
LLRing: Logarithmic Linkable Ring Signatures with
Transparent Setup

Xiangyu Hui and Sid Chi-Kin Chau∗

CSIRO Data61, Australia
xiangyu.hui@data61.csiro.au, sid.chau@acm.org

April 22, 2024

Abstract. Linkable ring signatures are an important cryptographic primitive for anonymized
applications, such as e-voting, e-cash and confidential transactions. To eliminate backdoor and
overhead in a trusted setup, transparent setup in the discrete logarithm or pairing settings has
received considerable attention in practice. Recent advances have improved the proof sizes and
verification efficiency of linkable ring signatures with a transparent setup to achieve logarithmic
bounds. Omniring (CCS ’19) and RingCT 3.0 (FC ’20) proposed linkable ring signatures in the
discrete logarithm setting with logarithmic proof sizes with respect to the ring size, whereas
DualDory (ESORICS ’22) achieves logarithmic verifiability in the pairing setting. We make
three novel contributions in this paper to improve the efficiency and soundness of logarithmic
linkable ring signatures: (1) We identify an attack on DualDory that breaks its linkability. (2) To
eliminate such attacks, we present a new linkable ring signature scheme in the pairing setting
with logarithmic verifiability. (3) We also improve the verification efficiency of linkable ring
signatures in the discrete logarithm setting, by a technique of reducing the number of group
exponentiations for verification in Omniring by 50%. Furthermore, our technique is applicable
to general inner-product relation proofs, which might be of independent interest. Finally, we
empirically evaluate our schemes and compare them with the extant linkable ring signatures in
concrete implementation.

Keywords: Zero-knowledge Proofs, Ring Signatures, Linkability, e-Voting, Confidential Trans-
actions, Logarithmic Verificability, Pairing

1 Introduction

Ring signatures [RST01] ensure the anonymity of a signer with respect to an ad hoc group of public
keys, which enable applications like anonymous whistle-blowing. To strengthen ring signatures, link-
able ring signatures further guarantee that each anonymous signature can only be used at most once
to eliminate duplication. For example, linkable ring signatures can prevent double voting in e-voting
and double spending in confidential transactions. Nowadays, linkable ring signatures have been exten-
sively utilized on blockchains to enable confidential transactions. For example, Zerocash [BsCG+14]
and Monero [Noe15] use linkable ring signatures to unlink the sender and recipient in a transaction,
while using a tag that is unique to each public key to prevent double spending by the same key.

In the past, trusted setup, requiring a trusted third-party (or a group of appointed distributed
parties) to generate structured reference strings for setup, has been employed in ring signatures
[AOS02,ACJT00,BBS04,DKNS04]. Such generation will entail a security backdoor or incur cumber-
some setup overhead. Transitioning into a scheme with a transparent setup without entrusting to a
third-party is critical for enabling decentralized trustless applications of e-voting, e-cash and other
blockchain based applications.

Recently, new linkable ring signature schemes with a transparent setup have been developed in
the discrete logarithmic setting ([LRR+19, YSL+20]). Further improvements have been made by
pairing-friendly finite groups [BEHM22]. Particularly, certain functions of pairing have been provi-
sioned through pre-compiled contracts on blockchain platforms [eth17]. In this paper, we focus on the
improvement on verification efficiency. In decentralized systems, such as blockchain platforms, the
computational overhead of verification will present a significant performance bottleneck. Inefficient
verification computation of linkable ring signatures often incurs costly gas fees from miners. Hence,

*Corresponding author: Sid Chi-Kin Chau (sid.chau@acm.org)

mailto:xiangyu.hui@data61.csiro.au
mailto:sid.chau@acm.org
mailto:sid.chau@acm.org

2 Xiangyu Hui and Sid Chi-Kin Chau

improving verification efficiency is paramount to the successful deployment of linkable ring signatures
in practice.

Regarding to the context of our work, we highlight several recent linkable ring signature schemes
as follows:

• Discrete Logarithm Setting: Omniring [LRR+19] and RingCT 3.0 [YSL+20] proposed linkable
ring signatures in the discrete logarithm setting with logarithmic proof sizes in terms of the ring
size. Both schemes are based on Bulletproofs [BBB+18] (a popular recursive proof system for
inner-product relations that compresses a linearly sized proof to a logarithmically sized one).

• Pairing Setting: DualDory [BEHM22] improved the efficiency of ring signatures in the pairing
setting with logarithmic verifiability. DualDory is based on DualRing [YEL+21] and Dory [Lee21]
(a recent recursive proof system for inner-product relations with logarithmic verifiability by lever-
aging precomputation).

Note that post-quantum ring signature schemes [YEL+21,LLNW16,BKP20] based on lattice problems
were also proposed in the literature, but they normally require a considerably larger proof size and
higher verification overhead. In this paper, we focus on the discrete logarithm or pairing settings for
the sake of concrete efficiency and practical implementability on today’s blockchain platforms.

Our Contributions. In this paper, we present two novel linkable ring signature schemes (LLRing–
P and LLRing–DL). First, we identify an attack on the linkability of DualDory. The linkability of
DualDory is attained by normalizing the public keys with a commitment of a known secret key. We
show that an attacker can exploit the knowledge of more than two secret keys to enable a malleability
attack to pass verification with an unrelated secret key.

To eliminate such attacks, we present a new linakble ring signature scheme LLRing-P in the pairing
setting. Our idea is to restrict the selection of a known secret key by a unit basis vector in a similar
manner as Omniring, but replacing Bulletproofs by Dory in the pairing setting. However, we need to
overcome some obstacles with Dory, as it requires pre-defined generators for precomputation, unlike
the ones with Bulletproofs. We remark that our technique for logarithmically verifiable linkable ring
signatures also applies to logarithmically verifiable range proofs, which may be of independent interest.

Furthermore, we present LLRing-DL in the discrete logarithm setting that improves the verification
efficiency of Bulletproofs-based linkable ring signatures (e.g., Omniring, RingCT 3.0). The verification
time of Bulletproofs critically depends on the number of performed group exponentiations. We present
a general technique to halve the number of group exponentiations in Bulletproofs at the expense of
double proof sizes. The effect of our technique is on par with SwiftRange [WCL24], but is applicable
to general inner-product relation proofs, which might be of independent interest. We then leverage
precomputation to reduce the number of group exponentiations for verification.

We summarize our contributions in this paper as follows:

▶ We identify an attack on DualDory to break its linkability.
▶ We present LLRing-P, a linkable ring signature scheme in the pairing setting with logarithmic

verifiability.
▶ We present LLRing-DL to improve the verification efficiency of linkable ring signatures in the

discrete logarithm setting, by reducing the number of group exponentiations for verification in
Omniring by 50%.

Note that both LLRing-DL and LLRing-P are able to improve verification efficiency by leveraging
precomputation, which is ring-dependent but signature-independent.

Comparison to Related Work. This work provides significant improvements over the past studies
of linkable ring signatures. Early linkable ring signatures rely on trusted setups acting on fixed rings
[AOS02,ACJT00,BBS04,DKNS04]. Recent linkable ring signatures can be set up transparently with
updatable rings. The state-of-the-art studies are on optimizing the space and computational efficiency
of linkable ring signatures with a transparent setup.

In particular, we compare several extant ring signature schemes in Table 1. One-out-of-many
[GK15] is the first transparent scheme that achieves a logarithmic proof size, albeit with a super-
linear proving time. [ACF21] utilizes compressed Σ-protocol to enable k-out-of-n proofs. Their ap-
proach is not indicated to support linkability. Omniring [LRR+19] and RingCT 3.0 [YSL+20] are two
similar Bulletproofs-based schemes with logarithmic proof sizes, but the verification takes 2n group

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 3

Table 1: A comparison of various linkable/non-linkable ring signature schemes.
Scheme Setting Proof Size Verification Time Proving Time Linkable

1-out-of-Many [GK15] DL 3 logn |G| n G Exps n logn G Exps ✓

Compressed k-out-of-n [ACF21] DL 2 logn |G| 3n G Exps 4n G Exps ✗

RingCT 3.0 [YSL+20] DL 2 logn |G| 2n G Exps 10n G Exps ✓

Omniring [LRR+19] DL 2 logn |G| 2n G Exps 10n G Exps ✓

DualRing-EC [YEL+21] DL 2 logn |G| n G Exps 4n G Exps ✗

DualDory [BEHM22] SXDH 6 logn |GT | 10 logn GT Exps 10n P+ 5n G Exps ✗a

(PreCompb: 2n P)
LLRing-DL (This work) DL 4 logn |G| n G Exps 10n G Exps ✓

(PreComp: n G Exps)
LLRing-P (This work) SXDH 6 logn |GT | 10 logn GT Exps 10n P+ 4n G Exps ✓

(PreComp: 2n P+ n G Exps)
Note: We only state the most significant terms in our performance estimation. n is the ring size. |G| means group elements,
|GT | means target group elements, G Exps means group exponentiations, GT Exps means target group exponentiations and P
means pairing operations. aAn attack on the linkability of DualDory is identified in this paper. bIn addition to verification

for each signature, the verifier also performs ring-dependent (but signature-independent) precomputation in advance.

exponentiations. DualRing [YEL+21] is a space-efficient but unlinkable scheme. DualDory [BEHM22]
builds on DualRing and Dory to achieve logarithmic verifiability. However, it suffers from an attack
on the linkability, as identified in this paper. Our LLRing schemes improve upon the previous schemes
with faster verification time (which takes n group exponentiations - the fastest in discrete logarithm
setting, and attains O(log n) verification runtime in the pairing setting).

Paper Organization. Sec. 2 provides a technical overview of our results. Sec. 3 presents the prelim-
inaries and formal models of linkable ring signatures. Sec. 4 presents an attack on DualDory. Sec. 5
explains the Omniring scheme. Secs. 6 and 7 present LLRing schemes in discrete logarithm and pairing
settings, respectively. Sec. 8 empirically evaluates our schemes and compares them with Omniring
in concrete implementation. Sec. 9 concludes this paper. Some technical proofs are deferred to the
Appendix. We implemented LLRing in Java and released the source code publicly on [HC].

2 Technical Overview

First, we define some basic notations, before we provide a technical overview of our results.

Vectors. Denote a cyclic group of prime order p by G, and a ring of integers modulo p by Zp. Let
Z∗p ≜ Zp\{0}. We denote a vector in bold font with an arrow symbol and its coordinates in normal
font. For example, a⃗ ≜ (a1, ..., an) ∈ Zn

p denotes a scalar vector and G⃗ ≜ (G1, ..., Gn) ∈ Gn denotes
a vector of generators from a finite group.

Define the following basic vector operations:

• a⃗+ b⃗ ≜ (a1 + b1, ..., an + bn) ∈ Zn
p

• a⃗ ◦ b⃗ ≜ (a1 · b1, ..., an · bn) ∈ Zn
p

• G⃗ ◦ H⃗ ≜ (G1 ·H1, ..., Gn ·Hn) ∈ Gn

• G⃗◦a⃗ ≜ (Ga1
1 , ..., Gan

n) ∈ Gn

• G⃗a⃗ ≜
∏

i∈[n] G
ai
i ∈ G

Denote G⃗L ≜ (G1, ..., Gn
2
) and G⃗R ≜ (Gn

2 +1, ..., Gn) as the left-half and right-half sub-vectors of G⃗.

Bilinear Pairing. A bilinear pairing is a mapping e : G1 × G2 → GT between two groups G1,G2

and a target group GT (all of prime order p), satisfying the following:

• Bilinearity: For any P,Q ∈ G1, R,S ∈ G2, a, b ∈ Zp:

e(P a ·Qb, R) = e(P,R)a · e(Q,R)b, e(P,Ra · Sb) = e(P,R)a · e(P, S)b

• Non-degeneracy: If P is a generator of G1 and R is a generator of G2, then e(P,R) is a generator
of GT .

• Computability: There exists an efficient algorithm to compute e(P,R) for any P ∈ G1, R ∈ G2.

4 Xiangyu Hui and Sid Chi-Kin Chau

As a result, we can define an inner-product relation via bilinear pairing for given pair (Ω⃗ ∈ Gn
1 , Θ⃗ ∈

Gn
2 , c⃗ ∈ Zn

p) by:
e(Ω⃗, Θ⃗) ≜

∏
i∈[n]

e(Ωi, Θi), e(Ω⃗, Θ⃗)c⃗ ≜
∏
i∈[n]

e(Ωi, Θi)
ci (1)

Ring Signature. A ring signature scheme enables a member of an ad hoc group to sign a message
anonymously within the group. A public key is constructed by pk = P sk ∈ G from a secret key
sk ∈ Zp. Let n be the size of a ring of public keys. We denote p⃗k as a set of public keys. Given
p⃗k = (pki)i∈[n], the prover aims to prove that he knows i∗ ∈ [n] and sk ∈ Zp, such that pki∗ = P sk.

In the following, we briefly explain the high-level ideas of our results and linkable ring signature
schemes.

2.1 Attack on DualDory

The basic idea of DualDory is that a prover first commits in advance, Cm[sk] and X ≜ p̃k−c⃗, where
p̃k ≜ (p̃ki ≜

Cm[sk]
pki

)i∈[n] and we set ci∗ = 0 when pki∗ = P sk, otherwise ci is a random number. We
ignore zero knowledge for the moment. Next, the verifier issues a challenge requiring c̃ =

∑
i∈[n] ci.

The prover needs to set ci∗ ≜ c̃−
∑

i̸=i∗ ci and reveal c⃗ to the verifier. Then, the prover can provide
a proof-of-knowledge of a secret key in p⃗k by a Schnorr proof-of-knowledge on p̃kc⃗ ·X = Cm[sk]

pki∗
.

However, if an attacker knows more than one secret key in p⃗k, then he has more than one degree
of freedom in setting c⃗ for the summation constraint of c̃. This enables a malleability attack on p̃kc⃗ ·X,
which can pass the verification of Schnorr proof-of-knowledge with arbitrary sk in Cm[sk]. Note that
the possibility of an attacker knowing more than one secret key in the ring is common, because any
public keys can be provided by the users and the users may collude to share secret keys.

