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Abstract. In this work we introduce PERK a compact digital signa-
ture scheme based on the hardness of a new variant of the Permuted
Kernel Problem (PKP). PERK achieves the smallest signature sizes for
any PKP-based scheme for NIST category I security with 6 kB, while
obtaining competitive signing and verification timings. PERK also com-
pares well with the general state-of-the-art. To substantiate those claims
we provide an optimized constant-time AVX2 implementation, a detailed
performance analysis and different size-performance trade-offs.
Technically our scheme is based on a Zero-Knowledge Proof of Knowl-
edge following the MPC-in-the-Head paradigm and employing the Fiat-
Shamir transform. We provide comprehensive security proofs, ensuring
EUF-CMA security for PERK in the random oracle model. The efficiency
of PERK greatly stems from our particular choice of PKP variant which
allows for an application of the challenge-space amplification technique
due to Bidoux-Gaborit (C2SI 2023).
Our second main contribution is an in-depth study of the hardness of
the introduced problem variant. First, we establish a link between the
hardness of our problem variant and the hardness of standard PKP.
Then, we initiate an in-depth study of the concrete complexity to solve
our variant. We present a novel algorithm which outperforms previous
approaches for certain parameter regimes. However, the proximity of
our problem variant to the standard variant can be controlled via a
specific parameter. This enables us to effectively safeguard against our
new attack and potential future extensions by a choice of parameters
that ensures only a slight variation from standard PKP.
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1 Introduction

The rising threat posed by quantum algorithms to classical cryptographic schemes
following the seminal work of Shor [52], has led to a significant interest in post-
quantum cryptography research. This shift towards study of quantum secure
hardness assumptions [3, 19, 28, 49] and their use in cryptographic system de-
sign [14, 43, 46] has captured the attention of the cryptographic community in
recent years. This trend has been further supported by NISTs standardization
efforts for post-quantum secure schemes initiated back in 2017 [41]. This initial
call targeted Key Encapsulation Mechanisms (KEMs) as well as digital signature
schemes. While for both classes final standards have been selected by now, the
KEM process entered an additional 4th round for further evaluation of existing
candidates. The goal of that additional round is to enrich the set of available
standards. For digital signature schemes this was not possible due to the lack
of suitable candidates. Overall, this led to a current NIST signature portfolio
that either lacks diversity in its hardness assumptions by being entirely relying
on structured lattice-based assumptions [40, 48] or suffers certain performance
compromises [32].

These circumstances led to a reopening of the call for proposal for digital
signature schemes with main goal of adding general purpose signature schemes
that are not based on computational hardness assumptions related to struc-
tured lattices [42]. In this work we present PERK a new post-quantum secure
digital signature scheme based on a variant of the Permuted Kernel Problem.
PERK is constructed from a zero-knowledge proof of knowledge (ZKPoK) using
the Fiat-Shamir transformation [26] following the MPCitH (MPC in the Head)
paradigm [33, 34]. It achieves competitive performances in terms of signature
size and signing as well as verification time, well addressing the current need for
general purpose post-quantum secure digital signature schemes.

Digital signatures from Proofs of Knowledge. A ZKPoK is an interactive proto-
col allowing a prover to convince a verifier that it knows a certain secret without
revealing any information on the secret. The Fiat-Shamir transformation allows
to convert any such ZKPoK into a non-interactive digital signature scheme which
is secure in the random oracle model. ZKPoKs are generally not perfectly sound,
i.e., there is a non-zero probability that a malicious prover may succeed in con-
vincing the verifier without actually knowing the secret. Therefore, in order to
obtain a secure digital signature scheme the underlying ZKPoK is repeated sev-
eral times which hampers the performance of such constructions. Naturally, the
community has focused on techniques to improve soundness guarantees provided
by the underlying ZKPoK protocol. In 2018, Katz, Kolesnikov and Wang [37]
proposed a protocol based on the MPC-in-the-Head paradigm of [33, 34] in the
preprocessing model. This technique has notably been leveraged by the NIST
candidate Picnic [17]. Two years later, the “PoK with Helper" paradigm was
introduced by Beullens [12]. In the PoK-with-Helper paradigm, the helper plays
the role of a trusted third party which facilitates the design of PoK and is fi-
nally replaced by the well-known cut-and-choose technique when instantiating
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the protocol. The PoK-with-Helper paradigm leads to shorter signature sizes at
the cost of a performance overhead. Bidoux and Gaborit [15] proposed an alter-
nate framework to replace the Helper thus reducing the associated performance
overhead. They suggested to use variants of the underlying hard computational
problems which are more suitable for the design of efficient MPC protocols. Re-
cently, many constructions leveraging the MPC-in-the-Head paradigm have been
proposed in the literature [1,2,7,15,16,18,21,22,24,25,31,53]. Most of these con-
structions are 5-round protocols hence must take into account the attack of [36]
when selecting parameters.

The Permuted Kernel Problem. The ZKPoK from which our scheme is con-
structed proves knowledge to the solution of (a slight variant of) the Permuted
Kernel Problem (PKP). The PKP was introduced by Shamir in his pioneering
work in 1990 [51]. Since its introduction, many variants and natural extensions
of the problem and their hardness have been studied [39]. In our work we retain
one of the most general formulations of the problem. Informally, this problem
asks, given a matrix H and t vectors xi, to find a permutation π that sends π[xi]
into the Kernel of H for all i, i.e., a permutation such that Hπ[xi] = 0.

The PKP for t = 1 has been proven NP hard in [29]. Recently, the more
general formulation with t ≥ 1 has also been shown to be NP hard through a re-
duction to the subcode equivalence problem [10,50]. Despite many cryptanalytic
efforts over the years [8, 30, 35, 38, 39, 45, 50] the problem remains hard against
classical as well as quantum attackers. The well-studied hardness, compact de-
scription and simplicity of involved objects and corresponding computations has
made the PKP an attractive candidate for post-quantum secure schemes in re-
cent years [12,13,15].

Our construction PERK relies on a non-trivial application of the challenge-
space amplification technique from [15]. In order to do so, we introduce a slightly
relaxed variant of the PKP problem denoted r-IPKP. We provide security argu-
ments that relate its hardness to the hardness of standard PKP and additionally
provide a detailed study of its concrete complexity. We also present a new al-
gorithm for solving the problem variant that outperforms other approaches for
certain parameter regimes. To the best of our knowledge, PERK obtains the
smallest signatures among all PKP-based signature schemes. We provide secu-
rity proofs for our scheme as well as a constant-time implementation. Our scheme
outperforms SPHINCS+ (the only non lattice based signature selected by the
NIST) in both size and signing time. For NIST category I security, our con-
struction features a signature size ∼2 kB shorter and a signing algorithm ∼ 6
times faster than SPHINCS+ (however unsurprisingly verification is faster for
SPHINCS+).

Our contributions. The main contributions of our work can be detailed as follows:

– We introduce a new slightly relaxed version of PKP, which we call r-IPKP
(see Definition 2.9). Furthermore, we present compelling arguments that
establish a connection between the complexity of r-IPKP and that of standard
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PKP. Specifically, we demonstrate that solving r-IPKP can be achieved by
applying any PKP algorithm or by resolving one among several provided
PKP instances with t = 1.

– We initiate a detailed study of the hardness of r-IPKP. To this end we first
conduct a thorough survey of existing attacks against PKP applicable to
r-IPKP. Furthermore, we present and analyze a new algorithm for solving
r-IPKP that exploits the established link to the multi-instance version of
PKP. This algorithm outperforms standard PKP approaches when either
many xi are given, i.e. for high values of t, or if many solutions exist.

– We design a new ZKPoK for the r-IPKP problem. Using our newly intro-
duced problem allows to leverage the challenge space amplification technique
from [15] and reduce the impact of the [36] attack thus leading to an efficient
construction. Finding and defining a natural relaxation of a given problem
that can be beneficial for a MPC based PoK while being easy to analyze
and retaining the security properties of the initial problem is a delicate task.
Analogous problem relaxations have been studied in other contexts (such as
using the Rank Support Learning (RSL) problem [27] instead of the Rank
Syndrome Decoding (RSD) problem) however this is the first time that such
an idea is applied to the PKP setting.

– We then build a new post-quantum digital signature scheme (PERK) from
this ZKPoK. PERK greatly improves on previous PKP-based schemes with
a signature size of 6 kB for NIST category I security (in comparison to 8.9 kB
achieved in [15]). To the best of our knowledge PERK therefore achieves the
smallest signatures among PKP-based schemes.

– We also provide an optimized constant-time AVX2 implementation of our
scheme. This implementation allows signing in 36 million cycles (12 ms) and
verification in 25 million cycles (8 ms) (for NIST category I security, with 6kB
signatures). Furthermore, the scheme allows for interesting size/performance
trade-offs, as for example signing and verification can be sped up by a factor
of 5 with only a slight increase in signature size.

It should be pointed out that our parameter selection process is very con-
servative. We ignore any polynomial factors in the complexity estimation and
match the NIST security thresholds of 143, 207 and 272 bit rather than the
commonly used thresholds of 128, 192 and 256 bit. Furthermore, we ignore any
cost that stems from memory access, even though all considered algorithms have
a high memory demand, and make optimistic assumptions on possible speedups
from multiple solutions. Still, our scheme is very competitive in terms of both,
size as well as speed, when compared to the state of the art (for details see
Tables 5 and 6). Additionally, the new problem variant r-IPKP might be of in-
dependent interest for designing post-quantum cryptographic schemes as well as
for cryptanalytic efforts.

Outline. In Section 2 we cover basic notations and definitions, recall ZKPoK
constructions as well as the MPCitH paradigm and introduce the different no-
tions of the PKP. In the subsequent Section 3 we then present our new ZKPoK
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protocol based on the hardness of the r-IPKP, convert it into a non-interactive
signature scheme via the Fiat-Shamir transform and provide comprehensive se-
curity proofs. Section 4 covers a detailed analysis of the complexity of r-IPKP,
where Section 4.1 covers previous approaches and Section 4.2 introduces our new
algorithm. Parameters of our scheme are presented in Section 5 which also pro-
vides a comparison to the state-of-the-art. Eventually, in Section 6 performance
benchmarks of our optimized AVX2 consant-time implementation are given.

2 Preliminaries

2.1 Notations and Conventions

For integers a, b we denote [a, b] the set of integers i such that a ≤ i ≤ b. We
write [n] as a shorthand for [1, n]. We denote Sn the group of permutations of
the set [n]. Let Fq denote the finite field of q elements where q is the power of
a prime. Vectors are denoted by bold lower-case letters and matrices by bold
capital letters (e.g., v = (v1, . . . , vn) ∈ Fn

q and M = (mij)1⩽i⩽k
1⩽j⩽n

∈ Fk×n
q ).

If S is a finite set, we denote by x
$←− S that x is chosen uniformly at random

from S. Similarly, we write x
$,θ←− S, if x is sampled pseudo-randomly from the

set S, based on the seed θ.
We use x to denote input and denote its length by |x|. We use λ to denote

the security parameter. We call a function f : N→ R+ negligible, if for all c ∈ N
there exists a N0 ∈ N such that f(n) < 1/nc for all n > N0. We write negl(λ)
to denote an arbitrary negligible function. We use poly(λ) for function which is
polynomially bounded in λ, that is there exists c, λ0 ∈ N such that poly(λ) ≤ λc

for all λ ≥ λ0. We also abbreviate probabilistic polynomial-time as PPT.
Let X and Y be two discrete random variables defined over a finite support

D. The statistical distance between the two distributions is defined as

∆(X,Y ) :=
1

2

∑
d∈D

|Pr[X = d]− Pr[Y = d]|.

We say two ensembles of random variables {Xλ}λ∈N, {Yλ}λ∈N are statistically
close if there exists a negligible function negl : N → R+ such that ∆(Xλ, Yλ) ≤
negl(λ) for all λ ∈ N. We say two ensembles of random variables {Xx}x∈{0,1}∗ ,
{Yx}x∈{0,1}∗ are statistically close if there exists a negligible function negl : N→
R+ such that ∆(Xx, Yx) ≤ negl(|x|) for all x ∈ {0, 1}∗.

We present the definitions of standard cryptographic primitives such as pseu-
dorandom generators (PRG), collision-resistant hash functions (CRHF), com-
mitment schemes, and Merkle trees in Section A.1 of the supplementary mate-
rial.

2.2 Zero-Knowledge Proofs of Knowledge

We now present the definitions related to zero-knowledge proofs of knowledge.
We closely follow the presentation of these concepts given in [4–6].
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Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. If (x;w) ∈ R, we say x is a
statement and w is a witness for x. The set of valid witnesses for x is denoted
by R(x) = {w | (x;w) ∈ R}. A statement that admits a witness is called a
true or valid statement. The set of true statements is denoted by LR := {x :
∃w such that (x;w) ∈ R}. A binary relation is said to be an NP relation if the
validity of a witness w can be verified in time polynomial in the size |x| of the
statement x. From now on we assume all relations to be NP relations.

