · 𝐾 . If the
(𝑞1, 𝑞2)-parallel bilinear Diffie-Hellman exponent assumption (Assumption B.1) holds with respect to PrimeGroupGen,
then Construction B.3 is statically secure (for up to 𝐿 slots).

Proof. Similar to Section 4, our security proof relies on a partitioning strategy where we program the indices of the

corrupted slots into the common reference string. We begin by defining a sequence of hybrid experiments. Each

of our experiments is parameterized by a bit a ∈ {0, 1} (and implicitly, by the security parameter _).

• Hyb(a)real: This is the real security game where the challenger encrypts message `∗
𝑏
. We recall the main steps here:

– Setup phase: In the setup phase, the adversary A specifies the number of slots 1
𝐿
and the indices of the

corrupted slots C ⊆ [𝐿]. In the following, we also define the indices of the non-corrupted slots asN B [𝐿]\
C. The challenger then samples the common reference string crs according to the specification of Setup:

∗ The challenger initializes a counter ctr = 0 and an (empty) dictionary Dict.
∗ The challenger samples G = (G,G𝑇 , 𝑝, 𝑔, 𝑒) ← PrimeGroupGen(1_).

94

∗ The challenger samples 𝑎
r← Z𝑝 and set 𝛼 = −𝑎𝐿+1. It also computes ℎ =

∏
𝑖∈[𝐿] 𝑔

𝑎𝐿+1−𝑖
. Then, for

each slot 𝑖 ∈ [𝐿], the challenger samples 𝑢𝑖 , 𝛿𝑖
r← Z𝑝 , and sets 𝑡𝑖 = 𝑎

𝑖
. Then, it defines the following

group elements:

𝐴𝑖 = 𝑔
𝑡𝑖 , 𝐵𝑖 = 𝑔

𝛼ℎ𝑡𝑖 , 𝑃𝑖 = 𝑔
𝛿𝑖 , 𝑈𝑖 = 𝑔

𝑢𝑖

Then, for each 𝑖, 𝑗 ∈ [𝐿] where 𝑖 ≠ 𝑗 , it also sets𝑊𝑖, 𝑗 = 𝑔
𝑡𝑖𝑢 𝑗

.

∗ Finally, compute 𝑍 ← 𝑒 (𝑔,𝑔)𝛼 . The challenger constructs the common reference string

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑖, 𝑗 } 𝑗≠𝑖

)
(B.4)

and gives crs to A.

– Query phase: The challenger responds to the adversary’s key-generation queries as follows:

∗ Key-generation query: Whenever algorithm A makes a key-generation query on a non-corrupted

slot index 𝑖 ∈ N , the challenger starts by incrementing the counter ctr = ctr + 1 and samples 𝑟𝑖
r← Z𝑝 .

It then computes 𝑇𝑖 = 𝑔
𝑟𝑖
, 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
, and 𝑉𝑗,𝑖 = 𝐴

𝑟𝑖
𝑗
for 𝑗 ≠ 𝑖 . The challenger sets the public key to

be pkctr = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It adds the mapping ctr ↦→ (𝑖, pkctr) to the

dictionary Dict.

Recall that in the static security game, the adversary is not allowed to make any corruption queries.

– Challenge phase: In the challenge phase, the adversary specifies a challenge policy 𝑃∗ = (M, 𝜌) ∈ P_ ,
where M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function and two messages `∗

0
, `∗

1
∈ G𝑇 .11 In

addition, the adversary specifies a key for for each slot 𝑖 ∈ [𝐿] as follows:
∗ For each corrupted slot 𝑖 ∈ C the adversary specifies a public key pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and an

attribute set 𝑆𝑖 . The challenger checks that IsValid(crs, 𝑖, pk𝑖) = 1 and halts with output ⊥ if not.

Specifically, the challenger checks that 𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔,𝑄𝑖) and for each 𝑗 ≠ 𝑖 , that 𝑒 (𝑔,𝑉𝑗,𝑖) = 𝑒 (𝑇𝑖 , 𝐴 𝑗).
∗ For each non-corrupted slot 𝑖 ∈ N , the adversary specifies an index 𝑐𝑖 ∈ [ctr]. The challenger looks
up the entry Dict[𝑐𝑖] = (𝑖′, pk′). If 𝑖 = 𝑖′, the challenger sets pk𝑖 = pk′. If pk𝑖 ≠ pk′, the challenger
halts with output ⊥.

For each slot 𝑖 ∈ [𝐿], the challenger parses it as pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖). The challenger computes the

attribute-independent public key 𝑇 and the attribute-independent slot key 𝑉𝑖 for each 𝑖 ∈ [𝐿]:

𝑇 =
∏
𝑗∈[𝐿]

𝑇𝑗 and 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Then, for each attribute𝑤 ∈ U_ , it computes the attribute-specific public key𝑈𝑤 and the attribute-specific

slot key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿] as follows:

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗 and �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑖, 𝑗 .

The challenger then constructs the challenge ciphertext by sampling a secret exponent 𝑠
r← Z𝑝 and

ℎ1, ℎ2
r← G such that ℎ = ℎ1ℎ2. It constructs the ciphertext components as follows:

∗ Message-embedding components: First, let 𝐶1 = `
∗
a · 𝑍𝑠 and 𝐶2 = 𝑔

𝑠
.

∗ Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑝 for the linear secret sharing scheme and

let v = [1, 𝑣2, . . . , 𝑣𝑛]T. Then, for each 𝑘 ∈ [𝐾], sample 𝑠𝑘
r← Z𝑝 , let 𝐶3,𝑘 = ℎ

𝑠mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘) and 𝐶4,𝑘 = 𝑔𝑠𝑘 ,

where mT
𝑘
denotes the 𝑘 th row of M.

∗ Slot-specific component: Let 𝐶5 = (ℎ1𝑇 −1)𝑠 .
The challenger replies to A with the challenge ciphertext

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

11
As in the proof of Theorem 4.8, we will assume thatM has exactly 𝐾 rows (which we can ensure by padding M with all-zero rows).

95

– Output phase: At the end of the game, the adversary outputs a bit a ′ ∈ {0, 1}, which is also the output

of the experiment.

• Hyb(a)
1

: Same as Hyb(a)
0

, except the challenger makes the sfollowing syntactic changes:

– Setup phase: In the setup phase, the challenger samples 𝛽𝑖,𝑘
r← Z𝑝 for each 𝑖 ∈ [𝐿], 𝑘 ∈ [𝐾]. Then it sets

𝑢𝑖 =
∑︁
𝑘∈[𝐾]

1

𝛽𝑖,𝑘
𝑎𝐿+1−𝑖

for all 𝑖 ∈ [𝐿]. Finally, instead of sampling the encryption randomness 𝑠 ∈ Z𝑝 in the challenge phase, the

challenger now samples 𝑠
r← Z𝑝 in the setup phase. For the corrupted slots 𝑖 ∈ C, the challenger now

sets 𝑃𝑖 = 𝑔
𝑠𝛿𝑖

(instead of 𝑃𝑖 = 𝑔
𝛿𝑖
).

– Query phase: When responding to a key-generation query for a slot 𝑖 ∈ N , instead of sampling 𝑟𝑖
r← Z𝑝 ,

the challenger samples 𝑟 ′𝑖
r← Z𝑝 and sets 𝑟𝑖 = 𝑎

𝐿+1−𝑖 + 𝑟 ′𝑖 .
– Challenge phase: After the adversary outputs its challenge policy 𝑃∗ = (M, 𝜌), the challenger computes

for each 𝑖 ∈ C a vector v∗𝑖 ∈ Z𝑛𝑝 with first entry 1 and which is orthogonal to every row mT
𝑘
ofM where

𝜌 (𝑘) ∈ 𝑆𝑖 . Note that such a vector exists (see also Definition 2.2) since the attributes in 𝑆𝑖 (for a corrupted

slot) do not satisfy the challenge policy 𝑃∗ = (M, 𝜌). When generating the challenge ciphertext, the

challenger generates the attribute-specific components𝐶3,𝑘 and𝐶4,𝑘 as well as the slot-specific component

𝐶5 using the following modified procedure:

∗ Attribute-specific components: The challenger sets

𝑠∗
𝑘
= 𝑠 ·

∑︁
𝑖∈C:𝜌 (𝑘)∉𝑆𝑖

𝛽𝑖,𝑘 ·mT
𝑘
v∗𝑖

and constructs the attribute-specific components as

𝐶′
3,𝑘
← 𝑔𝑠m

T
𝑘

∑
𝑖∈C 𝑎

𝐿+1−𝑖v∗𝑖 ·𝑈 −𝑠
∗
𝑘

𝜌 (𝑘) and 𝐶′
4,𝑘

= 𝑔𝑠
∗
𝑘

∗ Slot-specific component: The challenger sets the slot-specific component as

𝐶′
5
= 𝑔𝑠 ·

∑
𝑖∈N 𝑎

𝐿+1−𝑖 ∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

Finally, the challenger rerandomizes the attribute-specific and slot-specific ciphertext components using

the following rerandomization procedure:

Rerand
(
{𝑈𝑤}𝑤∈U_ , (M, 𝜌), {𝐶′3,𝑘 ,𝐶

′
4,𝑘
}𝑘∈[𝐾],𝐶′5

)
:

1. Sample 𝛾, 𝑣 ′
2
, 𝑣 ′

3
, . . . 𝑣 ′𝑛

r← Z𝑝 and set v′ = [1, 𝑣 ′
2
, 𝑣 ′

3
, . . . , 𝑣 ′𝑛] and 𝑠′𝑘

r← Z𝑝 for each 𝑘 ∈ [𝐾].
2. Compute the rerandomized ciphertext:

𝐶3,𝑘 = 𝐶′
3,𝑘
· 𝑔𝛾mT

𝑘
v′ ·𝑈 −𝑠

′
𝑘

𝜌 (𝑘) and 𝐶4,𝑘 = 𝐶′
4,𝑘
· 𝑔𝑠′𝑘 and 𝐶5 = 𝐶

′
5
𝑔−𝛾 .

3. Output

(
{𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

Figure 2: Ciphertext rerandomization algorithm.

The challenger then computes(
{𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
= Rerand

(
{𝑈𝑤}𝑤∈U_ , (M, 𝜌), {𝐶′3,𝑘 ,𝐶

′
4,𝑘
}𝑘∈[𝐾],𝐶′5

)
and gives the rerandomized ciphertext to the adversary:

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

96

– Output phase: At the end of the game, the adversary outputs a bit a ′ ∈ {0, 1}, which is also the output

of the experiment.

• Hyb(a)rand: Same as Hyb(a)
1

except when constructing the challenge ciphertext, the challenger samples 𝐶1

r← G𝑇 .
Importantly, this distribution is independent of the message.

For a hybrid experiment Hyb and an adversaryA, we write Hyb(A) to denote the output distribution of an execution

of Hyb with adversaryA. In the following, we argue that each the output distribution of each adjacent pair of hybrid

is indistinguishable.

Lemma B.9. For all adversaries A and all a ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��
Pr[Hyb(a)real (A) = 1] − Pr[Hyb(a)

1
(A) = 1]

�� = negl(_).

Proof. We show that Hyb(a)real and Hyb
(a)
1

are statistically close by showing that the adversary’s view (i.e., the crs from
the setup phase, the public keys in the query phase, and the challenge ciphertext ct∗ in the challenge phase) in the

two distributions is statistically close. We consider each phase separately.

Setup phase. The only difference is how the challenger samples 𝑢𝑖 and 𝑃𝑖 . In Hyb(a)
1

, the challenger sets

𝑢𝑖 =
∑︁
𝑘∈[𝐾]

1

𝛽𝑖,𝑘
𝑎𝐿+1−𝑖 .

where 𝛽𝑖,𝑘
r← Z𝑝 for all 𝑖 ∈ [𝐿] and 𝑘 ∈ [𝐾]. We consider the distribution of 𝑢𝑖 :

• Since the challenger samples 𝑎
r← Z𝑝 and 𝑝 is prime, the probability that 𝑎𝐿+1−𝑖 = 0 mod 𝑝 is at most (𝐿+1−𝑖)/𝑝

(since a polynomial of degree 𝐿 + 1 − 𝑖 can have at most 𝐿 + 1 − 𝑖 roots over Z𝑝). Since 𝑝 = 2
−Ω (_)

, we conclude

that (𝐿 + 1 − 𝑖)/𝑝 = negl(_) and so 𝑎𝐿+1−𝑖 is non-zero with overwhelming probability.

• Since each 𝛽𝑖,𝑘 is uniform over Z𝑝 , they are non-zero with overwhelming probability. In this case, the distribution

of each 𝛽−1
𝑖,𝑘

is independent and uniform over Z𝑝 .

Thus, with overwhelming probability, 𝑎𝐿+1−𝑖 ≠ 0 for all 𝑖 and each 𝛽−1
𝑖,𝑘

is an independent and uniform (non-zero)

value over Z𝑝 . We conclude that the distribution of 𝑢𝑖 is statistically close to independently uniform over Z𝑝 , which is

the distribution of 𝑢𝑖 in Hyb(a)real. Next, consider the distribution of 𝑃𝑖 for 𝑖 ∈ C. In Hyb(a)
0

, the challenger sets 𝑃𝑖 = 𝑔
𝛿𝑖

while in Hyb(a)
1

, the challenger sets 𝑃𝑖 = 𝑔
𝑠𝛿𝑖

, where 𝑠
r← Z𝑝 and 𝛿𝑖 r← Z𝑝 . As long as 𝑠 ≠ 0, these two distributions

are identical. Since 𝑠 is sampled uniformly, these two distributions are statistically close.

Query phase. The only change is how the challenger samples 𝑟𝑖 for 𝑖 ∈ N . In Hyb(a)real, the challenger samples

𝑟𝑖
r← Z𝑝 . In Hyb(a)

1
, the challenger samples 𝑟 ′𝑖

r← Z𝑝 and sets

𝑟𝑖 = 𝑎
𝐿+1−𝑖 + 𝑟 ′𝑖 .

These two distributions are identical.

Challenge phase. In Hyb(a)
1

, the distribution of the attribute-specific and slot-specific ciphertext components can

be written as follows:

𝐶3,𝑘 = 𝑔𝑠m
T
𝑘

∑
𝑖∈C 𝑎

𝐿+1−𝑖v∗𝑖 ·𝑈 −𝑠
∗
𝑘

𝜌 (𝑘) · 𝑔
𝛾mT

𝑘
v′ ·𝑈 −𝑠

′
𝑘

𝜌 (𝑘) = 𝑔
𝑠mT

𝑘 ((𝛾/𝑠) ·v′+
∑
𝑖∈C 𝑎

𝐿+1−𝑖v∗𝑖)𝑈 −(𝑠
∗
𝑘
+𝑠′
𝑘
)

𝜌 (𝑘)

𝐶4,𝑘 = 𝑔𝑠
∗
𝑘𝑔𝑠

′
𝑘 = 𝑔𝑠

∗
𝑘
+𝑠′
𝑘

𝐶5 = 𝑔
𝑠 ·∑𝑖∈N 𝑎𝐿+1−𝑖 ∏

𝑖∈N
𝑇 −𝑠𝑖

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

𝑔−𝛾 = 𝑔𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝐿+1−𝑖) ∏

𝑖∈N
𝑇 −𝑠𝑖

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

,

97

where 𝛾, 𝑣 ′
2
, . . . , 𝑣 ′𝑛

r← Z𝑝 , 𝑠′𝑘
r← Z𝑝 for all 𝑘 ∈ [𝐾], and v′ = [1, 𝑣 ′

2
, . . . , 𝑣 ′𝑛]. For each 𝑖 ∈ C, let (pk𝑖 , 𝑆𝑖) be the public

key and set of attributes the adversary chooses for slot 𝑖 ∈ C. Parse pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖), and let 𝑟𝑖 ∈ Z𝑝 be the
discrete log of 𝑇𝑖 (i.e., 𝑇𝑖 = 𝑔

𝑟𝑖
). Without loss of generality, we can assume that for all 𝑖 ∈ C, IsValid(crs, 𝑖, pk𝑖) = 1.

