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Abstract

Searchable Symmetric Encryption (SSE) has opened up an attractive avenue for privacy-
preserved processing of outsourced data on the untrusted cloud infrastructure. SSE aims to
support efficient Boolean query processing with optimal storage and search overhead over
large real databases. However, current constructions in the literature lack the support for
multi-client search and dynamic updates to the encrypted databases, which are essential
requirements for the widespread deployment of SSE on real cloud infrastructures. Trivially
extending a state-of-the-art single client dynamic construction, such as ODXT (Patranabis
et al., NDSS’21), incurs significant leakage that renders such extension insecure in practice.
Currently, no SSE construction in the literature offers efficient multi-client query processing
and search with dynamic updates over large real databases while maintaining a benign leakage
profile.

This work presents the first dynamic multi-client SSE scheme Nomos supporting efficient
multi-client conjunctive Boolean queries over an encrypted database. Precisely, Nomos is a
multi-reader-single-writer construction that allows only the gate-keeper (or the data-owner)
- a trusted entity in the Nomos framework, to update the encrypted database stored on the
adversarial server. Nomos achieves forward and type-II backward privacy of dynamic SSE
constructions while incurring lesser leakage than the trivial extension of ODXT to a multi-
client setting. Furthermore, our construction is practically efficient and scalable - attaining
linear encrypted storage and sublinear search overhead for conjunctive Boolean queries. We
provide an experimental evaluation of software implementation over an extensive real dataset
containing millions of records. The results show that Nomos performance is comparable to
the state-of-the-art static conjunctive SSE schemes in practice.
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1 Introduction

Recent advancements in cloud computing have fuelled the development of privacy-preserved pro-
cessing of sensitive data on third-party cloud servers. Outsourced processing and storing of users’
data are becoming standard practices for individuals and organisations. Presently, cloud infras-
tructures are responsible for handling users’ private data obtained from devices/systems used by
ordinary citizens, government and industrial establishments. For extended functionalities, the
cloud service providers often delegate access to users’ data to third-party entities. The involve-
ment of the cloud service providers and other third-party entities - all of whom are considered
untrusted, raises deep concern about users’ data confidentiality and information privacy. Fur-
thermore, modern cloud applications serve multiple clients, and the data stored on the cloud is
frequently updated. In this context, straightforward encryption that provides high confidential-
ity of data trivially loses the ability to process information in the encrypted form, defeating the
advantage of using the cloud.

Several elegant cryptographic primitives such as Fully Homomorphic Encryption (FHE) [Gen09,
GSW13], Functional Encryption (FE) [BBG05], Oblivious RAM (ORAM) [Gol87, GO96] and Pri-
vate Information Retrieval (PIR) [CGKS95, OSI07, BI01] allow implementing diverse functional-
ities over encrypted outsourced data. However, all of these approaches either incur prohibitively
heavy computation/storage overhead or require extremely high communication bandwidth for real
applications.

In contrast, SSE offers theoretically robust and implementation-efficient constructions for en-
crypted data processing, especially searching, while leaking only benign information to untrusted
parties. The benign leakage in SSE is formally quantified using precise leakage functions that
capture the information leaked. We elaborate more on the general SSE setting and construction
below.

1.1 Searchable Symmetric Encryption

Searchable Symmetric Encryption (SSE) [SWP00, Goh03, CM05, CGKO06, CK10, KPR12, KP13,
CJJ+13, CJJ+14, FJK+15, KM17, Bos16, BMO17a, EKPE18, LPS+18, CPPJ18, PM21] allows
querying an encrypted database privately without decryption. In contrast to the abovementioned
approaches, SSE offers efficient and low-bandwidth constructions for encrypted data processing,
especially searching, while leaking only benign information to untrusted parties. Fundamentally,
an SSE scheme offers the following capabilities.

• Allow an (or many) entity (potentially untrusted client) to efficiently search encrypted queries
over an encrypted database stored on the cloud (untrusted) without revealing the result to the
server.
• Minimise the leakage during query (or update) such that the untrusted entities receive only
benign information.

Typical benign leakages include crude statistical information related to the database elements,
the query, or the result of the query - but do not include the actual associated (encrypted) data.
The database size, query pattern (the set of queries corresponding to the same keyword), and
the access pattern (the set of database records matching a given query) are a few such leakages
typically studied in the context of SSE. We present formal syntax of SSE with elaborate details
in Section 2, and study these leakages in Appendix C and E.

Dynamic SSE. A dynamic SSE construction [CM05, KPR12, KP13, CJJ+14, Bos16, BMO17a,
EKPE18] allows dynamic updates (adding or deleting records) to the encrypted database offloaded
to the cloud by the client. In contrast, static constructions do not allow updates to the database
once it is encrypted. The update capability of dynamic constructions implies two security notions
- forward privacy and backward privacy. Informally, the forward privacy notion states that a
current search operation can not be linked to a future update operation, and backward privacy
dictates that an insertion operation followed by a deletion does not reveal any information in a
future search operation. These two notions are essential for dynamic schemes to prevent a certain
class of attacks, specifically, the file injection attack [ZKP16].
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Multi-client SSE. A multi-client SSE scheme allows multiple clients to search (or update) the
encrypted database. SSE schemes can be classified in the following way according to the different
entities involved in the setting.

Single-Reader–Single-Writer (SRSW): Single-reader–single-writer or SRSW setting has a single
client and an untrusted cloud server. The single client also acts as the data owner who has
permission to update the encrypted database on the server. SRSW constructions [SWP00, Goh03,
CM05, CGKO06, CK10, KPR12, KP13, CJJ+13, CJJ+14, FJK+15, KM17, LPS+18] have been
extensively studied in the literature. A number of dynamic SRSW schemes [CM05, KPR12, KP13,
CJJ+14, Bos16, BMO17a, EKPE18] have been proposed in recent years and ODXT by Patranabis
et al. [PM21] is the only state-of-the-art dynamic scheme with conjunctive query support.

Multi-Reader–Single-Writer (MRSW): In the multi-reader–single-writer or MRSW setting, mul-
tiple clients can interact with the untrusted server to search (with individual trapdoors), and a
single data owner can generate or update the encrypted database on the untrusted server.

Multi-Reader–Multi-Writer (MRMW): Multi-reader-multi-reader or MRMW is the most generic
setting allowing multiple clients to search and update the encrypted database on the cloud server.

Ideally, cloud applications require multi-client access and dynamic update capability to cater
to applications over diverse databases involving a potentially large number of users (or clients).
Unfortunately, the literature on practically efficient MRSW and MRMW SSE schemes is sparse
and entirely restricted to the static setting [BHJP14, JJK+13], which prompts us to raise the
following question.

Is there a dynamic MRSW/MRMW SSE scheme with strong forward and backward privacy,
linear storage requirements and sublinear search overheads – all collectively?

As it turns out, the answer is no. ODXT supports dynamic updates and conjunctive queries
with sublinear search overhead and linear encrypted storage. However, it is an SRSW construction
without support for multiple clients. Furthermore, ODXT is vulnerable to a particular leakage
originating from the cross-terms in a conjunctive query (discussed later) that can lead to complete
query recovery. Trivially extending ODXT to the multi-client setting by delegating the search
token generation phase from multiple clients (assumed to be semi-honest) to the data-owner (a
trusted party) retains this leakage. We outline an attack process based on this leakage in Section 3
that leads to complete recovery of the cross-terms. In brief, the existing SSE literature lacks
dynamic SSE schemes in MRSW and MRMW settings, which hinders the widespread adoption of
SSE in encrypted processing tasks on the cloud.

This work aims to bridge this gap between secure and practically efficient SSE constructions
and real multi-client cloud applications. We summarise our goals with the following question.

Can we design an efficient dynamic SSE scheme with forward and backward privacy in the
MRSW setting?

We show in this paper that it is possible to design such a scheme, and we present Nomos
construction that achieves the aforementioned practical design and security goals. The follow-
ing subsection lists the primary contributions of this work. We emphasise that Nomos is a
dynamic multi-keyword construction in the MRSW setting with forward and type-II backward
privacy [BMO17a], which is a stepping stone towards building “ideal” MRMW SSE constructions.
Extending Nomos to the MRMW setting is of independent interest requiring separate in-depth
exploration, and we leave this as a future work.

1.2 Our Contributions

We summarise our main contributions of this work with brief overview below.

1 Multi-client SSE. We present the first multi-client dynamically updatable SSE construction
Nomos for outsourced encrypted databases. Nomos supports efficient multi-keyword conjunctive
Boolean queries in the MRSW setting, which is essential for practical cloud applications. To the
best of our knowledge, this is the first scheme in the literature that can process conjunctive queries
from multiple clients with dynamic updates. Clients in Nomos obtain search tokens from a trusted
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entity called gate-keeper, which is allowed to update the encrypted database and holds the keys for
token generation. The clients use the search tokens obtained from gate-keeper to query over the
encrypted database on the cloud server. We use Oblivious Pseudo-random Function (OPRF)-based
mechanism to delegate the search token generation process to the gate-keeper; thus bypassing the
need to share the secret keys for token generation among multiple potentially semi-honest clients.

2 Leakage mitigation. The Nomos construction mitigates a particular leakage originating
from the cross-terms of conjunctive queries. This leakage is inherently present in the state-of-
the-art ODXT scheme, and we discuss an attack flow that shows that the trivial extension of
ODXT to the multi-client setting remains vulnerable to this leakage that potentially breaks the
scheme. Nomos avoids this specific cross-term–based leakage exploitable from XSet accesses by
introducing decorrelated XSet access pattern. We use a variant of Bloom Filter (BF), denoted
as the Redundant Bloom Filter (RBF), for decorrelating the repeated memory accesses (for XSet
implemented using RBF) to mitigate the cross-term leakage. Using RBF has a minimal impact on
the storage, communication and computation overhead of Nomos compared to non-BF and plain
BF versions of our construction.

3 Tokenised search. Nomos allows each client to obtain search tokens from the gate-keeper (the
data owner holding the keys for token generation) individually and engage in the search protocol
with the server to retrieve the query result. The token generation process and search phase work
asynchronously, although the search phase requires the tokens to be generated first through the
token generation protocol. This tokenised search process for multiple clients allows us to avoid a
three-party search protocol involving a client, the gate-keeper, and the server, without blocking
other clients from invoking the token generation or the search protocol (whichever is available).
This is a desirable capability in multi-user cloud applications where requests arrive asynchronously,
and the gate-keeper/cloud needs to serve as early as possible, reducing waiting time (for example,
assigning doctors appointments based on patient details in medical applications). It can be easily
adopted into general cloud search applications where strong access control is necessary, such as
office employee records and bank operations, to name a few. The tokenised functionality allows
fine-grained user management and enforcing access permissions for each user individually in a
multi-client setting.

4 Security analysis and implementation. We provide a concrete security analysis of Nomos
using hybrid arguments of indistinguishability framework. Nomos setting assumes that gate-
keeper (or the data owner) is a trusted entity, and the cloud server is an honest-but-curious
polynomial-time adversarial entity. The clients are assumed to be semi-honest entities individu-
ally; that is, a semi-honest client follows the specified token generation and search protocol but
can obtain/share additional information regarding the queries issued or the tokens received. We
provide an overview of the Nomos leakage profile and concrete security analysis in Appendix C
and E.

We implemented the Nomos framework using C++ (natively multi-threaded) with Redis1

as the database back-end. We used the Enron dataset2 to evaluate Nomos performance, and
we report the results in Section 5. The experimental results show that Nomos achieves linear
storage overhead and sublinear search time, comparable to other state-of-the-art conjunctive SSE
constructions.

We provide preliminary notations and syntax in Section 2, which we follow throughout the
manuscript. We present an attack in Section 3 on the trivial extension of ODXT to the multi-
client setting to demonstrate the devastating effect of cross-term leakage on a multi-client SSE
construction. We outline the required security notions and challenges of designing multi-client SSE
in Section 3.3. We present our main Nomos construction in Section 4. Finally, the experimental
results and related discussion are provided in Section 5, and we end with a concluding remark on
our work. We have diverted the formal security analysis to Appendix E.

1https://redis.io/
2https://www.cs.cmu.edu/~enron
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2 Basic Notations and Syntax

We provide the basic notations and syntax of SSE below, which we follow throughout this paper.
For ease of exposition, we assume the database to be a document collection indexed by keywords
and unique document identifiers. More precisely, we assume an inverted index of keywords and
corresponding document identifiers for a document collection is available as the plain database.

2.1 Basic Notations

Data. We use w to represent a keyword and id to represent a document identifier in a database.
We use ∆ to denote the dictionary of all ws in a database and N is number of ws in ∆. We
represent the plain database as DB, and DB(q) represents the set of ids satisfying a conjunctive
query q over DB. Similarly, for a single w, DB(w) is the set of ids where w appears. The number
of ids in DB(q) is represented as |DB(q)|. For two values (or strings) v1 and v2, v1||v2 represents
the concatenation of v1 and v2. The cardinality of a set S is denoted by |S|, and for a string s
(or vector), |s| represents the length of s. We represent the sequence m,m+ 1, . . . , n− 1, n using

[m,n] and 1, 2, . . . , n using [n]. Sampling a value v from a distribution ξ is expressed as v
$←− ξ.

We denote a negligible function as negl(). We denote the attribute of a w using I(w), which is
essentially encoded as an index. More precisely, I can be considered as a list of (w, a) pairs, where
I(w) returns the attribute a, where w ∈ ∆ and a is a valid keyword attribute. We represent a set
of valid keyword attribute combinations using P, from all unique keyword attributes for all ws in
∆. We denote the number of all unique keyword attributes using d. We also assume that during
an update, a complete document (containing multiple keywords) is replaced, and in this process,
the existing records are deleted and added again with the modified content. In that case, update
operations are usually done in batches of deletions followed by additions of multiple (w,id) pairs.

Entities. We use C to represent a client and C = {C1, . . . , Ct} to represent a set of t clients. We
represent a data-owner by the symbol D. We denote the server using S and the gate-keeper using
G (explained in Section 4). In a single client setting, D and G serve the same purpose, and we use
the D symbol in the context of single client constructions. However, in an MRSW multi-client
setting, G has the additional responsibility of generating search tokens for Cs. Thus, we denote
the single entity responsible for database update in SRSW constructions, such as OXT, ODXT,
by D, and we denote the single entity responsible for database update and search token generation
for other clients, as in MC-ODXT or Nomos, by G. We denote a polynomial-time adversary by
A and a simulator using SIM.

2.2 Cryptographic Primitives

We denote a pseudo-random function (PRF) by F (K, ·) and a specific version mapping to Fp as
Fp(K, ·). We represent a collision-resistant hash function as CRHF or with the symbol H, which
we assume can be modelled as a random oracle. Additionally, we use an authenticated encryption
(AE) [Rog02, BN00] scheme with the routines AE = {AE.Enc,AE.Dec} that is IND-CPA and and
strongly UF-CMA-secure (unforgeability guarantee) [BN00].

Decisional Diffie-Hellman assumption. Let G be a cyclic group of prime order q, and let g
be any uniformly sampled generator for G. The decisional Diffie-Hellman (DDH) assumption is
that for all PPT algorithms A, we have,∣∣∣Pr[A(g, gα, gβ , gα·β) = 1]− Pr[A(g, gα, gβ , gγ) = 1]

∣∣∣ ≤ negl(λ),

where α, β, γ
$←− Z∗

p.

Oblivious pseudo-random function. Oblivious Pseudo-random Function (OPRF) is a crypto-
graphic primitive that allows two parties to jointly evaluate a PRF where party A provides the
input plaintext x and party B inputs the key K. At the end of the protocol, A receives the output
c, which is indistinguishable from a regular PRF evaluation with the same x and K, and party B
receives nothing (or error/nothing symbol ⊥).
Hashed Diffie-Hellman OPRF. We use a specific instance of OPRF called hashed Diffie-Hellman (DH)
OPRF that works as follows - party A provides input x and a randomly sampled value r. A uses
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a hash function H which hashes an input to a group element of G. A uses H to obtain H(x) ∈ G
and raises H(x) to generate s = H(x)r. A sends s to B, and B raises s by power K to obtain
t = sK . B sends back t to A, and A outputs y = t−1. We represent this OPRF evaluation as
y = OPRF(K,x). DH-OPRF is used as a core primitive in our construction to allow multi-client
search. Please refer [NR04] for more details on DH-OPRF3. Note that the main Nomos construc-
tion can be instantiated with a generic OPRF. We opted for DH-OPRF for the ease of analytical
exposition and implementation.

