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Abstract

The substitution box (S-box) is often used as the only nonlinear component in
symmetric-key ciphers, leading to a significant impact on the implementation
performance of ciphers in both classical and quantum application scenarios by
S-box circuits. Taking the Pauli-X gate, the CNOT gate, and the Toffoli gate
(i.e., the NCT gate set) as the underlying logic gates, this work investigates the
quantum circuit implementation of S-boxes based on the SAT solver. Firstly, we
propose encoding methods of the logic gates and the NCT-based circuit, based
on which we construct STP models for implementing S-boxes. By applying the
proposed models to the S-boxes of several well-known cryptographic algorithms,
we construct optimal implementations with different criteria for the 4-bit S-boxes
and provide the implementation bounds of different criteria for the 5-bit S-boxes.
Since S-boxes in the same affine equivalence class share most of the important
properties, we then build STP models to further investigate optimizing S-box cir-
cuits based on affine equivalence. According to the applications, for almost all the
tested 4-bit S-boxes, there always exists an equivalent S-box that can be imple-
mented with half the number of logic gates. Besides, we encode some important
cryptographic properties and construct STP models to design S-boxes with given
criteria configurations on implementation and properties. As an application, we
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find an S-box with the same cryptographic properties as the S-box of KECCAK that
can be implemented with only 5 NCT gates, even though the application of our
models indicates that implementing the KECCAK S-box requires more than 9 NCT
gates. Notably, the inputs of the proposed models are tweakable, which makes
the models possess some functions not currently available in the public tools for
constructing optimized NCT-based circuits for S-boxes.

Keywords: S-box, implementation, the NCT gate set, the SAT solver

1 Introduction

As an important part of modern cryptography, the symmetric-key cryptographic prim-
itives is a key technique to ensure the confidentiality and integrity of information, and
thus its security is crucial. When designing a symmetric-key cryptographic primitive, it
is necessary to ensure that the algorithm has the ability to resist known cryptographic
attacks, such as differential cryptanalysis [1] and linear cryptanalysis [2]. With the
rapid development of quantum technology, the symmetric-key cryptographic primitive
also has to face the threat of quantum attacks, as the parallelism of quantum comput-
ing makes quantum computers possess advantages over classical ones in dealing with
some specific problems [3–5].

Considering the threat posed in the forthcoming post-quantum era, the optimized
quantum implementation of the symmetric-key cryptographic primitive has become
an active research topic in recent years, such as [6–9]. The research interest of the
cryptographic community in this field is mainly aroused by the fact that the quantum
implementation of a cipher is an important component of the circuit for evaluating its
quantum security level [10, 11] or conducting quantum attacks against it. In addition,
considering the limited scale of the current quantum computers, the optimized quan-
tum implementation circuits of cryptographic algorithms can be instantiated earlier
in the future when quantum computers become robust enough.

For symmetric-key cryptographic primitives, confusion and diffusion [12] are two
important cryptographic criteria, the establishment of which is primarily dependent on
the nonlinear layer and the linear layer respectively. Generally, the Substitution box (S-
box) is often used as the only nonlinear component of the symmetric-key cryptographic
primitive, and thus its implementation and properties have great impacts on that of
the whole cipher.

To construct optimized implementation schemes for S-boxes, there are many
researches focusing on the development of tools. In 2017, Jean et al. [13] introduced
LIGHTER, a tool that aims at implementing small S-boxes with small area in hard-
ware application scenarios or fewer instructions in software application scenarios. To
this end, several standard cell libraries are encoded in the tool, as well as the corre-
sponding cost metric of each instruction. Later, the platform Peigen was presented
at ToSC 2019 in [14]. In addition to constructing efficient hardware/software imple-
mentations of S-boxes, Peigen can also be applied to evaluate security and generate
S-boxes. Notably, the instructions encoded in LIGHTER are consistent with the in-place
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property of quantum logic gates. As a consequence, the reversible implementation
returned by LIGHTER can also be applied to construct quantum circuits, especially the
ones built with the NCT gate set [15–17]. Following the line of the research on con-
structing optimized implementations for S-boxes, LIGHTER-R [18] and DORCIS [19]
are built based on LIGHTER for quantum application scenarios. The former constructs
quantum circuits at the top level with the NCT gate set, while the latter considers
the decomposition of the Toffoli gate and constructs Clifford+T -based circuits.

Most of the above-mentioned tools are based on heuristic algorithms. Although
they can return good solutions, but it is relatively hard to prove those solutions are
optimal. There are researches on searching for the optimal classical circuit implementa-
tions of S-boxes. In [20], Stoffelen defined a set of equations to represent the Algebraic
Normal Form (ANF) of the S-box and converted them into Conjunctive Normal Form
(CNF). By applying the SAT solver, the author constructed optimal implementa-
tions for several small S-boxes under various criteria. Later, Bilgin et al. [21] proposed
methods to optimize the And-depth, and Fan et al. [22] introduced 3-input gates to
optimize the area. Recently, Feng et al. [23] proposed two methods to encode the
implementations of S-boxes and introduced new SAT-based search methods.

In addition to the construction of optimized implementation schemes, the SAT
solver has also been used to design new S-boxes [24]. In this case, some important cryp-
tographic properties of S-boxes should be considered, such as differential uniformity,
linearity, and their frequency. Bijective S-boxes with lowest differential uniformity and
linearity are considered optimal, as they help to resist differential and linear cryptanal-
ysis respectively. Besides, the frequency of differential uniformity in the differential
distribution table (DDT) and that of linearity in the linear approximation table (LAT)
are also considered to have important impacts on the attacks [24, 25]. Additionally,
the number of active S-boxes is closely related to the probability of differential and
linear attacks, a small number of active S-boxes will increase the probability of a suc-
cessful attack. Therefore, the input and output differentials/masks of S-boxes with a
Hamming weight of 1 (named bad input and bad output pattern, i.e., BIBO pattern,
in [24]) would serve to perform differential/linear attacks.

This work investigates the optimization of S-box implementations constructed
based on the NCT gate set by applying the SAT solver. It should be noted that
the researches in [26] reveal that at least one additional ancilla qubit is required for
implementing an odd permutation with NCT gates. In this work, we only focus on
constructing optimized NCT-based circuits for even permutations for saving qubits.

Firstly, we encode the NCT gate set and the circuits built based on those gates,
based on which we construct STP models to identify the optimal implementations of
S-boxes for different criteria. As an application, we apply the proposed models to the
4-/5-bit S-boxes adopted in several well-known cryptographic algorithms. The results
reveal that for those 4-bit S-boxes, the optimal implementations for all criteria can
be constructed. For the 5-bit S-boxes, although the SAT solver cannot return their
optimal implementation schemes in a reasonable time, the bounds of different criteria
can be provided.

Moreover, we further investigate optimizing S-box implementations based on affine
equivalence. The results show that the optimal implementation of a given 4-bit S-box
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is not necessarily optimal among implementations of all the S-boxes in the same affine
equivalence class. For most tested 4-bit S-boxes, there is always an S-box with/without
fixed points and affine equivalent to the tested one but can be implemented with only
about half of the gate count. For the 4-bit S-boxes with/without fixed points and affine
equivalent to the optimal ones corresponding to even permutations, at least 4/5 gates
are required to build their NCT-based circuits.

Additionally, by combing the encoding methods of the NCT-based circuits and the
S-box properties, we construct models to search for S-boxes with given constraints
on the implementation and various cryptographic properties. In our experiments, the
SAT solver returns 3456 optimal 4-bit S-boxes with fixed points. Further observations
show that only 4 NCT gates are enough to implement the S-boxes. Besides, each
of those S-boxes contains the fixed point S[0] = 0. By placing restrictions on the
Toffoli gate consumption, it can be verified that at least 4 Toffoli gates are required
to construct NCT-based circuits for the optimal 4-bit S-boxes, which also implies that
those S-boxes can be implemented at least in a Toffoli-depth of 4 without introducing
additional ancilla qubits.

The rest of this paper is organized as follows: In Sect. 2, notations used throughout
the paper, the SAT solver, some cryptographic properties of the S-box, and the NCT
gate set are introduced. Section 3 provides the models of encoding the NCT gates and
NCT-based circuits, as well as that for optimizing S-box circuits. The investigation
of optimizing the NCT-based circuits of the S-box based on its properties is given in
Sect. 4. Section 5 presents the application and Sect. 6 concludes the work.