Otherwise, the output in both experiments is ⊥. In Hyb(a)
1

, the challenger sets 𝑃𝑖 = 𝑔
𝑠𝛿𝑖

, so by construction of IsValid,

𝑒 (𝑔,𝑄𝑖) = 𝑒 (𝑇𝑖 , 𝑃𝑖) = 𝑒 (𝑔,𝑔)𝑠𝛿𝑖𝑟𝑖 .

In particular, 𝑄𝑖 = 𝑔
𝑠𝛿𝑖𝑟𝑖

. Thus, we can rewrite 𝐶5 as

𝐶5 = 𝑔
𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝐿+1−𝑖) ∏

𝑖∈N
𝑇 −𝑠𝑖

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

= 𝑔𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝐿+1−𝑖) ∏

𝑖∈N
𝑇 −𝑠𝑖

∏
𝑖∈C

𝑔−𝑠𝑟𝑖

= 𝑔𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝐿+1−𝑖) ∏

𝑗∈[𝐿]
𝑇 −𝑠𝑗

= 𝑔𝑠
(
−𝛾/𝑠+∑𝑖∈N 𝑎𝐿+1−𝑖)𝑇 −𝑠 .

We claim now that the distribution in Hyb(a)
1

is equivalent to an execution of Hyb(a)real with the following variable

assignments:

ℎ1 B 𝑔−𝛾/𝑠+
∑
𝑖∈N 𝑎

𝐿+1−𝑖
and ℎ2 B 𝑔𝛾/𝑠+

∑
𝑖∈C 𝑎

𝐿+1−𝑖
,

and for all 𝑘 ∈ [𝐾], 𝑠𝑘 B 𝑠∗
𝑘
+ 𝑠′

𝑘
, and

v B
(𝛾/𝑠)v′ +∑

𝑖∈C 𝑎
𝐿+1−𝑖v∗𝑖

𝛾/𝑠 +∑
𝑖∈C 𝑎𝐿+1−𝑖

.

For this assignment of variables, observe that

ℎ
𝑠mT

𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘) = 𝑔

𝑠
(
𝛾/𝑠+∑𝑖∈C 𝑎𝐿+1−𝑖)mT

𝑘
v𝑈
−(𝑠∗

𝑘
+𝑠′
𝑘
)

𝜌 (𝑘)

= 𝑔𝑠m
T
𝑘

(
(𝛾/𝑠)v′+∑𝑖∈C 𝑎𝐿+1−𝑖v∗𝑖) ·𝑈 −(𝑠∗𝑘+𝑠′𝑘)

𝜌 (𝑘) = 𝐶3,𝑘 ,

𝑔𝑠𝑘 = 𝑔𝑠
∗
𝑘
+𝑠′
𝑘 = 𝐶4,𝑘 , and (ℎ1𝑇 −1)𝑠 = 𝐶5, which coincides with the definitions in Hyb(a)real. To complete the proof, it

suffices to argue that this choice of assignments are distributed according to the specification in Hyb(a)real. We analyze

each component as follows:

• In Hyb(a)
1

, the challenger samples 𝛾, 𝑠
r← Z𝑝 . As long as 𝑠 ≠ 0 (which happens with overwhelming probability),

then over the random choice of 𝛾 , the distribution of 𝛾/𝑠 is uniform. Thus, with overwhelming probability over

the choice of 𝑠 , the distribution of ℎ1 is uniform over G. Moreover,

ℎ1ℎ2 = 𝑔
∑
𝑖∈N 𝑎

𝐿+1−𝑖+∑𝑖∈C 𝑎𝐿+1−𝑖 = 𝑔∑
𝑖∈ [𝐿] 𝑎

𝐿+1−𝑖
= ℎ,

since C and N are a partition of [𝐿].

• Since the challenger samples 𝑠′
𝑘

r← Z𝑝 , the distribution of 𝑠𝑘 is also uniform over Z𝑝 , which matches the

distribution in Hyb(a)real.

• Write v = [𝑣1, 𝑣2, . . . , 𝑣𝑛] and v′ = [1, 𝑣 ′
2
, . . . , 𝑣 ′𝑛]. By construction, the first component of v′ and v∗𝑖 for all 𝑖 ∈ C

is 1. This means 𝑣1 = 1, just as in Hyb(a)real. For 𝑖 > 1, the challenger in Hyb(a)
2

samples 𝑣 ′𝑖
r← Z𝑝 . Thus, as

long as 𝛾, 𝑠 ≠ 0, the distribution of 𝛾/𝑠 · 𝑣 ′𝑖 is uniformly random (and independent of all other components).

Correspondingly, this means that the distributions of 𝑣2, . . . , 𝑣𝑛 are independent and uniform over Z𝑝 , exactly as

required in Hyb(a)real. Since the challenger samples 𝛾, 𝑠
r← Z𝑝 , they are non-zero with overwhelming probability.

Thus, with overwhelming probability over the choice of 𝑎, 𝛾 , and 𝑠 , the challenge ciphertext Hyb(a)
1

is distributed

exactly according to the distribution in Hyb(a)real. We conclude that the adversary’s view in the two experiments are

statistically indistinguishable, and the claim holds. □

98

Lemma B.10. Let 𝑞1 = 𝐿 + 1 and 𝑞2 = 𝐿 · 𝐾 . Suppose the (𝑞1, 𝑞2)-parallel bilinear Diffie-Hellman exponent assumption
(Assumption B.1) holds with respect to PrimeGroupGen. Then, for all efficient adversaries A, and all a ∈ {0, 1}, there
exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(a)
1
(A) = 1] − Pr[Hyb(a)rand (A) = 1]

�� = negl(_).

Proof. Take any a ∈ {0, 1} and suppose there exists an efficient adversary A where��
Pr[Hyb(a)

1
(A) = 1] − Pr[Hyb(a)rand (A) = 1]

�� = Y
for some non-negligible Y. Without loss of generality, we assume that for each security parameter _, algorithm A
always chooses a fixed number of slots 𝐿 = 𝐿(_). We can formally model this by viewing the value of 𝐿 as non-uniform

advice. We use A to construct an adversary B for the (𝑞1, 𝑞2)-parallel bilinear Diffie-Hellman exponent assumption,

where 𝑞1 = 𝐿 + 1 and 𝑞2 = 𝐿 · 𝐾 . In the following, we will refer to elements of the set [𝑞2] = {1, . . . , 𝑞2} by a pair of
indices (𝑖, 𝑘) ∈ [𝐿] × [𝐾]. We now give the description of B:

• Initialization: At the beginning of the game, the challenger gives B the parallel bilinear Diffie-Hellman

challenge:

– G , 𝑔 , 𝑌 , {𝑋 𝑗 } 𝑗∈[2(𝐿+1)]\{𝐿+1} , {𝑌 (𝑖,𝑘) , 𝑋 (𝑖,𝑘)𝑗
} 𝑗∈[2(𝐿+1)]\{𝐿+1},(𝑖,𝑘) ∈ [𝐿]×[𝐾] ; and

– {𝑍 ((𝑖,𝑘),(𝑖
′,𝑘 ′))

𝑗
} 𝑗∈[2(𝐿+1)]\{𝐿+1},(𝑖,𝑘)≠(𝑖′,𝑘 ′) ∈ [𝐿]×[𝐾],𝑇

For emphasis, we color the components from the challenge in green.

• Setup phase: Algorithm B starts running algorithm A. Algorithm A starts by specifying the number of slots

1
𝐿
and the indices of the corrupted slots C ⊆ [𝐿]. Algorithm B then initializes a counter ctr← 0 and an (empty)

dictionary Dict to keep track of the key-generation queries. Next, algorithm B computes ℎ =
∏
𝑖∈[𝐿] 𝑋𝐿+1−𝑖 .

Then, for each slot 𝑖 ∈ [𝐿], it computes

𝐴𝑖 = 𝑋𝑖 and 𝐵𝑖 =
∏

𝑗∈[𝐿]:𝑗≠𝑖
𝑋𝐿+1− 𝑗+𝑖 and 𝑈𝑖 =

∏
𝑘∈[𝐾]

𝑋
(𝑖,𝑘)
𝐿+1−𝑖

Next, for each 𝑖 ∈ [𝐿] it samples 𝛿𝑖
r← Z𝑝 . If 𝑖 ∈ N , it sets 𝑃𝑖 = 𝑔

𝛿𝑖
, and if 𝑖 ∈ C, it sets 𝑃𝑖 = 𝑌𝛿𝑖 . For each

𝑗 ∈ [𝐿] where 𝑗 ≠ 𝑖 , algorithm B computes𝑊𝑖, 𝑗 =
∏
𝑘∈[𝐾] 𝑋

(𝑗,𝑘)
𝐿+1− 𝑗+𝑖 . Finally, algorithm B sets 𝑍 = 𝑒 (𝑋1, 𝑋𝐿)−1

and defines the common reference string to be

crs =
(
G , 𝑍 , 𝑔 , ℎ , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 ,𝑈𝑖)}𝑖∈[𝐿] , {𝑊𝑖, 𝑗 } 𝑗≠𝑖

)
. (B.5)

Algorithm B gives crs to A.

• Query phase: During the query phase, whenever algorithm A makes a key-generation query on a non-

corrupted slot index 𝑖 ∈ N , algorithm B starts by incrementing the counter ctr = ctr + 1 and samples 𝑟 ′𝑖
r← Z𝑝 .

It then sets

𝑇𝑖 = 𝑋𝐿+1−𝑖𝑔
𝑟 ′𝑖 and 𝑄𝑖 =

(
𝑋𝐿+1−𝑖𝑔

𝑟 ′𝑖
)𝛿𝑖

and 𝑉𝑗,𝑖 = 𝑋𝐿+1−𝑖+𝑗 · 𝑋
𝑟 ′𝑖
𝑗
,

for all 𝑗 ≠ 𝑖 . Then B sets the public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) and responds with (ctr, pkctr). It adds
the mapping ctr ↦→ (𝑖, pkctr) to the dictionary Dict.

• Challenge phase: In the challenge phase, algorithm A specifies a challenge policy 𝑃∗ = (M, 𝜌), where
M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U_ is a row-labeling function, along with two messages `∗

0
, `∗

1
∈ G𝑇 . In addition,

algorithm A specifies a key for for each slot 𝑖 ∈ [𝐿] as follows:

– For each corrupted slot 𝑖 ∈ C, algorithm A specifies a public key pk𝑖 and an attribute set 𝑆𝑖 . Algorithm

B checks that IsValid(crs, 𝑖, pk𝑖) and halts with output ⊥ if not.

99

– For each non-corrupted slot 𝑖 ∈ N , the adversary specifies an index 𝑐𝑖 ∈ [ctr]. AlgorithmB looks up the en-

try Dict[𝑐𝑖] = (𝑖′, pk′). If 𝑖 = 𝑖′, algorithm B sets pk𝑖 = pk′. If 𝑖 ≠ 𝑖′, then algorithm B halts with output ⊥.

For each slot 𝑖 ∈ [𝐿], algorithm B parses the associated public key pk𝑖 as pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖). Algorithm
B then computes the attribute-independent public key 𝑇 and attribute-independent slot key 𝑉𝑖 for each 𝑖 ∈ [𝐿]
as follows:

𝑇 =
∏
𝑗∈[𝐿]

𝑇𝑗 and 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Then, for each attribute 𝑤 ∈ U_ , it computes the attribute-specific public key 𝑈𝑤 and the attribute-specific

slot key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿] as follows:

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗 and �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑖, 𝑗 .

Next, algorithm B constructs the challenge ciphertext. Since A is admissible, the attributes 𝑆𝑖 for all corrupted

indices 𝑖 ∈ C do not satisfy the challenge policy 𝑃∗. Thus, for each 𝑖 ∈ C, there exists a vector v∗𝑖 with first

entry 1 and which is orthogonal to every row mT
𝑘
of M where 𝜌 (𝑘) ∈ 𝑆𝑖 . Algorithm B now proceeds as follows:

– Message-embedding components: First, algorithm B sets 𝐶1 = `
∗
a/𝑇 and 𝐶2 = 𝑌 .

– Attribute-specific components: For ease of notation, for each 𝑘 ∈ [𝐾], we define the following sets
of indices Υ (𝑘)

1
and Υ (𝑘)

2
:

Υ (𝑘)
1

= {𝑖 ∈ [𝐿] : 𝜌 (𝑘) ∉ 𝑆𝑖 } and Υ (𝑘)
2

= {𝑖 ∈ C : 𝜌 (𝑘) ∉ 𝑆𝑖 } (B.6)

Then, algorithm B computes 𝐶′
3,𝑘

as

𝐶′
3,𝑘

=
∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2

∏
𝑘 ′∈[𝐾]
(𝑖,𝑘 ′)≠(𝑗,𝑘)

(
𝑍
((𝑖,𝑘 ′),(𝑗,𝑘))
𝐿+1−𝑖

)−mT
𝑘
v∗𝑗

and 𝐶′
4,𝑘

as

𝐶′
4,𝑘

=
∏

𝑖∈C:𝜌 (𝑘)∉𝑆𝑖

(
𝑌 (𝑖,𝑘)

)mT
𝑘
v∗𝑖 .

– Slot-specific component: Algorithm B computes 𝐶′
5
as

𝐶′
5
=

∏
𝑖∈N

𝑌 −𝑟
′
𝑖

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

.

Finally, algorithm B computes(
{𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
= Rerand

(
{𝑈𝑤}𝑤∈U_ , (M, 𝜌), {𝐶′3,𝑘 ,𝐶

′
4,𝑘
}𝑘∈[𝐾],𝐶′5

)
.

Algorithm B responds to A with the challenge ciphertext

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
.

• Output phase: At the end of the game, algorithm A outputs a bit a ′ ∈ {0, 1}, which B also outputs.

We start by showing that algorithm B is able to simulate all of the parameters for A using the group elements from

the (𝑞1, 𝑞2)-parallel bilinear Diffie-Hellman exponent assumption.

100

• CRS components: First, we consider the components of the CRS.

– Computing ℎ, 𝐴𝑖 , and 𝐵𝑖 for 𝑖 ∈ [𝐿] requires knowledge of the elements 𝑋𝑖 , 𝑋𝐿+1−𝑖 , and 𝑋𝐿+1−𝑖+𝑗 for all
𝑖 ∈ [𝐿] and 𝑗 ∈ [𝐿] \ {𝑖}. Since 𝑗 ≠ 𝑖 , the required indices are all contained in the set [2(𝐿 + 1)] \ {𝐿 + 1}.

– Next, the component𝑈𝑖 depends on 𝑋
(𝑖,𝑘)
𝐿+1−𝑖 for all 𝑖 ∈ [𝐿] and 𝑘 ∈ [𝐾]. Since 𝐿 + 1 − 𝑖 ∈ [𝐿], all of these

components are contained in the challenge.

– The component 𝑃𝑖 = 𝑌
𝛿𝑖
can be simulated using 𝑌 .

– Next, recall component𝑊𝑖, 𝑗 is constructed as

∏
𝑘∈[𝐾] 𝑋

(𝑗,𝑘)
𝐿+1− 𝑗+𝑖 . By construction, algorithm B only needs

to construct𝑊𝑖, 𝑗 for 𝑖 ≠ 𝑗 . Since 𝑖, 𝑘 ∈ [𝐿], it follows that 𝐿 + 1 − 𝑖 + 𝑗 ∈ [2(𝐿 + 1)] \ {𝐿 + 1}, so these

components are also contained in the challenge.

– Finally, algorithm B sets 𝑍 = 𝑒 (𝑋1, 𝑋𝐿)−1. Both 𝑋1 and 𝑋𝐿 are contained in the challenge.

• Key-generation queries: Next, we consider the elements algorithm B uses to simulate public keys when

responding to the adversary’s key-generation queries. For each 𝑖 ∈ N , the elements 𝑇𝑖 , 𝑄𝑖 , and 𝑉𝑗,𝑖 for 𝑗 ≠ 𝑖

require knowledge of 𝑋𝐿+1−𝑖 , 𝑋 𝑗 , and 𝑋𝐿+1−𝑖+𝑗 , where 𝑖, 𝑗 ∈ [𝐿]. By the same analysis as above (for the CRS

components), all of these components are included in the challenge.