2.2 LLRing-P Linkable Ring Signature Scheme

To prevent an attacker’s exploitation of more than one known secret key in p⃗k, one can restrict c⃗
to be a unit basis vector, such that ci∗ = 1, when pki∗ = P sk, otherwise ci = 0. This idea has been
utilized in Omniring, which applies Bulletproofs to check if c⃗ is a unit basis vector.

In this paper, we seek to replace Bulletproofs by Dory to realize logarithmic verifiability. However,
there are obstacles in adapting the Bulletproofs approach to Dory. Particularly, Bulletproofs checks
the conformity of a unit basis vector by G⃗l⃗ · (H⃗(y))r⃗ · K ⟨⃗l,⃗r⟩ ?

= Z, where (⃗l, r⃗) encode c⃗ and its
complement, and H⃗(y) are generators that depend on verifier-supplied challenge y. But Dory relies
on precomputation with only pre-defined signature-independent generators. The same inner-product
relation can not be adopted in Dory.

Hence, we devise a new approach in LLRing-P, without the adapting Bulletproofs approach. First,
LLRing-P checks the conformity of a unit basis vector by ⟨⃗c, 1⃗⟩ ?

= 1 and c⃗ ◦ (⃗c − 1⃗)
?
= 0⃗, which can

be checked via bilinear pairing: e(L⃗′, L⃗)c⃗ ?
= e(L′, L) and e(G⃗, H⃗)c⃗◦c⃗

?
= e(G⃗, H⃗)c⃗, where L′, L, G⃗, H⃗

are randomly selected generators. Then, we carefully integrate these bilinear pairing equations with
a proof-of-knowledge of a secret key in the ring, which can be checked by Dory with logarithmic
verifiability.

2.3 LLRing-DL Linkable Ring Signature Scheme

We also improve the verification efficiency of Omniring by a variant of Bulletproofs. In typical Bul-
letproofs, the generators (G⃗, H⃗) are distinct to prevent non-trivial logarithmic relations in G⃗l⃗ · H⃗r⃗,
which incurs 2n group exponentiations in the single multi-exponentiation. We observe that an inner-
product relation can be separately checked by G⃗l⃗ ?

= Z1 and H⃗r⃗ · K ⟨⃗l,⃗r⟩ ?
= Z2. As a result, we can

set identical generators G⃗ = H⃗. Using random linear combination, the two separate relations can be
checked together in a single multi-exponentiation, which only takes n group exponentiations, at the
expense of doubling the proof size.

However, when we apply this variant of Bulletproofs to Omniring, we also need to account for
pre-processing generators G⃗ ≜ p⃗kw ◦ R⃗, where w is a verifier-supplied challenge. The pre-processing

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 5

of generators G⃗ also takes n group exponentiations, if not handled in the single multi-exponentiation.
In LLRing-DL, we are able to precompute G⃗ in advance for each ring by different generators without a
verifier-supplied challenge. Hence, LLRing-DL only takes n group exponentiations for verification and
n group exponentiations for (ring-dependent but signature-independent) precomputation.

3 Preliminaries and Models

In this section, we present the preliminaries and define the formal models of linkable ring signa-
tures. Let λ be the security level parameter and negl(λ) be a negligible function of λ. PPT denotes
“probabilistic polynomial time”. “ $←−” denotes a uniformly random selection from a set.

Commitment Schemes. A commitment scheme is a mapping Cm :Mn × R → C from a (vector)
message spaceMn and a random mask space R to a commitment space C. A commitment scheme is
homomorphic, if for any m⃗1, m⃗2 ∈Mn, r1, r2 ∈ R:

Cm(m⃗1; r1) · Cm(m⃗2; r2) = Cm(m⃗1 + m⃗2; r1 + r2)

Definition 1 (Computationally Hiding). A commitment scheme is computationally hiding, if a
commitment does not reveal the message for any PPT adversary A:∣∣∣∣∣Pr

b′ = b

(m⃗1, m⃗2)← A,
r

$←− R, b $←− {1, 2},
c← Cm(m⃗b; r), b

′ ← A[c]

− 1
2

∣∣∣∣∣ ≤ negl(λ)

A commitment scheme is perfectly hiding, if negl(λ) = 0.

Definition 2 (Computationally Binding). A commitment scheme is computationally binding, if
a commitment opens to only one message for any PPT adversary A:

Pr

[(
Cm(m⃗1; r1) = Cm(m⃗2; r2)

)
∧ m⃗1 ̸= m⃗2

m⃗1
$←−M, r⃗1

$←− R,
(m⃗2, r2)← A[m⃗1, r1]

]
≤ negl(λ)

A commitment scheme is perfectly binding, if negl(λ) = 0.

Pedersen commitment and AFGHO commitment are two homomorphic commitment schemes that
are perfectly hiding and computationally binding.

Definition 3 (Pedersen Commitment). Let M = Zn
p , R = Z∗p and C = G of order p. Let

G⃗
$←− Gn, Q

$←− G be randomly selected generators. Define Pedersen commitment by

Cm(m⃗; r) ≜ G⃗m⃗ ·Qr =
(∏

i∈[n]

Gmi
i

)
·Qr

Definition 4 (AFGHO Commitment). Let M = Zn
p , R = Z∗p and C = GT of order p. Let

G⃗
$←− Gn

1 , Λ⃗
$←− Gn

2 , Q1
$←− G1, Q2

$←− G2 be randomly selected generators. Let Q ≜ e(Q1, Q2). Define
AFGHO commitment by

Cm(m⃗; r) ≜ e(G⃗, Λ⃗)m⃗ · Qr =
(∏

i∈[n]

e(Gi, Λi)
mi

)
· Qr

We sometimes write CmP [m; r] as a generic commitment with generators P $←− G (or G1) and L
$←− G2:

CmP [m; r] ≜

{
Pm ·Qr, for Pedersen commitment
e(P,L)m · Qr, for AFGHO commitment

where Pedersen commitment or AFGHO commitment can be implied from the context.

Cryptographic Assumptions. We define several cryptographic assumptions as follows. The DDH
assumption implies the CDH assumption, which implies the DLog assumption. The SXDH assumption
implies the DPair and DDH assumptions.

6 Xiangyu Hui and Sid Chi-Kin Chau

Definition 5 (Discrete Logarithm (DLog)). The DLog assumption holds for any PPT adversary A:

Pr

[
x⃗← A[G⃗],

G⃗x⃗ = η

G← Setup[1λ],

G⃗
$←− G

]
≤ negl(λ)

As a result of the DLog assumption, non-trivial discrete logarithm relations among random generators
G⃗ cannot be discovered by any PPT adversary.

Definition 6 (Computational Diffie–Hellman (CDH)). Given a random generator G
$←− G and

a tuple (Ga, Gb), where (a, b)
$←− Z∗2p are selected at random, the CDH assumption holds, if Gab is

computationally hard for any PPT adversary.

Definition 7 (Decisional Diffie–Hellman (DDH)). Given a random generator G
$←− G and a

tuple (Ga, Gb, Gc), where (a, b, c)
$←− Z∗3p are selected at random, the DDH assumption holds, if Gc is

computationally indistinguishable from Gab for any PPT adversary.

Definition 8 (Symmetric External Diffie-Hellman (SXDH)). Given a bilinear pairing e : G1×
G2 → GT and random generators G

$←− G1, H
$←− G2, the SXDH assumption holds, if the DDH as-

sumption holds for G1 and G2, and the following distributions are computationally indistinguishable
for any PPT adversary:

1. Tuple (G,Ga, H,Hb, e(G,H)ab) where (a, b)
$←− Z∗2p

2. Tuple (G,Ga, H,Hb, T) where (a, b)
$←− Z∗2p , T

$←− GT

Definition 9 (Double Pairing (DPair)). Given a bilinear pairing e : G1×G2 → GT and a random
element vector G⃗ $←− Gn

1 , the DPair assumption holds, if it is computationally hard to produce H⃗ ∈ Gn
2

for any PPT adversary, such that e(G⃗, H⃗) = 1.

Zero-Knowledge Arguments of Knowledge. An argument system is consisted of three PPT
algorithms (G,P,V), where G is the setup algorithm for public parameters pp, P and V are the prover
and verifier algorithms. Denote the communication transcript between the prover and verifier by
tr← ⟨P(·),V(·)⟩. At the end, the transcript will produce a binary decision: Accept[tr] ∈ {0, 1}.

Denote a polynomial-time decidable tertiary relation by R ⊂ {0, 1}∗3. A language dependent on
pp is defined as L pp

R ≜ {x | ∃ω : (pp, x, ω) ∈ R}, where ω is a witness for a statement x in the
relation (pp, x, ω) ∈ R. A key class of argument systems are zero-knowledge arguments of knowledge
(e.g., ring signatures).

Definition 10 (Argument of Knowledge). An argument system (G,P,V) is called an argument
of knowledge for relation R, if it satisfies the perfect completeness (Definition (11)) and CWE (Def-
inition (12)).

Definition 11 (Completeness). An argument system (G,P,V) satisfies completeness, if for any
PPT adversary A:

Pr

Accept[tr]
= 1

pp← G(1λ),
(pp, x, ω) ∈ R,

tr← ⟨P(pp, x, ω),V(pp, x)⟩

 ≥ 1− negl(λ)

An argument system satisfies perfect completeness, if negl(λ) = 0.

We are interested in knowledge sound arguments. Informally, if an adversary produces an accept-
able argument with some probability, there exists an emulator that produces a similar argument and
a witness with the same probability. This is captured by the notion of CWE.

Definition 12 (Computational Witness-Extended Emulation (CWE)). An argument system
(G,P,V) satisfies CWE, if there exists an expected polynomial-time emulator E, such that for any
interactive adversaries A1,A2:∣∣∣∣∣Pr
A1[tr] = 1

pp← G(1λ),
(x, w̃, P̃)← A2[pp],

tr← ⟨P̃(pp, x, w̃),V(pp, x)⟩

− Pr

 A1[tr
′] = 1

∧
(
Accept[tr′] = 1 ⇒
(pp, x, w′) ∈ R

) pp← G(1λ),
(x, w̃, P̃)← A2[pp],
(tr′, w′)← EO[pp, x]

 ∣∣∣∣∣ ≤ negl(λ)

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 7

where P̃ is a deterministic polynomial-time algorithm, A1[tr] recognizes the transcripts that are pro-
duced by P̃, and O is a rewindable oracle that can rewind the transcript ⟨P̃(pp, x, w̃),V(pp, x)⟩ and
control the randomness in V.

Definition 13 (Public Coin). An argument system (G,P,V) is called public-coin, if the verifier
chooses her messages uniformly at random, independent from the messages sent by the prover. Let
e be the public-coin challenge. The transcript of a public-coin argument system is defined as tr =
⟨P(pp, x, ω),V(pp, x; e)⟩.

Definition 14 (Computationally Special Soundness). An argument system (G,P,V) is compu-
tationally γ-special sound, if there exists an efficient extractor X , such that for any PPT adversary
A:

Pr

(∧γ
i=1 Accept[tri] = 1

)
⇒

(pp, x, ω) ∈ R

pp← G(1λ),(
x, (tri)

γ
i=1

)
← A[pp],

ω ← X [pp, x, (tri)γi=1]

 ≥ 1− negl(λ)

A (2µ+1)-move, public-coin interactive argument system is computationally (γ1, ..., γµ)-special sound,
if there exists an efficient extractor capable of producing a witness ω with probability 1− negl(λ) for a
given statement x provided with a set of accepting transcripts arranged in a (γ1, ..., γµ)-tree structure,
which represents

∏µ
i=1 γi accepting transcripts, such that the nodes representing the prover’s messages,

the edges representing the verifier’s challenges, and the paths from the root to leaf nodes representing
the accepting transcripts.

Lemma 15 (Forking Lemma [BCC+16]). Let (G,P,V) be a (2µ+1)-move, public-coin interactive
argument system. Let X be an efficient extractor that succeeds with probability 1−negl(λ) in extracting
a witness from a (γ1, ..., γµ)-tree of accepting transcripts. If

∏µ
i=1 γi is bounded above by a polynomial

in λ, then (G,P,V) satisfies CWE.

By Forking Lemma (Lemma (15)), it suffices to show CWE by computationally (γ1, ..., γµ)-special
soundness.

We are also interested in zero-knowledge arguments that do not leak the information about the
witness beyond what can be inferred from the truth of the statement.

Definition 16 (Special Honest-Verifier Zero-Knowledge (SHVZK)). A public-coin argument
system (G,P,V) satisfies SHVZK, if there exists an efficient simulator S, such that for any PPT
adversary A:∣∣∣∣∣Pr
 Accept[tr]

= 1
∧ (pp, x, ω) ∈ R

pp← G(1λ),
(x, ω, e)← A[pp],

tr← ⟨P(pp, x, ω),V(pp, x; e)⟩

− Pr

 Accept[tr]
= 1

∧ (pp, x, ω) ∈ R

pp← G(1λ),
(x, ω, e)← A[pp],
tr← S[pp, x; e]

 ∣∣∣∣∣ ≤ negl(λ)

Definition 17 (Fiat-Shamir Transformation). A multi-move interactive public-coin argument of
knowledge can be converted to a non-interactive argument of knowledge by replacing the public-coin
challenges with the output of a cryptographic hash function. The hash function will produce seemingly
random output and can be a suitable replacement for the verifier.

The Fiat-Shamir transformation can be applied to make our interactive protocols non-interactive
using the random oracle model in the security proofs [FS87]. This is especially useful for reducing a
logarithmic number of moves to a single move.

3.1 Ring Signature Schemes

As a special class of zero-knowledge arguments of knowledge, ring signature schemes allow a member of
an ad hoc group to sign a message anonymously within the group by a publicly verifiable signature. A
ring is a set of known public keys, whose corresponding secret keys remain private with the individual
members. A public key is constructed by pk = P sk ∈ G (or G1) from a secret key sk ∈ Zp. Given a
ring p⃗k = (pki)i∈[n], the prover aims to prove that i∗ ∈ [n] and sk ∈ Zp, such that pki∗ = P sk.

8 Xiangyu Hui and Sid Chi-Kin Chau

Note that this paper considers interactive ring signature protocols, which can be converted to non-
interactive publicly verifiable ring signature schemes via Fiat-Shamir transformation by replacing the
verifier-supplied challenges by hashes of the previous commitments and messages [FS87].