Informally, an interactive proof system is a protocol involving exchange of
messages between a prover and a verifier, through which the prover aims to con-
vince the verifier of the validity of some statement. A proof system is said to be
complete if the verifier accepts the prover’s claim for a valid (or true) statement.
And a proof system is said to be sound if a cheating prover cannot convince a
verifier of the validity of a false statement. We give the formal definitions related
to interactive proof systems in Section A.2 of the supplementary material. In
the following we only provide the necessary definitions of knowledge soundness,
special soundness, and special honest-verifier zero knowledge properties of the
interactive proof systems.

Definition 2.1 (Knowledge Soundness (cf. [5])). An interactive proto-
col Π = (P,V) for relation R is knowledge sound with knowledge error εKS :
{0, 1}∗ → [0, 1] if there exists a positive polynomial q and an algorithm Ext,
called knowledge extractor, with the following properties: The extractor Ext,
given input x and rewindable oracle access to a (potentially dishonest) prover
P∗, runs in an expected number of steps that is polynomial in |x| and outputs a
witness w ∈ R(x) with probability

Pr
[(

x;ExtP
∗
(x)
)
∈ R

]
≥ ϵ(x,P∗)− εKS(x)

q(|x|)
,

where ϵ(x,P∗) := Pr[(P∗,V) (x) = accept].

If ϵ(x,P∗) = Pr[(P∗,V) (x) = accept] > εKS(x), then the success probability
of the knowledge extractor Ext in Definition 2.1 is positive. Therefore, ϵ(x,P∗) >
εKS(x) implies that x admits a witness, i.e., x ∈ LR. Hence, knowledge soundness
implies soundness.

Definition 2.2 (Proof of Knowledge (cf. [5])). An interactive proof that is
both complete with completeness error ρ(·) and knowledge sound with knowledge
error εKS(·) is a Proof of Knowledge (PoK) if there exists a polynomial q such
that 1− ρ(x) ≥ εKS(x) + 1/q (|x|) for all x.

It is desirable to have simple verifiers which can send uniform random chal-
lenges to the prover, and efficiently verify the transcript.

Definition 2.3 (Public-Coin (cf. [6])). An interactive proof Π = (P,V)
is public-coin if all of V’s random choices are made public, i.e. are part of the
transcript. The message chi

$←− CHi of V in the 2i-th round is called the i-th
challenge, and CHi is the challenge set.
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Public-coin protocols can be turned into non-interactive protocols by using
the Fiat-Shamir transformation [26]. In this work, we consider only public-coin
protocols.

Next, we discuss the notion of special-soundness. Special-soundness property
is easier to check than knowledge soundness and for many protocols knowledge
soundness follows from special-soundness. Note that this requires special-sound
protocols to be public-coin.

Definition 2.4 (k-out-of-N Special Soundness (cf. [5])). Let k,N ∈ N.
A 3-round public-coin protocol Π = (P,V) for relation R, with challenge set
of cardinality N ≥ k, is k-out-of-N special sound if there exists a polyno-
mial time algorithm that, on input a statement x and k accepting transcripts
(cmt, ch1, rsp1), . . . , (cmt, chk, rspk) with common first message cmt and pairwise
distinct challenges ch1, . . . , chk, outputs a witness w ∈ R(x). We also say Π is
k-special-sound and, if k = 2, it is simply called special-sound.

The definition of special-soundness given in Definition 2.4 can be generalized
to protocols where the challenges chi are drawn from challenge sets with different
cardinalities. We present these definitions in Section A.2 of the supplementary
material, and here present only the following theorem proved in [4] which states
that special soundness implies knowledge soundness.

Theorem 2.1 ((k1, . . . , kµ) Special Soundness implies Knowledge Sound-
ness [4, Theorem 1] ). Let µ, k1, . . . , kµ ∈ N be such that K = Πµ

i=1ki can
be upper bounded by a polynomial. Let (P,V) be a (k1, . . . , kµ) special sound
(2µ + 1)-round interactive protocol for relation R, where V samples each chal-
lenge uniformly at random from a set of cardinality Ni for 1 ≤ i ≤ µ. Then
(P,V) is knowledge sound with knowledge error

εKS =

∏µ
i=1 Ni −

∏µ
i=1(Ni − ki + 1)∏µ

i=1 Ni
≤

µ∑
i=1

ki − 1

Ni
(1)

We write Πτ := (Pτ ,Vτ ) for the τ -fold parallel repetition of Π, which runs τ
instances of Π in parallel and the verifier Vτ accepts if all the parallel instances
are accepted.

The following theorem proved in [5] states that the knowledge soundness is
retained (and knowledge error is reduced) via parallel repetition.

Theorem 2.2 (Parallel Repetition for Multi-Round Protocols [5, The-
orem 4] ). Let (P,V) be a (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special sound pro-
tocol. Let (Pτ ,Vτ ) be the τ -fold repetition of protocol (P,V) . Then (Pτ ,Vτ ) is
knowledge sound with knowledge error ετKS, where

εKS = 1−
µ∏

i=1

(Ni − ki + 1)

Ni
(2)

is the knowledge error of (P,V).
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Definition 2.5 (Special Honest-Verifier Zero Knowledge (SHVZK)
(adapted from [4])). An interactive proof Π = (P,V) is called { perfectly,
statistically, computationally } honest-verifier zero knowledge (HVZK) if there
exists a polynomial time simulator that on input x ∈ LR outputs an accepting
transcript which is distributed { perfectly, statistically, computationally } close
to the transcripts generated by honest executions of Π. If the simulator proceeds
by first sampling the verifier’s messages uniformly at random, then Π is called
special honest-verifier zero knowledge (SHVZK).

2.3 MPC-in-the-Head and PoK

Our construction relies on the MPC-in-the-Head (MPCitH) paradigm introduced
by Ishai, Kushilevitz, Ostrovsky, and Sahai in [33, 34]. This paradigm builds a
zero-knowledge proof based on a secure multiparty computation (MPC) pro-
tocol. Informally, the MPC protocol is used to compute the verification of an
NP relation, where the privacy guarantee of the protocol is used to achieve the
zero-knowledge property.

The main steps of the proof of knowledge resulting from the MPCitH tech-
nique are the following:

1. The prover splits its witness into N parties by secret sharing the witness;
2. The prover then simulates locally (“in her head") all the parties of the MPC

protocol which evaluates a boolean function that is expected to be 1 when-
ever the witness is correct (this is supposed to correspond to the verification
of desired NP relation);

3. The prover commits to the views of all the parties in the MPC protocol;
4. The verifier chooses a random subset of N ′ < N parties and asks to reveal

their corresponding views;
5. The verifier finally checks that the views of the revealed parties are consistent

with each other and with an honest execution of the MPC protocol that
yields output 1.

This transformation achieves the zero-knowledge property as long as the
views of any N ′ parties do not leak any information about the secret witness.

Since our proof of knowledge is an instantiation of the MPCitH technique for
the specific case of r-IPKP, it benefits from an extensive literature of optimiza-
tions generic to any MPCitH construction, such as:

– The preprocessing extension, introduced in [37], allows the MPC protocol
– used in the MPCitH technique – to rely on a preprocessing phase (under
certain conditions) thus drastically reducing the proof size;

– the challenge space amplification technique, introduced in [15], that is itself
an optimization of the PoK with Helper paradigm introduced in [12];

– Merkle trees to reveal a partial number of random seeds, as explained in Sec-
tion A.1.1 of the supplementary material.
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Interactive proof of knowledge can be converted into digital signature schemes
using Fiat-Shamir transformation [26] in the random oracle model. We next give
the definitions related to signature schemes and present the details related to
random oracle model, and Fiat-Shamir transform in Section A.3 of the supple-
mentary material.

Definition 2.6 (Signature Scheme). A signature scheme consists of three
probabilistic polynomial time algorithms (KeyGen,Sign,Vf) which work as fol-
lows:

– KeyGen
(
1λ
)
: The key generation algorithm takes a security parameter as

input and outputs a pair of keys (pk, sk). The key sk is the private (secret)
signing key and pk is the public key used for verification.

– Signsk(m): The signing algorithm takes as input a secret signing key sk and
a message m from some message space (that may depend on pk). It outputs
a signature σ ← Signsk(m).

– Vfpk(m,σ): The deterministic verification algorithm takes as input a public
key pk, a message m, and a signature σ. It outputs a bit b := Vfpk(m,σ),
with b = 1 meaning the signature-message pair is valid and b = 0 meaning
it is invalid.

Definition 2.7 (EUF-CMA Security). A signature scheme (KeyGen,Sign,Vf)
is EUF-CMA secure if, for all PPT adversaries A there is a negligible function
negl(·) such that,

Pr

[
Vfpk(m

∗, σ∗) = 1
∧

(m∗, ·) /∈ QSign

∣∣∣∣ (pk, sk)←− KeyGen(1λ),

(m∗, σ∗)←− ASignsk(·)(pk)

]
≤ negl(λ).

where the environment keeps track of the queries to and from the signing oracle
via QSign.

2.4 The Permuted Kernel Problem and its Variants

In this subsection we give definitions of the computationally hard problems un-
derlying the security of our proposed signature scheme.

We start by defining the classical Permuted Kernel Problem [51] in its generic
form, similar to [50]: with an inhomogeneous syndrome y as well as a dimension
parameter t.

Definition 2.8 (IPKP problem). Let (q,m, n, t) be positive integers such that
m < n, H ∈ Fm×n

q , (xi,yi) ∈ Fn
q × Fm

q and π ∈ Sn be a permutation such that
H
(
π[xi]

)
= yi for i ∈ [t]. Furthermore, the matrix whose columns are the xi has

full rank. Given
(
H, (xi,yi)i∈[t]

)
, the Inhomogeneous Permuted Kernel Problem

IPKP(q,m, n, t) asks to find π.

The IPKP problem was originally introduced with t = 1 only; in the rest of the
article we refer to this version of the problem as mono-dimensional IPKP. Cor-
respondingly, we refer with multi-dimensional IPKP to instances with arbitrary
choices of t > 1.
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Instead of directly relying on the hardness of IPKP, we consider a relaxed
version r-IPKP which allows for more efficient constructions. In this relaxed vari-
ant the searched permutation does not necessarily have to satisfy the identity for
all given pairs but only for an arbitrary (non-zero) linear combination of those
pairs.

Definition 2.9 (r-IPKP). Let (q,m, n, t) be positive integers such that m < n,
H ∈ Fm×n

q , (xi,yi) ∈ Fn
q × Fm

q and π ∈ Sn be a permutation such that
H
(
π[xi]

)
= yi for i ∈ [t]. Furthermore, the matrix whose columns are the xi has

full rank. Given
(
H, (xi,yi)i∈[t]

)
, the Relaxed Inhomogeneous Permuted Kernel

Problem r-IPKP(q,m, n, t) asks to find any π̃ ∈ Sn such that H
(
π̃
[∑

i∈[t] κi · xi

])
=∑

i∈[t] κi · yi for any κ ∈ Ft
q \ 0, where κ := {κ1, . . . , κt} and 0 ∈ Ft

q is the all
zero vector.

The respective hardness of the two above problems are discussed in Sec-
tion 4.3.

3 PoK and Signature based on r-IPKP

Recall that our goal is to construct a post-quantum digital signature scheme
based on the ZKPoK protocol by using the Fiat-Shamir transformation [26].
However, Kales and Zaverucha in [36] showed that 5-round PoK which use par-
allel repetition to achieve a negligible soundness error can be attacked when they
are converted to their non-interactive version with the Fiat-Shamir transform.
The attack strategy optimally guesses the challenges in each round allowing to
convince the verifier by crafting the responses based on the guessed challenge val-
ues, without actually knowing the secret. While this attack can be thwarted by
increasing the number of parallel repetitions appropriately, it was shown in [15]
that one can achieve a similar result by amplifying the challenge space queried
by the verifier, which can lead to more efficient constructions.

Our construction leverage the r-IPKP problem introduced in Section 2.4 as a
way to perform challenge space amplification. Informally, the problem requires,
given a matrix H and t pairs of vectors (xi,yi), to find a permutation π that
sends Hπ(x) to y where x :=

∑
i κixi (resp. y :=

∑
i κiyi) and κ1, . . . , κt are the

coefficients of an arbitrary adversarially chosen (non-zero) linear combination.
Let x =

(
H, (xi,yi)i∈[t]

)
and let w = π ∈ Sn as defined in Definition 2.9. Let

Rt−r-IPKP be a relation for r-IPKP problem defined as,

Rt−r-IPKP :=

{( (
H, (xi,yi)i∈[t]

)
; π̃
)
:
H
(
π̃
[∑

i∈[1,t] κi · xi

])
=
∑

i∈[1,t] κi · yi

for anyκ ∈ Fq
t \ 0

}
We now present our protocol in Fig. 1 that is inspired from [15] and [24].

Informally, it consists of three main steps, following the MPCitH paradigm:

1. In the commitment step, the witness π is split into N compositional shares
π1, . . . , πN such that π = πN ◦ πN−1 ◦ · · · ◦ π1. The prover also generates

10



N (pesudo) random vectors v1, . . . ,vN in Fn
q . The compositional and vec-

tor shares are then combined to construct a syndrome Hv (the vector v is
generated by combining the shares πis and vis, refer Fig. 1 for the details),
which is committed together with the generated shares (πi and vi).

