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ABSTRACT
Byzantine consensus is a fundamental building block in distributed

cryptographic problems. Despite decades of research, most existing

asynchronous consensus protocols require a strong trusted setup

and expensive public-key cryptography. In this paper, we study

asynchronous Byzantine consensus protocols that do not rely on

a trusted setup and do not use public-key cryptography such as

digital signatures. We give an Asynchronous Common Subset (ACS)

protocol whose security is only based on cryptographic hash func-

tions modeled as a random oracle. Our protocol has 𝑂(𝜅𝑛3
) total

communication and runs in expected𝑂(1) rounds. The fact that we

use only cryptographic hash functions also means that our protocol

is post-quantum secure. The minimal use of cryptography and the

small number of rounds make our protocol practical. We implement

our protocol and evaluate it in a geo-distributed setting with up to

128 machines. Our experimental evaluation shows that our protocol

is more efficient than the only other setup-free consensus protocol

that has been implemented to date. En route to our asynchronous

consensus protocols, we also introduce new primitives called asyn-

chronous secret key sharing and cover gather, which may be of

independent interest.

1 INTRODUCTION
Byzantine consensus is a fundamental building block in distributed

computing and cryptography. This paper studies the Byzantine

consensus problem in asynchrony, and we are particularly inter-

ested in protocols that do not require a trusted setup and do not

use public-key cryptography such as digital signatures.

Over the years, there have been many asynchronous Byzantine

consensus protocols developed in the literature [5, 8, 14, 16, 22,

23, 26, 31, 35–38, 44]. The vast majority of them require trusted

setups and public-key cryptography. This is partly due to the well-

known FLP impossibility, which says randomization is necessary for

asynchronous consensus. To circumvent FLP, most asynchronous

consensus protocols, especially ones that target practical perfor-

mance [23, 38, 39, 44], rely on strong common coins, i.e., random
values that are agreed upon by all honest parties. However, strong

common coins are not easy to obtain. The most common approach

is to rely on unique threshold signatures [11, 14], which require

trusted setups and public-key cryptography.

Starting from Canetti and Rabin [16], a line of work builds com-

mon coins in the setup-free setting and uses it to build consensus

protocols. The protocol of Canetti and Rabin had a very high com-

munication cost, and there was little improvement for a long time.

The study of setup-free asynchronous consensus became active

again recently, often in conjunction with the asynchronous dis-

tributed key generation (ADKG) problem [3, 4, 17, 19, 27, 34, 45].

This is a natural development because the problem of generating

common coins is a lot like the problem of generating a common

key. A setup-free consensus protocol usually consists of two logical

parts: common coin generation and consensus. The common coin

generation part provides either weak common coins (honest parties

output the same coin with a certain probability) or strong common

coins (the probability is 1). The coins are then used in the con-

sensus part, e.g., for leader election [3, 4] or asynchronous binary

agreement [17, 19], to circumvent FLP.

Table 1 lists all the recent setup-free asynchronous consensus

protocols. Kokoris et al. [34] gives a protocol with 𝑂(𝜅𝑛4
) total

communication and 𝑂(𝑛) expected rounds, where 𝑛 is the num-

ber of parties and 𝜅 is a computational security parameter. Das et

al. [17, 19] give a protocol with 𝑂(𝜅𝑛3
) expected communication

and Ω(log𝑛) expected rounds (due to the use of 𝑛 parallel instances

of asynchronous binary agreement). Abraham et al. [4] and Gao

et al.[27] give protocols with 𝑂(𝜅𝑛3
) expected communication and

Ω(1) expected rounds. The above protocols all require public-key

cryptography. Another very recent work [2] gives a setup-free and

public-key-cryptography-free asynchronous consensus protocol

with 𝑂(𝑛5
) communication and 𝑂(1) expected rounds.

With the current state of affairs, an interesting open question is:

Can we obtain a practical consensus protocol without trusted setup
and without public-key cryptography?

Our result. In this work, we answer the question in the affirma-

tive. We give an Asynchronous Common Subset (ACS) protocol (a

variant of consensus) without using any private setups or public-

key cryptography. The only cryptographic primitive we use is a

cryptographic hash function. Our protocol has 𝑂(𝜅𝑛3
) expected

communication and runs in expected𝑂(1) rounds. The fact that we

use only cryptographic hash functions also means that our protocol

is post-quantum secure.
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Table 1: Comparison of setup-free asynchronous consensus protocol.
[2] has 1/4 fault tolerance (see Section 9 for more discussion). All
other protocols have the optimal 1/3 fault tolerance. In the table,
DDH is Decisional Diffie-Hellman, SXDH is symmetric external
Diffie–Hellman (a pairing assumption), and RO is a random oracle.
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Canetti-Rabin [16] 𝑂(𝑛7
) 𝑂(1) None ✗

Kokoris et al. [34] 𝑂(𝜅𝑛4
) 𝑂(𝑛) DDH, RO ✗

Abraham et al. [4] 𝑂(𝜅𝑛3
) 𝑂(1) SXDH, RO ✗

Gao et al. [27] 𝑂(𝜅𝑛3
) 𝑂(1) SXDH, RO ✗

Das et al. [17, 19] 𝑂(𝜅𝑛3
) 𝑂(log𝑛) DDH, RO ✓

Abraham et al. [2] 𝑂(𝑛5
) 𝑂(1) None ✗

This work 𝑂(𝜅𝑛3
) 𝑂(1) RO

† ✓

†
In §10, we briefly discuss, how using ideas from [42] and additional tech-

niques, we can prove our protocol secure without the random oracle model,

and instead rely on collision-resistant hash functions, pseudorandom func-

tions, and related key assumptions [42].

To obtain a practical protocol without setup or public-key cryp-

tography, we use several techniques as described below, each of

which might be of independent interest.

Index consensus. In the conventional definition of consensus,

each party inputs a message, and the output is an agreed-upon

message or set of messages. We slightly tweak the problem defini-

tions to better fit our design approach. In our approach, instead of

agreeing on a set of messages, we often need to agree on a party

(or set of parties) who correctly carried out some actions. The inter-

face of the conventional message-based consensus does not fully

match a use case like this. We thus define alternative index-based

versions of ACS and Validated Asynchronous Byzantine Agreement

(VABA) where the output is an agreed-upon party (or set of parties),

represented by the party ID, who correctly carried out some prior

actions.

Weak leader election from index cover gather and light-
weight asynchronous secret key sharing (ASKS). To instantiate
the weak leader election oracle without public-key cryptography,

we propose a lightweight asynchronous secret key sharing protocol

from hash functions only. We also extend the gather primitive [4]

into a new primitive called index cover gather (ICG), which has

an attractive property that prevents the adversary from arbitrarily

manipulating the weak leader-election process.

Practical efficiency, implementation, evaluation. The minimal

use of cryptography and the small number of rounds make our

protocol practical. To demonstrate the practicality of our protocol,

we implement it in Python and use Rust for cryptographic opera-

tions. Our experimental evaluation shows that our protocol is more

efficient than the ACS protocol of [17], the only other setup-free

consensus protocol that has been implemented to date.

Paper organization. The rest of the paper is organized as follows.

In §2, we present the system model, formal definitions of our index

consensus primitives, and a brief overview of our core ideas. We

discuss the required preliminaries in §3. In §4, we present details

of our ASKS and prove its security. We formally define index cover

gather and describe a perfectly secure construction of index cover

gather protocol in §5. We then use our ASKS and the index cover

gather, along with other standard primitives, to build an index

VABA protocol in §6. We then use the index VABA to build index

ACS in §7. We present our implementation and evaluation results

in §8, discuss the related work in §9, and conclude in §10.

2 MODEL AND PROBLEM DEFINITION
Notations. For any integer 𝑎, we use [𝑎] to denote the ordered

set {1, 2, . . . , 𝑎}. For any set 𝑆 , we use 𝑠 ←$ 𝑆 to indicate that 𝑠 is

sampled uniformly randomly from 𝑆 . We use |𝑆 | to denote the size

of set 𝑆 . Throughout the paper, we will use “←” for probabilistic

assignment and “:=” for deterministic assignment. We use 𝜅 to

denote the security parameter. Amachine is Probabilistic Polynomial
Time (PPT) if it is a probabilistic algorithm that runs in poly(𝜅) time.

We also use negl(𝜅) to denote functions negligible in 𝜅 . Throughout

this paper, we will use F to denote a large finite field, i.e., we have

that 1/|F| is negl(𝜅).

2.1 System Model
We consider a network of 𝑛 parties {1, 2, . . . , 𝑛} where every pair

of parties are connected via a pairwise private and authenticated

channel. We consider the presence of a static adversary A that can

corrupt up to 𝑡 out of the 𝑛 ≥ 3𝑡 + 1 parties. LetH ⊆ [𝑛] be the set

of honest parties, and C := [𝑛] \H be the set of corrupt parties. We

assume the network is asynchronous, i.e., A can arbitrarily delay

any message but must eventually deliver all messages sent between

honest parties.

2.2 Problem Definition
To describe index ACS more precisely, we introduce the notion of

parties validating each other.

Party validation. For any 𝑖, 𝑗 ∈ [𝑛], we say “party 𝑖 has validated
party 𝑗”, if party 𝑖 thinks, based on the messages it has seen so

far, that party 𝑗 has done some action correctly in the protocol.

The precise notion of “correct actions” will depend on the specific

protocol. We also say that party 𝑗 has been locally validated if it

has been validated by some honest party, and that party 𝑗 has been

globally validated if it has been validated by all honest parties.

Completeness of party validation. Throughout the paper, we
will primarily work with a “validate” notion that satisfies the com-
pleteness property. The completeness property ensures that if a

party is locally validated, then it will eventually be globally vali-

dated. Stating differently, it ensures that if an honest party 𝑖 has

validated a party 𝑗 ∈ [𝑛], then eventually, party 𝑗 will be validated

by all honest parties.

Index ACS.We can now define the Index Asynchronous Common
Subset problem.

Definition 2.1 (Index Asynchronous Common Subset). An index

asynchronous common subset (ACS) is a protocol among 𝑛 parties

{1, 2, . . . , 𝑛}, where each party 𝑖 inputs a set Valid𝑖 of parties it has
validated, and outputs a subset 𝑋𝑖 ⊆ [𝑛] of parties with |𝑋𝑖 |≥ 𝑛 − 𝑡 .
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Note that the input Valid𝑖 may grow over time. An index ACS

protocol must satisfy the following properties.

• Agreement. If two honest parties 𝑖 and 𝑗 output 𝑋𝑖 and 𝑋 𝑗 , re-

spectively, then 𝑋𝑖 = 𝑋 𝑗 .

• Validity. If an honest party 𝑖 outputs 𝑋𝑖 , then every 𝑗 ∈ 𝑋𝑖 has
been locally validated.

• Termination. If the input party validation satisfies completeness

and at least 𝑛 − 𝑡 parties have been locally validated at some

point during the protocol, then every honest party eventually

outputs.

It is easy to build a message-based ACS protocol (i.e., the conven-

tional ACS) from an index ACS protocol – see Section 7.2. Simply

have each party send its input message via a reliable broadcast

(RBC) and then use index ACS to agree on a common subset of

RBCs that have finished. The output of the (message) ACS is the

union of outputs from that common subset of RBC instances.

