
Shorter VOLEitH Signature from Multivariate Quadratic

Dung Bui

IRIF, Université Paris Cité, Paris, France
bui@irif.fr

Abstract. The VOLE-in-the-Head paradigm, recently introduced by Baum et al. (Crypto
2023), is a compiler that uses SoftspokenOT (Crypto 2022) to transfer any VOLE-based designated-
verifier zero-knowledge protocol into a publicly verifiable zero-knowledge protocol. Together
with the Fiat-Shamir transformation, a new digital signature scheme FAEST (faest.info) is
proposed, and it outperforms all MPC-in-the-Head signatures.
We propose a new candidate post-quantum signature scheme from the Multivariate Quadratic
(MQ) problem in the VOLE-in-the-Head framework, which significantly reduces the signature
size compared to previous works. We achieve a signature size ranging from 3.5KB to 6KB for
the 128-bit security level. Compared to the state-of-the-art MQ-based signature schemes and
existing VOLE-in-the-Head signatures, our scheme achieves the smallest signature size (1.5 to 2
times compared to MQ-based schemes) while keeping the computational efficiency competitive.

1 Introduction

Zero-Knowledge, Code-based signature schemes, and Multivariate Quadratic Assump-
tion. Zero-knowledge proof allows a prover to convince a verifier their knowledge of a witness for
an NP statement without revealing any additional information. Zero-knowledge proof has numer-
ous applications in cryptography, especially for designing efficient signature schemes by applying the
Fiat-Shamir transform [FS87] to convert any public-coin zero-knowledge proof system into a signature
scheme.

Digital signatures are fundamental to the digital world. However, the majority of existing construc-
tions are susceptible to attacks by quantum computers [Sho94]. This drives the exploration of alter-
native digital signature schemes based on assumptions that are believed to resist quantum computer
attacks. The recent call by NIST to standardize post-quantum cryptographic primitives has catalyzed
research into efficient post-quantum signature schemes, many of which are based on error-correcting
codes. Code-based signature schemes are built from various assumptions (syndrome decoding, mul-
tivariate quadratic, MinRank, subset sum assumptions) and using two main paradigms that are
MPC-in-the-head (MPCitH) [FJR22, AGH+23] and later VOLE-in-the-head (VOLEitH) [BBD+23,
CLY+24].

A multivariate quadratic map F : Fn
p → Fm

p is a system of m quadratic polynomials in n variables
defined over some finite field Fp. The MQp,m,n problem is, for uniformly random F : Fn

p → Fm
p and

x ∈ Fn
p , to find x given F and F(x). The average-case hardness of the multivariate quadratic problem

is one of the leading candidate post-quantum cryptographic assumptions. The Rainbow signature
scheme [DS05], stands out as one of the earliest and most studied signature schemes in multivariate
cryptography. Nevertheless, its security has been reduced by recent attacks [Beu21,Beu22]. This leads
to the question of whether we can construct an efficient signature scheme based on the multivariate
quadratic problem.

Code-based signature schemes from MPCitH. Numerous recent studies on Fiat-Shamir code-
based digital signatures have applied the MPC-in-the-head paradigm, initially introduced in [IKOS07].
In essence, this paradigm allows the prover to “simulate” an MPC protocol while virtual parties receive
shares of the witness, and a target function validates the correctness of the witness. Subsequently, the
prover commits to the view of all parties, and upon request from the verifier, opens a random subset of
these views. The verifier checks the consistency of these views and verifies that the output corresponds
to the correct witness. Soundness is guaranteed by the inability of a cheating prover to generate
consistent views for all parties. The zero-knowledge property is established through the security of
the MPC protocol against an honest-but-curious adversary, who only gains access to the views of a
subset of corrupted parties. Recently, there have been efficient code-based signatures [AGH+23,FJR22,

bui@irif.fr

2 Dung Bui

CCJ23,BCC+24] from syndrome decoding assumption and MPCitH paradigm having signature sizes
from 3 KB-7KB. While signatures based on multivariate quadratic assumption [Beu20,Wan22,Fen22]
have a larger signature size ranging from 7KB-14KB.

Code-based signature schemes from VOLEitH. Another paradigm utilized in constructing sig-
nature schemes is VOLE-based zero-knowledge (ZK) proofs [WYKW21,BMRS21,YSWW21], which
typically offers higher efficiency compared to most MPC-in-the-head (MPCitH) protocols. However,
these protocols rely on the existence of vector oblivious linear function evaluation (VOLE) correla-
tions between the prover and the verifier, which can be efficiently generated using two-party proto-
cols [BCG+19]. Due to this prerequisite, VOLE-based protocols were unable to operate effectively
in the public-coin model until the introduction of the VOLE-in-the-Head (VOLEitH) approach by
Baum et al. [BBD+23]. In addition to a generic zero-knowledge proof system, Baum et al. employed
this approach to develop the FAEST post-quantum signature scheme, solely based on AES and hash
functions. Later, [CLY+24] introduced a signature scheme based on the Regular Syndrome Decoding
assumption with signature sizes of 4KB for the security parameter of 128 bits and it combines the
VOLE-in-the-Head technique from [BBD+23] with a sketching method of [BGI16] to reduce the check
of the noise structure to a system of degree-2 equations, which are then proven using the QuickSilver
VOLE-based zero-knowledge proof [YSWW21].

1.1 Our contribution

Publicly verifiable ZK. We first propose a new zero-knowledge protocol for the multivariate quadratic
problem over a finite field. Our zero-knowledge proof is publicly verifiable and is constructed from a
designated-verifier ZK protocol by combining the VOLE-in-the-Head technique [BBD+23], Softspo-
kenOT [Roy22] and multi-PPRF (puncturable pseudorandom function) [BCC+24].

– To construct the designated-verifier ZK protocol for the multivariate quadratic problem, firstly
we observe that to prove the knowledge of the witness in MQ problem MQp,m,n it is equivalent
to proving the knowledge of the solutions in a set of degree-2 polynomials over Fp, therefore, we
adapt the QuickSilver ZK proof [YSWW21] for nullity check of a polynomial with the cost of
O(n log p) bits.

– From VOLE-based designated-verifier ZK protocol to publicly verifiable ZK protocol, we design a
new Vector Commitment based on multi-instances PPRF, it has a better performance compared to
the GGM-tree-based vector commitment from [BBD+23] while its security satisfies multi-hiding
and extractable binding properties. Then from Vector Commitment, SoftspokenOT is used to
allow us to obtain VOLE which is the IT-MAC in QuickSilver. Since all frameworks of VOLE-in-
the-Head, SoftspokenOT, or QuickSilver are only over the binary field F2, we carefully adapt all
of them to get a publicly verifiable ZK protocol over any finite field Fp.

VOLEitH-based signature. We introduce a new signature scheme based on the multivariate quadratic
problem using the Fiat-Shamir transform, we compile our publicly verifiable zero-knowledge protocol
into an MQ-based signature scheme.

Table 1. The parameter choice and estimated security of the MQp,m,n problem in three NIST security levels
(the notation of parameters for attack algorithms follows Crossbred [CKPS00], and FXL [JV17]).

Category p m n
Estimated security Attack Algorithm(bits)

I 2 150 150 142 Crossbred (D: 13, d: 1, k: 30)
4 88 88 149 Crossbred (D: 17, d: 1, k: 24)

III 2 224 224 206 Crossbred (D: 19, d: 1, k: 41)
4 128 128 218 Crossbred (D: 20, d: 3, k: 43)

V 2 320 320 298 Crossbred (D: 20, d: 2, k: 60)
4 160 160 266 BooleanSolveFXL (k: 73, variant: las_vegas)

We choose the number of variables n to be being equal to the number of polynomials m to
maximize the hardness of the MQp,m,n instance. We compare our scheme with the state-of-the-art

Shorter VOLEitH Signature from MQ 3

using two fields F2 and F4, our VOLEitH-based signature works for any field that is a power of 2
but the larger the field the more computation the signer and the verifier need to pay so for efficient
computation, we pick the size of the field is of p = 2 and p = 4. The value n varies depending on
the security level and it is chosen by executing the estimator1 of [BMSV22, EVZB23]. We present
in Table 1 the choice of n and the estimated security for three NIST security levels. The details of
parameter choice are shown in Section 5.3.

We present our signature size for different settings on Table 3 and the comparison with the state-
of-the-art of MQ-based signatures on Table 2. Compared to the state-of-the-art MQ-based signature
schemes, our signature reduces the size of the signature by a factor between 1.5 to 2 in various
settings. Specifically, for the set of parameters (p,m, n) = (4, 88, 88) and (2, 150, 150), our shortest
signature has the size of around 3.5KB and 4KB respectively. For each set of parameters, we show
the signature size for two variants (fast and short). We argue that our scheme outperforms other
MQ-based signatures by having a smaller signature size while keeping a computational competitive
efficiency (see Section 5.4 for estimated computation cost).

Table 2. Comparison of our new signature scheme with other MQ-based signatures (restricting to the schemes
using the FS heuristics) in terms of parameter choice, estimated security, sizes of public key, and signature
for the security level I of NIST’s security standard. Each signature has two variants (fast and short), N is the
width of GGM-tree expansion (the number of parties in MPCitH-based signature and the length of vector
commitment in VOLEitH-based signature), τ is the number of repetitions.

Scheme MQ parameters MPC/VOLE parameters Size
p m = n Security N τ Public key Signature

MQ-DSS [CHR+16] 31 48 141 - - 46 B 28400 B
MudFish [Beu20] 4 88 149 4 68 38 B 14640 B
Mesquitefast [Wan22] 4 88 149 8 49 38 B 9492 B
Mesquiteshort [Wan22] 4 88 149 32 28 38 B 8844 B
Fen22fast [Fen22] 251 40 135 32 40 56 B 8488 B
Fen22short [Fen22] 251 40 135 256 25 56 B 7114 B
MQOM-L1fast [BFR23] 251 43 144 32 34 59 B 7809 B
MQOM-L1short [BFR23] 251 43 144 256 22 59 B 6575 B
MQOM-L1fast [BFR23] 31 49 143 32 35 47 B 7621 B
MQOM-L1short [BFR23] 31 49 143 256 20 47 B 6348 B
Our-L1fast 4 88 149 16 33 38 B 5103 B
Our-L1short 4 88 149 256 17 38 B 3792 B
Our-L1fast 2 150 142 16 43 35 B 6697 B
Our-L1short 2 150 142 256 19 35 B 4209 B

1.2 Concurrent work

Following the footprint of VOLEitH-based signature, recently in the second round of NIST call2,
FAEST team (faest.info) proposed improvements for VOLEitH-based signature [BBM+24] that
includes 1) new construction of batch vector commitment and 2) new VOLEitH-based signatures
from various hardness assumptions, one of them (called KuMQuat) is also based on MQ problem.
KuMQuat has the smallest signature size compared to other VOLEitH signatures (ranging from 2555B
to 3588B for the security level I), and [BBM+24] provided a benchmark for showing the performance
of KuMQuat is still competitive.

1.3 Organization

We provide a detailed technical overview of our results in Section 2. We introduce necessary prelimi-
naries in Section 3, and describe our designated verifier ZK, our publicly-verifiable ZK using our new
vector commitment in Section 4. In Section 5, we describe the description of our signature, parameter
choices, and signature size for various settings, we then evaluate the performance of our scheme.
1 https://github.com/Crypto-TII/CryptographicEstimators
2 https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-

standardization/Call-for-Proposals

4 Dung Bui

2 Technical Overview

2.1 Designated-Verifier Zero-Knowledge Proofs from batch nullity checks

Since x ∈ Fn
p in MQp,m,n problem is the solution of a system of equations {fi(x) = xTAix+ bT

i x−
yi}i≤m of degree 2 over n variables (consider xTAix+ bT

i x as a multivariate polynomial), therefore,
a DVZK protocol for the MQ problem is equivalent to a DVZK protocol for batch m nullity check of
a polynomial set. Its instantiation is based on the Quicksilver technique [WWCY22] in the sVOLE
hybrid model. Each polynomial fi is presented as fi = fi,1 + fi,2 where all terms in fi,1 and fi,2
have degree of 1 and 2 respectively (specifically, fi,1 and fi,2 have n and n2 terms, for simplicity we
omitted yi since yi can be easily adapted as a constant coefficient). For the efficiency of the signature
based on the DVZK protocol, we need to choose a small set of parameters of DVZK protocol therefore
to make sure the soundness is negligible the DVZK protocol is needed to repeat τ -times. To build a
nullity check for the set of polynomials, Quicksilver technique [WWCY22] for polynomials check is
applied and upgraded to the version of τ - repetitions. In particular,

– Given an IT-MACs of x in the version of τ - repetitions, i.e., (M[x],K[x],x) ∈ Fn×τ
pr ×Fn×τ

pr ×Fn
p ,

P locally defines a polynomial gi(X) and computes locally its coefficients Ai,0,Ai,1 ∈ Fτ
pr such

that

gi(X) = fi,2(M[x] + x · [1 · · · 1] · diag(X)) + fi,1(M[x] + x · [1 · · · 1] · diag(X)) ·X − yi · [1 · · · 1] ·X2

= Ai,0 +Ai,1 ·X.