2.3 SSE Syntax and Security Definition

We denote an SSE algorithm simply using SSE. We use EDB to denote the encrypted database
stored on the encrypted server. We use Rq to denote the set of encrypted records returned upon
searching a conjunctive query q - compactly expressed as Rq = EDB(q). We denote a conjunctive
query as q = w1 ∧ . . . ∧ wn where wi ∈ ∆. Without loss of generality, we assume w1 in q has the
least frequency of updates. We call w1 as the special-term or s-term, and w2, . . . ,wn are denoted
as the cross-terms or x-terms.

A dynamic MRSW SSE scheme SSE with tokenised multi-client search is defined by the fol-
lowing ensemble of algorithms.
• SSE.Setup(1λ). This is a PPT algorithm run by G (who is the data-owner) that samples the
master security key sk, the AE key KM , and initialises the encrypted database EDB.

• SSE.Update(sk, {op, (w, id)};EDB). This is a PPT algorithm jointly executed by G and S,
where G’s input is secret key sk, the update record (w, id) and the type of the update op =
{add,del}, and Ss input is EDB. At the end of the protocol, EDB stored on S is updated with
the new record.

• SSE.GenToken(q, sk). The GenToken routine is executed by a client Cj ∈ C and G, where
Cj ’s input is a query q, and G’s input is the secret key sk, and at the end of execution, Cj receives
the search token tk.

• SSE.Search(tk;EDB). In this protocol, a client Cj sends the search token tk obtained from
G using GenToken method to S, and S looks up EDB to return the set of matched encrypted
records Rq to Cj .

An SSE scheme is said to be correct if the SSE.Search routine returns all the matching
encrypted ids from EDB for a query q.

Security of MRSW SSE. A dynamic MRSW SSE scheme SSE as described above is said to be
secure if it follows the security properties stated below.

Security against a semi-honest client. The following leakage function parameterises the security
of a dynamic MRSW SSE construction against a semi-honest client.

LC = {LSetup
C ,LUpdate

C ,LGenToken
C ,LSearch

C }

In this ensemble, LSetup
C encapsulates the leakage to a semi-honest client during Setup, LUpdate

C
encapsulates the leakage to a semi-honest client during Update, LGenToken

C encapsulates the
leakage to a semi-honest client during GenToken, and LSearch

C encapsulates the leakage to a
semi-honest client during Search.

A dynamic MRSW SSE scheme Π is said to be secure against a semi-honest PPT adversary
A, who is allowed make Q = poly(λ) queries, with respect to LC , there exists a polynomial time
simulator SIM, such that

|Pr[RealΠA(λ) = 1]− Pr[IdealΠA,SIM(λ) = 1]| ≤ negl(λ)

where RealΠA and IdealΠA,SIM are defined in Algorithm 1 and 2 of in Appendix A, respectively.

Security against a semi-honest server. The following leakage function parameterises the security
of a dynamic MRSW SSE construction against a semi-honest server.

LS = {LSetup
S ,LUpdate

S ,LGenToken
S ,LSearch

S }
3The constructions in this manuscript can be instantiated with a general syntax of OPRF. We opt for the

specific instance of DH-OPRFfor the ease of exposition with the existing construction structure of ODXT [PM21]
and OSPIR-OXT [JJK+13].
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In this ensemble, LSetup
S encapsulates the leakage to a semi-honest server during Setup, LUpdate

S
encapsulates the leakage to a semi-honest server during Update, LGenToken

S encapsulates the
leakage to a semi-honest server during GenToken, and LSearch

S encapsulates the leakage to a
semi-honest server during Search.

A dynamic MRSW SSE scheme Π is said to be secure against a semi-honest PPT adversary
A, who is allowed make Q = poly(λ) queries, with respect to LS , there exists a polynomial time
simulator SIM, such that

|Pr[RealΠA(λ) = 1]− Pr[IdealΠA,SIM(λ) = 1]| ≤ negl(λ)

where RealΠA and IdealΠA,SIM are defined in Algorithm 3 and 4 in Appendix A, respectively.

SSE data structures. SSE constructions heavily rely on the underlying data structures to
store and efficiently search over encrypted data. We consider two widely used SSE-specific data
structures in this work, namely TSet and XSet. We assume that EDB comprises of both TSet
and XSet (as required by the construction discussed later in Section 3 and 4).

TSet. TSet is an encrypted variant of a multi-map data structure that stores the encrypted
database in a structured form. Fundamentally, TSet stores and accesses data elements in a uni-
formly indistinguishable manner that hides the association of an w with respective ids. At a high
level, TSet follows the typical syntax of a multi-map.

• Insertion: TSet[key] = val

• Retrieval: val = TSet[key]

The TSet keys are generated through PRFs (and SKE) such that the probability of an A distin-
guishing two different ws from randomly accessed (key,val) pairs is negligible.

XSet. XSet is a data structure typically used in multi-keyword SSE schemes to support conjunctive
queries (especially in the cross-tag family of constructions [CJJ+13, LPS+18, PM21]). XSet stores
the cross-term–specific information that is used during conjunctive query search. Note that XSet
does not store any encrypted information of individual ws or ids; rather, it stores flags or bits
associated with cross-terms that are generated using CRHF or PRFs. At a high level, an XSet
has the following syntax,

• Insertion: XSet[index] = b, b ∈ {0, 1}

• Retrieval: b = XSet[index]

where the index is typically generated from a combined input of w and id to a CRHF, and b = 1
indicates that (w,id) is valid pair (that is w appears in document id). For detailed properties and
analysis of TSet and XSet, please refer [CJJ+13]. We use a slightly different variant of TSet, as
adopted in ODXT [PM21].

We choose ODXT as our base construction for developing the multi-client solution as ODXT
is the only state-of-the-art dynamic scheme with an efficient update and conjunctive query search.
Unfortunately, ODXT itself does not support multi-client search. We first transform ODXT into
a multi-client construction MC-ODXT (see Appendix B) following [JJK+13]. However, we show
that MC-ODXT is vulnerable to cross-term leakage, and the following attack exploits this leakage
to break the scheme.

3 Attack on Multi-client SSE Exploiting Cross-term Leak-
age

We outline an attack on the trivial multi-client extension of ODXT (or MC-ODXT) following
the approach in [JJK+13]. This attack demonstrates that the presence of the same cross-terms
across different queries leads to severe leakage through XSet access pattern, which can completely
break MC-ODXT. More precisely, we show that a semi-honest C colluding with the semi-honest
S can exactly recover the query keywords of a legitimate C. Provided that enough query instances,
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the colluding C-S pair can recover the entire keyword dictionary. This glaring vulnerability puts
MC-ODXT (or any construction following the same approach) at risk of a severe data leak. Our
main construction Nomos adopts a computationally “lightweight” redundancy-based approach to
reduce this leakage while incurring minimal extra storage overhead without affecting the perfor-
mance.

We briefly summarise the workflow of MC-ODXT algorithms presented in Appendix B to
identify the source of the leakage and subsequently discuss the attack exploiting this leakage. The
MC-ODXT workflow below involves a client C obtaining a search token for a conjunctive query
q = w1∧ . . .∧wn from the data owner G and querying the server S using those search tokens. Note
that, in this MRSW setting, we use the G notation instead D as it has the additional responsibility
of generating Cs search tokens.

MC-ODXT workflow. MC-ODXT follows the ODXT structure with the Setup, Update,
Search routines and an additional routine GenToken for query token generation. The Setup
routine sets up and initialises the parameters, data structures and generates the secret keys. If
there is an initial DB present, G repeatedly invokes Update on DB entries to update EDB
stored on S. The Update algorithm generates a unique TSet address addr for each (w,id) pair
by appending a counter value with w and evaluating the resulting value through a PRF. Since
this counter value is incremented with each update, an addr is never repeated (in other words, a
unique addr is obtained in each update invocation). Furthermore, the update routine treats an
ADD or DEL op identically, as there is no conditional execution based on ADD or DEL. S stores
the encrypted id in TSet (which is a part of EDB) along with a w-specific deblinding token (α,
this is required during search) received from G. Additionally, G generates an xtag (or cross-tag)
by combining w with id (concatenated with op) through PRF and raising to the power of g (such
that during a search, xtag can be recomputed obliviously using the query tokens and α). G sends
xtag to the server, and the server sets a bit 1 at address xtag in XSet.

Prior to interacting with S in the Search, a C obtains a blinded search token from G for a
conjunctive query comprising of two components. The first one constitutes of strap (or trapdoor
corresponding to the s-term) and bstags (or blinded search tags for TSet look-up) corresponding
to the s-term w1. The second component consists of bxtraps (or blinded trapdoors for x-terms)
corresponding to the x-terms w2, . . . ,wn. C sends these tokens to S to look up EDB. In this
process, S retrieves the encrypted ids using the de-blinded bstags. It also computes the deblinded
xtags for each x-term and retrieved encrypted id (concatenated with op) pair. S checks whether
the xtags for all cross terms and a particular id is set to 1 in XSet. If all xtag locations are set,
it returns the encrypted id (concatenated with op) to C. C locally checks if the id has been added
for all ws in q, and not deleted even for one w of q. If it is present for all ws, it keeps the id in the
final result set, otherwise discards it.

Note that the xtag computation process is deterministic as it refers to a physical location of
a value in the memory (or storage). For validating a (w, id) pair, the same xtag address needs to
be generated each time the Search protocol encounters the same (w, id) pair. This association
is revealed even across different queries having the same keyword issued by multiple clients and
leads to the leakage across multiple clients. The following example expounds on this observation
for a clearer understanding.

Table 1: An example of SSE execution sequence.
Entity Time Operation Query/Data
C1 T1 Search w1 ∧ w2 ∧ w3

G T2 Update (w3, id)
C1 T3 Search w1 ∧ w3

C2 T4 Search w2 ∧ w3

Consider the sequence of MC-ODXT events shown in Table 1. Assume that w3 was not
present in EDB during T1. It is inserted into EDB at T2 by G, and queried again (as an x-term)
at T3 by C1 followed by C2 at T4. Observe that these three instances of queries and update
involve w3. The second and third instances generate the same xtag for (w3, id) pair following the
MC-ODXT construction. Since S is assumed to be semi-honest, it can “see” that the same xtag
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is accessed in these instances. S’s ability to observe these distinct accesses for xtags is the base of
this attack below.

This two-phase attack assumes a semi-honest Ci that colludes with S in the attack process. In
the build phase, Ci legitimately obtains search tokens for its own conjunctive queries and sends
those to S for searching. S honestly executes the search routine but at the same time records the
xtag access from XSet (as a semi-honest entity, it executes the search according to the protocol).
Since Ci colludes with the S, Ci provides the server with the exact query ws it sent the search
tokens for (without shuffling). S associates the recorded xtags with received query ws and stored
locally for later references. Ci can repeat this process multiple times to obtain multiple (w, xtag)
mappings, and S can grow the recorded information covering more ws.

While launching the attack on a benign client Cj , S compares the xtags generated for the search
tokens of Cj . If the xtags match, S can infer the corresponding w from the recorded database with
high probability. Observe that if colluding Ci and S can cover the complete ∆, S would be able to
recover all query keywords of Cj with complete certainty. We formalise this attack method below.

3.1 Formalising MC-ODXT Attack Process

We denote a semi-honest client using Ci that colludes with a semi-honest server S and a benign
client using Cj . We assume that the colluding client Ci shares the query keywords for which it
received the query tokens tk with S (without shuffling) as well while executing the Search routine
as specified. Upon receiving the (w, tk), S builds a local database XDB that stores records of the
form (w, xtag). We assume that Ci makes t queries during XDB building phase. We summarise
the attack process titled CrossAttack formally in Algorithm 1 below.

Algorithm 1 Query recovery attack MC-ODXT in presence of colluding semi-honest client and
semi-honest server
Input: Query tokens (tks) and ws from semi-honest Ci, query tokens of benign Cj
Output: W: the set of cross-term ws present in Cj ’s query
1: function CrossAttack

2: Build Phase
Server

3: Initialise empty database XDB
Server + Colluding Client

4: for l = 1 to t do
Colluding Client

5: Generate a random query ql
$←− ∆∗ ▷ Combination of keywords from ∆

6: Obtain search tokens tkql for ql from G
7: Send ql and tkql (without shuffling) to S

Server
8: Recover xtags using tkql for w ∈ ql available from ql sent by Ci
9: Set XDB[xtagj ] = wj ,∀wj ∈ ql received from Ci

10: Attack Phase
Benign Client

11: Obtain search token tkq for q = w1 ∧ . . . ∧ wn from G
12: Send tkq to S

Server
13: Compute the xtags from tkq
14: Look-up XDB using the computed xtags: wi = XDB[xtagi]
15: Repeat this for all xtags to recover W = {w2, . . . ,wn}
16: Return W

The CrossAttack attack in Algorithm 1 has two phases - the build phase, where the colluding
Ci engages with S to build the XDB. In the attack phase, S obtains the xtags corresponding to
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Figure 1: Attack accuracy vs number of queries by the semi-honest client in the building phase.
The number of queries by the benign clients was 2000.

benign Cj ’s query q, and looks-up XDB to recover the ws in q. The attack accuracy (probability
of exact keyword recovery) improves as more unique ws from ∆ are covered in the build phase to
populate XDB. Therefore, increasing the number of query iterations t in the build phase leads to
higher successful keyword recovery as more ws are covered in XDB. The attack perfectly recovers
all cross-terms with probability 1 for the ideal case when XDB contains all ws of ∆.

3.2 Experimental Evaluation

We executed the attack in Algorithm 1 on MC-ODXT to highlight the severity of the leakage
discussed above. We used the Enron email dataset for this experiment, and the platform details
for this experiment are available in Section 5. The experiment builds XDB from the recorded xtags
and the associated ws. Subsequently, in the attack phase, the xtags corresponding to a benign
client’s queries are recorded and looked up in XDB for successful w recovery. The attack accuracy,
defined as the ratio of the number of correct x-term looked up to the total number of x-terms
looked up, is plotted in Figure 1 against the number of benign clients queries t in the building
phase. The attack accuracy improves as the number of queries in the building phase increases,
allowing the S to cover more keywords in XDB. In this evaluation, the CrossAttack of Algorithm 1
successfully recovered more than 50% of the x-terms of benign clients’ queries.

3.3 Challenges in Designing Multi-client SSE

Developing a multi-client SSE construction (MRSW or MRMW) poses several challenges as a
multi-client-specific workflow fundamentally differs from an SRSW construction. As illustrated
by the attack above, trivial extensions like MC-ODXT suffer from multi-client specific attack(s),
which needs to be suitably addressed without compromising functionality or efficiency. At a high
level, the following multi-client-specific privacy notions are necessary for a multi-client construc-
tion.

Query privacy. A legitimate client needs to share query information with the data owner, but
the data owner must not be able to figure out which keywords are being queried.

Preventing token forgery. An adversarial client must not be able to modify or reuse received
query tokens with previously obtained (or future) query tokens4.

4Note that, token forgery implies the presence of a malicious client; whereas the attack in Algorithm 1 requires
only a colluding semi-honest client. Nonetheless, our main Nomos construction considers token forgery prevention
as a necessary feature in the multi-client setting.
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Token validation. The server should be able to validate that it received a genuine query token
from a client generated by the data owner and not by a third party.

The above privacy requirements are provisioned in MC-ODXT setting through a two-party
oblivious computation-based mechanism, more precisely through OPRF. In that case, C does not
have to share the actual q with G. Instead, C shares hashed values mapped to group elements
with G. However, in a dynamic construction following the ODXT structure, it needs to generate
several bstags (corresponding to each update operation of the s-term) and additional deblindings
for these tokens, which requires modifications of the approach of [JJK+13].

Our final construction Nomos adopts a similar approach to provision multi-client search, and
an AE-based authentication method is incorporated into the token generation process to validate
query tokens on the server side. However, the leakage from cross-terms in the multi-client settings
poses further challenges that need to be addressed without compromising efficiency and security.

Observe that the leakage mentioned in Section 3 appears due to a (w, id) pair validation
requiring a valid physical location look-up in the XSet storage, which is deterministic across
multiple queries from different clients. Therefore, S can record this information and exploit later
as demonstrated in CrossAttack of Algorithm 1. To prevent this leakage, the XSet look-up
access pattern needs to be hidden from S. In our construction Nomos, we opt for a redundancy-
based mechanism for XSet look-up that produces different access patterns for the same (w, id)
pair.