• Challenge ciphertext: Finally, we consider the components of the challenge ciphertext:

– To construct 𝐶1 and 𝐶2, algorithm B requires 𝑇 and 𝑌 , which are part of the challenge.

– To construct 𝐶′
3,𝑘
, algorithm B requires 𝑍

((𝑖,𝑘 ′),(𝑗,𝑘))
𝐿+1−𝑖 for all 𝑖 ∈ Υ (𝑘)

1
, 𝑗 ∈ Υ (𝑘)

2
, and 𝑘 ′ ∈ [𝐾] where

(𝑖, 𝑘 ′) ≠ (𝑗, 𝑘). First, 𝐿 + 1− 𝑖 ∈ [𝐿] ⊆ [2(𝐿 + 1)] \ {𝐿 + 1}. As long as (𝑖, 𝑘 ′) ≠ (𝑗, 𝑘), then this component

is contained in the challenge.

– To construct 𝐶′
4,𝑘
, algorithm B requires 𝑌 (𝑖,𝑘) for all 𝑖 ∈ C where 𝜌 (𝑘) ∉ 𝑆𝑖 . Since the challenge contains

𝑌 (𝑖,𝑘) for all 𝑖 ∈ [𝐿] and 𝑘 ∈ [𝐾], algorithm B can construct this term.

– To construct 𝐶′
5
, algorithm B needs 𝑌 , which is included in the challenge.

We conclude that the challenge contains all of the components algorithm B needs for simulating the CRS, the key-

generation queries, and the challenge ciphertext. To complete the proof, we show that depending on the distribution

of𝑇 , algorithm B either simulates an execution of Hyb(a)
1

or Hyb(a)rand forA. Let 𝑎, 𝑠, 𝛽𝑖,𝑘 ∈ Z𝑝 for 𝑖 ∈ [𝐿] and 𝑘 ∈ [𝐾]
be the exponents sampled by the (𝑞1, 𝑞2)-parallel bilinear Diffie-Hellman exponent challenger. Then, the challenge

components are defined as follows:

𝑌 = 𝑔𝑠 , 𝑋𝑖 = 𝑔
𝑎𝑖 , 𝑌 (𝑖,𝑘) = 𝑔𝑠𝛽𝑖,𝑘 , 𝑋 (𝑖,𝑘)

𝑗
= 𝑔𝑎

𝑗 /𝛽𝑖,𝑘 , 𝑍 (𝑖,𝑘),(𝑖
′,𝑘 ′)

𝑗
= 𝑔𝑎

𝑗𝑠𝛽𝑖′,𝑘′ /𝛽𝑖,𝑘 .

We claim that algorithm B simulates an execution of Hyb(a)
1

or Hyb(a)rand where the exponents 𝑎, 𝑠, 𝛽𝑖,𝑘 are the cor-

responding ones sampled by the (𝑞1, 𝑞2)-parallel bilinear Diffie-Hellman challenger.

CRS components. Consider first the components of the CRS. Then in an execution of Hyb(a)
1

and Hyb(a)rand where

the randomness is 𝑎, 𝑠, {𝛽𝑖,𝑘 }𝑖∈[𝐿],𝑘∈[𝐾] , the challenger constructs the components of the CRS as follows. First, the

challenger sets 𝛼 = −𝑎𝐿+1 and 𝑡𝑖 = 𝑎𝑑𝑖 . It also computes

ℎ =
∏
𝑖∈[𝐿]

𝑔𝑎
𝐿+1−𝑖

=
∏
𝑖∈[𝐿]

𝑋𝐿+1−𝑖 ,

which matches the behavior of algorithm B. Then, for each 𝑖 ∈ [𝐿], the challenger would compute

𝐴𝑖 = 𝑔
𝑡𝑖 = 𝑔𝑎

𝑖

= 𝑋𝑖

𝐵𝑖 = 𝑔
𝛼ℎ𝑡𝑖 = 𝑔−𝑎

𝐿+1 ©«
∏
𝑗∈[𝐿]

𝑔𝑎
𝐿+1− 𝑗 ª®¬

𝑎𝑖

=
∏

𝑗∈[𝐿]:𝑗≠𝑖
𝑔𝑎

𝐿+1− 𝑗+𝑖
=

∏
𝑗∈[𝐿]:𝑗≠𝑖

𝑋𝐿+1− 𝑗+𝑖 ,

101

which matches the behavior of algorithm B. In both Hyb(a)
1

and Hyb(a)rand, the challenger sets

𝑢𝑖 =
∑︁
𝑘∈[𝐾]

1

𝛽𝑖,𝑘
𝑎𝐿+1−𝑖 (B.7)

The challenger then computes

𝑈𝑖 = 𝑔
𝑢𝑖 = 𝑔

(∑
𝑘∈ [𝐾]

1

𝛽𝑖,𝑘
𝑎𝐿+1−𝑖

)
=

∏
𝑘∈[𝐾]

𝑔
1

𝛽𝑖,𝑘
(𝑎𝐿+1−𝑖)

=
∏
𝑘∈[𝐾]

𝑋
(𝑖,𝑘)
𝐿+1−𝑖 ,

which againmatches the behavior ofB. Next, for each 𝑖 ∈ [𝐿], the challenger inHyb(a)
1

andHyb(a)rand sets 𝑃𝑖 = 𝑔
𝑠𝛿𝑖 = 𝑌𝛿𝑖

if 𝑖 ∈ C and 𝑃𝑖 = 𝑔
𝛿𝑖
if 𝑖 ∈ N . This is the same procedure used by algorithm B. Next, for each 𝑗 ≠ 𝑖 ∈ [𝐿], the

challenger would set

𝑊𝑖, 𝑗 = 𝑔
𝑡𝑖𝑢 𝑗 = 𝑔

(∑
𝑘∈ [𝐾]

1

𝛽𝑗,𝑘
𝑎𝐿+1− 𝑗

)
𝑎𝑖

=
∏
𝑘∈[𝐾]

𝑔
1

𝛽𝑗,𝑘
(𝑎𝐿+1− 𝑗+𝑖)

=
∏
𝑘∈[𝐾]

𝑋
(𝑗,𝑘)
𝐿+1− 𝑗+𝑖 .

Finally, the challenger sets

𝑍 = 𝑒 (𝑔,𝑔)𝛼 = 𝑒 (𝑔,𝑔)−𝑎𝐿+1 = 𝑒 (𝑔𝑎, 𝑔𝑎𝐿)−1 = 𝑒 (𝑋1, 𝑋𝐿)−1 .

We conclude that algorithm B constructs the components in the CRS using the identical procedure as the challenger

in Hyb(a)
1

and Hyb(a)rand.

Key-generation queries. For the key-generation queries on indices 𝑖 ∈ N , the challenger in Hyb(a)
1

and Hyb(a)rand
generates pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖) by first sampling 𝑟 ′𝑖

r← Z𝑝 , setting 𝑟𝑖 = 𝑎𝐿+1−𝑖 + 𝑟 ′𝑖 and then setting

• 𝑇𝑖 = 𝑔
𝑟𝑖 = 𝑔𝑎

𝐿+1−𝑖+𝑟 ′𝑖 = 𝑋𝐿+1−𝑖𝑔𝑟
′
𝑖 .

• 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖
= 𝑔𝛿𝑖 (𝑎

𝐿+1−𝑖+𝑟 ′𝑖) = (𝑋𝐿+1−𝑖𝑔𝑟
′
𝑖)𝛿𝑖 . Recall that 𝑖 ∈ N so 𝑃𝑖 = 𝑔

𝛿𝑖
.

• 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
= 𝑔𝑎

𝑗 · (𝑎𝐿+1−𝑖+𝑟 ′𝑖) = 𝑋𝐿+1−𝑖+𝑗𝑋
𝑟 ′𝑖
𝑗
.

Again, algorithm B perfectly simulates the responses to the key-generation queries.

Challenge ciphertext. We now analyze the challenge ciphertext components. First, we consider the distribution

of 𝐶1. We have two possibilities:

• Suppose 𝑇 = 𝑒 (𝑔,𝑔)𝑎 (𝐿+1)𝑠 . Then algorithm B sets 𝐶1 = `
∗
a/𝑇 = `∗a · 𝑒 (𝑔,𝑔)−𝑎

𝐿+1𝑠 = `∗a · 𝑍𝑠 , which matches the

distribution of 𝐶1 in Hyb(a)
1

.

• Suppose the challenger samples𝑇
r← G𝑇 . Then,𝐶1 = `

∗
a/𝑇 is also uniform over G𝑇 , and algorithm B simulated

the distribution of 𝐶1 in Hyb(a)rand.

To complete the proof, it suffices to argue that the remaining components in the challenge ciphertext are simulated

exactly according to the specification of Hyb(a)
1

and Hyb(a)rand. First, in Hyb(a)
1

and Hyb(a)rand, the challenger would set

𝐶2 = 𝑔𝑠 = 𝑌 . which coincides with the behavior of algorithm B. Next, consider 𝐶′
3,𝑘

for 𝑘 ∈ [𝐾]. In Hyb(a)
1

and

Hyb(a)rand, the challenger would first set

𝑠∗
𝑘
= 𝑠 ·

∑︁
𝑖∈C:𝜌 (𝑘)∉𝑆𝑖

𝛽𝑖,𝑘 ·mT
𝑘
v∗𝑖 = 𝑠 ·

∑︁
𝑖∈Υ (𝑘)

2

𝛽𝑖,𝑘 ·mT
𝑘
v∗𝑖 , (B.8)

102

using the definition of Υ (𝑘)
2

= {𝑖 ∈ C : 𝜌 (𝑘) ∉ 𝑆𝑖 } from Eq. (B.6). Then, the challenger computes

𝐶′
3,𝑘

= 𝑔𝑠m
T
𝑘

∑
𝑖∈C 𝑎

𝐿+1−𝑖v∗𝑖 ·𝑈 −𝑠
∗
𝑘

𝜌 (𝑘) = 𝑈
−𝑠∗
𝑘

𝜌 (𝑘)

∏
𝑖∈C

𝑔𝑎
𝐿+1−𝑖 ·mT

𝑘
v∗𝑖 𝑠 = 𝑈

−𝑠∗
𝑘

𝜌 (𝑘)

∏
𝑖∈Υ (𝑘)

2

𝑔𝑎
𝐿+1−𝑖 ·mT

𝑘
v∗𝑖 𝑠 , (B.9)

using the fact that in Hyb(a)
1

and Hyb(a)rand, the challenger chooses v∗𝑖 such that mT
𝑘
v∗𝑖 = 0 for all 𝑘 ∈ [𝐾] where

𝜌 (𝑘) ∈ 𝑆𝑖 . Consider the term𝑈
−𝑠∗
𝑘

𝜌 (𝑘) . By definition,

𝑈𝜌 (𝑘) =
∏

𝑖∈[𝐿]:𝜌 (𝑘)∉𝑆𝑖

𝑈𝑖 =
∏
𝑖∈Υ (𝑘)

1

𝑔𝑢𝑖

using the definition of Υ (𝑘)
1

= {𝑖 ∈ [𝐿] : 𝜌 (𝑘) ∉ 𝑆𝑖 } from Eq. (B.6). For ease of notation, let𝑈
−𝑠∗
𝑘

𝜌 (𝑘) = 𝑔
b
for some b ∈ Z𝑝 .

Then, substituting in the definitions of 𝑢𝑖 from Eq. (B.7) and 𝑠∗
𝑘
from Eq. (B.8), we have

b =
∑︁
𝑖∈Υ (𝑘)

1

−𝑢𝑖𝑠∗𝑘

=
∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2

−𝛽 𝑗,𝑘𝑢𝑖mT
𝑘
v∗𝑗𝑠 by Eq. (B.8)

=
∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2

∑︁
𝑘 ′∈[𝐾]

−
𝛽 𝑗,𝑘

𝛽𝑖,𝑘 ′
𝑎𝐿+1−𝑖mT

𝑘
v∗𝑗𝑠 by Eq. (B.7).

We decompose b into the terms b1 where (𝑖, 𝑘 ′) ≠ (𝑗, 𝑘) and the terms b2 where (𝑖, 𝑘 ′) = (𝑗, 𝑘) (also meaning 𝑖 = 𝑗).

Then, we have

b =
∑︁
𝑖∈Υ (𝑘)

1

∑︁
𝑗∈Υ (𝑘)

2

∑︁
𝑘 ′∈[𝐾]
(𝑖,𝑘 ′)≠(𝑗,𝑘)

(
−
𝛽 𝑗,𝑘

𝛽𝑖,𝑘 ′
𝑎𝐿+1−𝑖mT

𝑘
v∗𝑗𝑠

)
︸ ︷︷ ︸

b1

+
∑︁

𝑖∈Υ (𝑘)
1
∩Υ (𝑘)

2

−𝑎𝐿+1−𝑖mT
𝑘
v∗𝑖 𝑠

︸ ︷︷ ︸
b2

.

From Eq. (B.6), we have that Υ (𝑘)
2
⊆ Υ (𝑘)

1
, so we can write

b2 =
∑︁

𝑖∈Υ (𝑘)
1
∩Υ (𝑘)

2

−𝑎𝐿+1−𝑖mT
𝑘
v∗𝑖 𝑠 =

∑︁
𝑖∈Υ (𝑘)

2

−𝑎𝐿+1−𝑖mT
𝑘
v∗𝑖 𝑠 .

Substituting back into Eq. (B.9) and using the fact that𝑈
−𝑠∗
𝑘

𝜌 (𝑘) = 𝑔
b = 𝑔b1+b2 , we conclude that

𝐶′
3,𝑘

= 𝑈
−𝑠∗
𝑘

𝜌 (𝑘)

∏
𝑖∈Υ (𝑘)

2

𝑔𝑎
𝐿+1−𝑖 ·mT

𝑘
v∗𝑖 𝑠 = 𝑔b1𝑔b2

∏
𝑖∈Υ (𝑘)

2

𝑔𝑎
𝐿+1−𝑖 ·mT

𝑘
v∗𝑖 𝑠

= 𝑔b1
©«

∏
𝑖∈Υ (𝑘)

2

𝑔𝑎
𝐿+1−𝑖 ·mT

𝑘
v∗𝑖 𝑠

ª®®¬
−1 ∏

𝑖∈Υ (𝑘)
2

𝑔𝑎
𝐿+1−𝑖 ·mT

𝑘
v∗𝑖 𝑠

=
∏
𝑖∈Υ (𝑘)

1

∏
𝑗∈Υ (𝑘)

2

∏
𝑘 ′∈[𝐾]
(𝑖,𝑘 ′)≠(𝑗,𝑘)

(
𝑍
((𝑖,𝑘 ′),(𝑗,𝑘))
𝐿+1−𝑖

)−mT
𝑘
v∗𝑗
.

This is precisely how algorithm B constructs 𝐶′
3,𝑘
. Next, consider 𝐶′

4,𝑘
. The challenger in Hyb(a)

1
and Hyb(a)rand sets

𝐶′
4,𝑘

= 𝑔𝑠
∗
𝑘 = 𝑔𝑠 ·

∑
𝑖∈C:𝜌 (𝑘)∉𝑆𝑖 𝛽𝑖,𝑘 ·m

T
𝑘
v∗𝑖 =

∏
𝑖∈C:𝜌 (𝑘)∉𝑆𝑖

(
𝑌 (𝑖,𝑘)

)mT
𝑘
v∗𝑖 ,

103

which is how algorithm B constructs 𝐶′
4,𝑘
. Finally, consider 𝐶′

5
. The challenger in Hyb(a)

1
and Hyb(a)rand sets

𝐶′
5
= 𝑔𝑠 ·

∑
𝑖∈N 𝑎

𝐿+1−𝑖 ∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

. (B.10)

By construction, for all 𝑖 ∈ N , the challenger sets 𝑇𝑖 = 𝑔
𝑟𝑖 = 𝑔𝑎

𝐿+1−𝑖+𝑟 ′𝑖 . Thus, we can write∏
𝑖∈N

𝑇 −𝑠𝑖 =
∏
𝑖∈N

𝑔−𝑠𝑎
𝐿+1−𝑖−𝑠𝑟 ′𝑖 = 𝑔−𝑠

∑
𝑖∈N 𝑎

𝐿+1−𝑖 ∏
𝑖∈N

𝑔−𝑟
′
𝑖 𝑠 .