Index VABA. As a stepping stone to our index ACS, we will define
and build an index version of validated asynchronous Byzantine

agreement (VABA). The only difference between VABA and ACS is

that VABA outputs a single element instead of a set.

Definition 2.2 (Index Validated Asynchronous Byzantine Agree-
ment). An index validated asynchronous Byzantine agreement (VABA)

is a protocol among 𝑛 parties {1, 2, . . . , 𝑛}, where each party 𝑖 inputs
a set Valid𝑖 of parties it has validated, and outputs a party’s index

𝑥𝑖 ∈ [𝑛]. Note that the input Valid𝑖 may grow over time. An index

VABA protocol must satisfy the following properties.

• Agreement. If two honest parties 𝑖 and 𝑗 output 𝑥𝑖 and 𝑥 𝑗 , respec-

tively, then 𝑥𝑖 = 𝑥 𝑗 .

• Validity. If an honest party 𝑖 outputs 𝑥𝑖 , then party 𝑥𝑖 has been

locally validated.

• Termination. Same as in index ACS.

Index gather. Our index VABA protocol crucially relies on a

gather primitive [16]. To fit our index interface, we define its index

version. Index gather is similar to index ACS but has a weaker

agreement property, which we refer to as binding core. Unlike the
agreement property in Definition 2.1, the binding core property

only guarantees the existence of a core set 𝑋 of size at least 2𝑡 + 1

that will be a subset of every honest party’s (eventual) output.

Definition 2.3 (Index Gather). An index gather is a protocol among

𝑛 parties {1, 2, . . . , 𝑛}, where each party 𝑖 inputs a set Valid𝑖 of par-
ties it has validated, and outputs a subset 𝑋𝑖 ⊆ [𝑛] of parties with

|𝑋𝑖 |≥ 𝑛 − 𝑡 . Note that the input Valid𝑖 grows over time. An index

gather protocol must satisfy the following binding core property,
besides the same validity and termination properties of index ACS.

• Termination. Same as in index ACS.

• Validty. Same as in index ACS.

• Binding core. At the first time some honest party 𝑖 outputs 𝑋𝑖 ,

there exists a core set 𝑋 , dependent only on the joint views of

the honest parties at that time, with |𝑋 |≥ 𝑛 − 𝑡 such that for all

honest party 𝑗 , 𝑋 ⊆ 𝑋 𝑗 .

In the protocols we will present in this paper, such a core set

𝑋 can be extracted efficiently from the joint views of the honest

parties at the first time some honest party outputs.

2.3 Technical Overview
A setup-free consensus protocol usually consists of two logical

parts: common coin generation and consensus. The common coin

generation part provides either weak common coins (honest parties

output the same coin with a certain probability) or strong common

coins (the probability is 1). The coins are then used in the consen-

sus part, e.g., for leader election [2–4, 16] or asynchronous binary

agreement [17, 19], to circumvent the FLP impossibility [24].

We follow a weak-coin-based framework that dates back to

Canetti-Rabin [16] and has been adopted in many subsequent

works [2–4]. The framework proceeds in iterations, where each

iteration has two phases: weak leader election and agreement. The
leader election is weak in the sense that honest parties might dis-

agree on the leader with a (typically constant) probability. At a very

high level, the weak-coin-based framework ensures that if parties

agree on the leader, the entire protocol will succeed. Otherwise,

parties enter the next iteration, and the process repeats.

For the agreement phase, we design a new index gather protocol

based on the weak core set primitive in [27]. Our new index gather

protocol is simpler and more efficient by constant factors than

existing ones [2, 4]. But the more important difference between our

work and prior works lies in the weak leader election phase, so we

will focus on that part in this overview.

Weak leader election. The standard approach to weak leader

election phase is to rely on a gather protocol. For notational con-
sistency, we will describe it using an index gather protocol (see

definition 2.3).

In each iteration, each party is assigned a random rank. These

ranks are hidden at first. Parties run an index gather protocol to

locally output a set of parties who performed some actions correctly.

Recall from definition 2.3 that each party outputs a set of indices

𝑋𝑖 that is a superset of some binding core set 𝑋 . After the index

gather protocol, the ranks are revealed, and each party 𝑖 picks the

party ℓ𝑖 ∈ 𝑋𝑖 with the highest rank as the leader. Intuitively, if the

party with the highest rank among all parties happens to be in the

core set, then all honest parties will output the same leader.

Given this framework, the natural question is how to derive

ranks for parties such that: (1) the ranks remain hidden until some

honest party outputs in the gather protocol; and (2) the ranks cannot

be manipulated by the an adversary.

Next, we will describe a simple but insecure approach to derive

ranks to illustrate the basic ideas in prior works [2–4, 16]. We

will then explain why this approach is insecure, how prior works

addressed it, and how we address.

Insecure rank derivation. Each party 𝑖 starts by sharing a uni-

formly random secret 𝑠𝑖 using a verifiable secret sharing (VSS)

scheme. Next, each party 𝑖 selects a subset 𝑃𝑖 ⊆ [𝑛] of 𝑡 + 1 or more

parties who shared their secrets correctly, and reliably broadcasts

𝑃𝑖 to all parties. The rank 𝑟𝑖 of party 𝑖 is defined as:

𝑟𝑖 :=

∑︁
𝑗∈𝑃𝑖

𝑠𝑖 (1)

Intuitively, since each party’s rank depends on the secrets of 𝑡 + 1

or more parties, the ranks remain hidden until parties reconstruct

the secrets. A party starts reconstructing the secrets only after it

outputs from the index gather protocol.
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The issue with this approach is that an adversary can manipulate

the ranks of some parties. Let party 𝑖 be the first honest party

to output from the index gather protocol. Note that the ranks of

parties in 𝑋𝑖 are fixed and cannot be manipulated by the adversary.

However, the adversary can manipulate the ranks of parties outside

𝑋𝑖 , i.e., in [𝑛] \ 𝑋𝑖 . This is because once party 𝑖 reveals its shares of
secrets shared by other honest parties, the adversary learns those

secrets. The adversary can then manipulate the ranks of corrupt

parties (outside 𝑋𝑖 ) to make them higher than the ranks of parties

in 𝑋𝑖 . More concretely, for a malicious party 𝑖 , the adversary can

pick the set 𝑃𝑖 to be 𝑖 plus those honest parties whose secrets it now

knows, and pick 𝑠𝑖 accordingly to yield a high 𝑟𝑖 . The adversary

next manipulates the network delay to make sure this high-rank

corrupt party is included in some honest party’s gather output, i.e.,

𝑖 ∈ 𝑋 𝑗 for some honest party 𝑗 ̸= 𝑖 . This will make honest party

𝑗 pick a different leader from party 𝑖 , so the weak leader election

always fails. We note that this attack does not violate any property

of the gather protocol.

Prior works addressed this issue in a few ways. [4] uses public

key cryptography, specifically a pairing-based threshold verifiable

random function, to derive ranks without revealing the secrets. [2]

requires each party to share 𝑛 secrets in every iteration so it can

use independent secrets to derive ranks of different parties. This

pushes the communication cost to Ω(𝜅𝑛4
) per iteration.

Our approach. With this state of affairs, we would like to de-

sign a setup-free weak leader election protocol without public-key
cryptography where each party shares a single secret.

The abovementioned attack works because the adversary is able

to manipulate the ranks of parties in [𝑛] \𝑋 to cause disagreement.

A natural fix is to prevent rank manipulation completely. Unfortu-

nately, we do not know how to do that efficiently. Instead, we do

the following. We introduce a new binding cover requirement to

the gather primitive. The binding cover property guarantees that

when the first honest party outputs in the gather protocol, there

exists a set 𝑌 ⊆ [𝑛] of locally validated parties, such that every

honest party’s eventual output is a subset of 𝑌 . We refer to 𝑌 as the

cover set and refer to such a protocol as a Index Cover Gather (ICG)
protocol.

We can ensure that ranks of all parties in the cover set 𝑌 are

fixed by the first time an honest party starts reconstructing the

secrets. This is because by that time, every party 𝑗 ∈ 𝑌 has reliably

broadcast 𝑃 𝑗 such that every party 𝑘 ∈ 𝑃 𝑗 has shared its random

secret 𝑠𝑘 using VSS. It is not hard to see that these two properties

combined fix the ranks of all parties in𝑌 by the time the first honest

party outputs in the ICG protocol. Note that an adversary might

still be able to manipulate the ranks of parties in [𝑛] \ 𝑌 . However,
this is inconsequential because parties in [𝑛] \ 𝑌 will not be in any

honest party’s ICG output, and thus have no impact on the leader

election outcome.

We design an ICG protocol that uses an index gather protocol

in a modular way. Our ICG protocol incurs a communication cost

of 𝑂(𝑛3
), and requires three additional rounds on top of an index

gather protocol.

Hash-based secret sharing. Another step where prior works rely

on public key cryptography is the verifiable secret sharing (VSS).

For example, [4] needs a VSS scheme that is homomorphic and

provides completeness. All known VSS schemes with these strong

properties use public-key cryptography.

Since our rank derivation protocol first reconstructs the secrets

shared by parties and then sum them up to derive ranks, we no

longer require homomorphism or completeness. These relaxations

allow us to design a weaker primitive called Asynchronous Secret
Key Sharing (ASKS) protocol that is concretely efficient and uses

only hash functions.

3 PRELIMINARIES
3.1 Reliable Broadcast and Agreement
Reliable broadcast.We will use the standard asynchronous reli-

able broadcast (RBC) [12, 15, 18] in a black-box manner.

Definition 3.1 (Reliable Broadcast). A Reliable Broadcast (RBC)
is a protocol that allows a designated party 𝐷 , referred to as the

sender, to broadcast a message to a set of 𝑛 parties {1, 2, . . . , 𝑛}. We

use the convention that 𝐷 ∈ [𝑛]. A RBC protocol must satisfy the

following properties.

• Agreement. If two honest parties 𝑖 and 𝑗 output 𝑚𝑖 and 𝑚 𝑗 ,

respectively, then𝑚𝑖 = 𝑚 𝑗 .

• Totality. If an honest party outputs a message, then every honest

party 𝑖 eventually outputs a message.

• Validity. If the sender is honest, then every honest party 𝑖 even-

tually outputs𝑚𝑖 = 𝑚.

Reliable agreement.We will also use a primitive we call reliable
agreement. Intuitively, it is the agreement version of RBC where

every party has an input.

Definition 3.2 (Reliable Agreement). A reliable agreement (RA) is
a protocol among 𝑛 parties {1, 2, . . . , 𝑛} where each party has an

input message and possibly outputs a message. A reliable agreement

protocol needs to satisfy the following properties.

• Agreement. Same as in RBC.

• Totality. Same as in RBC.

• Validity. If all honest parties input𝑚, then eventually all honest

parties output𝑚.

• Integrity. If an honest party outputs𝑚, then at least 𝑛−2𝑡 honest

parties input𝑚.

Bracha’s RBC [12] can be easily modified into a reliable agree-

ment protocol. We describe the protocol in Algorithm 1. It is not

hard to see this protocol satisfies agreement, validity, and totality,

and the proofs are identical to those of Bracha’s RBC. For integrity,

simply observe that for any honest party to send ready for𝑚, there

must be 𝑛 − 𝑡 echoes for𝑚, out of which 𝑛 − 2𝑡 must come from

honest parties that input𝑚. Algorithm 1 has𝑂(𝑛2𝐿) communication

complexity for 𝐿-bit messages, same as Bracha’s RBC.