Note. We would like to mention that in this work, we specifically focus on cross-term-based
leakage. Since the s-terms have a lower frequency, the chance of s-terms colliding across queries
from multiple clients compared to x-terms is low. Thus, this type of leakage is more severe for
x-terms, and we prioritise mitigating x-term leakage in this development. We leave devising a
similar strategy for s-terms as an important future work.

4 Nomos - Dynamic Multi-client SSE Construction

We start by outlining the setting of our main construction with brief details of each entity and
how each entity interacts with other entities. We discuss Nomos construction in two phases -
the first phase describes the multi-client provisioning, and the second phase discusses the cross-
term leakage mitigation technique incorporated into Nomos. The core structure of the basic
construction follows from ODXT construction, and we encourage the readers to refer [PM21] for
more details.

Clients. We assume there are l clients {C1, . . . , Cl} who are allowed to obtain search tokens and
search over the database. Each Ci can request a search token following the GenToken routine
and engage in the Search protocol with the server to retrieve query results.

Gate-keeper. We denote the data owner using gate-keeper (denoted by G) who can update EDB
and issue search tokens to C (the gate-keeper name signifies additional responsibility to generate
search tokens for Cs). G holds the secret key (sk) to generate the search tokens and update the
database. Since Nomos is an MRSW construction, G is the only entity allowed to update EDB
and is considered a trusted party. Note that, although G is considered a trusted entity who can
“see” the data, Nomos ensures query privacy of clients by not revealing query keywords to G.
Trust in G We stress here that although G is a trusted entity, it does not learn the client’s search
result, along with not knowing the query keywords. Thus, G is trusted for updates only. This trust
level in the MRSW setting is aptly applicable to real-life examples, where G can be considered an
administrative entity, such as the government or an employer, who can update the database and
enforce search policies on the clients accessing the data.

Server. The server (denoted by S) stores the encrypted database EDB comprised of TSet and
XSet and performs an update or search as requested. S engages in the Update protocol with G
to update EDB. During a search, S interacts with C to receive the search tokens and performs
the database look-up. At the end of the Search protocol, it returns the retrieved encrypted ids
to C matching the actual query.

We elucidate the MRSW setting here for better clarity and understanding. Consider a genome
analysis service provider offering a cloud-based gnome referencing service for clients who can query
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Algorithm 2 Nomos Setup

Input: Security parameters λ
Output: sk, UpdateCnt, and EDB
1: function Nomos.Setup

Gate-keeper
2: Sample a uniformly random ley KS from Z∗

p for OPRF

3: Sample two sets of uniformly random keys KT = {K1
T , . . . ,K

d
T } and KX = {K1

X , . . . ,Kd
X}

from (Z∗
p)

d for OPRF

4: Sample uniformly random key KY from {0, 1}λ for PRF Fp

5: Sample uniformly random key KM from {0, 1}λ for AE
6: Initialise UpdateCnt, TSet, XSet to empty maps
7: Gate-keeper keeps sk = (KS ,KT ,KX ,KY ); UpdateCnt is disclosed to clients when required,

and KM is shared between gate-keeper and the server
8: Set EDB = (TSet,XSet)
9: Send EDB to server

over standard genome data provided by the analysis service. Following the current cloud-based
service trend, assume that the genome analysis service has outsourced the infrastructure support
to a third-party cloud storage and computing resource provider, such as Amazon AWS. In this
example, the genome service provider can be modelled as G, the cloud server acts as S, and
the clients requesting for look-up can be considered as Cs. Naturally, genome data is considered
sensitive private information, which needs to be stored on S in encrypted form, and a C needs to
query the data for reference information. Such applications can be aptly handled by a scalable
MRSW SSE scheme like Nomos.

Nomos setting assumes S as a semi-honest party and treats each client as a semi-honest
party individually (who can potentially collude with S while following the Nomos description
as specified). G is a trusted entity that can update the encrypted database and generate search
tokens for C’s queries (as G holds the secret keys). The multi-client provisioning in Nomos follows
the approach [JJK+13] and incorporates modifications for dynamic updates. Note that a de-
centralised trust in G is ideal for the MRMW setting, where multiple parties update the encrypted
database. In contrast, the MRSW setting allows only one party to update the database - typically
the data-owner. Thus, the MRSW setting allows provisioning multi-client search using basic OPRF
primitive rather than relying on independent system-oriented approaches like trusted execution
environments or advanced primitives like MPC, as it handles updates only from the data-owner,
unlike the MRMW setting. This model is adopted in existing works like OSPIR-OXT [JJK+13],
which we have followed here.

4.1 Setup and Update

The Nomos Setup routine of Algorithm 2 is executed by G that initialises the system (including
EDB on S). Subsequently, G and S can jointly executeNomos Update of Algorithm 3 repeatedly
on the data records from DB.

Update process. The Update algorithm is invoked by G with (w, id) and op as input. S
receives the encrypted values, along with tags generated by G and updates the TSet and XSet.
The Update process of Algorithm 3 adopts the update routine of ODXT with modifications to
support multi-client search. The modifications include the way the TSet and XSet addresses (stags
and xtags) are generated, such that in the Search routine, the same addresses can be recomputed
from search tokens obtained via OPRF evaluations. Note that, Algorithm 3 incorporates the RBF’s
(discussed in Section 4.2) redundant xtag generation process. The changes in Nomos algorithm(s)
from MC-ODXT are highlighted in red.

4.2 Mitigating Cross-Term Leakage

Recall from Section 3 that the cross-term leakage arises from repeated xtag accesses (translated
to memory location accesses) by S for the same (w, id) combinations from different queries (and
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Algorithm 3 Nomos Update

Input: KT = {K1
T , . . . ,K

d
T }, KX = {K1

X , . . . ,Kd
X}, accessed as KT [I(w)] and KX [I(w)] for

attribute I(w) of w, ℓ is the number of hash functions for insertion into RBF, (w, id) pair
to be updated, update operation op

Output: Updated EDB
1: function Nomos.Update

Gate-keeper
2: Parse sk = (KT ,KX ,KY ) and UpdateCnt
3: Set KZ ← F ((H(w))KS , 1)
4: If UpdateCnt[w] is NULL then set UpdateCnt[w] = 0
5: Set UpdateCnt[w] = UpdateCnt[w] + 1
6: Set addr = (H(w||UpdateCnt[w]||0))KT [I(w)]

7: Set val = (id||op)⊕ (H(w||UpdateCnt[w]||1))KT [I(w)]

8: Set α = Fp(KY , id||op) · (Fp(KZ ,w||UpdateCnt[w])−1)
9: Set xtagi = H(w)KX [I(w)]·Fp(KY ,id||op)·i, where i ∈ [ℓ]

10: Send (addr, val, α, {xtagi}i∈[ℓ]) to server
Server

11: Parse EDB = (TSet,XSet)
12: Set TSet[addr] = (val, α)
13: Set XSet[xtagi] = 1, for i ∈ [ℓ]

updates). Intuitively, to mitigate this leakage, these memory accesses (to the same address for a
particular (w, id) pair) need to be different for each access without affecting the look-up perfor-
mance severely. We adopt a simple yet effective way to achieve this through redundant location
accesses, where multiple “copies” of the XSet bit value are stored at multiple addresses. A random
subset of these locations is looked up in each subsequent access for the same (w, id) pair.

Randomising XSet access. We opt for a Bloom filter (BF) (which physically stores XSet) based
solution to achieve this redundant look-up. At a high level, a BF uses k different hash functions
to generate k distinct addresses for an element look-up. However, straightforwardly plugging in
BF into MC-ODXT does not hide the repeated access pattern as k addresses for a particular
(w, id) pair are still generated from the same xtag. We modify the BF structure slightly in the
following way. Instead of using k hash functions to generate the BF addresses for look-up, we use
ℓ hash functions to generate the BF addresses for an input element, where ℓ > k. During a search,
instead of using all ℓ hash functions to generate the BF addresses, a subset of k hash functions out
of the ℓ are chosen randomly to generate the BF addresses. Observe that, with this modification,
S receives a different set of BF addresses for each repeated access of a particular (w, id) pair and
hence can not correlate among previously accessed entries. We call this BF variant Redundant
Bloom Filter (RBF), and we present elaborate details and analysis of RBF in Appendix D.

Avoiding two rounds. Note that incorporating RBF as a module into Nomos would incur a
two-round solution as the RBF addresses need to be generated from xtags. The xtags must not be
revealed to S, and hence need to be generated on the C’s side. This is undesirable in a multi-client
setting due to communication/computation overhead and increased leakage from additional token
exchanges. We avoid this by embedding the RBF address generation phase into the Update and
GenToken algorithms in the following way.

G(Update) : xtagi = H(w)KX [I(w)]·Fp(KY ,id||op)·i, i ∈ [ℓ]

G(GenToken) : bxtrap′j = bxtrap′j ∪ {(bxtrap
′
j)

βi}

The revised final Update and GenToken algorithms are presented in Algorithm 3 and 4,
respectively. The Search routine is modified to compute final k addresses for RBF and is presented
in Algorithm 5 in Section 4.3.

Since Update protocol should be executed in batches of multiple deletions and additions
involving several (w,id) pairs (a realistic assumption stated in Section 2), several XSet addresses
are generated for inserting multiple (w,id) pair records into RBF-based XSet. The generated XSet
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Algorithm 4 Nomos GenToken

Input: q = {w1, · · · ,wn} (n keywords in q), P is the set of allowed attribute sequences, ℓ and k
hashes are used for insertion and query in RBF, respectively

Output: strap, bstag1, · · · , bstagm, δ1, · · · , δm, bxtrap1, · · · , bxtrapn, env
1: function Nomos.GenToken

Client
2: Set m = UpdateCnt[w1] ▷ the update count of the least frequently updated w

3: Sample r1, · · · , rn
$←− Z∗

p

4: Sample s1, · · · , sm
$←− Z∗

p

5: Set aj = (H(wj))
rj , for j = 1, · · · , n

6: Set bj = (H(w1||j||0))sj , for j = 1, · · · ,m
7: Set cj = (H(w1||j||1))sj , for j = 1, · · · ,m
8: Set av = (I(w1), · · · , I(wn)) = (I1, . . . , In)

Gate-keeper
9: Abort if av ̸∈ P

10: Sample ρ1, · · · , ρn
$←− Z∗

p

11: Sample γ1, · · · , γm
$←− Z∗

p

12: Set strap′ = (a1)
KS

13: Set bstag′j = (bj)
KT [I1]·γj , for j = 1, · · · ,m

14: Set δ′j = (cj)
KT [I1], for j = 1, · · · ,m

15: Set bxtrap′j = (aj)
KX [Ij ]·ρj for j = 2, · · · , n

16: Sample random indices for RBF βi
$←− [ℓ], i ∈ [k]

17: for j = 2 to n do

18: bxtrap′j = {}
19: bxtrap′j = bxtrap′j ∪ {(bxtrap

′
j)

βi}, for βi ∈ {β1, . . . , βk}
20: Set env = AE.EncKM

(ρ1, · · · , ρn, γ1, · · · , γm)

21: Send (strap′, bstag′1, · · · , bstag
′
m, δ′1, · · · , δ′m, bxtrap

′
2, · · · , bxtrap

′
n, env) to client

Client

22: Set strap = (strap′)r
−1
1

23: Set bstagj = (bstag′j)
s−1
j , for j = 1, · · · ,m

24: Set δj = (δ′j)
s−1
j , for j = 1, · · · ,m

25: for j = 2 to n do
26: Initialise bxtrapj = {}
27: for l = 1 to k do

28: bxtrapj = bxtrapj ∪ {(bxtrap
′[j][l])

r−1
j }

29: Output (strap, bstag1, · · · , bstagm, δ1, · · · , δm, bxtrap2, · · · , bxtrapn, env) as search token

addresses (for all (w,id) pairs) must be shuffled by G prior to sending to S in batches. This random
shuffling is necessary to prevent S from associating any XSet access pattern to a probable keyword.
In contrast, such shuffling in MC-ODXT is ineffective against S associating a probable x-term
to an observed (or a set of observed) XSet address as only one single xtag match is required for a
particular (w, id) pair update and search.

4.3 Token Generation and Search

The multi-client search process starts with the token generation process outlined in Algorithm 4
- a two-party protocol between a C and G. We briefly summarise the workflow of the GenToken
method of Algorithm 4 that generates the search tokens while maintaining the query privacy of
legitimate clients and preventing token forgery by an adversarial client.

Token generation phase. The Nomos Search algorithm follows the ODXT [PM21] Search
process, which generates two types of search tokens – the stags and the xtraps. The stags are
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generated from the s-term (the least-frequently updated term or w1 in Algorithm 4, without loss
of generality), which are used to retrieve encrypted ids through TSet look-up. Whereas xtraps are
generated from x-terms which are used to check the validity of a (w, id) pair through XSet look-up.
The GenToken routine in Nomos is responsible for generating these tokens for multiple clients.
Since the G holds the keys (KT , KX) as a part of the secret key sk to generate the tokens, Cj
needs to send the query to G to generate tokens without revealing the actual ws. We resort to
an OPRF-based computation, allowing Ci to send query ws in blinded form. The major difference
from OSPIR-OXT [JJK+13] is that ODXT generates an stag for each update count for the
s-term, whereas OSPIR-OXT generates a single stag (strap in GenToken). This is a direct
consequence of the dynamic update capability of ODXT, and GenToken routine computes the
blinded exponentiations for each stag. Similarly, Cj also computes the blinded xtraps and the set
of keyword attributes av = {I1, . . . , In} where Ii = I(wi) for i ∈ [n], which are sent to G.
Blinded tokens and query validation. Upon receiving the search tokens, G first verifies whether av is
a valid set of attributes which Ci is allowed to query by checking av ∈ P. If not valid, G aborts the
process. Otherwise, G computes its own part of the OPRF computation (party B’s computation
in OPRF as discussed in Section 2) by processing bstrap, bstag and bxtrap. The blinded strap
(bstrap′) computation is done through OPRF evaluation using KS , and blinded stag (bstag′) and
xtrap (bxtrap′) generation are done through OPRF evaluation using KT and KX combined with Gs
own blinding factors {ρ1, . . . , ρm} and {γ1, . . . , γm}. G’s blinding factors ρis and γis are necessary
to prevent a potentially malicious client from modifying the search tokens by replacing the search
tokens. Since the blinding factors are randomly generated for each request, a polynomially bound
malicious party can not replicate the blinding factors. S can verify the tokens as G encrypts
{ρ1, . . . , ρm} and {γ1, . . . , γm} using AE that S can authenticate prior to search (in the Search
routine).

In the final phase of GenToken routine, Ci deblinds the doubly-blinded bstag′s, δs and bxtrap′s
using its own blinding factors (r1, . . . , rn) and (s1, . . . , sm) to obtain the G-blinded tokens (strap,
bstag and bxtrap), which C subsequently uses as the search token. Note that S receives the AE-
encrypted blinding factors from G as a part of the search token, which are used for token validation
and deblinding during Search execution. However, S itself is not involved in the GenToken
protocol. The AE decryption key KM is generated by G at Setup and shared with S.
Search phase. The Nomos Search of Algorithm 5 is jointly executed by a C and S without any
involvement of G. However, C must have obtained the search tokens from G prior to invoking the
Search routine. In this phase, the client sends the blinded search tokens and encrypted blinding
factors to S that it received from G at the end of GenToken (blinded with G’s blinding factors).
At a high level, the Search protocol proceeds in two stages - first, C computes the final xtraps
from the received bxtraps. Note that the resulting xtokens are still blinded as C does not have
G’s blinding factors. S receives the bstags and computed xtokens along with G’s AE-encrypted
blinding factors. S validates the AE ciphertext using key KM and proceeds for decryption if the
validation is successful. S deblinds the received bstags to recover the actual stags, and after that,
it follows the usual ODXT search routine to retrieve the matching ids. During xtag computation,
S deblinds xtokens using the decrypted G’s blinding factors, and follows the usual ODXT search
process5.

