
The Art of Bonsai: HowWell-Shaped Trees Improve the
Communication Cost of MLS

Céline Chevalier

DIENS, École normale supérieure,

CNRS, PSL University, Inria

Paris, France

CRED, Paris-Panthéon-Assas University

Paris, France

celine.chevalier@ens.fr

Guirec Lebrun

DIENS, École normale supérieure,

CNRS, PSL University, Inria

Paris, France

ANSSI

Paris, France

guirec.lebrun@ens.fr

Ange Martinelli

ANSSI

Paris, France

ange.martinelli@ssi.gouv.fr

Jérôme Plût

ANSSI

Paris, France

jerome.plut@ssi.gouv.fr

ABSTRACT
Messaging Layer Security (MLS) is a Secure Group Messaging pro-

tocol that uses for its handshake a binary tree – called a Ratchet

Tree – in order to reach a logarithmic communication cost w.r.t.

the number of group members. This Ratchet Tree represents users

as its leaves; therefore any change in the group membership re-

sults in adding or removing a leaf associated with that user. MLS

consequently implements what we call a tree evolution mechanism,

consisting in a user add algorithm – determining where to insert a

new leaf – and a tree expansion process – stating how to increase

the size of the tree when no space is available for a new user.

The tree evolution mechanism currently used by MLS is de-

signed so that it naturally left-balances the Ratchet Tree. However,

such a Ratchet Tree structure is often quite inefficient in terms of

communication cost. Furthermore, one may wonder whether the

binary tree used in that Ratchet Tree has a degree optimized for

the features of a handshake in MLS – called a commit.
Therefore, we study in this paper how to improve the commu-

nication cost of a commit in MLS by considering both the tree

evolution mechanism and the tree degree used for the Ratchet Tree.

To do so, we determine the tree structure that optimizes its commu-

nication cost, and we propose optimized algorithms for both the

user add and tree expansion processes, that allow to remain close

to that optimal structure and thus to have a communication cost as

close to optimal as possible.

We also determine the Ratchet Tree degree that is best suited to a

given set of parameters induced by the encryption scheme used by

MLS. This study shows that when using classical (i.e. pre-quantum)

ciphersuites, a binary tree is indeed the most appropriate Ratchet

Tree; nevertheless, when it comes to post-quantum algorithms, it

generally becomes more interesting to use instead a ternary tree.

Our improvements do not change TreeKEM protocol and are

easy to implement. With parameter sets corresponding to practical

ciphersuites, they reduce TreeKEM’s communication cost by 5 to

10%. In particular, the 10% gain appears in the Post-Quantum setting

– when both an optimized tree evolution mechanism and a ternary

tree are necessary –, which is precisely the context where any

optimization of the protocol’s communication cost is welcome, due

to the important bandwidth of PQ encrypted communication.

KEYWORDS
MLS, TreeKEM, CGKA, Key Tree, Binary Tree, Ternary Tree

1 INTRODUCTION
With the development of Secure Messaging protocols that enable

end-to-end encrypted communication between two users, the need

of a dedicated Secure Group Messaging protocol has arisen in the

last few years. Indeed, the group conversation functionality offered

in practice by (point-to-point) Secure Messaging applications relies

on ad hoc constructions that either lower the protocol’s security
level – such as the SenderKey protocol, used e.g. by WhatsApp [1]

– or that are quite inefficient – like the Pairwise protocol of Signal
application –, with a communication cost scaling linearly with the

number 𝑛 of group members.

Messaging Layer Security (MLS) [7] is an IETF standard, re-

leased in July 2023, for a Secure Group Messaging protocol that

is designed to keep the security properties of point-to-point Se-

cure Messaging protocols, among which Forward Secrecy (FS) and

Post-Compromise Security (PCS) (cf. Appendix A.2.1), with a com-

munication cost growing logarithmically with the number of users:

𝑂 (log
2
(𝑛)).

For this purpose, MLS uses as core component a group key ex-

change mechanism – conceptualized by [4] as a Continuous Group
Key Agreement (CGKA) – named TreeKEM, that provides the group

with a common group key that securely evolves over time in order to

maintain the aforementioned forward secrecy and post-compromise

security, despite the changes in the group membership.

1.1 Optimizing Group Communication with a
Key Tree

1.1.1 TreeKEM’s Ratchet Tree. In order to reach the aimed com-

munication cost of 𝑂 (log
2
(𝑛)), TreeKEM relies on a binary tree

called a Ratchet Tree, whose leaves represent the group members

and where all nodes are associated with encryption key-pairs that

are hierarchically organized: each key-pair is deterministically gen-

erated from a secret seed that is directly derived – through a key

derivation process – from one of the seeds associated with the two

Chevalier et al.

children nodes located beneath. A central concept in TreeKEM,

called the tree invariant, is that any user (leaf) in the tree knows all

the secret elements (secret seeds and secret encryption keys) from

the nodes above them, and only them. Consequently, the secret

seed at the root of the tree is the only secret element known by all

users; the group key is directly derived from that common value.

The idea behind a key tree such as TreeKEM’s Ratchet Tree is that

the rotation of the group key, initiated after the arrival or departure

of a group member or the update of a user’s keying material in

a process named a commit, impacts the seeds and keys of all the

nodes located above that updater, up to the root, in what is called its

direct path. Consequently, the public and private information
1
that

needs to be transmitted to the group is proportional to the number

of nodes in the updater’s direct path. In a binary tree, the average

length of a user’s direct path is in 𝑂 (log
2
(𝑛)), which corresponds

to the expected logarithmic communication cost of that CGKA.

1.1.2 Influence of the Tree Structure. In practice, the lower bound

of log
2
(𝑛) is rarely reached. This ideal value indeed corresponds

to the cost of a perfect binary tree, i.e. a tree whose nodes all have

exactly two children and where the leaves are all located at the

same level.

Not only is this ideal tree impossible when the number of users

is not a power of two, but for a given number 𝑛 of users, the tree

structure, i.e. the unordered arrangement in space of the leaves, also

has a significant influence on the communication cost. The struc-

ture of a CGKA’s key tree is determined by the way the protocol

adapts this tree to the natural evolution of the group membership,

with user departures at arbitrary locations and user arrivals at loca-

tions specified by the protocol. A CGKA’s tree evolution mechanism
therefore consists of the following algorithms

2
:

• a user add algorithm, which specifies where to add a new

user among all the available locations;

• a tree expansion algorithm that increases the size of the tree

when a new user has to be added to the group and there

is no free space available for it, and that decreases the tree

size whenever it is possible.

In this regard, TreeKEM adds new users at the leftmost available

location in the tree. When needed, it increases the Ratchet Tree

to the right, by creating a new root above the current one and by

adding the extra leaves in a new subtree attached to the right of

that new root. This mechanism left-balances TreeKEM’s Ratchet

Tree, by grouping most leaves on the left side of the tree.

However, we show below that a left-balanced structure does not

minimize the communication cost of a CGKA, and consequently,

that the tree evolution mechanism used by TreeKEM is not optimal

in that matter.

1.1.3 Influence of the Tree Degree. The degree, or arity, of a tree
is the maximum number of children that any node in the tree is

allowed to have. The aforementioned lower bound of log
2
(𝑛) stems

from the fact that TreeKEM uses a binary tree as its Ratchet Tree.

This optimal bound varies according to the tree degree: the higher

1
The public elements mentioned here are the updated public keys and the private ones

are the secret seeds related to that public keys.

2
The case of a user removal is not considered in a tree evolution mechanism, since

the protocol does not control the departure of users from the group and thus cannot

choose which leaves to remove from the Ratchet Tree.

the degree, the shorter the average direct path of a user becomes,

which decreases the number of updated public keys that have to be

broadcasted to the entire group.

However, this advantage comes at a cost. For instance, in CGKAs

using Diffie-Hellman (DH) trees (cf. Section 1.3), a tree of degree𝑚

implies that any internal node’s secret must be computed with a

key agreement relying on the𝑚-party generalized Group Diffie-

Hellman problem, which is more costly – computationally speaking

as well as regarding the bandwidth consumption – than a standard

2-party DH key agreement.

In the case of TreeKEM, increasing the tree degree also increases

the number of recipients to whom the encrypted secret seeds associ-

ated with the nodes of the updater’s direct path must be transmitted.

This number of recipients corresponds to the number of nodes in

the updater’s copath, i.e. the number of sibling nodes of this user

and of its ancestors (cf. Section 2.1).

The optimal tree degree for TreeKEM is therefore the one that

offers the best trade-off between the number of nodes in a user’s

direct path and the number of nodes in its copath, for all users in

the tree. However, to the best of our knowledge, no study has been

carried out to determine precisely the optimal degree for TreeKEM.

1.2 Our Contributions and Outline of this Paper
We study in this paper how to optimize the communication cost of

TreeKEM by considering the two factors of tree structure and tree

degree detailed above.

We focus in Section 3 on the optimization of a binary tree, as

already used by TreeKEM for its Ratchet Tree. To do so, we start

by defining in Section 3.1 a precise communication cost metric,

adapted to the specificities of TreeKEM and, in particular, that takes

into account the two diverging notions of direct path length and

copath length. We then use that metric to determine in Section 3.2

the optimal structure of a full
3
tree of an arbitrary degree𝑚 ≥ 2,

i.e. the one that minimizes the communication cost of a commit in

a group of 𝑛 users. In Section 3.4 we propose an optimized tree evo-

lution mechanism, based on simple, yet effective, user add and tree
expansion algorithms that are applicable to trees of any degree𝑚.

With an implementation in Python, we experimentally show that

the resulting optimized communication cost only exceeds the op-

timal one by around 0.5%, whereas TreeKEM has an average cost

more than 5% above that ideal cost.

In Section 4, we study the influence of the tree degree on the

communication cost of TreeKEM, with respect to our metric, in the

most general case of non-full trees that corresponds to the feature

of real Ratchet Trees. We prove that binary and ternary (non-full)

trees are the most efficient Ratchet Trees in the most common use

cases
4
. We also compare, theoretically and experimentally, these

two degrees and determine a bound for the ciphersuite parameter 𝜏 ,

that separates their respectives areas of optimality and underlines

that for most post-quantum ciphersuites, it is more relevant to use

a ternary tree than a binary one.

3
As detailed later, a full tree of degree𝑚 is a tree where any node has either zero or

𝑚 children.

4
All standard encryption schemes that we have considered are indeed adapted to these

two tree degrees, except for the HPKE ciphersuite based on the post-quantum KEM

ClassicMcEliece.

A Study on CGKAs Trees

Our experimental results show that in that context, the combina-

tion of using our optimized tree evolution algorithms and replacing

the current binary tree with a ternary one, brings an average gain of

around 10% compared to the current implementation of TreeKEM,

at the expense of only few additional computations demanded by

the optimized algorithms. This gain is highly appreciable since it

occurs in the post-quantum framework, which has an important

bandwidth and thus for which any improvement is welcome.

1.3 Background on Key Trees
The idea to use key graphs in order to decrease the communica-

tion cost of a group key exchange goes back long before MLS: the

seminal concurrent works of [20] and [35] introduce that concept –

called Logical Key Hierarchy – in the late 1990s, in the context of a

centralized key distribution system, where a key server manages

the creation and distribution of all keys in the graph.

In the decentralized framework, where peers mutually interact

without any central authority in order to generate a common group

key, [6], followed by the ELK protocol [30], proposes a new tree-

based architecture calledOne-Way Function Tree (OFT) in which any
node key is no longer randomly generated by a central entity, but

can be deterministically computed, with the use of symmetric prim-

itives such as pseudo-random functions, from the keys belonging

to that node’s children.

1.3.1 Diffie-Hellman Trees. The seminal works of [29] (NAGKA)
and [23] (TGDH) pave the way to Diffie-Hellman trees by combin-

ing the concepts of children-dependent key graph and (2-party) DH

key agreement. A number of subsequent papers continue in this

vein, [24], [37], [16], [14] among others. However, ART [15] is the

first fully asynchronous DH-tree-based group key agreement pro-

tocol, that no longer requires all users to be online for every group

operation and additionally provides the expected security property

of post-compromise security. This protocol has been chosen as

MLS’s CGKA in its initial IETF RFC draft [9].

1.3.2 TreeKEM Protocol. TreeKEM [11] is a versatile CGKA that

uses a binary tree in which the cryptographic primitives – and

in particular, a public-key encryption scheme (PKE) – are used

as black boxes. Consequently, it is not linked to any particular

cryptographic assumption and offers the crypto-agility needed to

overcome the failure of any used primitive. This protocol constitutes

MLS’s CGKA since version two of its RFC draft [10], until the

current IETF standard [7].

1.3.3 Tree Degree Variations. Within the large body of literature

devoted to tree-based group key agreement, only few papers seem

to have questioned the use of binary trees for this type of protocol,

notably because degree 2 is best suited for the numerous protocols

relying on the (2-party) Diffie-Hellman problem. The early work

of [35] studies the best key graph in the framework of centralized

Logical Key Hierarchy, and reaches the conclusion that a rooted-

tree of degree 4 is the best architecture for their Secure Group. Their
conclusion is however inadapted to our present study, since their

analysis is based on the computational cost of the protocol and not

on the communication one.