We want to note that, similar to RBC, a reliable agreement pro-

tocol has a weaker termination property than standard (Byzantine)

agreement protocols [14, 38]. In particular, standard agreement

protocols guarantee termination once every honest party provides

some input to the protocol. In contrast, a reliable agreement proto-

col only guarantees termination if honest parties provide matching
inputs. In return, reliable agreement can be instantiated determin-

istically in asynchrony and much more efficiently.
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Algorithm 1 Reliable agreement protocol for party 𝑖

1: upon receiving input𝑚𝑖

2: send ⟨ECHO,𝑚𝑖 ⟩ to all

3: upon receiving ⟨ECHO,𝑚⟩ from 𝑛 − 𝑡 parties
4: send ⟨READY,𝑚⟩ to all

5: upon receiving ⟨READY,𝑚⟩ from 𝑡 + 1 parties

6: Send ⟨READY,𝑚⟩ to all

7: upon receiving ⟨READY,𝑚⟩ from 𝑛 − 𝑡 parties
8: output𝑚 and terminate

3.2 Asynchronous Secret Key Sharing
An Asynchronous Secret Key Sharing (ASKS) scheme lets a desig-

nated party 𝐷 , referred to as the dealer, share a uniformly random

secret key 𝑠 ∈ S to 𝑛 parties. Here, S is the secret key space. An

ASKS protocol has two phases: Sharing phase and Reconstruction
phase.

In the sharing phase,𝐷 shares a secret key 𝑠 ←$ S to all parties. If

𝐷 is honest, all honest parties will eventually terminate the sharing

phase. Moreover, for an honest dealer, ASKS provides the secrecy

guarantee that during the sharing phase, the secret key 𝑠 remains

indistinguishable from an uniformly random key to an adversary

A. Alternatively, if 𝐷 is malicious, the sharing phase may or may

not terminate, but if it does terminate for one honest party, it will

eventually terminate for all honest parties. Moreover, for amalicious

dealer, the secret key 𝑠 will be fixed by the first time some honest

party finishes the sharing phase.

After an honest party finishes the sharing phase, it may start the

reconstruction phase. If all honest parties start the reconstruction

phase, then all honest parties will output the secret key 𝑠 from the

sharing phase. If 𝐷 is honest, A only learns 𝑠 after the first honest

party starts the reconstruction phase.

Remark. We want to note that the sharing phase of an ASKS

scheme permits a situation where, in the case of a malicious dealer,

some honest parties do not receive correct shares but instead output

the special symbol ⊥ as their shares.

Definition 3.3 (Asynchronous Secret Key Sharing). An asynchro-

nous secret key sharing (ASKS) protocol consists of two phases:

Sharing and Reconstruction. During the sharing phase, a dealer 𝐷
shares a secret 𝑠 ←$ S. During the reconstruction phase, parties

interact to recover the secret. We say that an ASKS protocol is

𝑡-secure if the following properties hold with probability 1−negl(𝜅)

against any probabilistic polynomial time (PPT) adversary A that

corrupts up to 𝑡 parties:

• Correctness. (i) If one honest party outputs in the sharing phase,

then all honest parties eventually output in the sharing phase.

(ii) If all honest parties start the reconstruction phase, then even-

tually they all output in the reconstruction phase.

• Validity. If an honest dealer shares a secret 𝑠 , then (i) every

honest party eventually outputs in the sharing phase, and (ii) no

honest party outputs 𝑠′ ̸= 𝑠 in the reconstruction phase.

• Commitment. At the first time some honest party outputs in the

sharing phase, there is a secret 𝑠 ∈ S that can be computed from

the joint view of the honest parties, such that no honest party

outputs 𝑠′ ̸= 𝑠 in the reconstruction phase.

• Secrecy. If the dealer is honest, then before any honest party starts
the reconstruction phase, the secret key 𝑠 is computationally

indistinguishable from a uniformly random secret in S.

Clarification on ASKS terminology. Our ASKS notion is very

similar to the “asynchronous weak VSS” notion defined in [20]

(except that our ASKS is defined only for random secrets). We avoid

using the term “weak VSS” because there exist similar-sounding

notions in the literature [40] that are very different.

4 ASYNCHRONOUS SECRET KEY SHARING
In this section, we present a simple construction of Asynchronous

Secret Key Sharing (ASKS). For our construction, we require that the

secret space is large, i.e., 1/|S| is negl(𝜅). Let H : [0, 𝑛] × F→ S be

a cryptographic hash function. In this section, we prove our ASKS

secure by modeling H as a random oracle. Using ideas from the

recent work of Shoup and Smart [42], the reliance on the random

oracle model can be removed.

4.1 ASKS Design
Our ASKS protocol uses reliable broadcast (RBC) and reliable agree-

ment (RA) in a black-box way. We give the construction in Algo-

rithm 2 and describe it next.

Sharing phase. In the sharing phase, the dealer 𝐷 chooses a ran-

dom polynomial 𝑝 ∈ F[𝑥] of degree 𝑡 . The dealer then shares the

random secret 𝑠 := H(0, 𝑝(0)) as follows. For each party 𝑗 , 𝐷 com-

putes its share 𝑝( 𝑗 ) and a commitment ℎ 𝑗 = H( 𝑗, 𝑝( 𝑗 )). We reiterate

that the secret being shared is 𝑠 := H(0, 𝑝(0)).

Next, 𝐷 broadcasts the commitment vector 𝒉 := [ℎ1, ℎ2, . . . , ℎ𝑛]

using an RBC protocol. 𝐷 also sends 𝑝(𝑖) to each party 𝑖 via the

private channel. Simultaneously, all non-dealer parties participate

in a reliable agreement instance RA. Pary 𝑖 inputs 1 to RA if it

receives consistent values from 𝐷 via the RBC and via the private

channel, i.e., if 𝒉[𝑖] = H(𝑖, 𝑝(𝑖)).

All parties then wait for RA to output 1 (which may occur even

if party 𝑖 did not input 1 to RA) — if and when that happens, party

𝑖 outputs either (𝒉, 𝑝(𝑖)) or (𝒉,⊥), depending on whether or not it

received a valid share 𝑝(𝑖) from 𝐷 .

Reconstruction phase. During the reconstruction phase, each

party 𝑖 who received a valid share 𝑠𝑖 ̸= ⊥ during the sharing phase

sends its share 𝑠𝑖 to all. Upon receiving 𝑠 𝑗 from party 𝑗 , party 𝑖

accepts 𝑠 𝑗 as valid if 𝒉[ 𝑗] = H( 𝑗, 𝑠 𝑗 ). Let 𝑇 be the set of valid shares

party 𝑖 receives during the reconstruction phase. Upon receiving

𝑡 +1 valid shares, party 𝑖 uses them to interpolate a polynomial 𝑝𝑖 (𝑥 ).

Party 𝑖 then checks whether ℎ 𝑗 = H( 𝑗, 𝑝𝑖 ( 𝑗 )) for each 𝑗 ∈ [𝑛]. If the

check passes, party 𝑖 outputs 𝑠 := H(0, 𝑝𝑖 (0)) as the reconstructed

secret; otherwise, 𝑖 outputs some default value in S. (The default
value could be a special “error” value that indicates the dealer was

malicious.)

4.2 ASKS Analysis
The Validity of our ASKS scheme follows directly from the Validity

properties of RBC and RA. Correctness is also relatively easy to

prove.
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Algorithm 2 ASKS protocol for party 𝑖

SHARING PHASE:

1: if 𝑖 is the dealer then
2: Let 𝑝(·) be a random degree-𝑡 polynomial

3: Let ℎ 𝑗 = H( 𝑗, 𝑝( 𝑗 )) for each 𝑗 ∈ [𝑛]

4: broadcast 𝒉 = [ℎ1, ℎ2, . . . , ℎ𝑛] using a RBC

5: send ⟨SHARE, 𝑝(𝑖)⟩ to party 𝑖

6: start a reliable agreement protocol instance RA

7: upon RBC outputs 𝒉 and having received ⟨SHARE, 𝑝(𝑖)⟩
8: if 𝒉[𝑖] = H(𝑖, 𝑝(𝑖)) then
9: input 1 to RA

10: upon RA outputs 1 and RBC outputs 𝒉
11: if received ⟨SHARE, 𝑝(𝑖)⟩ and 𝒉[𝑖] = H(𝑖, 𝑝(𝑖)) then
12: output (𝒉, 𝑝(𝑖)) and terminate
13: output (𝒉,⊥) and terminate

RECONSTRUCTION PHASE:

// every party 𝑖 after finishing the sharing phase

14: Let (𝒉, 𝑠𝑖 ) be its output from the Sharing phase.

15: if 𝑠𝑖 ̸= ⊥ then
16: send ⟨RECON, 𝑠𝑖 ⟩ to all

17: Let 𝑇 = {} // the set of valid shares received so far
18: upon receiving ⟨RECON, 𝑠 𝑗 ⟩ from party 𝑗

19: if 𝒉[ 𝑗] = H( 𝑗, 𝑠 𝑗 ) then
20: 𝑇 = 𝑇 ∪ {𝑠 𝑗 }
21: if |𝑇 |= 𝑡 + 1 then
22: Let 𝑝𝑖 (𝑥 ) be the polynomial defined by 𝑇

23: if 𝒉[ 𝑗] = H( 𝑗, 𝑝𝑖 ( 𝑗 )) for all 𝑗 ∈ [𝑛] then
24: output H(0, 𝑝𝑖 (0)) and terminate
25: output 0 ∈ S and terminate

Lemma 4.1 (Correctness). If the hash function H : [0, 𝑛] × F→
S is collision-resistant, then Algorithm 2 ensures correctness as per
Definition 3.3.

Proof. Part (i). An honest party terminates the sharing phase if

and only if the RBC terminates and the RA outputs 1. The totality

properties of the RBC and RA ensure that both the RBC and the

RA will terminate at all honest parties. Furthermore, the agreement

property of RA ensures that all honest parties will output 1 from

RA, and hence terminate the Sharing phase.

Part (ii). An honest party starts the reconstruction phase only if

terminates from the sharing phase. The sharing phase terminates

only if RA outputs 1. By the Integrity property of RA, at least

𝑛 − 2𝑡 > 𝑡 + 1 honest parties input 1, indicating that they receive

valid shares. Thus, in the reconstruction phase, every honest party

will receive a set 𝑇 of 𝑡 + 1 valid shares and output. □

Next, we focus on the Commitment and Secrecy properties of our

ASKS. We prove the Commitment property assuming the collision

resistance of the hash function H. We prove the secrecy property

by modeling H as a random oracle.

Lemma 4.2 (Commitment). Assuming H : [0, 𝑛] × F → S is a
collision-resistant hash function, Algorithm 2 ensures Commitment
as per Definition 3.3.

Proof. Consider the first point in time that some honest party

terminates the sharing phase. Following the proof of Correctness

part (ii), each honest party 𝑖 will receive 𝑡 + 1 valid shares and

reconstruct some degree 𝑡 polynomial 𝑝𝑖 (𝑥 ).