The degree of gi(X) is only 1 since the coefficient of degree 2 is 0 if x is a solution of fi.
– From (∆,K[x]) ∈ Fτ

pr × Fn×τ
pr , V can locally compute

Bi := fi,2(K[x]) + fi,1(K[x]) ◦∆− yi ·∆2 ∈ Fτ
pr .

Observe that Bi = Ai,0 +Ai,1 ◦∆ since K[x] := M[x] + x · [1 . . . 1] · diag(∆).
– V and P check relation Bi = Ai,0 + Ai,1 ◦ ∆ for i ∈ [m] by sending to each other a set of

sample challenges (χi)i≤m ∈ Fτ
pr and later a linear combination of (

∑m
i=1 χi ·Ai,0,

∑m
i=1 χiAi,1)

constructing from χi respectively.
To make sure the zero-knowledge property, in the preprocessing phase, P and V need to generate
τ extra OLEs over Fpr , while P holds (A∗0,A

∗
1) and V holds (B∗,∆) such that

B∗ = A∗0 +A∗1 ◦∆ ∈ Fτ
pr .

Then P uses (A∗0,A
∗
1) to mask (

∑m
i=1 χi ·Ai,0,

∑m
i=1 χiAi,1) in the linear combination sent from

P and later V can still locally verifies using (B∗,∆). Generating τ extra OLEs only costs (r · τ)-
sVOLE correlations over Fp and it is negligible since r · τ is small. See Section 4 for more details
about lifting (r · τ)-sVOLEs from the subfield Fp to τ -OLEs over the extension field Fpr .

2.2 MQ-based signature from VOLE-in-the-Head paradigm

Publicly-verifiable Zero-Knowledge proof. We first design a public-coin ZK proof for the MQ
problem and then apply the Fiat-Shamir transform to make it into a signature scheme. Our public-
coin ZK protocol is constructed from our DVZK protocol using the VOLE in-the-head paradigm. We
describe our publicly-verifiable ZK protocol as below:

– Firstly, since in our DVZK protocol, only V who holds the global key ∆ obtained from sVOLE
correlation can valid the proof, therefore we use Softspoken OT to construct sVOLE, this man-
ner allows P and V can simulate the sVOLE correlation before sampling ∆ as a challenge in
publicly-verifiable ZK protocol. Along with Softspoken OT, we propose a new all-but-one Vector
Commitment based on Multi-instance PPRF which is used to generate efficiently SoftspokenOT-
based sVOLE. Our vector commitment satisfies multi-hiding (where A can query polynomial time
to hiding game to break the randomness) and extractable binding proofs.

– Plugging sVOLE obtained from vector commitment to our DVZK protocol while now the global
key ∆ is sampled after P committed the witness.

– V outputs accept if all checks for SoftspokenOT, QuickSilver, and DVZK are passed.

Shorter VOLEitH Signature from MQ 5

VOLEitH-based signature. Finally, applying the Fiat-Shamir heuristic to the publicly verifiable
ZK protocol, we achieve a new signature scheme from the MQ problem, and the security is maintained
from the publicly verifiable ZK protocol and random oracles under EUF-KO,EUF-CMA security.

3 Preliminaries

3.1 Notation

Given a set S, we write s←r S to indicate that s is uniformly sampled from S. Given a probabilistic
Turing machine A and an input x, we write y ←r A(x) to indicate that y is sampled by running A
on x with a uniform random tape, or y ← A(x; r) when we want to make the random coins explicit.
Given an integer n ∈ N, we denote by [n] the set {1, · · · , n} and [0, n) for the set {0, · · · , n− 1}. We
use λ = 128 for the computational security parameter. We let negl(λ) denote any function that is
negligible in the security parameter.

Field and Operations. We use Fp to denote a field and Fpr = Fp[X]/f(X) (r ∈ N) where f(X) is
a monic, irreducible polynomial of degree r as an extension field of Fp. Wlog, we assume Fp is an
extension field of F2. Given a vector x ∈ Ft

p (or Fn
pr), we say y = liftr(x) mean that we lift x to

Fpr as y =
∑t

i=1 xi · Xi ∈ Fpr for t ≤ r. Given a polynomial f over Fp taking n variables, for a
vector x = (x1, · · · , xn) ∈ Fn

p we denote f(x) = f(x1, · · · , xn) and from f over Fp we naturally define
it as a polynomial over Fpr by operating additions and multiplications over Fpr . We denote xk as
(xk

1 , · · · , xk
n) for k ∈ N .

Vectors and Matrix. For a matrix M, we denote Mi,j for the entry in ith row and jth column, also
Mj, Mi as the jth column and the ith row corresponding. The symbol ⊙ is the point-wise product
between a vector and a matrix i.e given a vector u = (u1, · · · , um) ∈ Fm and a matrix M ∈ Fn×m,
u⊙M = (u1 ·M1, · · · , um ·Mm) ∈ Fn×m. For the simplicity, given a polynomial f over n variables
and a matrix M ∈ Fn×τ

p , we denote f(M) = (f(M0), · · · , f(Mτ−1)) as a vector in Fτ−1
p . We denote

diag(∆) where ∆ = (∆0, · · · , ∆τ−1) ∈ Fτ
p as a matrix over Fτ×τ

p of the form

∆0

· · ·
∆τ−1

. We use

[1 · · · 1] for all-one row vector and U = [1 · · · 1] ·u is a matrix where each row is a repetition codeword
u.

3.2 Cryptographic Definitions

Basic definitions. We define the definitions of secure PRG and collision-resistant hash function as
below.

Definition 1 (Indistinguishability). Two distributions X,Y are (t, ϵ)-indistinguishable if for an
algorithm D : {0, 1}m → {0, 1} running in time t, we have |Pr[D(X) = 1]− Pr[D(Y) = 1]| ≤ ϵ.

Definition 2 ((t, ϵPRGm)-secure PRG). Let G : {0, 1}∗ → {0, 1}m and let l(.) be a polynomial
such that for any input s ∈ {0, 1}λ we have m = l(λ). Then, G is a (t, ϵPRGm)-secure pseudorandom
generator if

– Expansion: m > λ;
– For any PPT A running in time t, the distributions

{
G(s)|s← {0, 1}λ

}
and {r|r ← {0, 1}m} are

(t, ϵPRGm)-indistinguishable.

Definition 3 (Collision-Resistant Hash Functions). A family of functions Hashk : {0, 1}∗ →
{0, 1}l(λ); k ∈ {0, 1}κ(λ) indexed by a security parameter λ is collision-resistant if there exists a
negligible function v such that, for any PPT algorithm A, we have:

Pr

[
x ̸= x′

∩Hashk(x) = Hashk(x
′)

k ∈ {0, 1}κ(λ)
(x, x′)← A(k)

]
≤ v(λ)

6 Dung Bui

UC model. Given F be a two-party functionality and Π be a secure protocol for instantiating F .
The protocol Π is said to be secure against malicious adversary if for all non-uniform PPT adversary
A in the real model, there exists a non-uniform PPT adversary S in the deal model satisfying:

IDEAL(F,S,i)(X,Y)
c≈ REAL(Π,A,i)(X,Y)

where i ∈ {1, 2} index of corrupted party. IDEAL(F,S,i)(X,Y) is the output pair of the honest party
and the adversary S in the ideal model, REAL(Π,A,i)(X,Y) is defined as the output pair of the honest
party and the adversary A from the real execution of Π. Informally, proving in the UC model means
constructing a simulator that can simulate the view of adversary with the help of F .

Zero-knowledge definitions. An argument Π = (Setup,P,V) is a public coin if the verifier’s
messages are chosen uniformly at random independently of the messages sent by the prover, i.e., the
challenges correspond to the verifier’s randomness ρ.

Definition 4 (Perfect completeness). A proof system Π = (Setup,P,V) for R is perfectly com-
plete, if

Pr

[
⟨P(crs, x, w),V(crs, x)⟩ = 1

crs← Setup(1λ)
(x,w) ∈ R

]
= 1

Definition 5 (Computationally soundness). A proof system Π = (Setup,P,V) is computational
sound if for every efficient adversary A

Pr

[
⟨A,V(crs, x)⟩ = 1

x /∈ L
crs← Setup(1λ)
x← A(1λ, crs)

]
= negl(λ)

Definition 6 (Special honest-verifier zero-knowledge (SHVZK)). A public coin argument Π
is a SHVZK if there exists a probabilistic polynomial time simulator Sim such that for all non-uniform
polynomial time adversaries Awe have

Pr

[
A(tr) = 1
(x,w) ∈ R

crs← Setup(1λ)
(x,w, ρ)← A(crs); tr ← ⟨P(crs, x, w),V(crs, x)⟩

]
≈Pr

[
A(tr) = 1
(x,w) ∈ R

crs← Setup(1λ)
(x,w, ρ)← A(crs); tr ← Sim(crs, x, ρ)

]
where ρ is the public coin randomness used by the verifier.

Lemma 7 (Collisions in random oracle). Given a collision-resistant hash function H : {0, 1}∗ →
{0, 1}2λ and H is modeled as an random oracle. For any PPT algorithm making q queries to H ha
probability of at most q2/22λ encountering a collision.

3.3 Multivariate Quadratic Problem

Given a triple of parameters (p,m, n) ∈ N, the Multivariate Quadratic Problem asks to find a vector
solution in Fn

p (assume it exists) of a random system of m linear equations over Fp.

Definition 8 (Multivariate Quadratic Problem - Matrix form). Let Fp be the finite field. Let
(m,n) be positive integers. The multivariate quadratic problem MQp,m,n with parameters (p,m, n) is
the following problem:

– (Problem generation) Sample x←r Fn
p and (Ai)i≤m ←r Fn×n

p , (bi)i≤m ←r Fn
p .

Set yi ← xTAix+ bT
i x. Output (Ai,bi, yi)i≤m.

– (Goal) Given (Ai,bi, yi)i≤m, find x ∈ Fn
p such that xTAix+ bT

i x = yi for all i ∈ [m].

While recent attacks [Beu21, Beu22] have reduced the security of well-known signatures based on
the MQ problem as Rainbow, in our work we set the parameter set by executing the estimator
of [BMSV22,EVZB23] to estimate the hardness of given an instance of MQ against all existing attack
algorithms, this estimator is also used to compute the secure parameters for MPCitH signatures based
on MQ problem [Fen22,BFR23].

Shorter VOLEitH Signature from MQ 7

3.4 The MPC-in-the-Head Paradigm

The MPC-in-the-head paradigm was initiated by the work of Ishai et al [IKOS07] and provided a
compiler that can build honest-verifier zero-knowledge (HVZK) proofs for arbitrary circuits from
secure MPC protocols. Assume we have an MPC protocol with the following properties:

– N parties (P1, · · · , PN) securely and jointly evaluate a function f : {0, 1}∗ → {0, 1} on x while
each party possess an additive share JxKi of input x,

– Secure against passive corruption of N − 1 parties i.e any (N − 1) parties can not recover any
information about the secret x.

Then the HVZK proof of knowledge of x such that f(x) = 1 is constructed as:

– Prover generates the additively shares of the witness x into (Jx1K, · · · , JxN)K) among N virtual
parties (P1, · · · , PN) and emulate the MPC protocol "in-the-head”.

– Prover commits to the view of each party and sends commitments to the verifier.
– Verifier chooses randomly (N − 1) parties and asks the prover to reveal the view of these parties

except one. The verifier later accepts if all the views are consistent with an honest execution of
MPC protocol with output 1 and agrees with the commitments.

Security of MPC protocol implies that the verifier learns nothing about the input x from the N − 1
shares, and MPC correctness guarantees that the Prover can only cheat with probability 1/N . Security
can then be amplified with parallel repetitions.

3.5 Information-Theoretic Message Authentication Codes

We recall information-theoretic message authentication codes (IT-MACs) based on subfield Vec-
tor Obvious Linear (sVOLE) [YSWW21] to authenticate values over Fp or Fpr . Specifically, JxK =
(K[x],M[x], x) is IT-MACs authenticated value JxK where x ∈ Fp is known by the P can be authen-
ticated by the V who holds a global key ∆ ∈ Fpr and a local key K[x] ∈ Fpr , then P is given a
MAC defined as M[x] = K[x] − x ·∆. IT-MACs is additively homomorphic, in particular, given the
public coefficients c1, · · · , cl, c ∈ Fp or Fpr and y =

∑l
i=1 ci · xi + c, the parties can locally compute

JyK = (K[y],M[y], y) from JxiK as K[y] =
∑l

i=1 ci · K[xi] + c · ∆ and M[y] =
∑l

i=1 ci ·M[xi]. To au-
thenticated x, P reveals x, M[x] to V to valid the correctness of sVOLE correlation. Note that the P
can only cheat with a probability of 1/pr since to produce an valid IT-MACs Jx′K = (K[x′],M[x′], x′)
from JxK, P needs to guess ∆ ∈ Fpr such that ∆ = (M(x)−M(x′)) · (x− x′)−1.