Substituting back into Eq. (B.10), this means

𝐶′
5
= 𝑔𝑠 ·

∑
𝑖∈N 𝑎

𝐿+1−𝑖 ∏
𝑖∈N

𝑇 −𝑠𝑖
∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

= 𝑔𝑠 ·
∑
𝑖∈N 𝑎

𝐿+1−𝑖
(
𝑔𝑠 ·

∑
𝑖∈N 𝑎

𝐿+1−𝑖
)−1 ∏

𝑖∈N
𝑔−𝑟

′
𝑖 𝑠

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

=
∏
𝑖∈N

𝑌 −𝑟
′
𝑖

∏
𝑖∈C

𝑄
−𝛿−1𝑖
𝑖

,

which is how algorithm B constructs 𝐶′
5
. Finally, algorithm B computes(

{𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾],𝐶5

)
= Rerand

(
{𝑈𝑤}𝑤∈U_ , (M, 𝜌), {𝐶′3,𝑘 ,𝐶

′
4,𝑘
}𝑘∈[𝐾],𝐶′5

)
,

which exactly coincides with the challenger’s behavior in Hyb(a)
1

and Hyb(a)real. We conclude that if 𝑇 = 𝑒 (𝑔,𝑔)𝑎𝐿+1𝑠 ,
then algorithm B perfectly simulates an execution of Hyb(a)

1
whereas if 𝑇

r← G𝑇 , algorithm B perfectly simulates

an execution of Hyb(a)rand. Thus, algorithm B succeeds with the same advantage of A, and the claim follows. □

By construction the adversary’s view inHyb(a)rand is independent of a . As such, for all adversariesA, the output distribu-

tions Hyb(0)rand (A) and Hyb
(1)
rand (A) are identically distributed. The claim now follows from Lemmas B.9 and B.10. □

C Incremental Aggregation for Registered ABE
As discussed in Appendix C, a naïve application from a slotted registered ABE scheme to a standard registered ABE

scheme (that supports dynamic user registrations; see Definition 3.1) would require the key curator to keep track

of every user’s public key. In our slotted registered ABE scheme, the size of each user’s key contains 𝑂 (𝐿) group
elements, where 𝐿 is the number of slots. As such, if the key curator has to keep store every users’ public key,

then its storage requirement would scale quadratically as 𝑂 (𝐿2). Here, we show that if we apply the [HLWW23]

transformation to a slotted registered ABE scheme that supports incremental aggregation, then we can reduce the size

of the key curator state. In particular, transforming our particular slotted registered ABE schemes (Constructions 4.3

and 5.5) to a full registered ABE scheme that supports up to 𝐿 users only requires the key curator to store �̃� (𝐿) group
elements. We start by recalling the transformation (taken nearly verbatim) from [HLWW23]:

Construction C.1 (Slotted Registered ABE to Registered ABE [HLWW23, Construction 6.1]). Let _ be a se-

curity parameter. Let ΠsRABE = (sRABE.Setup, sRABE.KeyGen, sRABE.IsValid, sRABE.Aggregate, sRABE.Encrypt,
sRABE.Decrypt) be a slotted registered ABE scheme with attribute universe U = {U_}_∈N and policy space

P = {P_}_∈N. We now construct a registered ABE scheme ΠRABE = (Setup,KeyGen,RegPK, Encrypt,Update,
Decrypt) that supports a bounded number of users and over the same attribute spaceU and policy space P. In the

description, we adopt the following conventions:

• Without loss of generality, we assume that the bound on the number of users 𝐿 = 2
ℓ
is a power of two. Rounding

the bound to the next power of two incurs at most a factor of 2 overhead.

104

• The registered ABE scheme will internally maintain ℓ + 1 slotted ABE schemes, where the 𝑘 th scheme is a

slotted scheme with 2
𝑘
slots (for 𝑘 ∈ [0, ℓ]). We assume that the message spaceM_ associated with ΠsRABE

is a deterministic function of the security parameter _ ∈ N.

• The auxiliary data aux = (ctr,Dict1,Dict2,mpk) consists of the following components:

– A counter ctr that keeps track of the number of registered users in the system.

– A dictionary Dict1 that maps a scheme index 𝑘 ∈ [0, ℓ] and a slot index 𝑖 ∈ [2𝑘] to a pair (pk, 𝑆) which
specifies the public key and attribute set currently assigned to slot 𝑖 of scheme 𝑘 .

– A dictionary Dict2 that maps a scheme index 𝑘 ∈ [0, ℓ] and a user index 𝑖 ∈ [𝐿] to the helper decryption

key associated with scheme 𝑘 and user 𝑖 .

– The current master public key mpk = (ctr,mpk
0
, . . . ,mpkℓ).

If aux = ⊥, we parse it as (ctr,Dict1,Dict2,mpk) where ctr = 0, Dict1,Dict2 = ∅, andmpk = (0,⊥, . . . ,⊥). This
corresponds to a fresh scheme with no registered users.

We construct our registered ABE scheme as follows:

• Setup(1_, 1 |U_ | , 1𝐿): On input the security parameter _ the size of the attribute universeU_ , and a bound on

number of users 𝐿 = 2
ℓ
, the setup algorithm runs the setup algorithm for ℓ + 1 copies of the slotted RBE scheme.

Specifically, for each 𝑘 ∈ [0, ℓ], it samples crs𝑘 ← sRABE.Setup(1_, 1 |U_ | , 12𝑘) and outputs crs = (crs0, . . . , crsℓ).
The message space associated with crs is the message spaceM_ associated with crs0, . . . , crsℓ (recall that we
assume that the message spaceM_ associated with each output of sRABE.Setup is a deterministic function

of the security parameter _).

• KeyGen(crs, aux): On input the common reference string crs = (crs0, . . . , crsℓ) and the auxiliary data aux =

(ctr,Dict1,Dict2,mpk), the key-generation algorithm generates a public/secret key-pair for each of the ℓ + 1
underlying schemes. Specifically, for each 𝑘 ∈ [0, ℓ], let 𝑖𝑘 = (ctr mod 2

𝑘) + 1 ∈ [2𝑘] be a slot index for

the 𝑘 th scheme, and sample a key (pk𝑘 , sk𝑘) ← sRABE.KeyGen(crs𝑘 , 𝑖𝑘). Output pk = (ctr, pk
0
, . . . , pkℓ) and

sk = (ctr, sk0, . . . , skℓ).

• RegPK(crs, aux, pk, 𝑆pk): On input the common reference string crs = (crs0, . . . , crsℓ), the auxiliary data

aux = (ctraux,Dict1,Dict2,mpk), wherempk = (ctraux,mpk
0
, . . . ,mpkℓ), a public key pk = (ctrpk, pk0, . . . , pkℓ),

and an associated set of attributes 𝑆pk), the registration algorithm proceeds as follows:

– For each 𝑘 ∈ [0, ℓ], let 𝑖𝑘 = (ctraux mod 2
𝑘) + 1 ∈ [2𝑘] be the slot index for the 𝑘 th scheme.

– For each 𝑘 ∈ [0, ℓ], check that sRABE.IsValid(crs𝑘 , 𝑖𝑘 , pk𝑘) = 1. In addition, check that ctraux = ctrpk. If
any check fails, the algorithm halts and outputs the current auxiliary data aux and master public keympk.

– Then for each 𝑘 ∈ [0, ℓ], the registration algorithm updates Dict1 [𝑘, 𝑖𝑘] ← (pk, 𝑆pk). In addition, if 𝑖𝑘 = 2
𝑘

(i.e., all of the slots in scheme 𝑘 are filled), the registration algorithm additionally does the following:

∗ Compute(
mpk′

𝑘
, hsk′

𝑘,1
, . . . , hsk′

𝑘,2𝑘

)
← sRABE.Aggregate

(
crs𝑘 ,Dict1 [𝑘, 1], . . . ,Dict1 [𝑘, 2𝑘]

)
.

∗ Update Dict2 [ctr + 1 − 2𝑘 + 𝑖, 𝑘] = hsk′
𝑘,𝑖

for each 𝑖 ∈ [2𝑘].
∗ If 𝑖𝑘 ≠ 2

𝑘
, mpk′

𝑘
= mpk𝑘 is unchanged.

– Define the new master public key mpk′ = (ctraux + 1,mpk′
1
, . . . ,mpk′ℓ).

– Finally, the registration algorithm outputs the new master public key mpk′ and auxiliary data aux′ =
(ctraux + 1,Dict1,Dict2,mpk′).

• Encrypt(mpk, 𝑃, `): On input the master public keympk = (ctr,mpk
0
, . . . ,mpkℓ), the access policy 𝑃 ∈ P_ , and

a message ` ∈ M_ , the encryption algorithm computes ct𝑘 ← sRABE.Encrypt(mpk𝑘 , 𝑃, `) for each 𝑘 ∈ [0, ℓ];
if mpk𝑘 = ⊥, then it sets ct𝑘 = ⊥. Then it outputs ct = (ctr, ct0, . . . , ctℓ).

105

• Update(crs, aux, pk): On input the common reference string crs = (crs0, . . . , crsℓ), the auxiliary data aux =

(ctraux,Dict1,Dict2,mpk), and a public key pk = (ctrpk, pk0, . . . , pkℓ), the update algorithm outputs ⊥ if ctrpk ≥
ctraux. Otherwise, for each 𝑘 ∈ [0, ℓ], it sets hsk𝑘 = Dict2 [ctrpk + 1, 𝑘] and replies with hsk = (hsk0, . . . , hskℓ).

• Decrypt(sk, hsk, ct): On input a secret key sk = (ctrsk, sk0, . . . , skℓ), a helper key hsk = (hsk0, . . . , hskℓ),
and a ciphertext ct = (ctrct, ct0, . . . , ctℓ), the decryption algorithm outputs ⊥ if ctrct ≤ ctrsk. Otherwise,

it computes the largest index 𝑘 on which ctr and ctr′ differ (where bits are 0-indexed starting from the

least significant bit). If hsk𝑘 = ⊥, then the decryption algorithm outputs GetUpdate. Otherwise, it outputs
sRABE.Decrypt(sk𝑘 , hsk𝑘 , ct𝑘).

Correctness and security. We refer to [HLWW23, §6] for the correctness and security analysis of Construction C.1.

While [HLWW23] only analyzing the transformation as applied to fully secure slotted registered ABE scheme, the

same analysis also applies to a statically-secure slotted registered ABE scheme. In this case, the transformed scheme

inherits the same security properties as the slotted scheme (i.e., if we apply Construction C.1 to a statically-secure

slotted registered ABE scheme, then we obtain a statically-secure registered ABE scheme).

Leveraging incremental aggregation. We now show that if the slotted registered ABE scheme supports incremen-

tal aggregation (Definition 3.8), then the key curator can incrementally update its state as users join (instead of leading

to store all of the users’ public keys until one of the underlying slotted schemes fills up). As noted earlier, when applied

to our constructions, incremental aggregation brings the storage requirements of the key curator from Ω(𝐿2) to �̃� (𝐿).

Lemma C.2 (Incremental Aggregation). Suppose sRABE supports 𝑓 -incremental aggregation for some function
𝑓 (𝐿, |U_ |). Then, we can modify Construction C.1 to only require maintaining an auxiliary state aux of size at most

|aux| = 𝑓 (𝐿, |U_ |) · poly(_, log𝐿) + 𝐿 · poly(_, |U_ |, log𝐿).

Proof. We consider a functionally-equivalent version of Construction C.1 where we replace Dict1 in aux (that maps

indices to public keys) with the aggregation state. Namely, the structure of aux is now:

aux = (ctraux, (st0, . . . , stℓ),Dict2,mpk).

The internal states are all initialized to ⊥: st0 = st1 = · · · = stℓ = ⊥. We now define the RegPK(crs, aux, pk, 𝑆pk)
algorithms as follows:

• RegPK(crs, aux, pk, 𝑆pk): On input the common reference string crs = (crs0, . . . , crsℓ), the auxiliary data aux =
(ctraux, (st0, . . . , stℓ),Dict2,mpk), wherempk = (ctraux,mpk

0
, . . . ,mpkℓ), a public key pk = (ctrpk, pk0, . . . , pkℓ),

and an associated set of attributes 𝑆pk, the registration algorithm proceeds as follows:

– For each 𝑘 ∈ [0, ℓ], let 𝑖𝑘 = (ctraux mod 2
𝑘) + 1 ∈ [2𝑘] be the slot index for the 𝑘 th scheme.

– For each 𝑘 ∈ [0, ℓ], check that sRABE.IsValid(crs𝑘 , 𝑖𝑘 , pk𝑘) = 1. In addition, check that ctraux = ctrpk. If
any check fails, the algorithm halts and outputs the current auxiliary data aux and master public keympk.

– Then for each 𝑘 ∈ [0, ℓ], compute st𝑘 ← sRABE.AggregateUpdate(crs𝑘 , st𝑘 , (pk𝑘 , 𝑆pk)). In addition, if

𝑖𝑘 = 2
𝑘
(i.e., all of the slots in scheme 𝑘 are filled), the registration algorithm additionally does the following:

∗ Compute (
mpk′

𝑘
, hsk′

𝑘,1
, . . . , hsk′

𝑘,2𝑘

)
← sRABE.AggregateUpdate (crs𝑘 , st𝑘 ,⊥) .

∗ Update Dict2 [ctr + 1 − 2𝑘 + 𝑖, 𝑘] ← hsk′
𝑘,𝑖

for each 𝑖 ∈ [2𝑘]. Finally, set st𝑘 = ⊥.

If 𝑖𝑘 ≠ 2
𝑘
, then mpk′

𝑘
= mpk𝑘 is unchanged.

– Define the new master public key as mpk′ = (ctraux + 1,mpk′
1
, . . . ,mpk′ℓ).

– Finally, the registration algorithm outputs the new master public key mpk′ and auxiliary data aux′ =
(ctraux + 1, (st0, . . . , stℓ),Dict2,mpk′).

106

Essentially, we have simply replaced the dictionary Dict1 with the intermediate state of each of the underlying slotted

schemes. We now argue the correctness and efficiency properties:

• Correctness: Correctness follows by the incremental aggregation property: namely, the modified incremental

registration algorithm implements exactly the same functionality as the original non-incremental registration

algorithm (Definition 3.8).

• Size of auxiliary data: First, by compactness of registered ABE, the size of each master public key mpk𝑖 and
helper decryption key hsk𝑘,𝑖 have size bounded by poly(_, |U_ |, log𝐿). There are 𝑂 (𝐿) such keys at any point

in time. Moreover, each of the underlying states st𝑖 has size bounded by 𝑓 (𝐿, |U_ |) · poly(_). Thus, the total
size of the auxiliary data is at most 𝐿 · poly(_, |U_ |, log𝐿) + 𝑓 (𝐿, |U_ |) · poly(_, log𝐿). □

D Validating Assumptions in Generic Group Model
We now show that the complexity assumptions we use in this work (Assumption 4.2, Assumption 5.4, Assump-

tion 7.7,Assumption B.1) hold in the generic (bilinear) group model. First, we recall the generic (bilinear) group

model [Sho97, BBG05, Boy08].

Definition D.1 (Generic Bilinear Group Model). For a positive integer 𝑁 ∈ Z, let L ⊆ {0, 1}∗ be a set of strings
of bounded length and cardinality at least 𝑁 . The generic (symmetric) bilinear group model is initialized with two

random injective mappings 𝜎, 𝜎𝑇 : Z𝑁 → L (which map a discrete log over Z𝑁 to an associated label in L). Here 𝜎
corresponds to the labeling function associated with the base group while 𝜎𝑇 is the labeling function associated with

the target group. In the generic group model, we assume that the parties have oracle access to the generic bilinear

group oracle which supports the following operations:

• Base group encoding: On input 𝑥 ∈ Z𝑁 , the oracle responds with 𝜎 (𝑥).