The committed secret 𝑠 can be extracted as follows. Let𝑇 ⊆ [𝑛] be

an arbitrary set of 𝑡+1 honest parties who received consistent shares

as per the above. Let 𝑝(𝑥) be the degree 𝑡 polynomial interpolated

from these 𝑡 + 1 shares. Now, there are two possibilities.

First, if the vector 𝒉 is consistent with the polynomial 𝑝(𝑥), i.e.,

𝒉[𝑖] = H(𝑖, 𝑝(𝑖)) for all 𝑖 ∈ [𝑛], then let 𝑠 = H(0, 𝑝(0)). By the collision

resistance of H, 𝑝𝑖 (𝑥 ) = 𝑝(𝑥 ) for every honest party 𝑖 . Hence, every

honest party will output 𝑠 as the reconstructed secret.

Second, if 𝒉 is inconsistent with 𝑝(𝑥), i.e., there exists an index

𝑘 ∈ [𝑛] such that 𝒉[ 𝑗] ̸= H(𝑘, 𝑝(𝑘)). Let 𝑠 be the default secret.

Clearly, an honest party 𝑖 with 𝑝𝑖 (𝑥 ) = 𝑝(𝑥 ) will output the default

secret. It remains to show that an honest party 𝑗 with 𝑝 𝑗 (𝑥 ) ̸= 𝑝(𝑥 )

will also output the default secret. Note that 𝑝 𝑗 (𝑥) ̸= 𝑝(𝑥) implies

that there exists some 𝑘 ∈ 𝑇 such that 𝑝 𝑗 (𝑘) ̸= 𝑝(𝑘). For this 𝑘 , by the

collision resistance property of H, 𝒉[𝑘] = H(𝑘, 𝑝(𝑘)) ̸= H(𝑘, 𝑝 𝑗 (𝑘)).

This implies that party 𝑗 will also output the default secret. □

Lemma 4.3 (Secrecy). If we model the hash function H : [0, 𝑛] ×
F→ S as a random oracle, then Algorithm 2 ensures secrecy as per
Definition 3.3.

Proof. Let A be the PPT adversary. Let C be the set of corrupt

parties, and H := [𝑛] \ C be the set of honest parties. A learns

the 𝑡 evaluation points on the random degree 𝑡 polynomial 𝑝(𝑥)

for 𝑥 ∈ C and the 𝑛 − 𝑡 random oracle outputs H(𝑖, 𝑝(𝑖)) for each

𝑖 ∈ H . The perfect secrecy of the Shamir secret sharing implies

that A learns no information about 𝑝(0) from the 𝑡 shares. When

we modelH as a random oracle, the random oracle outputsH(𝑖, 𝑝(𝑖))

for all 𝑖 ∈ H do not reveal any information about 𝑝(0) unless A
queries the random oracle on some (𝑖, 𝑝(𝑖)). Since A makes only

polynomially many random oracle queries, and all 𝑝(𝑖)’s for 𝑖 ∈ H
remain random (though fully dependent on one another) given

the 𝑡 shares, the probability that A queries the random oracle on

some (𝑖, 𝑝(𝑖)) is negligible. Hence, fromA’s view, 𝑠 := H(0, 𝑝(0)) and

𝑠 ←$ S are indistinguishable. □

Performance analysis. Clearly, the message complexity of our

ASKS protocol is 𝑂(𝑛2
). Assuming hash outputs and field elements

are 𝜅-bit long, the message the dealer broadcasts is 𝑂(𝜅𝑛) bits in

size. Hence, using the RBC protocol of [18], the communication cost

of the sharing phase of our ASKS protocol is 𝑂(𝜅𝑛2
) bits. During

the reconstruction phase, each party sends𝑂(𝜅)-bit messages to all,

so the total communication cost is also 𝑂(𝜅𝑛2
).

5 INDEX COVER GATHER
In this section, we will first give an index gather protocol. The

protocol we use is embedded in the multivalued validated Byzantine

agreement protocol of the FIN ACS [23, Section 5.3]. We distill their

gather protocol and adapt it to an index version. Next, we will

describe how we can transform the index gather protocol to have
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Algorithm 3 Index gather protocol for party 𝑖

Input: Valid𝑖 , the set of parties that 𝑝𝑖 has validated so far // Valid𝑖
is a growing set and satisfies completeness (see §2.2)
1: upon |Valid𝑖 |= 𝑛 − 𝑡
2: Let 𝑆𝑖 := Valid𝑖
3: send ⟨INFORM, 𝑆𝑖 ⟩ to all

4: upon 𝑆 𝑗 ⊆ Valid𝑖 becomes true for ⟨INFORM, 𝑆 𝑗 ⟩ received from
party 𝑗

5: send ⟨ACK⟩ to party 𝑗 // if not done already

6: upon receiving ACK from 𝑛 − 𝑡 distinct nodes
7: Let 𝑇𝑖 := Valid𝑖
8: send ⟨PREPARE,𝑇𝑖 ⟩ to all

9: Let 𝐶𝑖 := {} // set of indices of nodes from whom party 𝑖 received
a valid PREPARE message

10: upon 𝑇𝑗 ⊆ Valid𝑖 becomes true for ⟨PREPARE,𝑇𝑗 ⟩ received
from party 𝑗

11: 𝐶𝑖 := 𝐶𝑖 ∪ { 𝑗}
12: if |𝐶𝑖 |= 𝑛 − 𝑡 then
13: output 𝑋𝑖 :=

⋃
𝑗∈𝐶𝑖

𝑇𝑗 and terminate

an additional important property called binding cover that we will

define later.

5.1 Index Gather
The index gather protocol is given in Algorithm 3. We will use the

notation of parties inputting validating of each other described in

§2.2.

Design. LetValid𝑖 denote the set of parties that party 𝑖 has validated.
Note that Valid𝑖 grows over time. Each party 𝑖 waits until it has

validated 𝑛 − 𝑡 parties and sends this set of 𝑛 − 𝑡 parties to all in

a message ⟨INFORM, 𝑆𝑖 ⟩. Party 𝑖 , upon receiving ⟨INFORM, 𝑆 𝑗 ⟩ from
party 𝑗 , waits until 𝑆 𝑗 ⊆ Valid𝑖 becomes true (note that Valid𝑖
grows). In other words, party 𝑖 waits until it has validated all the

parties that 𝑗 claims to have validated. When this happens, party 𝑖

responds back to party 𝑗 with an ACK message.

A party 𝑖 then waits to receive 𝑛 − 𝑡 ACK messages from other

parties. Party 𝑖 then sends to all its Valid𝑖 set at that time in a

message ⟨PREPARE,𝑇𝑖 ⟩. Finally, each party 𝑖 waits for 𝑛 − 𝑡 distinct
PREPARE messages ⟨PREPARE,𝑇𝑗 ⟩ whose 𝑇𝑗 ⊆ Valid𝑖 . Note again

that party 𝑖 may need to give its own input set Valid𝑖 time to grow

for this to finally happen. Let 𝐶𝑖 be the set of parties from which 𝑖

has received such a 𝑇𝑗 . Party 𝑖 then outputs its gather set 𝑋𝑖 as:

𝑋𝑖 =

⋃
𝑗∈𝐶𝑖

𝑇𝑗 (2)

Security analysis. Note that in Algorithm 3, each party 𝑖 outputs

𝑋𝑖 ⊆ Valid𝑖 , so our index gather protocol ensures the validity

property.

Next, we prove, given that the input validation mechanism sat-

isfies the completeness property, then the index gather protocol in

Algorithm 3 satisfies termination.

Lemma 5.1 (Termination). If party validation in the inputs to
Algorithm 3 protocol satisfies completeness and at least 𝑛 − 𝑡 parties

have been locally validated at some point during the protocol, then
every honest party 𝑖 eventually outputs 𝑋𝑖 .

Proof. The completeness property of party validation in the

inputs ensures that the 𝑛−𝑡 locally validated parties will eventually
become globally validated. Hence, eventually, |Valid𝑖 |≥ 𝑛 − 𝑡 for
all 𝑖 ∈ H . This implies that all honest parties will send a INFORM
message.

The completeness property of party validation in the inputs

also ensures that for every 𝑖, 𝑗 ∈ H , eventually 𝑆 𝑗 ⊆ Valid𝑖 and
𝑇𝑗 ⊆ Valid𝑖 . This implies that each honest party 𝑖 will receive at

least 𝑛 − 𝑡 ACKmessages, send PREPAREmessage to all, receive 𝑛 − 𝑡
PREPARE messages, and will have a set 𝐶𝑖 with |𝐶𝑖 |≥ 𝑛 − 𝑡 . Hence,
each honest party will output 𝑋𝑖 and terminate. □

Next, we prove Algorithm 3 satisfies the binding core property.

Lemma 5.2 (Binding core). In Algorithm 3, let 𝑖 be the first honest
party to output 𝑋𝑖 , then 𝑆𝑖 is the binding core, i.e., 𝑋 = 𝑆𝑖 and for
every honest party 𝑗 , 𝑋 ⊆ 𝑋 𝑗 .

Proof. Any honest party will output in the gather protocol only

upon receiving 𝑛 − 𝑡 PREPARE message, i.e., only after 𝑛 − 2𝑡 honest

parties have sent their PREPARE message.

Consider the first point in time that some honest party, say 𝑖 ,

sends its PREPARE message. At this time, party 𝑖 has received ACK
messages from 𝑛 − 𝑡 parties, and at least 𝑛 − 2𝑡 of those are honest.

Let 𝐻 be these 𝑛 − 2𝑡 honest parties.

Each party 𝑗 ∈ 𝐻 sends its PREPARE message after party 𝑖 sends

PREPARE, which is in turn after party 𝑗 sends ACK to party 𝑖 . Valid𝑗
is a superset of 𝑆𝑖 when party 𝑗 sends ACK to party 𝑖 , and 𝑇𝑗 takes

on the value of Valid𝑗 at a later time. Thus, 𝑆𝑖 ⊆ 𝑇𝑗 ,∀𝑗 ∈ 𝐻 .

For any honest party 𝑘 , by quorum intersection, it must be the

case that 𝐻 ∩𝐶𝑘 ̸= ∅. This implies that 𝑆𝑖 ⊆ 𝑋𝑘 . 𝑆𝑖 can hence serve

as the required binding core set. □

Performance analysis. Clearly, Algorithm 3 has 𝑂(𝑛2
) message

complexity and 𝑂(𝑛3
) communication complexity.

5.2 Index Cover Gather
Definition. We will now strengthen the index gather protocol

above to what we call an index cover gather (ICG) protocol. An index
cover gather protocol is an index gather protocol that additionally

satisfies the binding cover property below.

Definition 5.3 (Binding cover). At the first time some honest party

𝑖 outputs, there exists a locally validated set of parties 𝑌 , dependent

only on the joint views of the honest parties at that time, such that

𝑋 𝑗 ⊆ 𝑌 for all honest party 𝑗 ∈ [𝑛]. We call 𝑌 the cover set.

It may be helpful to contrast the binding cover property with the

binding core property. A core set is a subset of every honest party’s

eventual output. A cover set is a superset of every honest party’s

eventual output. The term binding means that these two sets can

be determined by the first time some honest party outputs.