2 Preliminaries

2.1 Notations

Notations used throughout this paper are presented in Table 1.

Table 1 Notations.

Notation Description

F2 The finite field with two elements 0 and 1

Fn
2 The n-dimensional vector space over F2

a⊕ b The Xor of bits a and b over F2

a · b The And of bits a and b over F2

wt(a) The Hamming weight of a

a||b The concatenation of a and b∧
Logical operation And∨
Logical operation Or

2.2 The SAT Problem and Its Extension

The Boolean Satisfiability (SAT) problem studies whether there is a set of Boolean
variables whose assignment satisfies the given Boolean formulas. If so, the problem
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is said to be satisfiable; otherwise, it is said to be unsatisfiable. The SAT problem
is a deterministic problem and has been proven to be Non-deterministic Polynomial
Complete (NPC).

Usually, for a given Boolean formula, researchers first represent it as the standard

input format of SAT solver, namely the form of CNF
∧m−1

i=0

(∨ni−1
j=0 xi,j

)
= 1, where

xi,j are variables, constants or the negation of Boolean variables. There are also many
mature and efficient solvers for SAT problems, such as Minisat [27], Cryptominisat
[28], and CaDiCal [29].

The Satisfiability Modulo Theories (SMT) problem is an extension of the SAT
problem, in which certain Boolean variables are substituted with a suitable set of
binary and (or) non-binary variables. STP [30] is a constraint solver for the theory
of quantifier-free bitvectors that can solve the SMT problem, which is mainly used in
previous researches. For STP, the CVC format is one of the frequently employed file-
based input languages. For additional information, please refer to http://stp.github.
io/.

2.3 Cryptographic Properties of the S-box

When designing an S-box, the cryptographic properties of the S-box should be exten-
sively analyzed, as they can propagate along with the round function and may
eventually affect the security of the cipher. Differential cryptanalysis and linear
cryptanalysis are the two most well-known attack methods. To judge the ability of
cryptographic algorithms to resist those attacks, special attention has been paid to
differential uniformity and linearity of the S-box.

The differential uniformity of an S-box is defined by its DDT.
Definition 1. (Differential Distribution Table, Differential Uniformity [31]) Let S :
Fn
2 → Fm

2 be a vectorial Boolean function. For any a ∈ Fn
2 , b ∈ Fm

2 , define

δS(a, b) = #{x ∈ Fn
2 |S(x)⊕ S(x⊕ a) = b}. (1)

The differential distribution table of S is a 2-dimensional table with size 2n × 2m,
in which the element DDT[a, b] in row a and column b is equal to δS(a, b), where
a ∈ Fn

2 , b ∈ Fm
2 . The differential uniformity of S is defined as:

U(S) ≜ max
a∈Fn

2 \{0},b∈Fm
2

δS(a, b). (2)

Similarly, the linearity of an S-box is defined by its LAT.
Definition 2. (Linear Approximation Table, Linearity of an S-box [32]) Let S : Fn

2 →
Fm
2 be a vectorial Boolean function. For any a ∈ Fn

2 , b ∈ Fm
2 , define

λS(a, b) = #{x ∈ Fn
2 |a · x⊕ b · S(x) = 0} =

1

2

∑
x∈Fn

2

(−1)a·x⊕b·S(x). (3)

The linear approximation table of S is a 2n × 2m table with the element LAT[a, b] in
row a and column b equals λS(a, b), where a ∈ Fn

2 , b ∈ Fm
2 . The linearity of S is defined
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as:
L(S) ≜ max

a∈Fn
2 ,b∈Fm

2 \{0}
|2 · λS(a, b)|. (4)

Notably, for the S-boxes in the same affine equivalence class, the differential
uniformity and the linearity can be preserved.
Definition 3. (Affine Equivalence) Two S-boxes S1 and S2 are affine equivalent, if
there exist two reversible linear transformations A, B ∈ GL(n,F2) and two constants
a, b ∈ Fn

2 such that
S2 = B(S1(A(x)⊕ a))⊕ b. (5)

In addition, the frequency of the differential uniformity in DDT and that of the
linearity in LAT, as well as BIBO patterns derived from DDT and LAT have also
received much attention, as they may affect the probability of a successful attack.
Definition 4. (Frequency of Differential Uniformity) For the DDT of a given vectorial
Boolean function S : Fn

2 → Fm
2 , the frequency of differential uniformity in DDT is

defined as:

UFreq ≜ #{(a, b)|δS(a, b) = U(S), a ∈ Fn
2 \ {0}, b ∈ Fm

2 }. (6)

Definition 5. (Frequency of Linearity) For the LAT of a given vectorial Boolean
function S : Fn

2 → Fm
2 , the frequency of linearity in LAT is defined as:

LFreq ≜ #{(a, b)||2 · λS(a, b)| = L(S), a ∈ Fn
2 , b ∈ Fm

2 \ {0}}. (7)

Definition 6. (Bad Input and Bad Output Pattern [24]) Given the DDT/LAT of a
vectorial Boolean function S : Fn

2 → Fm
2 , if there exists a pair (a, b) ∈ Fn

2 × Fm
2 sat-

isfying that DDT[a, b]̸= 0/LAT[a, b]̸= 0 and wt(a) = wt(b) = 1. Then, (a, b) is called
a bad input and bad output (BIBO) pattern in DDT/LAT. Denote by #BIBODDT

and #BIBOLAT the number of BIBO patterns in the DDT and LAT of S. Then,
#BIBODDT and #BIBOLAT can be calculated as:

{
#BIBODDT = #{(a, b)|DDT[a, b] ̸= 0, wt(a) = wt(b) = 1, a ∈ Fn

2 , b ∈ Fm
2 },

#BIBOLAT = #{(a, b)|LAT[a, b] ̸= 0, wt(a) = wt(b) = 1, a ∈ Fn
2 , b ∈ Fm

2 }. (8)

2.4 The NCT-based Circuit and Its Criteria

The NCT-based circuit is constructed based on the NCT gate set.
The NCT Gate Set The NCT gate set consists of the Pauli-X gate, the CNOT
gate and the Toffoli gate, the circuit symbols of which are depicted in Fig. 1, where
a, b, c ∈ F2.

- The Pauli-X gate (or the NOT gate) is a single-qubit gate, and reverses the state
of the qubit, i.e., transforms |a⟩ to |a⊕ 1⟩.

- The CNOT gate, also known as the Controlled-NOT gate or the C-NOT gate,
reverses the state of the target qubit if the state of the control qubit is |1⟩. The
function of the CNOT gate can be represented as the mapping that transforms
|a⟩|b⟩ to |a⟩|b⊕ a⟩.
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Fig. 1 The description of the NCT gates.

- The Toffoli gate, or the CC-NOT gate, reverses the state of the target qubit when
both the control qubits are with state |1⟩. The function of the Toffoli gate can be
represented as the mapping that transforms |a⟩|b⟩|c⟩ to |a⟩|b⟩|c⊕ a · b⟩.

Implementation Criteria Efficient implementations of S-boxes are of much impor-
tance, as they largely determine the implementation performance of the whole
algorithm. Consequently, various criteria are considered when designing optimized
implementation schemes for S-boxes. For example, to minimize the latency of the hard-
ware implementation, depth is taken as the metric. For quantum applications, when
building LIGHTER-R [18], gate count, two-qubit cost, and quantum cost are taken as
the implementation criteria of NCT-based circuits. Actually, evaluating those crite-
ria is equivalent to counting the number of different logic gates for implementing a
specific function. Roughly, the criterion gate count considers the number of the NCT
gates, the two-qubit cost is defined based on the number of 2-input gates, the quan-
tum cost counts the number of Pauli-X, CNOT, and Controlled-V/-V† gates (see [33]
for details). According to [18, 33], the costs of NCT gates under different criteria are
listed in Table 2.

Table 2 Cost metrics of the NCT gates

criterion

gate
Pauli-X CNOT Toffoli

gate count 1 1 1

two-qubit cost 0 1 5

quantum cost 1 1 5

In the NCT gate set, the implementation cost of the Toffoli gate is much more
expensive than that of other gates. Therefore, the Toffoli gate consumption and the
Toffoli-Depth of the NCT-based circuit have also attracted a lot of attention. For an
NCT-based circuit, its Toffoli gate consumption counts the number of Toffoli gates
required for implementing the circuit, while its Toffoli-Depth equals the layer of Toffoli
gates in the circuit that cannot be applied in parallel.