• Base group operation: On input two labels ℓ1, ℓ2 ∈ L, if ℓ1, ℓ2 are in the image of 𝜎 , then the oracle replies

with 𝜎 (𝜎−1 (ℓ1) + 𝜎−1 (ℓ2)). If either ℓ1 or ℓ2 are not in the image of 𝜎 , then the oracle replies with ⊥.

• Target group encoding: On input 𝑥 ∈ Z𝑁 , the oracle responds with receives 𝜎𝑇 (𝑥).

• Target group operation: On input two labels ℓ1, ℓ2 ∈ L, if ℓ1, ℓ2 are in the image of 𝜎𝑇 , then the oracle replies

with 𝜎𝑇 (𝜎−1𝑇 (ℓ1) + 𝜎−1𝑇 (ℓ2)). If either ℓ1 or ℓ2 are not in the image of 𝜎𝑇 , then the oracle replies with ⊥.

• Pairing: On input two labels ℓ1, ℓ2 ∈ L, if ℓ1, ℓ2 are in the image of 𝜎 , then the oracle replies with 𝜎𝑇 (𝜎−1 (ℓ1) ·
𝜎−1 (ℓ2)). If either ℓ1 or ℓ2 are not in the image of 𝜎 , then the oracle replies with ⊥.

Notation. We will write 𝑔 to denote the label for 𝜎 (1) and 𝑔𝑥 to denote 𝜎 (𝑥). Similarly, we write 𝑒 (𝑔,𝑔) to denote

𝜎𝑇 (1) and 𝑒 (𝑔,𝑔)𝑥 to denote 𝜎𝑇 (𝑥). We write G and G𝑇 to denote the groups induced by the labeling functions 𝜎

and 𝜎𝑇 , respectively (i.e., G = {𝜎 (𝑥) : 𝑥 ∈ Z𝑁 } and G𝑇 = {𝜎𝑇 (𝑥) : 𝑥 ∈ Z𝑁 }). To analyze our assumptions, we follow

the methodology from [BBG05, KSW08, KSW13] by enumerating a set of sufficient conditions for security to hold

unconditionally in the generic bilinear group model. We begin with a notion of independence and then give the

theorem statements we use in our analysis.

Definition D.2 (Independence of Polynomials). Let 𝑁 =
∏
𝑖∈[𝑚] 𝑝𝑖 be a positive integer that is a product of𝑚 ≥ 1

distinct primes 𝑝𝑖 . Let P = {𝑃𝑖 }𝑖∈[𝑘] be a collections of polynomials where each 𝑃𝑖 ∈ Z𝑁 [𝑋1, . . . , 𝑋𝑛] is an 𝑛-variate
polynomials over Z𝑁 . By the Chinese Remainder Theorem, we can view each polynomial 𝑃𝑖 as defining a tuple of

𝑚 polynomials 𝑃𝑖,1 ∈ Z𝑝1 [𝑋1, . . . , 𝑋𝑛], . . . , 𝑃𝑖,𝑚 ∈ Z𝑝𝑚 [𝑋1, . . . , 𝑋𝑛] and where 𝑃𝑖, 𝑗 (𝑥1, . . . , 𝑥𝑛) = 𝑃𝑖 (𝑥1, . . . , 𝑥𝑛) mod 𝑝 𝑗
for all 𝑗 ∈ [𝑚]. We say that a polynomial 𝑓 ∈ Z𝑁 [𝑋1, . . . , 𝑋𝑛] (with associated components 𝑓1, . . . , 𝑓𝑚) is dependent

on P if there exists coefficients 𝛼𝑖 ∈ Z𝑁 such that

∀𝑗 ∈ [𝑚] : 𝑓𝑗 (𝑋1, . . . , 𝑋𝑁) =
∑︁
𝑖∈[𝑘]

𝛼𝑖𝑃𝑖, 𝑗 (𝑋1, . . . , 𝑋𝑁) mod 𝑝 𝑗 .

We say 𝑓 is independent on P if 𝑓 is not dependent on P.

107

Theorem D.3 (Generic Hardness in Prime-Order Groups [BBG05, Theorem A.2]). Let 𝑝 be a prime. Let P = {𝑃𝑖 }𝑖∈[𝑘]
and Q = {𝑄 𝑗 } 𝑗∈[ℓ] be collections of polynomials where each 𝑃𝑖 , 𝑄 𝑗 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] is an 𝑛-variate polynomial over Z𝑁
and 𝑃1 = 𝑄1 = 1. Let 𝑇0,𝑇1 ∈ Z𝑝 [𝑋1, . . . , 𝑋𝑛] be two challenge polynomials. Then, for a bit 𝑏 ∈ {0, 1} and an adversary
A, define the following experiment in the generic bilinear group model of order 𝑝 :

• At the beginning of the game, the challenger samples 𝑥1, . . . , 𝑥𝑛
r← Z𝑝 . For each 𝑖 ∈ [𝑘], it computes ℓ𝑖 =

𝜎 (𝑃𝑖 (𝑥1, . . . , 𝑥𝑛)), ℓ ′𝑗 = 𝜎𝑇 (𝑄 𝑗 (𝑥1, . . . , 𝑥𝑛)), 𝜏0 = 𝜎𝑇 (𝑇0 (𝑥1, . . . , 𝑥𝑛)), and 𝜏1 = 𝜎𝑇 (𝑇1 (𝑥1, . . . , 𝑥𝑛)).

• The challenger gives
(
𝑝, {ℓ𝑖 }𝑖∈[𝑘], {ℓ ′𝑗 } 𝑗∈[ℓ], 𝜏𝑏

)
to the adversary.

• The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

Let P2 B {𝑃𝑖𝑃 𝑗 : 𝑖, 𝑗 ∈ [𝑘]}. Suppose that the total degree of 𝑃𝑖 , 𝑄 𝑗 ,𝑇0,𝑇1 is at most 𝑑 and the polynomials 𝑇0,𝑇1 are
independent of P2 ∪ Q. Then, for all adversaries A making at most 𝑞 queries to the generic group oracle, it holds that

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ (𝑞 + 𝑘 + ℓ + 2)
2 (2𝑑)

𝑝

in the above distinguishing experiment.

Theorem D.4 (Generic Hardness in Composite-Order Groups [KSW13, Theorem A.2, adapted]). Let 𝑁 =
∏

𝑗∈[𝑚] 𝑝 𝑗
be a product of distinct primes where each 𝑝 𝑗 ≥ 2

_ . Let P = {𝑃𝑖 }𝑖∈[𝑘] and Q = {𝑄𝑖 }𝑖∈[ℓ] be collections of linearly
independent polynomials where each 𝑃𝑖 , 𝑄𝑖 ∈ Z𝑁 [𝑋1, . . . , 𝑋𝑛] is an 𝑛-variate polynomial over Z𝑁 . We assume that
𝑃1 = 𝑄1 = 1. As in Definition D.2, we write 𝑃𝑖, 𝑗 and 𝑄𝑖, 𝑗 to denote the action of the polynomial 𝑃𝑖 and 𝑄𝑖 , respectively,
modulo 𝑝 𝑗 . Let 𝑇0,𝑇1 ∈ Z𝑁 [𝑋1, . . . , 𝑋𝑛] be two challenge polynomials. Then for a bit 𝑏 ∈ {0, 1} and an adversary A,
define the following experiment in the generic bilinear group model of order 𝑁 :

• At the beginning of the game, the challenger samples 𝑥1, . . . , 𝑥𝑛
r← Z𝑁 . For each 𝑖 ∈ [𝑘] and 𝑗 ∈ [ℓ], it computes

ℓ𝑖 = 𝜎 (𝑃𝑖 (𝑥1, . . . , 𝑥𝑛))
ℓ ′𝑗 = 𝜎𝑇 (𝑄 𝑗 (𝑥1, . . . , 𝑥𝑛))
𝜏0 = 𝜎 (𝑇0 (𝑥1, . . . , 𝑥𝑛))
𝜏1 = 𝜎 (𝑇1 (𝑥1, . . . , 𝑥𝑛)) .

• The challenger gives
(
𝑁, {ℓ𝑖 }𝑖∈[𝑘], {ℓ ′𝑗 } 𝑗∈[ℓ], 𝜏𝑏

)
to the adversary.

• The adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

For an adversary A, define its advantage 𝛿A to be

𝛿A B |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] |

in the above distinguishing experiment. Let P2 B {𝑃𝑖𝑃 𝑗 : 𝑖, 𝑗 ∈ [𝑘]}. For a bit 𝑏 ∈ {0, 1}, let

S (𝑏) B P2 ∪ Q ∪ {𝑇𝑏𝑃𝑖 : 𝑖 ∈ [𝑘]}.

For an index 𝑖 ∈ [𝑘], define S (𝑏)
𝑖
B S (𝑏) \ {𝑇𝑏𝑃𝑖 }. Suppose now the following properties hold:

• The total degree of 𝑃𝑖 , 𝑄 𝑗 ,𝑇0,𝑇1 is at most 𝑑 .

• For all 𝑖 ∈ [𝑘] and 𝑏 ∈ {0, 1}, the polynomial 𝑇𝑏 is independent of P.

• For all 𝑖 ∈ [𝑘], if 𝑇0𝑃𝑖 ≠ 𝑇1𝑃𝑖 , then for all 𝑏 ∈ {0, 1}, the polynomial 𝑇𝑏𝑃𝑖 is independent of S (𝑏)𝑖
.

• For all 𝑏 ∈ {0, 1}, the polynomial 𝑇 2

𝑏
is independent of S (𝑏) .

108

Then, for all adversaries A making at most 𝑞 queries to the generic group oracle, if A has distinguishing advantage 𝛿A
in the above distinguishing experiment, then there is an algorithm that runs in time polynomial in _ and the running
time of A that outputs a non-trivial factor of 𝑁 with success probability at least 𝛿A −𝑂 ((𝑞 + 𝑘 + ℓ)2𝑑/2_).

Remark D.5 (Comparison with [KSW13, Theorem A.2]). The conditions we give in Theorem D.4 differs slightly

from the corresponding theorem statement from [KSW13, Theorem A.2].
12

The corresponding theorem statement

from [KSW13] only requires that

{𝑇 2

𝑏
} ∪ {𝑇𝑏𝑃𝑖 }𝑖:𝑇0𝑃𝑖≠𝑇1𝑃𝑖 is independent of {𝑇𝑏𝑃𝑖 }𝑖:𝑇0𝑃𝑖=𝑇1𝑃𝑖 ∪ P2 ∪ Q (D.1)

whereas we additionally require that 𝑇 2

𝑏
to be independent of 𝑇𝑏𝑃𝑖 for all 𝑖 ∈ [𝑘] (in addition to P2 ∪ Q) rather than

just the indices 𝑖 ∈ [𝑘] where 𝑇0𝑃𝑖 = 𝑇1𝑃𝑖 . This condition is necessary, as the presence of such a dependence can be

used to break the assumption. For instance, consider the following distribution in two-prime composite-order group:

𝑃1 (𝑋1, 𝑋2) = [𝑋1, 𝑋1] , 𝑇0 (𝑋1, 𝑋2) = [𝑋1, 0] , 𝑇1 (𝑋1, 𝑋2) = [𝑋2, 0] .

Here, we write each polynomial in terms of its decomposition under the Chinese Remainder Theorem. Namely, in this

example, 𝑇0 (𝑋1, 𝑋2) = 𝑋1 mod 𝑝1 and 𝑇0 (𝑋1, 𝑋2) = 0 mod 𝑝2. By construction, 𝑇0𝑃1 ≠ 𝑇1𝑃1. Thus, to satisfy Eq. (D.1)

from [KSW13], it suffices to show that {𝑇 2

𝑏
,𝑇𝑏𝑃1} is independent of 𝑃21 , but this is immediate since 𝑃2

1
is a non-zero

polynomial modulo 𝑝2 while 𝑇
2

𝑏
and 𝑇𝑏𝑃1 are the identically-zero polynomial modulo 𝑝2. At the same time, given

the challenge (𝑁, ℓ1, 𝜏𝑏), the adversary can simply use the pairing oracle to check whether 𝑒 (ℓ1, 𝜏𝑏) = 𝑒 (𝜏𝑏, 𝜏𝑏). When

𝑏 = 0, this check always passes whereas if 𝑏 = 1, this check passes with probability 1/𝑝2 ≤ 2
−_
. For completeness,

we give a proof of our amended theorem in Appendix D.1.

Theorem D.6 (Generic Hardness of Assumption 4.2). Let _ be a security parameter. Then, for every polynomial
𝑞 = 𝑞(_), and every prime 𝑝 ≥ 2

_ , Assumption 4.2 holds in the generic bilinear group model of order 𝑝 .

Proof. We will use Theorem D.3. Take any set 𝑆 ⊆ [𝑞 − 1]. The components given out in Assumption 4.2 can be

expressed as polynomials over the formal variables 𝑠, 𝑎, 𝑟 . Specifically, the polynomials in the base group are defined

as follows:

1 , 𝑠 , {𝑎𝑖 }𝑖∈𝑆∪[𝑞+1,2𝑞] , {𝑠𝑎𝑞−𝑖 }𝑖∈[𝑞−1]\𝑆 , {𝑠𝑎𝑖 }𝑖∈[𝑞+1,2𝑞] . (D.2)

The assumption also gives out a polynomial 𝑎𝑞 in the target group. The challenge polynomials are

𝑇0 (𝑠, 𝑎, 𝑟) B 𝑠𝑎𝑞 and 𝑇1 (𝑠, 𝑎, 𝑟) B 𝑟,

Certainly, 𝑇0 and 𝑇1 are independent of 𝑎
𝑞
(since they are different monomials). It suffices to check that 𝑇0 and 𝑇1 are

independent of the pairwise products of the monomials in Eq. (D.2). Since none of the monomials in Eq. (D.2) depend

on 𝑟 , the claim holds for 𝑇1. We now claim that we cannot none of the pairs of monomials in Eq. (D.2) multiply to

𝑠𝑎𝑞 . We can partition the elements in Eq. (D.2) into two sets:

• The monomials of the form 𝑎𝑖 for 𝑖 ∈ {0} ∪ 𝑆 ∪ [𝑞 + 1, 2𝑞].

• The monomials of the form 𝑠𝑎𝑞−𝑖 for 𝑖 ∈ [𝑞 − 1] \ 𝑆 and 𝑠𝑎𝑖 for 𝑖 ∈ [𝑞 + 1, 2𝑞].

The only possible way to form the monomial 𝑠𝑎𝑞 is to multiply a monomial from the first set (possibly 1) with a

monomial from the second set. Let 𝑎𝑖1 and 𝑠𝑎𝑖2 be these two monomials, where 𝑖1 ∈ {0} ∪ 𝑆 and 𝑞 − 𝑖2 ∈ [𝑞 − 1] \ 𝑆 .
Moreover, it must be the case that 𝑖1 + 𝑖2 = 𝑞, which means that 𝑖1 ∈ {0} ∪ 𝑆 and 𝑖1 ∈ [𝑞 − 1] \ 𝑆 . Since the sets {0} ∪ 𝑆
and [𝑞 − 1] \ 𝑆 are disjoint, this is a contradiction. We conclude that 𝑇0 is independent of the pairwise products of

the polynomials in Eq. (D.2) so the claim now follows from Theorem D.3. □

Lemma D.7 (Generic Hardness of Assumption B.1). Let _ be a security parameter. Then, for all polynomials 𝑞1 = 𝑞1 (_),
𝑞2 = 𝑞2 (_) and every prime 𝑝 ≥ 2

_ , Assumption B.1 holds in the generic bilinear group model of order 𝑝 .
12
Note that we are specifically referring to the journal version [KSW13], which corrects an earlier version of the theorem statement from [KSW08].