We will next present a construction for ICG using an index

gather protocol and reliable agreement. We give the protocol in

Algorithm 4 and describe it next.
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Algorithm 4 Index cover gather protocol for party 𝑖

Input: Valid𝑖 , the set of parties that 𝑝𝑖 has validated so far // Note
that Valid𝑖 is a growing set.
1: start 𝑛 parallel reliable agreement instances, one for each

𝑗 ∈ [𝑛]. Let RA𝑗 for be the 𝑗-th reliable agreement instance.

2: Let IGValid𝑖 := {} // input of the index gather protocol
3: start index gather with IGValid𝑖 as input

4: Let withdraw𝑖 := False
5: upon validating a new party 𝑗 , i.e., when 𝑗 is added to Valid𝑖
6: if withdraw𝑖 = False then
7: input 1 to RA𝑗

8: upon RA𝑗 outputs 1

9: IGValid𝑖 := IGValid𝑖 ∪ { 𝑗}
10: if |IGValid𝑖 |= 𝑛 − 𝑡 then
11: withdraw𝑖 := True
12: send ⟨WITHDRAW⟩ to all

13: upon receiving ⟨WITHDRAW⟩ from 𝑛 − 𝑡 parties
14: wait until the index gather protocol outputs 𝑋𝑖
15: output 𝑋𝑖 and terminate

Design. Let set Valid𝑖 be the input of party 𝑖 to our ICG protocol.

Similar to index gather, Valid𝑖 is the growing set of parties that

party 𝑖 has validated so far.

Parties participate in 𝑛 parallel reliable agreement instances, one

for each 𝑗 ∈ [𝑛]. Let RA𝑗 be the 𝑗-th reliable agreement instance.

Each party 𝑖 also maintains a boolean variable withdraw𝑖 , initially

set to False (but will eventually be set to True). Intuitively, the
variable withdraw𝑖 indicates whether or not party 𝑖 will continue

to input 1 to remaining reliable agreement instances. Parties also

start an index gather protocol. IGValid𝑖 will be party 𝑖’s input to the
index gather protocol, which is also a growing set of party indices.

Whenever party 𝑖 has validated 𝑗 , i.e., 𝑗 gets added to Valid𝑖 ,
party 𝑖 inputs 1 to RA𝑗 , unless withdraw𝑖 has been set to True
(in which case we say party 𝑖 has withdrawn). Next, whenever
party 𝑖 outputs 1 from some RA𝑗 , it adds the index 𝑗 to the set

IGValid𝑖 . This means party 𝑖 has validated party 𝑗 for the purpose of

index gather (in Algorithm 3). Note that RA satisfies agreement and

totality. Therefore, IGValid𝑖 satisfies our completeness requirement

as inputs to index gather.

When the size of IGValid𝑖 reaches 𝑛−𝑡 , party 𝑖 setswithdraw𝑖 :=

True, therebywithdrawing from inputting 1 to any remaining RA in-

stance. Party 𝑖 also sends a ⟨WITHDRAW⟩ message to all. We note that

parties continue to participate (i.e., send READYmessages whenever

needed in Algorithm 1) in all RA instances even after withdrawing.

Let 𝑋𝑖 be the output of the index gather protocol. Party 𝑖 then

waits to receive ⟨WITHDRAW⟩ from 𝑛 − 𝑡 distinct parties, and outputs
𝑋𝑖 as its index cover gather (ICG) output.

Security analysis. The validity and binding core properties of our

ICG protocol follow from the validity and binding properties of the

index gather protocol we use. We now prove that our ICG protocol

terminates if 𝑛 − 𝑡 parties are globally validated during any time

of the protocol. (Note that the two conditions in the termination

property imply that 𝑛 − 𝑡 parties are globally validated.)

Lemma 5.4 (Termination). If 𝑛 − 𝑡 parties are globally validated,
then Algorithm 4 terminates.

Proof. We first show that if at least 𝑛 − 𝑡 parties are globally
validated in the inputs to ICG, then some honest party will even-

tually withdraw. For the sake of contradiction, suppose no honest

party ever withdraws. Then, all honest parties will input 1 to all

RA instances of these 𝑛 − 𝑡 globally validated parties. Then, by the

totality property of RA, all these 𝑛−𝑡 RA instances will output 1. As

a result, all honest parties will withdraw, which is a contradiction.

Now, a party withdraws only after 𝑛 − 𝑡 RA instances output 1.

By the totality property of RA, all honest parties will eventually

withdraw. Let 𝑖 be some honest party that withdraws. By the totality

property of RA, all parties in IGValid𝑖 will eventually be globally

validated in the inputs to index gather, and these inputs to index

gather have the completeness property. Thus, the index gather

protocol will eventually terminate. Therefore, every honest party

will eventually receive 𝑛 − 𝑡 ⟨WITHDRAW⟩ messages as well as its

output from the index gather protocol, and will output from the

ICG protocol. □

We now prove that our ICG protocol in Algorithm 4 satisfies the

binding cover property. Recall from Definition 5.3 that we need to

prove that at the first time some honest party outputs, a cover set

of validated parties 𝑌 exists such that every honest party’s eventual

output is a subset of 𝑌 .

Lemma 5.5 (Binding Cover). Algorithm 4 satisfies binding cover.

Proof. Consider the first point in time that an honest party

produces an output. At this point in time, at least 𝑛 − 2𝑡 honest

parties must have already withdrawn. Thus, if any party 𝑗 has not

been locally validated yet, at most 𝑡 honest parties will input 1 to

RA𝑗 . By the integrity property of RA, this is insufficient for RA𝑗 to

output 1. This implies that 𝑗 will never appear in IGValid𝑖 for any
honest party 𝑖 . Then, by the validity property of index gather, 𝑗 can

never appear in the output set of any honest party. Therefore, we

can define the cover set 𝑌 to be:

𝑌 :=

⋃
𝑖∈H

IGValid𝑖 . (3)

where we use IGValid of honest parties at the time when the first

honest party outputs from the index gather protocol. □

Performance analysis. Our ICG protocol runs 𝑛 parallel binary

reliable agreement and a single index gather. The communication

cost of our protocol is thus 𝑂(𝑛3
).

6 INDEX VALIDATED ASYNCHRONOUS
BYZANTINE AGREEMENT

In this section, we will present our index validated asynchronous

byzantine agreement (VABA) protocol. Our index VABA proto-

col uses the following primitives in a black-box manner: (i) RBC ,

(ii) ICG, (iii) ASKS, and (iv) RA.

Party ranks. Looking ahead, our index VABA protocol has a step

where we assign a random rank to each party. Parties then take

further actions based on the ordering of ranks for (subsets of)

parties. Intuitively, we require these ranks to satisfy: (i) ranks of

parties are independent of each other and uniformly random from

8



Algorithm 5 Index VABA protocol for party 𝑖 with a rank oracle

Input: Valid𝑖 the set of parties, party 𝑖 has validated so far // Valid𝑖
is a growing set and has the completeness property

// The protocol proceeds in views 𝑣 = 0, 1, 2, . . ., where in 𝑣 :
1: if 𝑣 = 0 then
2: Let pre𝑖 be the first element added to Valid𝑖
3: Let justify𝑖 := ∅ // first justification is empty
4: broadcast (pre𝑖 , justify𝑖 ) using an RBC denoted RBCpre,𝑖

// Running an index gather instance
5: Let IGValid𝑖 := {} // input to the index gather protocol
6: start the index gather protocol with IGValid𝑖 as input

// validating party 𝑗 ’s prevote
7: upon pre𝑗 ∈ Valid𝑖 ∧ justify𝑗 ⊆ 𝑀𝑖,𝑣−1 becomes true where

(pre𝑗 , justify𝑗 ) is the output of RBCpre, 𝑗
8: if 𝑣 ≥ 1 then
9: assert |justify𝑗 |≥ 𝑛 − 𝑡
10: assert pre𝑗 is a most frequent vote in justify𝑗
11: IGValid𝑖 := IGValid𝑖 ∪ { 𝑗} // if all assertions are true
12: wait until the index gather protocol outputs 𝑋𝑖

// Getting the ranks from an oracle
13: For each party 𝑗 ∈ 𝑋𝑖 , let rank𝑗,𝑣 be its rank in view 𝑣

// Trying to agree on the index with maximum rank
14: Let ℓ ∈ 𝑋𝑖 be the index with maximum rank among 𝑋𝑖
15: Let vote𝑖 := preℓ where (preℓ , ·) is the output of RBCpre,ℓ
16: broadcast vote𝑖 using an RBC denoted RBCvote,𝑖

17: Let𝑀𝑖,𝑣 := {} // set of finished vote RBC and their outputs
18: upon vote𝑗 ∈ IGValid𝑖 becomes true where vote𝑗 is the output

of RBCvote, 𝑗
19: 𝑀𝑖,𝑣 := 𝑀𝑖,𝑣 ∪ {( 𝑗, vote𝑗 )}
20: if |𝑀𝑖,𝑣 |= 𝑛 − 𝑡 then
21: justify𝑖 := 𝑀𝑖,𝑣 // to be used in the next view
22: Set pre𝑖 to a most frequent vote in justify𝑖
// One reliable agreement across all views, as a termination gadget
23: start a reliable agreement instance RA
24: upon𝑀𝑖,𝑣 (for any 𝑣) contains 𝑛 − 𝑡 matching (·, 𝑘∗)
25: input 𝑘∗ to RA // input only once
26: participate in view 𝑣 + 1 but not 𝑣 + 2 or later views

27: upon RA outputs 𝑘∗

28: output 𝑘∗ and terminate

a sufficiently large space; and (ii) rank of any party is not revealed

to the adversary until the VABA protocol reaches a certain stage.

For ease of presentation, we will first present in §6.1 our index

VABA protocol, assuming a trusted oracle that assigns ranks that

satisfy the above mentioned properties. We want to note that with

such a trusted rank oracle, we only need to use an index gather

protocol (without the binding cover property). Later in §6.3, we will

present the complete protocol, where we derive ranks of parties

carefully using ASKS and replace the index gather protocol with

an index cover gather (ICG) protocol.

6.1 Index VABA with a Rank Oracle
We give our index VABA protocol with a rank oracle in Algorithm 7.

The input of the 𝑖-th party to the index VABA protocol is the set

Valid𝑖 of parties it has validated so far. Again, the set Valid𝑖 grows
over time, and we require the party validation in inputs to satisfy

the completeness property (see §2.2).

Our index VABA protocol proceeds in views 𝑣 = 0, 1, . . ., where

each view consists of the following steps. To aid understanding, we

will break down the algorithm into parts.

Prevote (lines 1-4). In each view 𝑣 , each party 𝑖 will “prevote”

for one party. Let pre𝑖,𝑣 ∈ [𝑛] denote the index of the party that 𝑖

prevotes for in view 𝑣 . In view 𝑣 , party 𝑖 will only prevote for a party

in its Valid𝑖 set (at the time 𝑖 chooses pre𝑖,𝑣 ). Naturally, in view 0,

party 𝑖 chooses the first party added to its Valid𝑖 set. In any view

𝑣 ≥ 1, a prevote must be accompanied by a “justification”, denoted

justify𝑖,𝑣 . In view 0, justification is not needed and justify𝑖,0 := ∅.
Then, party 𝑖 broadcasts (pre𝑖,𝑣, justify𝑖,𝑣 ) using an RBC. Hereon,

when clear from the context, we will drop the subscript 𝑣 . Thus,

the above message is written as (pre𝑖 , justify𝑖 ) for readability.