Moreover, we consider prefix-dependent ring signature schemes in this paper. Let F be a set of
feasible prefixes, which may represent a set of potential topics or domains that a ring signature will
be applied to.

A ring signature scheme commonly consists of the following methods:

• Setup[1λ] 7→ pp: This method is given a security level parameter λ and produces a public param-
eter pp to set up the scheme.

• KeyGen[pp] 7→ (p⃗k, s⃗k): This method is given a public parameter pp and produces a set of n

randomly selected public keys p⃗k and the corresponding secret keys s⃗k.
• Sign[pp, p⃗k, f,m, sk] 7→ σ: This method is given a public parameter pp, a ring p⃗k, a prefix f ∈ F ,

a message m and a secret key sk corresponding to one of the public keys in p⃗k. It produces a
signature σ.

• Verify[pp, p⃗k, f,m, σ] 7→ {0, 1}: This method checks if the message m and signature σ are con-
sistent under prefix f, and σ is signed by a secret key corresponding to one of the public keys in
p⃗k. It returns 1 for a valid signature or 0 otherwise.

To model the adversary’s behavior, we define two oracles that an adversary can access to. The
corruption oracle captures the scenarios, where an adversary can obtain the secret key from a corrupt
source. The signing oracle captures the scenarios, where the adversary can observe the signatures
from an honest user given the public key, but not his secret key.

Definition 18 (Corruption Oracle CO). When CO is queried with a public key pk, it returns its
corresponding secret key sk. After the query, CO adds pk to the set p⃗kCO.

Definition 19 (Signing Oracle SO). When SO is queried with a public parameter pp, a prefix f,
a message m and a public key pk, it returns a signature σ using the corresponding secret key sk and
method Sign. After the query, SO adds {σ, (f, pk)} to the set ΣSO.

We define three major security properties for a ring signature scheme [BDH+19,BEHM22]. Com-
pleteness captures the notion of correctness, if executed faithfully. Anonymity captures the notion
that no adversary can distinguish the signatures from two different secret keys in a way better than
random guessing, even though with full access to the secret keys in the ring. Unforgeability captures
the notion that no adversary can forge a valid signature without knowing the secret key, even though
he can observe the signatures from an honest user or access the other secret keys from the ring.

Definition 20 (Completeness). A ring signature satisfies completeness, if

Pr

Verify[pp, p⃗k, f,m, σ] = 1

pp← Setup(1λ),

(p⃗k, s⃗k)← KeyGen[pp],

f ∈ F , sk ∈ s⃗k,

σ ← Sign[pp, p⃗k, f,m, sk]

 ≥ 1− negl(λ)

A ring signature scheme satisfies perfect completeness, if negl(λ) = 0.

Definition 21 (Anonymity). A ring signature satisfies anonymity (against full key exposure), if
for any PPT adversary A such that

∣∣∣∣∣∣∣∣Pr

b′ ← A[pp, p⃗k, f,m, σ],

b′ = b
∧ i1 ̸= i2

∧ (pki1 , pki2) ⊆ p⃗k∗

∧ σ /∈ ΣSO

pp← Setup(1λ),

(p⃗k, s⃗k)← KeyGen[pp],

(i1, i2, f,m, p⃗k∗)← ACO,SO[pp, p⃗k],

b
$← {1, 2},

σ ← Sign[pp, p⃗k∗, f,m, skib]

− 1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ)

Definition 22 (Unforgeability). A ring signature satisfies unforgeability, if for any PPT adver-
sary A such that

Pr

Verify[pp, p⃗k′, f,m, σ] = 1

∧ p⃗k′ ⊆ p⃗k\p⃗kCO
∧ σ /∈ ΣSO

pp← Setup(1λ),

(p⃗k, s⃗k)← KeyGen[pp],

(p⃗k′, f,m, σ)← ACO,SO[pp, p⃗k]

 ≤ negl(λ)

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 9

3.2 Prefix Linkable Ring Signature Schemes

Prefix linkable ring signature schemes provide an additional method to link any pair of signatures if
they are signed from the same secret key under a given prefix:

• Link[pp, f, σ, σ′] 7→ {0, 1}: This method is given a public parameter pp and a pair of signatures
(possibly signing on different messages). It returns 1 if (σ, σ′) are signed from the same secret key
under prefix f or 0 otherwise.

We next define two additional security properties for a linkable ring signature scheme [BDH+19,
BEHM22]. Prefix linkability captures the notion that no adversary can generate n+1 valid but pairwise
unlinked signatures from n secret keys under the same prefix. Non-Slanderability captures the notion
that no adversary can forge a valid signature without knowing the secret key that is linked to an
honest user, by observing the signatures from an honest user or any other secret keys from the ring.

Definition 23 (Prefix Linkability). A linkable ring signature satisfies prefix linkability, if for any
PPT adversary A such that

Pr

Verify[pp, p⃗k, f,mi, σi]

= 1,∀i ∈ [n+ 1]
∧ Link[pp, f, σi, σj] = 0,
∀i ̸= j ∈ [n+ 1]

pp← Setup(1λ),

(p⃗k, s⃗k)← KeyGen[pp],

f ← ACO,SO[pp, p⃗k],

(mi, σi)i∈[n+1] ← ACO,SO[pp, p⃗k]

 ≤ negl(λ)

Definition 24 (Non-Slanderability). A linkable ring signature satisfies non-slanderability, if for
any PPT adversary A such that

Pr

Verify[pp, p⃗k, f,m′′, σ′′] = 1

∧ Verify[pp, p⃗k, f,m′, σ′] = 1
∧ Link[pp, f, σ′, σ′′] = 1

∧ σ′ /∈ ΣSO

pp← Setup(1λ),

(p⃗k, s⃗k)← KeyGen[pp],

(f,m′, σ′)← ASO[pp, p⃗k],
(m′′, σ′′)← ACO,SO[pp, p⃗k]

 ≤ negl(λ)

We follow a 2-staged definition [BDH+19] that allows the adversary to generate signature σ′′ with full
access to the secret keys after producing the “slandering" signature σ′.

Because of linkability, we adopt the following definition of anonymity from [BEHM22] that limits
adversary’s access to the secret keys and signing oracle. Otherwise, the adversary can break anonymity
through linkability.

Definition 25 (Linkable Anonymity). A linkable ring signature satisfies linkable anonymity, if
for any PPT adversary A such that∣∣∣∣∣∣∣∣∣∣

Pr

b′ ← A[pp, p⃗k, f,m, σ],

b′ = b ∧ i1 ̸= i2

∧ (pki1 , pki2) ⊆ p⃗k∗ ∩ p⃗k\p⃗kCO
∧ (f, pki1) /∈ ΣSO
∧ (f, pki2) /∈ ΣSO

pp← Setup(1λ),

(p⃗k, s⃗k)← KeyGen[pp],

(i1, i2, f,m, p⃗k∗)← ACO,SO[pp, p⃗k],

b
$← {1, 2},

σ ← Sign[pp, p⃗k∗, f,m, skib]

− 1
2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

3.3 Linkability Schema and Tags

To implement linkability in ring signatures, in this paper we follow a common schema from DualDory:

1. Secret Key Commitment: First, a signer commits the known secret keys by a Pedersen/AFGHO
commitment. The signer commits sk by

CmP [sk; rcm] ≜

{
P sk ·Qrcm , for Pedersen commitment
e(P,L)sk · Qrcm , for AFGHO commitment

where P
$←− G (or G1) and L

$←− G2.

10 Xiangyu Hui and Sid Chi-Kin Chau

2. Ring Signature Proof: Then, the signer provides a ring signature σ with a proof-of-knowledge
showing that the committed secret key (sk) correspond to a public keys in the ring p⃗k. The
details of ring signature proof construction will be explained in several linkable ring signature
schemes in the next sections.

3. Tags: The signer also provides a tag (tag), which is generated via a one-way tag function Tag[·]
from a prefix f and a secret key sk, such that method Link can track the list of used tags to
determine if sk has been used before under a given f. A tag should uniquely identify a signature
under the same prefix and secret key. Let Hash be a hash mapping from a prefix f to a group
element in a separate group G′. We define a prefix-dependent tag function by

Tag[f, sk] ≜ (Hash[f])sk ∈ G′

4. Tag Proof: Finally, the signer is required to provide a zero-knowledge proof-of-knowledge showing
the same secret keys in both the commitment and the tag. Fig. 1 presents a Schnorr proof-of-
knowledge to check if the same secret key present in Cm[sk] and tag. It is based on the tag proof
in [BEHM22].

Fig. 1: Zero-knowledge proof-of-knowledge tag proof

Πtag

[
f ∈ F, cm; sk ∈ Zk

p, rcm ∈ Z∗
p

]
P’s Input : cm ≜ Cm[sk; rcm] (2)

P : rB , a
$←− Z∗

p (3)

P ⇒ V : tag ≜ (Hash[f])sk ∈ G′
, A ≜ (Hash[f])a ∈ G′

, B ≜ Cm[a; rB] (4)

P ⇐ V : ρ
$←− Z∗

p (5)

P ⇒ V : a′ ≜ a + ρ · sk ∈ Zp, r′ ≜ rB + ρ · rcm ∈ Zp (6)

V : Check

{
(Hash[f])a

′ ?
= A · tagρi

Cm[a′; r′]
?
= B · cmρ

(7)

Theorem 26 ([BEHM22]). Πtag satisfies perfect completeness, perfect SHVZK and CWE under
the DLog assumption.

4 DualDory

In this section, we present DualDory and an attack to break its linkability. DualDory [BEHM22] is
a linkable ring signature scheme, based on non-linkable ring signature scheme DualRing [YEL+21],
which adds linkability to DualRing and applies Dory [Lee21] to compress the proof size and verification
time for inner-product relations.

In the following, we focus on the uncompressed construction of DualDory, which is an interactive
version of linkable DualRing, without using Dory. Uncompressed DualDory has a linear proof size
and linear verification time. Note that Dory only enhances efficiency by compressing the proof size
and verification time to be logarithmically bounded. But if uncompressed DualDory is not linkable,
then compressed DualDory is also not linkable.

The basic idea of DualRing is to treat the ring (p⃗k) as the generators in a commitment. The
prover first commits c⃗ as commitment X = (p⃗k)−c⃗, such that ci = 0 if the secret key to the i-th pki
is known, otherwise ci is random. After the commitment, the verifier issues a challenge c̃ requiring∑

i∈[n] ci = c̃. In order to satisfy this summation constraint, the prover needs to set the previously
zero-valued ci to be the difference of the previous sum and c̃. Finally, the prover reveals c⃗ and provides
a proof-of-knowledge of a secret key in p⃗k by a Schnorr proof-of-knowledge on (p⃗k)c⃗ ·X.

Recall that a public key is constructed by pki = P ski from a secret key sk ∈ Zp. Given p⃗k =
(pki)i∈[n], the prover aims to prove i∗ ∈ [n] and sk ∈ Zp, such that pki∗ = P sk.

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 11

Fig. 2: DualDory and an attack on its linkability

Πu.dd

[
p⃗k ∈ Gn

, f ∈ F ; sk ∈ Zp, i
∗ ∈ [n]

]
P : rcm, rX , c1, ..., ci∗−1, ci∗+1, ..., cn

$←− Z∗
p (8)

cm ≜ P
sk ·Qrcm ∈ G, p̃ki ≜

cm

pki
∀i ∈ [n], X ≜ Q

rX ·
∏

i∈[n]\{i∗}

p̃k
−ci
i ∈ G (9)

P ⇒ V : (cm, X) (10)

P ⇐ V : c̃
$←− Z∗

p (11)

P : cj ≜ c̃−
∑

i∈[n]\i∗
ci, r ≜ rX + rcmcj (12)

P ⇒ V : (c1, ..., cn, r) // The proof can be compressed by Dory (13)

V : Check

Qr ?
=X ·

∏
i∈[n] p̃k

ci
i

c̃
?
=
∑

i∈[n] ci
(14)

// The verification can be compressed by Dory

V & P : Run Πtag[f, cm; sk, rcm] (15)

(a) Uncompressed DualDory protocol

P′
: rcm, rX , c1, ..., cj1−1, cj1+1, ..., cj2−1, cj2+1, ...cn

$←− Z∗
p (16)

cm′ ≜ P
sk′ ·Qrcm ∈ G, p̃ki ≜

cm′

pki
∀i ∈ [n], X

′ ≜ Q
rX ·

∏
i∈[n]\{j1,j2}

p̃k
−ci
i ∈ G (17)

P′ ⇒ V : (cm′
, X

′
) (18)

P′ ⇐ V : c̃
$←− Z∗

p (19)

P′
: c

′ ≜ c̃−
∑

i∈[n]\{j1,j2}

ci, r′ ≜ rX + rcmc
′
, cj1 ≜

c′(sk′ − sk2)

sk1 − sk2
, cj2 ≜ c

′ − cj1 (20)

P′ ⇒ V : (c1, ..., cn, r
′
) (21)

V : Check

Qr′ ?
=X′ ·

∏
i∈[n] p̃k

ci
i

c̃
?
=
∑

i∈[n] ci
(22)

(b) Malleability attack on DualDory with a malicious prover P ′

DualDory extends DualRing by replacing the public keys by normalized ratios (p̃ki ≜ cm
pki

)i∈[n]

(where cm ≜ Cm[sk] is a commitment of the known secret key sk in the ring). The uncompressed
DualDory protocol is presented in Fig. 2a.

4.1 Malleability Attack on DualDory

We identify a possible attack to break the linkability of DualDory. The attack arises from the fact
that an attacker may know more than one secret key in the ring, because any public keys can be
provided by the users and the users may collude to share secret keys. Hence, an attacker can set
multiple zero-valued ci’s in commitment X. As a result, the attacker has more than one degree of
freedom of setting zero-valued ci’s to satisfy the summation constraint (

∑
i∈[n] ci = c̃), which enables

a malleability attack on the commitment (cm) to pass the verification of Schnorr proof-of-knowledge
with arbitrary sk′ in cm.

