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Abstract. Zero-Knowledge Proof (ZKP) technology marks a revolu-
tionary advancement in the field of cryptography, enabling the verifi-
cation of certain information ownership without revealing any specific
details. This technology, with its paradoxical yet powerful characteris-
tics, provides a solid foundation for a wide range of applications, espe-
cially in enhancing the privacy and security of blockchain technology
and other cryptographic systems. As ZKP technology increasingly be-
comes a part of the blockchain infrastructure, its importance for security
and completeness becomes more pronounced. However, the complexity
of ZKP implementation and the rapid iteration of the technology intro-
duce various vulnerabilities, challenging the privacy and security it aims
to offer.

This study focuses on the completeness, soundness, and zero-knowledge
properties of ZKP to meticulously classify existing vulnerabilities and
explores multiple categories of vulnerabilities, including completeness
issues, soundness problems, information leakage, and non-standardized
cryptographic implementations. Furthermore, we propose a set of de-
fense strategies that include a rigorous security audit process and a ro-
bust distributed network security ecosystem. This audit strategy em-
ploys a divide-and-conquer approach, segmenting the project into dif-
ferent levels, from the application layer to the platform-nature infras-
tructure layer, using threat modelling, line-by-line audit, and internal
cross-review, among other means, aimed at comprehensively identifying
vulnerabilities in ZKP circuits, revealing design flaws in ZKP applica-
tions, and accurately identifying inaccuracies in the integration process
of ZKP primitives.

Keywords: Zero-Knowledge Proofs (ZKP) · Cryptographic Security ·
Vulnerability Analysis · Defense Mechanisms · Audit Tools and Method-
ologies.
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1 Introduction

ZKP is a cryptographic protocol that allows a prover to demonstrate the truth
of a statement to a verifier without revealing any additional information beyond
the validity of the statement itself. This unique attribute makes ZKP a powerful
tool for enhancing privacy and security across various applications[1–9].

The applications of ZKP are wide-ranging and influential[10]. In blockchain
technology, ZKP is used to protect the privacy of transactions while ensuring the
completeness of the ledger. Moreover, it finds application in identity verification
processes[11], allowing for the authentication of individual credentials without
disclosing specific information[12]. Other use cases for ZKP include privacy-
preserving voting systems, verifying the validity of rollups on the base Layer 1,
and compressing blockchain states[13].

By exploring the background and key concepts of ZKP, we can appreciate
its significance and the diversity of its applications. Nevertheless, the complex-
ity of ZKP implementations introduces a variety of vulnerabilities[14–16]. The
following sections of this paper will delve into these vulnerabilities and explore
the ongoing necessity for their analysis and audit. This is crucial for maximizing
the potential of ZKP and ensuring the privacy[17] and security[18] it aims to
provide.

2 Vulnerabilities in ZKP

The unique properties of ZKP have become the cornerstone for maintaining pri-
vacy in various cryptographic applications, fundamentally relying on its three
main attributes: completeness, soundness, and the zero-knowledge aspect. Com-
pleteness ensures that true statements can be reliably proven; soundness guar-
antees that false statements are not mistakenly recognized as true[19–22]; and
the most crucial, the zero-knowledge property, ensures that no additional infor-
mation beyond the truthfulness of the statement is revealed during the proof
process. These attributes together make ZKP a key tool for facilitating secure
and confidential digital interactions, especially in blockchain technology, where
they achieve a balance between transparency and confidentiality.

However, the characteristics of ZKP also mean it often plays a critical role
in key aspects of applications, such as protecting user privacy or verifying cru-
cial proofs of financial assets. If any vulnerabilities exist and are maliciously
exploited, this could severely threaten the privacy and security protections ZKP
aims to provide. In the context of blockchain, these vulnerabilities not only
threaten the network’s completeness and security but can also lead to direct
financial losses and undermine trust in decentralized systems. Addressing these
vulnerabilities requires a deep understanding of ZKP’s theoretical framework
and practical applications, a task made particularly complex by the sophisti-
cated mathematical structures underlying ZKP. This complexity highlights the
necessity for ongoing and careful scrutiny and effective mitigation strategies to
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prevent potential security vulnerabilities[23]. Therefore, to facilitate a more sys-
tematic analysis, this study classifies the vulnerabilities in ZKP based on the
three core attributes of zero-knowledge proofs.