The main alternate propositions to binary trees are protocols

using the Bilinear Diffie-Hellman problem [26], [22], after a pairing-

based three-party DH variant has been proposed by [21]. For its

part, [34] uses, inside a ternary tree, the GDH.2 protocol of [33]

based on the generalized Group Diffie-Hellman problem, and shows

that this architecture is more efficient in terms of communication

cost than a binary Diffie-Hellman tree. [25] extends the latter work

by allowing a number of group members different than a power of

three, using non-full ternary trees. No analysis is however carried

out regarding the most efficient structure of that tree.

Regarding TreeKEM, the authors [11] specify that their protocol

works with trees of any degre; however it has been used by MLS

with binary trees only.

2 PRELIMINARIES
2.1 Trees
A tree is defined in graph theory as a connected acyclic graph, i.e. a

set of nodes (a.k.a. vertices) that are all connected to each other by

exactly one edge. In a rooted tree, one of the vertices is designated

as the tree root; when the tree edges are directed towards the root,

the tree is called in-tree. Otherwise, it is an out-tree.

2.1.1 Trees Used in a CGKA. We consider in this paper rooted

out-trees 𝑇 – simply called trees in the following pages –, where

the root is located on top of the tree. Each node descends from a

parent node above it, and has under it zero or several children, in

which cases this node is called respectively a leaf and an internal

node.

Definition 2.1 (Tree). A (rooted) tree 𝑇 is recursively defined as

either a leaf ℓ or a finite ordered set of 𝑏 ∈ N∗ subtrees – called its

branches – linked together by a root: 𝑇 = ℓ | (𝐵𝑖)𝑖∈J1,𝑏K.

We exclude from our study the special case where nodes are

allowed to have a single child. To do so, we define below the con-

cept of non-linear trees, where this unwanted structure is excluded.

We adopt this restriction in the tree structure because the Ratchet

Tree used in TreeKEM-based CGKAs does not allow such an ar-

chitecture: indeed, internal nodes in that Ratchet Tree are used

to detain intermediate encryption keys common to a subgroup of

leaves. When a node has only one child, the encryption key of that

node and the one of its child are related to the same subgroup of

leaves beneath them and thus appear redundant.

Definition 2.2 (Non-Linear Tree). A tree is said to be non-linear

if none of its nodes has a single child: 𝑇𝑛𝑙 = ℓ | (𝐵𝑖)𝑖∈J1,2≤𝑏K.

2.1.2 Tree features. We define below the basic features character-

izing trees.

Node and Tree Degree. The number of children belonging to

a node 𝑣 is referred to as that node’s degree, noted 𝑑𝑒𝑔(𝑣). The
maximum number of children that any node can have, i.e. the

maximum node degree in the tree, is called the tree degree, or tree

arity and is noted𝑚 = 𝑑𝑒𝑔(𝑇).

Full and Perfect Trees. A full tree of degree𝑚 ≥ 2 is a tree where

each node can only have 0 or𝑚 children
5
.

5
A full tree is therefore a particular case of a non-linear tree from Definition 2.2.

Chevalier et al.

A perfect𝑚-ary tree is a full tree whose leaves are all located at

the same depth (cf. below).

Non-Planar Tree. A non-planar tree is a tree that remains un-

changed by the permutation of its branches: 𝑇 = ℓ | {𝐵𝑖 }𝑖∈J1,𝑏K.

The Ratchet Tree used in CGKAs is a planar tree, where the

order of the leaves corresponds to the users’ indices. However,

as horizontally permuting the Ratchet Tree’s internal nodes and

leaves (i.e. the subtrees 𝐵𝑖 in the recursive view) has no impact

on that tree’s communication cost, we only consider in this paper

non-planar trees.

Node and Tree Heights. The height ℎ(𝑣) of a node 𝑣 is defined
as the length (i.e. the number of nodes) in the longest downward

path from this node to a leaf descending from that node. A leaf

consequently has a height zero.

The height of a tree𝑇 , notedℎ(𝑇) or simplyℎ, corresponds to the

height of its root. It is thus the length of the longest path between

the root and one of the leaves in the tree.

Node Depth. The depth 𝑑 (𝑣) of a node 𝑣 is the length of its path

up to the tree root. Consequently, the root itself has a depth zero,

whereas the lowest leaves in the tree have a depth equal to the tree

height. Node height and depth are linked by the following relation:

∀𝑣 ∈ 𝑇, ℎ(𝑣) = ℎ(𝑇) − 𝑑 (𝑣).

Weighted Tree and Weight Function. A weighted tree is a tree

where each leaf is associated with a coefficient 𝑐ℓ ∈ R labeled as

its weight. It is a generalization of a non-weighted tree, the later

having all leaves associated with a weight 𝑐ℓ = 1.

The weight function is recursively defined as follows:

𝑤 (𝑇) =
{
𝑐ℓ if 𝑇 = ℓ∑𝑏
𝑖=1𝑤 (𝐵𝑖) if 𝑇 = (𝐵𝑖)𝑖∈J1,𝑏K

(1)

Nota: The weight of a non-weighted tree represents the number

of leaves of that tree. Similarly, the weight of an internal node in

a non-weighted tree corresponds to the number of leaves in the

subtree rooted at that node.

2.2 TreeKEM’s Ratchet Tree
Adetailed description of howTreeKEM– as standardized in RFC 9420

[7] – works as a CGKA protocol, is given in Appendix A.2. We focus

hereunder on the Ratchet Tree used by TreeKEM.

2.2.1 Ratchet Tree. As stated above, the key tree used by TreeKEM
to perform its group key agreement – called the Ratchet Tree– is a

full binary rooted tree where users are represented by the leaves and

the group key is computed at the root. Each node of this Ratchet

Tree, except for the root, is associated with a local state 𝛾 that

notably includes an encryption key-pair. This one is issued from a

seed called a path secret, that is itself derived from the one of the

node’s children. Details on a node’s state are given in Appendix A.2.

Formal and Logical Tree Representations. For practical reasons,
MLS standard represents a Ratchet Tree as a perfect binary tree,

for all numbers of users 𝑛 and whatever their relative locations in

the tree. Consequently, the 2
ℎ
leaves in such a tree of height ℎ are

not all associated with a group member – except when 𝑛 = 2
ℎ
–

and some of them therefore have an empty state; these leaves are

called blank. Moreover, as TreeKEM’s Ratchet Tree is non-linear, an

internal node cannot have a single child. Consequently, if at least

one of an internal node’s children and all this child’s descendants

are blank, then that internal node itself is blanked.

Since their state is empty, blank nodes do not take part in

TreeKEM’s processes until they are filled again. A perfect tree

with blank nodes can thus be represented, logically speaking, by a

single non-perfect tree where blank nodes are removed and where

leaves that previously had blank ancestors are attached higher in

the tree
6
(cf. Figure 1). The latter representation is called logical

representation whereas the architecture specified in MLS standard

is named formal representation and corresponds to the practical

implementation of that tree.

Figure 1: Correspondence between a tree’s logical representa-
tion and the various formal representations associated with
it (only some of which are depicted in this instance).

The use of blank nodes with the formal representation of

TreeKEM’s Ratchet Tree requires to adapt the concepts of direct

path and copath of a node (cf. below). This is done via the notion
of resolution, detailed beneath:

Resolution of a Node (from [4]). The resolution of a node 𝑣 from

a tree is a set of nodes defined as follows:

• if 𝑣 is a non-blank node, then 𝑅𝑒𝑠 (𝑣) = {𝑣};
• if 𝑣 is a blank leaf, then 𝑅𝑒𝑠 (𝑣) = ∅;
• if 𝑣 is a blank internal node, then:

𝑅𝑒𝑠 (𝑣) = ∪𝑣′∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑣)𝑅𝑒𝑠 (𝑣 ′).

(Filtered) Direct Path and Copath of a Node. A node’s direct path,

noted P𝑣 , is composed of all the ancestors of that node, up to the

root. A node’s copath CP𝑣 contains the sibling(s) of that node and
the ones of its ancestors (i.e. of the nodes belonging to its direct

path).

In a formal tree representation, a node’s direct path may include

blank nodes that must not be taken into account. Consequently,

MLS standard [7] defines the notion of a node’s filtered direct path,
which is that node’s direct path from which all nodes that have

a child with an empty resolution are removed. The filtered direct

path is thus the transcription, in a formal tree representation, of

the concept of direct path used in logical representation.

Nota: In the remainder of this document, we generically use

the term direct path to refer both to the standard direct path in

logical tree representation and to the filtered direct path in formal

representation, as they are equivalent.

6
The converse is not true: as the formal representation is more precise regarding the

leaf arrangement than the logical one, a single logical topology may correspond to

several formal representations that are logically equivalent.

A Study on CGKAs Trees

2.2.2 Ratchet Tree Evolution: the Commits. The update of

TreeKEM’s Ratchet Tree, in order to follow the evolution of the

group membership as well as to periodically refresh users’ keying

material, is realized via a commit that groups together and validates
proposals for change sent by any group member.

As shown in the detailed description of a commit, in Appen-

dix A.2, a commit refreshes the committer’s direct path by updating

the path secret of all nodes in its direct path. These refreshed path

secrets must then be encrypted and sent to all users that are located

beneath these nodes. Figure 13 in Appendix A.2 depicts this update

process.

Broadcast of a commit message to the Ratchet Tree. All infor-
mation related to the commit is grouped within a single commit
message 𝐶 that is broadcasted to the group, and that consists of:

• the list of proposals that the commit implements (P);
• the updated (signed) public local state

𝑝𝛾 ′𝑐 of the committer;

• the new public encryption keys (𝑝𝑘′𝑣𝑝)𝑣𝑝 ∈P𝑐 from the com-

mitter’s direct path;

• the path secrets 𝑝𝑠𝑣𝑝 of the nodes 𝑣𝑝 ∈ P𝑐 from the commit-

ter’s direct path, each encrypted, with the HPKE ciphersuite

at use, under the public key of 𝑣𝑝 ’s child 𝑣𝑟 on the commit-

ter’s copath
7
.

𝐶 (𝑢𝑐) = P | | 𝑝𝛾 ′𝑐 | |
(
𝑝𝑘′𝑣𝑝

)
𝑣𝑝 ∈P𝑐 | |

(
Enc(𝑝𝑘𝑣𝑟 , 𝑝𝑠𝑣𝑝)

)𝑣𝑟 ∈R𝑣𝑝
𝑣𝑝 ∈P𝑐 (2)

Consequently, decreasing the amount of data exchanged during

the evolution of the Ratchet Tree comes to minimizing the size

of the commit message. That size partly depends on the number

of path secrets that need to be encrypted and on the number of

different ciphertexts sent for each path secret, which themselves

depend on the structure of the Ratchet Tree. The next part of our

paper is therefore devoted to determining, with a specific metric,

the tree-dependent factors for the size of the commit message, that

are relevant for our study.

Encryption Process. MLS states that the encryption of private

messages is carried out through the HPKE paradigm [8]: a Key

Encapsulation Mechanism (KEM) generates a shared secret that is

used as key and nonce for an AEAD
8
-based symmetric encryption

of the plaintext.

The ciphertext size |𝑐𝑡𝑚 | generated by an HPKE scheme thus

depends on the plaintext size |𝑚 |, on the size of the AEAD tag and

on the KEM’s features. In this paper, we focus on the encryption of

the path secrets that must be transmitted within a commit. For a

KEMK , an AEAD scheme E yielding a tag of size |𝑡𝑎𝑔 | and a given
path secret size

9 |𝑝𝑠 |, we define the ratio 𝜏 as:

7
MLS standard blanks all the nodes in the direct path of a leaving member. Conse-

quently, until these internal nodes are one-by-one filled again by subsequent path

updates initiated by the neighbors of the removed user, we may have in the tree several

leaves joined together by a blank node, which corresponds, in logical representation,

to attaching these leaves higher in the tree, and sometimes even directly to the root.

In this case, we may need to encrypt several times the same path secret. However, as

this structure is only temporary, we do not take it into account in our study and we

consider that a path secret is only encrypted as many times as the node has children

in the committer’s copath (once in the case of a binary tree).

8
Authenticated Encryption with Associated Data

9
The size of a path secret is defined by MLS standard as the output of the Extract

stage of the Key Derivation Function used within the selected ciphersuite. This value

depends on the desired security level.

𝜏
ℎ𝑝𝑘𝑒

K,E, |𝑝𝑠 | =

���𝑝𝑘ℎ𝑝𝑘𝑒 ������𝑐𝑡ℎ𝑝𝑘𝑒|𝑝𝑠 |

��� =

���𝑝𝑘K �����𝑐𝑡K �� + ��𝑡𝑎𝑔E �� + |𝑝𝑠 | (3)

The values of 𝜏 for the (classical) ciphersuites advised by MLS

standard, as well as for the post-quantum ciphersuites that are most

likely to be used, are detailed in Table 1 in Appendix C.

3 OPTIMIZING A TREE STRUCTURE
We study in this part the influence of a Ratchet Tree’s structure,

i.e. the disposition of its leaves, on its communication cost. With

a metric defined in Section 3.1 that enables us to determine the

communication cost associated with a tree, we show in Section 3.2

that a full tree of any given degree has an optimal structure, yielding

a minimal communication cost, that we capture with a property we

call depth-balance. We show in Section 3.3 that the tree evolution

mechanism currently used in TreeKEM is not optimal regarding

this cost function, and we propose in Section 3.4 optimized tree

evolution algorithms to improve the efficiency of that CGKA, that

we experimentally compare to TreeKEM’s.