2. The verifier then sends coefficients κi of an Fq-linear combination as a
first challenge. The prover then computes values s1, . . . , sN with the help
of the πi and vi values committed earlier and the public statement x =(
H, (xi,yi)i∈[t]

)
, such that HsN = Hv+

∑
i∈[t] κiyi. The prover then sends

si values as its response. In the actual protocol we use a collision-resistant
hash function to compress the information sent to the verifier.

3. Finally, the verifier sends an index α ∈ [N ] as the second challenge. The
prover reveals all shares πi and vi except the ones with index α. Addition-
ally, the prover reveals the share sα. This allows the verifier to verify the
consistency of the views of all the shares except the ones with index α by
recomputing the commitments. The verifier can also recompute all the si
values for i ̸= α and together with sα sent by the prover, the verifier can
then reconstruct sN . Finally the verifier computes Hv = HsN −

∑
κiyi

and checks if this value is consistent with the commitment received in first
message (Step 1 above).

Theorem 3.1 (Completeness). The protocol presented in Fig. 1 is perfectly
complete.

Proof. The completeness follows from the protocol description once it is observed
that sN = π

[∑
i∈[1,t] κi · xi

]
+ v which implies that

HsN −
∑

i∈[1,t]

κi · yi = H

π

 ∑
i∈[1,t]

κi · xi

+Hv −
∑

i∈[1,t]

κi · yi = Hv.

Therefore for every true statement (H, (xi)i∈[1,t], (yi)i∈[1,t]) with witness π if
the protocol described in Fig. 1 is executed honestly then the verifier V accepts
with probability 1 for all possible random choices of P and V. ⊓⊔

Theorem 3.2 (Knowledge Soundness). The protocol presented in Fig. 1
is knowledge sound with knowledge error

εKS =
1

N
+

N − 1

N · (qt − 1)
.

Theorem 3.3 (Special Honest-Verifier Zero Knowledge). Assume that
there exists a (t, ϵPRG)-secure PRG, and the commitment scheme Com is (t, ϵCom)-
hiding. Then there exists an efficient simulator Sim which, outputs a transcript
such that no distinguisher running in time at most t(λ) can distinguish between
the transcript produced by Sim and a real transcript obtained by honest execution
of the protocol in Fig. 1 with probability better than (ϵPRG(λ) + ϵCom(λ)).
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Prover P Verifier V

Input: (x = (H, (xj)j∈[1,t], (yj)j∈[1,t]), w = π) Input: x = (H, (xj)j∈[1,t], (yj)j∈[1,t])

θ
$←− {0, 1}λ

For i ∈ {N, . . . , 1},

⋄ θi
$,θ←− {0, 1}λ, ϕi

$,θi←− {0, 1}λ, r1,i
$,θi←− {0, 1}λ

⋄ If i ̸= 1, πi
$,ϕi←− Sn, vi

$,ϕi←− Fn
q , cmt1,i = Com

(
r1,i, ϕi

)
⋄ If i = 1, π1 = π−1

2 ◦ · · · ◦ π−1
N ◦ π, v1

$,ϕ1←− Fn
q , cmt1,1 = Com

(
r1,1, π1 ||ϕ1

)
r1

$,θ←− {0, 1}λ, v = vN +
∑

i∈[1,N−1] πN ◦ · · · ◦ πi+1[vi]

cmt1 = Com
(
r1, Hv

)
h1 = H(cmt1, (cmt1,i)i∈[1,N])

h1

(κj)j∈[1,t]
$←− Ft

q

(κj)j∈[1,t]

s0 =
∑

j∈[1,t] κj · xj

For i ∈ [1, N ],

⋄ si = πi[si−1] + vi

h2 = H((si)i∈[1,N])

h2

α
$←− [1, N ]

α

z1 = sα

If α ̸= 1, z2 = (r1 ||π1 || (θi)i∈[1,N]\α)

If α = 1, z2 = (r1 || (θi)i∈[1,N]\α)

rsp = (z1, z2, cmt1,α)

rsp

Compute r̄1, (ϕ̄i, r̄1,i, π̄i, v̄i)i∈[1,N]\α from z2

s̄0 =
∑

j∈[1,t] κj · xj , s̄α = z1, ¯cmt1,α = cmt1,α

For i ∈ [1, N ] \ α,

⋄ s̄i = π̄i[s̄i−1] + v̄i

⋄ If i ̸= 1, ¯cmt1,i = Com
(
r̄1,i, ϕ̄i

)
⋄ If i = 1, ¯cmt1,1 = Com

(
r̄1,1, π̄1 || ϕ̄1

)
¯cmt1 = Com

(
r̄1, Hs̄N −

∑
j∈[1,t] κj · yj

)
b1 ←−

(
h1 = H( ¯cmt1, ( ¯cmt1,i)i∈[1,N])

)
b2 ←−

(
h2 = H((s̄i)i∈[1,N])

)
return b1 ∧ b2

Fig. 1: PoK leveraging structure for the r-IPKP problem
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We prove Theorem 3.2 and Theorem 3.3 in Section B.1 and Section B.2 of the
supplementary material respectively. By applying the Fiat-Shamir transforma-
tion on the protocol shown in Fig. 1, one gets the digital signature scheme
described in Fig. 2, Fig. 3 and Fig. 4.

1. Sample sk_seed
$←− {0, 1}λ and pk_seed

$←− {0, 1}λ

2. Sample π ←− PRG(sk_seed) from Sn

3. Sample (H, (xi)i∈[1,t])←− PRG(pk_seed) from Fm×n
q × (Fn

q )
t

3. For j ∈ [1, t],

⋄ Compute yj = Hπ[xj ]

4. Output (sk, pk) = (sk_seed, (pk_seed, (yj)j∈[1,t]))

Fig. 2: PERK - KeyGen algorithm

Theorem 3.4. Suppose PRG is (t, ϵPRG)-secure and any adversary running in
time t(λ) can solve the the underlying r-IPKP instance with probability at most
ϵr-IPKP. Model H0, H1, and H2 as random oracles where H0, H1, and H2 have 2λ-
bit output length. Then chosen-message attacker against the signature scheme
(PERK) presented in Fig. 3, running in time t(λ), making qs signing queries,
and making q0, q1, q2 queries, respectively, to the random oracles, succeeds in
outputting a valid forgery with probability

Pr[Forge] ≤ (q0 + τ · (N + 1) · qs)2

2 · 22λ
+

qs · (q0 + q1 + q2 + qs)

22λ

+ τ · qs · ϵPRG(λ) + ϵr-IPKP + q2 · ετKS,
(3)

where εKS = 1
N + N−1

N ·(qt−1) .

We prove Theorem 3.4 in Section C.1 of the supplementary material.

4 On the Hardness of r-IPKP

In this section we study the hardness of the r-IPKP from Definition 2.9. Even
though, we introduce the r-IPKP together with our scheme its hardness is still
tied to the hardness of the multi-dimensional and mono-dimensional versions of
IPKP as we outline in the following.

Recall that the difference to IPKP is that for r-IPKP the solution does not nec-
essarily have to be the permutation that works for all the given pairs, but it has
to satisfy the PKP identity only for an arbitrary (non-zero) linear combination
of those pairs, i.e. any permutation π such that

H

(
π

[∑
i

κixi

])
=
∑
i

κiyi,

13



Inputs

- Secret key sk = π

- Public key pk = (H, (xj ,yj)j∈[1,t])

- Message m ∈ {0, 1}∗

Step 1: Commitment

1. Sample salt and master seed (salt,mseed)
$←− {0, 1}2λ × {0, 1}λ

2. Sample seeds (θ(e))e∈[1,τ] ←− PRG(salt,mseed) from ({0, 1}λ)τ

3. For each iteration e ∈ [1, τ ],

⋄ Compute (θ
(e)
i )i∈[1,N] ←− TreePRG(salt, θ(e))

⋄ For each party i ∈ {N, . . . , 1},

- If i ̸= 1, sample (π
(e)
i ,v

(e)
i )←− PRG(salt, θ

(e)
i ) from Sn × Fn

q

- If i = 1, sample v
(e)
1 ←− PRG(salt, θ

(e)
1 ) from Fn

q

- If i ̸= 1, compute cmt
(e)
1,i = H0(salt, e, i, θ

(e)
i )

- If i = 1, compute π
(e)
1 = (π

(e)
2 )−1 ◦ · · · ◦ (π(e)

N )−1 ◦ π and cmt
(e)
1,1 = H0(salt, e, 1, π

(e)
1 , θ

(e)
1 )

⋄ Compute v(e) = v
(e)
N +

∑
i∈[1,N−1] π

(e)
N ◦ · · · ◦ π(e)

i+1[v
(e)
i ] and cmt

(e)
1 = H0(salt, e,Hv(e))

Step 2: First Challenge

4. Compute h1 = H1(salt,m, pk, (cmt
(e)
1 , cmt

(e)
1,i )e∈[1,τ],i∈[1,N])

5. Sample (κ
(e)
j )e∈[1,τ],j∈[1,t] ←− PRG(h1) from (Ft

q)
τ

Step 3: First Response

6. For each iteration e ∈ [1, τ ],

⋄ Compute s
(e)
0 =

∑
j∈[1,t] κ

(e)
j · xj

⋄ For each party i ∈ [1, N ],

- Compute s
(e)
i = π

(e)
i [s

(e)
i−1] + v

(e)
i

Step 4: Second Challenge

7. Compute h2 = H2(salt,m, pk, h1, (s
(e)
i )e∈[1,τ],i∈[1,N])

8. Sample (α(e))e∈[1,τ] ←− PRG(h2) from ([1, N ])τ

Step 5: Second Response

9. For each iteration e ∈ [1, τ ],

⋄ Compute z
(e)
1 = s(e)

α

⋄ If α(e) ̸= 1, z(e)
2 = (π

(e)
1 || (θ(e)

i )
i∈[1,N]\α(e) )

⋄ If α(e) = 1, z(e)
2 = (θ

(e)
i )

i∈[1,N]\α(e)

⋄ Compute rsp(e) = (z
(e)
1 , z

(e)
2 , cmt

(e)

1,α(e)
)

10. Compute σ = (salt, h1, h2, (rsp
(e))e∈[1,τ])

Fig. 3: PERK - Sign algorithm
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Inputs

- Public key pk = (H, (xj ,yj)j∈[1,t])

- Signature σ

- Message m ∈ {0, 1}∗

Step 1: Parse signature

1. Parse signature as σ = (salt, h1, h2, (z
(e)
1 , z

(e)
2 , cmt

(e)

1,α(e)
)e∈[1,τ])

2. Recompute (κ
(e)
j )e∈[1,τ],j∈[1,t] ←− PRG(h1) from (Ft

q)
τ

3. Recompute (α(e))e∈[1,τ] ←− PRG(h2) from ([1, N ])τ

Step 2: Verification

4. For each iteration e ∈ [1, τ ],

⋄ Compute s
(e)
0 =

∑
j∈[1,t] κ

(e)
j · xj and s(e)

α = z
(e)
1

⋄ Compute (π
(e)
i ,v

(e)
i )i∈[1,N]\α from z

(e)
2

⋄ For each party i ∈ [1, N ] \ α(e),

- If i ̸= 1, compute cmt
(e)
1,i = H0(salt, e, i, θ

(e)
i )

- If i = 1, compute cmt
(e)
1,1 = H0(salt, e, 1, π

(e)
1 , θ

(e)
1 )

⋄ For each party i ∈ [1, N ] \ α(e),

- Compute s
(e)
i = π

(e)
i [s

(e)
i−1] + v

(e)
i

⋄ Compute cmt
(e)
1 = H0(salt, e,Hs

(e)
N −

∑
i∈[1,t] κ

(e)
i · yi)

5. Compute h̄1 = H1(salt,m, pk, (cmt
(e)
1 , cmt

(e)
1,i )e∈[1,τ],i∈[1,N]).

6. Compute h̄2 = H2(salt,m, pk, h1, (s
(e)
i )e∈[1,τ],i∈[1,N]).

7. Output accept if and only if h̄1 = h1 and h̄2 = h2.

Fig. 4: PERK - Verify algorithm

for a choice of the κi ∈ Fq, is a solution. Clearly any algorithm applicable to
IPKP can also be applied to find a solution to the r-IPKP problem. However, a
solution to r-IPKP does not necessarily have to be a solution to IPKP. There-
fore algorithms to solve r-IPKP can be split into those initially proposed for
IPKP and those specifically designed to solve r-IPKP. In the following section we
first describe known approaches for solving IPKP, after which we present a new
algorithm in Section 4.2, Algorithm 1 specifically designed to solve r-IPKP.