109

Proof. As written, Assumption 4.10 requires publishing inverses of group elements, which does not fall under the

structure of Theorem D.3. However, we can apply a simple change of basis to avoid having to give out inverses. First,

recall that the challenge components in Assumption 4.10 consists of the group elements(
𝑔 , 𝑔𝑠 , {𝑔𝑎𝑖 }𝑖∈[2𝑞1]\{𝑞1 } , {𝑔𝑠𝛽 𝑗 , 𝑔𝑎

𝑖/𝛽 𝑗 } 𝑗∈[𝑞2],𝑖∈[2𝑞1]\{𝑞1 } , {𝑔𝑠𝑎
𝑖𝛽𝑘/𝛽 𝑗 } 𝑗≠𝑘,𝑖∈[2𝑞1]\{𝑞1 }

)
and the challenge terms 𝑇0 = 𝑒 (𝑔,𝑔)𝑠𝑎

𝑞
1

or 𝑇1 = 𝑒 (𝑔,𝑔)𝑟 . Consider the assumption where we replace the generator

𝑔 with 𝑔 = 𝑔𝑢
∏
𝑗 ∈ [𝑞

2
] 𝛽 𝑗

, where 𝑢
r← Z𝑝1 . Note that 𝑔 is a random generator (since 𝑢

r← Z𝑝1). With respect to the new

generator 𝑔, the challenge components can now be written as(
𝑔 , 𝑔𝑠 , {𝑔𝑎𝑖 }𝑖∈[2𝑞1]\{𝑞1 } , {𝑔𝑠𝛽 𝑗 , 𝑔𝑢𝑎

𝑖
∏
𝑡∉𝑗 𝛽𝑡 } 𝑗∈[𝑞2],𝑖∈[2𝑞1]\{𝑞1 } , {𝑔𝑢𝑠𝑎

𝑖𝛽𝑘
∏
𝑡≠𝑗 𝛽𝑡 } 𝑗≠𝑘,𝑖∈[2𝑞1]\{𝑞1 }

)
,

and the challenge terms are 𝑇0 = 𝑒 (𝑔,𝑔)𝑠𝑎
𝑞
1

and 𝑇1 = 𝑒 (𝑔,𝑔)𝑟 . We now use Theorem D.3 to analyze this version of the

assumption. The components given out in Assumption B.1 can be expressed as polynomials over the formal variables

𝑢, 𝑠, 𝑎, ˆ𝛽1, . . . , ˆ𝛽𝑞2 , 𝑟 . Specifically, let
ˆb = 𝑢

∏
𝑗∈[𝑞2]

ˆ𝛽 𝑗 . Then the polynomials in the base group are defined as follows:

ˆb , ˆb𝑠 , { ˆb𝑎𝑖 }𝑖∈[2𝑞1]\{𝑞1 } ,
{
ˆb𝑠 ˆ𝛽 𝑗 , 𝑢𝑎

𝑖 ∏
𝑡≠𝑗

ˆ𝛽𝑡
}
𝑗∈[𝑞2],𝑖∈[2𝑞1]\{𝑞1 } ,

{
𝑢𝑠𝑎𝑖 ˆ𝛽𝑘

∏
𝑡≠𝑗

ˆ𝛽𝑡
}
𝑗≠𝑘,𝑖∈[2𝑞1]\{𝑞1 } . (D.3)

as well as the challenge polynomials

𝑇0
(
𝑢, 𝑠, 𝑎, ˆ𝛽1, . . . , ˆ𝛽𝑞2 , 𝑟

)
B ˆb2𝑠𝑎𝑞1 and 𝑇1

(
𝑢, 𝑠, 𝑎, ˆ𝛽1, . . . , ˆ𝛽𝑞2 , 𝑟

)
B ˆb2𝑟 .

By construction, 𝑇1 is independent of all of the monomials in Eq. (D.3) (since none of them depend on 𝑟), so it suffices

to show that 𝑇0 is independent of the pairwise products of the monomials in Eq. (D.3). By construction, at least one

of the monomials in the pairwise product must contain 𝑠 . We now consider the possibilities:

• Suppose we use
ˆb𝑠 . To obtain the monomial

ˆb2𝑠𝑎𝑞1 , we would need to multiply by the monomial
ˆb𝑎𝑞1 , which

is not given out in the assumption.

• Suppose we use
ˆb𝑠 ˆ𝛽 𝑗 for some 𝑗 ∈ [𝑞2]. To obtain the monomial

ˆb2𝑠𝑎𝑞1 , we would need to multiply by the

monomial

ˆb𝑎𝑞1/ ˆ𝛽 𝑗 = 𝑢𝑎𝑞1
∏
𝑡≠𝑗

ˆ𝛽𝑡 ,

which is not given out in the assumption.

• Suppose we use 𝑢𝑠𝑎𝑖 ˆ𝛽𝑘
∏
𝑡≠𝑗

ˆ𝛽𝑡 for some 𝑖 ∈ [2𝑞1] \ {𝑞1} and 𝑗 ≠ 𝑘 . Then, to obtain the monomial
ˆb2𝑠𝑎𝑞1 we

need to multiply by the monomial

ˆb2𝑎𝑞1−𝑖/𝑢 ˆ𝛽𝑘

∏
𝑡≠𝑗

ˆ𝛽𝑡 = ˆb𝑎𝑞1−𝑖 ˆ𝛽 𝑗/ ˆ𝛽𝑘 = 𝑢𝑎𝑞1−𝑖 ˆ𝛽 𝑗
∏
𝑡≠𝑘

ˆ𝛽𝑡 ,

which is not given out in the assumption.

We conclude that 𝑇0 is linearly independent of the pairwise products of the monomials in Eq. (D.3). Finally, the

polynomials in Eq. (D.3) have degree at most𝑂 (𝑞1 +𝑞2). Since 𝑞1, 𝑞2 = poly(_), and the number of terms is𝑂 (𝑞1 +𝑞2),
the claim follows from Theorem D.3. □

Lemma D.8 (Generic Hardness of Assumption 5.4). If factoring a product of four primes (each of size 2_) is compu-
tationally hard, then Assumption 5.4 holds in the generic bilinear group model of order 𝑁 where 𝑁 is a product of four
primes (each of size 2_).

Proof. We will use Theorem D.4. Take any polynomial input length 𝐿 = 𝐿(_), any progression-free and double-free set
D = {𝑑𝑖 }𝑖∈[𝐿] and a challenge index 𝑖∗ ∈ [𝐿]. We start by enumerating the component given out by Assumption 5.4.

We express these components in their representation under the Chinese Remainder Theorem. Specifically, since we

are working over a composite-order group with modulus 𝑁 = 𝑝1𝑝2𝑝3𝑝4, we write [𝑥1, 𝑥2, 𝑥3, 𝑥4] to denote the variable
𝑥 over Z∗

𝑁
where 𝑥 = 𝑥𝑖 mod 𝑝𝑖 for all 𝑖 ∈ {1, 2, 3, 4}. The components given out in Assumption 5.4 can be expressed

as polynomials over the formal variables 𝑠, 𝑎, ˆ𝑏, 𝜏, 𝑠23:

110

• for all 𝑖 ∈ [𝐿]\{𝑖∗}, 𝐴′𝑖 = [𝑎𝑑𝑖 , 0, 0, 0];

• for all 𝑖 ∈ [𝐿],𝑈 ′𝑖 = [ˆ𝑏𝑎𝑑𝑖 , 0, 0, 0];

• for all 𝑧 ∈ E,𝑊 ′𝑧 = [ˆ𝑏𝑎𝑧, 0, 0, 0];

• 𝑋 = [𝑠, 𝑠, 0, 0];

• for all 𝑖 ∈ [𝐿]\{𝑖∗}, 𝑌𝑖 = [𝑠 ˆ𝑏𝑎𝑑𝑖 , 0, 0, 0] and 𝑌𝑖∗ = [𝑠 ˆ𝑏𝑎𝑑𝑖∗ , 𝑠 ˆ𝑏𝑎𝑑𝑖∗ , 0, 0];

• generators 𝐺1 = [1, 0, 0, 0], 𝐺3 = [0, 0, 1, 0], 𝐺4 = [0, 0, 0, 1], and 𝐺23 = [0, 𝑠23, 𝑠23, 0].

Finally, the challenge polynomials are constructed as

𝑇0 (𝑠, 𝑎, ˆ𝑏, 𝜏, 𝑠23) = [𝑎𝑑𝑖∗ , 0, 𝜏, 0] and 𝑇1 (𝑠, 𝑎, ˆ𝑏, 𝜏, 𝑠23) = [𝑎𝑑𝑖∗ , 𝜏, 𝜏, 0] .

We now consider the conditions in Theorem D.4. First, it is easy to see that 𝑇0 and 𝑇1 are independent of the other

monomials given out in the challenge (since 𝑇0 and 𝑇1 are the only polynomials that depend on the formal variable

𝜏). Next, we consider the pairwise products 𝑇𝑏𝑃 (where 𝑃 is one of the other polynomials in the challenge). We only

consider 𝑇𝑏𝑃 when 𝑇0𝑃 ≠ 𝑇1𝑃 . By construction, 𝑇0 and 𝑇1 are identical in the 𝑝1, 𝑝3, and 𝑝4 subgroups and only differ

in the 𝑝2 subgroup. As such, the only element 𝑃 for which𝑇0𝑃 ≠ 𝑇1𝑃 are the challenge polynomials that are nonzero in

the G2 subgroup. These are the components 𝑋 , 𝑌𝑖∗ , and 𝐺23. We check each of the linear independence requirements:

1. 𝑇𝑏𝑋 is independent of S (𝑏)
𝑋

(where S (𝑏)
𝑋

is the set as defined in Theorem D.4).

• First 𝑇0𝑋 = [𝑠𝑎𝑑𝑖∗ , 0, 0, 0] Observe that since this element does not include
ˆ𝑏, so it is independent of any

pairwise product that involves 𝑈 ′𝑖 ,𝑊
′
𝑧 , 𝑌𝑖 , 𝑌𝑖∗ . Since 𝑋 is the only remaining element with 𝑠 in G1, the

only non-independent pairwise products must contain 𝑋 . Since 𝑋𝐴𝑖 = [𝑠𝑎𝑑𝑖 , 0, 0, 0] for 𝑖 ≠ 𝑖∗, these are
linearly independent of 𝑇0𝑋 , as required.

• Next,𝑇1, 𝑋 = [𝑠𝑎𝑑𝑖∗ , 𝑠𝜏, 0, 0]. This follows analogously to the above case; in particular, none of the pairwise

products produce 𝑠𝑎𝑑𝑖 in the 𝑝1 subgroup, linear independence holds.

2. 𝑇𝑏𝑌𝑖∗ is independent of S𝑏𝑌𝑖∗

• First, 𝑇0𝑌𝑖∗ = [𝑠 ˆ𝑏𝑎2𝑑𝑖∗ , 0, 0, 0]. The monomial 𝑠 ˆ𝑏𝑎2𝑑𝑖∗ in the 𝑝1 subgroup is degree 1 in 𝑠 and ˆ𝑏. The only

pairwise products with this property are 𝑋𝑈 ′𝑖 , 𝑋𝑊
′
𝑧 , 𝑌𝑖𝐴

′
𝑗 , and 𝑇0𝑌𝑖 . We consider each term separately:

– For all 𝑖 ∈ [𝐿], in the 𝑝1 subgroup, 𝑋𝑈
′
𝑖 = 𝑠 ˆ𝑏𝑎𝑑𝑖 . Since 𝑑𝑖 , 𝑑𝑖∗ ∈ D and D is double-free, there does

not exist any 𝑖 ∈ [𝐿] where 𝑑𝑖 = 2𝑑𝑖∗ . As such, 𝑋𝑈
′
𝑖 is independent of 𝑇0𝑌𝑖 .

– For all 𝑧 ∈ E, in the 𝑝1 subgroup, 𝑋𝑊
′
𝑧 = 𝑠 ˆ𝑏𝑎𝑧 , where 𝑧 = 𝑑𝑖 + 𝑑 𝑗 for some 𝑖 ≠ 𝑗 . Since 𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑖∗ ∈ D

and D is progression-free, it follows that 𝑧 = 𝑑𝑖 + 𝑑 𝑗 ≠ 2𝑑𝑖∗ . Thus, 𝑋𝑊
′
𝑧 ≠ 𝑠 ˆ𝑏𝑎2𝑑𝑖∗ , and 𝑋𝑊 ′𝑧 is

independent of 𝑇0𝑌𝑖 .

– For all 𝑖 ∈ [𝐿] and 𝑗 ≠ 𝑖∗, in the 𝑝1 subgroup, 𝑌𝑖𝐴
′
𝑗 = 𝑠

ˆ𝑏𝑎𝑑𝑖+𝑑 𝑗 . Since D is double-free if 𝑖 ≠ 𝑗 , then

𝑑𝑖 + 𝑑 𝑗 ≠ 2𝑑𝑖∗ . If 𝑖 = 𝑗 , then 𝑖, 𝑗 ≠ 𝑑𝑖∗ . Since the elements of D are distinct, once again 𝑑𝑖 + 𝑑 𝑗 ≠ 2𝑑𝑖∗ .

Thus, 𝑌𝑖𝐴
′
𝑗 is independent of 𝑇0𝑌𝑖 .

– Finally, 𝑇0𝑌𝑖 in the 𝑝1 subgroup has value 𝑠 ˆ𝑏𝑎𝑑𝑖+𝑑𝑖∗ for 𝑖 ≠ 𝑖∗. Since 𝑑𝑖 ≠ 𝑑𝑖∗ when 𝑖 ≠ 𝑖∗, this value
is again independent of 𝑇0𝑌𝑖∗ .

• Next, 𝑇1𝑌𝑖∗ = [𝑠 ˆ𝑏𝑎2𝑑𝑖∗ , 𝑠 ˆ𝑏𝑎𝑑𝑖∗𝜏, 0, 0]. This analysis follows as in the previous case. Namely, none of the

allowed pairwise products produce the monomial 𝑠 ˆ𝑏𝑎2𝑑𝑖∗ in the 𝑝1 subgroup.

3. 𝑇𝑏𝐺23 is independent of S𝑏𝐺23

.

• First, 𝑇0𝐺23 = [0, 𝑠23, 𝑠23𝜏, 0]. By construction, the only pairwise product that contains the monomial 𝑠23𝜏

is 𝑇0𝐺23, so the claim holds.

111

• Next, 𝑇1𝐺23 = [0, 𝑠23𝜏, 𝑠23𝜏, 0]. This follows analogously to the the above case.

To complete the proof, we argue that 𝑇 2

𝑏
is independent of the other pairwise products. In both cases, 𝑇 2

𝑏
contains

the monomial 𝜏2 in the 𝑝3 subgroup. None of the other challenge components depend on 𝜏 , so linear independence

is immediate. Finally, the maximum degree of the monomials appearing in the challenge is bounded by 𝑂 (max(D)).
Since max(D) is polynomially-bounded, the claim now follows. □

Lemma D.9 (Generic Hardness of Assumption 7.7). If factoring a product of two primes (each of size 2_) is compu-
tationally hard, then Assumption 7.7 holds in the generic group model of order 𝑁 where 𝑁 is a product of two primes
(each of size 2_).

Proof. We will use Theorem D.4. Take any polynomial input length 𝐿 = 𝐿(_), any progression-free and double-free set
D = {𝑑𝑖 }𝑖∈[𝐿] and a challenge index 𝑖∗ ∈ [𝐿]. We start by enumerating the component given out by Assumption 7.7.

We express these components in their representation under the Chinese Remainder Theorem. Specifically, since we

are working over a composite-order group with modulus 𝑁 = 𝑝1𝑝2, we write [𝑥1, 𝑥2] to denote the variable 𝑥 over Z∗
𝑁

where 𝑥 = 𝑥𝑖 mod 𝑝𝑖 for all 𝑖 ∈ {1, 2}. The components given out in Assumption 7.7 can be expressed as polynomials

over the formal variables 𝑠, 𝑎:

• for all 𝑖 ∈ [𝐿]\{𝑖∗}, 𝐴′𝑖 = [𝑠𝑎𝑑𝑖 , 0];

• for all 𝑖 ≠ 𝑗 ∈ [𝐿], 𝐵′𝑖, 𝑗 = [𝑠2𝑎𝑑𝑖+𝑑 𝑗 , 0];

• generator 𝐺1 = [1, 0].