Running the index gather protocol (lines 5-12). Each party 𝑖

then prepares an input IGValid𝑖 , initially empty, for the index gather

protocol they will run in view 𝑣 . We reiterate that we only require

an index gather (without the binding cover property) with the help

of the rank oracle.

Let (pre𝑗 , justify𝑗 ) be the message (if any) that party 𝑗 broadcasts

using RBC. Party 𝑖 adds 𝑗 to IGValid𝑖 only upon:

(1) pre𝑗 is in Valid𝑖 .
(2) for views 𝑣 ≥ 1, justify𝑗 ⊆ 𝑀𝑖,𝑣−1 (for𝑀𝑖,𝑣−1 we define later),

|justify𝑗 |≥ 𝑛 − 𝑡 , and pre𝑗 is a most frequent vote in justify𝑗
(i.e., appears at least as often as any other).

Parties then run an instance of the index gather protocol where

party 𝑖 uses IGValid𝑖 as input.

Computing ranks (line 13). Each party 𝑖 then waits for the index

gather protocol to finish. Let 𝑋𝑖 be its output from the index gather

protocol. Party 𝑖 then computes the rank of each party 𝑗 ∈ 𝑋𝑖
by querying the rank oracle. The rank oracle reveals the ranks of

parties only after at least one honest party outputs in the index

gather protocol.

Trying to agree on the maximum rank (lines 14-22). Let ℓ ∈
𝑋𝑖 be the party with the maximum rank among all parties in 𝑋𝑖 .

Party 𝑖 will adopt the prevote of ℓ as its own vote and broadcast

its vote using an RBC. Party 𝑖 also maintains a set 𝑀𝑖,𝑣 , initially

empty, consisting of tuples of vote RBC instances and their outputs

( 𝑗, vote𝑗 ) upon vote𝑗 becomes locally validated by the index gather,

i.e., vote𝑗 ∈ IGValid𝑖 becomes true. More precisely, for the 𝑗-th

RBC output vote𝑗 , party 𝑖 adds party 𝑗 to 𝑀𝑖,𝑣 only upon vote𝑗 ∈
IGValid𝑖 .

When the set𝑀𝑖,𝑣 reaches size 𝑛− 𝑡 , party 𝑖 computes its prevote

for the next view as follows. Party 𝑖 sets justify𝑖 := 𝑀𝑖,𝑣 and pre𝑖 to
a most frequent vote in justify𝑖 .

Final output (lines 23-28). If it ever happens that𝑀𝑖,𝑣 contains

𝑛 − 𝑡 matching tuples (·, vote) for some vote, party 𝑖 inputs vote to
an reliable agreement instance RA. It is important to note that there

is only a single reliable agreement instance RA across all views
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and parties participate in RA even if they have not input anything

to RA. It is also important that, after inputting to RA, a party will

participate in one more view, but not in any view after that. Finally,

when RA outputs 𝑘∗, a party outputs 𝑘∗ as the index VABA output

and terminates.

6.2 Index VABA Analysis
We now prove that Algorithm 5 is a secure index VABA protocol

given a trusted rank oracle.

Lemma 6.1 (Validity). Algorithm 5 satisfies validity.

Proof. The integrity property of the RA ensures that the output

of RA is input by at least 𝑛 − 2𝑡 honest parties. An honest party 𝑖

inputs vote𝑖 to RA only when vote𝑖 appears in𝑀𝑖,𝑣 for some view

𝑣 . Now, node 𝑖 adds vote𝑖 to𝑀𝑖,𝑣 only upon vote𝑖 ∈ IGValid𝑖 , and
hence only upon vote𝑖 ∈ Valid𝑖 . □

Proof of agreement. The agreement property of our index VABA

in Algorithm 5 is straightforward from the agreement property of

the termination gadget RA. However, we still need to prove that

honest parties provide the same input to RA because RA only guar-

antees termination in the case of matching inputs. (In other words,

the termination gadget RA converts a potential violation of agree-

ment to a violation of termination.) This is a proof of agreement in

essence, and we will refer to it as such.

Lemma 6.2. If in view 𝑣 , 𝑛 − 𝑡 vote RBC instances output the same
value 𝑘∗, then in view 𝑣 + 1, every honest party will input 𝑘∗ to RA,
if it has not input to RA in previous views.

Proof. If 𝑛 − 𝑡 vote RBC instances output the same value 𝑘∗,
every other honest party will receive at least 𝑛 − 2𝑡 of these RBC

outputs of 𝑘∗ among their 𝑛 − 𝑡 RBC outputs. Thus, 𝑘∗ will be the
most frequent vote in 𝑀𝑗,𝑣 for every honest party 𝑗 , and party 𝑗

will set its pre𝑗,𝑣+1
to 𝑘∗ in view 𝑣 + 1.

In view 𝑣 + 1, every honest party 𝑖 will check |justify𝑗,𝑣+1
|≥ 𝑛− 𝑡 ,

justify𝑗,𝑣+1
⊆ 𝑀𝑖,𝑣 , and pre𝑗,𝑣+1

is a most frequent vote in justify𝑗 .
This ensures that a malicious party will be added to IGValid only

if pre𝑗,𝑣+1
= 𝑘∗. This implies that in view 𝑣 + 1, regardless of the

ranks of the parties, an honest party 𝑖 will only populate 𝑀𝑖,𝑣+1

with tuples (·, 𝑘∗) and hence will input 𝑘∗ to RA, if it has not input
to RA in previous views. □

Lemma 6.3 (Agreement). Honest parties do not provide distinct
inputs to RA in Algorithm 5.

Proof. Consider the smallest view 𝑣 in which some honest

party inputs to RA. Suppose this party inputs 𝑘∗ to RA only upon

receiving 𝑛 − 𝑡 matching RBC outputs of 𝑘∗. By Lemma 6.2, every

honest party will input 𝑘∗ to RA in view 𝑣 + 1, unless it has input to

RA in previous views. Since 𝑣 is the smallest view in which some

honest party inputs to RA, we only need to consider view 𝑣 . For

another honest party to input 𝑘′ to RA in view 𝑣 , it must receive

𝑛 − 𝑡 matching RBC output of 𝑘′ in view 𝑣 . By a standard quorum

intersection, 𝑘′ = 𝑘∗ □

Recall that we require ranks to be independent, uniformly ran-

dom from a large space, and hidden until the protocol reaches a

certain stage. Concretely, we assume each rank is an independent

and random 𝜅-bit integer where 𝜅 is a security parameter, and ranks

in view 𝑣 remain hidden until some honest party outputs in the

index gather protocol of view 𝑣 .

Next, we will prove the following simple but crucial Lemma

that says our index VABA protocol terminates in each view with a

probability of at least 2/3.

Lemma 6.4. With at least 2/3 probability, an index in the core set
𝑋 has the unique maximum rank.

Proof. The probability that all ranks are distinct, i.e., there is

no collision, is at least 1−𝑛2
2
−𝜅

. Conditioned on no collision, each

index has a 1/𝑛 probability of being themaximum rank. The binding

core property ensures that 𝑋 is fixed when the first honest party

outputs from the index gather, at which point all ranks remain

hidden from the adversary. Thus, 𝑋 is independent of the ranks,

and the probability that the maximum rank belongs to some index

in 𝑋 is |𝑋 |/𝑛 ≥ (𝑛 − 𝑡 )/𝑛. Therefore, the probability that an index

in 𝑋 has the unique maximum rank is at least (1 − 𝑛2
2
−𝜅

) · 𝑛−𝑡𝑛 ,

which is greater than 2/3 for 𝑛 ≥ 3𝑡 + 1 and sufficiently large 𝜅 . □

Lemma 6.5 (Termination). Algorithm 7 ensures termination.

Proof. From Lemma 6.4, in each view 𝑣 , a party ℓ ∈ 𝑋 has the

unique maximum party with probability at least 2/3. When this

happens, ℓ also has the unique maximum rank among each honest

party 𝑖’s index gather output 𝑋𝑖 (note that 𝑋𝑖 ⊇ 𝑋 ).

In this case, every honest party 𝑖 will set its vote𝑖,𝑣 to be preℓ,𝑣 .
There will be 𝑛 − 𝑡 RBCs that output preℓ,𝑣 . Then, by Lemma 6.2,

all honest parties will input to RA in view 𝑣 + 1, if not in smaller

views. By Lemma 4.3, honest parties can only input the same value

to RA, so RA terminates in view 𝑣 + 1.

Furthermore, an honest party participates in only one more view

after inputting to RA. Therefore, every honest party participates in

expected constant number of views before terminating. □

6.3 Index VABA without a Rank Oracle
In this section, we will describe how we can instantiate the rank

oracle for each view using 𝑛 parallel ASKS instances and an index

cover gather (ICG) protocol.

We give the protocol in Algorithm 6 and highlight the changes

from Algorithm 5 in gray. We describe these changes next. The first

change is to replace the index gather protocol in Algorithm 5 with

an index cover gather (ICG) protocol.

ASKS sharing (lines 4-8). Before running the index (cover) gather
protocol in each view, parties start 𝑛 ASKS sharing instances, with

party 𝑖 as the dealer for the 𝑖-th instance. Each party 𝑖 as the dealer

shares a uniformly random secret 𝑠𝑖 ∈ S. Each party 𝑖 then main-

tains a set Shared𝑖 of ASKS instances whose sharing phases finished
at party 𝑖 . Note that Shared𝑖 grows over time. Let 𝑃𝑖 be the first set

of 𝑡 + 1 ASKS instances that terminate at party 𝑖 . Party 𝑖 adds 𝑃𝑖 to

its prevote RBC.

Running the index cover gather protocol (steps 9-17). As the
voting RBC of party 𝑗 now additionally includes 𝑃 𝑗 , two extra

conditions need to become satisfied before we add 𝑗 to the input of

ICG: 𝑃 𝑗 contains 𝑡 + 1 parties that 𝑖 has validated (i.e., 𝑃 𝑗 ⊆ Valid𝑖 ).
10



Algorithm 6 Index VABA protocol for party 𝑖 without a rank oracle

Input: Valid𝑖 the set of parties, party 𝑖 has validated so far // Valid𝑖
is a growing set and has the completeness property

The protocol proceeds in views 𝑣 = 0, 1, . . ., where in each view 𝑣 :
1: if 𝑣 = 0 then
2: Let pre𝑖 be the first element added to Valid𝑖
3: Let justify𝑖 := ∅ // first justification is empty
4: start 𝑛 ASKS instances and act as the dealer in the 𝑖-th ASKS

5: Let Shared𝑖 be the (growing) set of ASKS instances whose

sharing phase finished at 𝑖

6: upon |Shared𝑖 |= 𝑡 + 1 for the first time

7: Let 𝑃𝑖 := Shared𝑖 // to propose this set to all
8: broadcast (pre𝑖 , 𝑃𝑖 , justify𝑖 ) using RBCpre,𝑖

// Running an index cover gather instance
9: Let IGValid𝑖 := {} // input to the index gather protocol
10: start the index cover gather protocol with IGValid𝑖 as input

// validating party 𝑗 ’s prevote
11: upon pre𝑗 ∈ Valid𝑖 ∧ justify𝑗 ⊆ 𝑀𝑖,𝑣−1∧ 𝑃 𝑗 ⊆ Valid𝑖 becomes

true where (pre𝑗 , 𝑃 𝑗 , justify𝑗 ) is the output of RBCpre, 𝑗
12: assert |𝑃 𝑗 |≥ 𝑡 + 1

13: if 𝑣 ≥ 1 then
14: assert |justify𝑗 |≥ 𝑛 − 𝑡
15: assert pre𝑗 is a most frequent vote in justify𝑗
16: IGValid𝑖 := IGValid𝑖 ∪ { 𝑗} // if all assertions are true
17: wait until the index cover gather protocol outputs 𝑋𝑖

// Computing the rank of parties
18: start reconstruction of all ASKS instances in Shared𝑖 . If a new

index gets added to Shared𝑖 , reconstruct that as well.
19: wait until reconstruction of all secrets in

⋃
𝑗∈𝑋𝑖

𝑃 𝑗 finishes.