4.1 Attacks on IPKP

The IPKP problem was introduced by Shamir in 1990 [51]. Still, the best at-
tack on mono-dimensional IPKP is a meet-in-the-middle adaptation known as
the KMP algorithm by Koussa, Macario-Rat and Patarin [38]. This algorithm
extends easily to t > 1, which was recently formalized in [50]. The multi-
dimensional IPKP first appeared in the literature in 2011 [39]. However, until
recently cryptanalysis only resulted in better algorithms for the particular case
of binary fields [44]. Recently, Santini, Baldi and Chiraluce [50] proposed the
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SBC algorithm which extends the KMP algorithm by a pre-processing step. For
t > 1, i.e., for the multi-dimensional case, this results in improvements over the
KMP approach. In the following we give a brief overview of those attacks, as
well as a simple observation that when t ≥ n, the IPKP becomes polynomial. For
fully-fledged descriptions, analysis and estimation scripts the reader is referred
to [20,38,50].

The KMP Algorithm. The algorithm by Koussa, Macario-Rat and Patarin [38]
is a slight variant of previously known combinatorial techniques [8, 30, 35, 45].
Here we outline first the initial proposal for the mono-dimensional IPKP [38].

Initially, the matrix H is transformed into semi-systematic form by applying
a change of basis (modelled by the invertible matrix Q)

QH =

(
Im−u H1

0 H2

)
,

where H1 ∈ F(m−u)×(n−m+u)
q ,H2 ∈ Fu×(n−m+u)

q and u is an optimization pa-
rameter of the algorithm. By multiplying the syndrome y by the same matrix
Q one maintains the validity of the PKP identity

QHπ(x) =

(
Im−u H1

0 H2

)
π(x) =

(
Im−u H1

0 H2

)(
x1

x2

)
= (x1 +H1x2,H2x2)

⊤

= (y1,y2)
⊤ = Qy,

where Qy = (y1,y2) ∈ Fm−u
q × Fu

q and π(x) = (x1,x2) ∈ Fm−u
q × Fu

q . The
algorithm now focuses on solving the identity H2x2 = y2. For any found x2

satisfying the identity it is than checked if x1 = y1−H1x2 and x2 together form
a permutation of x.

Candidates for x2 are obtained by a meet-in-the-middle enumeration strat-
egy. Therefore x2 is further split as x2 = (x21,x22), with x21,x22 ∈ Fu×((n−m+u)/2)

q

to obtain the meet-in-the-middle identity

H2(x21,0) = y2 −H2(0,x22). (4)

Then the algorithm enumerates all candidates for x21 and x22, that is all per-
mutations of any selection of (n −m + u)/2 entries of x. For each such vector
the left (resp. right) side of Eq. (4) is stored in a list L1 (resp. L2). In a final
step the algorithm searches for matches between the lists L1 and L2 yielding
the candidates for x2. From there x1 can be computed as x1 = y1 −H1x2. If
(x1,x2) forms a permutation of x this yields the solution π.

The complexity of the algorithm is (up to polynomial factors) linear in the
sizes of the lists L1, L2 and L, where L is the list of matches. The expected sizes
are

|L1| = |L2| =
(

n

(n−m+ u)/2

)(
(n−m+ u)/2

)
! and |L| = |L1 × L2|

qu
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Extension to multi-dimensional IPKP. The algorithm can easily be extended to
solve IPKP for arbitrary t, as it was recently made explicit in [50]. Therefore
let X be the matrix containing the xi as rows and Y containing the yi as
columns. Substituting the occurrences of x and y by X and Y resp., where the
permutation now operates as a column permutation on matrices, one obtains this
generalization. Then of course the definition of (x1,x2) and (y1,y2) analogously
extends to matrices.

In terms of complexity, the enumeration effort stays (up to polynomial fac-
tors) exactly the same, as the possible number of permutations remains un-
changed. The only difference is that the expected size of the list L of matches
reduces to |L1×L2|

qu·t .

The SBC algorithm. The algorithmic improvement by Santini-Baldi-Chiraluce
(SBC) extends the KMP algorithm by a preprocessing step.

Therefore, assume that the matrix H2 constructed in the KMP algorithm
would contain zero columns. Clearly, those columns could be removed without
affecting the validity of the identity H2x2 = y2. But in turn this would reduce
the enumeration effort to find candidates for x2.

The preprocessing step of the SBC algorithm now consists in finding a u-
dimensional subcode of H that has small support w < n −m + u, i.e., an H2

that contains some zero columns. This can be accomplished by adaptations of In-
formation Set Decoding (ISD) algorithms [11]. Subsequently, the SBC algorithm
continues as the KMP algorithm by finding candidates for x2 in H2x2 = y2,
now with reduced enumeration complexity. This resulting list of candidates is
now treated as the first list, L1, in the KMP algorithm.

Note that the KMP algorithm creates two lists each giving candidates for
(n−m+ u)/2 entries of the permutation. Now, as there are already candidates
for w entries in L1, the second list enumerates the permutation for further n−
m+u−w positions. Eventually both lists are matched on u · t coordinates as in
the KMP algorithm to obtain a list of final candidates. Note that as in the KMP
algorithm now each candidate of the final list reveals n−m+u potential positions
of the permutation which can be checked in polynomial time for extending to a
full solution.

A polynomial attack when t ≥ n. We describe in this paragraph a simple polyno-
mial attack on the inhomogeneous IPKP problem when t ≥ n. In that case, the
vectors (x1, . . . ,xt) from the IPKP instance generate the whole Fn

q , since by defi-
nition the matrix whose columns are the xi has full rank. For any index 1 ≤ i ≤ n,
there exists a linear combination such that

∑
j λjxj = (. . . , 0, 1, 0, . . . ), the

unique non-zero coordinate being taken at index i. We can then obtain a vector
by taking the same linear combination on the yj : y =

∑
j λjyj . If there exists a

solution π to the given instance, then y is bound to be equal to a column of H
whose index yields π(i). The attacker can then reconstruct the solution permu-
tation π in linear time O(n). This attack does not apply to r-IPKP because in
that case, the solution π is non necessarily a solution to the mono-dimensional
instance involving the linear combinations x =

∑
j λjxj = (. . . , 0, 1, 0, . . . ) and
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y =
∑

j λjyj . This indicates that both problems are fundamentally different and
that a specific strategy should be devised for solving r-IPKP.

4.2 A new Algorithm Solving r-IPKP

We introduce the r-IPKP problem together with our scheme. However, it is still
very related to the multi-dimensional and mono-dimensional versions of IPKP
and their corresponding hardness. We already discussed the relation to the multi-
dimensional case of IPKP. Let us now focus on the relation between r-IPKP and
the mono-dimensional version of IPKP. In this context r-IPKP can be seen as a
multi-instance version of IPKP.

Therefore disregard the (most likely) unique solution to r-IPKP which simul-
taneously solves IPKP for the same t, i.e. the permutation that works for all
pairs (xi,yi). Further, assume that for any of the given pairs (xi,yi) there exist
a permutation πi solving the corresponding mono-dimensional IPKP instance,
that is a πi that satisfies Hπi[xi] = yi. If we would be forced to recover one
of the πi, this would exactly be a multi-instance version of IPKP. However, the
r-IPKP allows to recover not only those but also any permutation that works for
an arbitrary linear combination of the given pairs. Clearly, this gives a total of
qt different pairs, but unlike the multi-instance case those pairs are related.

In fact, from a coding theory perspective the r-IPKP asks to recover a permu-
tation that works for any codeword and the corresponding syndrome where the
code is defined by the generator matrix containing the xis as rows. In the fol-
lowing we give a new algorithm for solving r-IPKP that exploits this view on the
problem. The algorithm is based on a preprocessing of the given pairs (xi,yi), a
subsequent instance permutation and an adapted KMP-style enumeration tech-
nique. Moreover, our algorithm contains the KMP algorithm as a special case.

The algorithm starts by finding a low Hamming-weight codeword in the code
whose generator matrix contains the xi as rows. This task is accomplished by
application of an ISD algorithm. Let x′ =

∑
κixi be this codeword of weight w

and y′ =
∑

κiyi the corresponding syndrome.
We now focus on finding a permutation π that satisfies H(π[x′]) = y′. There-

fore, we apply a KMP-style enumeration with some modifications. Again we de-
rive the identity H2x2 = y2 ∈ Fu

q , with x2 = (x21,x22) as in the usual KMP
algorithm. Now, recall that π[x′] = (x1,x2) contains n − w zeros. For the enu-
meration of x21 and x22 we now assume that z of those zeros are mapped into
x2 by the permutation. Moreover, we assume that z/2 of those zeros are mapped
to x21 and z/2 to x22. This leads to a reduced amount of candidates for x21,x22

that has to be enumerated.
Of course we do not know a priori if the permutation indeed distributes z/2

zeros onto x21 and z/2 zeros onto x22. Therefore prior to the enumeration we
apply a random permutation to the columns of H to redistribute the weight (and
zeros) of π[x′]. If the enumeration does not lead to a solution we repeat with a
different column permutation of H.
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A pseudocode description is given in Algorithm 1. Note that for w = n,
i.e., a maximum-weight codeword, we resemble the standard KMP algorithm for
solving mono-dimensional IPKP.

Algorithm 1: Algorithm Solving r-IPKP

Input : r-IPKP instance (H, (xi,yi)i∈[t])

Output: solution π, κi ∈ Fq, i ∈ [t]

1 For a vector x and an integer k let Px,k be the set of vectors of length k with
entries from x (with their maximum occurence as in x).

2 Choose optimal positive u ≤ n−m, w ≤ n, and z ≤ n− w, let
k := (n−m+ u)/2

3 Find weight-w codeword x′ =
∑

i κixi in the code defined by the xi

4 Let y′ =
∑

i κiyi

5 repeat
6 choose random permutation π′

7 H∗ = π′[H]

8 H′ = QH∗ =

(
Im−u H1

0 H2

)
, (y1,y2) = Qy

9 L1 = {
(
H2(z1, 0

k), z1
)
| z1 ∈ Px,k ∧ wt(z1) = k − z/2}

10 L2 = {
(
y2 −H2(0

k, z2), z2
)
| z2 ∈ Px,k ∧ wt(z2) = k − z/2}

11 Compute L = {(z1, z2) ∈ L1 × L2 | H2(z1, z2) = y2} from L1, L2

12 foreach x2 ∈ L do
13 x1 = y1 −H1x2

14 if ∃π̃ : π̃[x1,x2] = x′ then
15 return (π′)−1 ◦ π̃

Analysis of Algorithm 1. Let us start with the correctness of the algorithm.
Correctness. Note that the permuted instance (H∗,x′,y′) with H∗ = π′[H]
has solution π′ ◦ π if π solves the original instance (H,x′,y′). Therefore the
algorithm correctly returns (π′)−1 ◦ π̃ as the solution to the original instance,
where π̃ solves the permuted instance.

Accordingly the solution to the permuted instance is (x1,x2) = π′[π[x′]]. Line
9 to 11 enumerate all candidates for x2 satisfying H2x2 = y2, where x2 = (z1, z2)
with each of the zi containing z/2 zeros. Note that by construction (x1,x2)
contains n−w zeros. As the permutation π′ redistributes the zeros the algorithm
can recover the permutation.
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Complexity. The complexity of the algorithm splits into the cost of finding the
short codeword x′ and the cost of the repeat loop. The codeword is found by
application of an ISD algorithm. Let us denote this cost by TISD.

The cost of the loop is equal to the amount of repetitions times the cost of one
iteration. The amount of different permutations until the zeros are distributed
as desired is

P =

(
n

n−w
)(

n−2k
n−w−z

)(
k

z/2

)2 ,
where k = (n−m+u)/2. The cost for one iteration is (up to polynomial factors)
linear in the involved lists’ sizes. Note that we have

|Li| =
(

k

z/2

)(
n− z

k − z/2

)
(k − z/2)! and |L| = |L1 × L2|

qu
.

The total time complexity therefore amounts to

T = Õ (TISD + (|L1|+ |L|) · P ) ,

while the memory complexity is equal to M = Õ (|L1|+ |L|) .

In our numerical optimization we use for TISD the basic ISD proceudre by
Prange [47] which gives

TISD = Õ

( (
n
w

)(
n−m
w

)) .

There are more sophisticated ISD procedures with lower cost, but as TISD does
not dominate the running time, we refrain from further optimizations.

Note that this running time assumes a single existing solution for the consid-
ered mono-dimensional instance solved. In case of multiple solutions the running
time can be lower, which we discuss in the next section.

Further improvement of Algorithm 1. For completeness, we point out that the
algorithm can be (slightly) improved by considering in L1 and L2 vectors of
weight k−z ≤ wt(zi) ≤ k−z/2. This would only insignificantly increase the list
sizes, while giving a slightly higher probability of the permutation distributing
the weight as desired. However, the overall improvement is a factor of order
roughly 2. For small values of t ≤ 5 as considered later, the factor turns out to
be smaller than

√
2. Therefore for the sake of clarity we omit this improvement.