Finally, the challenge polynomials are constructed as

𝑇0 (𝑠, 𝑎) = [𝑠𝑎𝑑𝑖∗ , 0] and 𝑇1 (𝑠, 𝑎) = [𝑠𝑎𝑑𝑖∗ , 𝑠𝑎𝑑𝑖∗] .

We now consider the conditions in Theorem D.4. First, it is easy to see that 𝑇0 and 𝑇1 are independent of 𝐴
′
𝑖 for all

𝑖 ≠ 𝑖∗, and also with 𝐵𝑖, 𝑗 since each 𝐵𝑖, 𝑗 is quadratic in 𝑠 while 𝑇0,𝑇1 are linear in 𝑠 . They are also independent of𝐺1.

Next, 𝑇0𝑃 = 𝑇1𝑃 for all monomials 𝑃 appearing in the challenge. Thus, to invoke Theorem D.4, it suffices to show

that 𝑇 2

𝑏
is independent of the other pairwise products.

1. Consider 𝑇 2

0
= [𝑠2𝑎2𝑑𝑖∗ , 0]. The only pairwise products of 𝐴′𝑖 and 𝐵𝑖, 𝑗 that are degree-2 in 𝑠 are of the form 𝐴′𝑖𝐴

′
𝑗

for 𝑖, 𝑗 ≠ 𝑖∗ and those of the form 𝐺1𝐵
′
𝑖, 𝑗 for 𝑖 ≠ 𝑗 We consider each case separately.

• Take any 𝑖, 𝑗 ≠ 𝑖∗. Then, 𝐴′𝑖𝐴
′
𝑗 = [𝑠2𝑎𝑑𝑖+𝑑 𝑗 , 0]. If 𝑖 = 𝑗 ≠ 𝑖∗, this is [𝑠2𝑎2𝑑𝑖 , 0]. Since the elements of D are

distinct and 𝑖 ≠ 𝑖∗, 𝑠2𝑎2𝑑𝑖 ≠ 𝑠2𝑎2𝑑𝑖∗ . If 𝑖 ≠ 𝑗 , then 𝐴′𝑖𝐴
′
𝑗 = [𝑠2𝑎𝑑𝑖+𝑑 𝑗 , 0]. Since D is progression-free, this

means that 𝑑𝑖 + 𝑑 𝑗 ≠ 2𝑑𝑖∗ and linear independence holds.

• Take any 𝑖 ≠ 𝑗 ∈ [𝐿]. Then,𝐺1𝐵
′
𝑖, 𝑗 = [𝑠2𝑎𝑑𝑖+𝑑 𝑗 , 0]. SinceD is progression-free, it follows that 𝑑𝑖 +𝑑 𝑗 ≠ 2𝑑𝑖∗ ,

so linear independence again holds.

2. Consider 𝑇 2

1
= [𝑠2𝑎2𝑑𝑖∗ , 𝑠2𝑎2𝑑𝑖∗]. Since 𝑇 2

1
is the only element that has a non-trivial 𝑝2 component, it is linearly

independent of the pairwise products of all other components.

The maximum degree of the monomials appearing in the challenge is bounded by 𝑂 (max(D)). Since max(D) is
polynomially-bounded, the claim now follows via Theorem D.4. □

D.1 Proof of Theorem D.4
In this theorem, we provide a proof of Theorem D.4. Our analysis follows an identical strategy as [KSW13, Theo-

rem A.2], except we incorporate the final condition in Theorem D.4 into the analysis. As discussed in Remark D.5,

the extra condition is required to argue hardness in the generic group model.

Proof of Theorem D.4. Let 𝑁 be a product of𝑚 distinct primes 𝑝1, . . . , 𝑝𝑚 . We define a sequence of hybrid experiments:

112

• Hyb(a)
0

: This is the real game with bit a ∈ {0, 1} in Theorem D.4. Specifically, in this experiment, the challenger

samples random variables 𝑥1, . . . , 𝑥𝑛
r← Z𝑁 , and constructs the group elements as polynomials of (𝑥1, . . . , 𝑥𝑛)

as described in Theorem D.4. The challenge component is set to be 𝜏a . The challenger associates a fresh handle

with each distinct group element and answers generic group queries according to the specification of the

generic bilinear group oracle (Definition D.1).

• Hyb(a)
1

: In this hybrid, rather than sampling 𝑥1, . . . , 𝑥𝑛
r← Z𝑁 , the challenger instead associates each variable

𝑥𝑖 with a formal variable 𝑥𝑖 . Each label now maps onto a vector of𝑚 formal polynomials on 𝑥1, . . . , 𝑥𝑛 , where

the 𝑖th formal polynomial is an element of Z𝑝𝑖 [𝑥1, . . . , 𝑥𝑛]. The group operation computes an element-wise sum

of formal polynomials while a pairing operation computes an element-wise product of formal polynomials. The

challenger associates distinct labels to each distinct vector of formal polynomials (in the variables 𝑥1, . . . , 𝑥𝑛).

• Hyb(a)
2

: In this hybrid, instead of associating labels with a vector of polynomials Z𝑝1 [𝑥1, . . . , 𝑥𝑘] × · · · ×
Z𝑝𝑚 [𝑥1, . . . , 𝑥𝑘], the challenger associated each label with a vector of polynomials over Z𝑁 [𝑥1, . . . , 𝑥𝑘] × · · · ×
Z𝑁 [𝑥1, . . . , 𝑥𝑘]. Specifically, each of the polynomials has coefficients over Z𝑁 rather than Z𝑝𝑖 . As before, the
challenger associates distinct labels to each distinct vector of formal polynomials.

LemmaD.10. LetA be an adversary that makes at most𝑄 queries to the generic group oracles. Then for all bits a ∈ {0, 1},��
Pr[Hyb(a)

0
(A) = 1] − Pr[Hyb(a)

1
(A) = 1]

�� ≤ 𝑂 ((𝑞 + 𝑘 + ℓ)2𝑡/2_).
Proof. Observe that if two polynomials are equal, they will be equal at all points. Thus, these two hybrids only differ

when two distinct polynomials 𝑓1, 𝑓2 (in the variables 𝑥1, . . . , 𝑥𝑛) evaluate to the same value modulo every 𝑝𝑖 . In this

case, the challenger would return the same handle in Hyb(a)
0

, but different handles in Hyb(a)
1

. Since the maximum

degree of the polynomials is 𝑡 , the maximum degree of any polynomial appearing in the generic bilinear group

encoding table is 2𝑡 (specifically, the only operation that can increase the degree of the polynomial is the pairing

operation). Since 𝑥1, . . . , 𝑥𝑛
r← Z𝑁 are sampled uniformly over Z𝑁 (and thus, over each Z𝑝𝑖), the probability that

a pair of non-identical polynomials 𝑓1, 𝑓2 (over Z𝑝𝑖) satisfy 𝑓1 (𝑥1, . . . , 𝑥𝑛) = 𝑓2 (𝑥1, . . . , 𝑥𝑛) mod 𝑝𝑖 is at most
2𝑡
𝑝𝑖

< 2𝑡

2
_ ,

since 𝑝𝑖 > 2
_
. Since there are at most 𝑞 + 𝑘 + ℓ polynomials in the table (from the ones introduced by the adversary’s

queries and the ones from the assumption), we can union bound over all

(
𝑞+𝑘+ℓ

2

)
pairs of polynomials. Thus, the

statistical distance between these two experiments is at most 𝑂 ((𝑞 + 𝑘 + ℓ)2𝑡/2_). □

Lemma D.11. Let A be an adversary where��
Pr[Hyb(a)

1
(A) = 1] − Pr[Hyb(a)

2
(A) = 1]

�� = Y.
Then there exists an algorithm B which finds a nontrivial factor of 𝑁 with probability Y.

Proof. Since Hyb(a)
1

and Hyb(a)
2

differ only in the setting where the table contains a pair of labels mapping onto

two vectors (𝑓1,1, . . . , 𝑓1,𝑛) and (𝑓2,1, . . . , 𝑓2,𝑛) where for some index 𝑗 ∈ [𝑛], it holds that 𝑓1, 𝑗 = 𝑓2, 𝑗 mod 𝑝 𝑗 but

𝑓1, 𝑗 ≠ 𝑓2, 𝑗 mod 𝑁 . When this happens, 𝑓1, 𝑗 − 𝑓2, 𝑗 = 0 mod 𝑝 𝑗 but 𝑓1, 𝑗 − 𝑓2, 𝑗 ≠ 0 mod 𝑁 , so computing the greatest

common division between the coefficients of the difference 𝑓1, 𝑗 − 𝑓2, 𝑗 and 𝑁 will yield a non-trivial factor of 𝑁 . □

Lemma D.12. For all adversaries A, Pr[Hyb(0)
2
(A) = 1] = Pr[Hyb(1)

2
(A) = 1].

Proof. By definition, these two experiments are identical unless the adversary A is able to construct a formal poly-

nomial involving the challenge polynomial 𝑇a that is identical to the all-zeroes polynomial for one value of a ∈ {0, 1}
but not for the other value 1 − a . Let 𝑥1, . . . , 𝑥𝑛 be the formal variables in an execution of Hyb(0)

2
and Hyb(1)

2
. Initially,

the tables D contain the polynomials 𝑃1, . . . , 𝑃𝑘 as well as the challenge polynomial 𝑇a . The table D𝑇 contain the

polynomials 𝑄1, . . . , 𝑄ℓ . Define the sets P = {𝑃𝑖 }𝑖∈[𝑘] and Q = {𝑄𝑖 }𝑖∈[ℓ] and S (a) = P2 ∪ Q ∪ {𝑇𝑏𝑃𝑖 : 𝑖 ∈ [𝑘]} as in
Theorem D.4. We now consider two possibilities:

113

• Consider a polynomial 𝑓a in the base group. By construction, we can write 𝑓a as

𝑓a (𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑖∈[𝑘]

𝛼𝑖𝑃𝑖 (𝑥1, . . . , 𝑥𝑛) + 𝛽𝑇a (𝑥1, . . . , 𝑥𝑛),

where 𝛼𝑖 , 𝛽 ∈ Z𝑁 (note that we do not need an affine term since 𝑃1 = 1). If 𝑓a = 0 for some value of a ∈ {0, 1},
then 𝑇a is not linearly independent of P which contradicts the requirement in Theorem D.4.

• Consider a polynomial 𝑓a in the target group. By construction, we can write 𝑓a as

𝑓 =
∑︁

𝑖, 𝑗∈[𝑘]
𝛼𝑖, 𝑗𝑃𝑖𝑃 𝑗 +

∑︁
𝑖∈[ℓ]

𝛽𝑖𝑄𝑖 +
∑︁
𝑖∈[𝑘]

𝛾𝑖𝑃𝑖𝑇a + 𝛿𝑇 2

a ,

where 𝛼𝑖, 𝑗 , 𝛽𝑖 , 𝛾𝑖 , 𝛿 ∈ Z𝑁 . Suppose that 𝑓a = 0 for some a ∈ {0, 1} and 𝑓1−a ≠ 0. We consider two cases. If 𝛿 ≠ 0,

then we can write 𝑇 2

a as a linear combination of the elements of S (a) . This contradicts the requirements in

Theorem D.4. Suppose instead that 𝛿 = 0. Then,

𝑓a =
∑︁

𝑖, 𝑗∈[𝑘]
𝛼𝑖, 𝑗𝑃𝑖𝑃 𝑗 +

∑︁
𝑖∈[ℓ]

𝛽𝑖𝑄𝑖 +
∑︁
𝑖∈[𝑘]

𝛾𝑖𝑃𝑖𝑇a = 0.

Let 𝑖∗ be the first index for which 𝑇0𝑃𝑖∗ ≠ 𝑇1𝑃𝑖∗ mod 𝑁 . Such an index must exist since 𝑓a = 0 but 𝑓1−a ≠ 0. In

this case, we have expressed 𝑃𝑖∗𝑇a as a linear combination of polynomials in the set S (a) \𝑇a𝑃𝑖∗ = S (a)𝑖∗ , which

contradicts the premise in Theorem D.4.

Thus, if P, Q, 𝑇0, 𝑇1 satisfy the requirements in Theorem D.4, then algorithm A is not able to construct a polynomial

𝑓a where 𝑓a = 0 and 𝑓1−a ≠ 0. The claim holds. □

Combining Lemmas D.10 to D.12, Theorem D.4 holds. □

E Analyzing the (𝑞1, 𝑞2)-Intermediate Set-Consistent BDHE Assumption
In this section, we show that the (𝑞1, 𝑞2)-intermediate set-consistent bilinear Diffie-Hellman exponent assumption

(Assumption 4.10) is implied by the 𝑞-set-consistent bilinear Diffie-Hellman exponent assumption (Assumption 4.2).

Specifically, we prove the following statement, which implies Lemma 4.11 as a special case.

Lemma E.1. Let 𝑞 = 𝑞(_) be any polynomial. Suppose the 𝑞-set-consistent bilinear Diffie-Hellman exponent assumption
(Assumption 4.2) holds with respect to PrimeGroupGen. Then, the (𝑞1, 𝑞2)-intermediate set-consistent bilinear Diffie-
Hellman exponent assumption (Assumption 4.10) holds with respect to PrimeGroupGen for any 𝑞1, 𝑞2 where 4𝑞1𝑞2 = 𝑞.

Proof. Take any 𝑞1, 𝑞2 ∈ N where 𝑞 = 4𝑞1𝑞2. Suppose A is an efficient adversary for the (𝑞1, 𝑞2)-intermediate

set-consistent BDHE assumption (Assumption 4.10) that succeeds with non-negligible advantage Y. We use A to

construct an algorithm B for the 𝑞-set-Consistent BDHE game. At a high level, algorithm B simulates the “parallel”

terms containing 𝛽 𝑗 using disjoint intervals of the powers of 𝑎. In the following description, we write 𝑖 mod 4𝑞2 to

refer to the (unique) representative of 𝑖 in the interval [−2𝑞2, 2𝑞2 − 1]. We now describe the algorithm B:

1. Algorithm B start by running algorithm A. Algorithm A outputs a set 𝑆 ⊆ [𝑞1 − 1].

2. Algorithm B constructs the sets

𝑆 ′
0
= {4𝑞2 · 𝑖 | 𝑖 ∈ 𝑆} and 𝑆 ′

1
= {𝑖 ∈ [𝑞 − 2𝑞2] | 𝑖 mod 4𝑞2 is odd and negative}.

It sets 𝑆 ′ = 𝑆 ′
0
∪ 𝑆 ′

1
and gives 𝑆 ′ to the challenger.

3. The challenger replies with the challenge

G , 𝑔 , 𝑌 ′ ,
{
𝑋 ′𝑖

}
𝑖∈𝑆 ′∪[𝑞+1,2𝑞] ,

{
𝑍 ′𝑞−𝑖

}
𝑖∈[𝑞−1]\𝑆 ′ ,

{
𝑍 ′𝑖

}
[𝑞+1,2𝑞] , 𝑄

′ , 𝑇 ′ . (E.1)

For emphasis, we color these terms in green.

114

4. Algorithm B samples random exponents 𝑎0, 𝛽
′
1
, . . . , 𝛽 ′𝑞2

r← Z𝑝 . It then constructs the following elements:

• It sets 𝑌 = 𝑌 ′.

• For each 𝑖 ∈ 𝑆 ∪ [𝑞1 + 1, 2𝑞1], it sets 𝑋𝑖 =
(
𝑋 ′
4𝑞2𝑖

)𝑎𝑖
0
.

• For each 𝑖 ∈ [𝑞1 − 1] \ 𝑆 , it sets 𝑍𝑞1−𝑖 =
(
𝑍 ′𝑞−4𝑞2𝑖

)𝑎𝑞1−𝑖
0

. For each 𝑖 ∈ [𝑞1 + 1, 2𝑞1], it sets 𝑍𝑖 =
(
𝑍 ′
4𝑞2𝑖

)𝑎𝑖
0
.