3.1 Communication Cost Metric
3.1.1 General Expression. Given the content of the commit mes-

sage and the fact that it is broadcasted, the communication cost of

a TreeKEM-based CGKA must take into account two factors:

• the number of public keys associated with the ancestor

nodes of the committer, called the committer’s parent cost
and noted a𝑝 ;

• the number of encrypted path secrets that are transmitted

to the nodes of the committer’s copath, hereunder named

its sibling cost and noted a𝑐 .

Definition 3.1 (Parent Cost and Sibling Cost). The parent cost aℓ𝑝
of a leaf is the number of nodes in that leaf’s direct path. The sibling

cost aℓ𝑐 of that leaf is the number of nodes in its copath.

The parent cost a𝑝 and the sibling cost a𝑐 of a tree are the sums

of respectively the parent costs and the sibling costs of all the leaves

of that tree:

a𝑝 (𝑇) =
∑︁

ℓ𝑖 ∈𝑇
a
ℓ𝑖
𝑝 and a𝑐 (𝑇) =

∑︁
ℓ𝑖 ∈𝑇

a
ℓ𝑖
𝑐 (4)

We recursively write the parent cost and the sibling cost of a

𝑚-ary tree 𝑇 as follows, with𝑤 (𝑇) denoting its weight.
𝑇 = ℓ 𝑇 = (𝐵𝑖)𝑖∈J1,𝑏≤𝑚K

a𝑝 (𝑇) 0

∑𝑏
𝑖=1

(
a𝑝 (𝐵𝑖) +𝑤 (𝐵𝑖)

)
a𝑐 (𝑇) 0

∑𝑏
𝑖=1 (a𝑐 (𝐵𝑖) + (𝑏 − 1) ·𝑤 (𝐵𝑖))

Definition 3.2 (Communication Cost of a CGKA’s Ratchet Tree). Let
us consider a Ratchet Tree𝑇 used in a TreeKEM-based CGKA, with

a set of 𝑛 users𝑈 = (𝑢𝑖)𝑖∈J1,𝑛K associated with leaves (ℓ𝑖)𝑖∈J1,𝑛K.

Let a𝑝 and a𝑐 be the parent and sibling costs of that tree, and |𝑝𝑘 |
and |𝑐𝑡 | the sizes of respectively the public keys and ciphertexts

yielded by the HPKE scheme used by the CGKA, and 𝜏 be their

ratio, as defined in Section 2.2.2.

We define the communication cost 𝑐𝑇 of a tree 𝑇 as the sum

of the commit message sizes |𝐶𝑖 | when all users in the tree act as

committers:

Chevalier et al.

𝑐𝑇 =
∑︁

ℓ𝑖 ∈𝑇
|𝐶𝑖 | = a𝑝 |𝑝𝑘 | + a𝑐 |𝑐𝑡 | +] = ^𝑇 · |𝑐𝑡 | +]

with] =
∑︁

ℓ𝑖 ∈𝑇
(��Pℓ𝑖 �� + ��𝑝𝛾ℓ𝑖 \{𝑝𝑘ℓ𝑖 }��)

and ^𝑇 = a𝑝𝜏 + a𝑐 (5)

Nota 1: As the Ratchet Tree’s root does not have any public

key attached to it, the number of public keys associated with a

committer’s direct path are a
ℓ𝑐
𝑝 − 1. However, as a commit is always

associated with a key update of the committer itself, we chose to

include in the communication cost the committer’s new public key

𝑝𝑘ℓ𝑐 , which must therefore be removed from its public state
𝑝𝛾ℓ𝑐

when the latter is comprised in the constant term].

Nota 2: For simplicity reasons, our analysis displayed in the

following pages focuses on the term ^𝑇 – often simply noted ^ –

that we call normalized communication cost, which does not take

into consideration the] and |𝑐𝑡 | factors that are independent of the
tree structure.

3.1.2 Communication Cost of a Full𝑚-ary Tree. In a full tree of

a degree 𝑚 ≥ 2 (noted 𝑇
𝑓
𝑚), each node except the root has, by

definition, exactly one parent and𝑚 − 1 siblings. Consequently, for
each leaf ℓ𝑖 in the tree, a direct path of a

ℓ𝑖
𝑝 nodes yields a copath of

a
ℓ𝑖
𝑐 = (𝑚 − 1)aℓ𝑖𝑝 nodes. If we sum the encryption and parent costs

for all users in the tree, we come to the following equation:

𝑇
𝑓
𝑚 : a𝑐 = (𝑚 − 1)a𝑝 ⇒ ^ = a𝑝 (𝜏 +𝑚 − 1) (6)

Nota: In the particular case of a a full binary tree (𝑇 𝑓
2
), the number

of nodes in a leaf’s copath is the same as the one of its direct path

and the Ratchet Tree’s communication cost is simplified into:

𝑇
𝑓

2
: ^ = a𝑝 (𝜏 + 1) (7)

The equations above show that optimizing the communication

cost of a CGKA using an encryption scheme with a parameter 𝜏

and whose Ratchet Tree has a given degree𝑚, only comes to mini-

mizing the sum a𝑝 of all direct paths lengths in the tree. This can

be precisely reached by enhancing the tree balance according to a

concept called depth-balance.

3.2 Optimal Structure of a Full𝑚-ary Tree
3.2.1 Depth-Balance of a Full Tree. It is clear that the way a tree

is balanced directly affects the length of some of – if not all – the

leaves’ direct paths, and therefore, the parent cost a𝑝 . The sibling

cost a𝑐 is also affected by the balance of the tree.

As an instance, Figure 2 compares the values of a𝑝 for a to-

tally unbalanced binary tree (left), which has a maximized height

ℎ𝑢𝑛𝑏𝑎𝑙 = 𝑛 − 1, and for a perfect binary tree that minimizes its

height (ℎ = log
2
(𝑛)). This instance underlines the need to sum

the sibling cost a
ℓ𝑖
𝑝 of all leaves: indeed, in an unbalanced tree, the

leaves that have the lowest depth (i.e. that are the closest to the

root) have a reduced direct path.

Figure 2: Comparison of the parent costs of a full binary tree
bearing 𝑛 leaves, with unbalanced (left) and balanced (right)
structures.

We define below the concept of depth-balance, in the general

case of a full𝑚-ary tree. We then prove in Theorem 3.4 that a depth-

balanced full𝑚-ary tree has an optimal communication cost, and

we determine that optimal cost.

Definition 3.3 (Depth-Balance of a Full Tree). Let us consider a full
𝑚-ary tree 𝑇 , with an arbitrary degree𝑚 ≥ 2. We say that this tree

is depth-balanced if the difference of depth between its higher and

lower leaves is lesser than or equal to one: 𝑑𝑚𝑎𝑥 (𝑇) −𝑑𝑚𝑖𝑛 (𝑇) ≤ 1.

Nota:A perfect𝑚-ary tree is a particular case of a depth-balanced

tree, that occurs when the number of leaves is precisely𝑛 =𝑚𝑘 (𝑘 ∈
N). It can be shown easily that with such a number of users, the

only way for the tree to be depth-balanced is to be perfect.

3.2.2 Lower Bound of a Full Tree’s Communication Cost. We prove

hereunder that the lower bound of a full tree’s communication cost

is achieved when that tree is depth-balanced (Theorem 3.4) and we

determine its communication cost in that case (Lemma 3.5).

Theorem 3.4. Let 𝑇 𝑓𝑚 be a full𝑚-ary tree with a given number of
leaves 𝑛. Then𝑇 𝑓𝑚 has an optimal (normalized) communication cost ^
if and only if it is depth-balanced.

Proof Sketch. Our proof, which is detailed – for lack of space –

in Appendix B.1, is organized as follows :

• Step 1: We define a one-step bottom-up balancing pro-

cess (depicted in Figure 14) that moves upwards a group

of𝑚 − 1 leaves from the bottom level of the tree. We show

that, when applied on any depth-unbalanced full𝑚-ary tree,

this balancing process automatically decreases that tree’s

communication cost.

• Step 2: We then prove that in a random depth-balanced
tree, any leaf movement – including the aforementioned

balancing process – either leaves that tree unchanged
10

or

increases its communication cost. These two steps prove

that a depth-balanced structure has an optimal communi-

cation cost.

10
Indeed, as it is detailed below, the resulting tree only undergoes a horizontal leaf

reordering, which is not considered a modification as our communication cost study

deals with non-planar trees that have no node ordering.

A Study on CGKAs Trees

• Step 3: We finally prove, with a demonstration by contra-

diction, that the optimal cost of a tree is only achieved with

a depth-balanced structure.

Lemma 3.5 (Optimal Communication Cost of a Full𝑚-ary

Tree). The optimal (i.e. minimal) communication cost of a full𝑚-ary
tree 𝑇 𝑓𝑚 , of height ℎ =

⌈
log𝑚 (𝑛)

⌉
and bearing 𝑛 leaves, is:

^𝑜𝑝𝑡𝑖𝑚 (𝑇 𝑓𝑚) =
(
ℎ𝑛 + 𝑛 −𝑚

ℎ

𝑚 − 1

)
(𝜏 +𝑚 − 1) (8)

Nota: In the case of a full binary tree (𝑇
𝑓

2
), this optimal commu-

nication cost becomes:

^𝑜𝑝𝑡𝑖𝑚 (𝑇 𝑓
2
) =

(
𝑛(ℎ + 1) − 2ℎ

)
(𝜏 + 1) (9)

Proof. According to Theorem 3.4, the optimal communication

cost of a full𝑚-ary tree corresponds to the cost of that tree with

a depth-balanced structure (𝑇𝑑𝑏𝑚). In that case, by definition, the 𝑛

leaves of 𝑇𝑚 are dispatched in two depths. Let 𝑥 be the number of

bottom leaves, at depth 𝑑𝑚𝑎𝑥 = ℎ =
⌈
log𝑚 (𝑛)

⌉
, and 𝑦 the number

of top leaves at depth 𝑑𝑚𝑖𝑛 = ℎ− 1. We note that the particular case

of a perfect tree can be easily deduced by stating 𝑥 = 𝑛 and 𝑦 = 0.

As we have 𝑥 +𝑦 = 𝑛 and 𝑥 +𝑚𝑦 =𝑚ℎ , we can deduce the values

of 𝑥 and 𝑦 as:

𝑥 =
𝑚(𝑛 −𝑚ℎ−1)

𝑚 − 1 𝑦 =
𝑚ℎ − 𝑛
𝑚 − 1

(10)

Consequently, we have:

a
𝑜𝑝𝑡𝑖𝑚
𝑝 (𝑇 𝑓𝑚) = a𝑝 (𝑇 𝑓 ,𝑑𝑏𝑚) = 𝑥ℎ + 𝑦 (ℎ − 1) = ℎ𝑛 + 𝑛 −𝑚

ℎ

𝑚 − 1 (11)

a
𝑜𝑝𝑡𝑖𝑚
𝑐 (𝑇 𝑓𝑚) = a𝑐 (𝑇 𝑓 ,𝑑𝑏𝑚) = (𝑚 − 1)a𝑝 (𝑇 𝑓 ,𝑑𝑏𝑚) (12)

^𝑜𝑝𝑡𝑖𝑚 (𝑇 𝑓𝑚) = ^ (𝑇 𝑓 ,𝑑𝑏𝑚) =
(
ℎ𝑛 + 𝑛 −𝑚

ℎ

𝑚 − 1

)
(𝜏 +𝑚 − 1) (13)

□

3.3 Efficiency of TreeKEM’s Binary Ratchet Tree
As stated above, TreeKEM’s tree evolution mechanism adds a new

user to the group by filling the leftmost blank leaf in the tree – in

formal tree representation – and increases the tree size by adding

a new root on top of the current one and attaching to the right of

the latter a blank subtree whose leaves are then filled, from left to

right, by the additional user(s). The tree is reduced when its entire

right subtree is blank, in which case that subtree and the current

tree root are removed.

This process tends to left-balance the Ratchet Tree, which ap-

pears, in several cases, not to be an effective manner to reach the

depth-balance that optimizes the communication cost. This process

may even worsen the tree’s structure, as illustrated as instance by

Figure 3.

3.3.1 Efficiency of TreeKEM’s Tree Expansion. As the tree expan-
sion mechanism is always applied on a perfect tree (in logical

representation), it can be precisely studied without the need of

a simulation. And it turns out that expanding a Ratchet Tree to the

right is particularly inefficient in terms of communication cost – in

fact, it is the most inefficient technique in this context.

Figure 3: Communication cost of a user add in a full binary
tree, with TreeKEM’s left-balanced method (left) and the
optimal one (right). Because this cost only depends on the
depth at which the new user is inserted, left-balancing the
Ratchet Tree often leads to costly tree structures.

Indeed, the perfect tree that needs to be expanded is depth-

balanced and therefore yields an optimal communication cost. Keep-

ing that balance implies adding any additional leaf at a depth whose

difference from that of the other leaves is less than or equal to one.

Intuitively, this means adding the leaf as close as possible to the

bottom of the tree.

However, TreeKEM’s mechanism does precisely the opposite.

Adding a new user in a new right subtree attached to the root,

whatever this user’s location in that subtree, corresponds in logical

representation to adding a leaf just below the root, at depth𝑑 = 1. As

the previous leaves are all at depth 𝑑 = log
2
(𝑛) (with 𝑛 the original

number of users), adding a user this way induces a communication

overhead of Δ^𝑇𝐾
𝑒𝑥𝑝𝑎𝑛𝑑

= (𝜏+1) (𝑛+1). This value must be compared

to the optimal overhead – when the expanded tree remains depth-

balanced – of Δ^
𝑜𝑝𝑡𝑖𝑚

𝑒𝑥𝑝𝑎𝑛𝑑
= (𝜏 + 1) (log

2
(𝑛) + 2).