Another intuitive strategy seems the consideration of small support subcodes
instead of small codewords in the code defined by the xi. This would lead to a
reduced amount of matches, i.e., reduced list size L at the expense of larger w and
correspondingly smaller z. However, the nature of instances considered in PERK
renders this strategy ineffective. As detailed later, instances are chosen, such that
for any single codeword there exist exponentially many solutions, leading to an
exponential speedup. On the other hand already when considering a subcode of
dimension two, the only existing solution is the permutation solving the IPKP
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defined by all pairs (xi,yi). We find that the reduced amount of matches from
considering subcodes does not compensate for the speedup from the amount of
solutions. We therefore again omit further details for the sake of clarity.

4.3 Concrete Complexity of Solving r-IPKP

In this section we give details on how the variation of different parameters affects
the hardness of r-IPKP. A solid understanding of those effects is crucial for secure
parameter selection. As outlined previously, for solving the r-IPKP one can either
directly apply an IPKP algorithm (see Section 4.1) or solve one of the single IPKP
instances defined by any linear combination of input pairs (see Section 4.2).
Which of the two attack strategies is more efficient depends on the particular
choice of parameters.

Effect of the number of solutions. Multiple existing solutions can lead to a max-
imum speedup that is linear in this amount of solutions. Whether this maximum
speedup can be realized depends on the particular algorithm. However, for our
parameter selection we conservatively assume that any algorithm can leverage
this maximum speedup.

Note that the expected number of solutions differs for the considered sub-
problems. The expected number of solutions for any random IPKP instance is
about SolIPKP = n!

qm·t . Note that the mono-dimensional IPKP instance solved in
the context of our new Algorithm 1 is not random but contains z zeros. In this
case the amount of expected solutions is only Solmono

IPKP,z = n!
qmz! .

Effect of t on the running time. Santini et al. [50] observed that the running
time of the KMP algorithm as well as the running time of their SBC algorithm
for IPKP is asymptotically independent of t.3 For concrete parameters, these
algorithms still yield speedups for increasing t but the running time quickly con-
verges to a stable minimum. Therefore, based on known algorithms the hardness
of IPKP does not seem to deteriorate for high values of t. Contrary, the com-
plexity of our new Algorithm 1 is monotonically decreasing for increasing t. This
shows that high choices of t in the r-IPKP context are vulnerable.

To visualize this we consider in Table 1 a fixed instance for increasing t.
The SBC algorithm reaches its minimum running time already for t = 10, while
Algorithm 1 constantly improves. However, the SBC algorithm has a lower com-
plexity for small choices of t and obtains a larger gain for early increases.

Note that for the chosen parameters in Table 1 already a random mono-
dimensional IPKP instance has at most one solution in expectation, i.e. Solmono

IPKP ≤
1.
3 Informally, this can be seen by observing that t only affects the amount of matches,

i.e. the size of L (compare to Section 4.1). However, asymptotically the size of the
initial lists Li and L are balanced, therefore a decrease of L does not lead to runtime
improvements.
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t Tnew TSBC

1 139.35 139.35
2 139.01 116.25
3 137.46 110.70

10 115.98 88.18
15 100.27 88.18
19 89.14 88.18

20 85.63 88.18
25 71.77 88.18
30 63.47 88.18

Table 1: Complexity of SBC algorithm (TSBC) and Algorithm 1 (Tnew) for in-
creasing t on r-IPKP(n,m, q, t) instance with (n,m, q) = (66, 31, 1021).

Effect of m on the running time. Generally the hardness of IPKP is increasing
with decreasing m. This holds up to the point where there exist multiple solu-
tions. Previous parameter selection for PKP-based schemes therefore chooses m
minimal such that there exists no more than one random solution in expecta-
tion. However, for the specific case of the r-IPKP problem, the two sub-problems,
i.e., the multi- and mono-dimensional IPKP instances, have a different amount
of expected solutions. Here, decreasing m leads, generally, only to an increase
of the problem complexity as long as the solution to both sub-problems is still
unique.

5 Parameters

In this section we present the parameters of our scheme. Generally the param-
eters divide into r-IPKP specific parameters, i.e., (q, n,m, t), and MPC parame-
ters, i.e., the number of parties N and the number of parallel repetitions τ . The
rationale for their selection are as follows.

Selection of MPC parameters. The number of parties and iterations is governed
by the knowledge soundness of the protocol. Following common practice we
propose two different parameter sets, a short variant using N = 256 and a fast
variant using N = 32. The number of protocol repetitions τ is then chosen to
guarantee a soundness probability of 2−λ for λ ∈ {128, 192, 256} for category
I, III and V respectively. For deriving the soundness we take into account the
attack by Kales-Zavurecha, see Section D of the supplementary material.

Selection of problem parameters. For parameter selection we ensure that the
complexity of the SBC algorithm as well as the complexity of our new Algo-
rithm 1 are above the security threshold, when assuming a linear speedup from
the existing amount of solutions. Note that it is important to consider both
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strategies as the IPKP suggests to decrease m to increase the difficulty of the
problem. This is related to the low amount of expected solutions SolIPKP, which
allows to decrease m significantly without introducing multiple solutions. Con-
trary, for any mono-dimensional instance given by the possible linear combina-
tions, there exist several solutions Solmono

IPKP for such small choices of m, which
decrease the complexity of Algorithm 1.

Note that we, conservatively, restrict in our parameter selection to small
choices of t ∈ {3, 5} to guard against attacks that exploit the specifics of r-IPKP
over IPKP. For such small values of t, the SBC algorithm has generally a lower
complexity than Algorithm 1 (compare to Table 1). In those cases, the param-
eter selection process leads to a choice of m which implies a unique solution to
the multi-dimensional IPKP instance, while there exist multiple solutions to the
mono-dimensional instance solved in the context of Algorithm 1. This leads to
a balancing of both complexities via the amount of solutions.

In our complexity estimations we ignore polynomial factors and ensure that
the exponential factors of the complexity formulas already match the NIST se-
curity level definitions of 143, 207 and 272 bits of category I, III and V re-
spectively. For the complexity estimation of the SBC algorithm we rely on the
CryptographicEstimators library4 incorporating a more efficient version of the
script from [50]. For our algorithm we rely on a separate script.

Overall this leads to the choices of parameters specified in Table 2.

PKP parameters MPC parameters
Parameter Set λ q n m t N τ pk size σ size

PERK-I-fast3 128 1021 79 35 3 32 30 0.15 kB 8.35 kB
PERK-I-fast5 128 1021 83 36 5 32 28 0.24 kB 8.03 kB
PERK-I-short3 128 1021 79 35 3 256 20 0.15 kB 6.56 kB
PERK-I-short5 128 1021 83 36 5 256 18 0.24 kB 6.06 kB

PERK-III-fast3 192 1021 112 54 3 32 46 0.23 kB 18.8 kB
PERK-III-fast5 192 1021 116 55 5 32 43 0.37 kB 18.0 kB
PERK-III-short3 192 1021 112 54 3 256 31 0.23 kB 15.0 kB
PERK-III-short5 192 1021 116 55 5 256 28 0.37 kB 13.8 kB

PERK-V-fast3 256 1021 146 75 3 32 61 0.31 kB 33.3 kB
PERK-V-fast5 256 1021 150 76 5 32 57 0.51 kB 31.7 kB
PERK-V-short3 256 1021 146 75 3 256 41 0.31 kB 26.4 kB
PERK-V-short5 256 1021 150 76 5 256 37 0.51 kB 24.2 kB

Table 2: Parameters of PERK signature scheme

Note that even though we are quite conservative in parameter selection by
restricting to small choices of t, disregarding polynomial factors and assuming
4 https://github.com/Crypto-TII/cryptographic_estimators
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a maximum speedup from multiple solutions, we obtain competitive signature
sizes. Also all considered algorithms use as much memory as they consume time,
which in a more realistic estimate that accounts for memory access leads to an
even higher security margin.

In Table 3 we provide the corresponding time complexities in logarithmic
scale of the SBC algorithm and Algorithm 1 (accounting for a linear speedup
from multiple existing solutions) on the suggested parameter sets. As outlined,
the parameter sets are chosen to balance both time complexities. Additionally
the tables provide the internal parameters of the algorithms. In the case of
Algorithm 1 we find that for small values of t as considered here, the choice
w = n − z is optimal, meaning all contained zeros should be contained in the
part of the vector which is enumerated. For the SBC algorithm, recall that u is
the dimension of the subcode and we denote by z the amount of zero columns in
H2 (compare to Section 4.1), i.e., the subcode has support w = n−m+ u− z.

SBC [50] Algorithm 1
Parameter Set time u z time u z

PERK-I-fast3 145.7 5 1 147.5 17 2
PERK-I-fast5 147.7 3 2 147.2 19 0

PERK-III-fast3 210.7 7 1 210.1 26 2
PERK-III-fast5 212.5 4 2 210.8 27 4

PERK-V-fast3 274.8 9 1 275.5 35 4
PERK-V-fast5 274.1 6 2 275.5 37 3

Table 3: Parameters of PERK signature scheme

5.1 Key and Signature Sizes

Table 2 already states the public key and signature sizes for the different param-
eter sets. Let us give an overview how those numbers are composed.

Key size. The private key as well as most of the components of the public key
can be derived from a seed. The only elements not generated from a seed in the
public key are the t syndromes (yi).

Signature size. The signature consists of a salt and two hashes (h1, h2), making
a subtotal of 6λ bits, and then τ repetitions of the following:

– A vector z
(e)
1 ∈ Fn

q ;
– A permutation in Sn;
– N−1 seeds (of size λ) arranged in a PRG tree, hence of size only λ·⌈log2(N)⌉;
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– A commitment cmt
(e)

1,α(e) of size 2λ.

Overall, for a security level λ, the key and signature sizes for our signature
scheme are captured by the following formulas:

Public key size (bits)

λ+ t ·m⌈log2(q)⌉

Signature size (bits)

6λ+ τ ·
(
n⌈log2(q)⌉︸ ︷︷ ︸
vector in Fnq

+n⌈log2(n)⌉︸ ︷︷ ︸
permutation

+λ⌈log2(N)⌉︸ ︷︷ ︸
seeds

+ 2λ︸︷︷︸
commitment

)

Table 4: Public key and signature sizes in bits

Signature compression. Our implementation features an optimization that fur-
ther reduce the aforementioned signature theoretical size. The idea is to pack
the permutation two by two. Instead of representing a permutation π ∈ Sn as
a sequence of n elements in [0, n − 1] it is represented as a sequence of ⌈n/2⌉
elements in [0, n2 − 1]. When the following inequality holds⌈

log2(n
2)
⌉
< 2⌈log2(n)⌉,

the packed permutation takes less memory size. Numbers given in Table 2 take
into account this compression technique.

5.2 Comparison

We compare our scheme with other signature schemes, either based on PKP
or based on other security assumptions. The results are presented in Table 5
and Table 6.

6 Performances

This section provides performance measures of PERK signature. Our constant-
time implementation is written in C, and uses AVX2 vector instructions. The
benchmarks have been performed on a machine that has 64 GB of memory and
an Intel® Core™ i9-13900K @ 3.00 GHz for which the Hyper-Threading, Turbo
Boost and SpeedStep features were disabled. For each parameter set, the results
have been obtained by computing the average from 1000 random instances. The
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Name Variant pk σ Security assumption

PKP-DSS [13] - 0.1 kB 21.0 kB PKP

SUSHYFISH [12] fast 0.1 kB 18.4 kB IPKP
short 0.1 kB 12.1 kB IPKP

BG22 [15] fast 0.1 kB 10.0 kB IPKP
short 0.1 kB 8.9 kB IPKP

Fen22 [21] fast 0.1 kB 16.4 kB IPKP
short 0.1 kB 12.8 kB IPKP

PERK-I-fast3 fast 0.15 kB 8.35 kB r-IPKP
PERK-I-short5 short 0.24 kB 6.06 kB r-IPKP

Table 5: Comparison of our scheme with other digital signature schemes based
on PKP assumptions

Name Variant pk σ Security assumption

SPHINCS+ [32] fast 0.03 kB 17.1 kB Hash Collisions
short 0.03 kB 7.9 kB Hash Collisions

FJR22 [22] fast 0.1 kB 9.7 kB SD over F256

short 0.1 kB 6.9 kB SD over F256

Fen22 [21] fast 0.1 kB 7.4 kB RSD over F2

short 0.1 kB 5.9 kB RSD over F2

Fen22 [21] fast 0.1 kB 7.2 kB MinRank over F16

short 0.1 kB 5.5 kB MinRank over F16

Fen22 [21] fast 0.1 kB 8.5 kB MQ over F256

short 0.1 kB 7.1 kB MQ over F256

R-BG [7] fast 0.1 kB 7.7 kB Restricted-SD
short 0.1 kB 7.2 kB Restricted-SD

PERK-I-fast3 fast 0.15 kB 8.35 kB r-IPKP
PERK-I-short5 short 0.24 kB 6.06 kB r-IPKP

Table 6: Comparison of our scheme with other digital signature schemes not
based on PKP assumptions
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following optimization flags have been used during compilation: -O3 -std=c99
-pedantic -funroll-all-loops -march=native -mavx2 -mpclmul -msse4.2
-maes.