3 Optimizing the S-box Implementation

In this section, the encoding equations related to the input and the output of the
underlying logic gates are introduced, based on which the construction of the STP
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models for searching for optimized S-box implementation schemes with various criteria
is presented.

3.1 New Encoding Method

The methods of encoding quantum gates are quite different from those of classical
ones, as quantum gates are reversible. Besides, when encoding quantum gates, the
various number of gate inputs should also be considered. For instance, in [20], S-
box implementations are restricted to the gates with input number less than 2 for
optimizing various criteria, such as the Not gate, the And gate, and the Or gate.
However, in the NCT gate set, the Toffoli gate is a 3-input gate. Additionally, for multi-
input quantum gates, especially the CNOT gate and the Toffoli gate in the NCT gate
set, the inputs are divided into the control qubit and the target qubit, which makes
more cases should be considered when encoding the NCT gates. To further explain
the logic gates that may be involved in each operation, the following example is given.
Example 1. Given a 4-bit S-box, the input of which is denoted by (x0, x1, x2, x3).
In each operation, the corresponding NCT gate may change any of the S-box inputs.
Suppose that the change occurs in x0, i.e., x0 is applied as the target qubit, the possible
quantum gate corresponding to the current operation may act as the following three
different classes:

- the Pauli-X gate: As a single-qubit gate, the Pauli-X gate can only overwrite the
state of x0 as x0 = x0 ⊕ 1, as the first gate shown in Fig. 2.

- the CNOT gate: In this case, the state of x0 can be overwritten as x0 = x0 ⊕ x1,
x0 = x0 ⊕ x2 or x0 = x0 ⊕ x3, as shown with the 2nd, 3rd and 4th gates in Fig. 2.

- the Toffoli gate: The state of x0 can be overwritten by the Toffoli gate as x0 =
x0 ⊕ x1 · x2, x0 = x0 ⊕ x1 · x3 or x0 = x0 ⊕ x2 · x3, as shown in Fig. 2 with the last
3 gates.

|x0 X |x01 

|x1 

|x0 

|x1 

|x0x1 

|x2 

|x0 

|x2 

|x0x2 

|x3 

|x0 

|x3 

|x0x3 

|x1 

|x2 

|x0 

|x1 

|x2 

|x0x1·x2 

|x1 

|x3 

|x0 

|x1 

|x3 

|x0x1·x3 

|x2 

|x3 

|x0 

|x2 

|x3 

|x0x2·x3 

|x0 

|x1 

|x2 

|x3 

|y0 

|y1 

|y2 

|y3 

Fig. 2 Possible gates that |x0⟩ is used as the target qubit.

From Example 1, when implementing a 4-bit S-box with the NCT gate set, there
are 7 specific logic gates can be selected as the candidate of the current operation once
the target qubit is fixed. It also means that there are a total of 28 different NCT gates
can be chosen by each operation as the candidate. Suppose that k gates are consumed
for implementing a 4-bit S-box, the complexity of conducting an exhaustive search for
an optimal implementation scheme of the S-box is 28k. For instance, for the case that
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k = 8, the time complexity is approximately 238.46. However, in fact, many S-boxes
require more than 8 logic gates, making the calculation even more challenging.
Encoding the NCT Gates Three logic gates with different numbers of inputs are
contained in the NCT gate set. Denote by qi0, q

i
1, q

i
2 the inputs of the i-th gate and bi0,

bi1, b
i
2 the variables that determine which NCT gate the i-th gate corresponds to. We

fix qi0 as the target qubit of the i-th gate, that is, qi0 will be overwritten by the current
gate. We also use + to represent ⊕ in NCT gates without confusion. To encode the
NCT gate set, we define the output of the i-th gate, denoted by ti, as follows:

ti = qi0 + bi0 + bi1 · qi1 + bi2 · qi1 · qi2. (9)

To maintain the in-place property of the quantum gate, the ti in Eq. (9) will be
assigned to the input determined by qi0 (the encoding of which will be introduced
later). The expression of ti with different values of bi0, b

i
1 and bi2 are listed in Table 3.

Table 3 Encoding the NCT gate set

(bi2, b
i
1, b

i
0) ti corresponding quantum gate

(0, 0, 1) qi0 + 1 the Pauli-X gate

(0, 1, 0) qi0 + qi1 the CNOT gate

(1, 0, 0) qi0 + qi1 · qi2 the Toffoli gate

Denote by f the vectorial Boolean function with input (x0, x1, · · · , xn−1). Based
on Eq. (9) and Table 3, the encoding of the NCT gates for implementing f can be
described as follows:

- From Table 3, if wt(bi0||bi1||bi2) = 1 holds, one of the gates in the NCT gate set can
be determined, which gives rise to the following restriction:

bi0 + bi1 + bi2 = 1. (10)

- Quantum gate is reversible and no ancilla qubits are introduced for the purpose of
saving qubits in this work, which means that changes in state of the f input will
be caused by each gate. Denote by (xi−1

0 , xi−1
1 , · · · , xi−1

n−1) the state of the f input
before the application of the i-th gate. It follows that variables qi0, q

i
1 and qi2 are

selected from {xi−1
0 , xi−1

1 , · · · , xi−1
n−1}, which can be restricted as follows:

qil =
∑n−1

j=0 ain·l+j · x
i−1
j ,∑n−1

j=0 ain·l+j = 1,

(11)

where l = 0, 1, 2.
- The qubit can not be copied. It means that loading a qubit into multiple gates
simultaneously is not allowed. As a result, qi0, q

i
1 and qi2 should be assigned to

different inputs of f , which can be restricted by

aij + ain+j + ai2n+j ⩽ 1, (12)
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where j ∈ [0, n− 1] and n is the number of inputs of f .
- To eliminate symmetry, we restrict that only qi0 will be changed in Eq. (9), while qi1
and qi2 are not. In other words, the update of qi0 and its relationship with ti should
be encoded to maintain the in-place property of the quantum gate. According
to Eq. (11), the variable qi0 in Eq. (9) is restricted as qi0 =

∑n−1
j=0 aij · x

i−1
j with∑n−1

j=0 aij = 1, it follows that for any j ∈ [0, n−1], if aij = 0, the corresponding xi−1
j

will not be changed by the i-th gate. However, if aij = 1, the corresponding input

xi−1
j should be updated to the output of the current gate. The above restriction

can be described as follows:

xi
j = aij · ti + (1 + ai) · xi−1

j , (13)

where j ∈ [0, n− 1] and n is the number of inputs of f .

Encoding the Circuit By taking the output of the i-th gate, i.e., (xi
0, x

i
1, · · · , xi

n−1),
as the input of the next gate, multiple gates can be encoded. Denote by
(xk

0 , x
k
1 , · · · , xk

n−1) the output of the k-th gate. If each bit in {xk
0 , x

k
1 , · · · , xk

n−1}
equals to a different output bit of the given vectorial Boolean function (denoted by
(y0, y1, · · · , yn−1)), then an NCT-based circuit of the vectorial Boolean function is
constructed. Totally, there are n! possible permutations map (xk

0 , x
k
1 , · · · , xk

n−1) to
(y0, y1, · · · , yn−1). The relationship between (xk

0 , x
k
1 , · · · , xk

n−1) and (y0, y1, · · · , yn−1)
can be expressed as

yj =

n−1∑
i=0

mj i · xk
i , (14)

where j ∈ [0, n−1]. Notably, for i, j ∈ [0, n−1], mj is’ in Eq. (14) form a permutation
matrix.

The following 3-bit S-box is given as an example to illustrate the complete
procedure of encoding the NCT-based circuit for a given vectorial Boolean function.
Example 2. Denote the input and the output of the given 3-bit S-box as (x0, x1, x2)
and (y0, y1, y2) respectively. The encoding of the first gate and the corresponding
constraints are listed as follows:

To encode the inputs of the current gate, the following constraints are given:

q10 = a10 · x0 + a11 · x1 + a12 · x2,
q11 = a13 · x0 + a14 · x1 + a15 · x2,
q12 = a16 · x0 + a17 · x1 + a18 · x2,
a10 + a11 + a12 = 1,
a13 + a14 + a15 = 1,
a16 + a17 + a18 = 1,
a10 + a13 + a16 ≤ 1,
a11 + a14 + a17 ≤ 1,
a12 + a15 + a18 ≤ 1.