• It sets 𝑄 =
(
𝑄 ′

)𝑎𝑞1
0
.

To construct the parallel terms containing 𝛽 𝑗 , the challenger proceeds as follows:

• For each 𝑗 ∈ [𝑞2], the challenger sets 𝑌 (𝑗) =
(
𝑍 ′
2𝑗−1

)𝛽 ′𝑗
.

• For each 𝑖 ∈ [2𝑞1] \ {𝑞1} and 𝑗 ∈ [𝑞2], the challenger sets 𝑋 (𝑗)𝑖
=

(
𝑋 ′
4𝑞2𝑖−(2𝑗−1)

)𝑎𝑖
0
/𝛽 ′𝑗

.

• For each 𝑖 ∈ [2𝑞1] \ {𝑞1} and 𝑗 ≠ 𝑘 ∈ [𝑞2], the challenger sets 𝑍 (𝑗,𝑘)𝑖
=

(
𝑍 ′
4𝑞2𝑖+2(𝑘− 𝑗)

)𝑎𝑖
0
𝛽 ′
𝑘
/𝛽 ′𝑗

.

Finally, algorithm B sets 𝑇 = 𝑇 ′𝑎
𝑞
1

0 and gives the following components to A:

• G , 𝑔 , 𝑌 , {𝑋𝑖 }𝑖∈𝑆∪[𝑞1+1,2𝑞1] , {𝑍𝑞1−𝑖 }𝑖∈[𝑞1−1]\𝑆 , {𝑍𝑖 }𝑖∈[𝑞1+1,2𝑞1] ; and

• {𝑌 (𝑗) } 𝑗∈[𝑞2] , {𝑋
(𝑗)
𝑖
}𝑖∈[2𝑞1]\{𝑞1 }, 𝑗∈[𝑞2] , {𝑍

(𝑗,𝑘)
𝑖
}𝑖∈[2𝑞1]\{𝑞1 }, 𝑗≠𝑘 , 𝑄 , 𝑇 .

5. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

First, we argue that the components algorithm B uses to simulate the challenge are indeed provided by the challenger.

We consider each set of components.

• First, consider the components 𝑋𝑖 and 𝑍𝑖 when 𝑖 ∈ [𝑞1 + 1, 2𝑞1]. These depend on the values of 𝑋 ′
4𝑞2𝑖

, 𝑍 ′
4𝑞2𝑖

.

Since 𝑖 ∈ [𝑞1 + 1, 2𝑞1], it follows that 4𝑞2𝑖 ≥ 4𝑞2 (𝑞1 + 1) = 𝑞 + 4𝑞2 ≥ 𝑞 + 1 and 4𝑞2𝑖 ≤ 8𝑞1𝑞2 = 2𝑞. Thus,

4𝑞2𝑖 ∈ [𝑞 + 1, 2𝑞], and correspondingly, 𝑋 ′
4𝑞2𝑖

and 𝑍 ′
4𝑞2𝑖

are included in Eq. (E.1).

• Consider the components 𝑋𝑖 where 𝑖 ∈ 𝑆 . These depend on the values of 𝑋 ′
4𝑞2𝑖

. Since 𝑖 ∈ 𝑆 , this means

4𝑞2𝑖 ∈ 𝑆 ′0 ⊆ 𝑆 ′, and so the component is included in Eq. (E.1).

• Consider the components 𝑍𝑞1−𝑖 for 𝑖 ∈ [𝑞1 − 1] \ 𝑆 . These depend on the values of 𝑍 ′𝑞−4𝑞2𝑖 . Since 4𝑞2𝑖 < 𝑞 − 1,
it suffices to show that 4𝑞2𝑖 ∉ 𝑆

′
. Since 𝑞 = 4𝑞1𝑞2, it follows that 𝑞 − 4𝑞2𝑖 = 0 mod 4𝑞2, so 𝑞 − 4𝑞2𝑖 ∉ 𝑆 ′1. Since

𝑖 ∉ 𝑆 , it follows that 4𝑞2𝑖 ∉ 𝑆
′
0
, and the claim holds.

• Consider the components 𝑌 (𝑗) for 𝑗 ∈ [𝑞2]. These depend on the values of 𝑍 ′
2𝑗−1 = 𝑍 ′

𝑞−(𝑞−(2𝑗−1)) . Since

𝑞 − (2 𝑗 − 1) ∈ [𝑞 − 1], it suffices to show that 𝑞 − (2 𝑗 − 1) ∉ 𝑆 ′. Since 2 𝑗 − 1 is odd, 𝑞 − (2 𝑗 − 1) ∉ 𝑆 ′
0
. Moreover,

since 𝑗 ∈ [𝑞2], 2 𝑗 − 1 < 2𝑞2. This means that 𝑞 − (2 𝑗 − 1) > 𝑞 − 2𝑞2, so 𝑞 − (2 𝑗 − 1) ∉ 𝑆 ′1, and the claim holds.

• Consider the components 𝑋
(𝑗)
𝑖

for 𝑖 ∈ [2𝑞1] \ {𝑞1} and 𝑗 ∈ [𝑞2]. These depend on the values of 𝑋 ′
4𝑞2𝑖−(2𝑗−1) .

– When 𝑖 ∈ [𝑞1 + 1, 2𝑞1], it follows that 4𝑞2𝑖 − (2 𝑗 − 1) ≥ 4𝑞1𝑞2 + 4𝑞2 − (2 𝑗 − 1) > 𝑞 + 1 for all 𝑗 ∈ [𝑞2]. As
such 𝑋 ′

4𝑞2𝑖−(2𝑗−1) is included in Eq. (E.1).

– When 𝑖 ∈ [𝑞1 − 1], then

4𝑞2𝑖 − (2 𝑗 − 1) ≤ 4𝑞2 (𝑞1 − 1) − (2 𝑗 − 1) = 𝑞 − 4𝑞2 − 2 𝑗 + 1 ≤ 𝑞 − 2𝑞2.

We will show then that 4𝑞2𝑖 − (2 𝑗 − 1) ∈ 𝑆 ′1 ⊆ 𝑆 ′. First,

4𝑞2𝑖 − (2 𝑗 − 1) = −(2 𝑗 − 1) mod 4𝑞2.

Since 2 𝑗−1 < 2𝑞2, we conclude that 4𝑞2𝑖−(2 𝑗−1) mod 4𝑞2 is odd and negative, so 4𝑞2𝑖−(2 𝑗−1) ∈ 𝑆 ′1 ⊆ 𝑆 ′,
as required.

115

• Consider the components 𝑍
(𝑗,𝑘)
𝑖

for 𝑖 ∈ [2𝑞1] \ {𝑞1} and 𝑗 ≠ 𝑘 ∈ [𝑞2]. These depend on the values of 𝑍 ′
4𝑞2𝑖+2(𝑘− 𝑗) .

– When 𝑖 ∈ [𝑞1 + 1, 2𝑞1], it follows that 4𝑞2𝑖 + 2(𝑘 − 𝑗) ≥ 4𝑞1𝑞2 + 4𝑞2 + 2(𝑘 − 𝑗) > 𝑞 + 1 for all 𝑗, 𝑘 ∈ [𝑞2].
As such 𝑍 ′

4𝑞2𝑖+2(𝑘− 𝑗) is included in Eq. (E.1).

– When 𝑖 ∈ [𝑞1 − 1], then

4𝑞2𝑖 + 2(𝑘 − 𝑗) ≤ 4𝑞1𝑞2 − 4𝑞2 + 2(𝑘 − 𝑗) ≤ 𝑞 − 4𝑞2 + 2(𝑞2 − 1) ≤ 𝑞 − 2𝑞2 .

Thus, we need to show that 𝑞 − 4𝑞2𝑖 − 2(𝑘 − 𝑗) ∉ 𝑆 ′. First,

𝑞 − 4𝑞2𝑖 − 2(𝑘 − 𝑗) = −2(𝑘 − 𝑗) mod 4𝑞2.

This is always even so 𝑞 − 4𝑞2𝑖 − 2(𝑘 − 𝑗) ∉ 𝑆 ′1, and moreover, since 𝑘 ≠ 𝑗 and 𝑗, 𝑘 ∈ [𝑞2], this means that

𝑞 − 4𝑞2𝑖 − 2(𝑘 − 𝑗) ≠ 0 mod 4𝑞2. Hence, 𝑞 − 4𝑞2𝑖 − 2(𝑘 − 𝑗) ∉ 𝑆 ′0, as required.

Thus, we conclude that algorithm B is able to simulate all of the components forA using its challenge. Let 𝑎′, 𝑠′ ∈ Z𝑝
be the exponents the challenger samples to construct the 𝑞-set-consistent BDHE challenge. Then

𝑋 ′𝑖 = 𝑔
(𝑎′)𝑖

and 𝑍 ′𝑖 = 𝑔
(𝑎′)𝑖𝑠

and 𝑌 ′ = 𝑔𝑠 and 𝑄 ′ = 𝑒 (𝑔,𝑔) (𝑎′)𝑞

We claim that B perfectly simulates an instance of the (𝑞1, 𝑞2)-intermediate set-consistent BDHE challenge with

randomness

𝑎 = 𝑎0 · (𝑎′)4𝑞2 and 𝑠 = 𝑠′ and ∀𝑗 ∈ [𝑞2] : 𝛽 𝑗 = 𝛽 ′𝑗 · (𝑎′)2𝑗−1 . (E.2)

Since algorithm B samples 𝑎′, 𝛽 ′𝑗
r← Z𝑝 , the resulting distributions of 𝑎 and 𝛽1, . . . , 𝛽𝑞2 are uniform and independent

over Z𝑝 , exactly as required in the (𝑞1, 𝑞2)-intermediate set-consistent BDHE game. It suffices to argue that the

challenge constructed by algorithm B is consistent with the variable assignment in Eq. (E.2). We consider each

components separately:

• For all 𝑖 ∈ 𝑆 ∪ [𝑞1 + 1, 2𝑞1], we have 𝑋𝑖 =
(
𝑋 ′
4𝑞2𝑖

)𝑎𝑖
0 = 𝑔𝑎

𝑖
0
(𝑎′)4𝑞2𝑖 = 𝑔𝑎

𝑖

.

• For all 𝑖 ∈ [𝑞 − 1] \ 𝑆 , we have

𝑍𝑞1−𝑖 =
(
𝑍 ′𝑞−4𝑞2𝑖

)𝑎𝑞1−𝑖
0 = 𝑔 (𝑎

′) (𝑞−4𝑞2𝑖)𝑎𝑞1−𝑖
0

𝑠 = 𝑔 (𝑎
′) (4𝑞1𝑞2−4𝑞2𝑖)𝑎𝑎1−𝑖

0
𝑠 = 𝑔 ((𝑎

′)4𝑞2𝑎0)𝑞1−𝑖𝑠 = 𝑔𝑎
𝑞
1
−𝑖𝑠 .

For 𝑖 ∈ [𝑞1 + 1, 2𝑞1], we have 𝑍𝑖 =
(
𝑍 ′
4𝑞2𝑖

)𝑎𝑖
0 = 𝑔 (𝑎

′)4𝑞2𝑖𝑎𝑖
0
𝑠 = 𝑔𝑎

𝑖𝑠

• We have 𝑌 = 𝑌 ′ = 𝑔𝑠 and 𝑄 = (𝑄 ′)𝑎
𝑞
1

0 = 𝑒 (𝑔,𝑔) (𝑎′)𝑞𝑎
𝑞
1

0 = 𝑒 (𝑔,𝑔) ((𝑎′)4𝑞2𝑎0)𝑞1 = 𝑒 (𝑔,𝑔)𝑎𝑞1 .

• For all 𝑗 ∈ [𝑞2], we have 𝑌 (𝑗) =
(
𝑍 ′
2𝑗−1

)𝛽 ′𝑗 = 𝑔 (𝑎′)2𝑗−1𝑠𝛽 ′𝑗 = 𝑔𝑠𝛽 𝑗 .
• For all 𝑖 ∈ [2𝑞1] \ {𝑞1} and 𝑗 ∈ [𝑞2], we have

𝑋
(𝑗)
𝑖

=
(
𝑋 ′
4𝑞2𝑖−(2𝑗−1)

)𝑎𝑖
0
/𝛽 ′𝑗 = 𝑔 (𝑎

′)4𝑞2𝑖−(2𝑗−1)𝑎𝑖
0
/𝛽 ′𝑗 = 𝑔

(
(𝑎′)4𝑞2𝑎0

)𝑖
/
(
(𝑎′)2𝑗−1𝛽 ′𝑗

)
= 𝑔𝑎

𝑖/𝛽 𝑗

• For all 𝑖 ∈ [2𝑞1] \ {𝑞1} and 𝑗 ≠ 𝑘 ∈ [𝑞2],

𝑍
(𝑗,𝑘)
𝑖

=
(
𝑍 ′
4𝑞2𝑖+2(𝑘− 𝑗)

)𝑎𝑖
0
𝛽 ′
𝑘
/𝛽 ′𝑗 = 𝑔 (𝑎

′)4𝑞2𝑖+2(𝑘− 𝑗)𝑠𝑎𝑖
0
𝛽 ′
𝑘
/𝛽 ′𝑗 = 𝑔 ((𝑎

′)4𝑞2𝑎0)𝑖𝑠 ·
(
(𝑎′)2𝑘−1𝛽 ′

𝑘

)
/
(
(𝑎′)2𝑗−1𝛽 ′𝑗

)
= 𝑔𝑎

𝑖𝑠𝛽𝑘/𝛽 𝑗 .

Finally, if 𝑇 ′ = 𝑒 (𝑔,𝑔) (𝑎′)𝑞𝑠 , then

𝑇 = (𝑇 ′)𝑎
𝑞
1

0 = 𝑒 (𝑔,𝑔) (𝑎′)𝑞𝑎
𝑞
1

0
𝑠 = 𝑒 (𝑔,𝑔) (𝑎′)4𝑞1𝑞2𝑎

𝑞
1

0
𝑠 = 𝑒 (𝑔,𝑔)𝑎𝑞1𝑠 ,

which corresponds to the (𝑞1, 𝑞2)-intermediate set-consistent BDHE distribution where 𝑏 = 0. If the challenger

sampled 𝑇 ′ r← G𝑇 , then 𝑇 = (𝑇 ′)𝑎
𝑞
1

0 is also uniform over G𝑇 , so long as 𝑎
𝑞1
0

≠ 0. Since 𝑞1 = poly(_) and algorithm B
samples 𝑎0

r← Z𝑝 , the probability that 𝑎
𝑞1
0

= 0 is at most 𝑞1/𝑝 = negl(_). In this case, algorithm B perfectly simulates

the (𝑞1, 𝑞2)-intermediate set-consistent BDHE distribution where 𝑏 = 1. We thus conclude that the advantage of

algorithm B is negligibly close to the advantage of A, and the claim follows. □

116

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Access Structures and Linear Secret Sharing
	Progression-Free Sets

	Registered Attribute-Based Encryption
	Slotted Registered Attribute-Based Encryption

	Statically-Secure Registered ABE via Progression-Free Sets
	Prime-Order Pairing Groups
	Slotted Registered ABE Construction

	Adaptively-Secure Registered ABE via a Dual System Proof
	Composite-Order Preliminaries
	Adaptively-Secure Registered ABE with Progression-Free Sets
	Proof of lem:interhyb

	Concrete Efficiency Evaluation
	Batch Arguments for NP from Composite-Order Bilinear Groups
	Batch Arguments for NP
	BARG for NP from Composite-Order Bilinear Maps

	Analysis of cons:srbe
	Proof of lem:semi-func-ct
	Proof of lem:hyb-1-2-0
	Proof of lem:final-rand-hyb
	Proof of lem:hyb-semi-functional-2

	Statistically-Secure Registered ABE without Progression-Free Sets
	Incremental Aggregation for Registered ABE
	Validating Assumptions in Generic Group Model
	Proof of thm:compordermt

	Analyzing the (q1, q2)-Intermediate Set-Consistent BDHE Assumption