The attack on DualDory is presented in Fig. 2b. Let us explain how the attack works. We suppose
that a malicious prover (P ′) knows two different secret keys j1, j2 ∈ [n], such that pkj1 ≜ P sk1 and
pkj2 ≜ P sk2 . Now the prover can pass the verification using arbitrary sk′ in cm′ ≜ P sk′ ·Qrcm . We set
(cj1 , cj2) according to Eqn. (20). Hence, we obtain sk′(cj1 + cj2) = sk1cj1 + sk2cj2 , and

p̃k
cj1
j1 · p̃k

cj2
j2 =

(P sk′ ·Qrcm)cj1+cj2

P sk1cj1 · P sk2cj2
= Qrcm(cj1+cj2) = Qrcmc

′
(23)

12 Xiangyu Hui and Sid Chi-Kin Chau

Note that the falsified commitment (cm′) can pass the verification in Eqn (22) as follows:

Qr′ = QrX+rcmc
′
= QrX · p̃k

cj1
j1 · p̃k

cj2
j2 = QrX ·

∏
i∈[n]\{j1,j2}

p̃k
−ci
i ·

∏
i∈[n]

p̃k
ci

i (24)

The ramification of our attack is that Eqn (14) is not sufficient to guarantee prefix-linkability in
DualDory1. To mitigate such attacks, we will present a new linkable ring signature in the pairing
setting in Sec 7.

5 Omniring

Before presenting our schemes, we explain the ideas of Omniring. Omniring [LRR+19] is a confiden-
tial transaction system, which contains a linkable ring signature scheme. This section refers to the
Omniring linkable ring signature scheme.

We use a vector c⃗ to represent the private knowledge of the known secret key in a ring. In
Omniring, c⃗ needs to be a unit basis vector, such that ci ∈ {0, 1} for all i ∈ [n] and

∑
i∈[n] ci = 1,

i.e., ci = 1 represents the i-th secret key in the ring is known, or 0 otherwise. Omniring adopts
Bulletproofs [BBB+18] to prove c⃗ as a unit basis vector (in a similar way to how Bulletproofs is
applied to a range proof). Like DualDory, the prover first commits c⃗ to generators p⃗k, and then
applies a proof-of-knowledge of a secret key in the ring. Unlike DualDory, Omniring does not suffer
from the attack in Sec. 4.1, because c⃗ is restricted to be a unit basis vector, despite that an attacker
may know multiple secret keys in the ring. Fig. 3 presents the Omniring protocol.

In the following, we outline the key ideas of Omniring protocol.

1. Checking Unit Basis Vector. First, the prover commits a secret c⃗. The verifier checks if c⃗
is a unit basis vector by Bulletproofs. Specifically, the prover commits (⃗c, c⃗′) as A ≜ G⃗c⃗ · H⃗c⃗′ ·QrA ,
where c⃗′ ≜ c⃗− 1, the bit-wise complement of c⃗. The requirements that c⃗ is a unit basis vector and c⃗′

as its bit-wise complement can be checked by the following constraints for any given random challenge
y

$←− Z∗p and vector y⃗n ≜ (1, y, y2, ..., yn−1):
⟨⃗c, 1⃗⟩ ?

= 1

⟨⃗c− 1⃗− c⃗′, y⃗n⟩ ?
= 0

⟨⃗c, c⃗′ ◦ y⃗n⟩ ?
= 0

(25)

Note that Eqns (25) can be checked together by random linear combination with a given random
challenge z

$←− Z∗p:

z2 · ⟨⃗c, 1⃗⟩+ z · ⟨⃗c− 1⃗− c⃗′, y⃗n⟩+ ⟨⃗c, c⃗′ ◦ y⃗n⟩ ?
= z2 (26)

where 1⃗ is a vector with all entries as 1. Eqn (26) can be re-expressed as an inner-product relation:〈⃗
c− z · 1⃗, y⃗n ◦ (⃗c′ + z · 1⃗) + z2 · 1⃗

〉 ?
= δ(y, z) (27)

where δ(y, z) ≜ z2 + (z − z2) · ⟨1⃗, y⃗n⟩ − z3 · ⟨1⃗, 1⃗⟩.
To add zero knowledge to Eqn (27), the prover can mask c⃗ by c⃗ + x · s⃗1 and c⃗′ by c⃗′ + x · s⃗2,

where s⃗1, s⃗2
$←− Z∗np are random masks and x

$←− Z∗p is a random challenge. We define vectors l⃗, r⃗ as
the masked left and right vectors on LHS of Eqn (27).

Next, the verifier can utilize Bulletproofs, a compressed argument of knowledge protocol for check-
ing the inner-product relation of Eqn (27). The Bulletproofs protocol Πbp.ip is presented in Fig. 3b,
which is a recursive protocol for checking inner-product relation: Z ?

= G⃗l⃗ · H⃗r⃗ ·K ⟨⃗l,⃗r⟩, given Z ∈ G
and known generators G⃗, H⃗ ∈ Gn for some witnesses l⃗, r⃗ ∈ Zn

p .

2. Knowledge of Secret Key in the Ring. Second, to prove the knowledge of the secret key
of a public key in the ring, the prover reuses the commitment A (for proving (⃗c, c⃗′)) and sets the

1 Although [BEHM22] contains a proof on linkability, it makes an implicit assumption that the prover
commits only one zero-valued ci in X (see [HC24] for a detailed discussion).

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 13

Fig. 3: Omniring linkable ring signature protocol

Πonrg

[
p⃗k ∈ Gn

, f ∈ F ; sk ∈ Zp, i
∗ ∈ [n]

]
P : c⃗ ≜ (ci)i∈[n] where ci =

{
0, if i ̸= i∗

1, if i = i∗
(28)

c⃗
′ ≜ c⃗− 1⃗, rcm, r̂A

$←− Z∗
p (29)

P ⇒ V : cm ≜ P
sk ·Qrcm ∈ G, Â ≜ R⃗

c⃗ · H⃗c⃗′ ·Qr̂A ∈ G (30)

P ⇐ V : w
$←− Z+

p (31)

V & P : G⃗ ≜ p⃗k
w ◦ R⃗ ∈ Gn

, H⃗ ≜ R⃗ ∈ Gn (32)

P : rS
$←− Z∗

p, s⃗1, s⃗2
$←− Z∗n

p , rA ≜ w · rcm + r̂A ∈ Zp (33)

P ⇒ V : A ≜ G⃗
c⃗ · H⃗c⃗′ ·QrA ∈ G, S ≜ G⃗

s⃗1 · H⃗s⃗2 ·QrS ∈ G (34)

P ⇐ V : y, z
$←− Z∗

p (35)

P : t1 ≜ ⟨⃗s1, y⃗n ◦ (⃗c′
+ z · 1⃗)⟩+ ⟨⃗s1, z2 · 1⃗⟩+ ⟨⃗c, y⃗n ◦ s⃗2⟩ − ⟨z · 1⃗, y⃗n ◦ s⃗2⟩ ∈ Zp (36)

t2 ≜ ⟨⃗s1, y⃗n ◦ s⃗2⟩ ∈ Zp, τ1, τ2
$←− Z∗

p (37)

P ⇒ V : T1 ≜ F
t1 ·Qτ1 ∈ G, T2 ≜ F

t2 ·Qτ2 ∈ G (38)

P ⇐ V : x
$←− Z∗

p (39)

P : l⃗ ≜ c⃗ + x · s⃗1 − z · 1⃗ ∈ Zn
p , y⃗

−n ≜
(
y
−i+1)

i∈[n]
∈ Zn

p (40)

r⃗ ≜ y⃗
n ◦

(⃗
c
′
+ x · s⃗2 + z · 1⃗

)
+ z

2 · 1⃗ ∈ Zn
p (41)

P ⇒ V : t̂ ≜ ⟨⃗l, r⃗⟩ ∈ Zp, τx ≜ τ2 · x2
+ τ1 · x ∈ Zp, rW ≜ rA + rS · x ∈ Zp, W ≜ G⃗

l⃗ ·
(
H⃗

y⃗−n)⃗r ∈ G (42)

V : Check

A

?
= cmw · Â

F t̂ ·Qτx ?
= F δ(y,z) · Tx

1 · T
x2

2

W ·QrW
?
= A · Sx · G⃗−z·1⃗ ·

(
H⃗y⃗−n)z·y⃗n+z2·1⃗

(43)

V & P : Run Πbp.ip

[
n, G⃗, H⃗

y⃗−n
,W ·K t̂

; l⃗, r⃗
]

(44)

Run Πtag[f, cm; sk, rcm] (45)

(a) Omniring linkable ring signature main protocol

Πbp.ip

[
n ∈ Z+

, G⃗, H⃗ ∈ Gn
, Z ∈ G; l⃗, r⃗ ∈ Zn

p

]
IF n = 1

P ⇒ V : l(= l⃗), r(= r⃗) ∈ Zp (46)

V : t̂ ≜ l · r ∈ Zp, G(= G⃗) ∈ G, H(= H⃗) ∈ G (47)

Check G
l ·Hr ·K t̂ ?

= Z (48)
ELSE n > 1

P : t̂1 ≜
〈⃗
lR, r⃗L

〉
∈ Zp, t̂2 ≜

〈⃗
lL, r⃗R

〉
∈ Zp (49)

P ⇒ V : L ≜ G⃗
l⃗R
L · H⃗

r⃗L
R ·K

t̂1 ∈ G, R ≜ G⃗
l⃗L
R · H⃗

r⃗R
L ·K

t̂2 ∈ G (50)

P ⇐ V : α
$←− Z∗

p (51)

P : l⃗
′ ≜ l⃗L + α · l⃗R ∈ Z

n
2
p , r⃗

′ ≜ α · r⃗L + r⃗R ∈ Z
n
2
p (52)

V & P : G⃗
′ ≜ G⃗

α
L ◦ G⃗R ∈ G

n
2 , H⃗

′ ≜ H⃗L ◦ H⃗α
R ∈ G

n
2 (53)

V : Z
′ ≜ L

α2
· Zα · R ∈ G (54)

V & P : Run Πbp.ip

[
n
2 , G⃗

′
, H⃗

′
, Z

′
; l⃗

′
, r⃗

′
]

(55)

(b) Recursive Bulletproof protocol for checking inner-product relation: G⃗l⃗ · H⃗r⃗ ·K t̂ ?
= Z, such that t̂ = ⟨⃗l, r⃗⟩.

generators2 G⃗ ≜ p⃗kw ◦ R⃗, where w is random challenge and R⃗
$←− Gn are selected at random. The

prover must also commit Â ≜ R⃗c⃗ · H⃗c⃗′ ·Qr̂A = Ri∗ · H⃗c⃗′ ·Qr̂A , where i∗ ∈ [n] is the index of the known
secret key sk in the ring such that pki∗ = P sk. Then, the verifier can verify the knowledge of a secret

2 The setting of G⃗ ≜ p⃗kw ◦ R⃗ is to prevent an attacker with the knowledge of multiple secret keys to obtain
non-trivial discrete logarithmic relations, which will otherwise undermine the soundness of Bulletproofs.

14 Xiangyu Hui and Sid Chi-Kin Chau

key in the ring by checking: A ?
= cmw · Â, provided that rA = rcm + r̂A and c⃗ is a committed unit

basis vector in commitment A. The two steps of checking a unit basis vector and the knowledge of a
secret key in the ring can be combined into Omniring protocol Πonrg in Fig. 3a.

3. Single Multi-Exponentiation. Suppose n = 2m for some m ∈ Z∗. Although Bulletproofs
is a recursive protocol, we can collapse the recursions into a single multi-exponentiation at the final
step [BBB+18]. In particular, we set H⃗ ≜ R⃗. As a result, in the single multi-exponentiation, there
are 2n group exponentiations in Bulletproofs with generators (p⃗k, R⃗). The proof size of Bulletproofs
includes 2 log n G elements.

Remarks. Note that our description of Omniring protocol differs from the one in [LRR+19]. Here,
we use a commitment of the secret key, rather than via a tag function combined in Bulletproofs, which
is in line with the linkability schema of DualDory (see Sec. 3.3). As a result, the prover is required to
use the tag proof in Fig. 1 to establish linkability.

6 LLRing-DL Linkable Ring Signature Scheme

In this section, we present LLRing-DL linkable ring signature scheme, which improves the verification
efficiency of Omniring, reducing the number of group exponentiations to n, at the expense of doubling
the proof size to 4 log n G elements and precomputing n group exponentiations for each ring.

Particularly, we make the two following modifications to Omniring:

1. Segregated Bulletproofs. Recall that Omniring relies on Bulletproofs for proving inner-
product relations, which normally takes two distinct n-vectors of generators (G⃗, H⃗), and hence, needs
2n group exponentiations in the single multi-exponentiation at the final step. We present a variant of
Bulletproofs, which separates the inner-product relation (G⃗l⃗ · H⃗r⃗ ·K t̂ ?

= Z) into two parts and checks
them separately:

G⃗l⃗ ?
= Z1, H⃗r⃗ ·K t̂ ?

= Z2 (56)

Note that the above relations can be checked together by random liner combination:

(G⃗l⃗)θ · H⃗r⃗ ·K t̂ ?
= Zθ

1 · Z2 (57)

where θ is a random number only known to the verifier.
As a result, we can set G⃗ = H⃗ (because they are used to prove separate relations), and hence, n

group exponentiations may be needed in the single multi-exponentiation for one n-vector generators.
We present the segregated Bulletproofs in Fig 4b, which can be applied to proving general inner-

product relations with a reduced number of group exponentiations.

2. Re-defining Generators. Note that it is not sufficient to reduce the group exponentiations
in the verification of Omniring by setting G⃗ = H⃗ in the segregated Bulletproofs. Since G⃗ ≜ p⃗k

w
◦ R⃗

in Omniring, there are still 2n generators (p⃗k, R⃗) in the single multi-exponentiation.
Therefore, we set G⃗ ≜ p⃗k ◦ R⃗, where r⃗ = (ri ≜ Hash[pki])i∈[n] and R⃗ ≜ R⃗◦⃗r = (Rri)i∈[n].

This setting makes each Ri dependent on pki, and prevents an attacker from manipulating ski for a
malleability attack by exploiting a known discrete logarithm relation between pki and Ri.

In LLRing-DL, the verifier first precomputes R⃗ ≜ (Rri)i∈[n] and generators G⃗ = H⃗ ≜ p⃗k ◦ R⃗ for a
given ring p⃗k. Then, it applies segregated Bulletproof Πsbp.ip with only n group exponentiations in
the single multi-exponentiation with generators G⃗. Also, we need to separate the commitments of l⃗
and r⃗ in the linkable ring signature.