(15)
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The output of the current gate is encoded as{
t1 = q10 + b10 + b11 · q11 + b12 · q11 · q12 ,
b10 + b11 + b12 = 1.

(16)

After the current gate, the S-box inputs are updated as x1
0 = a10 · t1 + (1 + a10) · x0,

x1
1 = a11 · t1 + (1 + a11) · x1,

x1
2 = a12 · t1 + (1 + a12) · x2.

(17)

The above steps encode the first gate, after which the S-box input is transformed
from (x0, x1, x2) to (x1

0, x
1
1, x

1
2) and will be regarded as the input of the next gate. After

the application of k gates (the encoding of each is similar to that of the first gate shown
with Eqs. (15) - (17)), the S-box input is transformed to (xk

0 , x
k
1 , x

k
2), corresponding to

the S-box output, i.e., (y0, y1, y2). Thus, we have

y0 = m0 0 · xk
0 +m0 1 · xk

1 +m0 2 · xk
2 ,

y1 = m1 0 · xk
0 +m1 1 · xk

1 +m1 2 · xk
2 ,

y2 = m2 0 · xk
0 +m2 1 · xk

1 +m2 2 · xk
2 ,

m0 0 +m0 1 +m0 2 = 1,
m1 0 +m1 1 +m1 2 = 1,
m2 0 +m2 1 +m2 2 = 1,
m0 0 +m1 0 +m2 0 = 1,
m0 1 +m1 1 +m2 1 = 1,
m0 2 +m1 2 +m2 2 = 1.

(18)

3.2 New STP Models

With the encoding of the underlying logic gates, as a direct application, it is possible
to apply the SAT solver to search for an optimal implementation of an S-box with the
criterion gate count. To this end, Algorithm 1 is introduced based on Sect. 3.1. Note
that all values in the algorithm are determined by the S-box look-up table.

Algorithm 1 is designed to generate STP models for small S-boxes, then we can
apply the SAT solver to solve the models. Note that we only present in Algorithm 1
the ANF representation for simplicity. In practical application, it should be converted
into the CVC language, which is the input of the solver.
Converting ANF to CVC Firstly, use BITVECTOR(1) to represent a binary
variable. Then, the operations Xor, Add, and And should be substituted with
BVXOR, BVPLUS, and BVMULT, respectively. Besides, the concatenation is repre-
sented by the symbol @. To restrict variable x to be a constant, apply the constraint
ASSERT(x = 0bin0) or ASSERT(x = 0bin1). In addition, to restrict that variable a
is less than or equal to b, BVLE(a, b) is applied.
Models for Other Criteria To construct models for a specific criterion, the calcu-
lation of which should be explained first. In Algorithm 1, parameter K is taken as the
input to restrict the number of allocated gates, and thus the minimal K such that the
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Algorithm 1 Construct NCT-based Circuits for the S-box

Require: Look-up table of the S-box S, the number of gates K.
Ensure: STPModel(S, K).
1: for s = 0 to 2n − 1 do
2: for i = 0 to n− 1 do
3: x0

si = xsi ; ▷ Initialize the inputs
4: end for
5: end for
6: for s = 0 to 2n − 1 do
7: for k = 1 to K do
8: for l = 0 to 2 do
9: qksl =

∑n−1
i=0 akn·l+i · xk

si ;
10: end for
11: tks = qks0 + bk0 + bk1 · qks1 + bk2 · qks1 · q

k
s2 ; ▷ The k-th logic gate

12: for i = 0 to n− 1 do
13: xk

si = aki · tks + (1 + aki ) · xk−1
si ; ▷ Update the inputs of the S-box

14: end for
15: end for
16: for j = 0 to n− 1 do
17: ysj =

∑n−1
i=0 mj i · xk

si ; ▷ Encode the S-box outputs
18: end for
19: end for
20: for k = 1 to K do
21:

∑n−1
i=0 akn·l+i = 1;

22:
∑2

l=0 a
k
n·l ⩽ 1;

23: bk0 + bk1 + bk2 = 1;
24: end for

SAT solver returns a solution successfully is the fewest gates required for implementing
the S-box. The criteria shown in Sect. 2.4 can be calculated as follows:

- Two-qubit Cost: In an NCT-based circuit, only the CNOT gate consumption and
the Toffoli gate consumption influence the value of its two-qubit cost. From Table 3
and Eq. (10), among bi0, b

i
1 and bi2, if the current gate is a CNOT gate, only the

value of bi1 equals 1. For the case that the current gate is a Toffoli gate, only the
value of bi2 is equal to 1. Therefore, for an NCT-based circuit with K gates, its
two-qubit cost, denoted by T , can be calculated as:

T =

K∑
i=1

(bi1 + 5× bi2). (19)

- Quantum Cost: Similar to the calculation of the two-qubit cost of an NCT-based
circuit with K gates, denote by Q the quantum cost of the circuit. Then, Q can be
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calculated as:

Q =

K∑
i=1

(bi0 + bi1 + 5× bi2). (20)

- Toffoli Gate Consumption and Toffoli-Depth: Applying 2 Toffoli gates in parallel
requires an NCT-based circuit to have at least 6 qubits, as the qubit cannot be
loaded into multiple gates simultaneously. Therefore, for an n-bit circuit with n ∈
[3, 5], the Toffoli-depth and the Toffoli gate consumption of the circuit are equal.
From Eq. (9), the Toffoli gate is marked by bi2. Denote by D the Toffoli gate
consumption of an NCT-based circuit with K gates. Then, D can be calculated as:

D =

K∑
i=1

bi2. (21)

Based on Algorithm 1, the models for designing circuits with criteria two-qubit
cost, quantum cost, and the Toffoli gate consumption (as well as the Toffoli-Depth of
a small-scale function) can be constructed by adding Eq. (19), Eq. (20), and Eq. (21)
in the end of Algorithm 1, respectively, where T , Q, and D are new parameters taken
as inputs of the algorithm.

4 Further Insights on Constructing Implementations

In this section, constructing optimized implementations for S-boxes based on the
SAT solver is further investigated by taking their cryptographic properties into
consideration.

4.1 Optimization based on Affine Equivalence

Applying an invertible affine transformation before and after an S-box does not change
the resistance of the S-box against most attacks [43]. In classical application scenarios,
if an optimized implementation can be designed for any of the S-boxes affine equivalent
to a specific one adopted in a cryptographic cipher, one can replace the specific S-box
with the affine equivalent one to improve the implementation performance of the cipher
without changing its security. This inspires us to further explore the construction of S-
boxes with better implementations for quantum application scenarios based on affine
equivalence.
Model of Affine Equivalence To find all the S-boxes affine equivalent to the
bijective S-box S1 : Fn

2 → Fn
2 , the following issues should be considered:

- The definition of affine equivalence should be satisfied. If the given S-box and the
candidate one (denoted by S2) are affine equivalent, Eq. (5) holds.

- When constructing affine equivalent S-boxes, the transformations A and B searched
for Eq. (5) should be linear and be encoded. Specifically, take A as an example, if
A is linear, it follows that

A(x1)⊕A(x2) = A(x1 ⊕ x2), (22)

where x1, x2 ∈ Fn
2 are inputs of A.
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- Both the affine equivalent S-boxes S1 and S2 should be bijective, which means that,
for any i, j ∈ Fn

2 and i ̸= j, we have

S2(i) ̸= S2(j). (23)

Model for Implementation With the encoding methods of affine equivalence and
the NCT-based circuit, by applying the SAT solver, it is possible to search for an
optimal implementation of the S-boxes in the same affine equivalence class with the
criterion of gate count. Assuming that the solver outputs a solution when the gate
count is set to K, it means that there is an S-box in the affine equivalence class can be
implemented with K gates. However, if the solver outputs unsatisfiable, it indicates
that none of the S-boxes in the affine equivalence class can be implemented with K
gates. At this point, the number of gates should be increased to K + 1. The details
are illustrated in Algorithm 2.

Algorithm 2 Implement the S-boxes in the Same Affine Equivalence Class

Require: Look-up table of the S-box S1, the number of gates K
Ensure: STPModel(S1,K)
1: for i = 0 to 2n − 2 do
2: for j = i to 2n − 1 do
3: A[i⊕ j] = A[i]⊕A[j]; ▷ A and B are linear
4: B[i⊕ j] = B[i]⊕B[j];
5: end for
6: end for
7: for i = 0 to 2n − 2 do
8: for j = i to 2n − 1 do
9: A[i] ̸= A[j];

10: B[i] ̸= B[j];
11: S2[i] ̸= S2[j]; ▷ All mappings are bijective
12: end for
13: end for
14: for i = 0 to 2n − 1 do
15: S2[i] = B[S1[A[i]⊕ a]]⊕ c; ▷ S2 is affine equivalent to S1

16: end for
17: STPModel(S2, K); ▷ Apply Algorithm 1

It should be noted that, in Algorithm 2, S1 is known, and S2 is undetermined.
After solving the STP model, a corresponding set of solutions will be returned. For
the case that both S1 and S2 are given, with minor modifications, the algorithm can
also be used to determine whether the two S-boxes are in the same equivalence class.

Moreover, in order to identify the optimal implementation scheme of the S-boxes
in the same affine equivalence class, the traditional methods require that one should
list all the S-boxes in the same affine equivalence class and then construct an STP
model for each S-box. By solving all the models, the optimal implementation can
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be obtained. Due to the numerous affine equivalence of an S-box, the process can
be time-consuming. However, by applying Algorithm 2, the affine equivalent S-boxes
that satisfy the given conditions can be output directly, as well as their optimized
implementations.

4.2 Opimization based on Good Cryptographic Properties

To resist differential and linear attacks, the fundamental cryptographic properties
of differential uniformity and linearity are investigated. Additionally, the ability of
a cipher to resist differential and linear attacks is influenced by the frequency of
occurrence of differential uniformity and linearity, as well as the impact of the
BIBO. Therefore, we consider these properties comprehensively. Moreover, previous
researches show that the S-box implementation of PRØST [34] outperforms that of
other ciphers significantly. The notable difference between the PRØST S-box and other
ones lies in the fixed point. Therefore, the fixed point is also taken into consideration
in this work.

The implementation of S-boxes based on the above properties can be broadly
divided into two parts: one related to the DDT and the other related to the LAT. The
calculation of DDT and that of LAT are different, while the calculation of frequency
and the calculation of BIBO are the same. In the CVC language, it is necessary to
define the number of bits for variables. Moreover, addition is involved both in calcu-
lations of BIBO, the frequency of DDT, and the frequency of LAT. If the maximum
value that the addition of variables can achieve is ignored, overflow issues may arise.
Similarly, subtraction in LAT may result in borrowing. Below, we provide a specific
example to explain the computation results in STP.
Example 3. Assuming that variables a, b, and c are defined as 4-bit variables with
values 0x1, 0xF , and 0x2, respectively. If there exist two variables m = a + b and
n = a− c, then m is equal to 0x0, and n is equal to 0xF in the CVC language.
Model for Properties Related to DDT For an n×n S-box, Lu et al. [24] defined
DDT as a set of mappings from F2n

2 to Fn
2 . However, in this work, the approach in [24]

would lead to overflow issues (if a term in the DDT of a 4-bit S-box is 16, then it would
be 0 in actual computation), which would result in the actual differential uniformity
exceeding the value we specified. To avoid this problem, we define the DDT as a set
of mappings from F2n

2 to Fn+1
2 and consider the following issues:

- The Calculation of Difference: According to Definition 1, each entry DDT[a, b],
where a, b ∈ Fn

2 , is determined by the number of x ∈ Fn
2 that satisfies S(x)⊕S(x⊕

a) = b. To determine whether the current x has a difference, we introduce a flag vari-
able, denoted as IsTrue[a, b, x]. If the current x has a difference, IsTrue[a, b, x] = 1,
otherwise, IsTrue[a, b, x] = 0. The sum of these flag variables is equal to DDT[a, b],
i.e., DDT[a, b] = IsTrue[a, b, 0] + · · ·+ IsTrue[a, b, 2n − 1].

- The Achieving of Differential Uniformity: Constraints are added to ensure that
all DDT[a, b] must be less than or equal to the given differential uniformity
U . Additionally, we introduce the constraint DDT[1, 1] = U OR DDT[1, 2] =
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U OR · · · OR DDT[2n−1, 2n−1] = U to ensure that the specified differential uni-
formity is met 1. This constraint is not presented in the work of Lu et al. [24] as they
did not independently consider the differential uniformity, but rather combined it
with the frequency.

- The Calculation of Frequency: Similar to the calculation of DDT. For a given
differential uniformity U , the calculation of the frequency of U can be achieved by
introducing a flag variable for each element DDT[a, b], denoted by IsTrueDDT[a, b],
to mark if DDT[a, b] = U holds. If DDT[a, b] = U , IsTrueDDT[a, b] = 1, otherwise,
IsTrueDDT[a, b] = 0. The frequency of U , denoted by FreqDDT, can be calculated
as FreqDDT = IsTrueDDT[1, 0] + · · ·+ IsTrueDDT[2

n − 1, 2n − 1].
- The Calculation of BIBO: The calculation of BIBO is similar to that of the fre-
quency. However, not all entries in the DDT are required; it only needs to consider
the entries with Hamming weight of 1, i.e., DDT[a, b] with a, b ∈ {1, 2, 4, · · · , 2n−1}.

Details are presented in Algorithm 3, where the input parameters are U , UFreq, and
BIBODDT, representing differential uniformity, the frequency of differential uniformity,
and the number of BIBOs in DDT, respectively. We set U to be equal to a specific
value, while UFreq and BIBODDT are set to be less than or equal to the specific values.
It is also worth noting that by setting different restrictions on UFreq and BIBODDT,
S-boxes with various frequencies and BIBO counts for different levels of differential
uniformity can be found, which also means that the parameters UFreq and BIBODDT

are optional for Algorithm 3.
Model for Properties Related to LAT The procedure of constructing a model
for properties related to LAT is similar to Algorithm 3. Therefore, the details are
presented in Appendix A with Algorithm 5.
Model for Implementation With the encoding methods of the S-box property
(Algorithms 3 and 5) and the NCT-based circuit (Algorithm 1), combination models
can be constructed directly for designing S-boxes and their implementations under
specific conditions. To this end, additional constraints need to be added. Firstly, it
is essential to ensure that the S-boxes are bijective. Secondly, there is an optional
constraint for fixed points2. Since the properties are directly calculated from the S-
box, and the NCT-based circuit implementation scheme is represented based on the
input and output bits of the S-box, it is necessary to combine them together. For all
i ∈ Fn

2 , the input i of the S-box corresponds to bits i = x0
in−1

@ · · ·@x0
i1
@x0

i0
, and the

output S[i] corresponds to bit S[i] = yin−1
@ · · ·@yi1@yi0 . It implies that the S-box

can be implemented by the current NCT-based circuit. The details are presented in
Algorithm 4, where constraints on frequencies and BIBO patterns are optional.

Using the SAT solver, solutions that satisfy all the constraint conditions can be
output. To obtain all S-boxes that meet the conditions, when STP outputs an S-box,
it can be removed from the solution space, and this process can be repeated until the
solver outputs no solution.

1Without this constraint, when specifying a differential uniformity of 6, the output S-box’s differential
uniformity might be 4.

2It only indicates the absence of fixed point restrictions in the program, implying that the output S-box
may or may not have fixed points
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Algorithm 3 Properties Related to DDT

Require: Differential uniformity U , frequency of the differential uniformity UFreq,
the number of BIBO in DDT BIBODDT

Ensure: STPModel(U , UFreq, BIBODDT)
1: for a = 0 to 2n − 1 do
2: for b = 0 to 2n − 1 do
3: for x = 0 to 2n − 1 do
4: if S[x⊕ a] = S[x]⊕ b then
5: IsTrue[a, b, x] = 1;
6: else
7: IsTrue[a, b, x] = 0;
8: end if
9: end for

10: DDT[a, b] = IsTrue[a, b, 0] + · · ·+ IsTrue[a, b, 2n − 1]; ▷ Definition of DDT
11: DDT[a, b] ≤ U ; ▷ Definition of differential uniformity
12: if DDT[a, b] = U then
13: IsTrueDDT[a, b] = 1;
14: else
15: IsTrueDDT[a, b] = 0;
16: end if
17: end for
18: end for
19: DDT[1, 1] = U OR · · ·OR DDT[2n − 1, 2n − 1] = U ; ▷ Ensure U is satisfied
20: FreqDDT = IsTrueDDT[1, 0] + IsTrueDDT[1, 1] + · · ·+ IsTrueDDT[2

n−1, 2n−1];
21: FreqDDT ≤ UFreq;
22: Z = [1, 2, 4, · · · , 2n−1]; ▷ The set of elements in [0, 2n−1] with Hamming weight 1
23: for a ∈ Z do
24: for b ∈ Z do
25: if DDT[a, b] ̸= 0 then
26: BIBO[a, b] = 1;
27: else
28: BIBO[a, b] = 0;
29: end if
30: end for
31: end for
32: BIBODDT = BIBO[1, 1] + BIBO[1, 2] + · · ·+BIBO[2n−1, 2n−1]; ▷ Def. of BIBO
33: BIBODDT ≤ BIBODDT;

5 Applications

This section presents the three applications of the proposed models: the first focuses
on constructing optimal implementation schemes for S-boxes based on various criteria;
the second is to investigate further optimization based on affine equivalence; the last
combines the implementation and some typical cryptographic properties of S-boxes.
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Algorithm 4 Combine the S-box Circuit and Cryptographic Properties

Require: The number of gates K, differential uniformity U , linearity L, frequency of
U/L UFreq/LFreq, the number of BIBO in DDT/LAT BIBODDT/BIBOLAT

Ensure: STPModel(K,U ,L,UFreq,LFreq,BIBODDT,BIBOLAT)
1: for i = 0 to 2n − 1 do
2: S[i] ̸= i; ▷ The S-box S has no fixed points (optional)
3: end for
4: for i = 0 to 2n − 2 do
5: for j = i to 2n − 1 do
6: S[j] ̸= S[i]; ▷ The S-box S is a bijection
7: end for
8: end for
9: STPModel(U , UFreq, BIBODDT); ▷ Apply Algorithm 3

10: STPModel(L, LFreq, BIBOLAT); ▷ Apply Algorithm 5
11: for i = 0 to 2n − 1 do
12: i = x0

in−1
@ · · ·@x0

i1
@x0

i0
;

13: S[i] = yin−1
@ · · ·@yi1@yi0 ;

14: end for
15: STPModel(S, K); ▷ Apply Algorithm 1

5.1 Optimizing the S-box Implementation with Various
Criteria

To construct optimized NCT-based circuits for small S-boxes, Dasu et al. [18] assigned
the NCT gates with different cost metrics of gate count, two-qubit cost and quantum
cost, which also be adopted as criteria in our models in this section.
Application to 4-bit S-boxes Based on Algorithm 1, Eqs. (19) and (20), we con-
struct models to search for optimal implementation schemes for the 4-bit S-boxes
adopted in some well-known cryptographic ciphers [34–40], the look-up tables of which
are listed in Appendix B. To explain the transformation from the output of the
SAT solver to an NCT-based circuit, the S-box of GIFT [40] is taken as the input of
Algorithm 1 and the following example is given.
Example 4. Denote by (x0, x1, x2, x3) and (y0, y1, y2, y3) the input and the output
of the GIFT S-box, when the number of logic gates is set to 8, the solver outputs the
following solution:

0 x00 = x0, 4 x11 = x01 + x00 · x02, 8 x51 = x41 + 1, 12 y0 = x83,
1 x01 = x1, 5 x20 = x10 + x11 · x13, 9 x63 = x53 + x50 · x51, 13 y1 = x81,
2 x02 = x2, 6 x33 = x23 + x22, 10 x71 = x61 + x63, 14 y2 = x80,
3 x03 = x3, 7 x42 = x32 + x31, 11 x82 = x72 + x70 · x71, 15 y3 = x82.

The quantum implementation corresponds to the above operations is shown in
Fig. 3.

The experimental results reveal that optimal solutions can be obtained for all
tested 4-bit S-boxes. The details are shown in Table 4, where GC, 2qC and QC represent
the criterion gate count, two-qubit cost, and quantum cost, respectively. Additionally,
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Fig. 3 NCT-based circuit of the GIFT S-box.

Table 4 also provides cryptographic properties of each S-box. Notably, apart from the
GIFT S-box, all S-boxes share the same properties listed in the table except BIBO.

Table 4 Implementations of the 4-bit S-boxes

S-box U L UFreq LFreq BIBODDT BIBOLAT GC 2qC QC

PRØST 4 8 24 36 5 8 4 20 20

PICCOLO 4 8 24 36 4 7 9 20 25

SKINNY 4 8 24 36 4 7 10 20 26

PRESENT 4 8 24 36 0 8 11 25 27

RECTANGLE 4 8 24 36 2 2 10 23 26

LAC 4 8 24 36 4 6 8 22 24

GIFT 6 8 2 36 1 3 8 22 24

Moreover, we apply the tool LIGHTER-R to the S-boxes listed in Table 4, and the
results reveal that, for each criterion, implementations of those S-boxes returned by
LIGHTER-R are also optimal.

In general, the search for the optimal solution based on the SAT solver is considered
to be time-consuming. However, in our experiments, the search procedures of all the
models constructed based on various criteria consume only a few seconds for most
S-boxes (less than 0.1s for the PRØST S-box).
Application to 5-bit S-boxes Constructing an optimal implementation of a 5-bit
S-box is often considered tricky due to the high complexity. For this reason, the tool
LIGHTER-R can only be used to construct NCT-based circuits for small-scale S-boxes,
such as the 3-/4-bit ones. Although the solver may fail to output any valid solutions
within a reasonable time for a 5-bit S-box, with an appropriate value of the criterion
assigned to the model, the solver responds quickly. As a consequence, Algorithm 1, as
well as that combined with Eqs. (19) - (21), can be used to provide a lower bound of
a certain criterion for implementing a 5-bit S-box. In this case, we take the criterion
gate count as an example and take the 5-bit S-boxes of ASCON [41] and KECCAK [42]
as the inputs of the models, the results are shown in Table 5, where GC represents the
gate count.

Table 5 Implementations of the 5-bit S-boxes

S-box U L UFreq LFreq BIBODDT BIBOLAT GC

ASCON 8 16 20 40 0 0 >12

KECCAK 8 16 20 40 5 5 >9
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5.2 Constructing S-box Implementations based on Affine
Equivalence

Both the look-up table of an S-box and a representation of an affine equivalence class
can be taken as the input of Algorithm 2, in which Algorithm 1 is embedded. Recall
that the models for criteria gate count, two-qubit cost, and quantum cost can all be
constructed based on Algorithm 1. In this section, the criterion gate count will be
taken as an example to exhibit the performance of the proposed models. We initialize
the number of allocated gates K to 1 and construct models. If the SAT solver does
not output a solution for a long time, we increase the value of K by 1 and repeat the
procedure until the solver outputs a solution.
Taking S-boxes as Inputs As did in Sect. 5.1, we take the S-boxes adopted in [34–
40] as the inputs of the models. The results are listed in Table 6, where GC represents
the criterion gate count. Notably, no restrictions of the fixed point are imposed on the
models for Table 6. For the case that the fixed point is not allowed, the results are
listed in Table 7.

Table 6 Results based on affine equivalence

S-box GC S-box in the affine equivalence class GC

PRØST 4 the PRØST S-box 4⋆

PICCOLO 9 0, 8, 4, 14, 1, 15, 5, 9, 2, 10, 7, 11, 13, 3, 12, 6 4⋆

SKINNY 10 0, 8, 1, 7, 2, 13, 3, 10, 4, 12, 15, 9, 14, 11, 5, 6 4⋆

PRESENT 11 0, 1, 8, 7, 4, 13, 12, 11, 2, 3, 9, 14, 10, 5, 15, 6 5†

RECTANGLE 10 0, 8, 2, 14, 1, 15, 9, 3, 12, 7, 10, 5, 13, 4, 6, 11 5†

LAC 8 0, 1, 8, 9, 4, 13, 14, 11, 2, 15, 7, 10, 6, 3, 5, 12 4⋆

GIFT 8 0, 8, 1, 15, 2, 14, 3, 9, 4, 13, 10, 5, 7, 12, 11, 6 5†

⋆ Optimal.
† No solution is returned in 1 day if the gate count is reduced by 1.

Table 7 Results based on affine equivalence with no fixed point is allowed

S-box GC S-box in the affine equivalence class GC

PRØST 4 2, 0, 15, 8, 3, 1, 10, 13, 14, 4, 5, 12, 9, 7, 6, 11 5†

PICCOLO 9 8, 12, 7, 2, 0, 4, 10, 13, 11, 3, 6, 15, 1, 14, 9, 5 5⋆

SKINNY 10 2, 7, 6, 13, 15, 10, 12, 3, 0, 1, 4, 14, 8, 9, 11, 5 5†

PRESENT 11 8, 12, 7, 2, 0, 4, 10, 13, 11, 3, 6, 15, 1, 14, 9, 5 6†

RECTANGLE 10 4, 0, 5, 8, 6, 3, 10, 14, 13, 1, 11, 7, 15, 2, 12, 9 6†

LAC 8 8, 10, 0, 13, 9, 11, 7, 2, 12, 6, 4, 3, 15, 5, 1, 14 5†

GIFT 8 2, 3, 4, 9, 0, 1, 7, 14, 10, 15, 12, 5, 11, 6, 8, 13 6†

⋆ Optimal.
† No solution is returned in 1 day if the gate count is reduced by 1.

From Table 6, without the restrictions on the fixed point, there is always an S-box
in the class that can be implemented with only 4 or 5 gates. Compared to the optimal
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circuits designed for the given S-boxes (listed in the second column of Table 6), except
that for the PRØST S-box, the gate consumption of each new one is reduced by half
or more. For the case that no fixed point is allowed, it can be observed from Table 7
that one more gate is required by each S-box.
Taking Affine Equivalence Classes as Inputs For 4-bit S-boxes, there are 302
affine equivalence classes. As pointed out in [43], 16 classes are optimal (listed in
Table C1 in Appendix C). Among those classes, G0, G1, G2, G4, G5, G7, G8 and G13

are even, that is, they can be implemented without introducing additional ancilla
qubits. The S-boxes in PRØST, PICCOLO, SKINNY, and LAC are in G8. From Table 6,
the implementation of the PRØST S-box is optimal in the class. As a result, there
is no need to deal with the class G8. Similarly, both the S-boxes of PRESENT and
RECTANGLE are in G1, which can also be ignored, as one can deduce from Table 6 that
the implementation returned by our model consumes at least 5 gates for the S-boxes
in G1. The optimal implementations with criterion gate count of the remaining classes
returned by our models are shown in Table 8. Besides, we also construct models for
the case that the fixed point is not allowed, the results are listed in Table 9.

Table 8 Results based on affine equivalence classes

S-box representation GC

G0 0, 4, 2, 6, 1, 15, 7, 12, 8, 14, 13, 11, 9, 5, 10, 3 4⋆

G1 0, 8, 2, 14, 1, 15, 9, 3, 12, 7, 10, 5, 13, 4, 6, 11 5†

G2 0, 1, 8, 14, 4, 7, 12, 9, 2, 3, 11, 5, 15, 13, 6, 10 4⋆

G4 0, 9, 2, 10, 1, 8, 7, 6, 4, 15, 14, 5, 13, 11, 12, 3 7†

G5 0, 4, 2, 15, 1, 11, 9, 14, 8, 6, 10, 5, 13, 12, 7, 3 7†

G7 0, 13, 1, 9, 2, 10, 7, 12, 4, 8, 15, 14, 11, 6, 5, 3 7†

G8 the PRØST S-box 4⋆

G13 0, 4, 2, 10, 8, 12, 13, 7, 1, 15, 3, 5, 11, 14, 6, 9 7†

⋆ Optimal.
† No solution is returned in 1 day if the gate count is reduced
by 1.

The results listed in Tables 8 - 9 show that NCT-based circuits of the S-boxes in
G0, G1, G2, G4, G5, G7, G8, G13 consume at least 4 gates if no restrictions are imposed
on the fixed point. However, with the restriction that the fixed point is not allowed,
one more gate is required by each S-box.

5.3 Combining Implementations and Cryptographic
Properties of S-boxes

Similar to Sect. 5.2, the criterion gate count will be taken as an example in this section
to exhibit the performance of the proposed models.
Application to 4-bit S-boxes The optimal differential uniformity and linearity of
4-bit S-boxes is 4 and 8 respectively [43]. Therefore, we set U = 4 and L = 8 as the
inputs of Algorithm 4 and apply the model to search for S-boxes with fixed points. In
this case, the solver returns 3456 solutions until K = 4. To construct more S-boxes
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Table 9 Results based on affine equivalence classes with no
fixed point is allowed

S-box representation GC

G0 8, 11, 12, 5, 15, 6, 10, 9, 0, 1, 4, 14, 2, 3, 7, 13 5⋆

G1 8, 12, 7, 2, 0, 4, 10, 13, 11, 3, 6, 15, 1, 14, 9, 5 6†

G2 4, 0, 5, 11, 6, 3, 7, 10, 12, 8, 15, 1, 9, 14, 2, 13 5⋆

G4 1, 9, 15, 10, 5, 12, 11, 13, 0, 8, 2, 14, 7, 6, 3, 4 7†

G5 2, 10, 0, 5, 3, 13, 1, 14, 6, 12, 11, 8, 4, 9, 15, 7 8†

G7 4, 6, 15, 14, 5, 9, 10, 13, 0, 3, 8, 12, 11, 1, 2, 7 8†

G8 2, 0, 15, 8, 3, 1, 10, 13, 14, 4, 5, 12, 9, 7, 6, 11 5†

G13 1, 0, 9, 11, 7, 8, 3, 12, 13, 4, 5, 14, 6, 15, 10, 2 8†

⋆ Optimal.
† No solution is returned in 1 day if the gate count is reduced
by 1.

with various cryptographic properties, we then construct three kinds of models: the
first is constructed by fixing the differential uniformity, linearity and frequency as that
of the GIFT S-box; the second is constructed as did in [14] by restricting that U = 4,
L = 8, UFreq ≤ 15 and LFreq ≤ 30; the last takes all the properties into consideration.
Models for the case that the fixed point is not allowed can be constructed similarly.
The application results of the models are listed in Table 103, where ’-’ indicates no
constraints on the current properties.

Table 10 Application to 4-bit S-boxes

U L UFreq LFreq BIBODDT BIBOLAT GC S-box

With Fixed Points

4 8 - - - - 4⋆ {3456}
6 8 2 36 - - 5⋆

√

4 8 15 30 - - 6†
√

4 8 24 36 4 6 4⋆
√

Without Fixed Points

4 8 - - - - 5⋆
√

4 8 15 30 - - 7⋆
√

4 8 24 36 4 4 7†
√

⋆ Optimal.
† No solution is returned in 1 day if the gate count is reduced by 1.

With the restriction that the fixed point is allowed, all the solutions can be returned
in a reasonable time, which gives rise to the following observation.
Observation 1. All the 3456 optimal S-boxes with fixed points can be implemented
with only 4 NCT gates. Besides, those S-boxes have at least one fixed point S[0] = 0.

Note that when constructing the above models, we only take the total number
of allocated gates (i.e., K) as the input of the algorithms, no additional constraints

3Appendix D also presents some S-boxes obtained by assigning various values to different properties.
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are placed on gates. In fact, we can also limit the Toffoli gate count allocated for the
models (by Eq. (21)), from which the Toffoli-Depth of the circuit can also be derived.
Combined with our experiments with restriction on the Toffoli gate consumption and
the results listed in Table 10, the following observation is presented.
Observation 2. The NCT-based circuits of the optimal 4-bit S-boxes with/without
fixed points consume at least 4 Toffoli gates, which also indicates that, unless introduc-
ing ancilla qubits, one cannot implement a 4-bit optimal S-box within a Toffoli-Depth
of 3.
Application to 5-bit S-boxes Although the solver cannot find optimal solutions
for existing 5-bit S-boxes in a reasonable time. However, using the proposed models,
it is possible to construct optimized implementations of S-boxes that are equivalent or
superior to existing ones in cryptographic properties. As a consequence, similar to the
construction of the models for 4-bit S-boxes, we construct different models for 5-bit
S-boxes by fixing various properties. Note that when considering all the properties, we
set the cryptographic properties input to the models the same as that of the KECCAK

S-box. The application results of those models are listed in Table 114.

Table 11 Application to 5-bit S-boxes

U L UFreq LFreq BIBODDT BIBOLAT GC S-box

With Fixed Points

8 16 - - - - 5
√

2 8 - - - - [5,9] ×
8 16 10 30 - - 6

√

8 16 20 40 5 5 5
√

Without Fixed Points

8 16 - - - - 6
√

8 16 10 30 - - 7
√

8 16 20 40 5 5 6
√

Compared with the result listed in Table 5 that the gate consumption of the KECCAK
S-box implementation is more than 9, the application of our proposed models reveals
that we can construct S-boxes with the same properties as the KECCAK S-box but
consume only 5 gates.

6 Conclusion

In this work, the optimization of the NCT-based circuits for S-boxes based on the
SAT solver is investigated. To this end, we proposed encoding methods for the NCT-
based circuits and some important cryptographic properties of S-boxes. Based on the
proposed methods, we constructed various STP models to identify the optimal imple-
mentation schemes of S-boxes with different criteria, to further investigate optimizing
the S-box implementations based on affine equivalence, and to search for S-boxes that
match the given restrictions on the implementation and properties. Since the inputs of

4Appendix D also presents some S-boxes obtained by assigning various values to different properties.
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the models proposed in this work are tweakable, apart from applications of the mod-
els to search for S-boxes that match given criterion configurations, one can also apply
the models with restrictions placed on the number of each logic gate and the Toffoli-
depth. It should be noted that the above functions are not currently available in the
public tools for constructing optimized NCT-based circuits for S-boxes.

For the purpose of saving qubits, only the implementations of even permutations
are considered in this work. If more ancilla qubits are allowed, NCT-based circuits
for odd permutations can be designed. Besides, it is widely believed that applying
ancilla qubits may help to optimize the performance of S-box circuits in criteria such
as Depth. We leave the solution of the above problems based on the SAT solver for the
case that more ancilla qubits are available as possible direction for future research.

Appendix A The Model for LAT-related Properties

The calculation of LAT is similar to that of DDT, with the difference that neg-
ative values may appear in LAT. However, the CVC language does not support
the representation of negative numbers. Therefore, we manually take the absolute
value of each entry in LAT, which is called ABLAT. From Definition 2, LAT[a, b] =
LATT[a, b]− 2n−1, where a, b ∈ Fn

2 and LATT[a, b] = #{x ∈ Fm
2 |a · x⊕ b · S(x) = 0}.

If LATT[a, b] ≥ 2n−1, then 0 ≤ LAT[a, b] ≤ 2n−1, and ABLAT[a, b] = LAT[a, b].
However, if LATT[a, b] ≤ 2n−1, carry out borrowing will occur, as illustrated in
Example 3. In this case, LAT = LATT[a, b] + 2n − 2n−1 = LATT[a, b] + 2n−1,
2n−1 ≤ LAT[a, b] ≤ 2n, the absolute value is given by ABLAT[a, b] = 2n − LAT[a, b].
The calculation of frequency and the calculation of BIBO in LAT are similar to those
in DDT, and we have omitted this process in Algorithm 5.

Appendix B Look-up Tables of the Related S-boxes

PRESENT: [12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2]
GIFT: [1, 10, 4, 12, 6, 15, 3, 9, 2, 13, 11, 7, 5, 0, 8, 14]
PICCOLO: [14, 4, 11, 2, 3, 8, 0, 9, 1, 10, 7, 15, 6, 12, 5, 13]
LAC: [14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5]
PRØST: [0, 4, 8, 15, 1, 5, 14, 9, 2, 7, 10, 12, 11, 13, 6, 3]
RECTANGLE: [6, 5, 12, 10, 1, 14, 7, 9, 11, 0, 3, 13, 8, 15, 4, 2]
SKINNY: [12, 6, 9, 0, 1, 10, 2, 11, 3, 8, 5, 13, 4, 14, 7, 15] 22, 12, 11, 19]
ASCON: [4, 11, 31, 20, 26, 21, 9, 2, 27, 5, 8, 18, 29, 3, 6, 28, 30, 19, 7, 14, 0, 13, 17, 24,
16, 12, 1, 25, 22, 10, 15, 23]
KECCAK: [0, 5, 10, 11, 20, 17, 22, 23, 9, 12, 3, 2, 13, 8, 15, 14, 18, 21, 24, 27, 6, 1, 4, 7,
26, 29, 16, 19, 30, 25, 28, 31]
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Algorithm 5 Properties Related to LAT

Require: Linearity L
Ensure: STPModel(L)
1: for a = 0 to 2n − 1 do
2: for b = 0 to 2n − 1 do
3: for x = 0 to 2n − 1 do
4: if a · x = b · S[x] then
5: IsTrueLAT[a, b, x] = 1;
6: else
7: IsTrueLAT[a, b, x] = 0;
8: end if
9: end for

10: LAT[a, b] = LATT[a, b]− 2n−1; ▷ Definition of LAT
11: LATT[a, b] = IsTrueLAT[a, b, 0] + · · ·+ IsTrueLAT[a, b, 2n−1];
12: if LAT[a, b] ≥ 2n−1 then
13: ABLAT[a, b] = 2n − LAT[a, b];
14: else
15: ABLAT[a, b] = LAT[a, b]; ▷ Definition of ABLAT
16: end if
17: ABLAT[a, b] ≤ L; ▷ Definition of linearity
18: end for
19: end for

Table C1 Affine equivalence classes

Equivalence class representative

G0 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 12, 9, 3, 14, 10, 5

G1 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 5, 9, 10, 12

G2 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 10, 12, 5, 9

G3 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9

G4 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 9, 11, 10, 14, 5, 3

G5 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 3, 5

G6 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 5, 3

G7 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 14, 11, 10, 9, 3, 5

G8 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 9, 5, 10, 11, 3, 12

G9 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 3, 5, 9, 10, 12

G10 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 5, 10, 9, 3, 12

G11 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 5, 9, 12, 3

G12 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 9, 3, 12, 5

G13 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 9, 5, 11, 10, 3

G14 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 3, 9, 5, 10

G15 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5
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Appendix C Affine Equivalence Classes with
U = 4 and L = 8

Appendix D Results of the S-boxes with Various
Restrictions on Properties

Table D2 S-boxes obtained by placing various restraints on properties

U L UFreq LFreq BIBODDT BIBOLAT GC S-box

4 8 24 36 4 6 4 S1

4 8 15 30 9 12 6 S2

6 8 2 36 8 8 5 S3

4 8 24 36 4 7 5 S4

4 8 24 36 4 4 7 S5

4 8 15 30 9 12 7 S6

8 16 20 40 5 5 5 S7

8 16 7 28 8 10 6 S8

8 16 20 40 5 5 6 S9

8 16 8 23 8 14 7 S10

S1: [0, 8, 4, 14, 2, 10, 7, 13, 1, 15, 5, 9, 12, 3, 11, 6]
S2: [0, 4, 1, 5, 8, 11, 3, 9, 2, 14, 15, 6, 10, 7, 12, 13]
S3: [0, 8, 4, 7, 1, 11, 13, 12, 2, 6, 5, 10, 3, 15, 14, 9]
S4: [1, 0, 9, 8, 3, 10, 12, 15, 5, 14, 6, 13, 7, 4, 11, 2]
S5: [4, 7, 0, 9, 6, 12, 8, 10, 13, 2, 11, 14, 15, 1, 3, 5]
S6: [4, 5, 0, 1, 12, 3, 10, 8, 6, 15, 7, 13, 14, 11, 9, 2]
S7: [0, 8, 16, 24, 4, 12, 21, 29, 2, 31, 23, 10, 6, 26, 18, 14, 1, 22, 17, 11, 13, 27, 28, 7,
3, 9, 30, 25, 15, 5, 19, 20]
S8: [0, 1, 16, 31, 4, 13, 20, 22, 8, 9, 10, 21, 12, 5, 14, 28, 2, 3, 18, 29, 15, 6, 19, 17, 26,
23, 24, 11, 27, 30, 25, 7]
S9: [1, 5, 0, 6, 11, 15, 2, 4, 9, 13, 8, 26, 23, 19, 30, 12, 17, 22, 16, 21, 27, 20, 18, 31,
29, 14, 28, 25, 3, 24, 10, 7]
S10: [2, 6, 10, 12, 7, 3, 30, 29, 0, 4, 8, 14, 1, 5, 25, 26, 27, 28, 19, 31, 13, 11, 21, 15, 16,
23, 24, 20, 17, 22, 9, 18]
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