3.3.2 Efficiency of TreeKEM’s User Add. Contrary to the tree expan-
sion process, it is not possible to generically evaluate the efficiency

of TreeKEM’s user add process since it strongly depends on the

initial structure of the tree in which a new leaf must be added. This

efficiency is therefore analyzed experimentally in the remainder of

this paper.

Despite its suboptimal communication cost, the tree evolution

mechanism adopted by TreeKEM presents the advantage that the

choice of a new user’s location is deterministic and needs only few

computations. Therefore, the committer that adds the new user has

no need to broadcast that location to the entire group. Instead, any

member – that has a full view of the Ratchet Tree – locally updates

its own copy of that tree.

3.4 Our Improved Tree Evolution Algorithms
We present here two algorithms designed to optimize the operations

of tree expansion and user add in a full binary tree such as the one

Chevalier et al.

used with TreeKEM, while keeping the simplicity and deterministic

aspect of TreeKEM’s algorithms. Both algorithms are generalizable

to trees of any degree𝑚 ≥ 2.

3.4.1 Optimal Tree Expansion. As we have previously seen, the

best way to expand a perfect tree of initial height ℎ consists in

adding the additional leaves at a depth as close as possible to the

one of the original leaves. Since the tree is perfect, the new leaves

must be added at the bottom of the tree, one depth over the original

leaves. This ensures that the resulting tree remains depth-balanced,

and that its communication cost consequently stays optimized.

In formal tree representation, this method is carried out by mov-

ing all the 2
ℎ
current leaves down one level (to depthℎ+1), replacing

them at depth ℎ by internal nodes, and by attaching a blank sibling

to each of them. The bottom layer of the Ratchet Tree, at depth

ℎ + 1, thus becomes an alternation of 2
ℎ
filled and 2

ℎ
empty leaves

(cf. Figure 4) that can be used afterwards to welcome new users.

This bottom expansion method involves modifying the leaf in-

dices of the existing users, which are multiplied by a factor two:

∀𝑖 ∈
r
0, 2ℎ − 1

z
, ℓ′
𝑖
= 2ℓ𝑖 .

Even if, with TreeKEM, users keep the same leaf index as long

as they belong to the group, the standard clearly specifies that the

correlation between a user ID and a leaf index depends on the

epoch
11
. Consequently, nothing prevents users from periodically

changing their leaf index, as long as all group members are aware

of these changes and update their local view of the Ratchet Tree

accordingly. In the case of our bottom tree expansion, all group

members receiving a commit that comprises a user add, whereas

the Ratchet Tree is full, know that they must expand the latter by

multiplying all users’ indices by two.

Figure 4: Ratchet Tree expansion with TreeKEM’s right-
expansion (top) and our optimized bottom method (bottom)
that keeps the tree’s depth-balance but modifies the leaf in-
dices of the existing users.

The main drawback of our method comes from the unmerged
leaves process, carried out by TreeKEM in order to maintain the

CGKA’s forward secrecy at the arrival of a new user. This process

11
Indeed, due to the changes in the group membership, the protocol may assign the

same leaf index to different users, at different time points.

indeed blanks the whole direct path of the arriving user, so that

none of these nodes contains secret elements related to previous

epochs. Because all nodes above the new user are blank, the latter

is logically attached straightly to the root. Later, as the newcomer’s

neighbors update their own path, that user is attached further down

the tree.

Since TreeKEM’s tree expansion to the right puts the new user

in a separate new subtree that is already blank, no path blanking is

performed on the original tree (that now constitutes the current left

subtree). With our bottom tree expansion, nevertheless, we need to

blank the direct path of the new user’s location in the original tree,

comprising ℎ nodes, which affects in consequence the structure of

half of the 2
ℎ
original leaves.

Fortunately, the effect of adding a single user can be totally offset

if the protocol adds that newcomer (after expanding downward the

Ratchet Tree) as the committer’s sibling. Because the commit auto-

matically updates the committer’s direct path, which is identical to

its sibling’s, the nodes that have been blanked by the user add are

filled again right after.

3.4.2 Almost-Optimal User Add. The optimal location where a

new user should be added in a full binary tree is at depth 𝑑𝑚𝑖𝑛 + 1,
attached to the top leaf (or one of the top leaves) at original depth

𝑑𝑚𝑖𝑛 in the tree.

The reason for it is simple: as the future sibling of the new leaf

moves down a level, from 𝑑ℓ𝑠 to 𝑑′
ℓ𝑠

= 𝑑ℓ𝑠 + 1, its parent cost is
incremented by one: Δaℓ𝑠𝑝 = 1. Moreover, the new leaf ℓ𝑛 induces

an additional parent cost of a
ℓ𝑛
𝑝 = 𝑑ℓ𝑠 + 1. The tree’s parent cost

therefore varies as follows: Δa𝑝 = Δaℓ𝑠𝑝 + a
ℓ𝑛
𝑝 = 𝑑ℓ𝑠 + 2 and

Δ^𝑢𝑠𝑒𝑟𝐴𝑑𝑑 = Δa𝑝 (𝜏 + 1) = (𝑑ℓ𝑠 + 2) (𝜏 + 1) (14)

Consequently, mitigating the overhead associated with a user

add comes to minimizing the original depth 𝑑ℓ𝑠 of the leaf to which

the new leaf will be attached. In other terms, the higher the new leaf

is located in the tree, the better it is for the tree’s communication

cost.

Difficulty Finding the Top Leaves of a Ratchet Tree. A naive ap-

proach to determine the top leaf/leaves in the Ratchet Tree consists

in recording, in each user’s state, the depths of all leaves in the

tree. This can be seen as an array of all the tree leaves, where each

leaf index is associated with its depth. However, the computations

needed to keep this array updated, after each user add and removal,

and sorted by depth can become quickly costly. Indeed, adding or

removing a leaf has an influence on the depth of all the leaves in

the subtree rooted at that leaf’s sibling. In a worst-case scenario,

this number can reach 2
ℎ−1

in a perfect binary tree of height ℎ.

Our Lightest Child Algorithm. Considering the difficulty to keep

an up-to-date record of the leaf depths in a large tree, we have

designed a simple yet effective algorithm that computes, when a

user add is requested, a close-to-optimal insertion location for that

new leaf. This algorithm is called the Lightest Child Algorithm.

The idea behind it is that the lower the weight of a tree (i.e. the

fewer leaves it has), the smaller the average depth of its leaves is.

Consequently, comparing sibling subtrees of the Ratchet Tree– i.e.

subtrees rooted at the same depth – by considering their respective

A Study on CGKAs Trees

weights determines which one of them have in average the highest

leaves: this one is the lightest subtree. Consequently, it is likely

that the highest leaf in the tree, that we are looking for, is located

precisely in that lightest subtree.

We proceed recursively by selecting the lightest subtree and

comparing the weights of that subtree’s subtrees, and so on, until

the subtree we are working on comprises two nodes (one of which

is necessarily blank, unless the Ratchet Tree is totally filled and

needs an expansion). In total, in a Ratchet Tree with 2
𝑥
leaves, this

operation must be carried out 𝑥−1 times, logarithmically in relation

to the number of group members.

For efficiency considerations, instead of recursively determining

the lightest subtree of each lightest subtree in the Ratchet Tree,

and proceeding this way at every user add
12
, we determine at the

beginning of the group evolution a Weighted Ratchet Tree. This

tree, depicted in Figure 5, is a copy of the Ratchet Tree in its formal

representation, in which each node is associated with its weight

(cf. Section 2.1.2)
13
.

Figure 5: User add in a Ratchet Tree with our Lightest Child
algorithm, relying on the associated Weighted Ratchet Tree.
Determining a location for a new user requires reading only
a logarithmic number of nodes in that tree.

Thanks to this Weighted Ratchet Tree, recursively comparing

the lightest subtrees of the Ratchet Tree comes to selecting, from

the root, the lightest child of each previously selected node, i.e.

the node with the minimal associated weight
14
. With this method,

building (once) the Weighted Ratchet Tree has a computational cost

in𝑂 (𝑛) but afterwards, each use of that Weighted Ratchet Tree has

a computational complexity of only 𝑂 (log
2
(𝑛)) (since it comes to

reading the direct path of a leaf in a perfect binary tree).

The Weighted Ratchet Tree evolves with the group membership

and must be updated at each user add or removal, by increasing or

decreasing by one the weight of each node in the added/removed

leaf. For efficiency considerations, the update of the Weighted

Ratchet Tree during a user add is carried out at the same time as

the determination of the lighest child (blue increment in Figure 5).

Figure 20 details the pseudocode for the Bottom Tree Expan-

sion and Lightest Child algorithms (including the construction of a

Weighted Ratchet Tree), extended to the generic case of a𝑚-ary tree.

12
Such basic approach implies to read all 𝑛 users, then

𝑛
2
users of the lightest subtree,

and so on during the log
2
(𝑛) stages of the process, which induces a computational

cost in𝑂 (𝑛) .
13
This Weighted Ratchet Tree can also be seen as a slight modification of the Ratchet

Tree, where a new weight field is added at the public state of the nodes.

14
In case several children have an identical weight, the leftmost child is selected.

Since the optimal location for a new leaf strongly depends, once

again, on the tree structure at the time of that user add, the effi-

ciency of our algorithm can only be assessed through experimental

results. These ones, detailed below, show that the Lightest Child

algorithm, paired with our Bottom Tree Expansion, gives the tree a

communication cost very close to the optimal one, with an average

overhead around 0.5 %.

3.5 Experimental Results
In order to assess in practice the efficiency of our optimizations,

we have modeled in a Python program the random evolution of a

full binary Ratchet Tree and we have compared the communication

costs of such tree with three different tree evolution mechanisms:

TreeKEM’s, our optimized one and what we call the wild evolution.
More specifically, the Ratchet Tree is initialized as a tree whose

number of leaves is the minimum power of the tree degree that

contains the desired number of users: 𝑛ℓ = 𝑚⌈log𝑚 (𝑛𝑢𝑠𝑒𝑟𝑠)⌉ . The
arrangement of the 𝑛𝑢𝑠𝑒𝑟𝑠 filled leaves and 𝑛ℓ −𝑛𝑢𝑠𝑒𝑟𝑠 blank leaves
is then randomized. The evolution pattern of that initial tree is

modeled by a random walk: at each iteration, the tree undergoes,

with an equal probability, either a user add or a user removal. As

in real life, the removed user is selected randomly among all (filled)

leaves. Conversely, the location where the new user is added to the

tree and the way the tree is expanded, if needed, are determined by

the aforementioned three methods:

• With TreeKEM’s tree evolution mechanism, as specified

in Section 3.3, users are added on the leftmost possible

location in the tree and the Ratchet Tree is expanded to the

right.

• Our optimized method uses both our Lightest Child user

add algorithm and our Bottom Tree Expansion.

• The wild evolution randomly inserts new users among

blank leaves and expands the Ratchet Tree to the right,

similarly to TreeKEM’s tree expansion.

Figure 6: Instance of the compared communication costs
of a randomly evolving Ratchet Tree, with TreeKEM’s tree
evolution mechanism and our optimized algorithms.

Our experimental results displayed in Figure 6 show that TreeKEM

actually behaves quite honorably, with an average overhead, w.r.t.

Chevalier et al.

the optimal cost for full binary trees, of 5.6%
15
. For comparison, the

wild evolution has, in the same conditions, an average overhead of

1.9% whereas our optimized method reaches an average overhead

of only 0.3% w.r.t. that optimal cost.

We nevertheless underline that when the initial tree is already

unbalanced, the efficiency of TreeKEM is impacted – the protocol

has, in that case, a communication overhead of 10% compared to

the optimal cost – whereas the efficiency of our optimized protocol

remains unchanged, with an overhead of less than 1%.

4 TREE DEGREE SELECTION
4.1 General Considerations
The degree of a Ratchet Tree has an obvious influence on the com-

munication cost of a commit. Indeed, given a number 𝑛 of users,

the higher the tree degree, the shorter and wider this tree is. Con-

sequently, the parent cost a𝑝 decreases and the sibling cost a𝑐 in-

creases along with the tree degree.

4.1.1 Tau and the Tree Degree. The optimal degree for a Ratchet

Tree mainly depends on the value 𝜏 related to the ciphersuite used

by the CGKA. Indeed, this parameter represents the ratio of public

key size over the ciphertext size associated with an encryption

scheme. The higher 𝜏 is, the more interesting it becomes to increase

the tree degree so that the number of broadcasted public keys

decreases, even at the cost of a higher number of ciphertexts.

Table 1 in Appendix C details the values of 𝜏 for the encryption

schemes that are expected to be used with MLS, both in the classical

and in the post-quantum frameworks. It emerges from this table that

all classical ciphersuites are associated with a ratio 𝜏 ∈ [0.4, 0.6],
whereas most promising PQ ciphersuites – including the newly

strandardized ML-KEM – have a higher ratio 𝜏 ∈ [0.9, 1.0]. The
next parts are devoted to determining, with theoretical bounds

tightened by experimental simulations, the optimal tree degree in

our parameter range 𝜏 ∈ [0.4, 1.0] .