Note that setting G⃗ ≜ p⃗k
w
◦ R⃗ in Omniring and checking A

?
= cmw · Â can prevent the prover

from making an invalid commitment Â. In LLRing-DL, the prover commits Â ≜ Rj ·Qr̂A = Rri∗ ·Qr̂A .
To prevent the prover from making an invalid commitment Â, the verifier also requires an additional
Schnorr proof-of-knowledge (Πsch in Fig 5) for checking if some ri∗ is committed in Â as a valid
commitment.

Based on the above ideas, we develop the full protocol of LLRing-DL and present it in Fig 4.

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 15

Fig. 4: LLRing-DL linkable ring signature protocol

Πmlr.dl

[
p⃗k ∈ Gn

, f ∈ F ; sk ∈ Zp, i
∗ ∈ [n]

]
V & P : Pre-Compute (ri ≜ Hash[pki])i∈[n], R⃗ ≜ R⃗

◦⃗r
, G⃗ = H⃗ ≜ p⃗k ◦ R⃗

P : c⃗ ≜ (ci)i∈[n] where ci =

{
0, if i ̸= i∗

1, if i = i∗
(58)

c⃗
′ ≜ c⃗− 1⃗, rcm, r̂A

$←− Z∗
p (59)

P ⇒ V : cm ≜ P
sk ·Qrcm ∈ G, Â ≜ Rj ·Qr̂A = R

ri∗ ·Qr̂A ∈ G (60)

V & P : Run Πsch[Â, R; ri∗ , r̂A] (61)

P : rB , rS1
, rS2

$←− Z∗
p, s⃗1, s⃗2

$←− Z∗n
p , rA ≜ rcm + r̂A ∈ Zp (62)

P ⇒ V : A ≜ G⃗
c⃗ ·QrA ∈ G, S1 ≜ G⃗

s⃗1 ·QrS1 ∈ G, B ≜ H⃗
c⃗′ ·QrB ∈ G, S2 ≜ H⃗

s⃗2 ·QrS2 ∈ G (63)

P ⇐ V : y, z
$←− Z∗

p (64)

P : t1 ≜ ⟨⃗s1, y⃗n ◦ (⃗c′
+ z · 1⃗)⟩+ ⟨⃗s1, z2 · 1⃗⟩+ ⟨⃗c, y⃗n ◦ s⃗2⟩ − ⟨z · 1⃗, y⃗n ◦ s⃗2⟩ ∈ Zp (65)

t2 ≜ ⟨⃗s1, y⃗n ◦ s⃗2⟩ ∈ Zp, τ1, τ2
$←− Z∗

p (66)

P ⇒ V : T1 = F
t1 ·Qτ1 ∈ G, T2 = F

t2 ·Qτ2 ∈ G (67)

P ⇐ V : x
$←− Z∗

p (68)

P : l⃗ ≜ c⃗ + x · s⃗1 − z · 1⃗ ∈ Zn
p , y⃗

−n ≜
(
y
−i+1)

i∈[n]
∈ Zn

p (69)

r⃗ ≜ y⃗
n ◦

(⃗
c
′
+ x · s⃗2 + z · 1⃗

)
+ z

2 · 1⃗ ∈ Zn
p (70)

P ⇒ V : t̂ ≜ ⟨⃗l, r⃗⟩ ∈ Zp, τx ≜ τ2 · x2
+ τ1 · x ∈ Zp, rW1

≜ rA + rS1
· x ∈ Zp, rW2

≜ rB + rS2
· x ∈ Zp (71)

W1 ≜ G⃗
l⃗ ∈ G, W2 ≜

(
H⃗

y⃗−n)⃗r ∈ G (72)

V : Check

A

?
= cm · Â

F t̂ ·Qτx ?
= F δ(y,z) · Tx

1 · T
x2

2

W1 ·Q
rW1

?
= A · Sx

1 · G⃗
−z·1⃗

W2 ·Q
rW2

?
= B · Sx

2 ·
(
H⃗y⃗−n)z·y⃗n+z2·1⃗

(73)

V & P : Run Πsbp.ip

[
n, G⃗, H⃗

y⃗−n
, W1, W2 ·K t̂

; l⃗, r⃗
]

(74)

// Call segregated Bulletproofs protocol for inner-product relation proof

Run Πtag[f, cm; sk, rcm] (75)

(a) LLRing-DL linkable ring signature main protocol

Πsbp.ip

[
n ∈ Z+

, G⃗, H⃗ ∈ Gn
, Z1 ∈ G, Z2 ∈ G; l⃗, r⃗ ∈ Zn

p

]
IF n = 1

P ⇒ V : l(= l⃗), r(= r⃗) ∈ Zp (76)

V : t̂ ≜ l · r ∈ Zp, G(= G⃗) ∈ G, H(= H⃗) ∈ G, θ
$←− Z∗

p (77)

Check G
l·θ ·Hr ·K t̂ ?

= Z
θ
1 · Z2 (78)

ELSE n > 1

P : t̂1 ≜
〈⃗
lR, r⃗L

〉
∈ Zp, t̂2 ≜

〈⃗
lL, r⃗R

〉
∈ Zp (79)

P ⇒ V : L1 ≜ G⃗
l⃗R
L ∈ G, L2 ≜ H⃗

r⃗L
R ·K

t̂1 ∈ G, R1 ≜ G⃗
l⃗L
R ∈ G, R2 ≜ H⃗

r⃗R
L ·K

t̂2 ∈ G (80)

P ⇐ V : α
$←− Z∗

p (81)

P : l⃗
′ ≜ l⃗L + α · l⃗R ∈ Z

n
2
p , r⃗

′ ≜ α · r⃗L + r⃗R ∈ Z
n
2
p (82)

V & P : G⃗
′ ≜ G⃗

α
L ◦ G⃗R ∈ G

n
2 , H⃗

′ ≜ H⃗L ◦ H⃗α
R ∈ G

n
2 (83)

V : Z
′
1 ≜ L

α2

1 ·Z
α
1 ·R1 ∈ G, Z

′
2 ≜ L

α2

2 ·Z
α
2 ·R2 ∈ G (84)

V & P : Run Πsbp.ip

[
n
2 , G⃗

′
, H⃗

′
, Z

′
1, Z

′
2; l⃗

′
, r⃗

′
]

(85)

(b) Segregated Bulletproofs protocol for checking inner-product relation: G⃗l⃗ ?
= Z1 and H⃗r⃗ · K t̂ ?

= Z2, such
that t̂ = ⟨⃗l, r⃗⟩.

16 Xiangyu Hui and Sid Chi-Kin Chau

Fig. 5: Schnorr proof-of-knowledge for checking if some m is committed in cm as CmR[m; rcm]

Πsch

[
cm ∈ G, R ∈ G; m ∈ Zp, rcm ∈ Zp

]
P : rC

$←− Z∗
p, c

$←− Zp (86)

P ⇒ V : C ≜ Cm
R
[c; rC] (87)

P ⇐ V : ρ
$←− Z∗

p (88)

P ⇒ V : c′ ≜ c + ρ · m ∈ Zp, r′ ≜ rC + ρ · rcm ∈ Zp (89)

V : Check Cm
R
[c′; r′]

?
= C · cmρ (90)

LLRing-DL takes n group exponentiations for verification and n group exponentiations for ring-
dependent but signature-independent precomputation. The proof size of segregated Bulletproofs in-
cludes 4 log n G elements. Note that the precomputation is updatable, such that one only needs to
precompute the Ri’s for the new pki’s. If a ring is shared among multiple linkable ring signatures, the
precomputation can be amortized efficiently.

Theorem 27. Πsbp.ip satisfies computationally witness-extended emulation (CWE) or it can obtain
a non-trivial discrete logarithm relation.

Theorem 28. LLRing-DL satisfies perfect completeness, linkable anonymity, unforgeability, prefix
linkability, non-slanderability.

The proof can be found in Appendix 11.

Remarks. Segregated Bulletproofs Πsbp.ip can be applied to other proofs based on inner-product
relations (e.g., range proofs). For a range proof, it achieves n group exponentiations in verification (i.e.,
50% reduction in Bulletproofs range proof [BBB+18]) with a double proof size of Bulletproofs range
proof. Note that Swiftange [WCL24] recently proposes to use a quadratic compressed Σ-protocol for
range proofs with 50% reduction in group exponentiations and doubling the proof size of Bulletproofs
range proof. Segregated Bulletproofs achieves the same benefits of Swiftrange without using quadratic
compressed Σ-protocol.

7 LLRing-P Linkable Ring Signature Scheme

To eliminate the attacks on the linkability of DualDory, this section presents LLRing-P linkable ring
signature scheme with logarithmic verifiability in the pairing setting. We base on the unit basis
vector approach in Omniring by replacing Bulletproofs by Dory [Lee21], and Pedersen commitment
by AFGHO commitment.

However, there are some obstacles in adapting the Bulletproofs approach to Dory. Bulletproofs
checks the conformity of a unit basis vector by G⃗l⃗ ·(H⃗y⃗−n

)r⃗ ·K ⟨⃗l,⃗r⟩ ?
= Z. But H⃗y⃗−n

depend on verifier-
supplied challenge y. But Dory relies on precomputation with only pre-defined signature-independent
generators. This cannot be adopted in Dory.

Hence, we design LLRing-P to overcome these obstacles, without adopting the Bulletproofs ap-
proach. We outline the key ideas of LLRing-P as follows.

1. Checking Unit Basis Vector. First, the verifier can check if c⃗ is a unit basis vector (which
represents the knowledge of the known secret keys in the ring) by the following equations:{

⟨⃗c, 1⃗⟩ ?
= 1

c⃗ ◦ (⃗c− 1⃗)
?
= 0⃗

(91)

Note that Eqns (91) are equivalent to the following equations via bilinear pairing:
e(L⃗′, L⃗)c⃗ =

∏
i∈[n]

e(L′, L)ci
?
= e(L′, L),

e(G⃗, H⃗)c⃗◦c⃗ =
∏
i∈[n]

e(Gi, Hi)
ci·ci ?

=
∏
i∈[n]

e(Gi, Hi)
ci = e(G⃗, H⃗)c⃗

(92)

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 17

where G⃗
$←− Gn

1 , H⃗ $←− Gn
2 , L′ $←− G1, L

$←− G2, and L⃗′ ≜ (L′, ..., L′) ∈ Gn
1 , L⃗ ≜ (L, ..., L) ∈ Gn

2 .

2. Knowledge of Secret Key in the Ring. Suppose ri ≜ Hash[pki] and Ri ≜ Rri . To prove the
knowledge of pki∗ = P sk, the prover first commits via AFGHO commitments: cm ≜ e(P,L)sk · Qrcm
and Â ≜ e(R,L)ri∗ · Qr̂A . If c⃗ is a unit basis vector, then the verifier can check the knowledge of a
secret key in the ring by checking the following:

cm · Â = e(P sk ·Rri∗ , L) · Qrcm+r̂A ?
= e(p⃗k ◦ R⃗, L⃗)c⃗ · Qr (93)

where r ≜ rcm + r̂A is provided by the prover.

3. Compression by Dory. Next, we combine the two steps of checking a unit basis vector and
the knowledge of a secret key in the ring into one single protocol. Moreover, we will compress the
protocol by Dory to achieve logarithmic verifiability.

Dory [Lee21] is a compressed zero-knowledge argument of knowledge protocol with logarithmic
verification efficiency and proof size for checking the satisfiability of the following set of inner-product
relations:

D0
?
= e(Ω⃗, Θ⃗) · Qr0

D1
?
= e(Ω⃗, Λ⃗) · Qr1

D2
?
= e(Γ⃗, Θ⃗) · Qr2

(94)

where D0, D1, D2 ∈ GT are given commitments and Γ⃗
$←− Gn

1 , Λ⃗
$←− Gn

2 are known random generators,
and (Ω⃗ ∈ Gn

1 , Θ⃗ ∈ Gn
2 , r0, r1, r2 ∈ Z∗p) are the witnesses. We denote Dory protocol for checking

inner-product relations by Πdo.ip[n, Γ⃗, Λ⃗, D0, D1, D2; Ω⃗, Θ⃗, r0, r1, r2]. See Appendix 10 for a detailed
description of recursive Dory protocol Πdo.ip.

As in LLRing-DL, we set G⃗ ≜ p⃗k ◦ R⃗ and A ≜ cm · Â. To apply Dory, we incorporate the checking
of Eqns (92) and (93) into the checking of the following three sets of inner-product relations:

1. The first equation in Eqns (92) can be incorporated into the checking of the following set of
inner-product relations with given commitment A:

D′0 ≜ e(L′, L)
?
= e(Ω⃗′, Θ⃗′) · Qr′0

D′1 ≜ e(L⃗′, H⃗)
?
= e(Ω⃗′, H⃗) · Qr′1

D′2 ≜ A
?
= e(G⃗, Θ⃗′) · Qr′2

(95)

given commitments (D′0, D
′
1, D

′
2) and generators (G⃗, H⃗), and the witnesses are (Ω⃗′ = L⃗′, Θ⃗′ =

L⃗◦c⃗, r′0 = r′1 = 0, r′2 = rA).
2. The second equation in Eqns (92) can be incorporated into the checking of the following set of

inner-product relations with given commitment B ≜ e(G⃗, H⃗)c⃗ ·QrB that is provided by the prover:
D′′0 ≜ B

?
= e(Ω⃗′′, Θ⃗′′) · Qr′′0

D′′1 ≜ B
?
= e(Ω⃗′′, H⃗) · Qr′′1

D′′2 ≜ B
?
= e(G⃗, Θ⃗′′) · Qr′′2

(96)

given commitments (D′′0 , D′′1 , D′′2) and generators (G⃗, H⃗), and the witnesses are (Ω⃗′′ = G⃗◦c⃗, Θ⃗′′ =

H⃗◦c⃗, r′′0 = r′′1 = r′′2 = rB).
3. Finally, to ensure that the same c⃗ is involved in both commitments A and B, the verifier checks

the following set of inner-product relations:
D′′′0 ≜ A

?
= e(Ω⃗′′′, Θ⃗′′′) · Qr′′′0

D′′′1 ≜ B
?
= e(Ω⃗′′′, H⃗) · Qr′′′1

D′′′2 ≜ e(G⃗, L⃗)
?
= e(G⃗, Θ⃗′′′) · Qr′′′2

(97)

given commitments (D′′′0 , D′′′1 , D′′′2) and generators (G⃗, H⃗), and the witnesses are (Ω⃗′′′ = G⃗◦c⃗, Θ⃗′′′ =

L⃗, r′′′0 = rA, r
′′′
1 = rB , r

′′′
2 = 0).