Parameter Set Keygen Sign Verify

PERK-I-fast3 77 k 7.6 M 5.3 M
PERK-I-fast5 88 k 7.2 M 5.1 M
PERK-I-short3 80 k 39 M 27 M
PERK-I-short5 92 k 36 M 25 M

PERK-III-fast3 167 k 16 M 13 M
PERK-III-fast5 184 k 15 M 12 M
PERK-III-short3 174 k 82 M 65 M
PERK-III-short5 194 k 77 M 60 M

PERK-V-fast3 297 k 36 M 28 M
PERK-V-fast5 322 k 34 M 27 M
PERK-V-short3 299 k 184 M 142 M
PERK-V-short5 329 k 170 M 131 M

Table 7: Performances of our implementation for different instances of PERK.
The key generation numbers are in kilo CPU cycles, while the signing and veri-
fication numbers are in million CPU cycles.

Data availability. Data sharing not applicable to this article as no datasets
were generated or analysed during the current study. The reference implemen-
tation for the scheme is available at https://pqc-perk.org/.
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A Background and Extra Definitions

In this section we present the definitions of standard cryptographic primitives
such as pseudorandom generators (PRG), collision-resistant hash functions (CRHF),
commitment schemes, and Merkle trees. Followed by definitions related to gen-
eralizing the notion of special soundness. We conclude the section by presenting
some details related to the random oracle model, and Fiat-Shamir transforma-
tion.

A.1 Standard Cryptographic Primitives

Definition A.1 (Pseudorandom Generator (PRG)). Let p be a polyno-
mial and let G be a deterministic polynomial-time algorithm such that for any
λ ∈ N and any input s ∈ {0, 1}λ, the result G(s) is a string of length p(λ). We
say that G is a pseudorandom generator if the following conditions hold:

1. Expansion: For every λ ∈ N it holds that p(λ) > λ.
2. Pseudorandomness: For any PPT algorithm D, there is a negligible function

negl such that

|Pr[D (G(s)) = 1]− Pr[D(r) = 1]| ≤ negl(λ)

where the first probability is taken over the uniform choice of s ∈ {0, 1}λ and
the randomness of D, and the second probability is taken over the choice of
r ∈ {0, 1}p(λ) and the randomness of D.

We say G is (t, ϵPRG)-secure if for every D running in time at most t(λ) the
success probability of D is upper bounded by some function ϵPRG(λ).

Definition A.2 (Collision-Resistant Hash Functions (CRHF)). Let ℓ, κ
be polynomials and and let H = {Hk : {0, 1}∗ → {0, 1}ℓ(λ); k ∈ {0, 1}κ(λ)}λ be a
family of functions indexed by λ ∈ N. We say that H is collision-resistant if there
exists a negligible function negl such that, for any PPT algorithm A it holds that,

Pr

[
x ̸= x′

∧
Hk(x) = Hk(x

′)

∣∣∣∣∣ k
$←− {0, 1}κ(λ);

(x, x′)←− A(k)

]
≤ negl(λ).

Definition A.3 (Commitment Scheme). A commitment scheme is a tuple
of algorithms (Com,Open) such that Com(r,m) returns a commitment c for the
message m and randomness r while Open(c, r,m) returns either 1 (accept) or 0
(reject). A commitment scheme is said to be correct if:

Pr
[
b = 1

∣∣ c← Com
(
r,m

)
, b← Open

(
c, r,m

) ]
= 1.

Definition A.4 (Computationally Hiding). Let (m0,m1) be a pair of mes-
sages, the advantage of A against the hiding experiment is defined as:

AdvhidingA (1λ) =

∣∣∣∣∣Pr
[
b = b′

∣∣∣∣∣ b
$←− {0, 1}, r

$←− {0, 1}λ
c←− Com

(
r,mb

)
, b′ ←− A.guess(c)

]
− 1

2

∣∣∣∣∣.
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A commitment scheme is computationally hiding if for all PPT adversaries A
and every pair of messages (m0,m1), Adv

hiding
A (1λ) is negligible in λ.

We say Com is (t, ϵCom)-secure if for every A running in time at most t(λ)
the success probability of A is upper bounded by some function ϵCom(λ).

Definition A.5 (Computationally Binding). The advantage of an adver-
sary A against the commitment binding experiment is defined as:

AdvbindingA (1λ) = Pr

m0 ̸= m1

1←− Open
(
c, r0,m0

)
1←− Open

(
c, r1,m1

)
∣∣∣∣∣∣ (c, r0, r1,m0,m1)←− A.choose(1λ)

 .

A commitment scheme is computationally binding if for all PPT adversaries A,
AdvbindingA (1λ) is negligible in λ.

A.1.1 Merkle Trees Merkle trees can be used in our context to compress
randomness seeds as suggested in [37]. Suppose a party needs to generate N
seeds and then to send only N − 1 of those seeds (without knowing in advance
which seed should not be sent). The principle is to build a binary tree of depth
⌈log2(N)⌉. The root of the tree is labeled with a master seed θ. The rest of the
tree is labeled inductively by using a PRG of double extension on each parent
node and splitting the output on the left and right children.

To reveal all seeds except seed number i ∈ [N ], the principle is to reveal the
labels on the siblings of the paths from the root of the tree to leave i. It allows to
reconstruct all seeds but seed number i at the cost of communicating ⌊log2(N)⌋
labels, which is more effective than communicating N − 1 seeds.

A.2 Interactive Proofs and Special Soundness

An interactive proof for relation R aims for a prover P to convince a verifier V
that a statement x admits a witness, or even that the prover knows a witness
w ∈ R(x).

Definition A.6 (Interactive proof (cf. [5])). An interactive proof Π =
(P,V) for relation R is an interactive protocol between two probabilistic machines,
a prover P and a polynomial time verifier V. Both P and V take as public input a
statement x and, additionally, P takes as private input a witness w ∈ R(x), which
is denoted as (P(w),V) (x). The verifier V either accepts or rejects the prover’s
claim of knowing a witness for x, this decision by the verifier is considered the
output of the protocol. The set of all messages exchanged in the protocol execution
is called a transcript and is denoted ⟨P(x,w),V(x)⟩. We call the either accepting
(or resp. rejecting) based on whether the verifier accepts (or rejects) the prover’s
claim.

We assume that the prover sends the first and the last message in any inter-
active proof. Hence, the number of messages is always an odd number 2µ + 1.
We also say Π is a (2µ+1)-round proof. It is represented in the following figure.
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Prover P Verifier V

Input: (x,w) Input: x

Commitment

Challenge 1

Response 1

...

Challenge µ

Response µ

accept(1) or reject(0)

Fig. 5: (2µ+ 1)-round Σ interactive proof

An interactive proof Π is complete if the verifier V accepts honest executions
with a public-private input pair (x;w) ∈ R with high probability. It is sound
if the verifier rejects the false statements x /∈ LR with high probability. In this
work, we follow the presentation of [5] and do not require these properties as
part of definition of interactive proofs, but consider them as desirable additional
security properties.

Definition A.7 (Completeness (cf. [5])). An interactive proof Π = (P,V)
for relation R is complete with completeness error ρ : {0, 1}∗ → [0, 1] if for every
(x;w) ∈ R,

Pr[(P(w),V) (x) = reject] ≤ ρ(x).

If ρ(x) = 0 for all x ∈ LR, then Π is said to be perfectly complete.

Definition A.8 (Soundness (cf. [5])). An interactive protocol Π = (P,V)
for relation R is sound with soundness error σ : {0, 1}∗ → [0, 1] if for every
x /∈ LR and every prover P∗,

Pr[(P∗,V) (x) = accept] ≤ σ(x).

An interactive proof which is complete and sound allows a prover to convince
a verifier that the statement x is true, i.e., x ∈ LR. However, this does not
necessarily convince a verifier that the prover actually “knows" the witness w ∈
R(x). This stronger property is captured by the notion of knowledge soundness.
Informally, knowledge soundness guarantees that if a prover convinces a verifier
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about the validity of some statement x with sufficiently high probability, then
the prover can actually compute a witness w ∈ R(x) with high probability. 5

Next, we present the definitions related to the special-soundness in the gener-
alized scenario. In order to generalize k-special-soundness to multi-round proto-
cols we will introduce the notion of a tree of transcripts following the definitions
given in [4].

Definition A.9 (Tree of Transcripts (cf. [5])). Let k1, . . . , kµ ∈ N. A
(k1, . . . , kµ)-tree of transcripts for a (2µ+ 1)-round public-coin protocol Π =
(P,V) is a set of K =

∏µ
i=1 ki transcripts arranged in the following tree struc-

ture. The nodes in this tree correspond to the prover’s messages and the edges
to the verifier’s challenges. Every node at depth i has precisely ki children cor-
responding to ki pairwise distinct challenges. Every transcript corresponds to
exactly one path from the root to a leaf node. For a graphical representation we
refer to Fig. 6. We refer to the corresponding tree of challenges as a (k1, . . . , kµ)-
tree of challenges.

cmt

rsp1,1,...,1µ
. . . rsp

1,1,...,kµ
µ

rsp1,12

ch1,12

. . . rsp1,k2
2

ch1,k2
2

rsp11

ch11

. . .

. . .

. . .

rspk1,1
2

chk1,1
2

. . .

rspk1,k2,...,1
µ

. . . rsp
k1,k2,...,kµ
µ

rspk1,k2
2

chk1,k2
2

rspk1
1

chk1
1

Fig. 6: (k1, k2, . . . , kµ) tree of transcripts of a (2µ+1)-round public-coin protocol

We will also write k = (k1, . . . , kµ) ∈ Nµ and refer to a k-tree of transcripts.

Definition A.10 ((k1, . . . , kµ)-out-of-(N1, . . . , Nµ) Special Soundness (cf.
[5])). Let k1, . . . , kµ, N1, . . . , Nµ ∈ N. A (2µ+ 1)-round public-coin protocol
5 Since the protocol presented in this work only achieves computational soundness,

and is secure when the prover runs in polynomial time, technically our protocol is
an argument of knowledge. However, we avoid this distinction for simplicity.
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Π = (P,V) for a relation R, where V samples the i-th challenge from a set of
cardinality Ni ≥ ki for 1 ≤ i ≤ µ, is (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-
sound if there exists a polynomial time algorithm that, on a input statement x
and a (k1, . . . , kµ)-tree of accepting transcripts outputs a witness w ∈ R(x). We
also say Π is (k1, . . . , kµ) special-sound.

A.3 Fiat-Shamir Transformation

In this section, we explain the random oracle model and Fiat-Shamir transfor-
mation used for transforming interactive protocols into non-interactive ones. We
closely follow the presentation of [6, Section 2.3] in the following exposition.

In the random oracle model (ROM), algorithms have black-box (or input-
output) access to an oracle RO : {0, 1}∗ → Z, called as random oracle, which is
instantiated with a uniform random function with domain {0, 1}∗ and codomain
Z. Generally, Z = {0, 1}η for some η ∈ N related to the security parameter. In
practice, RO can be implemented by lazy sampling, which means for each input
string x ∈ {0, 1}∗, RO(x) is sampled uniform randomly from Z and then fixed.
To avoid technical difficulties, we limit the domain from {0, 1}∗ to {0, 1}≤ℓ, the
finite set of all bitstrings of length at most ℓ, for a sufficiently large ℓ ∈ N.

An algorithm ARO that is given black-box access to a random oracle is called
a random oracle algorithm. We say A is a Q-query random-oracle algorithm, if
it makes at most Q queries to RO (independent of RO).

A natural extension of the ROM is when A is given access to multiple inde-
pendent random oracles RO1,RO2, . . . ,ROµ, possibly with different codomains.
In practice, these random oracles can be instantiated by a single random oracle
RO : {0, 1}∗ → {0, 1}η using the standard techniques for domain separation (re-
fer to [9] for more details) and for sampling random elements from non-binary
sets.

The Fiat-Shamir transform [26], turns a public-coin interactive proof into a
non-interactive proof in random oracle model. The general idea of this trans-
formation is to compute the i-th challenge message chi as a hash of the i-th
prover message ai along with (partial) communication transcript generated till
that point. For a Σ-protocol, the challenge ch is computed as ch := H(cmt) or
as ch := H(x, cmt), where the former is sufficient for static security, where the
statement x is given as input to the dishonest prover, and the latter is necessary
for adaptive security, where the dishonest prover can choose the statement x for
which it wants to forge a proof.

For multi-round public-coin interactive proofs, there is some degree of free-
dom in the computation of the i-th challenge. For concreteness we consider a
particular version where all previous messages are hashed along with the current
message.