S-term information to clients. In this multi-client setting we assume that Ci’s obtain the
s-term frequency information from G via a suitable privacy-preserving mechanism without reveal-
ing the keyword to G. This a reasonable assumption following from the prior works including
OXT [CJJ+13], OSPIR-OXT [JJK+13], HXT [LPS+18], and ODXT [PM21] (as the static con-
structions do not have update capability, they use keyword frequency instead of the update fre-
quency). We elaborate more on possible privacy-preserving mechanisms for frequency information
retrieval (such as based on private information retrieval [CGKS95, OSI07, BI01]) in Appendix B.1.

5We emphasise that Nomos follows the vast majority of the SSE literature (including ODXT itself) in its
index-only focus and does not incorporate a dedicated mechanism to handle actual document retrieval. We leave
extending Nomos to full SSE scheme with final encrypted document retrieval as an interesting future work.
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Algorithm 5 Nomos Search

Input: q, strap, bstag1, · · · , bstagm, δ1, · · · , δm, bxtrap1, · · · , bxtrapn, β1, . . . , βn, env, UpdateCnt
Output: IdList

1: function Nomos.Search
Client

2: Set KZ ← F (strap, 1)
3: m = UpdateCnt[w1]
4: Initialise stokenList to an empty list
5: Initialise xtokenList1, · · · , xtokenListm to empty lists
6: for j = 1 to m do
7: stokenList = stokenList ∪ {bstagj}
8: for i = 2 to n do
9: xtokenSeti,j ← {}

10: for t = 1 to k do
11: Set xtokenti,j = bxtrapi[t]

Fp(KZ ,w1||j)

12: Set xtokenSeti,j = xtokenSeti,j ∪ xtokenti,j
13: Randomly permute the tuple-entries of xtokenSeti,j
14: Set xtokenListj = xtokenListj ∪ xtokenSeti,j
15: Send (stokenList, xtokenList1, · · · , xtokenListm)

Server
16: Upon receiving env from client, verify env; if verification fails, return ⊥; otherwise decrypt

env
17: Parse EDB = (TSet,XSet)
18: Initialise sEOpList to an empty list
19: for j = 1 to stokenList.size do
20: Set cntj = 1
21: Set stagj ← (stokenList[j])1/γj

22: Set (svalj , αj) = TSet[stagj ]
23: Initialise flag = 1
24: for i = 2 to n do
25: Set xtokenSeti,j = xtokenListj [i]
26: for t = 1 to k do
27: Compute xtagi,j = (xtokenSeti,j [t])

αj/ρi

28: If XSet[xtagi,j ] = 0, then set flag = 0 ▷ XSet is implemented using RBF
29: If flag = 1, then set cntj = cntj + 1
30: Set sEOpList = sEOpList ∪ {(j, svalj , cntj)}
31: Sent sEOpList to client

Client
32: Initialise IdList to an empty list
33: for ℓ = 1 to sEOpList.size do
34: Let (j, svalj , cntj) = sEOpList[ℓ]
35: Recover (idj ||opj) = svalj ⊕ δℓ
36: If opj is DEL and cntj = n then set IdList = IdList \ {idj}
37: Output IdList

4.4 Computation and Storage Overhead

The following overhead analysis assumes that a single record in TSet or XSet requires constant
storage, and the group operations and storage look-ups are the costliest operations in practice.

Computation overhead. The Update routine executes for a (w, id) pair in each invocation.
The Update routine computes the TSet addresses along with w-bound deblinding factor, which
requires a total of three hash computations, two group operations and field inversion. However,
as we use RBF-based XSet, ℓ xtag computations require ℓ group operations that dominates the
Update routine with O(ℓ) computation overhead. Since ℓ is a constant (which is significantly
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small compared to the number of updates) for a specific setting, this O(ℓ) can be asymptotically
approximated to O(1) per Update invocation for a series of updates.

The GenToken protocol requires |q|+ 2|UpdateCnt[w1]| hash computations and group oper-
ations to generate the client-side values with blinding. The gate-keeper-side processing involves
|q|+2|UpdateCnt[w1]| group operations and |q|+ |UpdateCnt[w1]| field multiplications. The client-
side deblinding phase computes |q|+2|UpdateCnt[w1]| group operations. As a result, GenToken
incurs O(|q| + 2|UpdateCnt[w1]|) computation overhead asymptotically that is sublinear in the
total database size |DB|. The communication overhead is also O(|q|+2|UpdateCnt[w1]|) as C and
G exchange |q|+ 2|UpdateCnt[w1]| tokens in this process.

The Search protocol computes k ·|q|·|UpdateCnt[w1]| group operations to compute the blinded
xtokens. S performs |UpdateCnt[w1]| TSet look-ups that require |UpdateCnt[w1]| group operations
for deblinding. Additionally, S computes a total k · |q| · |UpdateCnt[w1]| XSet addresses for look-up.
Therefore, Nomos Search incursO(k·|q|·|UpdateCnt[w1]|) asymptotic computation overhead with
all combined. Since k is a small constant, the Search overhead is sublinear in the total database
size |DB|. Furthermore, C needs to send O(k · |q| · |UpdateCnt[w1]|) tokens to S, and it receives
O(|UpdateCnt[w1]|) encrypted values back as the result. Hence, the asymptotic communication
overhead of Nomos Search routine is O(k · |q| · |UpdateCnt[w1]|).
Storage overhead. We analyse the Nomos EDB storage overhead with respect to the plain
database DB. The storage overhead for EDB in Nomos is essentially the combined TSet and
XSet overhead. The TSet overhead of Nomos is practically the same as of single client dynamic
construction ODXT, which is O(|DB|) (linear in terms of the number of records in the plain
database DB) as the TSet stores one encrypted value for each entry in DB. The RBF-backed
XSet requires ℓ · O(|DB|) storage. However, compared to TSet, XSet stores only 1/0 for each
index and requires lesser storage than TSet that stores encryptions of O(|DB|) items. As a result,
Nomos has linear O(|DB|) asymptotic storage overhead in practice.

Security analysis. We divert the elaborate security analysis of Nomos to Appendix E.

5 Implementation Details and Results
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Figure 2: Attack accuracy vs number of queries t by the colluding client in the build phase. The
number of queries by the benign clients was set to 2000.

In this section, we describe a prototype implementation of Nomos and evaluate its overhead
and performance over real-world databases.

Data set and platform. We used the Enron email data set6 for our experiments. The database

6https://www.cs.cmu.edu/~enron
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Figure 3: End-to-end query latency for two-keyword queries of the form q = wa ∧ wv (s-term wa

update frequency is fixed at 70).
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Figure 4: End-to-end query latency for two keyword queries of the form q = wv ∧ wa (s-term wv

update frequency is varied).

contains 517,401 documents (emails) and 20 million keyword-document pairs, with a total size
1.9 GB. The final Nomos algorithm was implemented using C++11 with native multithreading
support and was compiled using GCC9. We used Redis as the database backend system to store
EDB comprising TSet and XSet. We ran the experiments on dual 24-core Intel Xeon E5-2690
2.6GHz CPU with 128GB RAM and 512GB SSD running Ubuntu 20.04 64bit operating system
with gigabit network link.

Query processing. We evaluated Nomos’s performance for two different types of queries - two-
keyword and multi-keyword queries. The two-keyword queries are of the form q = w1 ∧w2, which
we represent as q = wa ∧wv or q = wv ∧wa. Here wa is called the constant term whose frequency
is kept fixed, and wv is the variable term whose frequency is varied during experimentation. For
the multi-keyword queries of the form q = w1 ∧ . . . ∧ wn, n ∈ [3, 6], the first keyword w1 is varied
and maximum frequency of {w2, . . . ,wn} is fixed in one set of experiments. In another set, the
frequency of w1 is kept fixed and max frequency of {w2, . . . ,wn} is varied. These experiments
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Figure 5: End-to-end communication overhead for two-keyword queries of the form q = wv ∧ wa

(s-term wv update frequency is varied).
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Figure 6: End-to-end query time for multi-keyword queries of the form q = w1 ∧ . . . ∧ wn (s-term
w1 update frequency is fixed at 60).

examine the sublinear search and communication overhead of Nomos for two and multi-keyword
queries. The query keywords are sampled randomly from ∆.

5.1 Experiments on Leakage

We executed the CrossAttack method of Algorithm 1 on Nomos to compare the leakage with
MC-ODXT. The attack accuracy is plotted in Figure 2 against the number of queries issued by
the colluding client in the build phase of the attack. Clearly, Nomos has a significantly lower
attack accuracy compared to MC-ODXT. This low attack accuracy is a direct consequence of the
redundancy of RBF during XSet accesses. The value of the RBF parameter ℓ was set to 12, while
the parameter k was set to 8. Thus, Nomos achieves more than 50% reduction in attack accuracy
with four additional indices for XSet insertion. The parameter k needs to be kept at a fixed value
to maintain a desired false positive rate for the same database parameters and experiment setting
as of the non-RBF version. In contrast, ℓ is responsible for the redundancy in RBF leading to a
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Figure 7: End-to-end query time for multi-keyword queries of the form q = w1 ∧ . . . ∧ wn (s-term
w1 update frequency is varied).
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Figure 8: End-to-end communication overhead for multi-keyword queries of the form q = w1 ∧
. . . ∧ wn (s-term w1 update frequency is varied).

lower attack accuracy due to the increased redundant accesses per (w, id) pair. However, a high
value of ℓ would incur larger storage to accommodate additional XSet entries, and thus implies
a trade-off. We view this as a leakage-versus-storage trade-off in the multi-client setting that is
unavoidable in practice. We present comprehensive discussion on the choice of parameters and
analysis of RBF in Appendix D.

5.2 Experiments on the Search Latency

We considered two types of queries to evaluate the search performance of Nomos as stated earlier
in this section. For two-keyword queries, we fix the frequency of the constant term wa and vary the
frequency of the variable term wv from 10 to 5000. The end-to-end search latency for the queries
of the form q = wa∧wv in Figure 3 and queries of the form q = wv ∧wa in Figure 4. Observe that,
in Figure 3, the end-to-end search latency remains almost constant. Whereas in Figure 4, the
search latency varies linearly with the frequency of the variable term. This behaviour validates
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Figure 10: Client-side storage overhead for Nomos, ODXT and MC-ODXT for same plain input
database size.

the sublinearity of the Nomos search algorithm where the search latency linearly depends on the
frequency of the s-term of |DB(w1)|, which is sublinear in terms of total number of records in the
database.

The communication overheads of Nomos GenToken and Search are plotted in Figure 5 for
two-keyword queries. Nomos incurs sublinear communication overhead (linear in terms of s-term
update frequency) forGenToken and Search as shown in the plot. However, in comparison with
ODXT, Nomos has the additional necessary overhead of search tokens generated by GenToken,
and the Search communication overhead increases due to RBF-based XSet.

We also report experimental results for multi-keyword queries of the form q = w1 ∧ . . .wn,
where n ∈ [3, 6], and we denote w1 as the s-term in the multi-keyword queries. The end-to-
end search latency for two sets of experiments is plotted for fixed and variable s-term update
frequencies in Figure 6 and Figure 7, respectively. Observe that the search overhead remains
sublinear (proportional to the frequency of the s-term) in terms of the number of total records in
EDB. Similarly, the communication overhead remains sublinear in the total database size scaled
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by the number of cross-terms, as illustrated in Figure 8.

5.3 Evaluation of the Storage Overhead

We varied the number of ws in DB and generated the corresponding EDB by executing Nomos
Update. We compare the Nomos storage overhead withODXT to illustrate the storage overhead
as a trade-off with lesser leakage. The EDB overhead for both Nomos and ODXT are plotted
in Figure 9, and the client-side storage overhead is plotted in Figure 10. Observe that the storage
overhead profile for both Nomos and ODXT remains linear with DB size, and Nomos EDB
overhead is approximately 2.5 times of ODXT which is manageable on the cloud in practice. All
three constructions require O(|∆|) client-side storage as illustrated in Figure 10.

The performance overhead of Nomos is slightly higher compared to MC-ODXT as Nomos
generates more tokens due to RBF-based XSet look-up. The increased performance and storage
overhead of Nomos is a necessary leakage-versus-overhead trade-off to allow secure searches in the
multi-client setting of Nomos. The storage overhead of Nomos is less than 2×-2.5× of ODXT
(and MC-ODXT) for storage that is practically manageable in a cloud infrastructure. Compared
with the plain version of search, encrypted search incurs higher overhead which varies depending
upon the cryptographic parameters/algorithms used, data structure, and the database system
used. However, it provides strong confidentiality against unauthorised access compared to the
typical unencrypted search process and incurs less leakage and communication overhead than the
näıve symmetrically encrypted database with trivial decryption.

In summary, Nomos provides secure multi-client search with dynamic updates at the expense
of minimal additional storage overhead. Modern cloud services can easily manage this additional
storage to provide a secure environment to process encrypted data which multiple users can
access. Naturally, depending upon the requirement, a service provider needs to make necessary
modifications to the core algorithms. These modifications mainly include parsing the data into
a suitable format to store and process as a multi-map. The data owner is responsible for this
pre-processing of unstructured data to be updated into the encrypted database on the remote
server. Thus, in general, Nomos can be adopted in a broad set of practical applications with
minimal modification, such as healthcare, government records, and banks, to name a few.

6 Conclusion and Future Directions

We introduced the first forward and backward secure dynamic multi-client SSE scheme Nomos
supporting conjunctive Boolean queries. Nomos is an MRSW construction that builds upon
the state-of-the-art SRSW dynamic construction ODXT [PM21]. We showed that the straight-
forward extension of ODXT to the multi-client setting is completely insecure against collusion
between a semi-honest client and a semi-honest server due to a cross-term–based leakage. Our
Nomos construction mitigates this leakage by adopting a customised Bloom filter called redundant
Bloom filter while supporting efficient single-round multi-client queries. We presented extensive
experimentation to demonstrate the practical performance of Nomos over real-world databases.
We leave extending Nomos to the MRMW setting as an interesting direction of future research.
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A Security Games for Dynamic Multi-client SSE

We present the Real and Ideal security games for dynamic multi-client SSE as stated in Section
V of the main manuscript.
Games for adversarial client The Real and Ideal games for the security of a dynamic MRSW
SSE scheme Π from an adversarial client are presented in Algorithms 6 and 7.
Games for adversarial server The Real and Ideal games for the security of a dynamic MRSW
SSE scheme Π from an adversarial server are presented in Algorithms 8 and 9.