Batch IT-MACs. We extend the above notation to vectors of authenticated values as well. In this
case, JxK means that M[x] = K[x]−x·∆ where ∆ ∈ Fpr , x ∈ Fn

p and M[x], K[x] ∈ Fn
pr . To authenticate

a vector x = (x1, · · · , xn) ∈ Fn
p , instead of opening 2 vectors x ∈ Fn

p ,M[x] ∈ Fn
pr , P only need to

reveal a combinations
∑n

i=1 χi · xi,
∑n

i=1 χi ·M[xi] where {χi}i≤n are sampled randomly over Fpr , V
then checks

∑n
i=1 χi ·M[xi]+∆ ·

∑n
i=1 χi ·xi =

∑n
i=1 χi ·K[xi]. The security holds with the soundness

error of 1/pr by following the SZ lemma (Section 3.5).

Lemma 9 (Schwartz–Zippel lemma). Let P ∈ F[x1, x2, . . . , xn] be a non-zero polynomial of to-
tal degree d over an field F. Let S be a finite subset of F and let r1, · · · , rn be selected at random
independently and uniformly from S. Then Pr[P (r1, r2, . . . , rn) = 0] ≤ d/|S|.

In the concept of signature to maintain both soundness and efficiency, we extend the authenticated
vectors multiple times (denoted as τ times). It means for an authenticated vector x ∈ Fn

p , Jx, τK =

(K[x],M[x],x) and has a global key ∆ = (∆1, · · · , ∆τ) corresponding, where K[x],M[x] ∈ Fn×τ
pr

and ∆ ∈ Fτ
p such that Mi[x] = Ki[x] − x ·∆i for all i ∈ [0, τ). The batch IT-MACs of a vector are

generated by the sVOLE protocol that securely realizes the ideal functionality Fn,τ
sVOLE (Figure 1) and

the efficient way to authenticate is followed by technique in SoftSpokenOT (see Section 4.2).

8 Dung Bui

PARAMETERS:

– Given a field extension Fp ⊆ Fpr . Denote n as the length of each vector produced in each
sVOLE instance and τ as the repetition parameter.

FUNCTIONALITY:

– Depending on P and V:
• If the P is corrupted then wait for A to send u ∈ Fn

p ,V ∈ Fn×τ
pr ; samples ∆ ←r Fτ

pr and
computes W := V + u · [1 · · · 1] · diag(∆).

• If the V is corrupted then wait for A to send ∆ ∈ Fτ
pr , W ∈ Fn×τ

pr ; samples u←r Fn
p and

computes V := W − u · [1 · · · 1] · diag(∆).
• Otherwise, samples u←r Fn

p ,W←r Fn×τ
pr ,∆←r Fτ

pr and computes W := V+u · [1 · · · 1] ·
diag(∆).

– If P and V send (init) to functionality, sends (u, V) to P.

– If P and V send (get) to functionality, sends (∆, W) to V.

– P defines M[x] = V and V defines K[x] = W.

Fig. 1. Ideal functionality Fn,τ
sVOLE of multi-subVOLE over Fp

PARAMETERS:

– Given an arbitrary field Fp.
– Prover P and verifier V hold t polynomials f1, · · · , ft of degree 2 all over n variables.
– Prover P holds a witness w ∈ Fn

p such that fi(w) = 0 for all i ∈ [t].

FUNCTIONALITY:

– Upon receiving (prove, {fi}i∈[t],w) from P and (verify, {fi}i∈[t]) from V then:
Send true to V if fi(w) = 0 for all i ∈ [t] and false to V otherwise.

Fig. 2. Ideal functionality Fp,t
polyZK

3.6 Designated-Verifier ZK for nullity check of Polynomial sets

Nullity check of polynomial sets is a batch check of whether a witness is a root of a set of polynomials,
we define the ideal functionality of nullity check for a set of t degree-2 polynomials having n variables
over Fp in Figure 2. From the footprint of VOLE-based IT-MACs, the instantiation of Fp,t

polyZK is
followed by Quicksilver technique [YSWW21].

In particular, given t polynomials {fi}i≤t of degree 2 over n variables, P holds a witness w ∈ Fn
p

and wants to prove that fi(w) = 0. For every polynomial fi, we present it as fi = fi,2 + fi,1 + fi,0
where fi,h is a degree-h polynomial such that all terms in fi,h have exactly degree h.

Given an IT-MACs of JwK = (M[w],K[w],w), P and V hold (w,M[w]) and (∆,K[w]) respectively.
Now V computes:

Bi = fi,2(K[w]) + fi,1(K[w]) ·∆+ fi,0 ·∆2

= fi,2(M[w] +∆ ·w) + fi,1(M[w] +∆ ·w) ·∆+ fi,0 ·∆2

= fi(w) ·∆2 +Ai,1 ·∆+Ai,0 = Ai,1 ·∆+Ai,0.

where Ai,0, Ai,1 are the aggregated coefficient for all terms with ∆ and constant coefficients. Note
that, the prover with witnesses w and MACs M[w] can locally compute all the coefficients.

Batch nullity check. P and V generates randomly an IT-MACs JAK = (M[A],K[A], A), given a set
of challenge (χi)i∈[t] sampled from (Fpr)t, P then defines (A1, A0) and sends to V:

A1 :=

t∑
i=1

χi ·Ai,1 +A, A0 =

t∑
i=1

χi ·Ai,0 +M[A]

Shorter VOLEitH Signature from MQ 9

While V checks if
∑t

i=1 χi ·Bi+K[A] = A1 ·∆+A0. By lifting the IT-MAC JAK to the extension field
Fpr instead of Fp (see Section 2 for details), we obtain a negligible soundness error of being 3/pr (note
that in [YSWW21] the soundness error is (t+ 2)/pr since the challenge set is defined as (χi)i∈[t] for
χ ∈ Fpr). As a consequence, the batch nullity check results in a total communication of (n+2r) log p
bits in the sVOLE-hybrid model.

3.7 Universal Hashing

We recall the definitions of n-hiding and ϵ-universal hash function [Roy22] in the following definitions.

Definition 10 (Universal). A family of linear hash functions is a family of matrices H ⊆ Fr×n
p .

The family is ϵ-almost universal if for any non-zero x ∈ Fn
p

Pr
H←H

[Hx = 0] ≤ ϵ

The family is ϵ-almost uniform, if for any non-zero x ∈ Fn
p and for any non-zero x ∈ Fr

p.

Pr
H←H

[Hx = v] ≤ ϵ

Definition 11 (Hiding). A matrix H ∈ Fr×(n+h)
p is Fn

p -hiding if the distribution of Hv is indepen-
dent from v[0, n) when v[n, n+ h) ← Fh

p . A hash family H ⊆ Fr×(n+h)
p is Fn

p -hiding if every H ∈ H
is Fn

p -hiding.

Transforming a uniform hash family into a universal family that is hiding can be done by using the
proposition below and the instantiation of HUHF is shown in [Roy22].

Proposition 12. Let H ⊆ Fr×n
p be an ϵ-almost uniform hash family. Let HUHF ⊆ Fr×(n+r)

p be the
family {[H∥Ir] : H ∈ H}, where Ir is the r × r identity matrix. Then, it holds that

1. HUHF is ϵ-almost universal.
2. HUHF is Fn

p -hiding.

3.8 Multi-Instance Puncturable PRF

Informally, a puncturable pseudorandom function (PPRF) [BGI14] is a PRF F such that given an
input x, and a PRF key K, one can generate a punctured key, denoted k{x} = F.Punc(K,x), which
satisfies:

– There is an algorithm F.Eval such that F.Eval(k{x}, x′) = FK(x′) for all x′ ̸= x (evaluating F at
every point except for x).

– FK(x) is indistinguishable from random given k{x}.

The motivation for using τ -multi-instance PRF is to construct a vector commitment that includes
τ -parallel instances of PPRF using the same key K, while distinct keys K are used across distinct
signature queries. Using the multi-instance PPRF allows us to generalize and simplify the security
of vector commitment. The security of vector commitment is also tighter compared to when using
directly the concept of single PPRF (in this case the advantage of adversary is always proportional
to τ). We then recall the formal definition of τ -multi-instance PRF that is proposed in [BCC+24].

Definition 13 ((N, τ)-instance (t, ϵ)-secure PPRF [BCC+24]). A function family F = {FK}
with input domain [2D], salt domain {0, 1}s, and output domain {0, 1}λ, is an (N, τ)-instance (t, ϵ)-
secure PPRF if it is a PPRF which additionally takes as input a salt K, and for every non-uniform
PPT distinguisher D running in time at most t, it holds that for all sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprf
D (λ) = 1]− Pr[Expiw-pprf

D (λ) = 1]| ≤ ϵ(λ)

where the experiments Exprw-pprf
D (λ) and Expiw-pprf

D (λ) are defined below.

10 Dung Bui

Exprw-pprf
D (λ) :

– ((Kj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ
– K := (K1, . . . ,KN)←r {0, 1}s
– i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ)←r [2D]N ·τ

– ∀j ≤ N, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

– (yj,e)j≤N,e≤τ ← (FKj,e
(ij,e,Ki))j≤N,e≤τ

Output b← D(K, i, (Kij,e
j,e , yj,e)j≤N,e≤τ)

Expiw-pprf
D (λ) :

– ((Kj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ
– K := (K1, . . . ,KN)←r {0, 1}s
– i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ)←r [2D]N ·τ

– ∀j ≤ N, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

– (yj,e)j≤N,e≤τ ←r ({0, 1}λ)N ·τ

Output b← D(K, i, (Kij,e
j,e , yj,e)j≤N,e≤τ)

3.9 Vector Commitment

A (non-interactive) vector commitment (VC) scheme (with message spaceM and commitment space
C) is defined by four PPT algorithms (Setup,Commit,Open,Verify). While in formal definition the
Setup algorithm gives the crs that is one of the inputs of three other algorithms, in our construction,
we consider crs as a public parameter then for simplicity we omit crs in these algorithms. We define the
hiding and extractable-binding properties of vector commitment in the following definitions. While
the hiding is used to prove that the adversary learns nothing from the VC.Open even if the adversary
is allowed to choose the opening challenge, the extractable-binding game shows that after committing,
an adversary is bound to the messages contained in the commitments, except for the one(s) that it
does not open.

Definition 14 (VC Real-or-Random Hiding [BBD+23]). Let VC be a vector commitment
scheme in the RO model with random oracles H and H1. The adaptive hiding experiment for VC,
AdpHiding, with N = poly and stateful A is defined as follows.

1. crs← Setup(1λ, N)
2. b←$ {0, 1}
3. seed←$ {0, 1}λ
4. (com, decom, (sd∗1, . . . , sd

∗
N))← Commit(seed)

5. I ← A(1λ, crs, com)
6. pdecomI ← Open(decom, I)
7. sdi ← sd∗i for i ∈ I

8. For i /∈ I, sdi ←

{
sd∗i , if b = 0

←$M, otherwise
9. b′ ← A({sdi}i∈[N], decomI)

10. Output 1 (win) if b′ = b else 0 (lose).

The selective hiding experiment for VC, SelHiding, is defined similarly but A must choose I prior to
receiving com.

We define A’s advantage as:

AdvAdpHidingA,VC = Pr[A wins AdpHiding]− 1

2
,

and similarly for the SelHiding game.
We say VC is adaptively (resp. selectively) hiding if every PPT adversary A has a negligible

advantage in the respective game.

Definition 15 (VC Extractable-Binding [BBD+23]). Let VC be a vector commitment con-
structed from two random oracles H and H1, A be any PPT adversary with oracle access to H and
H1, resulting in query-response lists Q and Q1 respectively.
An extractor Ext be a PPT algorithm defined as:

– Ext (pp, (Q,Q1), com)→ (sdi)i∈[N]: given an instance of VC public parameters pp, query-response
lists Q and Q1, and a commitment com ∈ C, return the messages committed to by com. (Ext may
output sdi = ⊥ to signify an invalid commitment.)

For any N ≤ poly(λ) and stateful adversary A, we define the straight-line extractable/binding game,
ExtBind, against VC as follows:

Shorter VOLEitH Signature from MQ 11

1. pp← SetupH,H1(1λ, N)

2. com← AH,H1(1λ, pp)

3. {sd∗i }i∈[N] ← Ext(pp, (Q,Q1), com)

4. (I, pdecomI)← AH,H1(open)

5. Output 0 (failure) if:
– VerifyH,H1(com, j∗, pdecomj∗) = ⊥, i.e., the opening is not valid; or
– VerifyH,H1(com, j∗, pdecomj∗) = {sdi}i∈I and sdi = sd∗i for all i ̸= j∗, i.e., the opening is valid

but extraction by Ext was successful
6. Otherwise, output 1 (success).

We define A’s advantage as AdvExtBindingA,VC = Pr[1← ExtBind], and say VC is straight-line extractable-
binding w.r.t. Ext if

AdvExtBindingA,VC ≤ negl.

4 Publicly-Verifiable ZK for Multivariate Quadratic

Observe that for MQp,m,n, given (Ai,bi, yi)i≤m, to prove that the prover P holds x ∈ Fn
p such that

xTAix + bT
i x = yi for all i ∈ [m], P needs to convince that P knows the solution of a system of m

questions of form xTAix + bT
i x = yi. If we consider xTAix + bT

i x as a multivariate polynomial of
degree 2 over n variables x = (xi, · · · , xn) ∈ Fn

p then it is equivalent to prove that P holds a root of
a set of m polynomials degree 2. It means that to prove the knowledge of MQp,m,n, it is sufficient to
prove the knowledge of a root of a polynomial set of degree 2.