4.1.2 Determination of the Optimal Degree in the General Case.
Based on the communication cost ^𝑇 (𝜏) of a tree, we define the
cost function of a setS of trees as a function

16 ^S of the parameter 𝜏 :

^S (𝜏) = inf {^𝑇 (𝜏), 𝑇 ∈ S} (15)

For a set S of trees bearing 𝑛 leaves, let us define:

• the points a (𝑇) = (a𝑝 (𝑇), a𝑐 (𝑇)) ∈ R2 and
• the set of points a (S) = {a (𝑇), 𝑇 ∈ S}.

As a tree communication cost ^𝑇 (𝜏) = a𝑝𝜏 +a𝑐 is an affine function

of 𝜏 , minimizing this cost over the set S (i.e. minimizing the cost

function ^S) comes to determining the lower-left part of the convex
hull 𝐻 of the set a (S).

To do so, we define the set a (S)+ as the Minkowski sum [17]

of a (S) and the upper-right quadrant of R2. The convex hull 𝐻 ′ of
a (S)+ corresponds precisely to the lower-left quadrant of the con-

vex hull of a (S), that we are interested in for our cost optimization.

15
The main factors influencing the efficiency are the initial number of users for the

random walk and the method used to generate the initial trees. Our average results are

computed over a range of initial numbers of users from 10 to 120, with 100 repetitions

for each initial number of users.

16
The function ^𝑆 may also be seen as the Fenchel transform [12, 3.3] of the set S of

trees.

Figure 7 depicts the aforementioned convex hull 𝐻 ′ (shaded
area). In that graph, any affine line with a negative slope represents

all trees of 𝑛 leaves, with identical communication cost ^𝑇 and

parameter 𝜏 (the slope of that line being −𝜏). When considering

several parallel lines (thus with an identical 𝜏), the leftmost line has

a lower communication cost that the other ones; this is the reason

why we focus on the lower-left part of the dual convex hull of a

set of trees, that groups together the optimal trees of that set for

different values of 𝜏 . More precisely, if a vertex a (𝑇𝑖) of 𝐻 ′ lies at
the intersection of the segments with slopes −𝜏𝑖 and −𝜏𝑖+1, then for

any 𝜏 ∈ [𝜏𝑖 , 𝜏𝑖+1] and any 𝑇 ′ ∈ S, ^𝑇 ′ (𝜏) ≥ ^𝑇𝑖 (𝜏). In other terms,

the tree𝑇𝑖 related to the vertex a (𝑇𝑖) is optimal – among its set S –

for any 𝜏 ∈ [𝜏𝑖 , 𝜏𝑖+1].

−𝜏𝑖+1

−𝜏𝑖
a (S)+

a (𝑇𝑖)

a (𝑇 ′)
−𝜏

Figure 7: Optimal trees in a set S, viewed as vertices of the
lower-left part of the convex hull of a (S)+.

Complexity Analysis. The complexity of computing the func-

tion ^S over a finite set S of 𝑁 trees is thus that of computing the

convex hull of a planar set of 𝑁 points, which is 𝑂 (𝑁 log(𝑁)) [19].
On the other hand, the cardinality of the set of all trees with

exactly 𝑛 leaves is given by the OEIS sequence A000669 [32][18,

I.45]. This cardinality is Ω(𝜌𝑛), where 𝜌 ≥ 3.5 [18, VII.5]. As a con-

sequence, it appears impossible in practice to enumerate and study

all such trees beyond small values of 𝑛. We provide an enumeration

of all optimal trees up to 𝑛 = 25 in attached artifact best_trees.toml.

While an extensive study is out of computational reach, we can

focus on specific families of trees that seem to be of interest in

practical ranges of 𝜏 intuited by our exhaustive study of small trees

stated above. As a first step, we provide below an analysis on full

trees.

4.1.3 Optimal Degree of a Full Tree. As we have previously proved
that a 𝑚-ary tree minimizes its communication cost when it is

depth-balanced, determining the optimal degree of full trees comes

to analyzing the set of depth-balanced full trees of various degrees.

When the number of leaves in that trees is fixed, that comparison is

easily done with the above convex hull method
17
. This basic study

leads to Figure 8, which shows that:

• The exact number of leaves of the tree has a significant in-

fluence on the optimal degree: namely, perfect trees (depth-

balanced trees whose number of leaves is a power of 𝑚)

are optimal for large intervals of the parameter 𝜏 . This

factor tends to be influential on small trees but becomes

asymptotically negligeable.

• The optimal degree of a full tree increases along with the

parameter 𝜏 .

However, when its degree exceeds two, a CGKA’s Ratchet Tree

never stays full. Indeed, a 𝑚-ary tree can be full only when the

17
We can also use Equation (6) in Section 3.2.2, that gives the communication cost of a

depth-balanced full tree of degree𝑚, to compare the area of optimality of trees with

consecutive degrees.

best_trees.toml

A Study on CGKAs Trees

Figure 8: Areas of optimal tree degree for a full tree, accord-
ing to the values of the encryption scheme’s parameter 𝜏 and
the number of users in the tree (in a logarithmic scale).

number of leaves is 𝑛ℓ = 𝑚 + 𝑘 (𝑚 − 1), 𝑘 ∈ N and when these

leaves are equally distributed within that tree. As we do not control

when and where users leave the group (i.e. when and where leaves

are removed from the tree), our analysis on the optimal tree degree

must extend to the case of the numerous non-full trees.

4.2 Degree Bounds for Practical Values of 𝜏
4.2.1 Collapsed Trees. In order to study the inner structure of a tree
while abstracting away the effect of its leaves, we want to make use

of weighted trees. In this intent, we extend our cost functions a𝑝 and

a𝑐 so that, if𝑇 is a single leaf of weight𝑤 , then a𝑝 (𝑇) = a𝑐 (𝑇) = 𝑤 .

For larger trees, the recursive definitions from Definition 3.1 are

unchanged.

Let 𝑇 ′ be the weighted tree obtained by collapsing an inner

branch (subtree) 𝐵 of a tree 𝑇 to a single leaf of weight𝑤 (𝐵). Then
we see from the recursive definition of a𝑝 that a𝑝 (𝑇 ′) = a𝑝 (𝑇).
The same results holds for a𝑐 , and also after multiple successive

collapses.

This allows replacing the study of a tree 𝑇 , with an arbitrarily

large number of leaves 𝑛, by that of a collapsed tree 𝑇 ′ with a very

small number of leaves, each one of these representing a whole

branch of the original tree. In particular, re-arranging the leaves of

the collapsed tree 𝑇 ′ corresponds to re-arranging the branches of

the original tree 𝑇 , and the impact of such a transformation on the

costs a𝑝 and a𝑐 is identical for both trees.

4.2.2 Trees with Three Leaves. We now describe the configuration

space for the optimal trees with two or three branches at their root,

depending on the parameter 𝜏 as well as on the relative sizes of

the branches. For this we start by studying the weighted trees with

three leaves and – without loss of generality – a normalized total

weight of one. There are only two such trees: a binary 𝑇2 and a

ternary 𝑇3 (cf. Figure 9) defined as: 𝑇2 (ℓ1, ℓ2, ℓ3) = {ℓ1, {ℓ2, ℓ3}} and
𝑇3 (ℓ1, ℓ2, ℓ3) = {ℓ1, ℓ2, ℓ3}, where nodes between brackets are direct

siblings and𝑤1 +𝑤2 +𝑤3 = 1 are the respective normalized weights

of ℓ1, ℓ2 and ℓ3. We have:

a𝑝 (𝑇2) = a𝑐 (𝑇2) = 𝑤1 + 2(𝑤2 +𝑤3) (16)

a𝑝 (𝑇3) = 𝑤1 +𝑤2 +𝑤3 (17)

a𝑐 (𝑇3) = 2(𝑤1 +𝑤2 +𝑤3) (18)

This permits to determine for which value of 𝜏 these trees are

optimal:

^𝑇3 (𝜏) − ^𝑇2 (𝜏) = 𝑤1 − 𝜏 (1 −𝑤1)

^𝑇3 (𝜏) ≤ ^𝑇2 (𝜏) ⇔ 𝜏 ≥ 𝑤1

1 −𝑤1

(19)

On the other hand, both trees𝑇3 and𝑇2 have symmetries. Namely,

using the symmetry of the tree 𝑇3, one may assume that𝑤1 is the

largest of the three weights, and in particular that𝑤1 ≥ 1

3
. In the

same way, for any tree with two branches and at least four leaves –

represented by 𝑇2 –, we can select which branch is collapsed into

the weighted leaf ℓ1 and which branches into the leaves {ℓ2, ℓ3}.
Since the cost of such a tree increases with𝑤1, the optimal tree is

reached when the ℓ1 branch is the lightest branch from the root

of the tree, which implies that 𝑤1 ≤ 1

2
. Putting all these results

together, we can represent the set of optimal weighted trees with

three leaves as in Figure 10a.

In particular, we deduce the following:

(1) For 𝜏 ≤ 1

2
, the optimal trees are binary;

(2) for 𝜏 ≥ 1 and 𝑛 ≥ 3, the optimal trees with 𝑛 leaves are at
least ternary.

For 𝜏 ∈ [1
2
, 1], the optimal tree configurations actually have a

mixture of binary and ternary nodes; as it will be further studied

in Section 4.3.

Figure 9: Small trees with three or four branches.

4.2.3 Trees with Four Leaves. Of the five trees with four leaves, the

only one which cannot be decomposed using the previously defined

families 𝑇2 and 𝑇3, is the flat tree 𝑇4 (ℓ1, ℓ2, ℓ3, ℓ4) = {ℓ1, ℓ2, ℓ3, ℓ4}.
We can compare this tree with 𝑇 ′

3
(ℓ1, ℓ2, ℓ3, ℓ4) = {ℓ1, ℓ2, {ℓ3, ℓ4}}

and with 𝑇 ′
2
(ℓ1, ℓ2, ℓ3, ℓ4) = {{ℓ1, ℓ2} , {ℓ3, ℓ4}} (cf. Figure 9). Using

the same methods as previously, we find that:

(1) ^𝑇4 (𝜏) ≤ ^𝑇 ′
3

(𝜏) for 𝜏 ≥ 𝑤1+𝑤2

𝑤3+𝑤4

;

(2) ^𝑇4 (𝜏) ≤ ^𝑇 ′
2

(𝜏) for 𝜏 ≥ 1.

Moreover, by using the symmetries for𝑇4 or𝑇
′
2
, one may always

ensure that𝑤3 +𝑤4 ≥ 1

2
in both cases. Furthermore, let𝑇 be a large

enough tree with a ternary root. We can always collapse that tree

in a way such that the leaves ℓ3 and ℓ4 are the two heaviest ones;

this ensures that 𝑤3 +𝑤4 ≥ 1

3
. We thus obtain the configuration

space shown in Figure 10b and the following conclusions:

(1) For 𝜏 ≤ 1, the optimal trees with 𝑛 leaves are at most
ternary.

Chevalier et al.

(2) for 𝜏 ≥ 2 and 𝑛 ≥ 4, the optimal trees with 𝑛 leaves are at
least quaternary.

𝜏

�̃�1

(a) Trees with three leaves

𝜏

�̃�3 + �̃�4

(b) Trees with four leaves

Figure 10: Optimal tree configurations with a small number
of leaves. The crossed-out areas mark the configurations
which can be eliminated by symmetries.

The previous parts have bounded the area of optimiality, w.r.t. 𝜏 ,

of binary and ternary trees. When considering an arbitrary tree

degree𝑚, determining a generic lower bound for this degree area

of opimality, seems to be a hard topic. The following part however

gives an upper bound for such a degree.

4.2.4 Upper Bound of an Arbitrary Tree Degree. When one wants

to implement a tree in pratice, the dimensioning parameter corre-

sponds to the tree degree. Upper bounding such a degree is thus

mandatory and we want to do it while keeping opportunities for

optimal communication cost. We give below an upper bound for

the degree𝑚𝑜𝑝𝑡𝑖𝑚 of an optimal tree, with respect to 𝜏 .

For any integer 𝑏 and weights𝑤1 + · · · +𝑤𝑏 = 1, let us compare

the two small trees:

𝑇𝑏 = {ℓ1, . . . , ℓ𝑏 } and 𝑇 ′
𝑏−1 = {{ℓ1, ℓ2} , ℓ3, . . . , ℓ𝑏 } . (20)

𝑇𝑏 and 𝑇 ′
𝑏−1 have the same number of leaves but not the same

degree. Let 𝑥 = 𝑤1 +𝑤2 be the joint weight of ℓ1 and ℓ2. We have:

a𝑝 (𝑇 ′𝑏−1) = a𝑝 (𝑇𝑏) + 𝑥 and a𝑐 (𝑇 ′𝑏−1) = a𝑐 (𝑇𝑏) − (1 − 𝑥) (21)

^𝑇 ′
𝑏−1
(𝜏) < ^𝑇𝑏 (𝜏) ⇔ 𝑥 (𝜏 + 1) < 1 (22)

Using the symmetry between the branches, we may always

choose ℓ1, ℓ2 as the two heaviest leaves, so that 𝑥 ≥ 2

𝑏
. Therefore:

^𝑇 ′
𝑏−1
(𝜏) < ^𝑇𝑏 (𝜏) ⇔ 𝑏 > 2(𝜏 + 1) (23)

This means that it remains interesting to decrease the degree

of any node from a tree, from 𝑏 to 𝑏 − 1, as long as 𝑏 > 2(𝜏 + 1).
Consequently, the optimal tree degree𝑚𝑜𝑝𝑡𝑖𝑚 is upper-bounded as

follows:

𝑚𝑜𝑝𝑡𝑖𝑚 ≤ 2(𝜏 + 1) (24)

4.3 Experimental Comparison of non-Full Trees
The study above shows that when 𝜏 ∈ [0.5, 1], the optimal tree

degree is two, three or even four (for the upper bound 𝜏 = 1).

However, it does not permit to theoretically select one of these

degrees because the optimal value not only depend on 𝜏 and on the

number of leaves in the tree, but also on that tree’s structure, i.e.

on the relative disposition of the nodes, that cannot be considered

in a general case.

Consequently, we have carried out simulations using the same

program as in Section 3.5, during which we have compared the aver-

age communication cost per user
18
, both with TreeKEM’s method-

ology and with our optimized method, of:

• ternary and quaternary trees, for 𝜏 ≥ 1;

• binary and ternary trees, for 𝜏 ∈ [0.5, 1].

4.3.1 Ternary vs Quaternary Trees. The simulation shows that

when 𝜏 = 1, the communication cost per user of a 4-ary tree is

in average 4.4% higher than its ternary counterpart. In fact the

ternary tree remains more efficient than the quaternary one as long

as 𝜏 ≤ 1.72, which corresponds to the use case of most classical or

PQ HPKE ciphersuites (more details are ploted in Figure 17).

4.3.2 Binary vs Ternary Trees. The results of the experimental

comparison of binary and ternary trees are depicted in Figure 11.

This figure shows a limit value of tau, 𝜏2−3 ∈ [0.71, 0.78], under
which a binary tree has a better communication cost than a non-

full ternary one, and over which a non-full ternary tree is better

suited
19
. This limit appears quite similar to the one between full

binary and ternary trees (cf. Figure 18), which also varies in the

interval [0.7, 0.8], with an asymptotic limit (regarding the number

of leaves in the tree) of 0.73.

Figure 11: Compared communication costs per user of bi-
nary and ternary trees evolving with TreeKEM’s and our
optimized methods. It shows an optimality bound between
these two degrees at 𝜏 ∈ [0.7, 0.8].

In addition, the experimental comparison reveals that this limit

value of tau depends on the tree evolution mechanism that is being

used: this limit is indeed higher with TreeKEM’s tree evolution

mechanism (in which case 𝜏2−3
𝑡𝑘
≈ 0.78) than with our optimized

method (with which 𝜏2−3
𝑜𝑝𝑡𝑖𝑚

≈ 0.71). This difference may be due to

the fact that the structure of full binary trees is easier to balance,

even with a non-optimized method such as TreeKEM’s, than the

one of a non-full ternary tree. Consequently, at the limit between

the areas of optimality of that two degrees, a binary tree evolving

18
These average results are computed over 120 simulations evolving with random

walks whose initial numbers of users vary from 10 to 120.

19
As non-linear trees are not considered here, binary trees are always full.

A Study on CGKAs Trees

with TreeKEM’s method takes precedence on the ternary tree be-

cause it tends to be naturally better balanced.

Figure 12 sums up the tree degree adapted to various classical and

PQ ciphersuites used for HPKE encryption. It underlines that in the

post-quantum framework, and especially with the standardization

of ML-KEM, ternary trees should be adopted as ratchet trees for

MLS’s CGKA.

Figure 12: Optimal degree of a CGKA’s Ratchet Tree, accord-
ing to the HPKE ciphersuite used.

Chevalier et al.

REFERENCES
[1] 2023. WhatsApp Encryption Overview. Technical White Paper. WhatsApp Inc.

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

[2] Carlos AguilarMelchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,

Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor,

Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc Robert, and Pascal Veron.

2022. HQC. Technical Report. National Institute of Standards and Technology.

available at https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-

submissions.

[3] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja

Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen,

Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe,

Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen

Wang. 2022. Classic McEliece. Technical Report. National Institute of Stan-

dards and Technology. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-4-submissions.

[4] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. 2020.

Security Analysis and Improvements for the IETF MLS Standard for Group

Messaging. In CRYPTO 2020, Part I (LNCS, Vol. 12170), Daniele Micciancio and

Thomas Ristenpart (Eds.). Springer, Heidelberg, 248–277. https://doi.org/10.

1007/978-3-030-56784-2_9

[5] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-

Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Carlos

Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-

Pierre Tillich, Gilles Zémor, Valentin Vasseur, Santosh Ghosh, and Jan Richter-

Brokmann. 2022. BIKE. Technical Report. National Institute of Standards

and Technology. available at https://csrc.nist.gov/Projects/post-quantum-

cryptography/round-4-submissions.

[6] David M. Balenson, David McGrew, and Dr. Alan T. Sherman. 1999. Key Manage-
ment for Large Dynamic Groups: One-Way Function Trees and Amortized Initializa-
tion. Internet-Draft draft-balenson-groupkeymgmt-oft-00. Internet Engineering

Task Force. https://datatracker.ietf.org/doc/draft-balenson-groupkeymgmt-

oft/00/ Work in Progress.

[7] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad

Omara, and Katriel Cohn-Gordon. 2023. The Messaging Layer Security (MLS)

Protocol. RFC 9420. https://doi.org/10.17487/RFC9420

[8] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.

Wood. 2022. Hybrid Public Key Encryption. RFC 9180. https://doi.org/10.17487/

RFC9180

[9] Richard Barnes, Jon Millican, Emad Omara, Katriel Cohn-Gordon, and Raphael

Robert. 2018. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-
ietf-mls-protocol-00. Internet Engineering Task Force. https://datatracker.ietf.

org/doc/draft-ietf-mls-protocol/00/ Work in Progress.

[10] Richard Barnes, Jon Millican, Emad Omara, Katriel Cohn-Gordon, and Raphael

Robert. 2018. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-
ietf-mls-protocol-02. Internet Engineering Task Force. https://datatracker.ietf.

org/doc/draft-ietf-mls-protocol/02/ Work in Progress.

[11] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. 2018. TreeKEM:
Asynchronous Decentralized Key Management for Large Dynamic Groups A pro-
tocol proposal for Messaging Layer Security (MLS). Research Report. Inria Paris.

https://inria.hal.science/hal-02425247

[12] Jonathan M Borwein, Adrian S Lewis, et al. 2006. Convex Analysis and Nonlinear
Optimization. CanadianMathematical Society/Société mathématique du Canada.

[13] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, JohnM.

Schanck, Peter Schwabe, and Damien Stehlé. 2017. CRYSTALS – Kyber: a CCA-

secure module-lattice-based KEM. Cryptology ePrint Archive, Report 2017/634.

https://eprint.iacr.org/2017/634.

[14] Timo Brecher, Emmanuel Bresson, and Mark Manulis. 2009. Fully Robust Tree-

Diffie-Hellman Group Key Exchange. In CANS 09 (LNCS, Vol. 5888), Juan A.

Garay, Atsuko Miyaji, and Akira Otsuka (Eds.). Springer, Heidelberg, 478–497.

[15] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.

2018. On Ends-to-Ends Encryption: Asynchronous GroupMessaging with Strong

Security Guarantees. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael

Backes, and XiaoFeng Wang (Eds.). ACM Press, 1802–1819. https://doi.org/10.

1145/3243734.3243747

[16] Yvo Desmedt, Tanja Lange, and Mike Burmester. 2007. Scalable Authenticated

Tree Based Group Key Exchange for Ad-Hoc Groups. In FC 2007 (LNCS, Vol. 4886),
Sven Dietrich and Rachna Dhamija (Eds.). Springer, Heidelberg, 104–118.

[17] Günter Ewald. 1996. Combinatorial Convexity and Algebraic Geometry. Springer
Graduate Texts in Mathematics 168.

[18] Philippe Flajolet and Robert Sedgewick. 2009. Analytic combinatorics. cambridge

University press.

[19] Ronald L. Graham. 1972. An efficient algorithm for determining the convex hull

of a finite planar set. Info. Proc. Lett. 1 (1972), 132–133.
[20] Eric J. Harder and Debby M. Wallner. 1999. Key Management for Multicast:

Issues and Architectures. RFC 2627. https://doi.org/10.17487/RFC2627

[21] Antoine Joux. 2004. A One Round Protocol for Tripartite Diffie-Hellman. Journal
of Cryptology 17, 4 (Sept. 2004), 263–276. https://doi.org/10.1007/s00145-004-

0312-y

[22] Ho-Hee Kim and Soon-Ja Kim. 2012. A Ternary Tree-based Authenticated Group

Key Agreement For Dynamic Peer Group. https://api.semanticscholar.org/

CorpusID:60089781

[23] Yongdae Kim, Adrian Perrig, and Gene Tsudik. 2000. Simple and Fault-Tolerant

Key Agreement For Dynamic Collaborative Groups. In ACM CCS 2000, Dimitris

Gritzalis, Sushil Jajodia, and Pierangela Samarati (Eds.). ACM Press, 235–244.

https://doi.org/10.1145/352600.352638

[24] Yongdae Kim, Adrian Perrig, and Gene Tsudik. 2004. Tree-based group key

agreement. ACM Trans. Inf. Syst. Secur. 7, 1 (feb 2004), 60–96. https://doi.org/10.

1145/984334.984337

[25] Abhimanyu Kumar and Sachin Tripathi. 2013. Ternary Tree based Group Key

Agreement Protocol Over Elliptic Curve for Dynamic Group. International
Journal of Computer Applications 86 (12 2013). https://doi.org/10.5120/14997-3072

[26] Sangwon Lee, Yongdae Kim, Kwangjo Kim, and Dae-Hyun Ryu. 2003. An Effi-

cient Tree-Based Group Key Agreement Using Bilinear Map. In ACNS 03 (LNCS,
Vol. 2846), Jianying Zhou, Moti Yung, and Yongfei Han (Eds.). Springer, Heidel-

berg, 357–371. https://doi.org/10.1007/978-3-540-45203-4_28

[27] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook,

Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christo-

pher Peikert, Ananth Raghunathan, and Douglas Stebila. 2020. FrodoKEM.

Technical Report. National Institute of Standards and Technology. available

at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

cryptography-standardization/round-3-submissions.

[28] National Institute of Standards and Technology. 2023. Module-Lattice-Based

Key-Encapsulation Mechanism Standard. FIPS 203 ipd. https://doi.org/10.6028/

NIST.FIPS.203.ipd

[29] Adrian Perrig. 1999. Efficient Collaborative Key Management Protocols for

Secure Autonomous Group Communication. In Proceedings of the International
Workshop on Cryptographic Techniques and E-Commerce (CrypTEC). 192–202.
/publications/papers/secmcast.pdf

[30] Adrian Perrig, Dawn Xiaodong Song, and J. D. Tygar. 2001. ELK, A New Protocol

for Efficient Large-Group Key Distribution. In 2001 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, 247–262. https://doi.org/10.1109/

SECPRI.2001.924302

[31] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède

Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé,

and Jintai Ding. 2022. CRYSTALS-KYBER. Technical Report. National Institute
of Standards and Technology. available at https://csrc.nist.gov/Projects/post-

quantum-cryptography/selected-algorithms-2022.

[32] N. J. A. Sloane and J. Riordan. [n. d.]. Sequence A000669 in the On-Line En-

cyclopedia of Integer Sequences (n.d.). https://oeis.org/A000669. Accessed

2024-04-26.

[33] Michael Steiner, Gene Tsudik, and Michael Waidner. 1996. Diffie-Hellman Key

Distribution Extended to Group Communication. In ACM CCS 96, Li Gong and
Jacques Stern (Eds.). ACM Press, 31–37. https://doi.org/10.1145/238168.238182

[34] Sachin Tripathi and G. P. Biswas. 2009. Design of efficient ternary-tree based

group key agreement protocol for dynamic groups (COMSNETS’09). IEEE Press,

30–35.

[35] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. 1998. Secure Group

Communications Using Key Graphs. In Proceedings of ACM SIGCOMM. Vancou-

ver, BC, Canada, 68–79.

[36] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, William Whyte, John M. Schanck,

Andreas Hulsing, Joost Rijneveld, Peter Schwabe, and Oussama Danba. 2019.

NTRUEncrypt. Technical Report. National Institute of Standards and Technol-

ogy. available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-

quantum-cryptography-standardization/round-2-submissions.

[37] Shanyu Zheng, David Manz, and Jim Alves-Foss. 2007. A communica-

tion–computation efficient group key algorithm for large and dynamic groups.

Computer Networks 51, 1 (2007), 69–93. https://doi.org/10.1016/j.comnet.2006.

03.008

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-56784-2_9
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://datatracker.ietf.org/doc/draft-balenson-groupkeymgmt-oft/00/
https://datatracker.ietf.org/doc/draft-balenson-groupkeymgmt-oft/00/
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9180
https://doi.org/10.17487/RFC9180
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/00/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/00/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/02/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/02/
https://inria.hal.science/hal-02425247
https://eprint.iacr.org/2017/634
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.17487/RFC2627
https://doi.org/10.1007/s00145-004-0312-y
https://doi.org/10.1007/s00145-004-0312-y
https://api.semanticscholar.org/CorpusID:60089781
https://api.semanticscholar.org/CorpusID:60089781
https://doi.org/10.1145/352600.352638
https://doi.org/10.1145/984334.984337
https://doi.org/10.1145/984334.984337
https://doi.org/10.5120/14997-3072
https://doi.org/10.1007/978-3-540-45203-4_28
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
/publications/papers/secmcast.pdf
https://doi.org/10.1109/SECPRI.2001.924302
https://doi.org/10.1109/SECPRI.2001.924302
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://oeis.org/A000669
https://doi.org/10.1145/238168.238182
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.1016/j.comnet.2006.03.008
https://doi.org/10.1016/j.comnet.2006.03.008

A Study on CGKAs Trees

A OMITTED PRELIMINARIES
A.1 Notations and Terminology
The output of a probabilistic algorithm is represented by← and

the one of a deterministic algorithm is given by :=.

.| |. is used for the concatenation operation. |S| denotes the car-
dinality of a set S. ⌊ ⌉ and ⌈ ⌉ respectively denote the rounding and
ceiling values of a decimal number. Without any base explicitly

indicated, log() denotes the logarithm in base 2.

A.2 TreeKEM CGKA protocol
We give hereunder a brief description of how TreeKEM – as stan-

dardized in RFC 9420 [7] – works as a Continuous Group Key

Agreement (CGKA) protocol.

A.2.1 Continuous Group Key Agreement. ACGKA is a sub-protocol

of a Secure Group Messaging protocol, that aims to securely gen-

erate a group key which is common to all group members and

evolves over time, periodically and following changes in the group

membership.

Definition A.1 (Propose & Commit CGKA (adapted from [4])). A
CGKA with the Propose & Commit Paradigm is a tuple of the

following algorithms:

• Initialization: user 𝑢𝑖 creates its initial state 𝛾𝑖 :
𝛾𝑖 ← init(𝑢𝑖)

• Group Creation: user𝑢𝑖 , with state𝛾𝑖 , creates a new group

that must include users from the list

𝐺 = (𝑢𝑖)𝑖∈J1,𝑛K. A message welcome𝑊 is sent to all mem-

bers from 𝐺 , with the information necessary to join the

group: (𝛾 ′𝑖 ,𝑊) := create − group(𝛾𝑖 ,𝐺)
• Propose: user 𝑢𝑖 proposes a change to the group’s state

through an action𝑎 ∈ A, withA ⊇ {Add, Remove, Update}
the set of actions authorized by the CGKA. In particular:

– add(𝑢 𝑗): 𝑢𝑖 proposes to add user 𝑢 𝑗 to the group;

– remove(𝑢 𝑗): 𝑢𝑖 proposes to remove 𝑢 𝑗 from the group;

– update:𝑢𝑖 updates its own encryption keying material

(the one of its leaf) and generates an updated state 𝛾 ′
𝑖
.

User 𝑢𝑖 then broadcasts a Proposal message 𝑃 to the entire

group: (𝛾 ′𝑖 , 𝑃) ← propose(𝛾𝑖 , 𝑎 [, 𝑢 𝑗])
• Commit: when receiving a set of 𝑝 proposal messages

P = {𝑃𝑖 ∈ A}𝑖∈J1,𝑝K, user 𝑢𝑖 validates them and updates its

own encryption keying material and the one of its direct

path, generating a new group key 𝑘 . It then updates its state

into 𝛾 ′
𝑖
to take into account that changes, and broadcasts

a Commit message 𝐶 as well as (potentially) a Welcome

message for the new group members:

(𝛾 ′𝑖 , 𝑘,𝐶 [,𝑊]) ← commit(𝛾𝑖 , P)
• Process: user 𝑢𝑖 processes a Commit message 𝐶 or a Wel-

come Message𝑊 it has received from a committer, updates

accordingly its own state and computes the new group key

𝑘 resulting from these changes:

(𝛾 ′𝑖 , 𝑘) := process(𝛾𝑖 ,𝑚 ∈ {𝐶,𝑊 })

Nota: The state 𝛾𝑖 of any user 𝑢𝑖 is composed of a public part
𝑝𝛾𝑖 ,

known by every group member (which includes a complete view

of the Ratchet Tree, cf. Section 2.2.1), and a private part
𝑠𝛾𝑖 , that

this user keeps secret and that is needed to recover the group keys

generated by other members.

A CGKA must fulfill the following properties, stated informally

below. These properties are captured by the CGKA security game

(in a game-based security model) such as the one described in

figure 1 of [4]
20
.

• Correctness: every user in the group must compute the

same group key.

• Privacy: a group key is indistinguishable from a random

value for an adversary who has access to the transcript of

handshake messages exchanged within the group until the

generation of that group key.

• Forward Secrecy: the corruption of any user at some epoch

does not leak any secret element (neither the group key nor

the secret seeds and keys) from previous epochs.

• Post-Compromise Security: following the corruption of

any user, the tree’s secret elements become secret again

after the update of all the corrupted users (provided that

the adversary stays passive during these updates).

Node’s state. Each node of this Ratchet Tree, except for the root,

is associated with a local state with public and private components.

• The public state
𝑝𝛾 comprises, among other elements

– for an internal node 𝑣 : its public encryption key 𝑝𝑘𝑣 ;

– for a user (leaf) 𝑢𝑖 : its public encryption and signa-

ture keys 𝑝𝑘𝑖 and 𝑠𝑝𝑘𝑖 , with the related credentials. It

also includes the signature, under the user’s private

signature key, of the other fields of that public state.

• The private state
𝑠𝛾 contains:

– the group key and all the group secrets derived from

it;

– the private encryption keys of that node and of its

filtered direct path, as well as the temporary secret

elements (leaf secret, path secrets) associated with that

keys.

A.2.2 Updates with TreeKEM. The update of the encryption keying
material is implemented differently in TreeKEM whether it belongs

to a user (i.e. a leaf) or an internal node.

Indeed, as stated in Definition A.1, all tree operations are per-

formed in two rounds with the Propose & Commit paradigm from

TreeKEM:

• a first one where any user is free to submit proposals (adding
new users, removing current group members, updating its

own keying material...);

• a second one where the valid proposals are grouped to-

gether and implemented within a commit by a single user,

called committer.

Update of the committer’s filtered direct path. During a commit
process, as shown by Figure 13, the committer randomly draws a se-

cret seed called leaf secret; this one is derived, with a key derivation

function, into a node secret that serves as a seed to deterministically

generate a fresh encryption key-pair.

20
This security model is not recalled in this paper, as it is outside the scope of our

study.

Chevalier et al.

In parallel, the leaf secret is derived into another secret 𝑝𝑠𝑣1 ,

called a path secret, that is associated with this leaf’s parent 𝑣1. This

path secret 𝑝𝑠𝑣1 is itself derived into a node secret to deterministi-

cally generate an encryption key-pair for the benefit of that leaf’s

parent 𝑣1. It is then derived once again into a new path secret 𝑝𝑠𝑣2 ,

related to another node 𝑣2, higher in the leaf’s filtered direct path,

and so on, up to the tree root.

The group key 𝑘 is then computed by deriving the root’s path

secret 𝑝𝑠𝑟𝑜𝑜𝑡 .

Figure 13: Update, with TreeKEM, of a user’s filtered direct
path (here user A). This process updates the encryption key-
pairs of that user and of all its ancestors; it also generates a
new group key.

A.2.3 Tree evolution and epochs. The evolution of the group over

time is represented by the notion of epoch. Each epoch corresponds

to a given state of the user group, with a certain group key. Each

time this group state is modified by a commit, the group key evolves

and the epoch is incremented of one unit.

B OMITTED PROOFS
B.1 Proof of Theorem 3.4

Step 1. We consider a random full𝑚-ary tree𝑇 that is not depth-

balanced, i.e. whose highest leaves have a depth difference with

the bottom leaves greater than one: 𝑑𝑚𝑖𝑛 (𝑇) < 𝑑𝑚𝑎𝑥 (𝑇) − 1. As

this tree is full, each node has either 0 or𝑚 children; in particular,

leaves are all grouped in clusters of𝑚 siblings.

We define a one-step bottom-up balancing process which moves

𝑚 − 1 of a group of leaves belonging to the bottom of the tree

(with an initial depth 𝑑𝑖 = 𝑑𝑚𝑎𝑥 = ℎ𝑇) higher in the tree, into a

destination depth 𝑑𝑓 < 𝑑𝑚𝑎𝑥 . As a single child is not allowed in a

full tree, the remaining leaf ℓ𝑠 from that altered leaf cluster moves

up a level and replaces its parent node.

The𝑚 − 1 moving leaves (ℓ𝑖)𝑖∈J1,𝑚−1K become attached to an-

other leaf ℓ′𝑠 initially located in a leaf cluster at depth 𝑑𝑓 − 1. That
leaf moves down a level into depth 𝑑𝑓 , is grouped with the𝑚 − 1
moving leaves in order to form a new cluster, and a parent node is

created at the former location of ℓ′𝑠 .
That process consequently modifies the depths of𝑚 + 1 leaves

as follows:

• for the𝑚 − 1 moving leaves: from 𝑑𝑖 to 𝑑𝑓 ;

• for the initial sibling leaf ℓ𝑠 : from 𝑑𝑖 to 𝑑𝑖 − 1;
• for the final sibling leaf ℓ′𝑠 : from 𝑑𝑓 − 1 to 𝑑𝑓 .

As the depth of a node is, by definition, the length of this node’s

direct path up to the tree root, the depth of a leaf corresponds to

its parent cost: ∀ℓ ∈ 𝑇,𝑑ℓ = aℓ𝑝 . Consequently, we have:

Figure 14: One-Step Bottom-Up Depth-Balancing process ap-
plied on a random, non-depth-balanced full𝑚-ary tree. This
process, which moves upwards a group a𝑚 − 1 leaves from
the bottom of the tree, decreases that tree’s communication
cost. Leaves depicted with a crosshatched pattern represent
the future locations of the moving leaves.

• for the𝑚 − 1 moving leaves (ℓ𝑖)𝑖∈J1,𝑚−1K: Δa
ℓ𝑖
𝑝 = 𝑑𝑓 − 𝑑𝑖 ;

• for the initial sibling leaf ℓ𝑠 : Δa
ℓ𝑠
𝑝 = (𝑑𝑖 − 1) − 𝑑𝑖 = −1;

• for the final sibling leaf ℓ′𝑠 : Δa
ℓ ′𝑠
𝑝 = 𝑑𝑓 − (𝑑𝑓 − 1) = 1.

When considering all the leaves in the tree, the parent cost of

that tree is modified as follows:

Δa𝑝 = (𝑚 − 1) (𝑑𝑓 − 𝑑𝑖)

⇒ Δ^ = (𝜏 +𝑚 − 1) (𝑚 − 1) (𝑑𝑓 − 𝑑𝑖)
(25)

As 𝑑𝑓 < 𝑑𝑖 , Δ^ < 0, which corresponds to an enhancement

of the tree’s communication cost regardless of its initial structure

(as long as it was depth-unbalanced, so that it is possible to move

upwards the bottom leaves).

Step 2. Let us now consider a random depth-balanced full𝑚-ary

tree. By definition, we have 𝑑𝑚𝑖𝑛 (𝑇) ≥ 𝑑𝑚𝑎𝑥 (𝑇) − 1. As only empty

or𝑚-large leaf clusters are allowed in a full tree, any change on

the tree structure necessarily implies a simultaneous move of𝑚 − 1
leaves, similarly as in the aforementioned balancing process.

Figure 15: Moving leaves in a depth-balanced tree. These
changes either leave the tree structure unaltered (left) or
increase the tree’s communication cost (middle and right).
Leaves depicted with a crosshatched pattern represent the
future locations of the moving leaves.

A depth-balanced tree has at most two levels of leaves, which

implies to consider three cases (cf. Figure 15):

A Study on CGKAs Trees

• If the depth-balanced tree has exactly two levels of leaves

(case of a non-perfect tree: 𝑑𝑚𝑖𝑛 = 𝑑𝑚𝑎𝑥 − 1) and 𝑚 − 1

bottom leaves are moved upwards, the only possible desti-

nation depth for them is : 𝑑𝑓 = 𝑑𝑚𝑖𝑛 + 1 = 𝑑𝑚𝑎𝑥 = 𝑑𝑖 . The

moving leaves stay at the same depth of the tree. Because a

Ratchet Tree is non-planar, such a horizontal migration is

not considered a change in the tree structure.

• If, in a 2-level depth-balanced tree, 𝑚 − 1 top leaves are

moved, their only possible destination depth is:𝑑𝑓 = 𝑑𝑚𝑎𝑥 +
1 = 𝑑𝑚𝑖𝑛 + 2 = 𝑑𝑖 + 2. We can deduce from step 1 that the

tree’s communication cost is increased as follows:

Δ^ = (𝑚 − 1) (𝑑𝑓 − 𝑑𝑖) = 2(𝑚 − 1) > 0.

• Similarly, in a perfect tree (where all leaves are at the same

depth 𝑑𝑚𝑖𝑛 = 𝑑𝑚𝑎𝑥), moving any group of 𝑚 − 1 leaves

induces a communication increase of:

Δ^ = (𝑚 − 1) (𝑑𝑓 − 𝑑𝑖) =𝑚 − 1 > 0.

We have shown above that any full𝑚-ary tree can have its com-

munication cost decreased as long as it is not depth-balanced. When

this is the case, no further enhancement can be made. This proves

that a depth-balanced structure yields an optimal communication

cost. The converse is proven in the following step.

Step 3. Conversely, it is straightforward to show, with a demon-

stration by contradiction, that the depth-balance property is the

only way to provide the optimal communication cost. To do so, we

assume a depth-unbalanced tree structure with an optimal commu-

nication cost. According to the step 1 of that proof, the one-step

bottom-up balancing process can be carried out on the tree, result-

ing on a decrease in the tree’s communication cost. This contradicts

the initial assumption according to which that depth-unbalanced

tree has an optimal cost, and concludes that an optimal cost is only

associated with a depth-balanced tree structure.

C TAU VALUE OF HPKE CIPHERSUITES
Let us consider the values of 𝜏 corresponding to the encryption

schemes that are expected to be used with MLS. The standard for

this protocol [7] specifies that the encryption is performed accord-

ing to the HPKE paradigm (cf. [8]), using a Key EncapsulationMech-

anism (KEM) to exchange a symmetric key and an Authenticated

Encryption with Associated Data (AEAD) scheme to symmetrically

encrypt the plaintext. The AEAD schemes recommended by that

standard are AES-GCM and Chacha20-Poly1305, that both yield a

16-byte-long authentication tag.

Regarding the KEMs:

• In the classical – i.e. pre-quantum – framework, MLS stan-

dard recommends KEMs based on Diffie-Hellman on elliptic

curves (DHKEMs), such as DHKEM-X25519, DHKEM-X448,

DHKEM-P256 or DHKEM-P521. In a DHKEM, one of the

public elements exchanged is modeled as the KEM’s pub-

lic key, whereas the other one is considered as its cipher-

text. The Key Derivation Functions (KDFs) used within that

KEMs are HKDF with hash functions of various fingerprint

sizes. Let us note that these KDFs determine the size of the

path secret to be encrypted by MLS (cf. [7]), and therefore

have some influence on the value of 𝜏 .

Table 1: Tau ratio and optimal tree degree for the main classi-
cal and post-quantum HPKE ciphersuites. This table under-
lines the strong difference between the classical framework,
where 𝜏 varies between 0.4 and 0.6 and the ciphersuites are
adapted to binary trees, and the post-quantum one, where
most schemes have 𝜏 around 0.9-1.0, which fits ternary trees.

KEM Type |𝑝𝑠 |
(bytes)

��𝑝𝑘ℎ𝑝𝑘𝑒 ��
(bytes)

��𝑐𝑡ℎ𝑝𝑘𝑒 ��
(bytes) 𝜏 Optim.

Tree

Classical HPKE Ciphersuites

DH-KEM

[8]

X25519 32 32 80 0.4

Bin

P256 32 65 113 0.6

P384 48 97 161 0.6

X448 64 56 136 0.4

P521 64 133 213 0.6

Post-Quantum HPKE Ciphersuites

HQC [2]

128 32 2,249 4,561 0.5

Bin192 32 4,522 9,106 0.5

256 32 7,245 14,549 0.5

ML-KEM

[31]

512 32 800 848 1.0

Tern768 32 1,184 1,168 1.0

1024 32 1,568 1,648 1.0

BIKE [5]

Level 1 32 1,541 1,653 1.0

TernLevel 3 32 3,083 3,195 1.0

Level 5 32 5,122 5,234 1.0

Frodo [27]

640 32 9,616 9,800 1.0

Tern976 32 15,632 51,840 1.0

1344 32 21,520 21,744 1.0

NTRU [36]

hps2048509 32 699 747 0.9

Tern

hps2048677 32 931 979 1.0

hps4096821 32 1,230 1,278 1.0

hrss701 32 1,138 1,186 1.0

Classic

McEliece

[3]

348864 32 261,120 176 1,813

> Tern

460896 32 524,160 236 2,569

6688128 32 1,044,992 288 4,082

6960119 32 1,047,319 274 4,328

8192128 32 1,357,824 288 5,304

PQ hybrid HPKE Ciphersuites

ML-KEM

&

DH-KEM

512 &

X25519

32 832 848 1.0

Tern

768 &

X25519

32 1216 1168 1.0

1024 &

X25519

32 1600 1648 1.0

• When it comes to post-quantum (PQ) algorithms, that are

not specified in the MLS standard, we have considered the

most promising KEMs arising from the NIST’s PQ competi-

tion. This process has led to the standardization of Crystals

Kyber [13] [31] – under the name ML-KEM [28] – while

three other schemes remain studied in the fourth round of

the competition as alternatives to Kyber: BIKE [5], HQC

[2] and Classic McEliece [3]. We have also looked at some

other KEMs from the PQC competition: FrodoKEM [27]

and NTRU [36], as well as an hybrid KEM composed of

Chevalier et al.

both ML-KEM and DH-KEM-X25519. In this setting, the

size of the path secret is of 32 bytes, whatever the PQ KEM

considered.

Table 1 underlines that classical HPKE ciphersuites are suited

to binary Ratchet Trees currently used by MLS. However, most PQ

schemes, and in particular the NIST’s PQ standard ML-KEM are

more adapted to ternary trees due to their 𝜏 value around 1.

D ADDITIONAL EXPERIMENTAL RESULTS
This appendix includes some experimental results that did not fit

in the body text.

D.1 Efficiency Analysis of a Binary Tree
Firstly, in complement to the efficiency analysis displayed in Sec-

tion 3, Figure 16 shows an instance of the communication cost of a

binary Ratchet Tree evolving freely (i.e. with the wild tree evolu-

tion mechanism), compared to TreeKEM’s method. It underlines

the results from Section 3.5, which state that this free evolution is

more efficient than TreeKEM’s tree evolution.

Figure 16: Compared communication costs of a randomly
evolving Ratchet Tree, between TreeKEM’s methodology and
the wild evolution.

D.2 Comparison between Binary and Ternary
Trees

Figure 17 hereunder depicts the bound of 𝜏 under which a non-full

ternary tree is in average more efficient than a quaternary one. This

experimentally determined bound is located at 𝜏 ≈ 1.72.

We additionally provide in Figure 18 the bound of optimality

between binary and ternary full trees, determined from Equation (8).

Despite the fact that in real use-cases, full trees with a degree

𝑚 ≥ 3 are not used, this limit value of 𝜏 appears very to the one

determined experimentally between binary and non-full ternary
trees (cf. Section 4.3.2).

Figure 17: Compared communication costs per user of
ternary and quaternary trees evolving with TreeKEM’s and
our optimized methods. It shows an optimality bound be-
tween these two degrees at 𝜏 ≈ 1.72.

Figure 18: Limit value of tau under which a full binary tree
has a better efficiency than a full ternary one.

E DETAILS ON THE USE OF CONVEX HULL TO
DETERMINE OPTIMAL TREE DEGREES

We detail hereunder in Figure 19 the steps that lead to the compu-

tation of the convex hull of the dual of the cost function ^S over a

set S of trees.

F OPTIMIZATION ALGORITHMS
Figure 20 details the pseudocode for our optimized algorithm for a

tree evolution mechanism:

• Lightest Child algorithm, for a user add, with the algorithms

to build and update the associated Weight Tree.

• Bottom Tree Expansion.

A Study on CGKAs Trees

νp

νc

(a) Geometric costs a (S) = { (a𝑝 (𝑇), a𝑐 (𝑇)), 𝑇 ∈ S}
associated with the set S of all 12 trees with 5 leaves.

C

upper-right quadrant

νp

νc

(b) The convex hull C of a (S) , and the upper-right
quadrant Q, before computing the Minkowski sum.

C+

νp

νc

(c) The Minkowski sum C+ = C + Q; it is also the lower-
left convex hull of a (S) .

ν(S)+

νp

νc

νpτ + νc = cst; τ ∈ [12 , 1]

(d) The optimal tree for a given parameter 𝜏 (opposite
of the slope) is a point on the lower-left convex hull C+.

C+

νp

νc

τ = 1
2

τ = 1

τ = 3
2

τ = 3
2

(e) The edges of this polygon also correspond to the
limiting values of 𝜏 between different optimal trees.

Figure 19: Determination of the convex hull of the dual of the cost function ^S over the set S of trees with five leaves.

Chevalier et al.

Lightest Child (𝑊𝑇)

Input: a weighted ratchet tree𝑊𝑇

Output:𝑊𝑇 ’s’lightest child 𝑙𝑐 and𝑊𝑇

modified by the user add

1 : 𝑣 := tree_root(𝑊𝑇)
2 : 𝑊𝑇 (𝑣) + = 1

// Recursive lightest child for internal nodes

3 : while 𝑣 ∉ LT do :

4 : 𝑙𝑐 := node_lightest_child(𝑣,𝑊𝑇)
5 : 𝑣 := 𝑙𝑐

6 : 𝑊𝑇 (𝑙𝑐) + = 1

7 : return 𝑙𝑐,𝑊𝑇

Node Lightest Child (𝑣 ,𝑊𝑇)

Input: a node 𝑣 and a weighted ratchet tree𝑊𝑇

Output: the node’s lightest child 𝑙𝑐𝑣

1 : (𝑐 𝑗) 𝑗 ∈J1,𝑚K := children(𝑣,𝑊𝑇)
2 : 𝑤1 :=𝑊𝑇 (𝑐1)
3 : 𝑤𝑚𝑖𝑛 := 𝑤1

4 : 𝑙𝑐𝑣 := 𝑐1

5 : for 𝑗 ∈ J2,𝑚K do :

6 : 𝑤𝑗 :=𝑊𝑇 (𝑐 𝑗)
7 : if 𝑤𝑗 < 𝑤𝑚𝑖𝑛 then :

8 : 𝑤𝑚𝑖𝑛 := 𝑤𝑗

9 : 𝑙𝑐𝑣 := 𝑐 𝑗

10 : return 𝑙𝑐𝑣

Weighted Ratchet Tree Building (𝑇 , m)

Input: a tree𝑇 of degree𝑚

Output: the weighted ratchet tree𝑊𝑇 associated with𝑇

1 : 𝑟 := tree_root(𝑇)
2 : 𝑤𝑟 ,𝑊𝑇 := weight_subtree(𝑟,𝑇 ,𝑚)
3 : return𝑊𝑇

Weight Subtree (𝑣,𝑇 , m)

Input: a node 𝑣 and a tree𝑇 of degree𝑚

Output: the weight subtree𝑊 𝑣
𝑇

rooted at node 𝑣

// Case of a filled leaf.

1 : if 𝑣 ∈ LT and𝑇 (𝑣) ≠ 0 then :

2 : 𝑤𝑣 := 1

// Case of a blank leaf.

3 : elseif 𝑣 ∈ LT and𝑇 (𝑣) = 0 then :

4 : 𝑤𝑣 := 0

// Case of an internal node.

5 : else :

6 : (𝑐 𝑗) 𝑗 ∈J1,𝑚K := children(𝑣,𝑇)
7 : for 𝑗 ∈ J1,𝑚K do :

8 : 𝑤𝑐 𝑗
,𝑊

𝑐 𝑗

𝑇
:= weight_subtree(𝑐 𝑗 ,𝑇)

9 : 𝑤𝑣 :=
∑︁𝑚

𝑗=1
𝑤𝑐 𝑗

10 : 𝑊 𝑣
𝑇 := (𝑤𝑣 ,𝑊

𝑐
1

𝑇
, · · · ,𝑊 𝑐𝑚

𝑇
)

11 : return 𝑤𝑣 ,𝑊
𝑣
𝑇

Bottom Tree Expansion (𝑇 , m)

Input: a tree𝑇 of degree𝑚

Output: the expanded tree𝑇 ′

1 : L′T := ∅
// Removal of the original leaves from the tree.

2 : 𝑇 ′ := 𝑇 \LT
3 : for ℓ ∈ LT do :

// Replacement of the leaves by blank internal nodes.

4 : 𝑇 ′ + = 𝑏𝑙𝑎𝑛𝑘𝐼𝑛𝑡𝑒𝑟𝑛𝑁𝑜𝑑𝑒
// Computation of the set of new leaves.

5 : L′T + = ℓ
6 : for 𝑖 ∈ J1,𝑚K do :

7 : L′T + = 𝑏𝑙𝑎𝑛𝑘𝐿𝑒𝑎𝑓
8 : 𝑇 ′ + = L′T
9 : return𝑇 ′

Figure 20: Pseudocode descriptions of the Lightest Child algorithm, for an optimized User Add, and of the Bottom Tree Expansion
algorithm.

	Abstract
	1 Introduction
	1.1 Optimizing Group Communication with a Key Tree
	1.2 Our Contributions and Outline of this Paper
	1.3 Background on Key Trees

	2 Preliminaries
	2.1 Trees
	2.2 TreeKEM's Ratchet Tree

	3 Optimizing a Tree Structure
	3.1 Communication Cost Metric
	3.2 Optimal Structure of a Full m-ary Tree
	3.3 Efficiency of TreeKEM's Binary Ratchet Tree
	3.4 Our Improved Tree Evolution Algorithms
	3.5 Experimental Results

	4 Tree degree selection
	4.1 General Considerations
	4.2 Degree Bounds for Practical Values of
	4.3 Experimental Comparison of non-Full Trees

	References
	A Omitted Preliminaries
	A.1 Notations and Terminology
	A.2 TreeKEM CGKA protocol

	B Omitted Proofs
	B.1 Proof of theooptimalccfulltree

	C Tau Value of HPKE Ciphersuites
	D Additional Experimental Results
	D.1 Efficiency Analysis of a Binary Tree
	D.2 Comparison between Binary and Ternary Trees

	E Details on the Use of Convex Hull to Determine Optimal Tree Degrees
	F Optimization Algorithms