Let 𝑠𝑘 be the reconstructed secret of 𝑘-th ASKS.

20: Compute for each party 𝑗 ∈ 𝑋𝑖 , rank𝑗,𝑣 =

∑
𝑘∈𝑃 𝑗

H
Rank

( 𝑗, 𝑠𝑘 )

// The rest of the protocol is the same as lines 14 to 28 in Algorithm 5

ASKS reconstruction and computing ranks (lines 18-20). Each
party 𝑖 then waits for the ICG protocol to finish. Party 𝑖 initiates

the reconstruction phase of all the ASKS instances in Shared𝑖 (and
will continue to do so for other ASKS instances as the set Shared𝑖
continues to grow). Let 𝑋𝑖 be the output of party 𝑖 from the ICG

protocol. Let 𝑇𝑖 be the union of ASKS instances proposed by all

parties in 𝑋𝑖 , i.e.,

𝑇𝑖 :=

⋃
𝑗∈𝑋𝑖

𝑃 𝑗 (4)

Each party 𝑖 waits to reconstruct the secrets for all indices in 𝑇𝑖 .

Then, for each 𝑗 ∈ 𝑋𝑖 , the rank of party 𝑗 is computed as:

rank𝑗 ←
∑︁
𝑘∈𝑃 𝑗

H
Rank

( 𝑗, 𝑠𝑘 ) (5)

Here, R denote the finite space of ranks with 1/|R | being negligible
in 𝜅, and H

Rank
: [𝑛] × S → R is a hash function modeled as an

random oracle.

The rest of the protocol is identical to the index VABA protocol

with a rank oracle in §6.3.

Algorithm 7 Index ACS protocol for party 𝑖

Input: Valid𝑖 the set of parties, party 𝑖 has validated so far // Valid𝑖
is a growing set and has the completeness property
1: Let VABAValid𝑖 := {} // to be used as the index VABA input
2: upon |Valid𝑖 |= 𝑛 − 𝑡
3: Let 𝐼𝑖 := Valid𝑖
4: broadcast 𝐼𝑖 using an RBC instance RBC𝑖

5: upon 𝐼 𝑗 ⊆ Valid𝑖 becomes true where 𝐼 𝑗 is the output of RBC𝑗

6: if |𝐼 𝑗 |≥ 𝑛 − 𝑡 then
7: VABAValid𝑖 := VABAValid𝑖 ∪ { 𝑗}
8: start Index VABA with input VABAValid𝑖
9: upon Index VABA outputs 𝑖∗

10: wait until RBC𝑖∗ outputs 𝐼𝑖∗

11: output 𝐼𝑖∗ and terminate

Analysis of the rank assignment protocol. At the time the first

honest party starts reconstructing a secret, let 𝑌 be the binding

cover set of the index cover gather (ICG) protocol. We now prove

that before any honest party starts the reconstruction, ranks of all

parties in 𝑌 are fixed, and are computationally indistinguishable

from uniformly random ranks.

Lemma 6.6. In each view of Algorithm 6, before any honest party
starts the reconstruction, ranks of all parties in 𝑌 are fixed, and are
computationally indistinguishable from uniformly random ranks.

Proof. Recall the rank computation in Equation (5). Party 𝑖 has

committed to the set 𝑃𝑖 via RBC before any honest party starts

reconstructing the secrets. This implies the rank of each party in 𝑌

is fixed before any party starts reconstruction.

Now, for each 𝑖 ∈ 𝑌 , 𝑃𝑖 contains some honest party since |𝑃𝑖 |≥
𝑡 + 1. Let 𝑗 be an honest party in 𝑃𝑖 . Then, by the secrecy property

of the ASKS scheme, for each 𝑖 ∈ 𝑌 the secret key 𝑠 𝑗 used in

computing the rank of party 𝑖 is computationally indistinguishable

from uniform random, and hence so is the output H
Rank

(𝑖, 𝑠 𝑗 ). □

Analysis of the index VABA protocol. Observe that the proofs
of validity and agreement in Section 6.2 did not depend on the

ranks. For termination, Lemma 6.4 can be easily adapted to show

that, with probability at least 2/3, an index ℓ ∈ 𝑋 has the unique

maximum rank among the cover set 𝑌 . When this happens, ℓ also

has the unique maximum rank among each honest party 𝑖’s index

cover gather (ICG) output𝑋𝑖 , because𝑋 ⊆ 𝑋𝑖 ⊆ 𝑌 . This is sufficient

for the proof of Lemma 6.5.

7 ASYNCHRONOUS COMMON SUBSET AND
ITS APPLICATIONS

In this section, we will first present our index asynchronous com-

mon subset (ACS) protocol, and then describe how we can build a

standard ACS using an index ACS and RBC in an black-box manner.

Lastely, we also briefly describe other applications of index ACS

such as hash-based common coin and asynchronous DKG.
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Algorithm 8 ACS protocol for party 𝑖

Input:Message𝑚𝑖

1: broadcast𝑚𝑖 using an RBC instance RBC𝑖

2: Let Valid𝑖 := {} // to be used as the index ACS input
3: upon 𝑗-th RBC finishes and outputs𝑚 𝑗

4: Let Valid𝑖 := Valid𝑖 ∪ { 𝑗}
5: start Index ACS with input Valid𝑖
6: upon Index ACS outputs 𝑋

7: wait until RBC𝑗 outputs𝑚 𝑗 for each 𝑗 ∈ 𝑋
8: output {𝑚 𝑗 } 𝑗∈𝑋 and terminate

7.1 Index ACS
Our index ACS design is based on the standard known technique of

using a VABA protocol to construct an ACS protocol [2, 4, 19, 23].

We summarize our protocol in Algorithm 7, and describe it next.

At the start of the index ACS protocol, each party 𝑖 , upon val-

idating 𝑛 − 𝑡 parties, proposes this set 𝐼𝑖 of 𝑛 − 𝑡 parties using an

RBC instance RBC𝑖 .

Party 𝑖 also maintains a set VABAValid𝑖 , a set of parties whose
RBC outputs become validated. More precisely, party 𝑖 adds a party

𝑗 to VABAValid𝑖 , only when its input Valid𝑖 becomes a superset of

the proposal 𝐼 𝑗 broadcasted by party 𝑗 and |𝐼 𝑗 |≥ 𝑛 − 𝑡 .
Parties then run an instance of the index VABA protocol where

party 𝑖 uses VABAValid𝑖 as its input. Let 𝑖∗ be the index VABA

output. Parties then wait until the RBC instance RBC𝑖∗ outputs 𝐼𝑖∗ ,

and then outputs 𝐼𝑖∗ as the index ACS output.

It is easy to prove this gives an index ACS protocol following a

similar and standard proof as [2].

7.2 ACS
We summarize our ACS protocol in Algorithm 8, and describe it

next. Each party 𝑖 start the ACS protocol by broadcasting its input

message𝑚𝑖 using an RBC instance RBC𝑖 . Party 𝑖 also maintains

a set Valid𝑖 , a set of parties whose RBC instances has finished at

party 𝑖 . More precisely, party 𝑖 adds a party 𝑗 to Valid𝑖 , only upon

outputting𝑚 𝑗 from RBC𝑗 . Parties then run an instance of the index

ACS protocol where party 𝑖 uses Valid𝑖 as its input. Let 𝑋 be the

index ACS output. Parties then wait until the RBC instance RBC𝑗

outputs𝑚 𝑗 for all 𝑗 ∈ 𝑋 . Then, each party outputs {𝑚 𝑗 } 𝑗∈𝑋 as the

ACS output.

It is easy to prove this gives an ACS protocol assuming secure

index ACS and RBC protocols.

7.3 Application to Hash-based Common Coin
Our index ACS protocol can be used with a hash-based verifiable

secret sharing scheme to design a hash-based asynchronous com-

mon coin or randomness beacon. The protocol has two phases:

preparation and reveal.
During the preparation phase, each node acts as a dealer to

share a uniformly random secret using a hash-based secret sharing

protocol. Nodes then agree on a subset of at least 𝑡 + 1 dealers who

correctly shared their secrets, using an index ACS protocol. During

the reveal phase, nodes reconstruct each of the 𝑡 + 1 shared secrets.

The coin/beacon output is then the sum of all reconstructed secrets.

Using the recent hash-based asynchronous complete secret shar-

ing scheme from [42] along with the standard randomness extrac-

tion technique using hyper-invertible matrices [7, 17], we can gen-

erate Θ(𝑛2
) common coins with amortized 𝑂(𝜅𝑛) communication

in the failure-free case.

7.4 Application to Asynchronous DKG
We can also use our index ACS to improve the asynchronous DKG

protocol of Das et al. [19] by simply replacing their index ACS

protocol with our index ACS protocol. This improves both the

asymptotic round complexity and concrete runtime. We want to

note that although our index ACS protocol only relies on hash

functions, the overall asynchronous DKG protocol of Das et al. [19]

still requires public key cryptography.

8 IMPLEMENTATION AND EVALUATION
We implement our ACS protocol in Python 3.7.13 on top of the

open-source asynchronous DKG codebase of [17, 19]. Our imple-

mentation uses the same libraries as [17, 19], such as asyncio for
concurrency, RBC implementation from [18] and finite field opera-

tions from [1, 28]. Our implementation is single-threaded at each

party and is publicly available at https://anonymous.4open.science/

r/acs-anonymous-2648/.

8.1 Optimizations
In previous sections, we prioritized the modularity of the proto-

col and forgo several optimizations. For example, since RA and

RBC have many similarities, RA can often piggyback on RBC. Sim-

ilarly, we can also merge different RBC instances from different

sub-protocols. Next, we will briefly describe the optimizations we

implement and refer the reader to our open-source codebase for

more details.

First, we merge the RBC and RA instances in our ASKS protocol

(Algorithm 2) as follows. In the sharing phase, the dealer sends

⟨SHARE, 𝑝(𝑖)⟩ and 𝒉 together to party 𝑖; each party 𝑖 participates

in the RBC of the message 𝒉 only if ⟨SHARE, 𝑝(𝑖)⟩ also satisfies the

condition 𝒉[𝑖] = H(𝑖, 𝑝(𝑖)). With this optimization, the RA in ASKS

comes for free. Second, we similarly merge the RA instances in the

ICG protocol (line 1 of Algorithm 4) into the RBC instances of the

index VABA protocol (line 8 of Algorithm 6). Third, we omit the RBC

instances on line 4 of Algorithm 7. Instead, in our implementation,

party 𝑖 uses RBCpre,𝑖 (line 8 of Algorithm 5) in view 𝑣 = 0 to

propose 𝐼𝑖 . More precisely, in view 𝑣 = 0 of the index VABA protocol,

each party proposes (pre𝑖 , 𝑃𝑖 , 𝐼𝑖 , justify𝑖 ) using RBCpre,𝑖 . With this

optimization, we get our index ACS protocol from our index VABA

protocol without using any additional rounds of communication.