Firstly, we present in the Section 4.1 a zero-knowledge protocol for MQ based on Quicksilver
(see Section 3.6) in the sVOLE hybrid model. Since the limit of sVOLE, this construction Fig-
ure 3 is only a designated-verifier ZK protocol. To turn it into a publicly verifiable, we apply the
VOLEitH framework [BBD+23] and adapt all constructions for multi-times τ repetitions. We present
our publicly-verifiable ZK protocol in Section 4.2 where we introduce our new GGM-tree style vector
commitment based on multi-instance PPRF.

4.1 Designated-Verifier ZK for Multivariate Quadratic problem

In this section, we present an efficient zero-knowledge proof for the MQ problem Figure 3 in the
Fn,τ

sVOLE hybrid model, and its security (soundness and zero-knowledge) is shown in Theorem 16. The
technical overview is presented in Section 2, to be more specific, we argue about two main concerns
that need to be addressed:

– Firstly, packing subfield VOLE correlations between Fp and Fpr into OLEs correlations over Fpr

to get mask for QS check.
Given (r · τ) instances of sVOLE correlation over Fp i.e.,

W = V + u · [1 · · · 1] · diag(∆) where u ∈ Fr·τ
p , V,W ∈ F(r·τ)×τ

pr

we define (A∗0,A
∗
1,B

∗) ∈ Fτ
pr as for all i ∈ [0, τ):

A∗1,i = liftr(u[i·r...(i+1)·r)) ∈ Fpr ,

A∗0,i = liftr(V
i
[i·r...(i+1)·r)) ∈ Fpr ,

B∗i = liftr(W
i
[i·r...(i+1)·r)) ∈ Fpr .

From the additive homomorphic property of sVOLE correlation, it is easy to check that B∗ =
A∗0 +A∗1 ◦∆ ∈ Fτ

pr .
– Secondly, applying the Quicksilver technique for the polynomial set (Section 3.6) to τ -repetitions

of nullity check. Recall notation, given a polynomial f over n variables, a matrix M ∈ Fn×τ
p

we denote f(M) = (f(M0), · · · , f(Mτ−1)) as a vector in Fτ
p . We can see that the correctness

12 Dung Bui

is shown similarly as in Quicksilver except working on the vector of length τ instead of a single
instance. We consider A∗0,A

∗
1 as vectors over Fτ

pr and we have:

B =

m∑
i=1

Bi ◦ χi +B∗ =

m∑
i=1

(
fi,1(K[x]) ◦∆+ fi,2(K[x])− yi ·∆2

)
◦ χi +B∗

=

m∑
i=1

gi(∆) ◦ χi +B∗ (since K[x] := M[x] + x · [1 . . . 1] · diag(∆))

=

m∑
i=1

(
Ai,0 +Ai,1 ◦∆+Ai,2 ◦∆2

)
◦ χi +A∗0 +A∗1 ◦∆

= QS0 + QS1 ◦∆ (since Ai,2 = 0 if x is witness)

(1)

Theorem 16. The protocol ΠMQ−DVZK is a designated-verifier zero-knowledge protocol for multivari-
ate quadratic problem MQp,m,n in the FsVOLE-hybrid model. The security holds against a malicious
prover or a malicious verifier with the soundness error ϵΠMQ−DVZK

bounded by (3/pr)τ and information-
theoretic security.

Sketch proof. The soundness error comes from whether the malicious prover can 1) choose an invalid
witness such that Ai,2 = 0 and this happens with a probability of (1/pr)τ , or 2) cheat in Equation (1)
to keep this equation hold, observe that this equation has degree 2, ∆ ←r Fτ

pr is uniformly random
and kept secret from the adversary’s view then from Section 3.5, the probability that the above
equation holds is bounded by (2/pr)τ in this case. In total ϵΠMQ−DVZK

≤ (3/pr)τ .
We can use the Fiat-Shamir heuristic to make the online phase non-interactive at the cost of the
information-theoretic security is degraded to computation security. Specifically, both parties can
compute χi ∈ Fτ

pr as H(γ0, · · · , γn−1), where H : {0, 1}∗ → Fτ
pr is a cryptographic hash func-

tion modeled as a random oracle and (pr)τ ≥ 2λ. The communication then consists of sending
γ ∈ Fn

p ,QS0 ∈ Fτ
pr ,QS1 ∈ Fτ

pr . In total, the asymptotic communication cost is around (n+2·τ ·r)·log p
bits.

Proof. The correctness of the proof follows the explanation above. For security, we prove in the UC
model where we construct simulator Sim that simulates the view of a malicious prover and an honest
verifier to argue soundness and zero-knowledge properties respectively.

Malicious Prover. Sim emulates functionality FsVOLE and interacts with adversary A as follows:

– Sim emulates FsVOLE for A by choosing uniform ∆ ∈ Fτ
pr , and recording all the vector u and their

corresponding MAC tags V that are received by FsVOLE from adversary A. These values define
the corresponding keys naturally. When emulating FsVOLE, Sim also receives {A∗0,A∗1} ∈ Fτ

pr×Fτ
pr

and can locally construct B∗ = A∗0 +A∗1 ◦∆ ∈ Fτ
pr .

– When A sends γ ∈ Fn
p in step 1 of online phase, Sim extracts the witness as x := γi + u[0, n) for

i ∈ [n].
– Sim executes the remaining part of protocol ΠMQ−DVZK as an honest verifier, using ∆ and the keys

defined in the first step. If the honest verifier outputs false, then Sim sends x =⊥ and (fi)i∈[m] to
FpolyZK and aborts. If the honest verifier outputs true, Sim sends x and (fi)i∈[m] to FpolyZK where
x = (x1, · · · , xn) is extracted by Sim as above.

It is easy to see that the view of A simulated by Sim has an identical distribution as its view in
the real-world execution. Whenever the honest verifier in the real-world execution outputs false, the
honest verifier in the ideal-world execution outputs false as well (since Sim sends ⊥ to FpolyZK in this
case). Therefore, we only need to bound the probability that the verifier in the real-world execution
outputs true but the witness x sent by Sim to FpolyZK does not satisfy that fi(x) = 0 for all i ∈ [m].
We denote this probability as ϵΠMQ−DVZK

and it is bounded as below.
Assume (fi(x) = yi)i∈[m] for some yi ∈ Fpr and x is the vector extracted by Sim, then we have

gi(∆) = Ai,0 +Ai,1 ◦∆− yi ·∆2

Shorter VOLEitH Signature from MQ 13

At round 4 of Figure 3, Sim receives QS′0 = QS0 + t0, QS′1 = QS1 + t1 where QS0,QS1 are the actual
values that are sent from a prover following the protocol. The Equation (1) becomes

B =

(
m∑
i=1

−yi · χi

)
◦∆2 +

(
QS′1 − t1

)
◦∆+

(
QS′0 − t0

)
∈ Fτ

pr

Since we are computing ϵΠMQ−DVZK
, Verifier accepts the proof, i.e., B = QS′1 ◦∆+ QS′0, it means(
m∑
i=1

yi · χi

)
◦∆2 + t1 ◦∆+ t0 = 0 (2)

The Equation (2) holds if

1.
∑m

i=1 yi · χi = 0 and malicious prover sets t0 = t1 = 0. However, x is not a valid witness so there
exists at least one yi such that yi ̸= 0 this leads to

∑m
i=1 yi · χi = 0 with a probability of 1/prτ

since χi ∈ Fτ
pr and is sampled before x is committed using FsVOLE.

2.
∑m

i=1 yi · χi ̸= 0, from lemma 3.5,the Equation (2) holds with probability of (2/pr)τ since
∆←r Fτ

pr is kept secret from prover’s view and each ∆i is sampled independent for i ∈ [τ].

To conclude, the soundness ϵΠMQ−DVZK
is bounded by (3/pr)τ .

Malicious Verifier. Sim emulates FpolyZK. If Sim receives false from FpolyZK, then it simply aborts.
Otherwise, Sim interacts with A as follows:

– In the preprocessing phase, Sim emulates FsVOLE, gets the global key ∆ and the keys K[x] for
all the authenticated values, which are received from A. Additionally, S also receives B∗ = A∗0 +
A∗1 ◦∆ ∈ Fτ

pr .
– Sim executes the step 1 of online phase in ΠMQ−DVZK by sending uniform γ ∈ Fn

p to A.
– Sim receives {χi}i≤m from A.
– For steps 5–6 of ΠMQ−DVZK, Sim computes W,Bi,B, by using ∆, the keys K[x], the challenge
{χi}i≤m, and B∗ received fromA following the protocol description, and then samples QS1 ←r Fτ

pr

and computing QS0 := B− QS1 ◦∆. Then, Sim sends (QS0,QS1) to A.
Note that γ and (A∗0,A

∗
1) are uniform and kept secret from the view of adversary A. Therefore,

we easily obtain that the view of A simulated by Sim is distributed identically to its view in the
real-world execution, which concludes the proof. ⊓⊔

We can use the Fiat-Shamir heuristic to make the online phase non-interactive at the cost of the
information-theoretic security is degraded to computation security. Specifically, both parties can
compute χi ∈ Fτ

pr as H(γ0, · · · , γn−1), where H : {0, 1}∗ → Fτ
pr is a cryptographic hash func-

tion modeled as a random oracle and (pr)τ ≥ 2λ. The communication then consists of sending
γ ∈ Fn

p ,QS0 ∈ Fτ
pr ,QS1 ∈ Fτ

pr . In total, the asymptotic communication cost is around (n+2·τ ·r)·log p
bits.

4.2 Publicly-Verifiable Zero Knowledge for Multivariate Quadratic problem

In this section, we show how to transform our designated-verifier ZK protocol ΠMQ−DVZK (Figure 5) to
publicly-verifiable ZK protocol using SoftspokenOT and Vector Commitment by VOLE in-the-Head
paradigm.

SoftspokenOT. Given PRG : {0, 1}λ → Fn
p be a pseudorandom generator. SoftspokenOT [Roy22]

shows how to construct a subfield VOLE over the extension field Fpr that securely realizes the ideal
functionality of FsVOLE Figure 1.
In particular, assume P has a set of seeds {sdi}i∈[N] and V has an index j ∈ [N] and a set of seeds
all-but-one {sdi}i ̸=j . P and V now construct a VOLE over Fpr by defining:

u =

N∑
i=1

PRG(sdi) ∈ Fn
p , v = −

N∑
i=1

i · PRG(sdi) ∈ Fn
pr

w =
∑
i ̸=j

i · PRG(sdi) = j · u+ v ∈ Fn
pr

14 Dung Bui

PARAMETERS:

– Given a field Fp and τ, r ∈ N, τ ∈ N number of repetitions.
– Prover P and verifier V hold (Ai,bi, yi)i≤m ∈ Fn×n

p × Fn
p × Fp.

– P holds x = (x1, · · · , xn) ∈ Fn
p such that xTAix+ bT

i x = yi for all i ∈ [m].
– P and V define a set of polynomials {fi}i≤m of degree 2 as fi(x1, · · · , xn) = xTAix + bT

i x
over Fp. Each polynomial fi is presented as fi = fi,1+fi,2 where all terms in fi,1 and fi,2 have
degree of 1 and 2 respectively.

– An instantiation of FsVOLE for multi-subVOLE over Fp.

PROTOCOL:

– Preprocessing phase:

1. P and V invokes on input (init) to Fn+r·τ,τ
sVOLE , P gets (u,V) where V =

[
V1

V2

]
,V1 ∈

Fn×τ
pr , V2 ∈ F(r·τ)×τ

pr .
Note that the first n-coordinates of u are used to hide witness x and the last (r · τ)-
coordinates of u are used to mask polynomials in the QS check i.e., using u[n, r · τ) and
V2 to produce τ -OLEs over F2λ where P gets {A∗

0,A
∗
1} ∈ Fτ

pr × Fτ
pr .

– Online phase:

1. P sends γ := x− u[0, n) ∈ Fn
p to V.

P defines V1 →M[x].

2. For i ∈ [1,m], P defines a vector that consists of τ univariate 2-degree polynomials over
field Fpr as

gi(X) = fi,1(M[x]+x·[1 · · · 1]·diag(X))·X+fi,2(M[x]+x·[1 · · · 1]·diag(X))−yi·[1 · · · 1]·X2,

and computes the coefficients {Ai,0,Ai,1,Ai,2} ∈ (Fτ
pr)

3 such that gi = Ai,0 +Ai,1 ·X +
Ai,2 ·X2. Note that Ai,2 = 0.

3. V samples χi ←r Fτ
pr for i ∈ [m] and sends them to P.

4. P computes

QS0 :=

m∑
i=1

Ai,0 ◦ χi +A∗
0,

QS1 :=

m∑
i=1

Ai,1 ◦ χi +A∗
1.

and sends them to V. Note A∗
0, A

∗
1 are considered as vectors over Fτ

pr .