Let Π = (P,V) be a (2µ+ 1)-round public-coin interactive proof, where the
challenge for the i-th round is sampled from set CHi. For simplicity, we consider
µ random oracles ROi : {0, 1}≤ℓ → CHi that map into the respective challenge
spaces.
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Definition A.11 (Fiat-Shamir Transformation (cf. [6])). The static Fiat-
Shamir transformation FS [Π] = (Pfs,Vfs) is non-interactive proof in ROM,
where P

RO1.RO2....,ROµ

fs (x;w) runs P(x;w) but instead of asking the verifier for
the challenge chi on message ai, the challenges are computed as

chi = ROi (a1, a2, . . . , ai−1, ai) ; (5)

the output is then the proof π = (a1, . . . , aµ+1). On input a statement x and
a proof π = (a1, . . . , aµ+1), P

RO1.RO2....,ROµ

fs (x, π) accepts if, for chi as above V
accepts the transcript (a1, ch1, . . . aµ, chµ, aµ+1) on input x.

If the challenges are computed as

chi = ROi (x, a1, ch1, . . . ai−1, chi−1, ai) ; (6)

the resulting non-interactive proof in ROM is called as the adaptive Fiat-Shamir
transformation.

B Security Proofs for PoK

B.1 Proof of Theorem 3.2

We restate the Theorem 3.2 below and follow it by its proof.

Theorem 3.2 (Knowledge Soundness). The protocol presented in Fig. 1 is
knowledge sound with knowledge error

εKS =
1

N
+

N − 1

N · (qt − 1)
.

Proof (Proof of Theorem 3.2). Before proving the knowledge soundness of our
protocol, we will first prove the following useful lemma.

Lemma B.1 ((2, 2)-special soundness). The protocol shown in Fig. 1 is
(2, 2)-special sound.

Proof (Proof of Lemma B.1). (2, 2)-special soundness.

Following Definition A.10 the protocol is called (2, 2)-special sound if there exists
an efficient knowledge extractor Ext which on an input statement (H, (xi)i∈[1,t],
(yi)i∈[1,t]) and a (2, 2)-accepting tree of transcripts (See Definition A.9) returns
a solution of the r-IPKP instance defined by (H, (xi)i∈[1,t], (yi)i∈[1,t]). We now
show such an extractor which takes 4 accepting transcripts associated with chal-
lenges (κ, α1), (κ, α2), (κ

′, α′1), (κ
′, α′2) such that κ = (κi)i∈[1,t], κ′ = (κ′i)i∈[1,t]

as well as κ ̸= κ′, α1 ̸= α2, and α′1 ̸= α′2, and outputs a solution to the r-IPKP
instance defined by (H, (xi)i∈[1,t], (yi)i∈[1,t]).

Let z
(κ∗,α∗)
2 denote the response z2 computed as shown in Fig. 1 when the

first and second challenges are κ∗ and α∗ respectively. Note that, z(κ,α1)
2 contains
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all the seeds θi for i ∈ [1, N ] except i = α1. Therefore, the extractor has access
to all the seeds θi for i ∈ [1, N ] since it knows both z

(κ,α1)
2 as well as z

(κ,α2)
2

and α1 ̸= α2. It can compute (π̄
(κ)
i , v̄

(κ)
i )i∈[1,N ] and (π̄

(κ′)
i , v̄

(κ′)
i )i∈[1,N ] from(

z
(κ,αi)
2

)
i∈[1,2] and

(
z
(κ′,α′

i)
2

)
i∈[1,2] respectively.

Also, note that the first message h1 = H(cmt1, (cmt1,i)i∈[1,N ]) is common to
all the 4 transcripts. Since we assume that H is a collision-resistant hash function,
it means that the initial commitments (cmt1, (cmt1,i)i∈[1,N ]) are all same in the
4 transcripts. From the binding property of the commitments (cmt1,i)i∈[1,N ], we
know that

(π̄i, v̄i)i∈[1,N ] = (π̄
(κ)
i , v̄

(κ)
i )i∈[1,N ] = (π̄

(κ′)
i , v̄

(κ′)
i )i∈[1,N ].

The knowledge extractor Ext computes the solution as

1. Compute (π̄i)i∈[1,n] from z
(κ,α1)
2 and z

(κ,α2)
2

2. Output π̄ = π̄N ◦ · · · ◦ π̄1

Let us now check the validity of this solution output by the extractor. By
construction, we know that s̄

(κ,α1)
0 = s̄

(κ,α2)
0 =

∑
i∈[1,t] κi · xi. Also, for all

i ∈ [1, N ] \ α1, s̄
(κ,α1)
i = π̄i

[
s̄
(κ,α1)
i−1

]
+ v̄i. And for all i ∈ [1, N ] \ α2, s̄

(κ,α2)
i =

π̄i

[
s̄
(κ,α2)
i−1

]
+v̄i. Since the transcripts are accepting and V checks h2 computed as

h2 = H((si)i∈[1,N ]), due to the collision-resistance property of H, it follows that

for all i ∈ [1, N ], s̄(κ)i = π̄i

[
s̄
(κ)
i−1

]
+ v̄i, this implies s̄(κ)N = π̄

[∑
i∈[1,t] κi · xi

]
+ v̄.

Following a similar argument, we know that s̄
(κ′)
N = π̄

[∑
i∈[1,t] κ

′
i · xi

]
+ v̄.

Based on the binding property of commitment cmt1 and using the fact that the
transcripts are accepting, we can write

Hs̄
(κ)
N −

∑
i∈[1,t]

κi · yi = Hs̄
(κ′)
N −

∑
i∈[1,t]

κ′i · yi

=⇒ H

π̄

 ∑
i∈[1,t]

κi · xi

+ v̄

−∑
i∈[1,t]

κi·yi = H

π̄

 ∑
i∈[1,t]

κ′i · xi

+ v̄

−∑
i∈[1,t]

κ′i·yi

=⇒ H

π̄

 ∑
i∈[1,t]

(κi − κ′i) · xi

 =
∑

i∈[1,t]

(κi − κ′i) · yi

This implies that π̄ is a solution of the considered r-IPKP problem. ⊓⊔

We can now apply the result of Theorem 2.1 to Lemma B.1, which concludes
the proof. ⊓⊔
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B.2 Proof of Theorem 3.3

The following proof is inspired from the proof of [17, Lemma 6.1] and [22, 23,
Theorem 3]. We now show that the protocol described in Fig. 1, Section 3,
satisfies the special honest-verifier zero knowledge property. We assume that
the commitment algorithm Com

(
·
)

outputs ℓ(λ)-bit strings as output for some
polynomial ℓ. We restate the Theorem 3.3 below and follow it by its proof.

Theorem 3.3 (Special Honest-Verifier Zero Knowledge). Assume that
there exists a (t, ϵPRG)-secure PRG, and the commitment scheme Com is (t, ϵCom)-
hiding. Then there exists an efficient simulator Sim which, outputs a transcript
such that no distinguisher running in time at most t(λ) can distinguish between
the transcript produced by Sim and a real transcript obtained by honest execution
of the protocol in Fig. 1 with probability better than (ϵPRG(λ) + ϵCom(λ)).

Proof (Proof of Theorem 3.3). We begin by describing an efficient simulator
Sim which outputs a transcript which is indistinguishable from a real transcript
obtained by honest execution of the protocol. Sim on input x = (H, (xi)i∈[1,t],
(yi)i∈[1,t]) works as follows:

Note that the simulator Sim runs in polynomial-time and the challenges sam-
pled in Step 1 are distributed identically to the real world execution since the
verifier also samples the challenges uniformly at random. We now show that the
transcript output by Sim and a real transcript obtained by honest execution of
the protocol in Fig. 1 with challenges (κ, α∗) cannot be distinguished with prob-
ability better than (ϵPRG(λ) + ϵCom(λ)) by any distinguisher running in time at
most t(λ). We consider the following sequence of simulators:

Simulator 0 (real world). This simulator takes the statement x = (H, (xi)i∈[1,t],
(yi)i∈[1,t]), witness π, and the challenges (κ, α∗) as input. It then runs the pro-
tocol in Fig. 1 honestly and outputs the transcript. This transcript is identically
distributed as a real-world transcript.

Simulator 1. Simulator 1 works exactly same as Simulator 0 except that in-
stead of computing cmt1,α∗ as in the real protocol, it samples a uniform string

as cmt1,α∗
$←− {0, 1}ℓ(λ). The probability of distinguishing Simulator 0 from

Simulator 1 by any distinguisher running in time at most t(λ) is upper bounded
by ϵCom(λ).

Simulator 2. The only difference between Simulator 1 and Simulator 2 is that,
Simulator 2 samples πα∗

$←− Sn and vα∗
$←− Fn

q uniformly at random instead
of using the seed-derived randomness from the seed θ. The probability of distin-
guishing Simulator 2 from Simulator 1 by any distinguisher running in time at
most t(λ) is upper bounded by ϵPRG(λ).

Simulator 3 (Sim). Simulator 3 takes the statement x = (H, (xi)i∈[1,t], (yi)i∈[1,t]),
and works as Sim defined in Fig. 7. Note that, this simulator does not depend on
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1. Sample κ
$←− Ft

q \ 0 and α∗ $←− [N ]

2. Sample θ
$←− {0, 1}λ

3. For each i ∈ [1, N ] \ {α∗}

⋄ θi
$,θ←− {0, 1}λ, ϕi

$,θi←− {0, 1}λ, r1,i
$,θi←− {0, 1}λ

⋄ if i ̸= 1

▷ πi
$,ϕi←− Sn, vi

$,ϕi←− Fn
q , cmt1,i = Com

(
r1,i, ϕi

)
⋄ if i = 1

▷ π1
$←− Sn, v1

$,ϕ1←− Fn
q , cmt1,1 = Com

(
r1,1, π1 ||ϕ1

)
4. For i = α∗

⋄ Sample πα∗
$←− Sn, vα∗

$←− Fn
q , cmt1,α∗

$←− {0, 1}ℓ(λ)

5. Compute r1, v, cmt1, h1 as in the real protocol using the values computed above.
6. Compute π̃ = πN ◦ · · · ◦ π1

7. Compute x̃ such that Hx̃ =
∑

i∈[1,t]
κi · yi

8. Compute s0 =
∑

i∈[1,t]
κi · xi

9. For each i ∈ [1, α∗ − 1]

⋄ Compute si = πi[si−1] + vi

10. Compute sα∗ = πα∗ [sα∗−1] + vα∗ + π−1
α∗+1 ◦ · · · ◦ π

−1
N

[
x̃− π̃

[∑
i∈[1,t]

κi · xi

]]
11. For each i ∈ [α∗ + 1, N ]

⋄ Compute si = πi[si−1] + vi

12. Compute h2, z1, z2, rsp as in the real protocol using the values computed above.
13. Output (x, h1, (κi)i∈[1,t], h2, α

∗, rsp)

Fig. 7: Simulator Sim for generating indistinguishable transcripts without knowl-
edge of secret witness π

the witness π. Also, Sim first samples the challenges (κ, α∗) uniform randomly
(this is identical to honest verifier in real world).

If α∗ = 1, then Simulator 2 and Sim work exactly same till Step 5 of Sim.
Therefore, h1 is distributed identically in both the transcripts. Also, s0 is com-
puted honestly by Sim and hence matches with that computed by Simulator 2.
While computing s1, both Simulator 2 and Sim add v1 to it. However, v1 is
sampled uniformly at random by both Simulator 2 and Sim. Hence, s1 is also
distributed identically in both the transcripts. Step 11 of Sim works exactly as
Simulator 2 which means h2 is also distributed identically in both the transcripts.
The response rsp in this case is rsp =

(
s1, (r1 ||θi)i∈[2,N ], cmt1,1)

)
. As explained

above s1 is uniform random and distributed identically in both transcripts. The
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seeds (θi)i∈[2,N ] and randomness r1 are computed identically by both the sim-
ulators since they work exactly the same way till Step 5 of Sim. Also, cmt1,1 is
sampled uniformly at random in both experiments (refer Simulator 1). Therefore,
the transcript (x, h1, (κi)i∈[1,t], h2, α

∗, rsp) is distributed identically in Simulator
2 and Sim when α∗ = 1.

If α∗ ̸= 1, then Simulator 2 and Sim work exactly same till Step 5 of Sim,
except for sampling of π1. Simulator 2 computes π1 from witness π, whereas
Sim samples π1 uniformly at random. However, the values r1,v, cmt1, and h1

are computed independently of π1 and those are distributed identically in both
the transcripts. Also note Simulator 2 computes π1 by composing it with π−1α∗ .
Since πα∗ is sampled uniformly at random by Simulator 2, this implies that π1

computed by Simulator 2 is also uniform random permutation and hence π1 is
also distributed identically. Also, for i ∈ [0, α∗ − 1], the values si are computed
honestly by Sim and since π1 is distributed identically the values si for i ∈ [0, α∗−
1] are also distributed identically. As in the previous case, while computing sα∗ ,
both Simulator 2 and Sim add vα∗ to it. However, vα∗ is sampled uniformly at
random by both Simulator 2 and Sim. Hence, sα∗ is also distributed identically in
both the transcripts. Step 11 of Sim works exactly as Simulator 2 which means
h2 is also distributed identically in both the transcripts. The response rsp in
this case is rsp =

(
sα∗ , (π1 ||r1 ||θi)i∈[1,N ]\α∗ , cmt1,α∗)

)
. As explained above sα∗

is uniform random and distributed identically in both transcripts. The seeds
θi)i∈[1,N ]\α∗ and randomness r1 are computed identically by both the simulators
since they work exactly the same way till Step 5 of Sim. Also, cmt1,α∗ is sampled
uniformly at random in both experiments (refer Simulator 1). Therefore, the
transcript (x, h1, (κi)i∈[1,t], h2, α

∗, rsp) is distributed identically in Simulator 2
and Sim when α∗ ̸= 1.