B MC-ODXT Construction Details

We present MC-ODXT construction algorithm in this Appendix. MC-ODXT is an extension
of ODXT [PM21] to multi-client MRSW setting following the OPRF-based approach of OSPIR-
OXT [JJK+13]. The MC-ODXT Setup algorithm (Algorithm 10) executed by G samples OPRF,
PRF and AE keys. A client C engages with G in the GenToken protocol (Algorithm 12) to obtain
the blinded search tokens for a conjunctive query to search over the EDB. After obtaining the
search tokens, C engages with S in the Search protocol (Algorithm 13) to retrieve the set of ids
matching the conjunctive query. G jointly executes the Update protocol (Algorithm 11) with S
to insert contents into or delete contents from EDB.
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Algorithm 6 Experiment RealΠA(λ) adversarial client

1: function RealΠA(λ)
2: N ← A(λ)
3: (sk, st0,EDB0)← Π.Setup(λ,N)
4: for k ← 1 to Q do
5: if query-type == gentoken then
6: qk ← A(λ,EDBk−1, τ1, . . . , τk−1)
7: (stk, tk)← GenToken(sk, stk−1, qk)
8: else if query-type == search then
9: tk ← A(λ,EDBk−1, τ1, . . . , τk−1)

10: (stk,EDBk,DB(qk))← Search(sk, stk−1, tk;EDBk−1)
11: τk denotes the view of the adversary after the kth query
12: b← A(λ,EDBQ, τ1, . . . , τQ)
13: return b

Algorithm 7 Experiment IdealΠA,SIM(λ) for adversarial client

1: function IdealΠA,SIM(λ)

2: Parse the L as: {LSetup,LUpdate,LGenToken,LSearch}.
3: N ← A(λ)
4: (stSIM,EDB0)← SIM0(LSetup(λ,N))
5: for k ← 1 to Q do
6: if query-type == gentoken then
7: qk ← A(λ,EDBk−1, τ1, . . . , τk−1)
8: (stSIM, tk)← SIM1(stSIM,LGenToken(qk))
9: else if query-type == search then

10: tk ← A(λ,EDBk−1, τ1, . . . , τk−1)
11: (stSIM,EDBk,DB(qk))← SIMSearch(stSIM,LSearch(tk);EDBk−1)
12: τk denote the view of the adversary after the kth query
13: b← A(λ,EDBQ, τ1, . . . , τQ)
14: return b

Algorithm 8 Experiment RealΠA(λ) adversarial server

1: function RealΠA(λ)
2: N ← A(λ)
3: (sk, st0,EDB0)← Π.Setup(λ,N)
4: for k ← 1 to Q do
5: if query-type == search then
6: tk ← A(λ,EDBk−1, τ1, . . . , τk−1)
7: (stk,EDBk,DB(qk))← Π.Search(sk, stk−1, tk;EDBk−1)
8: else if query-type == update then
9: (opk, {wk, idk})← A(λ,EDBk−1, τ1, . . . , τk−1)

10: (stk,EDBk)←
Π.Update(sk, stk−1, (opk, {wk, idk});EDBk−1)

11: τk denotes the view of the adversary after the kth query
12: b← A(λ,EDBQ, τ1, . . . , τQ)
13: return b

B.1 Private retrieval of s-term information

As stated in Section IV.C of the main body, the s-term update frequency requires a commonly
accessible record in this setting. This necessitates a secure mechanism to disclose the keyword
frequencies to prevent G from knowing C’s query keywords. Näıvely, this can be achieved via
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Algorithm 9 Experiment IdealΠA,SIM(λ) for adversarial server

1: function IdealΠA,SIM(λ)

2: Parse LS as: {left(LSetup,LUpdate,LGenToken,LSearch}.
3: N ← A(λ)
4: (stSIM,EDB0)← SIM0(LSetup(λ,N))
5: for k ← 1 to Q do
6: if query-type == search then
7: tk ← A(λ,EDBk−1, τ1, . . . , τk−1)
8: (stSIM,EDBk,DB(qk))← SIM2(stSIM,LSearch(tk);EDBk−1)
9: else if query-type == update then

10: (opk, {wk, idk})← A(λ,EDBk−1, τ1, . . . , τk−1)
11: (stk,EDBk)←

SIM1(stSIM,LUpdate((opk, {wk, idk}));EDBk−1)
12: τk denote the view of the adversary after the kth query
13: b← A(λ,EDBQ, τ1, . . . , τQ)
14: return b

Algorithm 10 MC-ODXT Setup

Input: λ

Output: sk,UpdateCnt,EDB
1: function MC-ODXT.Setup

Gate-keeper
2: Sample a uniformly random key KS from Z∗

p for OPRF

3: Sample two sets of uniformly random keys KT = {K1
T , . . . ,K

d
T } and KX = {K1

X , . . . ,Kd
X}

from (Z∗
p)

d for OPRF

4: Sample uniformly random key KY from {0, 1}λ for PRF Fp

5: Sample shared uniformly random key KM from {0, 1}λ for AE
6: Initialise UpdateCnt, TSet, XSet to empty maps
7: Gate-keeper keeps sk = (KS ,KT ,KX ,KY ); UpdateCnt is disclosed to clients when required,

and KM is shared between gate-keeper and the server
8: Set EDB = (TSet,XSet)
9: Send EDB to server

a publicly hosted website or storage with G having the write permission (implicitly adopted by
OXT [CJJ+13], OSPIR-OXT [JJK+13], HXT [LPS+18], and ODXT [PM21]). In this work we
assumed that C’s have some suitable mechanism to retrieve the frequency information from G, and
focused on the core construction to allow multi-client search capability.

A plausible way to allow such frequency information retrieval in a privacy-preserving manner is
to employ a private information retrieval (PIR) [CGKS95, OSI07, BI01] based mechanism involving
a C and the G. The idea is (at a high level) that the G holds an array of keyword frequency values,
indexed by keywords, and the C wants to look up the frequency of a particular keyword without
revealing to the G what is the keyword being looked up. This lends itself to a classic single-server
PIR-based solution. In fact, one could also use a multi-server PIR solution [BI01] where the G
simply distributes the frequency information across multiple (mutually distrusting) servers, thus
decentralising the trust assumptions involved.

We note, however, that using a (multi-server) PIR-based frequency information retrieval in the
search token generation phase brings in additional computation overhead, and possibly, additional
rounds. We leave incorporating a dedicated s-term update frequency retrieval mechanism as a part
of the MRMW extension of Nomos.
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Algorithm 11 MC-ODXT Update

Input: KS , KT = {K1
T , . . . ,K

d
T }, KX = {K1

X , . . . ,Kd
X}, accessed as KT [I(w)] and KX [I(w)] for

attribute I(w) of w, KY , (w,id) pair to be updates, update operation op
Output: Updated EDB
1: function MC-ODXT.Update

Gate-keeper
2: Parse (KT ,KX ,KY ) and UpdateCnt
3: Set KZ ← F ((H(w))KS , 1)
4: If UpdateCnt[w] is NULL then set UpdateCnt[w] = 0
5: Set UpdateCnt[w] = UpdateCnt[w] + 1
6: Set addr = (H(w||UpdateCnt[w]||0))KT [I(w)]

7: Set val = (id||op)⊕ (H(w||UpdateCnt[w]||1))KT [I(w)]

8: Set α = Fp(KY , id||op) · (Fp(KZ ,w||UpdateCnt[w])−1)
9: Set xtag = H(w)KX [I(w)]·Fp(KY ,id||op)

10: Send (addr, val, α, xtag to server
Server

11: Parse EDB = (TSet,XSet)
12: Set TSet[addr] = (val, α)
13: Set XSet[xtag] = 1

Algorithm 12 MC-ODXT GenToken

Input: q = w1 ∧ . . . ∧ wn. P is the set of allowable attribute sequences, KS , KT , KX , KM

Output: strap, bstag1, · · · , bstagm, δ1, · · · , δm, bxtrap2, · · · , bxtrapn, env
1: function MC-ODXT.GenToken

Client

2: Pick r1, · · · , rn
$←− Z∗

p

3: Set m = UpdateCnt[w1]

4: Pick s1, · · · , sm
$←− Z∗

p

5: Set aj ← (H(wj))
rj , for j = 1, · · · , n

6: Set bj ← (H(w1||j||0))sj , for j = 1, · · · ,m
7: Set cj ← (H(w1||j||1))sj , for j = 1, · · · ,m
8: Set av = (I(w1), · · · , I(wn)) = (I1, . . . , In)

Gate-keeper
9: Abort if av ̸∈ P ▷ Abort if attributes do not match

10: Pick ρ1, · · · , ρn
$←− Z∗

p

11: Pick γ1, · · · , γm
$←− Z∗

p

12: Set strap′ ← (a1)
KS

13: Set bstag′j ← (bj)
KT [I1]·γj , for j = 1, · · · ,m

14: Set δ′j ← (cj)
KT [I1], for j = 1, · · · ,m

15: Set bxtrap′j ← (aj)
KX [Ij ]·ρj for j = 2, · · · , n

16: Set env = AE.EncKM
(ρ1, · · · , ρn, γ1, · · · , γm)

17: Send strap′, bstag′1, · · · , bstag
′
m, δ′1, · · · , δ′m, bxtrap′2, · · · , bxtrap

′
n, env to Client

Client

18: Set strap← (strap′)r
−1
1

19: Set bstagj ← (bstag′j)
s−1
j , for j = 1, · · · ,m

20: Set δj ← (δ′j)
s−1
j , for j = 1, · · · ,m

21: Set bxtrapj ← (bxtrap′j)
r−1
j , for j = 2, · · · , n

22: Output (strap, bstag1, · · · , bstagm, δ1, · · · , δm, bxtrap2, · · · , bxtrapn, env as search token
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Algorithm 13 MC-ODXT Search

Input: strap, bstag1, · · · , bstagm, δ1, · · · , δm, bxtrap2, · · · , bxtrapn, env, UpdateCnt
Output: IdList

1: function MC-ODXT.Search
Client

2: Set KZ ← F (strap, 1)
3: m = UpdateCnt[w1]
4: Initialise stokenList to an empty list
5: Initialise xtokenList1, · · · , xtokenListm to empty lists
6: for j = 1 to m do
7: stokenList = stokenList ∪ {bxtrapj}
8: for i = 2 to n do
9: Set xtokeni,j = bxtrapi

Fp(KZ ,w1||j)

10: Set xtokenListj = xtokenListj ∪ xtokeni,j
11: Randomly permute the tuple-entries of xtokenListj
12: Send (stokenList, xtokenList1, · · · , xtokenListm)

Server
13: Upon receiving env from client, verify env; if verification fails, return ⊥; otherwise decrypt

env
14: Parse EDB = (TSet,XSet)
15: Initialise sEOpList to an empty list
16: for j = 1 to stokenList.size do
17: Set cntj = 1
18: Set stagj ← (stokenList[j])1/γj

19: Set (svalj , αj) = TSet[stagj ]
20: for i = 2 to n do
21: Set xtokeni,j = xtokenListj [i]
22: Compute xtagi,j = (xtokeni,j)

αj/ρi

23: If XSet[xtagi,j ] == 1, then set cntj = cntj + 1
24: Set sEOpList = sEOpList ∪ {(j, svalj , cntj)}
25: Sent sEOpList to client

Client
26: Initialise IdList to an empty list
27: for ℓ = 1 to sEOpList.size do
28: Let (j, svalj , cntj) = sEOpList[ℓ]
29: Recover (idj ||opj) = svalj ⊕ δℓ
30: If opj is ADD and cntj = n then set IdList = IdList \ {idj}
31: Output IdList

C Leakage Analysis of Nomos

We outline the leakage profile and security analysis (informal) of Nomos in a concise manner in
this section. Since Nomos adopts the ODXT structure, we closely follow the analysis of ODXT
for Nomos. As our multi-client extension follows the approach of OSPIR-OXT, we adopt a
similar approach (and setting) to prove the security of Nomos in the multi-client setting.

For the ease of analysis, we first categorise the leakages of Nomos according to the leakage
to the clients and to the server. Nomos incurs the following class of leakages for the respective
entities as summarised below.

Leakage to clients. A client C learns the following information apart from the data/information
trivially available from the execution of respective protocols GenToken and Search. We denote
this ensemble of leakages as LC .

Token generation leakage. The GenToken protocol of Nomos involves both s-terms and x-terms
in blinded form. However, EDB is not accessed in this phase and C receives only the following
information.
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s-term leakage. C receives back the doubly blinded strap, bstag and δ values that are obtained
from the s-term. However, it does not learn anything about the actual blinding factors or the
OPRF key. Hence, the s-term leakage to C in GenToken is LGenToken,s−term

C =⊥.
x-term Leakage. Similarly, C does not learn anything about the x-term blinding factors or the
OPRF evaluation keys. Hence, the x-term leakage to C from GenToken is LGenToken,x−term

C =⊥.
Note that, C is not involved in the Update protocol, and hence, LUpdate

C =⊥. In the Search
protocol, C inputs the search tokens and receives the query result. It does not receive anything
beyond the query result in encrypted form, which is part of the actual protocol execution. There-
fore, in Search, C learns nothing about the s-term and x-terms and the Search leakage to C can
be expressed as LSearch,s−term

C = |DB(q)| (the volume of the result). Thus, the complete leakage
profile for an adversarial C therefore is LC = {|DB(q)|}.
Leakage to server. S engages with G and a C in Update and Search respectively. In these
routines, S learns the following information about the query (tokens) or the encrypted data in
addition to trivially received data/information as the output of the interaction during Update
and Search with the G and C, respectively.. We classify these leakages as below.

Update leakage. The Update process practically incurs zero leakage to S as the server receives
(addr, val) to insert into TSet and a set of XSet addresses to set to 1. The addr and val are obtained
using PRF/OPRF evaluation where none of the values is repeated. Similarly, the XSet addresses
are also uniquely generated each time and are never repeated. Moreover, ADD and DEL operations
are treated identically during an update to EDB. Hence, S learns no information about the w
or the id, or the op involved in the Update process and the leakage to S can be expressed as
LUpdate
S =⊥.

Search leakage. We define a few notations prior to analysing the Search leakage to S. We state
the forward and backward privacy notions briefly here (refer [BMO17a] for more details). Forward
privacy dictates that an update involving a w does not reveal any information of a prior search
involving w. Backward privacy states that if a sequence of updates involve adding w and deleting
later, a subsequent search involving w does not reveal that w was involved in these updates. We
provide more details in Appendix F of this document.

Since Nomos is an MRSW construction, S and G treat each C identically - the views to G and
S remain the same for all clients. Thus, the forward privacy and backward privacy analysis can
be followed, considering that the views remain identical for all Cs. For this analysis, we assume a
list Q that stores the following information.

1. (t,w): w searched at time t.

2. (t, op, (w, id)): (w, id) pair was updated with update type op at time t.

Let TimeDB be a function that takes a w as input and returns the respective ids along with
the timestamp t. We express this as below.

TimeDB(w) = {(t, id)|(t,ADD, (w, id)) ∈ Q
and ∀t′ : (t′,DEL, (w, id)) /∈ Q}

For a conjunctive query q = w1 ∧ . . . ∧ wn, the TimeDB notion is extended as follows.

TimeDB(q) = {({ti}i∈[n], id)|(t,ADD, (wi, id)) ∈ Q
and ∀t′ : (t′,DEL, (wi, id)) /∈ Q}

This essentially corresponds to the ids along with timestamps which satisfies q and have not been
deleted from EDB. We denote the following s-term and x-term leakages as below.

s-term leakage. Let Upd(w) for a w be defined as follows.

Upd(w) = {t|∃(op, id) : (t, op, (w, id)) ∈ Q}

In summary, Upd(w) captures the s-term (w without loss of generality) leakages of q.
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x-term leakage. We modify the Upd for a pair (w1,w2) in the following way.

Upd(w1,w2) = {(t1, t2)|∃(op, id) : (t1, op, (w1, id)) ∈ Q
and (t2, op, (w2, id)) ∈ Q}

The above expression implies that Upd(w1,w2) returns the timestamps of the update opera-
tions on w1 and w2 involving the same id. For a conjunctive query q, this essentially encapsulates
the x-term leakage as {Upd(w1,wj)}j∈[2,n].

The s-term and x-term leakages are combined to obtain the total search leakage to the server
as follows.

LSearch
S = Upd(q) = Upd(w1) ∪

( n⋃
j=2

Upd(w1,wj)
)

Note that, S is not involved in GenToken protocol, and hence, LGenToken
S =⊥. Finally,

combining all we have
LS = {TimeDB(q),Upd(q)}.

D Redundant Bloom Filter

The plain Bloom filter (denoted by BF) is a probabilistic data structure suitable for membership
checking within a set encoded in the BF. At a high level, to index an element (or insert), a BF uses
k different hash functions to obtain k addresses, which are set to 1. During membership check (or
look-up), k indices are obtained from the queried element and checked for 1’s. These BF insertion
and look-up/query routines are outlined in Algorithm 14 and Algorithm 15 respectively.

Note that if we directly plug BF into MC-ODXT, replacing the XSet insertion with BF.Insert
and XSet retrieval with BF.Query, the construction essentially works the same. However, the
leakage is not mitigated as the bfidxis (or xtags in the context of SSE) generated during BF query
are deterministically generated using k hash functions. Hence, the server still can associate a w
using the observed BF (or XSet) addresses.

Algorithm 14 Bloom Filter Insert

Input: Input parameters: x - element to be inserted into BF
Output: Output parameters:
1: function BF.Insert(x)

Gate-keeper
2: Select k hash functions {h1, . . . , hk} for BF indices
3: Initialise empty index set BFIdxSet
4: for i← 1 to k do
5: bfidxi ← hi(x)
6: BFIdxSet = BFIdxSet ∪ {bfidxi}
7: Shuffle elements in BFIdxSet
8: Send BFIdxSet to the server

Server
9: for Each idx ∈ BFIdxSet do

10: Set BF[idx] = 1

We modify this basic BF construction to allow storing redundant elements (total ℓ indices
generated from ℓ hash functions) to be stored for each xtag (corresponding to each (w, id) pair).
During a query, BF accesses only a random subset of size k of these ℓ indices. Such that the
server “sees” that each time different k indices are being accessed and can not correlate with
the recorded information. We call this redundant element-based Bloom filter construction as a
Redundant Bloom Filter (RBF). The updated RBF.Insert and RBF.Query routines are provided
in Algorithm 16 and Algorithm 17 respectively.
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Algorithm 15 Bloom Filter Query

Input: Input parameters: x - element to be queried in BF
Output: Output parameters: True/False
1: function BF.Query(x)

Client
2: Select k hash functions {hi1 , . . . , hik} for BF indices
3: Initialise empty index set BFIdxSet
4: for j ∈ {i1, . . . , ik} do
5: bfidxj ← hj(x)
6: BFIdxSet = BFIdxSet ∪ {bfidxj}
7: Shuffle elements in BFIdxSet
8: Send BFIdxSet to the server

Server
9: for Each idx ∈ BFIdxSet do

10: if BF[idx] ̸= 1 then
11: Return False
12: Return True

Algorithm 16 Redundant Bloom Filter Insert

Input: Input parameters: x - element to be inserted into RBF
Output: Output parameters:
1: function RBF.Insert(x)

Gate-keeper
2: Select ℓ hash functions {h1, . . . , hℓ} for RBF indices
3: Initialise empty index set RIdxSet
4: for i← 1 to ℓ do
5: rbfidxi ← hi(x)
6: RIdxSet = RIdxSet ∪ {rbfidxi}
7: Shuffle elements in RIdxSet
8: Send RIdxSet to the server

Server
9: for Each idx ∈ RIdxSet do

10: Set RBF[idx] = 1

Algorithm 17 Redundant Bloom Filter Query

Input: Input parameters: x - element to be queried in RBF
Output: Output parameters: True/False
1: function RBF.Query(x)

Client
2: Select k hash functions {hi1 , . . . , hik} for RBF indices
3: Initialise empty index set RIdxSet
4: for j ∈ {i1, . . . , ik} do
5: rbfidxj ← hj(x)
6: RIdxSet = RIdxSet ∪ {rbfidxj}
7: Shuffle elements in RIdxSet
8: Send RIdxSet to the server

Server
9: for Each idx ∈ RIdxSet do

10: if RBF[idx] ̸= 1 then
11: Return False
12: Return True
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D.0.1 RBF Overhead

In RBF, the server sets ℓ locations, and accesses k locations during query, where ℓ > k. The value
of k needs to be chosen suitably to have negligible false positive probability (similar to normal
BF) without blowing up storage.

Storage overhead. A conventional BF requires

k ·
∑
w∈∆

|DB(w)|

storage for BF with k hashes. Here, we have k hashes during insert, and ℓ hashes during
queries. Hence, the storage requirement of RBF is

ℓ ·
∑
w∈∆

|DB(w)|

.
RBF storage overhead is ℓ

k times (greater than one as ℓ > k) than BF for the same database.

Communication overhead. An RBF sends k indices for a single element while inserting into and
querying on BF. Thus, the communication overhead can be expressed as O(1) for each inserted
element (from O(k), as k remains constant for a particular database). For a complete query
q = w1 ∧ . . . ∧ wn, the query overhead can be expressed as follows.

k ·
∑

w∈{w2,...,wn}

|DB(w1)|

With RBF, the communication overhead during the insertion of a single element is O(1) (from
O(ℓ)) as ℓ remains constant for a database. For a conjunctive query of the form q = w1 ∧ . . .∧wn,
the communication overhead can be estimated as follows,

k ·
∑

w∈{w2,...,wn}

|DB(w1)|

since k indices are used for query (instead of all ℓ indices). Clearly, the communication overhead
of RBF is ℓ

k times than BF (greater than one as ℓ > k). However, if the same k values are chosen
for RBF and BF, the communication overhead essentially remains the same for both RBF and BF
during look-up.

D.1 Security Analysis of RBF

The redundant access in RBF aims to mitigate the cross-term leakage in a practical yet finite
manner. We analyse the effect of repeated RBF look-ups to evaluate the leakage profile of RBF.
Since RBF relies on plain redundancy rather than standard cryptographic hardness assumptions,
the analysis primarily assesses the advantage of RBF compared to BF (for which theCrossAttack
of Section III in the main manuscript works) with respect to the redundancy parameters ℓ and k.

Recall from Section IV.B of the main manuscript that RBF uses ℓ hashes to index a value
during insertion, while it uses a random k-subset of these ℓ hashes during look-up to hide the
access pattern. Since it requires more number of RBF accesses to deterministically relate a specific
(w, id) pair to the ℓ indices in RBF, compared to a single on in BF, in practice it results in less
leakage.

Previous works [AG22, HSWW18] explored that redundancy-based approaches would require
a linear amount of storage on the client side to eliminate access pattern leakage (which indicates
that pattern leakage may not be possible to eliminate in practice). Hence, RBF focuses on reducing
the attack probability compared to a plain BF up to a limit. We argue in this discussion that, in
practice, it is not feasible for the adversary to build the required (w, id)–xtag association within
a reasonable time. Hence, this brings a notion of access upper-bound in RBF beyond which the
advantage would reduce to a traditional BF. Analysing this RBF access upper bound is equivalent
to addressing the following question.
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Figure 11: Growth of the RBF access upper bound with redundancy. The look-up indexing hashes
were fixed at random 8-sized subset.

Maximum how many RBF access does the adversarial server needs to “see” for the same (w, id)
pair from a benign client’s queries before it can figure out that the same (w, id) pair is being

accessed?

As it turns out, this problem is identical to the well-known coupon collector’s problem with
coupons collected in batches. When translated to the coupon collector’s problem, the problem
statement can be expressed in the following way.

Maximum how many draws are necessary to collect all ℓ coupons if in each draw uniformly
random k-subset of the ℓ coupons is collected with replacement?

The closed-form expression of this upper bound can be expressed as below.

E[nq] =

ℓ∑
j=1

(−1)j+1 ·
(
ℓ

k

)
·

(
ℓ
j

)
1− (ℓ−j

k )
(ℓj)

(1)

The complete proof can be found in [Sta90] (albeit in a slightly different form). We plot the
growth of this upper bound E[nq] with the number of indexing hashes ℓ in Figure 11, which shows
the monotonically increasing behaviour. The parameter k remains constant to maintain the same
desired false positive probability of a BF. This bound grows slower than the exponential that is
ideally required to eliminate the access pattern completely in practice. We argue that if practical
client search policies are formed based on the query semantics and the upper bound, this approach
prevents cross-term–based leakage.

In reality, a client’s queries are concentrated on a particular topic, and a client typically issues
only a limited number of queries in a search session. Therefore, the essential requirement of
encountering the same (w, id) pair across these queries is limited to a query session only. It is
unlikely that a client would issue more queries than the upper bound E[nq] in a session, as plotted
in Figure 11. Thus, the administrator can enforce the search policy such that a client cannot issue
more queries than the upper bound E[nq]. We state the following assumption to reflect the RBF’s
influence in Nomos security analysis.

Assumption. Given an RBF with ℓ hashes for insertion and a uniformly random k-subset of these
ℓ hashes for look-up, τ number of RBF look-ups for the same (w, id) pair are indistinguishable
from a random RBF element (corresponding to a random (w, id) pair) look-up using a uniformly
random k-subset of these ℓ hashes up to E[nq] accesses, where τ < E[nq].
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Remarks. The current analysis of access bound assumes the server would definitely be able to
figure out after the expected number of queries given by the closed-form expression in Equation
(1). In that case, the problem is the same as the Coupon collector’s problem, as stated above and
followed in the abovementioned analysis. In case of an approximation or relatedness measure is
considered in the attack process instead of an exact match for xtags to figure out if two sets of k
xtags are “related” rather than knowing that these are from exactly the same (w, id) pair. In that
case, a different analysis approach is necessary. However, the exact-match base analysis suffices
to provide an in-depth overview of the RBF security, and we resorted to the upper-bound-based
analysis to choose RBF parameters and simplify the analysis, compared to a “relation”-based
analysis which we leave for as an extension of this work.

E Security of Nomos

We follow the formal leakage profile outlined in Section C of this document for the proof sketch
of Theorem E.1 and E.2 of the main manuscript in this section. We use two additional crypto-
graphic assumptions for the formal security proofs - the One-More Gap Diffie-Hellman (OM-GDH)
assumption and the Extended Decisional Diffie-Hellman (EDDH) assumption. We first state the
additional cryptographic assumptions that are necessary for the proofs below.

One-More Gap Diffie-Hellman Assumption. Denote a prime order cyclic group G with order
p (polynomially large in the security parameter λ) and its generator by g. The One-More Gap
Diffie-Hellman (OM-GDH) assumption holds in G if the advantage AdvDDH

G,A (λ) is negligible for

all adversaries A. AdvDDH
G,A (λ) is the probability of A winning the following game.

The game samples a r ← Z∗
p at random, and samples two other random elements of G - (h1, h2).

The values (h1, h2) are shared with A and it makes a query to the Decisional Diffie-Hellman (DDH)
oracle that returns b← ar upon receiving a. A is allowed make any number of queries to a DDH
oracle DDHt(·, ·), which takes input as (h, v) and returns 1 if v = hr or 0 otherwise. At the end of
game, A outputs (v1, v2) and it wins the game if v1 = (h1)

r and v2 = (h2)
r.

Extended Decisional Diffie-Hellman Assumption. For a prime order cyclic group G and its
generator g, and two arbirary integers m,n ∈ N, define the following matrix

M :=

gα1·β1 . . . gα1·βn

...
. . .

...
gαm·β1 . . . gαm·βn


where αi ← Z∗

p, i ∈ [m] and βj ← Z∗
p, j ∈ [n]. The extended DDH assumption states that

|Pr[A(g,M) = 1]− Pr[A(g,M ′) = 1] ≤ negl(λ)

where M ′ is distributed as follows,

M :=

 gγ1,1 . . . gγ1,n

...
. . .

...
gγm,1 . . . gγm,n


where γi,j ← Z∗

p, i ∈ [m], j ∈ [n].

Search leakages in SSE schemes. An SSE scheme typically incurs the following leakages to the
server during search execution - keyword frequency, equality pattern, size pattern, result pattern,
and conditional intersection pattern.
Search leakages in SSE schemes. The following leakages are typically incurred by an SSE
scheme to the server during Search execution. Assume that Q is a sequence of conjunctive
queries issued over time.

Keyword frequency. The total number of time the keywords appear in documents: N =
d∑

i=1

|∆(wi)|.
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Equality pattern. Equality pattern corresponds to the queries that have equal s-terms. Typically,
equality pattern s̄ ∈ [|∆|]Q is expressed as a sequence of s-term, where each s-term is assigned an
integer with repetitions for each s-term.
Size pattern. Size pattern refers to the number of documents retrieved from encrypted database
for the s-term of each query.
Result pattern. Result pattern is the set of ids matching the conjunction of the keywords in the
query.
Conditional intersection pattern. Conditional intersection pattern refers to the ids matching a
common cross-term for queries with different s-terms.

E.1 Security notions of Nomos

Our security analysis of Nomos follows the standard ideal/real indistinguishability framework
parameterised by a leakage function L capturing the information leaked to an adversarial entity,
as outlined in Section II.C of the main manuscript. We quantify the leakage to a semi-honest
client using LC and the leakage to a semi-honest server using LS . We defer the detailed discussion
of LC and LS to Appendix C due to space constraint.

Security against adversarial C. We follow the analysis approach from [JJK+13] for analysing
the security ofNomos against adversarial clients. Concretely, we present the following definition to
analyse the security of Nomos against adversarial clients following the generic definition of Section
II.C of the main manuscript. Definition E.1 compares the real execution to an emulated interaction
of SSELC that models the functionality of Nomos instantiated from LC (see Appendix C). SSELC

takes (DB,P) as input and process queries q if I(q) ∈ P. If I(q) ∈ P, it replies with DB(q),LC ;
otherwise it returns error symbol ⊥.

Definition E.1 (Security against an adversarial client). Let Π be a Nomos SSE scheme, where

Π = {Setup,Update,GenToken,Search}.

Define the following RealΠA and IdealΠA,SIM experiments (algorithms with running time in 1λ) as
below, provided LC, A, and SIM = {SIM0,SIM1,SIM2}.
RealΠA: A chooses DB and the experiment executes Setup to receive sk and the repeatedly runs
Update to obtain EDB. After that, A adaptively invokes GenToken and Search with input
sk, where A interacts with G and S, respectively. Let t be the number of GenToken+Search
instances invoked and τi be the local output of G in i’th instance. As above, if at any point A halts
and output a bit b, the game outputs (b,EDB, τ1, . . . , τt).

IdealΠA,SIM: A chooses DB and the experiment initialises

SIM = {SIM0,SIM1,SIM2}

by executing st ← SIM0(λ). After that, each time A invokes GenToken, it interacts with
SIM1(st) and each time A invokes Search, it interacts with SIM2(st). Both SIM1 and SIM2

are allowed to update global state st while interacting with A. Both can issue queries to an ideal
emulation of Nomos. Let t be the number of such queries and let τi = I(q). As above, if at any
point A halts and output a bit b, the game outputs (b,EDB, τ1, . . . , τt).

Π is called LC-semantically-secure against an adversarial Cs if for any efficient A, there is an
efficient algorithm SIM, such that statistical difference between (b,EDB, τ1, . . . , τt) outputs from
RealΠA and IdealΠA,SIM experiments is negligible in λ.

Based on the above definition, we present the following theorem about Nomos security against
adversarial clients.

Theorem E.1. A Nomos scheme instantiated with Hashed Diffie-Hellman OPRF is adaptively
LC-semantically-secure against adversarial semi-honest clients provided that the DH assumption
holds in G, Fp and F are secure PRFs, and (AE.Enc,AE.Dec) is an IND-CPA and strongly UF-
CMA-secure AE scheme, and all hash functions are modelled as random oracles.

Proof. The proof is given in Appendix E.2.
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Security against adversarial S. The adaptive security analysis against an adversarial S follows
from ODXT, which is LODXT-semantically-secure. Nomos is LS -semantically-secure that absorbs
LODXT. The definition below follows from the generic security state of Section II.C of the main
manuscript.

Definition E.2 (Security against an adversarial server). Let Π be a Nomos SSE scheme, where

Π = {Setup,Update,GenToken,Search}.

Define the following RealΠA and IdealΠA,SIM experiments (algorithms with running time in 1λ) as
below, provided LS , A, and SIM = {SIM0,SIM1,SIM2}.
RealΠA: A chooses DB and the experiment executes Setup to receive sk and the repeatedly runs
Update to obtain EDB. After that, A adaptively invokes Update and Search with input sk,
where A interacts with G and C, respectively. Let t be the number of Update+Search instances
invoked and τi be the local output of G or C in i’th instance. As above, if at any point A halts and
output a bit b, the game outputs (b,EDB, τ1, . . . , τt).

IdealΠA,SIM: A chooses DB and the experiment initialises

SIM = {SIM0,SIM1,SIM2}

by executing st← SIM0(λ). After that, each time A invokes Update, it interacts with SIM1(st)
and each time A invokes Search, it interacts with SIM2(st). Both SIM1 and SIM2 are allowed
to update global state st while interacting with A. Both can issue queries to an ideal emulation of
Nomos. Let t be the number of Update+Search queries and let τi be the local output SIM1 or
SIM2. As above, if at any point A halts and output a bit b, the game outputs (b,EDB, τ1, . . . , τt).

Π is called LS-semantically-secure against adversarial S if for any efficient A, there is an
efficient algorithm SIM, such that statistical difference between (b,EDB, τ1, . . . , τt) outputs from
RealΠA and IdealΠA,SIM experiments is negligible in λ.

Specifically, the PRF instances in ODXT are replaced with OPRF, and S’s view of Search
protocol in Nomos can be generated from Search of ODXT with minor modifications due to
the group exponentiations by ρ and γ values that are randomly sampled from Z∗

p. We state the
theorem below where LS is defined as in Appendix C.

Theorem E.2. A Nomos scheme instantiated with DH OPRF is adaptively LS-semantically-
secure against adversarial server provided that the DH assumption holds in G, Fp and F are
secure PRFs, and (AE.Enc,AE.Dec) is an IND-CPA and strongly UF-CMA-secure AE scheme,
and all hash functions are modelled as random oracles.

Proof. The proof is given in Appendix E.3.

E.2 Security against adversarial client

We build the simulators SIM = (SIM0,SIM1,SIM2) which are described Algorithm 18, 19 and 20.
We prove Theorem E.1 via a sequence of games, where RealΠA(λ) models the interaction of A
with real instance of Nomos, and IdealΠA,SIM(λ) models the interaction of A with ideal instance
of Nomos using SIM. We outline the sequence of games below along with concise proofs of the
associated lemmas based on the games.

Game G1. We modify game G0 by adding an abort if the number of requested tokens in a session
exceeds E[nq].

Lemma E.1. Game G1 is indistinguishable from game G0.

Proof. By the indistinguishability property of RBF (within the limit), G1 is indistinguishable from
G0.

Game G2. We modify G1 to add an abort if env is accepted by S within Search is not genuinely
generated by G in GenToken.

36



Algorithm 18 Simulator SIM0

Input: λ

Output: {KS ,KY ,KX ,KT ,KM}, and QList, TList
1: function SIM0(λ)
2: Select keys KS , KX and KT for OPRF, KY for Fp and KM for AE.
3: Initialise an empty table QList, to be indexed by AE ciphertexts env
4: Initialise an empty table TList, to be indexed by ws in ∆ (TList initially holds and empty

set for each w)
5: Return keys KS ,KY ,KX ,KT ,KM and tables QList, TList

Algorithm 19 Simulator SIM1

Input: st,P
Output: Updated st
1: function SIM1(st)
2: Get tuples (a1, . . . , an), (b1, . . . , bm), (c1, . . . , cm), and tuple (I1, . . . , In) as input from A
3: Abort if (I1, . . . , In) ̸∈ P

4: Sample ρi
$←− Z∗

p for i ∈ [n]

5: Pick γi
$←− Z∗

p for i ∈ [m]

6: Compute τs = (a1)
KS , τ1 = (a1)

KT [I1]·ρ1 , and τi = (ai)
(KX [Ii]·ρi) for i ∈ [2, n]

7: Compute ϵi = (bi)
(KT [I1]·γi) for i ∈ [m]

8: Compute µi = (ci)
(KT [I1]) for i ∈ [m]

9: for i = 2 to n do
10: Initialise τ i
11: for j = 1 to k do

12: Sample βj
$←− Z∗

p

13: Compute τ ′i,j = τi
βj

14: Compute τ i = τ i ∪ {τ ′i,j}
15: Update QList within st: set QList(env)← (I1, . . . , In; ρ1, . . . , ρn; γ1, . . . , γm)
16: Encrypt env = AE.EncKM

(ρ1, . . . , ρn, γ1, . . . , γm)
17: Output (env, τs, τ1, τ2, . . . , τn, ϵ1, . . . , ϵm, µ1, . . . , µm)

Lemma E.2. Game G2 is indistinguishable from game G1.

Proof. By Strong-UF-CMA unforgability of AE scheme, G2 is indistinguishable from G1.

Game G3. We abort if two different GenToken instances generate the same env.

Lemma E.3. Game G3 is indistinguishable from G2.

Proof. The blinding factors ρi’s are randomly sampled from Z∗
p. A collision in ciphertext implies

the same in the plaintext, hence; it will be a contradiction to have such an occurrence. Therefore,
G3 is indistinguishable from G2.

Game G4. Abort if for any two distinct w1 and w2 in ∆, two OPRF instances from different keys
KT or KX collide – two distinct OPRF evaluations involving w1 and w2 using KT or KX output
the same value.

Lemma E.4. G4 is indistinguishable from G3.

Proof. Since OPRFs using KT and KX are essentially secure PRF instances, probability of such
collisions is negligible, and hence; G4 is indistinguishable from G3.

Game G5. In this game, we change the way of interaction with the Search protocol. The
game generates stag = bstag1/ρ1 in G0,. After that, it searches within ∆ to find a w such that
corresponding stag generation results in stag. If such stag is found, it obtains corresponding value
from from TSet as a tuple (sval, α); otherwise aborts.

37



Algorithm 20 Simulator SIM2

Input: st, upon receiving (env, stokenList, xtokenList1, . . . , xtokenList[m]) from A
Output: Updated st
1: function SIM2(st)
2: Retrieve (I1, . . . , In; ρ1, . . . , ρn, γ1, . . . , γm) from QList(env), abort if QList(env) =⊥
3: For a w1 ∈ ∆, s.t. stag = (H(w1))

KT [I1], and I(w1) = I1; set strap = (H(w1))
KS and

KZ = F (strap, 1). Abort if there is no such w1.
4: for i = 1 to stokenList.size do
5: stags = stokenList[i]
6: For a ws ∈ ∆, s.t. stags = (H(ws))

KT [Ii+1], and I(wi+1) = Ii+1. Abort if there is no
such ws.

7: Initialise c← 0 and found← False. Execute the following loop till found == False
• Increment c = c + 1, and zc = Fp(KZ ,w1||c). For an xtokenList[c] =

(xtokenList[c, 2], . . . , xtokenList[c, n]), if ∃(w2, . . . ,wn) ∈ ∆n−1, s.t. xtokenList[c, i] =
(H(wi))

KX [I(wi)]·zc·αc·ρi for i = 2, . . . , n, then set found = True.
• Abort if found = False and xtoken[c] is the last element in A’s message.

8: Send q = (w1, . . . ,wn) found in the last step to SSEL. As P contains av with certainty,
SIM2 gets back DB(q) and TSetL.

9: Initialise S′ ← ϕ and retrieve D ← DB(q). Check ∀id ∈ D s.t. (c, id, e) ∈ TList(w1). Add
c to S′ and delete id from D.

10: Sample S as a |D|-sized subset in {1, . . . ,TSetL} \ S′

11: While S is non-empty do:
• Remove an element c from S and an id from D at random
• Compute e← (id||op)⊕ (H(wi||c||1))KT [I(wi)].
• Insert (c, id, e) to TList(w1) into TList.

12: Execute loop while c ≤ TSetL, without initialising c (retaining the last value):
• Compute zc = Fp(KZ ,wi||c). If xtokenList[c, i] = (H(wi))

KT [I(wi)]·zc·αc·ρi for i =
2, . . . , n and if ∃ (c, id, e) in TList(w1) s.t. id ∈ DB(q), then send e to A. Increment
c = c+ 1.

13: halt after sending stop to A.

Lemma E.5. G5 is indistinguishable from G4.

Proof. Since collisions in stag have been eliminated in previous games and each stag is uniquely
generate from w, the retrieval in G5 is essentially the same as from the stag received as in G4

with overwhelming probability. In contrast, if two stags do not match, the TSet has negligible
probability of returning a non-empty result. Therefore, in this case G5 is indistinguishable from
G4.

Game G6. In this game, instead of encrypting (ρ1, . . . , ρn, γ1, . . . , γm), the game encrypts a set
of randomly generated values (ρ′1, . . . , ρ

′
n, γ′

1, . . . , γ
′
m). The game retains QList indexed by env.

When responding to a GenToken request, it also stores the attributes (I(w1), . . . , I(wn)) and ac-
tual blinding factors (ρ1, . . . , ρn, γ1, . . . , γm). During Search, the game retrieves (ρ1, . . . , ρn, γ1, . . . , γm)
from QList.

Lemma E.6. G6 is indistinguishable from G5.

Proof. In game G3, only envs that are uniquely generated in GenToken invocations are accepted.
Hence, by IND-CCA guarantee of AE, G6 is indistinguishable from G5.

Game G7. We consider the case where the game identifies w1 from bstag and ρ1 recovered from
QList(env), such that (bstag)1/ρ1 = (H(w1)

KT [I1]) where I1 = I(w1). This is identical to G5,

except G7 ignores stag = bstag1/ρ1 = (H(w1))
KT [I(w1)] but I1 ̸= I(w1).

Lemma E.7. The probability of finding a w1 satisfying the above conditions is negligible and thus
G7 and G6 are indistinguishable.
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Proof. Denote KT [I1] · ρ1 as ej exponent for obtaining b1 from a1 during j’th GenToken in-
vocation. By construction, ejs are randomly uniformly distributed in Z∗

p. The process of vali-
dating whether w1 is associated with bstag in Search can be alternatively written as validating
bstag = (H(w1))

(KT [I(w1)]/KT [I1])·ej with ej used to generate env via GenToken to be used in the
subsequent Search instance. In that case, (H(w1))

ej and bstag must have same discrete loga-
rithm equal to KT [I(w1)]/KT (I1). As KT is not used in any other way in G7 and KT sub-keys are
all randomly uniformly sampled from Z∗

p and the number of validations is polynomially bounded,
the success probability of I(w1) = I1 is negligible. Thus G7 and G6 are indistinguishable from
each other.

Game G8. We add an abort two different Search invocations by A have the same env but two
different bstags - {bstag, bstag′}, such that bstag1/ρ1 = (H(w1))

KT [I(w1)] and

bstag′
1/ρ1 = (H(w′

1))
KT [I(w′

1)]. Denote by ej the operation KT [I(w1)] done in j’th instance of
GenToken.

Lemma E.8. Two pairs (w1, bstag) and (w′
1, bstag

′) having the same env is negligible and therefore
G8 is indistinguishable from G7.

Proof. The game emulates G4 by sampling r1, and r2 from Z∗
p and computes H(w) as (h1)

r1(h2)
r2

where h1, h2 DH challenge inputs. Also, it picks a random index j in [1, η] where η is the number
of maximum invocations of GenToken by A allowed by A. The experiment sends a1 to the
DH challenger that outputs b1 = (a1)

t where t is chosen by DH challenger, and b1 is passed to
A. Subsequently, for each Search invocation where A inputs env, the experiment takes bstag
as input from A and env. For A’s each query q to OPRF, the DDH oracle is consulted with
(a1, b1, H)(w), bstag) to figure out if this is a valid DDH tuple. In case two invocations of Search
the checks are verified with (w, bstag) and (w′, bstag′) ̸= (w, bstag), the following computation is
performed - (bstagr2(bstag′)−r2)1/(r1r

′
2−r′1r2) and

(bstagr1(bstag′)−r1)1/(r
′
1r2−r1r

′
2), where H(w) = (h1)

r1(h2)
r2 and H(w′) = (h1)

r′1(h2)
r′2 . The

success probability of this event is (1/mc) time the probability of the event G7. Here, mc is
the maximum number of GenToken instances (an upper bound) excluding the probability of
r1r

′
2 = r′1r2.

Game G9. In this game, we replace the PRF instances of the form Fp(K, ·) with a random
function FR(·) with a range onto Z∗

p.

Lemma E.9. G9 and G8 are indistinguishable.

Proof. By the indistinguishability property of a PRF G9 and G8 are indistinguishable.

Game G10. In this game the Search process of G9 is modified in the following way. G10 finds
w1 using bstag and (I1, ρ1) from QList(env) as stated earlier and computes strap← OPRF(KS ,w1)
and (KZ ,Ke) ← (Fτ (strap, 1), Fτ (strap, 2)). After that, it computes zc = Fp(KZ , c) for each c.
Provided

xtokenList[c] = (xtokenList[c, 2], . . . , xtokenList[c, n]),

it looks for a wi in ∆ such that xtokenList[c, i] =
(OPRF(KX ,wi))

zc·ρi and idc ∈ DB(wi) where idc is the c’th (e, y) entry in t = T[w1]. Any such
wi is found for all i is sent to A.

Let ∆(id) denote the set of ws which appear in id. For G10 to succeed for any c, i in the above
check, G9 must be successful as xtokenList[c, i] = (OPRF(KX ,wi))

zc·ρi would imply
(xtokenList[c, i])yc/ρi is equal to (OPRF(KX ,wi))

xidc . If idc ∈ DB(wi) then this particular xtrap en-
try is present in XSet. G10 andG9 can only differ if (xtokenList[c, i])yc/ρi ∈ XSet and xtokenList[c, i] ̸=
(OPRF(KX ,w))zc·ρi for any (c, i) and for all w ∈ ∆(idc).

Denote the exponent KX [Ii] · ρi with aj in GenToken as ei,j . G9 can choose ei,j a random
value in Z∗

p and compute a ρi as ei,j/KX [Ii]. Therefore, (xtokenList[c, i])yc/ρi finds a match in

XSet as the existence of an īd and w̄ ∈ ∆(īd) such that following expression holds.

(xtokenList[c, i])1/zc = (H(w̄))
ei,j ·

KX [I(w̄)]

KX [Ii]
· FR(īd)

FR(idc) (2)
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Also, as xtokenList[c, i] ̸= (OPRF(KX ,w))zc·ρi for w ∈ ∆(idc), the following expression holds.

(xtokenList[c, i])1/zc ̸= (H(w))
ei,j ·

KX [I(w)]

KX [Ii] (3)

Lemma E.10. The probability of that Equation (2) holds and Equation (3) does not hold for
every w ∈ ∆ is negligible and G10 is indistinguishable from G9.

Proof. If Equation (2) holds for īd = idc, and I(w̄) = Ii, then (xtokenList[c, i])1/zc = (H(w̄))ei,j for
w̄ ∈ ∆(idc). However, this is a contradiction with Equation (3) where I(w̄) = Ii implies
(xtokenList[c, i])1/zc ̸= (H(w̄))ei,j . We consider the following two cases below for īd ̸= idc (case 1)
and I(w̄) ̸= Ii (case 2) to show that these two cases occur with only negligible probability.
Case 1. This argument essentially shows that īd ̸= id holds for negligible probability. In order
to show that, G9 is slightly modified to G′

9 where (e, y) is not appended to T [w] tuples. Instead,
it appends (e, id, z) such that does not have to query FI(·) while creating T. Furthermore, it
does not create XSet during Setup. The test procedure of G9 is modified for each c and i in
Search in the following way. G′

9 searches for w̄ ∈ ∆ and īd ∈ DB(w) rather than checking
(xtokenList[c, i])yc/ρi in XSet, using idc, zc stored in c’th entry in T[w1]. These two are equivalent
cases and G′

9 essentially is an identical view of G9. Additionally, test of Equation (2) can be done
by checking a = bFI(īd)/FI(idc) where a = (xtokenList[c, i])1/zc and b = (H(w̄))ei,j ·(KX [I(w̄)]/KX [Ii]).
In summary, G′

9 can work with FI(·) as follows. G′
9 presents a tuple (a, b, x, x̄) to the DDH oracle

for 1 if aFI(x) = bFI(x̄), otherwise 0. As H maps to G, all (a, b, x, x̄) invocation in G′
9 has b ̸= 1

(except for negligible probability). Also, as the random function FI(·) maps to Z∗
p which is invoked

polynomially bounded number of times by G′
9, there is negligible probability of that the oracle

returns x ̸= x̄. This implies that Equation (2) holds with negligible probability.
Case 2. In this case, we show that Equation (3) holds with negligible probability for I(w̄) ̸= Ii.
Recall that, G′

9 uses KX for testing Equation (2) that is equivalent to presenting a query of the
form (a, b, I, Ī) where a = (xtokenList[c, i])1/zc·FI(idc), b = (H(w̄))ei,j ·FI(īd), I = Ii, and Ī = I(w̄)
and gets back 1 if aKX [I] = bKX [I]. Since H randomly maps to G, b = 1 occurs with negligible
probability. Furthermore, as KX is randomly constructed by choosing from Zp and G′

9 makes
polynomially many queries, the probability of such successful queries is negligible.

Game G11. In this game, G10 is modified to select wi from xtokenList[c, i] and (zc, ρi) with
verification using xtoken[c, i] = (OPRF(KX ,wi))

zc·ρi and idc ∈ DB(wi) and I(wi) = Ii retrieved
from QList(env). The differentiating part of the games - xtokenList[c, i] = (H(wi))

KX [I(wi)]·zc·ρi

given idc ∈ DB(wi) and I(wi) ̸= Ii.

Lemma E.11. The above event occurs with negligible probability and therefore, G11 is indistin-
guishable from G10.

Proof. Recall the notation ei,j = KX [Ii] · ρi used in GenToken. xtokenList[c, i] can be expressed
as

xtokenList[c, i] = (H(wi))
zc·ei,j ·

KX [I(wi)]

KX [Ii] . In summary, the discrete log of this expression is equal
to KX [Ii]/KX [I(wi)]. KX is not utilised by G11 in any other way for this validation. As KX

is generated randomly from Z∗
p and allowed to make only polynomial number of checks, the

probability of successful checks for I(wi) ̸= Ii is negligible and G11 is indistinguishable from
G10.

Game G12. The game aborts if it receives the following - env, an index i, two counter c, c′

and two keywords wi ̸= w′
i, such that xtokenList[c, i] = (H(wi))

KX [Ii]·zc·ρi and xtokenList[c′, i] =
(H(w′

i))
KX [Ii]·zc′ ·ρi . The game considers the Search invocations that will collide under these mod-

ifications. Following the exponent notation ei,j = KX [I1] ·ρi in the j’th invocation of GenToken,

the xtoken expressions is modified to xtokenList[c, i]1/zc = (H(wi))
ei,j and xtokenList[c′, i]1/z

′
c =

(H(w′
i))

ei,j .

Lemma E.12. The probability of getting two (wi, xtokenList[c, i], zc) and (w′
i, xtokenList[c

′, i], z′c)
for wi ̸= w′

i is negligible. Thus G12 is indistinguishable from G11.
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Proof. Let µ be the probability of getting two such tuples. Similar to G8, an OM-GDH challenge
(h1, h2) is identical G12. However, on each query w by A to H, it selects (r1, r2) in Z∗

p and
outputs H(w) = (h1)

r1(h2)
r2 . It also samples a random number j between [1, l] where l is the

maximum number of time GenToken invocation by A is allowed. During each invocation, it
selects i at random from [2, n] and sends the ai from the GenToken to OM-GDH challenger,
and gets back bi ← (ai)

t, where t is chosen by the OM-GDH challenge game. A gets back
this bi in response. In each Search invocation where A sends env, for each c the game takes
xtoken[c, i] received from A, and each query w issued by A to H, the DDH oracle is consulted if
(a1, b1, H(q), (xtokenList[c, i])1/zc) is a DDH tuple. If for two instances (w, xtokenList[c, i], zc) and
(w′, xtokenList[c′, i], zc′) are the same for w ̸= w′, the game computes ht

1, h
t
2 as

((xtokenList[c, i])r2/zc(xtokenList[c′, i])−r2/zc′ )1/(r1r
′
2−r′1r2) and

((xtokenList[c, i])r1/zc(xtokenList[c′, i])−r1/zc′ )1/(r
′
1r2−r1r

′
2) whereH(w) = (h1)

r1(h2)
r2 andH(w′) =

(h1)
r1(h2)

r2 . The probability of such an event is µ/(l ·n) where n is the number of ws in the query.
This is negligible and G12 is indistinguishable from G11.

Game G13. Game G13 modifies G12 as follows. It does not refer to TSet or XSet (it skips the
creation process) and samples the keys KS ,KT ,KY ,KM . The GenToken instances are invoked
the same way as in G12. In Search, for a counter c, xtokenList[c, i] = (OPRF(KX ,wi))

zc·ρi ,
id ∈ DB(wi), and I(wi) = Ii for i = 2, . . . , n, it constructs a query q from w1, . . . ,wn and send to
SSELc . As av ∈ P, it returns (DB(q), |DB(w1)|). The game samples |DB(q)| random indices from
[1, |DB(w1)|] and assigns to each entry of DB(q). The game maintains TList such that TList(w1)
stores (c, id, e) entries. This (c, id, e) entries are constructed such that c in T[w1] was assigned an id
during Search and the associated ciphertext e. The game starts with empty TList and populates
using the id ∈ DB(q). G9 can check that an id ∈ DB(q) belongs to TList(w1) or not. For any id
not in TList, G9 assigns a random values of c in [1,TSetL not used so far. It computes (c, id) for a
ciphertext e using Ke and KS from w1 of G10. This view of G13 is essentially the same as of G12

and matches the combined description of the simulators, as detailed in Algorithm 18, 19, and 20,
and therefore, G13 is indistinguishable from G12.

E.3 Security against Adversarial Server

We present proof of Theorem E.2 that defines the security against the adversarial server. The
proof mainly follows from ODXT with modifications following Nomos and leakage function LS .
The proof essentially follows the proof outlined in [PM21] with modifications for Nomos.

The proof follows a series of games, similar to the approach of security against a semi-honest
client as the adversarial entity, where we start with the RealΠA execution (game G0 is identical
to the real execution), and the last game is identical to IdealΠA,SIM (identical to game G8). We
denote the probability of a game Gi to output b = 1 by pi.

Game G1. This game replaces the OPRF instances of the form OPRF(KT , ·) with a randomly
sampled value from G during transcript generation in Update and Search.

Lemma E.13. G1 and G0 are indistinguishable.

Proof. By indistinguishablity property of OPRF from OMGDH assumption, G1 is identical to
G0.

Game G2. In this game, the OPRF instances of the expression form of OPRF(KX , ·) are replaced
by randomly sampled values from G during transcript generation in Update and Search.

Lemma E.14. Game G2 and G1 are indistinguishable.

Proof. By the indistinguishability property of OPRF from OMGDH assumption, G2 is indistin-
guishable from G1.

Game G3. This game replaces the PRF instances of the form Fp(KY , ·) with a random function
in the range Z∗

p.

Lemma E.15. Game G3 and G2 are indistinguishable.
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Proof. By the indistinguishability property of PRF, G3 is indistinguishable from G2.

Game G4. In this game, the PRFs of the form Fp(KZ , ·) are replaced by a random sample from
Z∗
p.

Lemma E.16. Game G4 is indistinguishable from G3.

Proof. G4 is indistinguishable from G3 from the indistinguishability property of PRF.

Game G5. This game modifies the way xtokens are generated. For a conjunctive query q =
w1 ∧ . . . ∧ wn, the game looks up the history updates to retrieve the set of update opera-
tions (opj , (w1, idj)) for the s-term w1. Furthermore, for each x-term and the update operation
(opj , (w1,wj)), the game computes the dynamic blinding factors αi,j and the xtagi,j following

ODXT construction and generates xtokeni,j = xtagρi/αi,j .

Lemma E.17. Game G5 is indistinguishable from G4.

Proof. The xtoken values in G5 and G4 are identically distributed. For a tuple of the form

(αi,j , ρi, xtagi,j , xtokeni,j) in G4, xtokeni,j = xtag
1/αi,j

i,j , that is same as of the G5. Therefore, G5

and G4 are indistinguishable.

Game G6. The game modifies the α values by using randomly sampled values from Z∗
p.

Lemma E.18. Game G6 is indistinguishable from G5.

Proof. In G4 the PRFs are replaced with random samples from Z∗
p. This operation is done only

once for each Update invocation for xtoken generation, and never repeated for any queries. Also,
it is not evaluated on two same values for two different Update invocations. The α values are
generated by multiplying a randomly sampled Z∗

p element in place of PRF with the inverse of a
value in Zp obtained in the same way. Hence, the distribution of α in G6 is indistinguishable from
G5.

Game G7. This game modifies the way xtags are generated during transcript generation of
Update. It samples a γ ← Z∗

p and computes xtag = gγ , where g is a generator of G.

Lemma E.19. Game G7 is indistinguishable from G6.

To prove Lemma E.19, we construct an alternative version below.

Lemma E.20. Game G7 and G6 are indistinguishable following the polynomial equivalence of the
DDH assumption and the extended DDH assumption over any group G.

Proof. The xtag values for an update operation (op, (idj ,wi)) are computed in the following way
in G7 xtagi,j,op = gGX(wi)·GY (idj ||op)) where GX(·) and GY (·) are random functions uniformly
sampled from the set of all functions mapping λ-bit strings to Z∗

p replacing OPRF(KX , ·) and

Fp(KY , ·), and g is the generator of group G. We rewrite the expression as xtagi,j,op = gαi·βj,op

where αi = GX(wi) and βj,op = (idj ||op). Whereas, in previous game we had xtagi,j,op = gγi,j,op

where γi,j,op ← Z∗
p. The distribution of xtags are indistinguishable from G6. Therefore, G7 and

G6 are indistinguishable.

Game G8. Game G8 is identical to G7 with the following modifications. During transcript
generation for Update operation, each OPRF(KT ,w||cnt||b), b ∈ {0, 1} instance is replaced with a
random function of the form GT (t) where t is the timestamp of the particular update operation.

Lemma E.21. Game G8 is indistinguishable from G7.

Proof. Note that GT (t) is never evaluated twice on the same input as the real instance has an
increasing counter appended to the input, and GT (·) is uniformly randomly sampled from the set
of all λ-bit functions mapping to λ-bit values. Therefore, G8 is indistinguishable from G7.
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Game G9. In this game, simulator SIM′ replaces the challenger. SIM′ does not have access to
the actual queries by A. It uses the the following leakages for each update or conjunctive queries
issued by A.

SIM′ receives empty leakage from Update. It uses the timestamp information to generate the
TSet entries similar to the procedure in G8. It samples uniformly random blinding factors α, and
γ ← Z∗

p and computes xtag = gγ .

SIM′ learns the number of updates involving w1 (the s-term) and the timestamp of these
updates. It uses this information to simulate the xtoken computation similar to G8.

Similarly, SIM′ uses the aforementioned information learned to compute xtokeni,j = xtag
1/αi,j

i,j .

Also, SIM′ learns whether two queries have the same s-term from the equality pattern and gen-
erates stoken values across multiple queries accordingly (consistently). Apart from these, SIM
learns the set of ids in the final result.

Lemma E.22. Game G9 is indistinguishable from G8.

Proof. The transcripts generated by SIM′ is identical to the one generated by A for each update
and conjunctive queries. Therefore, game G9 is identical to G8.

Game G10. In this game, SIM′ is replaced with SIM that has access to the leakage function LS
as below.

LS = {LSetup
S ,LUpdate

S ,LUpdate
S }

where LSetup
S =⊥, LUpdate

S (op, (w, id)) =⊥, and LUpdate
S (q) = {TimeDB(q),Upd(q)}, as defined in

Section E.1.

Lemma E.23. Game G10 is indistinguishable from G9.

We construct the following Lemma to prove Lemma E.23.

Lemma E.24. SIM can efficiently execute SIM′ from G9 as a sub-routine.

Proof. The proof essentially involves demonstrating that the leakage profile of SIM covers the
leakage profile of SIM′.

SIM has access to the same empty update leakage of SIM′. Further, SIM Updates(q) leakage is
covered by Updates(w1) (the s-term). The equality pattern leakage in G9 is covered by Updates(q1)
and Updates(q2) for two different queries q1 and q2. Hence, G10 is indistinguishable from G9 and
is identical to the ideal execution of the protocol.

Alternative proof approach. The security analysis of Nomos relies on a two-way approach -
one considering the leakage to the adversarial client and the other considering the leakage to the
adversarial server. Considering that the existing literature lacks well-established proof approaches
for multi-client constructions, alternative proof approaches, such as the framework proposed by
Jaeger et al. [JT20], can be an interesting direction to assess the semantic security of multi-client
constructions. We leave this analysis an interesting future work.

F Forward and Backward Privacy of Nomos

We first state the formal generic forward and backward privacy notions introduced by Bost et
al. [BMO17a] in the context of dynamic SSE constructions including OXT and Nomos. We
informally outline the forward and backward privacy notions below.

Dynamic SSE constructions have the additional Update routine to update the content in the
encrypted database offloaded to the remote cloud server. This update capability brings in the
notions of forward and backward privacy in dynamic schemes, which are necessary to prevent
certain kind of leakage-abuse attacks [ZKP16, CJJ+14]. Informally, forward privacy states that a
previous search operation can not be linked to a subsequent update operation involving the same
keyword. Whereas, backward privacy states that if a record involving a keyword is added to the
database and later deleted, a subsequent search operation involving the same keyword should not
link these update operations. Note that, a search operation involving the same keyword after
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the first update would trivially leak the update. We outline the formal definition of forward and
backward privacy notions as introduced by Bost et al. [BMO17b] below. In this notions, we
assume an update is restricted to op = {add,del} operations only.

F.1 Forward Privacy of a Dynamic SSE Scheme

We denote the leakage profile of an adaptively secure dynamic conjunctive SSE as below.

L = (LSetup,LUpdate,LSearch)

Adaptive forward privacy states that the update leakage can be expressed as

LUpdate(op, (w, id)) = L′(op, id)

where L′ is a stateless function and (op, (w, id)) is a triplet. This essentially implies that the
update operation hides the w being updated and therefore can not be linked to any search query
containing w by a polynomially bounded A.

F.2 Backward Privacy of a Dynamic SSE Scheme

Denote the leakage profile of an adaptively secure dynamic conjunctive SSE construction as given
below.

L = (LSetup,LUpdate,LSearch)

The following three classes of information about updates are necessary for the exposition of back-
ward privacy notions, that captures specific leakages from update operations.

• TimeDB(w): Given a query list Q, TimeDB(w) stores the records of matching ids, excluding
the deleted ones, for w along with the timestamp of insertion.

TimeDB(w) = {(t, id)|(t,add, (w, id)) ∈ Q,

and ∀ t′, (t′,del, (w, id)) /∈ Q}

• Updates(w): Updates(w) stores the timestamps of the update history of a w.

Updates(w) = {t|(t,add, (w, id)) or (t,del, (w, id)) ∈ Q}

• DelHist(w): DelHist(w) stores the timestamps of update operations, specially which del
operation cancels which add operation for a w.

DelHist(w) = {(tadd, tdel)|∃id s.t. (tdel,del, (w, id)) ∈ Q

and (tadd,add, (w, id)) ∈ Q}

With these captured information defined, the three levels of backward privacy as presented in
[BMO17b] are defined as below.

• Type-I An adaptively secure dynamic SSE scheme is type-I backward private iff the update
and search leakages can be expressed as below.

LUpdate(op, (w, id)) = L′(op)

LSearch(w) = L′′(TimeDB(w), aw)

Here, aw is the update count of w, and L′,L′′ are stateless.

• Type-II An adaptively secure dynamic SSE scheme is type-II backward private iff the update
and search leakages can be expressed as below.

LUpdate(op, (w, id)) = L′(op,w)

LSearch(w) = L′′(TimeDB(w),Updates(w))

Here, L′,L′′ are stateless.
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• Type-III An adaptively secure dynamic SSE scheme is type-III backward private iff the
update and search leakages can be expressed as below.

LUpdate(op, (w, id)) = L′(op,w)

LSearch(w) = L′′(TimeDB(w),DelHist(w))

Here, L′,L′′ are stateless.

Based on these, we state the formal forward and backward privacy notions for Nomos below.
Note that, we apply the single data owner notion to multi client setting of MRSW as in this
setting only the gate-keeper is allowed to update the database. For an individual client, the view
of an adversarial server remains the same as of an SRSW forward and backward construction, in
this case ODXT. The forward and backward privacy notions can be independently applied to this
setting as well which elaborate below.

F.3 Forward Privacy of Nomos

Given the leakage profile of an adaptively secure dynamic conjunctive SSE

LS = (LSetup
S ,LUpdate

S ,LSearch
S )

adaptive forward privacy states that the update leakage can be expressed as

LUpdate
S (op, (w, id)) = L′(op, id)

where L′ is a stateless function and (op, (w, id)) is an arbitrary triplet. This essentially implies
that the update operation hides the w being updated and therefore can not be linked to any search
query containing w by a polynomially bounded A.

We note that Nomos Update leakage is

LUpdate
S (op, (w, id)) =⊥

as discussed in Section E.1. Therefore, Nomos hides the w as well as the id from the (op, (w, id))
input involved in the update process. The following corollary is straightforward from Theorem
E.1 and E.2 of the main manuscript.

Corollary F.1. Provided Nomos is instantiated with DH OPRFand DH assumption holds in G,
Fp and F are secure PRFs, and (AE.Enc, AE.Dec) is an IND-CPA and strongly UF-CMA-secure
AE scheme, and all hash functions are modelled as random oracles, Nomos is adaptively forward
private.

F.4 Backward Privacy of Nomos

Given the leakage profile of an adaptively secure dynamic conjunctive SSE

LS = (LSetup
S ,LUpdate

S ,LSearch
S )

adaptive type-II backward privacy states that the update and search leakages can be expressed
as

LUpdate
S (op, (w, id)) = L′′(op, id)

LSearch
S (w) = L′′(TimeDB(w),Upd(w))

.
For Nomos, the update and search leakage has the following profile.

LUpdate
S (op, (w, id)) =⊥

LSearch
S (q) = (TimeDB(q),Upd(q))

for a conjunctive query q, which is extended to the conjunctive keyword setting from single
keyword setting. Therefore, the following corollary is immediate from Theorem E.1 and E.2 of
the main manuscript.
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Corollary F.2. Provided Nomos is instantiated with DH OPRFand DH assumption holds in G,
Fp and F are secure PRFs, and (AE.Enc, AE.Dec) is an IND-CPA and strongly UF-CMA-secure
AE scheme, and all hash functions are modelled as random oracles, Nomos is adaptively backward
private.
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