5. P and V invokes on input (get) to Fn+r·τ,τ
sVOLE , V gets (∆, W, B∗) such that:

W =

[
W1

W2

]
, W1 := V1 + γ · [1 · · · 1] · diag(∆),

W2 −→ B∗ = A∗
0 +A∗

1 ◦∆ ∈ Fτ
pr .

V defines W1 → K[x].

6. For i ∈ [1,m]:
• V computes Bi := fi,1(K[x]) ◦∆+ fi,2(K[x])− yi ·∆2.

7. P and V check that Ai,0 +Ai,1 ◦∆ = Bi in the following way:
• V computes B =

∑m
i=1 Bi ◦ χi +B∗ and checks that B = QS0 + QS1 ◦∆.

• If the check fails, V outputs false; otherwise it outputs true.

Fig. 3. The DVZK protocol ΠMQ−DVZK for Multivariate Quadratic problem in the FsVOLE-hybrid model

P and V repeats τ individual times to get τ -sVOLE correlations (the VOLE global key needs to
contain enough entropy to ensure soundness), while P has {sdij} for i ∈ [0, τ), j ∈ [0, N) and V has

Shorter VOLEitH Signature from MQ 15

τ -set of all-but-one seeds (∆i, {sdij}j ̸=∆i
) for i ∈ [0, τ) then the multi-instance sVOLE is defined by

concatenating each instance.
P defines:

U =

N−1∑
j=0

PRG(sd0j) · · ·
N−1∑
j=0

PRG(sdτ−1j)

 , V =

N−1∑
j=0

j · PRG(sd0j) · · ·
N−1∑
j=0

j · PRG(sdτ−1j)

While V defines:

W′ =

N−1∑
j=0

(j −∆0) · PRG(sd0j) · · ·
N−1∑
j=0

(j −∆τ−1) · PRG(sdτ−1j)

To instantiate FsVOLE, P needs to re-randomize U by sending C := [U1−u∥ · · · ∥Uτ−1−u] ∈ Fn×(τ−1)

p

where u := U0. V then defines W = W′ + [0∥C] · diag(∆). Finally we get

W = V + u · [1 . . . 1] · diag(∆).

VOLE consistency check. To make sure that P does not cheat when sending C. The V challenges P
to open a random, linear universal hash function applied to U0 and V. The linear hash function is
represented by a compressing matrix HUHF, P sends

ũ = HUHF · u, Ṽ = HUHF ·V

and then V checks Ṽ+ ũ · [1 · · · 1] · diag(∆)
?
= HUHF · (W+ [0∥C] · diag(∆)). The probability for P to

cheat is negligible bounded by
(
τ
2

)
[Roy22,BBD+23] and we denote it as ϵHash.

Vector Commitment The initial construction of Vector Commitment is based on GGM-tree
PPRF [KKW18]. Recently, to construct efficient signatures, [CLY+24, BCdSG24] optimized GGM
tree-based PPRF in terms of computation by using the half-tree technique and circular correlation
robust hash function. To instantiate SoftspokenOT-based sVOLE, we propose a new construction
of vector commitment from multi-instance PPRF (Figure 4), its security has relied on the random
oracle and the randomness property of multi-instance PPRF. We prove our construction satisfies
multi-hiding and extractable-binding properties in Theorem 17 and Theorem 18 respectively.

Multi-instance PPRF. The construction is constructed by using τ -PPRF trees using the same key K.
The usage of multi-instance PPRF has three advantages 1) the security shown is tighter compared to
using τ separately PPRF trees under the constrain using the same key [BCC+24] 2) the concept can be
directly adapted to EUF-CMA proof security of signature (where A can make polynomial times queries
to signing oracle) and 3) the existing instantiation of multi-instance PPRF based on fix-key AES is
more efficient compared to others GGM-tree style PPRF when plugging to the signature [BCC+24].

Multi-instance Vector Commitment Construction. We present our vector commitment VC(N, τ)
in Figure 4, informally we have τ -trees having N leaves later V knows all-but-τ leaves (all-but-one
for each tree) and P needs to convince V about the knowledge of τ -trees with a negligible advantage
of cheating after committing.
Our trees are expanded from random seeds using PPRF and for the last leaves which are used to define
(sdij , com

i
j)i∈[0,τ),j∈[0,N)}, we use a random oracle to 1) make sure the adversary in hiding game learns

nothing about the secret leaves even this adversary can query more than one query and 2) allow us to
define the bit-length of commitment for each sd of being 2λ this leads to the extractor in the binding
game can not find the collision with high probability.

To fit into signature syntax where the adversary can query Q-times to signing oracle, we prove our
VC(N, τ) is secure in Q-multi-hiding game that is defined as Definition 14 except adversary making
Q queries and each query giving adversary information of all-but-τ vector commitment.

Theorem 17 (Multi-hiding). Assume that PPRF is a (Q, τ)-instance (t, ϵPPRF)-secure PPRF,
PRG,H are pseudorandom generator with output domains of τλ, 3λ bits respectively. Then, for any
PPT adversary A in the adaptive Q-multi-hiding vector commitment game against the VCH,H1(N, τ)
scheme, we have

AMulHiding
A,VC [Q] ≤ Q · ϵPRGτλ + ϵPPRF +Q · τ · ϵPRG3λ

16 Dung Bui

PARAMETERS:

– Tree depth N = 2d ∈ N, computational security parameter λ.
– A repetition parameter τ ∈ N.
– PRG : {0, 1}∗ → {0, 1}τλ,H : {0, 1}λ → {0, 1}λ × {0, 1}2λ pseudorandom generators and

H1 : {0, 1}∗ → {0, 1}2λ collision-resistant hash functions.
– H,H1 are modeled as random oracles.
– An instantiation of multi-instance of PPRF.

CONSTRUCTION:

– Commit(seed,K, 1λ):
1. Compute seed0∥ . . . ∥seedτ−1 ← PRG(seed; τλ).
2. For i ∈ [0, τ):

• For j ∈ [0, N), compute:
(a) seedij ← PPRFK(seed

i, j).
(b) (sdij , com

i
j)← H(seedij).

• Compute comi ← H1(com
i
0, . . . , com

i
N−1).

3. Compute hcom ← H1(com
0∥ . . . ∥comτ−1). Let decom := (seed,K).

4. Output (hcom, decom, (sdij)i∈[0,τ),j∈[0,N)).

– Open
(
decom, I = ∪τ−1

i=0 [0, N) \ {∆i}
)
:

1. For i ∈ [0, τ), compute:
(a) Write Ii = [0, N) \ {∆i}.
(b) Compute pdecomi ← (K,CoPathK(seed

i,∆i), com
i
∆i

).
2. Output the all-but-τ opening pdecomI := (pdecomi)i∈[0,τ).

– Verify (hcom, I, pdecomI):
1. For i ∈ [0, τ), compute:

(a) Write Ii = [0, N) \ {∆i}.
(b) Recompute (sdij , com

i
j)j∈Ii from pdecomi using PPRFK.

(c) Compute comi ← H1(com
i
0∥ . . . ∥comi

N−1).
2. Compute h′

com ← H1(com
0∥ . . . ∥comτ−1).

3. If h′
com ̸= hcom, output ⊥; otherwise output (sdij)i∈[0,τ),j∈[Ii].

Fig. 4. Construction VCH,H1(N, τ) of Multi-instance of Vector Commitment

Sketch proof. From the randomness of PRG, we step by step replace all values of intermediate nodes
of the hidden path (from the root of the hidden leaves) with random values. In particular, first of
all, we replace the set of seeds that are used to define the root of τ -trees with random values, i.e.,
(seed0∥ . . . ∥seedτ−1) ← {0, 1}τλ, the advantage of A in this step is Q · ϵPRGτλ , then later for all
intermediate levels of i-th PPRF tree (i ∈ [0, τ)) we replace the PRG calls along the path of seedi to
∆i by truly random values, since the PRG used to construct PPRF is a (Q, τ)-instance (t, ϵPRG)-secure
PRG then the advantage of A after replacing all nodes in the hidden path is ϵPPRF (we note the term
Q is omitted since PPRF is Q-multi-instance secure PPRF). After this step all (seedij)i∈[0,τ),j∈[0,N)

are random values and they are indistinguishable from the actual values. Since H we continue to
replace (sdij)i∈[0,τ),j∈[0,N) by truly random values and the advantage of A to distinguish this step and
previous one is Q · τ · ϵPRG3λ .

Proof. We proceed in a sequence of hybrids where each hybrid relies on the randomness of PRGs. We
recall that PPRF is a (Q, τ)-instance (t, ϵPPRF)-secure PPRF, PRG,H are pseudorandom generators
with the advantages of ϵPRGτλ , ϵPRG3λ respectively.

– Experiment 0 (Exp0). All τ -trees of each k-th instance (k ≤ Q) are obtained through the actual
scheme described in Figure 4, first of all, the root of trees (seedi)i∈[0,τ) is generated from a
PRG later the expansion is built by applying PPRF(seedi) to generate the N leaves for each tree
and to construct the (sdij , com

i
j)i∈[0,τ),j∈[0,N) a PRG∗ used. In the end, A knows all sdij except

(sdi∆i
)i∈[0,τ).

Experiment 1 (Exp1). Same as the previous experiment, the only difference is at the root of each
tree. For all i ∈ [0, τ), the root of each tree is not generated with PRG, but is instead randomly

Shorter VOLEitH Signature from MQ 17

sampled (seedi)i∈[0,τ) → {0, 1}τλ. Since PRG is an (t, ϵPRGτλ)-secure PRG, then

|Pr[Exp0(λ) = 1]− Pr[Exp1(λ) = 1]| ≤ Q · ϵPRGτλ

Experiment 2 (Exp2). The difference with the previous experiment is in the hidden path of ∆i

to the root of each tree: all the intermediate nodes are now randomly chosen from {0, 1}λ. Using
the secure property that PPRF is a (Q, τ)-instance (t, ϵPPRF)-secure PPRF, we obtain

|Pr[Exp1(λ) = 1]− Pr[Exp2(λ) = 1]| ≤ ϵPPRF

Experiment 3 (Exp3). In the last experiment, all nodes on the co-path to (∆i)i∈[0,τ) as well
as the leaf (seedi∆i

)i∈[0,τ) are picked uniformly at random. This experiment is the same as the
previous one except the value (sdi∆i

)i∈[0,τ) is chosen randomly instead of generating from H. In
total, the number of (sdi∆i

)i∈[0,τ) needed to be replaced is Q · τ (Q instances of VC(N, τ)). Since
PRG is an (t, ϵPRG3λ)-secure PRG, we have

|Pr[Exp0(λ) = 1]− Pr[Exp3(λ) = 1]| ≤ Q · τ · ϵPRG3λ

which concludes the proof. ⊓⊔

Theorem 18 (Extractable-binding). Let H,H1 be random oracles, for any PPT adversary AH,H1

making |Q| queries to H and |Q1| queries to H1, there exists an extractor Ext such that

AdvExtBindingA,VC ≤ (|Q1|+ τ + 1)2 + (|Q|+ τN)2

22λ

Sketch proof. We build a straight line extractor from observing the list of queries to A to two random
oracles H,H1. To be clear, the maximum total numbers of queries that A can make to oracles H and
H1 are |Q|+ τN and |Q1|+ τ + 1.

Proof. From the list of queries to H and H1, we construct an extractor Ext in the following way:

1. Ext finds the pre-image com0∥ . . . ∥comτ−1 of hcom from the list of queries Q1 if it does not exist
or is multiply-defined, then Ext outputs ⊥ for all messages. A wins if there exists at least one
pre-image or a collision for H in Q. And this probability is bounded by |Q1|2/22λ.

2. Ext finds the pre-image comi
0∥ . . . ∥comi

N−1 of comi for i ∈ [0, τ); if it does not exist, or is multiply-
defined, then Ext outputs ⊥ for all messages from the i-th tree. The probability of A to win for
each comi is bound by τ |Q1|2/22λ.

3. Now for each comi
j for i ∈ [0, τ), j ∈ [0, N), using the list of queries in Q, Ext extracts the leaf

seedij , Ext defines sdij as (sdij , com
i
j) = H(seedij), otherwise it sets sdij = ⊥. The probability of A

to win for each sdij is bound by (|Q|+ τN)2/22λ.

We explain the final step in detail as follows: From each comi
j for i ∈ [0, τ), j ∈ [0, N), Ext uses Q to

extract the tree leaf seedij . We note that the bit length of comi
j is 2λ bits.

– If there is an unique seedij , Ext defines sdij as (sdij , com
i
j) = H(seedij).

– If seedij does not exist in the list of Q, or it is found multiple times, then Ext sets sdij = ⊥. If any
comi

j has more than one preimage, then this contradicts the collision-resistance of H; therefore
the probability that this happens is bound by (|Q|+ τN)2/22λ.

⊓⊔

VOLE in-the-Head. Putting all techniques together and using the compiler from [BBD+23], we
obtain a publicly verifiable ZK protocol ΠMQ−PVZK from MQ problem in Figure 5 based on Softspo-
kenOT, multi-instance PPRF, and nullity check for a polynomial set.

Theorem 19. Let PRG be pseudorandom generator, HUHF ⊆ Ft×(k+t)
p be a family of k-hiding, p−t-

universal hash function, VC(N, τ) be multi-instances vector commitment with AdvmulHiding
A,VC ,AdvExtBindingA,VC

being advantages of A in multi-hiding and extractable binding games respectively, and ΠMQ−DVZK
(Figure 3) be a designated-verifier ZK protocol with soundness error ϵΠMQ−DVZK

. The protocol ΠMQ−PVZK
(Figure 5) is a publicly-verifiable ZK protocol for multivariate quadratic problem MQp,m,n satisfying
the following properties.

– Knowledge soundness with soundness error ϵΠMQ−PVZK
bounded by ϵHash + ϵΠMQ−DVZK

+ AdvExtBindingA,VC
– Special honest-verifier ZK.

18 Dung Bui

PARAMETERS:

– Prover P and verifier V hold (Ai,bi, yi)i≤m ∈ Fn×n
p × Fn

p × Fp.
– P holds x = (x1, · · · , xn) ∈ Fn

p such that xTAix+ bT
i x = yi for all i ∈ [m].

– P and V define a set of polynomials {fi}i≤m of degree 2 as fi(x1, · · · , xn) = xTAix + bT
i x

over Fp. Each polynomial fi is presented as fi = fi,1 + fi,2 where all terms in fi,1 and f,2 have
degree of 1 and 2 respectively.

– Let k = n + r,N = pr and HUHF ⊆ Ft×(k+t)
p be a family of k-hiding, p−t-universal hash

function.
– Let PRG : {0, 1}λ → Fk+t

p be a pseudorandom generator.
– An instantiation of vector commitment VC(N, τ).

PROTOCOL:

1. P samples seed←r {0, 1}λ and establishes VC(N, τ):
– VC.Commit(seed, 1λ)→ (hcom, decom, (sdij)i∈[0,τ),j∈[0,N)).

2. From {sdij} ←r {0, 1}λ for i ∈ [0, τ), j ∈ [0, N), P defines U,V ∈ F(k+h)×τ
p as follow

U =

[
N−1∑
j=0

PRG(sd0j) · · ·
N−1∑
j=0

PRG(sdτ−1
j)

]
, V = −

[
N−1∑
j=0

j · PRG(sd0j) · · ·
N−1∑
j=0

j · PRG(sdτ−1
j)

]

P defines u = U0 and C := [U1 − u∥ · · · ∥Uτ−1 − u] ∈ F(k+t)×(τ−1)
p , then sends (C, hcom) to

V.

3. V samples HUHF ←r HUHF and sends it to P.

4. P defines ũ = HUHF · u, Ṽ = HUHF ·V and sends them to V.

5. P and V run step 1− 4 of ΠMQ−DVZK in Figure 3 by using first k-coordinates of u and k-rows
of V.

6. V samples randomly ∆ = (∆0, · · · ,∆τ−1), sends (get,∆) to P and receives back pdecomI ←
VC.Open

(
decom, I = ∪τ−1

i=0 [0, N) \ {∆i}
)
.

7. V verifies vector commitment VC if
– VC.Verify (hcom, I, pdecomI) =⊥, then abort.
– VC.Verify (hcom, I, pdecomI) = (sdij)i∈[0,τ),j∈[Ii] then V computes

W =

[
N−1∑
j=0

(j −∆0) · PRG(sd0j) · · ·
N−1∑
j=0

(j −∆τ−1) · PRG(sdτ−1
j)

]

8. P and V run step 5− 6 of ΠMQ−DVZK in Figure 3.

9. V outputs accept if two following checks are passed:
– SoftSpokenOT. Ṽ + ũ · [1 · · · 1] · diag(∆) = HUHF · (W + [0∥C] · diag(∆)).
– QuickSilver. P and V run step 7 of ΠMQ−DVZK in Figure 3.

Fig. 5. The publicly verifiable zero-knowledge protocol ΠMQ−PVZK for Multivariate Quadratic

Sketch proof. The correctness of the proof follows the correctness of vector commitment VC, the
underlying designated-verifier ZK protocol ΠMQ−DVZK and SoftspokenOT. For security, we construct
a knowledge extractor Ext that extracts the witness of a malicious prover and a simulator Sim that
simulates the view of a semi-honest verifier to argue soundness and zero-knowledge properties respec-
tively.

– The Ext is constructed from the VC.Ext of vector commitment VC and the witness is extracted
using SimP

ΠMQ−DVZK
in proof Theorem 16. Therefore the soundness error ϵΠMQ−PVZK

bounded by
ϵHash+ ϵΠMQ−DVZK

+AdvExtBindingA,VC (ϵHash is the probability that A can cheat in SpoftspokenOT check
using universal hash function).

Shorter VOLEitH Signature from MQ 19

– For special-honest verifier zero-knowledge. The Sim is built from SimV
ΠMQ−DVZK

in proof Theorem 16.
And from the multi-hiding property of VC and ZK property of ΠMQ−DVZK, Sim can simulate the
view of a semi-honest verifier in ΠMQ−PVZK.

Proof. We argue about correctness, knowledge soundness, and special-honest verifier ZK properties
as follows.

Correctness. If both the prover and verifier are honest then the protocol is correct i.e., the verifier
valid all the checks if the prover has a valid witness since the correctness of vector commitment VC,
the underlying designated-verifier ZK protocol ΠMQ−DVZK and the SoftspokenOT technique.

Knowledge Extractor. Since VC is extractable biding then there exists an extractor ExtVC(pp, hcom, Q)
(Q is the list of queries that A made to random oracle of VC) that can extract the set of seed
(sdij)i∈[0,τ),j∈[0,N) if VC.Verify is valid with the failure probability of AdvExtBindingA,VC . In addition, ΠMQ−DVZK

is secure against a malicious prover in the UC model then there exists a simulator SimP
ΠMQ−DVZK

that
can extract correctly the witness of Adv with a failure probability of ϵΠMQ−PVZK

.
We build a knowledge extractor Ext from ExtVC and SimP

ΠMQ−DVZK
that simulates the view of mali-

cious prover as following:
– When A sends a message (C, hcom) to V, Ext runs VC.Ext(pp, hcom, Q) → (sdji) for i ∈ [0, τ), j ∈

[0, N).
– From the set of (sdji)i∈[0,τ),j∈[0,N), Ext computes U,V by the same way as an honest P does.

From U, Ext defines u := U0 and checks if C ?
= [U1 − u∥ · · · ∥Uτ−1 − u]. If the check is valid

then continue the next step otherwise outputs fail.
– Following the protocol, in step 5, Ext run SimP

ΠMQ−DVZK
by using first k-coordinates of u and k-

rows of V which are constructed from previous step. From the proof Theorem 16, SimP
ΠMQ−DVZK

can extract a witness x of malicious prover. Ext run Quicksilver check (step 7 of ΠMQ−DVZK) if
ΠMQ−DVZK outputs reject then outputs fail otherwise, Ext continues next step.

– Ext outputs fail if VC.Verify (hcom, I, pdecomI) =⊥, otherwise, Ext outputs x as a witness of P.

We argue by game hops.
1. Game G1 is the real game which outputs 1 if the V accepts.
2. Game G2 is the same as game 1 except we extract all (sdji)i∈[0,τ),j∈[0,N) and check whether the

correlation between C,V is correct. From SoftspokenOT check [Roy22], where HUHF ⊆ Ft×(k+t)
p

be a family of k-hiding, p−t-universal hash function then

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ ϵHash

and ϵHash is negligible.
3. Game G3, Ext runs SimP

ΠMQ−DVZK
to extract the witness x of P and output whatever Quicksilver

check (step 7 of ΠMQ−DVZK) outputs. Then

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ ϵΠMQ−DVZK

4. Game G4, Ext fails if VC.Verify fails but since VC is extractable biding then

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ AdvExtBindingA,VC

Putting all games together we have:

ϵΠMQ−PVZK
≤ ϵHash + ϵΠMQ−DVZK

+ AdvExtBindingA,VC

Special-honest verifier zero-knowledge. The simulator Sim is build from the simulator SimV
ΠMQ−DVZK

(against malicious verifier) in the proof Theorem 16 as follows:
1. Sim follows the protocol as an honest prover, i.e., computes VC(N, τ) from a random seed and then

defines U,V,C. Sim sends (C, hcom) to A. Since VC is multi-hiding this hybrid is distinguished
from the real protocol with a negligible probability AdvmulHiding

A,VC .
2. Sim receives ∆ of A, then from u,V; Sim computes

W = V + u · [1 . . . 1] · diag(∆)

Sim then runs SimV
ΠMQ−DVZK

with input of ∆,W to produce a simulated view of A for ΠMQ−DVZK
protocol. This hybrid is indistinguishable from the previous one by the zero-knowledge property
of ΠMQ−DVZK.

20 Dung Bui

5 A Signature scheme from Multivariate Quadratic

5.1 Description of the Signature Scheme

In this section, we introduce a new signature scheme from the multivariate quadratic decoding assump-
tion. A signature scheme is given by three algorithms (KeyGen,Sign,Verify). The KeyGen algorithm
returns a key pair (pk, sk) where pk and sk are the public and private key. The Sign algorithm on an
input a message m and the secret key sk, produces a signature σ. The Verify algorithm, on input a
message m, a public key pk, and a signature σ, returns 0 or 1. Standard security notions for signature
schemes are existential unforgeability against key-only attacks (EUF-KO, Definition 21) and against
chosen-message attacks (EUF-CMA, Definition 20).

Definition 20 (EUF-CMA security). Given a signature scheme Sig = (Setup,Sign,Verify) and
security parameter λ, we say that Sig is EUF-CMA-secure if any PPT algorithm A has negligible
advantage in the EUF-CMA game, defined as

AdvEUF-CMA
A = Pr

[
Verify(pk, µ∗, σ∗) = 1

∧µ∗ /∈ Q
(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← ASign(sk,·)(pk)

]
,

where ASign(sk,·) denotes A’s access to a signing oracle OSign with private key sk and Q denotes the
set of messages µ that were queried to Sign(sk, ·) by A.

Definition 21 (EUF-KO security). Given a signature scheme Sig = (Setup,Sign,Verify) and se-
curity parameter λ, we say that Sig is EUF-KO-secure if any PPT algorithm A has negligible advantage
in the EUF-KO game, defined as

AdvEUF-KOA = Pr

[
Verify(pk, µ∗, σ∗) = 1

(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← A(pk)

]
.

5.2 Description of the Signature Scheme

The key generation algorithm randomly samples a multivariate quadratic instance ((Ai,bi, yi)i≤m)
with solution x ∈ Fn

p . We describe it on Figure 6. The signing algorithm with secret key sk = (seed,x)
and message m ∈ {0, 1}∗ is described on Figure 7. The verification algorithm with public key pk =
(Ai,bi, yi)i≤m, message m ∈ {0, 1}∗, and signature σ, is described in Figure 8.

Inputs:

– A security parameter λ, a finite field Fp.
– An instance of MQ problem with parameters MQp,n,n.
– Pseudorandom generators PRG1 : {0, 1}λ → (Fn×n

p)n,PRG2 : {0, 1}λ → (Fn
p)

n.

Key Gen:

1. Sample sd←r {0, 1}λ. Compute (Ai)i≤n ← PRG1(sd), (bi)i≤n ← PRG2(sd).

2. Sample x←r Fn
p .

3. Set yi ← xTAix+ bT
i x.

4. Output pk← (sd, (yi)i≤n) and sk← (sd,x).

Fig. 6. Key generation algorithm of the signature scheme

Theorem 22. Assume that VCH,H0 is a qs-multi-hiding and extractable biding vector commitment and
that any adversary running in time t has an advantage at most ϵMQ against the multivariate quadratic
problem; ΠMQ−PVZK is a PVZK protocol with a soundness error of ϵΠMQ−PVZK

. Model the hash functions
H,H1,H2 as random oracles with output of length 3λ-bit, 2λ-bit respectively and the pseudorandom
generator PRG∗2 as a random oracle. Then chosen-message adversary against the signature scheme

Shorter VOLEitH Signature from MQ 21

Inputs: A secret key sk = (sd,x) and a message m ∈ {0, 1}∗.
Parameters:

– A finite field Fp where MQp,n,n holds; r ∈ N, N = pr.
– k, t ∈ N such that HUHF ⊆ Ft×(k+t)

p be a family of k-hiding, p−t-universal hash function.
– PRG : {0, 1}λ → Fk+t

p , PRG∗
1 : {0, 1}2λ → Ft×(k+t)

p , PRG∗
2 : {0, 1}2λ → Fτ

pr .
– H1,H2 : {0, 1}∗ → {0, 1}2λ, H3 : {0, 1}∗ → {0, 1}3λ.

Initialization.

– Parse sk as (sd,x);
– Let (Ai)i≤n ← PRG1(sd), (bi)i≤n ← PRG2(sd);
– Set yi ← xTAix+ bT

i x.
– Sample r ←r {0, 1}λ, (K, seed)←r H3(sk, r). // H3 is pseudorandom generator
– Set K← (K0,K1). // K is the key of multi-instance PPRF, seed is root of PPRF

Phase 1. Establishes VC(N, τ):

– Establish τ − PPRFK.
– VC.Commit(seed, 1λ)→ (hcom, decom, (sdij)i∈[0,τ),j∈[0,N)).

Phase 2.

– Define U,V ∈ F(k+t)×τ
p as follow:

U =

[
N−1∑
i=0

PRG(sd0i) · · ·
N−1∑
i=0

PRG(sdτ−1
i)

]
, V = −

[
N−1∑
i=0

j · PRG(sd0i) · · ·
N−1∑
i=0

i · PRG(sdτ−1
i)

]

– Define u := U0 and C := [U1 − u∥ · · · ∥Uτ−1 − u] ∈ F(k+t)×(τ−1)
p .

Phase 3.

1. h1 ← H1(m,K,C, hcom);
2. HUHF ← PRG∗

1(h1);
3. Define ũ = HUHF · u, Ṽ = HUHF ·V.

Phase 4.

1. Run step 1 − 4 of ΠMQ−DVZK in Figure 3 by using first k-coordinates of u and k-rows of V, get
γ ∈ Fn

p and (QS0,QS1) ∈ Fτ
pr ;

2. h2 ← H2(m,K, h1, ũ, Ṽ, γ,QS0,QS1);
3. ∆← PRG∗

2(h2), define ∆ = (∆0, · · · ,∆τ−1).
4. Compute pdecomI ← VC.Open

(
decom, I = ∪τ−1

i=0 [0, N) \ {∆i}
)
.

Phase 5.
Output σ =

(
K, h1, h2,C, (γ,QS0,QS1), (ũ, Ṽ), pdecomI

)
. // for Ṽ, only need to send its collision-

resistant hash value.

Fig. 7. Signing algorithm of the signature scheme

depicted in Figure 7, running in time t, making qs signing queries, and making q0, q1, q2, q3 queries,
respectively, to the random oracles H,H1,H2 and PRG∗2, succeeds in outputting a valid forgery with
probability

Pr[Forge] ≤ qs
23λ

+
qs (qs + q1 + q2 + q3)

22λ
+

(q + q1 + q2)
2

22λ
+ ϵMQ + ϵΠMQ−PVZK

+ AdvMulHiding
A,VC [qs]

Proof. We start by proving the following formula

AdvEUF-CMA
A ≤ AdvEUF-KO

A +
qs
23λ

+
qs (qs + q1 + q2 + q3)

22λ
+ AdvMulHiding

A,VC [qs]

Let us consider an adversary A against the EUF-CMA property of the signature scheme, where
A plays the game in EUF-CMA security and can access signing oracle qs times. To prove security we

22 Dung Bui

Inputs: A public key pk = (Ai,bi, yi)i≤n, a message m ∈ {0, 1}∗ and a signature σ.

1. Split the signature as follows:(
K, h1, h2,C, (γ,QS0,QS1), (ũ, Ṽ), pdecomI

)
;

2. Recompute HUHF ← PRG∗
1(h1) via a pseudorandom generator using h1.

3. Recompute ∆ = (∆0, · · · ,∆τ−1) via a pseudorandom generator using h2.

4. Recompute hcom from (K, pdecomI) by expanding PPRFK tree.

5. Verifies vector commitment VC if
– VC.Verify (hcom, I, pdecomI) =⊥, then outputs REJECT.
– VC.Verify (hcom, I, pdecomI) = (sdij)i∈[0,τ),j∈[Ii].

6. Compute:

W =

[
N−1∑
i=0

(i−∆0) · PRG(sd0i) · · ·
N−1∑
i=0

(i−∆τ−1) · PRG(sdτ−1
i)

]

7. Run step 5− 7 of ΠMQ−DVZK in Figure 3. If the output is ACCEPT then check if

Ṽ + ũ · [1 · · · 1] · diag(∆) = HUHF · (W + [0∥C] · diag(∆))

8. Check if h1 ← H1(m,K,C, hcom);

9. Check if h2 ← H2(m,K, h1, ũ, Ṽ, γ,QS0,QS1);

10. Output ACCEPT if three conditions are satisfied.

Fig. 8. Verification algorithm of the signature scheme

will define a sequence of experiments involving A, where the first corresponds to the experiment in
which A interacts with the real signature scheme, and the last one is an experiment in which A is
using only a random element independent from the witness.

– Game 0 (Gm0). This corresponds to the actual interaction of A with the real signature scheme.
We need to bound the probability of what we’ll call Forge, i.e. the event that A can generate a
valid signature for a message that was not previously queried to the signing oracle.

– Game 1 (Gm1). We abort if K ∈ {0, 1}2λ and seed ∈ {0, 1}λ collide with the value sampled in
any the previous queries from OSign. Since (K, seed) are sampled randomly from {0, 1}2λ×{0, 1}λ
in each query to OSign. Then

|Pr[Gm0(Forge)]− Pr[Gm1(Forge)]| ≤ qs
23λ

Game 2 (Gm2). For this step, we abort if the values queried to H1,H2,PRG
∗
2 collide with the

values queried in any of the previous queries to hash functions H1,H2,PRG
∗
2. We can bound the

distinguishable probability of this game and previous game by

|Pr[Gm1(Forge)]− Pr[Gm2(Forge)]| ≤ qs · (qs + q1 + q2 + q3)

22λ

Game 3 (Gm3). The difference with the previous game is that now before signing a message we
choose uniformly random values h1, h2 and ∆∗. Since all computations are computed as before
and the only change compared to the previous game is that we set the output of H1 as h1, the
output of H2 as h2 and the output of PRG∗2(h2) as ∆∗ then the difference in forgery probability
is due to the event that query to H1, H2 or PRG∗2 was ever made before but in this scenario Game
2 aborts, so

Pr[Gm2(Forge)] = Pr[Gm3(Forge)]

Game 4 (Gm4). In this game we sample at random the ∆∗i−th seed sd∆∗
i

and pdecomi (the related
co-path CoPath∆∗

i
). From (pdecomi)i∈[0,τ) and sd∆∗

i
, we can compute all (sdij)i∈[0,τ),j∈[0,N). Note

Shorter VOLEitH Signature from MQ 23

that now all (sdij)i∈[0,τ),j∈[0,N) are random. Therefore, (U,V,u,C) executed in an actual way is
random. Distinguishing between this game and the previous one is perfectly equivalent to breaking
the qs-multi-hiding security of the VC:

|Pr[Gm3(Forge)]− Pr[Gm4(Forge)]| ≤ AdvMulHiding
A,VC [qs]

Game 5 (Gm5). In this game, we will change Phase 4 by making the signer use the simulator
SimV

ΠMQ−DVZK
against the semi-honest verifier described in Theorem 19 to produce the simulated

values (γ,QS0,QS1). We have

Pr[Gm4(Forge)] = Pr[Gm5(Forge)]

We see that at the end of this game, the signature σ produced from OSign is no longer dependent
on the sk so we can reduce to the EUF-KO games.
Game 6 (AdvEUF-KOA). We say that an execution e∗ of a query

h2 ← H2(m,K, h1, ũ, Ṽ, γ,QS0,QS1)

defines a correct witness if the following criteria are satisfied:
• h1 was output by a previous query

h1 ← H1(m,K,C, hcom)

• hcom in this query was output by a previous query

(hcom, decom, (sdij)i∈[0,τ),j∈[0,N))← VCH,H1 .Commit(seed, 1λ)

• The vectors ũ, Ṽ is defined such that

Ṽ + ũ · [1 · · · 1] · diag(∆) = HUHF · (W + [0∥C] · diag(∆))

• The vector x defined by γ,QS0,QS1 satisfies MQp,m,n.
We observe that:
• The probability of finding preimage or collisions of H,H1,H2 is bounded by (q + q1 + q2)

2/22λ.
• If there is an execution e∗ that defines a correct witness. Calling this event Solve then
Pr[Solve] ≤ ϵMQ + ϵΠMQ−PVZK

, since if it occurs then γ,QS0,QS1 define a solution for the
MQp,m,n.

In the end, we obtain

AdvEUF-KO
A ≤ (q + q1 + q2)

2

22λ
+ ϵMQ + ϵΠMQ−PVZK

Putting all game hops together, we conclude the proof

AdvEUF-CMA
A ≤ qs

23λ
+

qs (qs + q1 + q2 + q3)

22λ
+

(q + q1 + q2)
2

22λ
+ ϵMQ + ϵΠMQ−PVZK

+ AdvMulHiding
A,VC [qs]

⊓⊔

5.3 Parameters and Signature Size

Parameters and Optimizations. In this section, we explain how to select parameters for our new
signature scheme with a security level of λ.

– The field size of Fp and Fpr depends on the security of MQp,m,n problem to ensure the security level
of λ bits. For feasible implementation, Fp is chosen as an extension field of F2 and subfield of F2λ .
We run the estimator from [BMSV22,EVZB23] to estimate the running time and memory usages of
the existing attack algorithms for the MQ problem, where we choose the number of unknowns and
the number of equations being equal (m = n) and other parameters for each algorithm is chosen
default by the estimator. For the memory representation, following from [Wan22], observe that
when choosing p, n for a given security level if n decreases as q increases — but n log p will slightly
increase. Since the asymptotic signature size is proportional to n log p therefore the signature size
also increases if p increases. However, larger p dramatically reduces n as the multivariate quadratic
equations so the memory storage also is reduced. Concretely, [Wan22] found the speed of their
signature over F4 is faster than that over F2, even though multiplication requires more bitwise
operations. We choose the parameter choice for both p = 2 and p = 4 in Table 1 according to the
best attacks for each choice of parameters.

24 Dung Bui

– The repetitions τ ∈ N, instead of running a VOLEitH protocol to achieve a security level of λ
which costs O(2λ) computation, we can run several parallel τ -instances of the VOLEitH protocol
over smaller extension fields Fpr instead of a field of size O(2λ). Since QuickSilver is applied
and the challenge space is Fτ

pr , from the Theorem 16, the underlying DVZK (Figure 3) achieves
soundness error of O(2−λ) if (

3

pr

)τ

= 2−λ

Since the speed of the singing algorithm is dominant by establishing τ vector commitments of
length N = pr then the choice for τ offers tradeoffs between signature size and running time. A
small τ means computing fewer VOLEitH protocols and hence a smaller signature size (because
signature size scales in the number of VOLE instances) but at the cost of larger values pr and
hence more computational work for the signer and verifier and as reverse for a large τ it leads to
less computational work for the signer and verifier.

– SoftspokenOT parameters, we use a sVOLE constructed from SoftspokenOT of length (n+r ·τ+t)
where first n-sVOLE correlations are used to hide the witness of length n, next r · τ -sVOLE
correlations are for nullity check for polynomial set using Quicksilver and last t-correlations is
added more to make sure verifier learns nothing about u in VOLE consistent checks. Specifically,
this check reveals a (n + r · τ + t) linear function of u to the verifier, which needs to hide the
underlying witness. From Proposition 12 and the universal hash function HUHF ∈ Ft×(n+r·τ+t)

p is
defined as a form of [H∥It] where H←r Ft×(n+r·τ)

p , t needs to be chosen such that p−t = O(2−λ).3

Public key size. Our public key size includes a seed sd ∈ {0, 1}λ that is used to get MQ instance
(Ai,bi)i≤n by using PRG and (yi)i≤n ∈ Fn

p as yi := xTAix + bT
i x where x is hidden secret in

MQp,n,n. This leads to a public key size of (λ+ n log p) bits.

Signature size. The signer generates the signature σ which consists of:

– The key K ∈ {0, 1}2λ for multi-instances PPRF, 2 hash values h1, h2 ∈ {0, 1}2λ.
– The vector C ∈ F(k+t)×(τ−1)

p , i.e., τ − 1 correction strings C0, . . . ,Cτ−1 where k = n+ r · τ .
– The hashed VOLE secrets ũ, Ṽ. This is used in the VOLE consistency check later. Note that

instead of sending Ṽ directly, the signer can send a collision-resistant hash of this. This saves
some communication as Ṽ is quite large, and it still allows to verify since the verifier can simply
compute Ṽ (from ∆, ũ, W) and check that its hash matches the collision-resistant hash sent by
the signer.

– The QuickSilver proof part γ ∈ Fn
p (to hide witness) and (QS0,QS1) ∈ Fτ

pr .
– The partial pdecomI = {CoPathK(∆i, seed

i), comi
∆i
}i<τ for each of the τ -PPRF instances, opening

all positions except ∆ = (∆0, . . . ,∆τ−1) ∈ Fτ
pr .

The signature size is

(τ − 1) · (n+ r · τ + t) · log p︸ ︷︷ ︸
C

+ t︸︷︷︸
ũ

+n · log p︸ ︷︷ ︸
γ

+2 · τ · r · log p︸ ︷︷ ︸
QS0,QS1

+2 · λ︸︷︷︸
Ṽ

+2 · λ︸︷︷︸
K

+ 4 · λ︸︷︷︸
h1,h2

+ τ · r · log p · λ︸ ︷︷ ︸
CoPath

+2 · τ · λ︸ ︷︷ ︸
comi

∆i

We show in Table 3 the estimated size of our signature for three levels of security (using Python
script), we choose the set parameters (r,N, τ) of VOLEitH protocol such that the efficiency still is
competitive (keeping N = 256 and N = 16 for short and fast versions respectively) and the MQ
parameter based on Table 1. Compared to other VOLEitH-based signatures, our signature size is
slightly smaller, for security level I, our smallest signature size is 3792B, while [CLY+24] (based on
regular syndrome decoding assumption) and FAEST (based on AES OWF) have a signature size of
3916B and 5006B respectively [CLY+24].

3 More details, p−t = O(2−λ−B) where B = 16 is added to compensate the extra few bits of security loss
ϵHash =

(
τ
2

)
in the proof of the SoftSpokenVOLE protocol from [BBD+23].

Shorter VOLEitH Signature from MQ 25

Table 3. The signature size in Bytes of our signature for three NIST security levels where τ is the number
of repetitions, r is the degree of extension field and N = pr is the width of PPRF tree, using two MQp,n,n

instances for each security level with p = 2 and p = 4.

Category Variant MQ parameters VOLEitH parameters Size
p m = n r N τ Public key Signature

I
Our-L1short

2 150 8 256 19 35 B 4209 B
4 88 4 256 17 38 B 3792 B

Our-L1fast
2 150 4 16 43 35 B 6697 B
4 88 2 16 33 38 B 5103 B

III
Our-L3short

2 224 8 256 28 52 B 9180 B
4 128 4 256 25 56 B 8230 B

Our-L3fast
2 224 4 16 65 52 B 15077 B
4 128 2 16 49 56 B 11205 B

V
Our-L5short

2 320 8 256 37 72 B 16166 B
4 160 4 256 33 72 B 14298 B

Our-L5fast
2 320 4 16 86 72 B 26701 B
4 160 2 16 65 72 B 19545 B

5.4 Efficiency and Instantiation

In this section, we show how we instantiate our signature to have a competitive performance. We
note that since our signature works over the extension field of F2 instead of a prime field (F31,F251

as in [BFR23]) then operations can be transferred to XOR and AND operations.
The computational cost for the signer is dominant by:

– Establishing the vector commitment VC(N, τ) and then computing the vector U,V from the
output of VC(N, τ).

– Executing the role of P in the underlying DVZK protocol (Figure 3) by using inputs (U,V).

For the verifier, the computational work is dominant by:

– Verifying the vector commitment VC(N, τ) by splitting the signature and recomputing the chal-
lenge set ∆ = (∆0, . . . ,∆τ−1) for VC and then computing W as a component of sVOLE correla-
tion.

– Executing the role of V in the underlying DVZK protocol (Figure 3) by using the inputs (∆,W).

Vector commitment Efficiency. There are two parameters to constructing a vector commitment:
the number of leaves in one PPRF-tree and the number of repetitions τ of the PPRF-tree to have
described soundness for a given security level. For efficient computation, we always fix the number of
leaves of PPRF-tree N = 256 to get the shortest signature and N = 16 to get a signature with fast
speed, and τ varies depending on the security level, i.e., for λ = 128, τ ranging from 17-19 for the
short version and from 33-43 for the fast version.

We use the construction of multi-instance PPRF of [BCC+24] to instantiate our vector com-
mitment. Taking advantage of hardware support for AES fix-key, [BCC+24] has a better 14 − 18%
performance compared to other GGM-tree PPRF in other existing MPCitH-based signatures such
as [AGH+23], as the methodology under the hood of using PPRF in VOLEitH and MPCitH are
similar, multi-instance PPRF has a similar performance when dropping into VOLEitH. In [BCC+24],
the expansion of the PPRF-tree is constructed by PRG : x→ (AESK0(x),AESK1(x)), x is the value of
parent node and the left child and right child are defined by (AESK0

(x) and AESK1
(x) respectively,

the key K = (K0,K1) is fixed for all τ -PPRF instances.
In total, the computation cost to establish a vector commitment (VC.Commit) includes:

– Expanding PPRF-tree: (1/2 · N · τ) calls to (AESK0 ,AESK1) which AES-NI can instantiate, for
N · τ ranging from 211 to 213 it is speedy since encrypting by AES-NI only takes 1.3 cycles per
Byte [MSY21].

– Obtaining commitment: N ·τ calls to a hash function H with output 3λ and τ calls to a hash func-
tion H1 with output 2λ, these hash functions can instantiated by SHAKE as in [BBD+23,CLY+24].
Using SHAKE to get commitments is unavoidable since the adversary in the forgery attack can
query polynomial times to vector commitment, leading to the output domain of commitment
being at least 2λ for a security level λ.

26 Dung Bui

DVZK Efficiency. The computation work of the prover and the verifier intuitively are the same as
in Quicksilver-based polynomial satisfiability [YSWW21] for a batch of degree-2 polynomial over the
field Fp and the extension field Fpr by repeating τ times. The dominant computational cost of prover
and verifier in protocol ΠMQ−DVZK are computing (Ai,0,Ai,1)i≤m ∈ (Fpr)τ and (Bi)i≤m ∈ (Fpr)τ .

When using the Lagrange interpolation approach to compute the coefficients (Ai,0,Ai,1), we
have that the computational complexity of the prover and verifier is O(4mz + 2n) and O(2mz)
respectively [YSWW21], where z = mn(n + 3)/2 is the maximum number of terms in all MQp,m,n

problem. In total, the prover and verifier needs to do O(τn3) multiplications over Fpr (m = n) that
is competitive since N = pr ∈ {16, 256}, τ is small and m,n are MQ parameters (Table 1).

Acknowledgement

We would like to thank Geoffroy Couteau (IRIF), Thibauld Feneuil (CryptoExperts), Kelong Cong
(Zama), and Lawrence Roy (Aarhus University) as well as the Faest team (faest.info) for their
advice and insightful comments.

This work is supported by DIM Math Innovation 2021 (N°IRIS: 21003816) from the Paris Math-
ematical Sciences Foundation (FSMP) funded by the Paris Ile-de-France Region.

References

AGH+23. C. Aguilar Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, and D. Yue. The return of the
SDitH. In EUROCRYPT 2023, Part V, LNCS 14008, pages 564–596. Springer, Heidelberg, April
2023.

BBD+23. C. Baum, L. Braun, C. Delpech de Saint Guilhem, M. Klooß, E. Orsini, L. Roy, and P. Scholl.
Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head. In
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V, Lecture
Notes in Computer Science 14085, pages 581–615. Springer, 2023.

BBM+24. C. Baum, W. Beullens, S. Mukherjee, E. Orsini, S. Ramacher, C. Rechberger, L. Roy, and
P. Scholl. One tree to rule them all: Optimizing ggm trees and owfs for post-quantum signa-
tures. Cryptology ePrint Archive, Paper 2024/490, 2024. https://eprint.iacr.org/2024/490.

BCC+24. D. Bui, E. Carozza, G. Couteau, D. Goudarzi, and A. Joux. Short signatures from regular
syndrome decoding, revisited. Cryptology ePrint Archive, Paper 2024/252, 2024. https://
eprint.iacr.org/2024/252.

BCdSG24. D. Bui, K. Cong, and C. D. de Saint Guilhem. Improved all-but-one vector commitment with
applications to post-quantum signatures. Cryptology ePrint Archive, Paper 2024/097, 2024.
https://eprint.iacr.org/2024/097.

BCG+19. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators: Silent OT extension and more. In CRYPTO 2019, Part III, LNCS 11694,
pages 489–518. Springer, Heidelberg, August 2019.

Beu20. W. Beullens. Sigma protocols for mq, pkp and sis, and fishy signature schemes. In 39th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10–14, 2020, Proceedings, Lecture Notes in Computer Science 12105. Springer, 2020.

Beu21. W. Beullens. Improved cryptanalysis of uov and rainbow. page 348–373, Berlin, Heidelberg, 2021.
Springer-Verlag.

Beu22. W. Beullens. Breaking rainbow takes a weekend on a laptop. Cryptology ePrint Archive, Paper
2022/214, 2022. https://eprint.iacr.org/2022/214.

BFR23. R. Benadjila, T. Feneuil, and M. Rivain. Mq on my mind: Post-quantum signatures from the
non-structured multivariate quadratic problem. Cryptology ePrint Archive, Paper 2023/1719,
2023. https://eprint.iacr.org/2023/1719.

BGI14. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In
PKC 2014, LNCS 8383, pages 501–519. Springer, Heidelberg, March 2014.

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and extensions. In
ACM CCS 2016, pages 1292–1303. ACM Press, October 2016.

BMRS21. C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl. Mac’n’cheese: Zero-knowledge proofs
for boolean and arithmetic circuits with nested disjunctions. In CRYPTO 2021, Part IV, LNCS
12828, pages 92–122, Virtual Event, August 2021. Springer, Heidelberg.

BMSV22. E. Bellini, R. H. Makarim, C. Sanna, and J. A. Verbel. An estimator for the hardness of the MQ
problem. In AFRICACRYPT 22, LNCS 2022, pages 323–347. Springer Nature, July 2022.

https://eprint.iacr.org/2024/490
https://eprint.iacr.org/2024/252
https://eprint.iacr.org/2024/252
https://eprint.iacr.org/2024/097
https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2023/1719

Shorter VOLEitH Signature from MQ 27

CCJ23. E. Carozza, G. Couteau, and A. Joux. Short signatures from regular syndrome decoding in the
head. In EUROCRYPT 2023, Part V, LNCS 14008, pages 532–563. Springer, Heidelberg, April
2023.

CHR+16. M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe. From 5-pass MQ-based
identification to MQ-based signatures. In ASIACRYPT 2016, Part II, LNCS 10032, pages 135–
165. Springer, Heidelberg, December 2016.

CKPS00. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving overdefined
systems of multivariate polynomial equations. In EUROCRYPT 2000, LNCS 1807, pages 392–
407. Springer, Heidelberg, May 2000.

CLY+24. H. Cui, H. Liu, D. Yan, K. Yang, Y. Yu, and K. Zhang. Resolved: Shorter signatures from
regular syndrome decoding and vole-in-the-head. Cryptology ePrint Archive, Paper 2024/040,
2024. https://eprint.iacr.org/2024/040.

DS05. J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature scheme. In ACNS
05, LNCS 3531, pages 164–175. Springer, Heidelberg, June 2005.

EVZB23. A. Esser, J. Verbel, F. Zweydinger, and E. Bellini. CryptographicEstimators: a software library
for cryptographic hardness estimation. Cryptology ePrint Archive, Paper 2023/589, 2023. https:
//eprint.iacr.org/2023/589.

Fen22. T. Feneuil. Building mpcith-based signatures from mq, minrank, rank sd and pkp. Cryptology
ePrint Archive, Paper 2022/1512, 2022. https://eprint.iacr.org/2022/1512.

FJR22. T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head: Shorter signatures from zero-
knowledge proofs. In CRYPTO 2022, Part II, LNCS 13508, pages 541–572. Springer, Heidelberg,
August 2022.

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO’86, LNCS 263, pages 186–194. Springer, Heidelberg, August 1987.

IKOS07. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty
computation. In 39th ACM STOC, pages 21–30. ACM Press, June 2007.

JV17. A. Joux and V. Vitse. A crossbred algorithm for solving Boolean polynomial systems. Cryptology
ePrint Archive, Report 2017/372, 2017. https://eprint.iacr.org/2017/372.

KKW18. J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge with applications
to post-quantum signatures. In ACM CCS 2018, pages 525–537. ACM Press, October 2018.

MSY21. J.-P. Münch, T. Schneider, and H. Yalame. Vasa: Vector aes instructions for security applications.
Cryptology ePrint Archive, Paper 2021/1493, 2021. https://eprint.iacr.org/2021/1493.

Roy22. L. Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt
model. In CRYPTO 2022, Part I, LNCS 13507, pages 657–687. Springer, Heidelberg, August
2022.

Sho94. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th
FOCS, pages 124–134. IEEE Computer Society Press, November 1994.

Wan22. W. Wang. Shorter signatures from mq. Cryptology ePrint Archive, Paper 2022/344, 2022.
https://eprint.iacr.org/2022/344.

WWCY22. Z. Wang, Y. Wang, Y. Chen, and J. Yang. Poster: Fingerprint-face friction based earable au-
thentication. In ACM CCS 2022, pages 3487–3489. ACM Press, November 2022.

WYKW21. C. Weng, K. Yang, J. Katz, and X. Wang. Wolverine: Fast, scalable, and communication-efficient
zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE Symposium on Security
and Privacy, pages 1074–1091. IEEE Computer Society Press, May 2021.

YSWW21. K. Yang, P. Sarkar, C. Weng, and X. Wang. QuickSilver: Efficient and affordable zero-knowledge
proofs for circuits and polynomials over any field. In ACM CCS 2021, pages 2986–3001. ACM
Press, November 2021.

https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2023/589
https://eprint.iacr.org/2023/589
https://eprint.iacr.org/2022/1512
https://eprint.iacr.org/2017/372
https://eprint.iacr.org/2021/1493
https://eprint.iacr.org/2022/344

	Shorter VOLEitH Signature from Multivariate Quadratic