8.2 Evaluation Setup
With our evaluation, we seek to illustrate that our index ACS is

practical and achieves comparable or better performance than prior

works while relying only on hash functions. Thus, we only evaluate

the costs of index ACS for both our protocol and baselines. To facil-

itate the evaluation of index ACS evaluation, we use 1-bit messages

as inputs to Algorithm 8. Note that, unlike standard ACS, whose

performance crucially depends on the input size, the performance

of index ACS is independent of the input size.
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Figure 3: Runtime

Experimental setup. We evaluate our implementation with a

varying number of parties: 32, 64, and 128. We run all parties on

AmazonWeb Services (AWS)m5.xlarge virtual machines (VMs)with

one party per VM. Each VM has 4 vCPUs, 16GB RAM, and runs

Ubuntu 20.04. We place parties evenly across eight different AWS

regions: Canada, Ireland, N. California, N. Virginia, Oregon, Ohio,

Singapore, and Tokyo. We create an overlay network in which all

parties are pair-wise connected, i.e., they form a complete graph.We

run ten repetitions of our experiments for each choice of parameters,

where in each experiment, we let the protocol run until all nodes

locally output from the index ACS protocol.

Baselines. We distill the index ACS protocol from the Das et al.

asynchronous DKG [19] as the main baseline. This is the only

known implementation of ACS that does not rely on a private setup

or idealized common coins. We also compare with FIN [23], a recent

ACS protocol that is signature-free but assumes idealized common

coins. We implement and evaluate an index ACS protocol based

on FIN (called MVBA in the paper). The FIN implementation uses

the discrete logarithm based threshold pseudorandom function

from [14] to implement the common coin.

Evaluation metrics.We evaluate our protocol and the baselines

as per the following three metrics: bandwidth usage, message count,
and runtime. The bandwidth usage measures the amount of data in

Bytes a party sends during the entire index ACS protocol. Similarly,

the message count is the number of messages a party sends during

the entire index ACS protocol. Finally, the runtime is measured

from the start of the ACS protocol to the time a party outputs from

the ACS protocol. We measure the bandwidth usage and runtime

to illustrate the overall performance of our index ACS protocol. We

also measure the message count, since [30] reports message count

as a bottleneck in the running time of ACS protocol, and that aligns

with what we observe in our experiments.

8.3 Evaluation Results
Bandwidth usage. We report the average bandwidth usage in

Figure 1. Asymptotically, the bandwidth usage in all three proto-

cols is 𝑂(𝜅𝑛2
). Thus, as expected, we see a quadratic increase in

bandwidth usage with an increasing number of parties. Concretely,

the bandwidth usage of [19] is slightly higher than ours due to its

reliance on the Feldman VSS scheme, built using discrete logarithm

assumption. The bandwidth usage of FIN [23] is better than ours

for 32 and 64 parties and slightly worse than ours for 128 parties.

We believe the better bandwidth usage of FIN is due to the fact

that it does not require any VSS scheme and instead relies on an

external common coin oracle for shared randomness.

Message count. We report the average message count in Figure 2.

As expected, the message counts of all three protocols increase

quadratically with the number of parties. The message count of [19]

is approximately 1.8× higher than ours. This is because the index

ACS protocol in [19] requires each party to participate in 𝑛 parallel

asynchronous binary agreement (ABA) instances. The message

count of FIN protocol is approximately 75% of ours [23]. FIN has a

lower message count as it does not require parties to participate in

VSS schemes and it uses only one ABA instance in each iteration

of the protocol.

Runtime. We report the average runtime in Figure 3. The runtime

of our ACS protocol is approximately 55%-65% of that in [19]. This

was expected as our protocol has slightly better bandwidth usage,

and our message count is approximately only 45% than that of [19].

This also points to message count being the main bottleneck for

runtime.

The runtime of FIN is lower than ours. For example, with 128

parties, the runtime of FIN is only about 36% of our runtime. This

was unexpected as the bandwidth usage of FIN is comparable to

ours, and its message count is 75% of ours. Part of our extra run-

time is because we require one additional RBC and ASKS phase

for coin generation. The runtime advantage of FINs also comes

from its implementation in Golang and its better engineering. For

example, with 128 parties, 𝑛 parallel 1-bit RBC instances in the FIN

implementation take approximately one second, whereas it takes

approximately 2.7 seconds in our implementation.

9 RELATEDWORK

ACS using the BKR paradigm and idealized common coins.
Asynchronous common subset (ACS) is introduced by Ben-Or,

Canetti, and Goldreich under a different name called agreement
on a core set [9]. Ben-Or, Kelmer, and Rabin (BKR) [10] later pre-

sented a practical construction. Both works study the ACS primitive,

assuming an idealized common coin oracle. In recent years, many

practical ACS protocols have adopted the BKR paradigm and in-

stantiate the common coin oracle with a distributed pseudorandom

function (also known as unique threshold signatures) [22, 36, 44].

The ACS construction in the BKR paradigm uses 𝑛 parallel asyn-

chronous binary agreement instances, and incurs 𝑂(𝑛3
) message

and communication complexity and takes expected𝑂(log𝑛) rounds
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to terminate. Very recently, the FIN protocol [23] reduces the round

complexity to 𝑂(1).

Asynchronous consensus using weak common coin. An alter-

nate approach to asynchronous consensus is to first build a weak

common coin, meaning that honest parties may disagree on their

values with non-negligible probability, and then use these weak

coins to build an agreement protocol. This is also the approach

we adopt in this paper. This approach first appears in the work of

Canetti and Rabin [16], where they use this approach to design a

setup-free asynchronous binary agreement (ABA) protocol. The

ABA protocol of [16] is information-theoretically secure and has a

very high 𝑂(𝑛7
) communication cost.

As we discuss in §2.3, recent works [2, 4] have adopted this

approach to build ACS with improved efficiency compared to [16].

Abraham et al., in [4] adopts this approach and designs an ACS

protocol with𝑂(𝜅𝑛3
) communication costs, where it relies on public

key cryptography, specifically a pairing-based threshold verifiable

random function, for efficiency. Very recently, Abraham et al. [2]

adopted this approach to build statistically secure ACS with 𝑂(𝑛5
)

communication costs for 𝑡 < 𝑛/4. For 𝑡 < 𝑛/3, they rely on other

strong primitives (statistically secure AVSS), and the cost is not

fully specified, but it is safe to assume it will be worse than 𝑂(𝑛5
).

Asynchronous consensus with cryptography and trusted
setup. Cachin, Kursawe, Petzold, and Shoup (CKPS) [13] present an
alternate approach to designing efficient asynchronous consensus

with cryptography. A recent work Dumbo-MVBA [35] improves

upon CKPS and leads to an ACS protocol with 𝑂(𝜅𝑛2
) communica-

tion cost. This paradigm crucially relies on threshold signatures [41],

threshold pseudorandom functions [14], and constant size poly-

nomial commitments [33] both for efficiency and for generating

strong common coins needed to bypass the FLP impossibility.

Asynchronous distributed key generation. A distributed key

generation (DKG) protocol lets a set of parties setup secret keys

for threshold cryptography and agree on a public key. Thus, DKG

is a special type of agreement protocol. Asynchronous DKG that

does not rely on a trusted setup can also be viewed as a setup-

free ACS protocol [4, 19, 34]. The state-of-the-art asynchronous

DKG protocol incurs 𝑂(𝜅𝑛3
) communication cost and 𝑂(1) round

complexity [4]. All existing asynchronous DKG protocols and the

ACS protocols distilled from them rely on public-key cryptography.

Asynchronous distributed randomness beacon. Very recently,

Bandarupalli et al. [6] proposed a hash-based randomness beacon

protocol called HashRand. The protocol can generate shared coins

with amortized 𝑂(𝜅𝑛2
log𝑛) communication cost per coin output

after a long bootstrapping period that takes Ω(𝜅 log𝑛) rounds and

Ω(𝜅2𝑛3
log𝑛) communication.

The bootstrapping phase of HashRand uses the asynchronous

common coin protocol from [25]. The common-coin protocol of [25]

uses 𝑛 parallel asynchronous VSS instances and 𝑛 parallel determin-

istic approximate agreement instances to let parties derive shared

randomness. It is possible to combine the common coin protocol

of HashRand with the index ACS protocol from FIN [23] to design

a hash-based index ACS protocol without relying on any trusted

setup or public key cryptography. However, the resulting index ACS

would require Ω(𝜅2𝑛3
log𝑛) communication and Ω(𝜅 log𝑛) rounds.

Asynchronous verifiable secret sharing (AVSS). Existing AVSS

constructions that do not rely on trusted setup and ensure complete-

ness assume public key infrastructure (PKI) [29, 32, 43]. Our ASKS

construction is closely related to the “secure message distribution”

primitive by Shoup and Smart [42] and the weak AVSS scheme

of [20, 21]. Our ASKS can be viewed as a secret sharing version of

the secure message distribution primitive in [42]. In particular, if

at least one honest party completes the sharing, a fixed secret can

eventually be reconstructed. A notion of “asynchronous weak VSS”

similar to our ASKS primitive has been introduced in [20, 21]. How-

ever, the security properties and corresponding analysis presented

in [20, 21] are very informal.

10 DISCUSSION AND CONCLUSION
In this paper, we have presented trusted-setup-free and public-key-

cryptography-free validated asynchronous byzantine agreement

(VABA) and asynchronous common subset (ACS) protocols with

𝑂(𝑛3
) expected communication and 𝑂(1) expected rounds, improv-

ing over previous works, which require either 𝑂(log𝑛) rounds or

𝑂(𝑛5
) communication. Along the way, we also introduce new prim-

itives of asynchronous secret key sharing and cover gather, which

may be of independent interest. We implemented a prototype and

evaluated it with up to 128 geographically distributed parties. Our

experiments demonstrate better performance over the current best

practical schemes.

Removing the randomoracle assumption. Recall that our index
ACS protocol relies on the random oracle (RO) assumption in two

places: for the security of our ASKS primitive and in deriving ranks

of parties.

We can remove the need for RO from our ASKS design and

instead rely on the linear hiding assumption as described in [42].

We can remove the need for RO in rank derivation by using a

pseudorandom function (PRF). In particular, the rank of party 𝑗 will

be the sum of PRF evaluations at 𝑗 with the secrets 𝑠𝑘 ∈ 𝑃 𝑗 as the
PRF keys. More precisely, let 𝐹 : F × {0, 1}∗ → F be a PRF. Then,
the rank of party 𝑗 will be:

rank𝑗 =

∑︁
𝑗∈𝑃 𝑗

𝐹 (𝑠𝑘 , 𝑗 ) (6)

Intuitively, this ensures a party’s rank remains random before the

secrets shared by parties in 𝑃 𝑗 are revealed.
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