2.1 Completeness Issues

Over-constrained Circuits. Over-constrained circuits refer to the addition of
extra constraints on a circuit that is already normally constrained, leading to the
circuit’s inability to successfully prove or verify. This issue may stem from the
mechanisms of the compilers themselves. Taking circom and halo2 as examples,
they establish constraints through assertions while compiling circuits. However,
during the optimization process of compiling circuits, the compiler might in-
troduce additional assertions, causing the inputs and outputs not to satisfy the
constraints at the time of proving, thereby leading to errors. Additionally, devel-
opers adding too many or redundant constraints when designing circuits could
also trigger such issues.

In the early versions of the Poseidon hash circuit within Scroll’s zkEVM,
there is a section of code that uses the variable "mpt_only" to control the
hash processing mode. In this circuit, specific lines start in a custom way and
are subject to zero-padding restrictions. When "mpt_only = true", it means
there is one custom line and two field elements need to be hashed; conversely, it
implies there are two custom lines. This represents the variability in the length
of variable inputs.

config.s_custom.enable(region, 1)?;
if self.mpt_only {

return Ok(1);
}

Based on the return value in the code, when self.mpt_only is set to true, the
circuit erroneously marks the second line as custom. This means that the line,
which should have been used for hash input, is now overly constrained to zero.

Therefore, any attempt to hash with non-zero input will fail because the
excessive constraint on the second line contradicts its original design purpose,
conflicting with its intended function to accommodate hash inputs.

2.2 Soundness Issues

Under-constrained Circuits. The vulnerabilities related to under-constrained
circuits refer to instances during the design or programming implementation of
circuits where certain constraints are either not set or incompletely set. This can
result in the circuit exhibiting uncertain behavior or producing unintended re-
sults. In specific cases, such under-constrained circuits can lead to serious conse-
quences. For instance, in the incremental merkle tree implemented by the ZK-kit
smart contracts, there’s a lack of range constraints on the values of leaf nodes,
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which allows malicious attackers to exploit this vulnerability to generate ille-
gitimate zero-knowledge proofs, thereby facilitating the repeated extraction of
funds.

A typical example can be found in "Missing Bit Length Check" in Dark
Forest v0.3:

template RangeProof(bits, max_abs_value) {
signal input in;
component lowerBound = LessThan(bits);
component upperBound = LessThan(bits);
. . .

}

In this version, the RangeProof template implemented by Dark Forest di-
rectly invokes the LessThan template from the circomlib library to compare the
size of input data. However, LessThan does not set actual constraints on the bit
length of the input data, resulting in the inability to limit the bit length of inputs
via the max_abs_value parameter when calling RangeProof. Consequently, at-
tackers can input a max_abs_value and an in value that exceed the expected
maximum number of bits, thus constructing a legitimate proof that can pass the
RangeProof verification.

Nondeterministic Circuits. Nondeterministic circuits vulnerabilities are a type
of under-constrained circuits vulnerability, specifically referring to those situa-
tions where the lack of explicit constraints allows the circuit to produce multiple
valid proofs for the same output. For example, in the Tornado Cash system,
to prevent the double-spending of the same Note, users need to generate and
reveal a nullifier when spending a Note commitment. If a user attempts to use
the same Note commitment a second time, they must reveal the same nullifier,
an action that would be revoked by the smart contract. However, if the zero-
knowledge proof circuit has nondeterministic vulnerabilities, malicious attackers
could exploit this for double-spending attacks.

In the vulnerability "Circom-Pairing, Missing Output Check Constraint,"
the Circom-Pairing circuit, when dealing with integers that require the use of
more than 254-bit prime fields, calls the circom big-int library. To ensure the
accuracy of the computations, the Circom-Pairing circuit would typically use
the BigLessThan circuit to ensure all numbers are less than a certain upper
limit.

template CoreVerifyPubkeyG1(n, k) {
...
var q[50] = get_BLS12_381_prime(n, k);
component lt[10];
// check all k input arrays are correctly formatted bigints < q
// BigLessThan calls Num2Bits
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for(var i=0; i<10; i++) {

lt[i] = BigLessThan(n, k);

for(var idx=0; idx<k; idx++) {

lt[i].b[idx] <== q[idx];

}

}

for(var idx=0; idx<k; idx++) {

lt[0].a[idx] <== pubkey[0][idx];

lt[1].a[idx] <== pubkey[1][idx];

}

}

In the CoreVerifyPubkeyG1 circuit, although BigLessThan was called mul-
tiple times to ensure pubkey < q, there were no constraints on the output of
BigLessThan. This resulted in proofs where pubkey >= q and BigLessThan
correctly outputted a result still being successfully verified and accepted.