18 Xiangyu Hui and Sid Chi-Kin Chau

Fig. 6: LLRing-P linkable ring signature protocol

Πmlr.p

[
p⃗k ∈ Gn

, f ∈ F ; sk ∈ Zp, i
∗ ∈ [n]

]
V & P : Pre-Compute r⃗ = (ri ≜ Hash[pki])i∈[n], R⃗ ≜ R⃗

◦⃗r
, G⃗ ≜ p⃗k ◦ R⃗, e(G⃗, L⃗), e(L⃗′, H⃗), e(L

′
, L) ∈ GT (98)

P : c⃗ ≜ (ci)i∈[n] where ci =

{
0, if i ̸= i∗

1, if i = i∗
(99)

rcm, r̂A, rB
$←− Z∗

p, rA ≜ rcm + r̂A (100)

P ⇒ V : cm ≜ e(P,L)
sk · Qrcm ∈ GT , Â ≜ e(R,L)

ri∗ · Qr̂A ∈ GT , B ≜ e(G⃗, H⃗)
c⃗ · QrB ∈ GT (101)

V & P : Run Πsch[Â, R; ri∗ , r̂A] (102)

V : A ≜ cm · Â (103)

V & P : Run Πdo.ip

[
n, G⃗, H⃗, e(L

′
, L), e(L⃗′, H⃗), A; L⃗′, L⃗

◦c⃗
, 0, 0, rA

]
(104)

Run Πdo.ip

[
n, G⃗, H⃗, B,B,B; G⃗

◦c⃗
, H⃗

◦c⃗
, rB , rB , rB

]
(105)

Run Πdo.ip

[
n, G⃗, H⃗, A,B, e(G⃗, L⃗); G⃗

◦c⃗
, L⃗, rA, rB , 0

]
(106)

// The above 3 Dory checks can be batched into a single Dory check

Run Πtag[f, cm; sk, rcm] (107)

At last, we then can apply Dory to check Eqns. (95)-(97) in LLRing-P. Note that e(G⃗, L⃗), e(L′, L),

e(L⃗′, H⃗) can be precomputed, while cm and Â are provided by the prover. Based on the above ideas,
we develop the protocol of LLRing-P and present it in Fig 6.

Note that Dory supports batching the proofs over multiple sets of inner-product relations, as
long as they share the same common known generators. Therefore, we can batch the checking of the
three sets of inner-product relations (Eqns. (95)-(97)) into one set of inner-product relations by a
single Dory check. See batching of Dory in Appendix 10. As a result of batching, LLRing-P takes
10 log n GT exponentiations + 1 pairing for verification, and n G1 exponentiations + 3n pairings for
ring-dependent precomputation. The proof size includes 6 log n GT elements. The precomputation is
updatable, and can be amortized among multiple signatures with the same ring. We omit the ring-
independent precomputation in Dory that does not involve p⃗k, because it can be precomputed once
at setup.

Theorem 29. LLRing-P satisfies perfect completeness, linkable anonymity, unforgeability, prefix link-
ability, non-slanderability.

The proof can be found in Appendix 12.

Remarks. Our technique of applying Dory to check Eqns (91) also applies to the checking of the
bit decomposition of a number. Hence, this also applies to range proofs and enables logarithmically
verifiable range proofs, which may be of independent interest.

8 Evaluation

In this section, we empirically evaluate our schemes and compare them with Omniring in concrete
implementation. We implemented our schemes in Java. See [HC] for the source code. We evaluated
its performance by conducting 100 independent trials on a Windows machine equipped with a 13th
Gen Intel(R) Core(TM) i5-13400F, operating at 2500 MHz, with 10 cores, 16 logical processors, and
32GB of RAM. For elliptic curve-related operations, we employ the Java Pairing Based Cryptography
(JPBC) library [DCI11] with Type F pairing curve. We explain the evaluation results as follows.

• Verification Time. To better illustrate the superior performance of LLRing schemes, we repli-
cated Omniring in the same environment. The comparison of verification cost performance be-
tween Omniring, LLRing-DL, and LLRing-P is shown in Fig 7. It is demonstrated that while both
Omniring and LLRing-DL exhibit linear verification times, whereas LLRing-P achieves logarithmic
verification time. Notably, LLRing-DL improves the verification time considerably compared to
Omniring. Moreover, as the ring size increases beyond 128, the advantage of LLRing-P becomes
increasingly prominent.

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 19

Fig. 7: Verification time comparison
Fig. 8: Ring-dependent precomputation time
comparison

Fig. 9: Proof size comparison Fig. 10: Proving time comparison

• Ring-Dependent Precomputation Time. Fig 8 shows the precomputation time of LLRing for
each ring. Since the proving time of LLRing-P is not on the same order of magnitude as LLRing-
DL, we have adopted a log scale for both the x-axis and y-axis. A comparison reveals that the
precomputation time required for LLRing-P is approximately 73 times that of LLRing-DL.

• Proof Size. In Fig 9, the proof sizes for Omniring, LLRing-DL, and LLRing-P are compared
across ring sizes ranging from 8 to 512. All schemes show a logarithmic increase in proof size as
expected. Omniring’s proof size increases from 1056 to 1824 bytes, LLRing-DL ranges from 1600
to 3136 bytes, and LLRing-P exhibits a significant increase from 11104 to 24928 bytes, indicating
varying degrees of scalability among the schemes.

• Proving Time. The proving times for different schemes, as shown in Fig 10, where we also
applied a log scale to both the x-axis and y-axis for comparison. It is observed that the proving
time of Omniring and LLRing-DL are quite similar, with LLRing-DL being about 12.9% less than
Omniring. However, the proving time of LLRing-P is approximately 20 times that of LLRing-DL.

9 Conclusion

To advance efficient linkable ring signatures, we make three novel contributions in this paper, including
a discovery of an attack on the linkability of DualDory that breaks its linkability, a rectified linkable
ring signature scheme in the pairing setting with logarithmic verifiability (LLRing-P), and an improved
linkable ring signature scheme in the discrete logarithm setting (LLRing-DL) with 50% reduction in
group exponentiations for verification, as compared with Omniring. We implemented our schemes,
which provide competitive performance in concrete implementation to enable diverse anonymized

20 Xiangyu Hui and Sid Chi-Kin Chau

applications, such as e-voting and confidential transactions. In future work, we will extend our work
to other types of ring signature schemes, like traceable ring signature schemes. We will also implement
our ring signature schemes on real-world blockchain systems for trustless decentralized confidential
transaction applications.

References

ACF21. Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n partial knowl-
edge. In CRYPTO, pages 65–91, 2021.

ACJT00. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In CRYPTO, pages 255–270, 2000.

AOS02. Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety of
key. In ASIACRYPT, 2002.

BBB+18. Benedikt Bunz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In IEEE SP, pages 315–334, 05
2018.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, 2004.
BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient

zero-knowledge arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT,
2016.

BDH+19. Michael Backes, Nico Doettling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Ring
signatures: Logarithmic-size, no setup—from standard assumptions. In EUROCRYPT, 2019.

BEHM22. Jonathan Bootle, Kaoutar Elkhiyaoui, Julia Hesse, and Yacov Manevich. Dualdory: Logarithmic-
verifier linkable ring signatures through preprocessing. In ESORICS, page 427–446, 2022.

BKP20. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and falafl: Logarithmic (link-
able) ring signatures from isogenies and lattices. In Advances in Cryptology – ASIACRYPT 2020,
2020.

BsCG+14. Eli Ben-sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE SP,
pages 459–474, 05 2014.

DCI11. Angelo De Caro and Vincenzo Iovino. jPBC: Java pairing based cryptography. In ISCC, pages
850–855, 2011.

DKNS04. Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous identification
in ad hoc groups. In EUROCRYPT, 2004.

eth17. Ethereum Foundation EIP-197: Precompiled contracts for optimal ate pairing check on the elliptic
curve alt bn128, 2017.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology — CRYPTO’ 86, pages 186–194, 1987.

GK15. Jens Groth and MArkulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend
a coin. In EUROCRYPT, 2015.

HC. Xiangyu Hui and Sid Chi-Kin Chau. LLRing Code. https://github.com/sidckchau/LLRing.
HC24. Xiangyu Hui and Sid Chi-Kin Chau. Note on the Proof of Linkability of DualDory. Technical

report, CSIRO Data61, 2024.
Lee21. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and polyno-

mial commitments. In TCC, page 1–34, 2021.
LLNW16. Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for

lattice-based accumulators: Logarithmic-size ring signatures and group signatures without trap-
doors. In EUROCRYPT, pages 1–31, 2016.

LRR+19. Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Krishnan
Thyagarajan, and Jiafan Wang. Omniring: Scaling private payments without trusted setup. In
ACM CCS, page 31–48, 2019.

Noe15. Shen Noether. Ring signature confidential transactions for Monero. Cryptology ePrint Archive -
IACR, 2015.

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. ASIACRYPT, page
552–565, 2001.

WCL24. Nan Wang, Sid Chi-Kin Chau, and Dongxi Liu. SwiftRange: A Short and Efficient Zero-Knowledge
Range Argument For Confidential Transactions and More. In IEEE SP, 2024.

YEL+21. Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au, and Zhimin Ding. Dualring:
Generic construction of ring signatures with efficient instantiations. In CRYPTO, 2021.

YSL+20. Tsz Hon Yuen, Shi-Feng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin, Qingzhao Zhang,
and Dawu Gu. Ringct 3.0 for blockchain confidential transaction: Shorter size and stronger secu-
rity. In FC, pages 464–483, 2020.

https://github.com/sidckchau/LLRing

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 21

Appendix

10 Recursive Dory for Inner-product Relations

Dory [Lee21] provides a compressed protocol with logarithmic verification efficiency and proof size
for ⟨D0

?
= e(Ω⃗, Θ⃗) · Qr0 , D1

?
= e(Ω⃗, Λ⃗) · Qr1 , D2

?
= e(Γ⃗, Θ⃗) · Qr2⟩, given commitments D0, D1, D2 ∈ GT

and known random generators Γ⃗
$←− Gn

1 , Λ⃗
$←− Gn

2 , with some private witness (Ω⃗ ∈ Gn
1 , Θ⃗ ∈ Gn

2 ,
r0, r1, r2 ∈ Z∗p). We describe the Dory protocol Πdo.ip using a recursive argument in Fig. 11. Note that
the choices of Γ⃗′, Λ⃗′ do not matter. One possible setting is Γ⃗′ ≜ Γ⃗L, Λ⃗

′ ≜ Λ⃗L.
The proof size of Dory includes 6 log n GT elements, 1 G1 element and 1 G2 element. The verifica-

tion includes 1 pairing, 10 log n+2 GT exponentiations, 1 G1 exponentiation and 1 G2 exponentiation.
The precomputation includes 3n pairings. The proving includes 3n pairings, 2 log n G1 exponentia-
tions and 2 log n G2 exponentiations.

Batching. It is possible to batch multiple Dory proofs into a single proof [Lee21]. Given
(
D0 =

e(Ω⃗, Θ⃗)·Qr0 , D1 = e(Ω⃗, Λ⃗)·Qr1 , D2 = e(Γ⃗, Θ⃗)·Qr2
)

and
(
D′0 = e(Ω⃗′, Θ⃗′)·Qr′0 , D′1 = e(Ω⃗′, Λ⃗)·Qr′1 , D′2 =

e(Γ⃗, Θ⃗′) ·Qr′2
)

with shared generators (Γ⃗, Λ⃗), we define X ≜ e(Ω⃗, Θ⃗′) ·e(Ω⃗′, Θ⃗) ·QrX , D′′0 ≜ Dγ2

0 ·Xγ ·D′0,
D′′1 ≜ Dγ

1 · D′1 and D′′2 ≜ Dγ
2 · D′2, where γ

$←− Z∗p. Then the new witnesses to (D′′0 , D
′′
1 , D

′′
2) are

(Ω⃗′′ ≜ Ω⃗ ◦ Ω⃗′γ , Θ⃗′′ ≜ Θ⃗ ◦ Θ⃗′γ , r′′0 ≜ γ2r0 + γrX + r′0, r
′′
1 ≜ γr1 + r′1, r

′′
2 ≜ γr2 + r′2).