Therefore, any distinguisher running in time at most t(λ) cannot distinguish
between the real-world transcript and the transcript produced by Sim with prob-
ability better than (ϵPRG(λ) + ϵCom(λ)).

⊓⊔

C Security Proof - PERK

C.1 Proof of Theorem 3.4

We restate the Theorem 3.4 below and follow it by its proof.

Theorem 3.4. Suppose PRG is (t, ϵPRG)-secure and any adversary running in
time t(λ) can solve the the underlying r-IPKP instance with probability at most
ϵr-IPKP. Model H0, H1, and H2 as random oracles where H0, H1, and H2 have 2λ-
bit output length. Then chosen-message attacker against the signature scheme
(PERK) presented in Fig. 3, running in time t(λ), making qs signing queries,
and making q0, q1, q2 queries, respectively, to the random oracles, succeeds in
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outputting a valid forgery with probability

Pr[Forge] ≤ (q0 + τ · (N + 1) · qs)2

2 · 22λ
+

qs · (q0 + q1 + q2 + qs)

22λ

+ τ · qs · ϵPRG(λ) + ϵr-IPKP + q2 · ετKS,
(3)

where εKS = 1
N + N−1

N ·(qt−1) .

The following proof is greatly inspired from the proof of the Picnic signature
scheme [17, Theorem 6.2] and [22,23, Theorem 5].

Proof (Proof of Theorem 3.4). Let A be a EUF-CMA attacker against the
signature scheme, which makes qs queries to the signing oracle. Also, let q0, q1,
and q2 respectively denote the number of queries made by A to the random
oracles H0, H1, and H2. To prove security we define a sequence of experiments
involving A, starting with an experiment in which A interacts with the real
signature scheme. We let Pri[·] refer to the probability of an event in experiment
i. We let t(λ) denote the running time of the entire experiment, i.e., including
both A’s running time and the time required to answer signing queries and to
verify A’s output.

Experiment 1. This corresponds to the interaction of A with the real signature
scheme. In more detail: first KeyGen is run to obtain, the secret key sk = π along
with the public key pk = (H, (xj ,yj)j∈[1,t]), and A is given pk. In addition, we
assume that the random oracles H0, H1, and H2 are chosen uniformly from the
appropriate spaces. A may make signing queries, which will be answered as in
the signature algorithm; A may also query any of the random oracles. Finally, A
outputs a message-signature pair; we let Forge denote the event that the message
was not previously queried by A to its signing oracle, and the signature is valid.
Our goal is to upper-bound Pr1[Forge].

Experiment 2. We abort the experiment if, during the course of the experi-
ment, a collision occurs in H0. The number of queries to any oracle throughout
the experiment (by either the adversary or the signing algorithm) is at most
(q0 + τ · (N + 1) · qs). Therefore,

|Pr1[Forge]− Pr2[Forge]| ≤
(q0 + τ · (N + 1) · qs)2

2 · 22λ
.

Experiment 3. We abort the experiment if during the course of the experiment,
while answering to a signature query, the sampled salt collides with the value
salt in any previous query to H0, H1, or H2. For each single signature query, the
probability to abort is upper bounded by (q0 + q1 + q2 + qs) /2

2λ. Thus,

|Pr2[Forge]− Pr3[Forge]| ≤
qs · (q0 + q1 + q2 + qs)

22λ
.
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Experiment 4. The difference with the previous experiment is that, when sign-
ing a message m we begin by choosing h1 and h2 uniformly at random and then
we expand them as (κ(e)

j )e∈[1,τ ],j∈[1,t] and (α(e))e∈[1,τ ]. Steps 1, 3, and 5 are com-
puted as before, but in Steps 2 and 4 we simply set the output of H1 to h1 and
the output of H2 to h2.

The outcome of this experiment compared to the previous one only changes
if, in the course of answering a signing query, the query to H1 or the query to H2

was ever made before (by either the adversary or as a part of answering some
other signing query). But this cannot happen since in such a case Experiment 3
would abort. Thus,

Pr3[Forge] = Pr4[Forge].

Experiment 5. The difference with the previous experiment is that, for each
e ∈ [1, τ ], we sample cmt

(e)

1,α(e) uniformly at random instead of making a query
to H0.

The only difference between this experiment and the previous experiment
occurs if, during the course of answering a signing query, the seed θ

(e)

α(e) (for
some e ∈ [1, τ ]) was previously queried to H0. However, such collisions cannot
occur within the same signing query (since indices e and i are part of the input
of H0) and if it occurs from a previous query (signing query or query to H0) then
the experiment aborts (according to the difference introduced in Experiment 3).
Thus,

Pr4[Forge] = Pr5[Forge].

Experiment 6. We again modify the experiment. Now, for e ∈ [1, τ ] the signer
uses the SHVZK simulator Sim (see proof of Theorem 3.3) to generate the views
of the parties during the execution of Step 1 and Step 3. We denote by Simsalt(·)
a call to this simulator which appends salt to the sampled seed θ as input to
PRG. This simulation results in

{(
θ
(e)
i , π

(e)
i

)}
i ̸=α(e)

and (s
(e)
j )

j∈[1,N ]
. Thus the

signing queries are now answered as shown in 8.

Note that the secret π is no longer used for generating signatures. Recall that
an adversary against Sim has distinguishing advantage ϵPRG(λ) (corresponding to
execution time t(λ)), since the commitments are built outside of the simulator.
Therefore,

|Pr5[Forge]− Pr6[Forge]| ≤ τ · qs · ϵPRG(λ).

Experiment 7. At any point during the experiment, we say that the execution
e∗ of a query

h2 = H2(salt,m, pk, h1, (s
(e)
i )e∈[1,τ ],i∈[1,N ])

defines a correct witness if the following four conditions are fulfilled:

1. h1 was output by a previous query

h1 = H1(salt,m, pk, (cmt
(e)
1 , cmt

(e)
1,i )e∈[1,τ ],i∈[1,N ]),
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Step 0

1. Sample h1
$←− {0, 1}2λ uniformly at random.

2. Sample (κ
(e)
j )e∈[1,τ],j∈[1,t] ←− PRG(h1).

3. Sample h2
$←− {0, 1}2λ uniformly at random.

4. Sample (α(e))e∈[1,τ] ←− PRG(h2).

5. Sample a uniform random salt salt
$←− {0, 1}2λ.

Steps 1 and 3 For each iteration e ∈ [1, τ ]

1.
{(

θ
(e)
i , π

(e)
i

)}
i̸=α(e)

, (s
(e)
j )

j∈[1,N]
← Simsalt((κ

(e)
j )e∈[1,τ],j∈[1,t], (α

(e))e∈[1,τ])

2. Choose commitment cmt
(e)

1,α(e)

$←− {0, 1}2λ uniform randomly.

3. For i ̸= α(e):

⋄ If i ̸= 1, set cmt
(e)
1,i = H0(salt, e, i, θ

(e)
i ).

⋄ If i = 1, set cmt
(e)
1,1 = H0(salt, e, 1, π1, θ

(e)
1 ).

4. Compute Hv(e) as Hv(e) = (H(s
(e)
N )−

∑
i∈[1,t] κ

(e)
i · yi).

5. Set cmt
(e)
1 = H0(salt, e,Hv(e)).

Steps 2 and 4

1. Set H1(salt,m, pk, (cmt
(e)
1 , cmt

(e)
1,i )e∈[1,τ],i∈[1,N]) equal to h1.

2. Set H2(salt,m, pk, h1, (s
(e)
i )e∈[1,τ],i∈[1,N]) equal to h2.

Step 5 Output signature σ built as

1. For each iteration e ∈ [1, τ ]:

⋄ Compute z
(e)
1 = s(e)

α

⋄ If α(e) ̸= 1, z(e)
2 = π

(e)
1 || (θ(e)

i )
i∈[1,N]\α(e)

⋄ If α(e) = 1, z(e)
2 = (θ

(e)
i )

i∈[1,N]\α(e)

⋄ Compute rsp(e) = (z
(e)
1 , z

(e)
2 , cmt

(e)

1,α(e)
)

2. Compute σ = (salt, h1, h2, (rsp
(e))e∈[1,τ])

Fig. 8: Experiment 6: Answer to a signature query for a message m.

2. each cmt
(e∗)
1,i in this H1-query was output by a previous query

cmt
(e∗)
1,i = H0(salt, e

∗, i, θ
(e∗)
i )

for i ∈ [2, N ], and

cmt
(e∗)
1,1 = H0(salt, e

∗, 1, π
(e∗)
1 , θ

(e∗)
1 )

for i = 1.
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3. each cmt
(e∗)
1 in the above H1-query was output by a previous query

cmt
(e∗)
1 = H0

salt, e∗,

Hs
(e∗)
N −

∑
i∈[1,t]

κ
(e∗)
i · yi


4. the permutation π derived from

{
π
(e∗)
i

}
i∈[1,N ]

i.e. π = π
(e∗)
N ◦π(e∗)

N−1◦· · ·π
(e∗)
1

satisfies

H

π

 ∑
i∈[1,t]

κi · xi

 =
∑

i∈[1,t]

κi · yi

for some κ ∈ Fq
t \ 0, where κ := {κ1, . . . , κt} and 0 ∈ Fq

t is the all zero
vector.

(Note that in all cases the commitments in the relevant prior H1-query, if it
exists, must be unique since the experiment is abortedif there is ever a collision
in H0.)

In Experiment 7, for each query of the above form made by the adversary
to H2 (where m was not previously queried to the signing oracle), check if there
exists an execution e∗ which defines a correct witness. We let Solve be the event
that this occurs for some query to H2. Note that, if that event occurs, the{
π
(e∗)
i

}
i∈[1,N ]

(which can be determined from the oracle queries of A) allow

the computation of solution to r-IPKP. Therefore, Pr7[Solve] ≤ ϵr-IPKP. We claim
that

Pr7

[
Forge

∧
Solve

]
≤ q2 · ετKS,

where εKS = 1
N + N−1

N ·(qt−1) is the knowledge soundness error of one execution.
To see this, assume Solve does not occur. Then there is no execution of any H2-
query which defines a correct witness. When considering an arbitrary execution
e ∈ [1, τ ], the attacker can only possibly generate a forgery (using this H2-query)
if

1. A guesses the first challenge κ(e∗) ∈ Fq
t\0, where κ(e∗) :=

{
κ
(e∗)
1 , . . . , κ

(e∗)
t

}
and 0 ∈ Fq

t is the all zero vector.
2. or even if cmt

(e∗)
1 ̸= H0(salt, e

∗, (Hs
(e∗)
N −

∑
i∈[1,t] κ

(e∗)
i · yi)) the attacker

guesses the second challenge α∗ such that the views of all remaining N − 1
parties are consistent.

Thus, the overall probability with which the attacker can generate a forgery
using this H2-query is

ετKS =

(
1

qt − 1
+

(
1− 1

qt − 1

)
· 1
N

)τ

.

The final bound is obtained by taking a union bound over all queries to H2.
This concludes the proof of Theorem 3.4. ⊓⊔
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D Generic Attacks against Fiat-Shamir Signatures

Kales and Zaverucha in [36], showed a generic attack on the non-interactive
version of 5-round PoK schemes. The attack strategy is to guess either one
of the challenges (ch1 or ch2) correctly which permits the prover to cheat. The
attacker then aims to split the work by attempting to guess the first challenge for
η∗ instances out of τ parallel repetitions, and tries to guess ch2 for the remaining
(τ − η∗) instances.

If the attacker can guess η∗ challenges for the first phase correctly, then
he can answer all the N possible challenges for the α(e) for those instances.
Subsequently, to successfully cheat he has to guess the remaining (τ −η∗) values
of α(e) correctly.

The parameter η∗ allows the attacker to balance the cost for both guessing
phases. The overall cost is minimized for a choice of

η∗ = argmin
0≤η≤τ

{
1

P1(η, τ, q, t)
+N (τ−η)

}
(7)

where,

P1(η, τ, q, t) :=

τ∑
j=η

(
1

qt − 1

)j(
qt − 2

qt − 1

)τ−j(
τ

j

)
.

Finally, the total cost for the attacker is thus

WKZ =
1

P1(η∗, τ, q, t)
+N (τ−η∗). (8)

In [36] the authors classify the 5-round protocols based on whether it is
possible for the verifier to detect if the tuple (cmt, ch1, rsp1) is valid or not. If
the verifier can detect the validity of this tuple then the scheme is said to possess
early abort property. The cost of the attack varies for different schemes based on
whether they satisfy the early abort property or not. Our protocol and signature
scheme do not possess the early abort property and hence the expected cost of
attacking the PERK signature scheme proposed in this work, is given by Eq. (8).
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