Mismatching Bit Lengths. The mismatching bit lengths vulnerability refers to
the failure to properly constrain the bit length of signals within a circuit, leading
to circuit outputs that are inconsistent with expectations. This type of vulnera-
bility is a common form of under-constrained circuits vulnerability, particularly
noticeable when building circuits with circom.

Attackers can deliberately provide input parameters with mismatching bit
lengths to bypass preset verification restrictions or compromise system security,
thereby causing information leakage, verification errors, or other forms of security
issues. Specifically, when the bit length of input parameters does not match
what the circuit expects, the verification process may fail. In such cases, zero-
knowledge proofs may become ineffective, preventing the system from accurately
verifying the required evidence and posing a serious threat to the security and
reliability of the entire protocol.

Take, for example, the LessThan circuit in circomlib. It accepts two input
parameters, in[0] and in[1], and uses the parameter n to limit the maximum bit
length of the inputs. If in[0] < in[1], LessThan outputs 1; otherwise, it outputs
0.

template LessThan(n) {

assert(n <= 252);

signal input in[2];

signal output out;

component n2b = Num2Bits(n+1);

n2b.in <== in[0]+ (1«n) - in[1];

out <== 1-n2b.out[n];

}
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LessThan calls the Num2Bits circuit to convert the inputs to bit form but
does not set specific constraints on the bit length of the input to Num2Bits. As a
result, the circuit effectively compares the lower n bits of in[0] to in[1]. Therefore,
even if the length of in[0] exceeds n and is greater than in[1], LessThan might
still output 1.

Unused Public Inputs Optimized Out. In Circom 1.0, there was a scenario where
many circuits introduced a variable as a public input without imposing any
constraints on it. These unconstrained public inputs could serve as critical infor-
mation during the proof verification. However, in the compiler for Circom 2.0, if
these public inputs are found to be irrelevant to any constraints, the optimizer
will remove them from the circuit.

When public inputs of a circuit are used for data storage or transmission
and are removed due to the intervention of the optimizer, it may lead to data
loss, causing errors in program logic or issues with data completeness. More
seriously, if the public inputs in a circuit are not properly constrained, malicious
attackers could exploit this vulnerability to forge proofs, threatening the security
of zero-knowledge proof applications.

Take the zero-knowledge proof application Semaphore as an example, which
allows users to send messages while remaining anonymous. Semaphore hashes
the messages sent by users and then uses the resulting hash value as one of the
public inputs for the proof.

template Message(){
signal input message_plaintext;
signal input message_hash; // public
...

}

According to the example code, if Semaphore’s developers do not set any
constraints on these variables, malicious attackers could tamper with the user
information hash value in the public inputs to obtain a valid proof. Proofs mod-
ified in this way could be used for replay attacks, allowing attackers to forge any
message.

Assigned but not Constrained. In circom and halo2, the assignment and con-
straint of signals within a circuit are designed to be conducted separately, aiming
to provide developers with a convenient means of signal assignment. However,
in practice, many circuits neglect to apply the necessary constraints after com-
pleting signal assignment, leading to the emergence of the "Assigned but not
Constrained" vulnerability.

When this type of vulnerability exists in the source code of circom and halo2,
malicious attackers could fork the source code and then modify the values of
related assignment expressions. This alteration could change the values of other
signals to bypass the circuit’s constraints, forging a legitimate proof.



Zero-Knowledge Proof Vulnerability Analysis and Security Auditing 7

Take the IsZero circuit in circomlib as an example. This circuit determines
if input in is equal to 0 by checking if the inverse inv of in exists.

template IsZero() {

signal input in;

signal output out;

signal inv;

inv <– in!=0 ? 1/in : 0;

out <== -in*inv +1;

in*out === 0;

}

Due to circom’s syntax limitations, it’s not possible to directly use constraints
to determine whether the inverse (“inv”) of “in” exists. Therefore, it is necessary
first to calculate the “inv” of “in” through an assignment, then use it to construct
constraints on “in” and “out” to determine if “in” is 0.

Similarly, in the PSE zkEVM using halo2, for the handling of the SHL and
SHR opcode circuits, although the following code correctly assigns values to
inputs “shf0” and “shift”, it lacks the necessary constraint to force “shf0” to be
set to the first byte of “shift”.

let shf0 = pop1.to_le_bytes()[0];

...

self.shift.assign(region, offset, Some(pop1.to_le_bytes()))?;

self.shf0.assign(region, offset, Value::known(u64::from(shf0).into()))?;

2.3 Information Leakage

Trusted Setup Leak. Trusted Setup Leak refers to the issue in cryptographic
protocols based on zero-knowledge proofs where the parameter generation pro-
cess might expose sensitive information, thereby compromising the security of
the protocol. If any participant involved in generating the parameters retains
some secret values, they could potentially use this information to forge valid
proofs, deceiving other participants or stealing their assets.