Fig. 11: Recursive Dory protocol for checking inner-product relations

Πdo.ip

[
n ∈ Z+

, Γ⃗ ∈ Gn
1 , Λ⃗ ∈ Gn

2 , D0 ∈ GT , D1 ∈ GT , D2 ∈ GT ; Ω⃗ ∈ Gn
1 , Θ⃗ ∈ Gn

2 , r0 ∈ Z∗
p, r1 ∈ Z∗

p, r2 ∈ Z∗
p

]
V : Pre-Compute χ ≜ e(Γ⃗, Λ⃗) ∈ GT , ∆1L ≜ e(Γ⃗L, Λ⃗

′
) ∈ GT , ∆1R ≜ e(Γ⃗R, Λ⃗

′
) ∈ GT (108)

∆2L ≜ e(Γ⃗
′
, Λ⃗L) ∈ GT , ∆2R ≜ e(Γ⃗

′
, Λ⃗R) ∈ GT (109)

IF n = 1

P : Ω
′ $←− G1, Θ

′ $←−∈ G2, rP1
, rP2

, rQ, rR
$←− Z∗

p (110)

P ⇒ V : P1 ≜ e(Ω
′
, Γ) · QrP1 ∈ GT , P2 ≜ e(Λ,Θ

′
) · QrP2 ∈ GT (111)

Q ≜ e(Ω
′
, Θ) · e(Ω,Θ

′
) · QrQ ∈ G, R ≜ e(Ω

′
, Θ

′
) · QrR ∈ GT (112)

P ⇐ V : ϵ
$←− Z∗

p (113)

P ⇒ V : E1 ≜ Ω
′ ·Ωϵ ∈ G1, E2 ≜ Θ

′ ·Θϵ ∈ G2 (114)

r1 ≜ rP1
+ ϵ · r1 ∈ Z∗

p, r2 ≜ rP2
+ ϵ · r2 ∈ Z∗

p, r0 ≜ rR + ϵ · rQ + ϵ
2 · r0 ∈ Z∗

p (115)

V : θ
$←− Z∗

p, r ≜ r0 + θ · r2 + θ
-1 · r1 (116)

Check e(E1 · Γ θ
, E2 · Λθ-1

)
?
= χ · R ·Qϵ ·Dϵ2

0 · P
θ
2 ·D

θ·ϵ
2 · P θ-1

1 ·Dθ-1·ϵ
1 · Qr (117)

ELSE n > 1

P : r1L, r1R, r2L, r2R, rW1, rW2
$←− Z∗

p (118)

P ⇒ V : D1L ≜ e(Ω⃗L, Λ⃗
′
) · Qr1L ∈ GT , D1R ≜ e(Ω⃗R, Λ⃗

′
) · Qr1R ∈ GT (119)

D2L ≜ e(Γ⃗
′
, Θ⃗L) · Qr2L ∈ GT , D2R ≜ e(Γ⃗

′
, Θ⃗R) · Qr2R ∈ GT (120)

P ⇐ V : β
$←− Z∗

p (121)

P : Ω⃗
◦ ≜ Ω⃗ ◦ Γ⃗β ∈ Gn

1 , Θ⃗
◦ ≜ Θ⃗ ◦ Λ⃗β-1

∈ Gn
2 (122)

P ⇒ V : W1 ≜ e(Ω⃗
◦
L , Θ⃗

◦
R) · Q

rW1 ∈ GT , W2 ≜ e(Ω⃗
◦
R , Θ⃗

◦
L) · Q

rW2 ∈ GT , r̃0 ≜ r0 + β · r1 + β
-1 · r2 (123)

P ⇐ V : α
$←− Z∗

p (124)

P : Ω⃗
′ ≜ (Ω⃗

◦
L)

α ◦ Ω⃗◦
R ∈ G

n
2
1 , Θ⃗

′ ≜ (Θ⃗
◦
L)

α-1
◦ Θ⃗◦

R ∈ G
n
2
2 (125)

V : D
′
0 ≜ D0 · χ ·Dβ-1

1 ·Dβ
2 ·W

α
1 ·W

α-1
2 ∈ GT , D

′
1 ≜ D

α
1L ·D1R ·∆αβ

1L ·∆
β
1R ∈ GT (126)

D
′
2 ≜ D

α-1
2L ·D2R ·∆α-1β-1

2L ·∆β-1
2R ∈ GT (127)

r′0 ≜ r̃0 + α · rW1 + α
-1 · rW2, r′1 ≜ α · r1L + r1R, r′2 ≜ α

-1 · r2L + r2R (128)

V & P : Run Πdo.ip[
n

2
, Γ⃗

′
, Λ⃗

′
, D

′
0, D

′
1, D

′
2; Ω⃗

′
, Θ⃗

′
, r′0, r

′
1, r

′
2] (129)

22 Xiangyu Hui and Sid Chi-Kin Chau

Theorem 30 ([Lee21]). Πdo.ip satisfies perfect completeness, SHVZK and CWE (or it breaks the
SXDH assumption).

11 Proofs for LLRing-DL

Theorem 31. Πsbp.ip satisfies computationally witness-extended emulation (CWE) or it can obtain
a non-trivial discrete logarithm relation.

Proof. First, we consider checking separate relations:

G⃗l⃗ ?
= Z1, H⃗r⃗ ·K t̂ ?

= Z2 (130)

We follow the approach in Bulletproofs [BBB+18]. Note that typical Bulletproofs satisfies 4-special
soundness at each iteration. The segregated Bulletproofs behaves the same manner as typical Bullet-
proofs, and hence also satisfies 4-special soundness. Hence, CWE follows from applying Lemma 15.

Next, we consider checking a combined relation by random liner combination:

(G⃗l⃗)θ · H⃗r⃗ ·K t̂ ?
= Zθ

1 · Z2 (131)

Since θ
$←− Z∗p is known by the verifier only, the probability the above equation is true but t̂ ̸= ⟨⃗l, r⃗⟩

is bounded by negl(λ), based on Schwartz-Zippel Lemma. ⊓⊔

It is evident that Πmlr.dl satisfies perfect completeness.

Theorem 32. Linkable ring signature protocol Πmlr.dl satisfies linkable anonymity.

Proof. Assume there exists a PPT adversary A that can break the linkable anonymity of Πmlr.dl with
non-negligible probability, then there exists a distinguisher D that can break the DDH assumption in
the following game that utilizes A:

Game Setup. Let pp ← Setup[1λ] and (p⃗k, s⃗k) ← KeyGen[pp]. Consider (X,Y, Z) ∈ G3, where
either (X,Y, Z) is a DDH tuple (i.e., X = P x, Y = P y, Z = P xy) or (X,Y, Z)

$←− G3. Pick i∗ ∈ [n]
and set pki∗ = X. We define the following oracles for A when accessing Πmlr.dl:

▶ Corruption Oracle CO: When CO is queried with (p⃗k, i ∈ [n]),
• If i ̸= i∗, then it returns sk, where P sk = pki.
• If i = i∗, then it aborts.

▶ Random Oracle RO: This oracle simulates Hash′[f]. When RO is queried with f, if f has not been
queried before, it returns Y rf , where rf

$←− Z∗p. Otherwise, it returns Y rf , where rf is previously
chosen for f. We use Hash′[f] in Πtag

▶ Signing Oracle SO: When SO is queried with (p⃗k, i ∈ [n],m, f), it returns a valid signature σ as
follows:
• If i ̸= i∗, then it returns σ ← Sign[pp, p⃗k, f,m, ski].
• If i = i∗, then it returns a simulated signature as follows. Let cm ≜ X · Qrcm and tag ≜ Zrf .

To generate a valid proof for tag, let (a′, r′)
$←− Z∗2p ,

A ≜ Hash′[f]a
′
· tag−ρ, (132)

B ≜ P a′ ·X−ρ ·Qb′−ρrf (133)

Hence, (A,B, a′, r′, tag) can pass the verification in Πtag. Note that it is statistically indistin-
guishable from other valid proofs that pass the verification.
Next, let c⃗ represent a unit basis vector, such that ci = 0 when i ̸= i∗ and ci∗ = 1. Finally, to
generate the rest of signature proof by Πmlr.dl.

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 23

Game. D tries to determine if (X,Y, Z) is a DDH tuple. By the definition of linkable anonymity
(Definition 25), we assume that A issues (n− 2) corruption queries for distinct indices. In the game,
A will be required to provide a tuple (i1, i2,m, f, p⃗k

∗
). D aborts if (f, pki1) ∈ ΣSO, or (f, pki2) ∈ ΣSO,

or pki∗ /∈ {pki1 , pki2}, or (pki1 , pki2) ̸⊆ p⃗k∗ ∩ p⃗k\p⃗kCO. The probability that D does not abort is
n−1
(n2)

= 2
n . D sets b← i∗. SupposeA can break the linkable anonymity with a non-negligible probability

ϵ. If (X,Y, Z) is a DDH tuple, then A should correctly guess b′ = i∗ with probability ϵ. As a result,
D can break the DDH assumption with a non-negligible probability of ϵ · 2n . ⊓⊔

Theorem 33. Linkable ring signature protocol Πmlr.dl satisfies prefix linkability.

Proof. Assume there exist a PPT adversary A, which can break the prefix linkability of Πmlr.dl with
non-negligible property ϵ, then there exists an algorithm B that can break the DLOG assumption
between X,Y

$←− G in the following game that utilizes A:
Game Setup. Given public parameters pp← Setup[1λ]. Let P = X,R = Q = Y in pp. (p⃗k, s⃗k)←

KeyGen[pp]. We define the following oracles for A when accessing Πmlr.dl:

▶ Corruption Oracle CO: When CO is queried with index i ∈ [n], return ski.
▶ Signning Oracle SO: SO: When SO is queried with (p⃗k, i ∈ [n],m, f), return a valid signature

σ ← Sign[pp, p⃗k, f,m, ski].

Game. B tries to derive the discrete logarithm relations among X and Y . By the definition of
prefix-linkability (Definition 23), A generates n + 1 signatures based on the same prefix f, where
Verify[pp, p⃗k, f,m, σ] = 1 must holds for all i ∈ [n + 1], and Link[pp, f, p⃗k, σi, σi∗] = 0 holds for all
i ̸= i∗ ∈ [n + 1]. This implies that tagi ̸= tagi∗ for all i ̸= i∗ ∈ [n + 1]. By leveraging the CWE
property of the tag proof, we can efficiently extract witnesses sk′i, r

′
cmi
∈ Zp such that ∀i ∈ [n+ 1],

cmi = P sk′iQr′cmi ∧ tagi = Hash[f]sk
′
i .

Since all of the tags are pairwise distinct, and each value sk′i is uniquely determined, this implies
the n + 1 cmi opens to n + 1 distinct values sk′i ∈ Zp. Without loss of generality, we assume that
sk′n+1 /∈ {sk1, . . . , skn}. Next, utilizing the CWE property of Πsbp.ip and Bulletproofs’ range proof,
we can extract r′An+1

and a unit basis vector c⃗′n+1 from σn+1, in which the k-th bit is 1, k ∈ [n], and
all other bits are 0. Thanks to the CWE property of Πsch, we can further extract r′in+1

, r̂′An+1
After

the witness extraction the following equation holds:

(p⃗k ◦ R⃗)c⃗
′
n+1 ·Qr′An+1 = cmn+1 · Ân+1 ·Q

r′cmn+1
+r̂′An+1 (134)

⇒ pkk ·Rk = P sk′n+1 ·Rr′in+1 ·Qr′cmn+1
+r̂′An+1

−r′An+1 (135)

We know we can substitute Rk as RHash[pkk], then we obtain

pkk ·RHash[pkk] = P sk′n+1 ·Rr′in+1 ·Q(r′cmn+1
+r̂′An+1

−r′An+1
) (136)

⇒ P (skk−sk′n+1) = Q
(r′cmn+1

−r̂′An+1
−r′An+1

) ·R(r′in+1
−Hash[pkk]) (137)

⇒ X(skk−sk′n+1) = Y
(r′cmn+1

−r̂′An+1
−r′An+1

+r′in+1
−Hash[pkk]) (138)

⇒ X

(skk−sk′n+1)

(r′cmn+1
−r̂′An+1

−r′
An+1

+r′
in+1

−Hash[pkk])
= Y (139)

Then B can return x =
(skk−sk′n+1)

(r′cmn+1
−r̂′An+1

−r′An+1
+r′in+1

−Hash[pkk])
to break the Dlog assumption with non-

negligible probability of ϵ. ⊓⊔

Theorem 34. Linkable ring signature protocol Πmlr.dl satisfies non-sladerability.

24 Xiangyu Hui and Sid Chi-Kin Chau

Proof. Assume there exist a PPT adversary A, which can break the non-sladerability of Πmlr.dl with
non-negligible property ϵ, then there exists an algorithm B that can break the DLOG assumption
between X,Y

$←− G in the following game that utilizes A:
Game Setup. Given public parameters pp← Setup[1λ]. Let P = X in pp. (p⃗k, s⃗k)← KeyGen[pp].

Pick i∗ ∈ [n] and set pki∗ = Y . We define the following oracles for A when accessing Πmlr.dl:

▶ Random Oracle RO: This oracle simulates Hash′[f]. When RO is queried with f, if f has not been
queried before, it returns Y rf , where rf

$←− Z∗p. Otherwise, it returns Y rf , where rf is previously
chosen for f. We use Hash′[f] in Πtag

▶ Corruption Oracle CO: When CO is queried with i ∈ [n], if i = i∗, it aborts. Otherwise, it returns
ski.

▶ Signing Oracle SO: When SO is queried with (p⃗k, i ∈ [n],m, f), it returns a valid signature σ as
follows:
• If i ̸= i∗, then it returns σ ← Sign[pp, p⃗k, f,m, ski] and add σ to set ΣSO.
• If i = i∗, then it returns a simulated signature as follows. Let cm ≜ Y · Qrcm and tag ≜ Y rf .

To generate a valid proof for tag, let (a′, r′)
$←− Z∗2p ,

A ≜ Hash′[f]a
′
· tag−ρ, (140)

B ≜ P a′ ·X−ρ ·Qb′−ρrf (141)

Hence, (A,B, a′, r′, tag) can pass the verification in Πtag. Note that it is statistically indistin-
guishable from other valid proofs that pass the verification.
Next, let c⃗ represent a unit basis vector, such that ci = 0 when i ̸= i∗ and ci∗ = 1. Finally, to
generate the rest of signature proof by Πmlr.dl. Before return the simulated signature σ, add
σ to set ΣSO.

Game. B tries to derive the discrete logarithm relations among X and Y . By the definition of
prefix-linkability (Definition 24), A first produce a signature σ′, a prefix f, and a message m′, such
that Verify[pp, p⃗k, f,m′, σ′] = 1, without issuing any corruption queries. B aborts if σ′ ∈ ΣSO. B
retrieves tag′ from πtag′ and it will abort if ∃i ∈ [n]i̸=i∗ , Hash[f]

ski = tag′. Note that all public keys and
signatures from SO are statistically indistinguishable. Therefore, the probability of B does not abort
is 1

n . Next, make CO accessible, A should returns a tuple (σ′′,m′′), where Verify[pp, p⃗k, f,m′′, σ′′] =

1∧Link[pp, p⃗k, f, σ′, σ′′] = 1. By utilizing the CWE property of Πmlr.dl, we can extract cm′′ = pki ·Qr′′cm

from σ′′, for some i ∈ [n], and by the CWE property of tag proof we have cm′′ = Xski ·Qr′′cm for some
i ∈ [n]. Since B does not abort, and consider tag′ ̸= Hash[f]ski∀i ∈ [n] : i ̸= i∗. Hence, we can deduce
that tag′ = Hash[f]ski∗ . Thanks to the CWE property of the tag proof, B is able to extract ski∗
and r′cm, where Xski∗ = Y . Then B return ski∗ to break the Dlog assumption with non-negligible
probability of ϵ · 1n . ⊓⊔

Theorem 35. Linkable ring signature protocol Πmlr.dl satisfies unforgeability.