Take Zcash as an example, a cryptocurrency that relies on zk-SNARKs tech-
nology to protect user privacy. The implementation of zk-SNARKs requires a
trusted setup process to generate crucial parameters, and the confidentiality of
these parameters is essential; otherwise, attackers could exploit them to forge
valid proofs. Although there are concerns that parameters might be leaked during
Zcash’s trusted setup process, giving attackers an opportunity, there have been
no reports to date of this vulnerability being successfully exploited for attacks.
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2.4 Arithmetic Over/Under Flows

In the field of zero-knowledge cryptography, modular arithmetic operations are
common, typically performed over scalar fields. However, due to the limitations of
finite field orders, failing to properly handle arithmetic overflows and underflows
can lead to issues. For example, in circom, all integers are established on a scalar
field with the following order:

p=218882428718392752222464057452572750885

48364400416034343698204186575808495617

In zero-knowledge proof applications built using circom, ignoring the order of
the field or not correctly handling overflows and underflows can result in certain
constraint statements producing incorrect results, such as:

(0-1)===218882428718392752222464057452572750885

48364400416034343698204186575808495616;

(218882428718392752222464057452572750885

48364400416034343698204186575808495616+1)===0;

If arithmetic overflows and underflows are not properly handled, this may
cause errors in the verification process or be exploited by malicious attackers to
bypass intended verification restrictions.

A typical "Missing Smart Contract Range Check" vulnerability was discov-
ered in the Semaphore application. Semaphore is a decentralized application
built on Ethereum that allows users to prove they are members of a group us-
ing zero-knowledge proofs without revealing their specific identity. Given that
Solidity’s uint256 type can contain values exceeding the SNARK scalar field,
Semaphore stipulates that if an input group ID exceeds the order of the SNARK
scalar field, the smart contract’s verification will fail. The logic code is as follows:

require(input[i] < snark_scalar_field, "verifier-gte-snark-scalar-field");

However, when a new group is created, any valid uint256 type number can
be input as the group ID, leading to a scenario where if the group ID exceeds
the range of the SNARK scalar field at creation, the group member’s identity
verification will never pass.

Therefore, to ensure the reliability and security of zero-knowledge proof ap-
plications, it is crucial to thoroughly consider and address arithmetic overflows
and underflows during design and implementation, to prevent related vulnera-
bilities.
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2.5 Unstandardized cryptographic implementation

Forging of Zero Knowledge Proofs. If a zero-knowledge proof protocol has
security flaws, then a malicious prover could construct forged proofs that pass
verification. These forged proofs can be used to "prove" any claim the prover
wishes to assert, a type of security vulnerability that the TrailOfBits team has
dubbed the “Frozen Heart” vulnerability.

The “Frozen Heart” vulnerability is a serious security flaw that can compro-
mise the correctness of various zero-knowledge proof systems, including PlonK
and Bulletproofs. Once a zero-knowledge proof system is affected by such a
vulnerability, safeguards for user privacy, data completeness, and transaction
security, among others, can become ineffective.

Many zero-knowledge proof protocols adopt the Fiat-Shamir transformation
for non-interactive verification, which fundamentally relies on the so-called “ran-
dom oracle model.” However, as TrailOfBits points out, the implementation of
the Fiat-Shamir transformation generally faces execution issues, mainly due to
a lack of specific guidance for different protocol implementations. Typically, the
design papers of protocols do not include all the critical details needed in coding
practices in detail, leading to flaws and vulnerabilities during implementation.
These vulnerabilities provide attackers with opportunities to successfully forge
proofs, thereby undermining the correctness and security of zero-knowledge proof
systems. To address this challenge, TrailOfBits recommends providing more de-
tailed implementation guidance to assist developers in accurately implementing
the Fiat-Shamir transformation, thereby avoiding potential security risks.

Bad Randomness. The essence of zero-knowledge proofs lies in the ability
to verify a party’s knowledge or attributes without revealing any additional in-
formation, where randomness plays a crucial role. Once a protocol employs an
inappropriate source of randomness, it may allow attackers to predict or infer
the generated random numbers, rendering the interaction between the prover
and verifier meaningless. If the proof system used by the prover has defects in
randomness, then sensitive information may be leaked. Similarly, if the random
challenges issued by the verifier are singular or predictable, attackers could pre-
pare false proofs in advance to deceive the verifier.

Take the Schnorr signature scheme as an example, a signing mechanism based
on the Discrete Logarithm Problem, often used as an example of interactive and
non-interactive zero-knowledge proofs. In this scheme, the prover needs to choose
random blinding factors to generate a proof or signature.

fn schnorr_sign(message: &[u8], private_key: &[u8]) -> ([u8; 32], [u8; 32]) {
let k = generate_random(); // Secure random blinding factor or not se-

cure
let r = calculate_r(&k); // Depends on k
let s = calculate_s(&r, message, private_key); // Signature calculation
(r, s);
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}

According to the pseudocode above, if the blinding factors used by the prover
in generating a signature can be predicted by attackers, or if the same blinding
factors are reused across multiple signing operations, or if the blinding factors
for one signature are arithmetically operated on or transformed to obtain the
blinding factors for the next signature, it could lead to the leakage of secret
information. Even if only a few bits of the blinding factors are leaked, attackers
might deduce the complete blinding factors through guessing and brute-force
methods, thereby revealing sensitive information.

Bad Polynomial Implementation. "Bad Polynomial Implementation" in-
volves implementation flaws in the polynomial computation process of zero-
knowledge proof protocols, which might stem from programming errors, poor
algorithm choices, or a lack of understanding of mathematical properties. These
issues can occur in critical components of zero-knowledge proof protocols, such
as constructing polynomial commitments, performing polynomial evaluations, or
verifying polynomial equations. Improper handling of polynomials may lead to
inaccurate computational results or leak information that should remain confi-
dential, thereby compromising the security and effectiveness of zero-knowledge
proofs.

Zendoo, a protocol that utilizes zero-knowledge proofs for cross-chain trans-
fers, implements methods for handling dense polynomials for Fast Fourier Trans-
form (FFT) in its fft/polynomial/dense.rs file. When using the add() function to
perform addition on two polynomials of the same degree, if the sum of the trailing
coefficients is zero, these coefficients are not trimmed. This results in the leading
term of the generated polynomial having a non-zero coefficient, contradicting
the fundamental principles of polynomial representation.

fn add(self, other: &’a DensePolynomial<F>) -> DensePolynomial<F> {
if self.is_zero() {

other.clone()
} else if other.is_zero() {

self.clone()
} else {

if self.degree() >= other.degree() {
let mut result = self.clone();
for (a, b) in result.coeffs.iter_mut().zip(&other.coeffs) {

*a += b
}
result

} else {
let mut result = other.clone();
for (a, b) in result.coeffs.iter_mut().zip(&self.coeffs) {

*a += b
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}
// If the leading coefficient ends up being zero, pop it off.
while result.coeffs.last().unwrap().is_zero() {

result.coeffs.pop();
}
result

}
}

}

For example, performing addition on two polynomials with coefficients [3, 2,
1] and [1, 0, p-1] through the above code would result in coefficients [4, 2, 0],
where the trailing zero coefficient is not trimmed. Although the else branch of the
add() function performs a trimming operation, failure to correctly handle this
in all cases could cause panic when calling the degree() function below, leading
to erroneous calculations or denial-of-service attacks.

// Returns the degree of the polynomial.
pub fn degree(&self) -> usize {

if self.is_zero() {
0

} else {
assert!(self.coeffs.last().map_or(false, |coeff| !coeff.is_zero()));
self.coeffs.len() - 1;

}
}

Deprecated Hash Function. The security and effectiveness of ZKP depend on
the correct implementation and security of its cryptographic primitives, such as
hash functions. With the increase in computing power, some early hash functions,
such as MD5, SHA-1, RIPEMD, RIPEMD-128, and Whirlpool, are no longer
considered secure.

Using these deprecated hash functions could make it easier for attackers to
predict or reveal confidential information through brute force attacks, thereby
undermining the fundamental properties of zero-knowledge proofs.

For example, in Tornado Cash, the following circuit shows how a user can
generate a note using a secure hash function to be able to withdraw stored ETH
in the future.

// computes Pedersen(nullifier + secret)
template CommitmentHasher() {

signal input nullifier;
signal input secret;
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signal output commitment;
signal output nullifierHash;
component commitmentHasher = Pedersen(496);
component nullifierHasher = Pedersen(248);
component nullifierBits = Num2Bits(248);
component secretBits = Num2Bits(248);
nullifierBits.in <== nullifier;
secretBits.in <== secret;
for (var i = 0; i < 248; i++) {

nullifierHasher.in[i] <== nullifierBits.out[i];
commitmentHasher.in[i] <== nullifierBits.out[i];
commitmentHasher.in[i + 248] <== secretBits.out[i];

}
commitment <== commitmentHasher.out[0];
nullifierHash <== nullifierHasher.out[0];

}

If this circuit used an insecure hash function, such as MD5 or SHA-1, to
construct the user’s note, attackers might attempt to create hash collisions and
generate new proofs to withdraw the user’s stored ETH, achieving theft.

Therefore, when constructing zero-knowledge proof circuits or proof systems,
it is advisable to prioritize secure hash functions. For example, the Pedersen hash
function, widely used in some ZK frameworks like halo2, or other zk-friendly hash
functions such as Poseidon, MiMC, etc.

3 Case Study

3.1 Soundness Vulnerability in zkSync Era Mainnet

zkSync Era is an innovative Layer 2 scaling solution designed to address the
scalability challenges of the Ethereum while maintaining its security and decen-
tralization principles[24]. Within zkSync Era’s virtual machine (EraVM), the
execution of write instructions relies on two special structs, MemoryWriteQuery
and RawMemoryQuery.

The value to be written is initially stored in the MemoryWriteQuery struct
as two registers, then split into three values: lowest_128, u64_word_2, and
u64_word_3. These values are constrained through LinearCombination to en-
sure the correctness of the splitting process. Ultimately, these values are packaged
and stored in RawMemoryQuery. However, the vulnerability exists within the
code for applying linear constraints:

let mut lc = LinearCombination::zero();
lc.add_assign_number_with_coeff(&u64_word_2.inner, shifts[0]);
lc.add_assign_number_with_coeff(&u64_word_3.inner, shifts[64]);
lc.add_assign_number_with_coeff(&highest_128.inner, minus_one);
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This code snippet is intended to constrain the value of lc to 0, but it fails
to call lc.enforce_zero(cs) or lc.into_num(cs) to actually apply the constraint.
This leads to the highest 128 bits in MemoryWriteQuery being unconstrained,
allowing malicious provers to replace these 128 bits with any value, generating
a fake proof that would be accepted.

Attack plans and strategies exploiting the vulnerability:
This vulnerability allows the prover to modify the highest 128 bits of the

value stored in memory and generate a valid proof. There are various ways to
exploit this vulnerability, where attacking the L2EthToken system contract is a
relatively easy method.

According to the zkSync Era mechanism, transactions withdrawing ETH
from zkSync Era to the mainnet first send verification information to L1, followed
by creating two MemoryWriteQuery objects to record the withdrawal amount
parameter “_amount”. Therefore, malicious attackers can exploit this mechanism
by modifying the code that handles the write operation to perform the following
actions:

– Check if the “_amount” value being written matches a specific value, such
as 0x1371337137 or 0.00002 ETH.

– If it matches, modify the high 128 bits of the written value, turning “_amount”
into a huge value, for example, 0x152d0000133713371337 or 1̃00K ETH.

Through the above operations, when a malicious attacker initiates a transac-
tion withdrawing ETH from zkSync Era to the mainnet, the value of “_amount”
will be adjusted to a figure far exceeding the actual withdrawal amount, allowing
the attacker to successfully steal a large amount of ETH.

3.2 Vulnerability in MACI

The Minimal Anti-Collusion Infrastructure (MACI) is an open-source public
platform designed to provide a confidential on-chain voting mechanism[25]. In
the MACI protocol, two types of messages are distinguished: vote/key change
messages and top-up messages. The message type is identified by its first index
in an array (msgs[0]), where "1" represents a vote/key change message, and
"2" represents a top-up message. Users can publish their messages through the
publishMessage() function within poll.sol, using their own parameters. If users
intend to post a top-up message to increase their voting balance, they need to
use the topup() function, which first attempts to retrieve the user’s new top-up
amount. If retrieval fails, the user cannot submit a top-up message.

However, in the MACI implementation, there is a lack of sufficient valida-
tion and constraint on the message type within the publishMessage() function.
This oversight allows malicious attackers to arbitrarily modify the message type,
thereby executing unauthorized operations.

function publishMessage
(Message calldata _message, PubKey calldata _encPubKey)
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public

isWithinVotingDeadline {

// we check that we do not exceed the max number of messages

if (numMessages == maxValues.maxMessages) {

revert TooManyMessages();

}

// validate that the public key is valid

if (_encPubKey.x >= SNARK_SCALAR_FIELD || _encPubKey.y >=
SNARK_SCALAR_FIELD) {

revert MaciPubKeyLargerThanSnarkFieldSize();

}

// cannot realistically overflow

unchecked {

numMessages++;

}

// need to restrict the msgType to 1: message.msgType = 1

uint256 messageLeaf = hashMessageAndEncPubKey(_message, _encPub-
Key);

extContracts.messageAq.enqueue(messageLeaf);

emit PublishMessage(_message, _encPubKey);

}

Attack plans and strategies exploiting the vulnerability:

In the implementation of MACI, it was originally designed that users could
only top up their accounts if they had actual on-chain credit, to ensure the
fairness of the voting system. However, due to the lack of sufficient verification
and constraints on message types in the publishMessage() function, malicious
users were able to modify the message type to "2", erroneously triggering the
system to recognize it as a top-up message. This oversight allowed users without
actual on-chain credit to falsely top up their accounts, thereby illegitimately
gaining increased voting balances. Such actions could ultimately enable attackers
to obtain voting rights far beyond reasonable limits, undermining the fairness
and effectiveness of the entire voting mechanism.

4 Vulnerability Defense Strategies

The root cause of these vulnerabilities lies in circuits not being fully constrained.
Although these vulnerabilities have not led to severe consequences in the cur-
rent security environment, the advancement of distributed network technology
is gradually diminishing the development teams’ direct control over protocols.
This trend significantly increases the potential risk of malicious attackers submit-
ting attack code, making it especially crucial to formulate appropriate security
strategies to counter such threats.
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Firstly, during the circuit design phase, rigorous mathematical forms, such
as R1CS or QAP, should be used to precisely describe the circuits to be imple-
mented. This practice helps check for unconstrained conditions after the circuit’s
concrete implementation. Moreover, after the circuit implementation, it is essen-
tial to carefully verify that each variable in the circuit is constrained by its bit
length and to test with inputs that exceed the prime field range of the circuit, ef-
fectively eliminating potential vulnerabilities of arithmetic overflow. Ultimately,
it requires considering the overall project perspective to check if other mod-
ules may affect the security of ZKP. For example, reviewing the uint256 data
type variables used directly for zero-knowledge circuit computations in smart
contracts to ensure there are no mismatches in bit length.

Regarding the issue of needing a trusted setup in zk-SNARKs[26–28], se-
cure multiparty computation techniques can be utilized, allowing multiple par-
ticipants to jointly contribute randomness to generate a Common Reference
String (CRS). As long as at least one participant destroys their private entropy
part, the security of the CRS can be ensured. Additionally, consider adopting
zero-knowledge proof protocols that do not require a trusted setup, such as zk-
STARK and halo2, to fundamentally eliminate potential security risks during
the zk-SNARK initialization process.

4.1 Conducting Security Audits for ZKP

Zero-Knowledge Proof technology plays a crucial role in multiple domains such
as blockchain, authentication, voting systems, the Internet of Things, and more.
Despite its significance, it also faces challenges in complex computations and val-
idations. To ensure the correctness and security of ZKP applications, conducting
security audits is an indispensable step. Security auditing of ZKP applications
is not only a key task but also a process that helps developers and users identify
potential vulnerabilities and errors, thereby enhancing the application’s trust-
worthiness and security level.

There are various security auditing methods, including static analysis, dy-
namic testing, and manual verification, each with its advantages, disadvantages,
and applicable scenarios. During the security audit process, it is necessary to
consider multiple factors such as the program’s scale, complexity, security re-
quirements, performance demands, and cost-effectiveness[29–32].

With the advancement of ZKP technology and the expansion of its applica-
tion scope, the importance of security audits is increasingly recognized, present-
ing greater challenges. Therefore, continuously innovating and improving audit
strategies and tools to ensure the correct execution and security of applications
is an inevitable trend for future development.

4.2 Audit Strategy

Methodology: Divide & Conquer. From a project point of view, we divide the
entire project into several layers, with the top layer being the architectural design
layer, followed by the business logic layer, then various dependency libraries and
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infrastructure, and at the bottom, there are various atomic components (for
example random number generators, language features).

We can show a ZKP application from the perspective of security audit (see
Fig. 1).

Fig. 1. The ZKP application from the perspective of security audit

– At the topmost layer is the Application Layer, which comprises two main
components: high-level architectural design and business logic, including con-
tracts, circuits, and front-end. This layer must deal with potential malicious
user inputs, protocol inputs, and configuration settings. Ensuring the secu-
rity of key/nonce management and interfaces, while guarding against side-
channel attacks and replay attacks, is crucial.

– Secondly, the Prover/Verifier Layer aims to fulfill the roles of the two parties
involved in the zero-knowledge protocol. For this, it is necessary to implement
and protect various cryptographic primitives that support the circuit and
proof system. These include but are not limited to hash function, commit-
ment, randomness, merkle trees, fiat-shamir transformation, hash-to-curve,
and linear algebra.

– The next layer down is designed to support the two roles above, requiring
more foundational operations, such as circuit arithmetization and constraint
generation. Typical arithmetization strategies include R1CS, AIR, CCS, and
PLONKish, along with their necessary polynomial implementations.

– The layer below involves field arithmetic and elliptic curves groups opera-
tions. Acceleration algorithms for these operations, such as FFT and Multi-
Scalar Multiplication (MSM), can be considered.
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– The foundational layer pertains to platform-specific elements: programming
language, runtime, OS, hardware, and dependencies. Consideration must be
given to the characteristics (and flaws) of the programming language itself,
RNG, and other factors.

This layered approach enables a comprehensive and secure implementation
of ZKP protocols, ensuring that each layer builds upon the secure foundation of
the layer below it, from managing application-specific logic and security issues
to efficiently utilizing underlying hardware and software platforms.

The audit team should conduct threat modeling before beginning the audit.
Threat modeling involves creating a list of potential vulnerabilities for each layer
of the project, thereby allowing them to address every possible error. Moreover,
it is advisable for each member of the audit team to perform a line-by-line code
inspection, followed by an internal cross-review. These measures ensure that the
entire ZKP audit can not only identify vulnerabilities within ZK circuits but
also highlight design flaws in the ZKP application and pinpoint any inaccuracies
in the integration process of ZK primitives.

4.3 The Role of Audit Tools in Circuit Auditing

To facilitate the auditing of ZKP applications, the industry has developed a
variety of audit tools. These tools are primarily static analyzers[33], designed to
identify common vulnerabilities within ZKP circuits. Depending on the static
analysis method adopted, these tools can be classified into two main categories:
abstract interpretation and formal verification. Abstract interpretation methods
use abstract domains to approximate the representation of values in concrete
domains and approximate concrete functions and transformations, thus detecting
vulnerabilities in zero-knowledge circuits. Formal verification tools, on the other
hand, use mathematical logic and methods to prove the correctness and security
of systems. This method provides rigorous and trustworthy proofs, effectively
avoiding human errors and vulnerabilities[34–36].

For example, audit tools such as Ecne and Circomspect[37] employ abstract
interpretation methods, while tools like Veridise’s Coda[38] use formal verifica-
tion methods. Others, like korrekt and Picus, combine these two approaches.
They first conduct a preliminary vulnerability screening using abstract interpre-
tation methods, followed by an in-depth security inspection using formal verifi-
cation methods to ensure the security of the ZKP circuit. However, these tools
can only provide limited assistance, auditors should not rely solely on these tools
to perform circuit audits[39].

5 Conclusion

This article has embarked on a comprehensive exploration of the vulnerabilities
inherent in Zero-Knowledge Proof (ZKP) technologies, underpinning the cru-
cial balance between maintaining stringent security protocols and fostering the
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revolutionary potential of ZKPs in enhancing privacy and completeness within
blockchain and other cryptographic systems. Through meticulous classification
and analysis of various vulnerabilities, ranging from completeness and sound-
ness issues to information leakage and non-standardized cryptographic imple-
mentations, we have delineated the intricate challenges posed by the complex
implementation and rapid iteration inherent in ZKP technologies.

The vulnerabilities and defense mechanisms discussed herein underscore a
broader discourse on the necessity of continuous vigilance, innovation, and re-
finement in the security auditing of cryptographic systems. As ZKP technologies
evolve and their applications become increasingly integral to the cryptographic
infrastructure, the challenges of ensuring their security and reliability become
more complex and demanding.

Looking forward, the field of ZKP and its security auditing beckons for further
research and development. This entails not only the enhancement of existing au-
dit tools and methodologies but also a collaborative effort among researchers, de-
velopers, and practitioners to forge novel solutions that address the ever-evolving
landscape of vulnerabilities. Such endeavors will be pivotal in harnessing the full
potential of ZKP technologies, paving the way for a more secure, private, and
efficient cryptographic future.
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