Proof. By Theorem 8 in [BEHM22], if a ring signature scheme is linkable and non-slanderable, then
it is also unforgeable. ⊓⊔

12 Proofs for LLRing-P

It is evident that Πmlr.p satisfies perfect completeness.

Theorem 36. Linkable ring signature protocol Πmlr.p satisfies linkable anonymity.

Proof. Assume there exists a PPT adversary A that can break the linkable anonymity of Πmlr.p with
non-negligible probability, then there exists a distinguisher D that can break the DDH assumption in
GT in the following game that utilizes A:

Game Setup. Let pp ← Setup[1λ] and (p⃗k, s⃗k) ← KeyGen[pp]. Consider (X,Y, Z) ∈ G3
T , where

either (X,Y, Z) is a DDH tuple (i.e., X = e(P,L)x, Y = e(P,L)y, Z = e(P,L)xy) or (X,Y, Z)
$←− G3

T .
Among these, we set X = e(X ′, L), where either X ′ = P x or X ′

$←− G1. Pick i∗ ∈ [n] and set
pki∗ = X ′. We define the following oracles for A when accessing Πmlr.p:

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 25

▶ Corruption Oracle CO: When CO is queried with (p⃗k, i ∈ [n]),
• If i ̸= i∗, then it returns sk, where P sk = pki.
• If i = i∗, then it aborts.

▶ Random Oracle RO: This oracle simulates Hash′[f]. When RO is queried with f, if f has not been
queried before, it returns Y rf , where rf

$←− Z∗p. Otherwise, it returns Y rf , where rf is previously
chosen for f. We use Hash′[f] in Πtag

▶ Signing Oracle SO: When SO is queried with (p⃗k, i ∈ [n],m, f), it returns a valid signature σ as
follows:
• If i ̸= i∗, then it returns σ ← Sign[pp, p⃗k, f,m, ski].
• If i = i∗, then it returns a simulated signature as follows. Let cm ≜ X · Qrcm and tag ≜ Zrf .

To generate a valid proof for tag, let (a′, r′)
$←− Z∗2p ,

A ≜ Hash′[f]a
′
· tag−ρ, (142)

B ≜ P a′ ·X−ρ ·Qb′−ρrf (143)

Hence, (A,B, a′, r′, tag) can pass the verification in Πtag. Note that it is statistically indistin-
guishable from other valid proofs that pass the verification.
Next, let c⃗ represent a unit basis vector, such that ci = 0 when i ̸= i∗ and ci∗ = 1. Finally, to
generate the rest of signature proof by Πmlr.p.

Game. D tries to determine if (X,Y, Z) is a DDH tuple. By the definition of linkable anonymity
(Definition 25), we assume that A issues (n− 2) corruption queries for distinct indices. In the game,
A will be required to provide a tuple (i1, i2,m, f, p⃗k

∗
). D aborts if (f, pki1) ∈ ΣSO, or (f, pki2) ∈ ΣSO,

or pki∗ /∈ {pki1 , pki2}, or (pki1 , pki2) ̸⊆ p⃗k∗ ∩ p⃗k\p⃗kCO. The probability that D does not abort is
n−1
(n2)

= 2
n . D sets b← i∗. SupposeA can break the linkable anonymity with a non-negligible probability

ϵ. If (X,Y, Z) is a DDH tuple, then A should correctly guess b′ = i∗ with probability ϵ. As a result,
D can break the DDH assumption with a non-negligible probability of ϵ · 2n . ⊓⊔

Theorem 37. Linkable ring signature protocol Πmlr.p satisfies prefix linkability.

Proof. Assume there exist a PPT adversary A, which can break the prefix linkability of Πmlr.p with
non-negligible property ϵ, then there exists an algorithm B that can break DPair assumption with
two generators P1, P2 ∈ G1.

Game Setup. Given public parameters pp ← Setup[1λ]. Let P = P1, R = P2 in pp. (p⃗k, s⃗k) ←
KeyGen[pp]. We define the following oracles for A when accessing Πmlr.p:

▶ Corruption Oracle CO: When CO is queried with index i ∈ [n], return ski.
▶ Signning Oracle SO: SO: When SO is queried with (p⃗k, i ∈ [n],m, f), return a valid signature

σ ← Sign[pp, p⃗k, f,m, ski].

Game. By the definition of prefix-linkability (Definition 23), A generates n+1 signatures based on
the same prefix f, where Verify(pp, p⃗k, f,mi, σi) = 1 must holds for all i ∈ [n+1], and Link(pp, p⃗k, f, σi,
σi∗) = 0 holds for all i ̸= i∗ ∈ [n + 1]. This implies that tagi ̸= tagi∗ for all i ̸= i∗ ∈ [n + 1]. By
leveraging the CWE property of the Πtag, we can efficiently extract witnesses sk′i, r′cmi

∈ Zp such that
∀i ∈ [n+ 1],

cmi = e(P sk′i , L) ·Qr′cmi ∧ tagi = Hash[f]sk
′
i .

Since all of the tags are pairwise distinct, and each value sk′i is uniquely determined, this implies
the n+ 1 cmi opens to n+ 1 distinct values sk′i ∈ Zp. Without loss of generality, we assume sk′n+1 /∈
{sk1, . . . , skn}. By the CWE property of Πsch we can extract An+1 = e(P sk′n+1 · Rr′ , L) · QrAn+1 .
Based on the CWE property of Πdo.ip, we can extract the following relations from the Dory proof for
Eqn (95) of σn+1:

e(Ω⃗′, H⃗) = e(L⃗′, H⃗)

e(G⃗, Θ⃗′) = e(P sk′n+1 ·Rr′ , L)

e(Ω⃗′, Θ⃗′) = e(L′, L)

(144)

26 Xiangyu Hui and Sid Chi-Kin Chau

Suppose Hi ̸= 1 and Gi ̸= 1 for all i ∈ [n]. Let Θ⃗′ = L⃗◦a⃗ and Ω⃗′ = L⃗′◦b⃗ for some vectors a⃗ and b⃗.
First, we obtain

e(Ω⃗′, H⃗) = e(L⃗′◦b⃗, H⃗) = e(L⃗′, H⃗) (145)

That is, e(L⃗′, H⃗)b⃗ = e(L⃗′, H⃗)1⃗. If b⃗ ̸= 1⃗, we would obtain a non-trivial logarithm relation among(
e(L′, Hi)

)
i∈[n]. Hence, we obtain

{
e(G⃗, L⃗)a⃗ = e(P sk′n+1 ·Rr′ , L)

e(L⃗′, L⃗)a⃗ = e(L′, L)
(146)

Next, we can extract the following relations from the Dory proof for Eqn (97) of σn+1:
e(Ω⃗′′′, H⃗) = Bn+1 · Q−rB
e(G⃗, Θ⃗′′′) = e(G⃗, L⃗)

e(Ω⃗′′′, Θ⃗′′′) = e(P sk′n+1 ·Rr′ , L)

(147)

Similarly, we let Θ⃗′′′ = L⃗◦g⃗ and Ω⃗′′′ = G⃗◦h⃗ for some vectors g⃗ and h⃗. Next, We have

e(G⃗, Θ⃗′′′) = e(G⃗, L⃗◦g⃗) = e(G⃗, L⃗) (148)

It is evident that g⃗ = 1⃗. Then, we obtain

e(G⃗, L⃗)h⃗ = e(P sk′n+1 ·Rr′ , L) (149)

e(G⃗, H⃗)h⃗ = Bn+1 · Q−rB (150)

For the Dory proof for Eqn (96) of σn+1, we can extract
e(Ω⃗′′, H⃗) = Bn+1 · Q−rB
e(G⃗, Θ⃗′′) = Bn+1 · Q−rB
e(Ω⃗′′, Θ⃗′′) = Bn+1 · Q−rB

(151)

Let Θ⃗′′ = H⃗◦e⃗ and Ω⃗′′ = G⃗◦⃗f . We obtain
e(G⃗, H⃗)e⃗ = Bn+1 · Q−rB
e(G⃗, H⃗)f⃗ = Bn+1 · Q−rB

e(G⃗, H⃗)e⃗◦⃗f = Bn+1 · Q−rB
(152)

Without breaking the discrete logarithm relation among
(
e(Gi, Hi)

)
i∈[n], Eqns (152) implies the

following:
e⃗ = f⃗ = e⃗ ◦ f⃗ (153)

Combining Eqn (150), we obtain e⃗ = h⃗. Based on Eqn (146) and Eqn (149), we obtain a⃗ = h⃗. Above
all, we obtain {

e(G⃗, H⃗)a⃗◦a⃗ = e(G⃗, H⃗)a⃗

e(L⃗′, L⃗)a⃗ = e(L′, L)
(154)

Therefore, we can conclude that a⃗ is a unit basis vector. Otherwise, we would obtain a non-trivial
logarithm relation to make these equations hold.

Since a⃗ is a unit basis vector, with the i∗-th bit as 1, other bits as 0. Then we have:

e(G⃗, L⃗)a⃗ = e(Gi∗ , L⃗) = cmn+1 · Ân+1 · Q−rAn+1 (155)

B can extract i∗ by checking e(Gi∗ , L⃗)
?
= cmn+1 · Ân+1 · Q−rAn+1 for i∗ ∈ [n]. Thanks to the CWE

property of Πtag and Πsch, we can obtain:

e(P sk′i∗ ·Rri∗ , L) = e(P sk′n+1 ·Rr′ , L) (156)

LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup 27

We can rewrite it as:

e(P sk′i∗ , L) · e(Rri∗ , L) = e(P sk′n+1 , L) · e(Rr′ , L) (157)

⇒ e(P,Lsk′i∗) · e(R,Lri∗) = e(P,Lsk′n+1) · e(R,Lr′) (158)

⇒ e(P,Lsk′i∗) · e(R,Lri∗) · e(P,L−sk
′
n+1) · e(R,L−r

′
) = 1 (159)

⇒ e(P,Lsk′i∗−sk
′
n+1) · e(R,Lri∗−r′) = 1 (160)

Then B can return (P ′1, P
′
2) = (Lsk′i∗−sk

′
n+1 , Lri∗−r′) to break the DPair assumption with non-

negligible probability of ϵ. ⊓⊔

Theorem 38. Linkable ring signature protocol Πmlr.p satisfies non-sladerability.

Proof. Assume there exist a PPT adversary A, which can break the non-sladerability of Πmlr.p with
non-negligible property ϵ, then there exists an algorithm B that can break the DLOG assumption
between (X = e(X ′, L), Y = e(Y ′, L)) ∈ G2

T , where (X ′, Y ′) $←− G2
1. in the following game that utilizes

A:
Game Setup. Given public parameters pp← Setup[1λ]. Let P = X ′ in pp. (p⃗k, s⃗k)← KeyGen[pp].

Pick i∗ ∈ [n] and set pki∗ = Y ′. We define the following oracles for A when accessing Πmlr.p:

▶ Random Oracle RO: This oracle simulates Hash′[f]. When RO is queried with f, if f has not been
queried before, it returns Y rf , where rf

$←− Z∗p. Otherwise, it returns Y rf , where rf is previously
chosen for f. We use Hash′[f] in Πtag

▶ Corruption Oracle CO: When CO is queried with i ∈ [n], if i = i∗, it aborts. Otherwise, it returns
ski.

▶ Signing Oracle SO: When SO is queried with (p⃗k, i ∈ [n],m, f), it returns a valid signature σ as
follows:
• If i ̸= i∗, then it returns σ ← Sign[pp, p⃗k, f,m, ski] and adds σ to the set ΣSO.
• If i = i∗, then it returns a simulated signature as follows. Let cm ≜ Y · Qrcm and tag ≜ Y rf .

To generate a valid proof for tag, let (a′, r′)
$←− Z∗2p ,

A ≜ Hash′[f]a
′
· tag−ρ, (161)

B ≜ P a′ ·X−ρ ·Qb′−ρrf (162)

Hence, (A,B, a′, r′, tag) can pass the verification in Πtag. Note that it is statistically indistin-
guishable from other valid proofs that pass the verification.
Next, let c⃗ represent a unit basis vector, such that ci = 0 when i ̸= i∗ and ci∗ = 1. Finally,
to generate the rest of signature proof by Πmlr.p. Before return the simulated signature σ, it
adds σ to the set ΣSO.

Game. B tries to derive the discrete logarithm relations among X and Y . By the definition
of prefix-linkability (Definition 24), A first produce a signature σ′, a prefix f, and a message m′,
such that Verify[pp, p⃗k, f,m′, σ′] = 1, without issuing any corruption queries. B aborts if σ′ ∈
ΣSO. B retrieves tag′ from the tag proof in σ′ and it will abort if ∃i ∈ [n]i ̸=i∗ , Hash[f]

ski = tag′.
Note that all public keys and signatures from SO are statistically indistinguishable. Therefore, the
probability of B does not abort is 1

n . Next, make CO accessible, A should returns a tuple (σ′′,m′′),
where Verify[pp, p⃗k, f,m′′, σ′′] = 1 ∧ Link[pp, p⃗k, f, σ′, σ′′] = 1. We know we can write cm′′ in σ′′ as
e(pki, L) ·Qr

′′
cm , for some i ∈ [n], and by the CWE property of tag proof we have cm′′ = e(X ′, L)ski ·Qr′′cm

for some i ∈ [n]. Since B does not abort, and consider tag′ ̸= Hash[f]ski∀i ∈ [n] : i ̸= i∗. Hence, we can
deduce that tag′ = Hash[f]ski∗ . Thanks to the CWE property of the tag proof, B is able to extract
ski∗ and r′cm, where Xski∗ = Y . Then B return ski∗ to break the Dlog assumption with non-negligible
probability of ϵ · 1n . ⊓⊔

Theorem 39. Linkable ring signature protocol Πmlr.p satisfies unforgeability.

Proof. By Theorem 8 in [BEHM22], if a ring signature scheme is linkable and non-slanderable, then
it is also unforgeable. ⊓⊔

	LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup

