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Abstract. Syndrome decoding problem (SDP) is the security assump-
tion of the code-based cryptography. Three out of the four NIST-PQC
round 4 candidates are code-based cryptography. Information set de-
coding (ISD) is known for the fastest existing algorithm to solve SDP
instances with relatively high code rate. Security of code-based cryptog-
raphy is often constructed on the asymptotic complexity of the ISD algo-
rithm. However, the concrete complexity of the ISD algorithm has hardly
ever been known. Recently, Esser, May and Zweydinger (Eurocrypt ’22)
provide the first implementation of the representation-based ISD, such
as May–Meurer–Thomae (MMT) or Becker–Joux–May–Meurer (BJMM)
algorithm and solve the McEliece-1284 instance in the decoding chal-
lenge, revealing the practical efficiency of these ISDs.
In this work, we propose a practically fast depth-2 BJMM algorithm and
provide the first publicly available GPU implementation. We solve the
McEliece-1409 instance for the first time and present concrete analysis for
the record. Cryptanalysis for NIST-PQC round 4 code-based candidates
against the improved BJMM algorithm is also conducted. In addition,
we revise the asymptotic space complexity of the time-memory trade-
off MMT algorithm presented by Esser and Zweydinger (Eurocrypt ’23)
from 20.375n to 20.376n.

Keywords: Information Set Decoding · Representation Technique · McEliece

1 Introduction

Code-based cryptography is a public-key encryption scheme based on coding
theory. Despite more than 40 years have passed since Robert McEliece developed
the first code-based cryptography [27], it is receiving renewed attention today
with the advent of quantum computers, as it is considered resistant to quantum
attacks.
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In the NIST post-quantum cryptography standardization project (NIST-
PQC), three code-based cryptographic schemes — Classic McEliece [2], BIKE [3],
and HQC [28] — are undergoing continuous evaluation in the fourth round [31].
Among the four submissions in this round, SIKE [5], an isogeny-based cryptog-
raphy, has been deprecated due to a (classical) polynomial-time attack [13]. This
situation emphasizes the urgent need for security assessment of the remaining
code-based candidates.

For NIST-PQC fourth round code-based candidates, it is known that the
most efficient decoding algorithm is known as Information Set Decoding (ISD).
ISD is an algorithm built on the framework of Prange’s algorithm [33]. Thus
far, several ISD algorithms have been proposed (e.g., [6,10,15,21,25,26,36]), and
their asymptotic complexity has been investigated (see Table 1). In these papers,
commonly full/half distance decoding settings are considered. In the full distance
setting, one computes the minimal asymptotic complexity under the weight w =
O(n). When w = o(n), all the ISD algorithms exhibit the same asymptotic
complexity 2cw(1+o(1)) with a constant c [11].

Table 1. Asymptotic time complexity O(2αn) for major ISD algorithms in full distance
decoding setting. The exponent α of O(2αn) for each algorithm is listed below.

Prange Dumer MMT BJMM May-Ozerov Both-May Sieving ISD
[33] [15] [25] [6] [26] [10] [21]

0.121 0.116 0.112 0.102 0.097 0.096 0.101

Bit security Assessments In addition to asymptotic complexity, several contri-
butions have been made to provide security estimates for code-based cryptog-
raphy [17,22,32]. In [18,20], the authors showed how to compute bit security
estimates of code-based cryptography from the decoding results. Recently, Esser
et al. introduced a comprehensive library for cryptographic hardness estima-
tion [19], enabling us to estimate both bit security and the optimal parameters
for a specified difficulty level of an input problem. Bernstein and Chou have
developed a cryptanalysis software called CryptAttackTester, which enables de-
tailed bit security analyses for ISD algorithms and an AES key search attack [8].

Concrete Cryptanalysis Concrete cryptanalysis is also crucial in this field. De-
crypting higher-dimensional cryptography provides data points to estimates ac-
curate security level. One known benchmark for code-based cryptography is De-
coding Challenge [4].

In 2022, Esser and Zweydinger successfully solved a quasi-cyclic SDP corre-
sponds to BIKE and HQC with parameters n = 3138, k = 1569, w = 56. The
above authors employed the memory-optimized MMT/BJMM algorithm [20]
along with the Decoding-One-Out-of-Many (DOOM) strategy [35]. In 2023,
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Bernstein, Lange, and Peters obtained an initial solution to a Classic McEliece-
like SDP with n = 1347, k = 1078, w = 25. They utilized an improved variant [9]
of Stern’s ISD [36]. Narisada, Fukushima and Kiyomoto found a solution to the
SDP for random binary linear codes for n = 570, k = 285, w = 70 using a GPU
implementation of the MMT algorithm [30].

Recent Asymptotic Improvements Carrier et. al. provided a corrected analysis for
the Both–May algorithm [12]. Additionally, Ducas et al. revealed the asymptotic
complexities of the Sieving ISD [14], while Esser and Zweydinger succeeded in
reducing the asymptotic space complexity of the MMT algorithm from 20.053n

to 20.0375n by demonstrating its time-memory trade-offs [20].

Contributions In this study, we focus on the depth-2 BJMM algorithm, whose
asymptotic time 20.105n is not optimal but is shown to be practical [18,20,30].

We propose an improved variant of the depth-2 BJMM algorithm, which
maximizes the success probability of finding a solution. The core idea leverages
multiple weight distributions of permuted solutions, which is initially proposed
by Bernstein and Chou [8]. Our algorithm is different from [8] in terms of the
initial list construction procedure in the enumeration phase. While our algo-
rithm does not change the asymptotic complexity, several bits of security can be
reduced from the original BJMM algorithm.

For asymptotic complexity analysis, we review the Dumer’s algorithm with
the Schroeppel–Shamir technique, which is initially presented in [24]. Then, we
revise the asymptotic space complexity of the time-memory trade-off MMT from
20.0375n to 20.0376n, which may be of independent interest.

The security of NIST-PQC fourth-round code-based candidates against exist-
ing ISD algorithms, including the improved BJMM algorithm, is also evaluated.
We demonstrate that the improved BJMM algorithm exhibits the lowest bit
security among existing ISD algorithms for Classic McEliece.

Furthermore, we present the first practical GPU implementation of the im-
proved BJMM algorithm. We achieve a new record in solving the McEliece-1409
instance in the decoding challenge, which has approximately 70-bit security.
Validation of our record and comparison with other state-of-the art ISD imple-
mentations are also conducted. All of our codes used in our paper are publicly
available on https://github.com/sh-narisada/CU_BJMM.

Organization The remainder of the paper is organized as follows. Section 2 de-
scribes the notation and ISD. In Section 3, we briefly explain the depth-2 BJMM
algorithm. Section 4 presents the improved depth-2 BJMM algorithm and its
complexity. Section 5 conducts asymptotic complexity analyses for several ISDs
using the Schroeppel–Shamir technique. In Section 6, we conduct cryptanalysis
for code-based NIST-PQC round 4 candidates. Experimental results are provided
in Section 7. Section 8 gives concluding remarks.

https://github.com/sh-narisada/CU_BJMM
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2 Preliminaries

2.1 Notation

Let F2 be the finite field with elements {0, 1}. An n-dimensional column vector
is denoted as x⊤ = (x1, . . . , xn) ∈ Fn

2 for a row vector x ∈ F1×n
2 . Henceforth,

we denote a column vector without the transposition symbol ⊤ for simplicity.
A concatenation of two vectors a ∈ Fm

2 and b ∈ Fn
2 is written as (a,b) ∈ Fm+n

2

unless otherwise specified. Thus, we regard the tensor product of two vector
spaces Fm

2 × Fn
2 as the set of concatenated vectors Fm+n

2 . For more than two
spaces, we consider product similarly. Let the zero vector be 0. A matrix of
size m × n is denoted as A ∈ Fm×n

2 . The identity matrix is represented as I
and the zero matrix as O. The Hamming weight for x is denoted by wt(x) :=
|{i | xi = 1}|. Let Bn

w := {x ∈ Fn
2 | wt(x) = w} be the set of all binary vectors

of length n and Hamming weight w. The SDP is defined as follows.

Definition 2.1 (Syndrome Decoding Problem: SDP). Let n, k, w ∈ N
such that k ≤ n and w ≤ n. Given H ∈ F(n−k)×n

2 and s ∈ Fn−k
2 , find a vector

e ∈ Fn
2 of wt(e) = w such that He = s.

This problem has been shown to be in the NP-hard class [7]. In this paper, we
consider the case that an SDP has a unique solution, i.e.,

(
n
w

)
≪ 2n−k.

2.2 Information Set Decoding

ISD is a probabilistic algorithm that can be used to solve an SDP in exponential
time, as originated in Prange [33]. We provide a brief overview of a common
framework for ISD algorithms.

Algorithm 1 below provides the pseudo-code for an ISD algorithm. Until Line
5, column permutation and Gaussian elimination are applied to the parity-check
matrix and syndrome, resulting in a systematic form H̄ and a corresponding
syndrome s̄. We denote a set of all permuted solutions as E0 = Bn

w, and a set
of obtainable permuted solutions as E , which varies across ISD algorithm. A
matrix P is referred to as a good permutation when Pe is an element of E .
For q := Pr[P is good] = |E|/|E0|, we utilize a specific Search component for
(H̄, s̄), producing a permuted solution ē with probability q. By repeating the
above procedure q−1 times, it is expected that one solution Pē is obtained.

An ISD algorithm exhibits an average time complexity given by

q−1(Tge + Tsearch), (1)

where Tge is the time complexity for Gaussian elimination and Tsearch is the time
complexity required for the Search component.

For instance, in the case of Prange’s algorithm, the Search component
checks whether wt(s̄) is w or not. If it holds, the algorithm returns ē = (s̄,0). A
crucial observation regarding this algorithm is that when, fortunately, wt(s̄) = w,
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Algorithm 1: Information Set Decoding

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , w ∈ N
Output: e ∈ Fn

2 of weight w s.t. He = s
1 q := Pr[P is good]
2 repeat /* q−1 times in expectation */

3 Pick random permutation matrix P

4 H̄ = [In−k | Ĥ] = GHP
5 s̄ = Gs
6 ē = Search(H̄, s̄)
7 if wt(ē) = w and H̄ē = s̄ then
8 return Pē

we have that H̄(s̄,0) = s̄, which satisfies both conditions for a solution. It can
be stated that E = Bn−k

w × Bk
0 , and q is given by

q =

(
n−k
w

)(
n
w

) . (2)

Eq. (1) is instantiated with substitutions from Eq. (2), Tge = (n − k)2n and
Tsearch = 1.

To date, many efforts have been made to develop more efficient ISD algo-
rithms that minimize Eq. (1) from an asymptotic perspective. However, relying
solely on asymptotic analysis has resulted in a gap between theoretical results
and actual time complexity.

3 Depth-2 Becker–Joux–May–Meurer Algorithm

The BJMM algorithm is a generalization of the MMT algorithm. In this paper
we focus on the depth-2 variant. The inputs to the Search component in the
BJMM algorithm are a semi-systematic form H̄ of the parity-check matrix and
the syndrome s̄:

H̄ =

(
In−k−ℓ H1

O H2

)
= GHP, s̄ = (s1, s2) = Gs ∈ Fn−k−ℓ

2 × Fℓ
2, (3)

where H1 ∈ F(n−k−ℓ)×(k+ℓ)
2 and H2 ∈ Fℓ×(k+ℓ)

2 . This transformation can be
achieved by applying a column permutation P and Gaussian elimination G with
early abort. In the Search component, it performs the merging and filtering of
several lists, each consisting of a fraction of the candidates for a solution ē. The

BJMM algorithm outputs a permuted solution ē ∈
(
Bn−k−ℓ
w−p′ × Bk+ℓ

p′

)
.

3.1 Tree-based List Construction

We describe the list construction process in the depth-2 BJMM algorithm. The
output list is L(0) consisting of z′, which satisfies wt(z′) = p′ ≤ 2p andH2z

′ = s2.
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L
(2)
1

n− k − ℓ

p/2

k+ℓ
2

0

k+ℓ
2

H1z
(2)
1 z

(2)
1

L
(2)
2

0 p/2

H1z
(2)
2 z

(2)
2

L
(2)
3

p/2 0

H1z
(2)
1 z

(2)
1

L
(2)
4

0 p/2

H1z
(2)
2 + s1 z

(2)
2

L
(1)
1

p/2 p/2

H1z
(1)
1 z

(1)
1

L
(1)
2

p/2 p/2

H1z
(1)
2 + s1 z

(1)
2

L(0) w − p′ p′

H1z
′ + s1 z′

Fig. 1. Tree-based list construction of the depth-2 BJMM algorithm.

We traverse seven lists from the bottom (depth-2) to the top (depth 0), as
depicted in Figure 1. First, four depth-2 base lists are prepared as follows:

L
(2)
1 = L

(2)
3 =

{
z
(2)
1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2

∣∣∣ wt(z(2)1 ) = p/2
}
,

L
(2)
2 = L

(2)
4 =

{
z
(2)
2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2

∣∣∣ wt(z(2)2 ) = p/2
}
.

Then, we merge L
(2)
1 with L

(2)
2 (L

(2)
3 with L

(2)
4 ) to yield a depth-1 list L

(1)
1 (L

(1)
2 )

while filtering a pair (z
(2)
1 , z

(2)
2 ), based on the following condition with an integer

ℓ1 ≤ ℓ and a map πℓ1 : Fℓ
2 → Fℓ1

2 , πℓ1(x1, ..., xℓ) = (x1, ..., xℓ1):

L
(1)
1 =

{
z
(1)
1

∣∣∣ z(2)1 ∈ L
(2)
1 , z

(2)
2 ∈ L

(2)
2 , z

(1)
1 = z

(2)
1 + z

(2)
2 , πℓ1(H2z

(1)
1 ) = t

}
,

L
(1)
2 =

{
z
(1)
2

∣∣∣ z(2)1 ∈ L
(2)
3 , z

(2)
2 ∈ L

(2)
4 , z

(1)
2 = z

(2)
1 + z

(2)
2 , πℓ1(H2z

(1)
2 + s2) = t

}
.

Here, t ∈ Fℓ1
2 is a randomly chosen vector. Note that wt(z

(1)
1 ) = wt(z

(1)
2 ) = p,

since there is no overlap at the 1’s position between z
(2)
1 and z

(2)
2 . Then, L

(1)
1

and L
(1)
2 are merged under a specific condition to yield a list L(0):

L(0) =
{
z′ = z

(1)
1 + z

(1)
2

∣∣∣ z(1)1 ∈ L
(1)
1 , z

(1)
2 ∈ L

(1)
2 , z′,H2z

′ = s2,wt(z
′) = p′

}
.

(4)

Since we already have that πℓ1(H2(z
(1)
1 +z

(1)
2 )) = πℓ1(s2) and wt(z

(1)
1 +z

(1)
2 ) ≤ 2p,

we can obtain L(0) by checking the remaining ℓ − ℓ1 indices of H2(z
(1)
1 + z

(1)
2 )

and Hamming weight of z
(1)
1 + z

(1)
2 . Now, if we set z′′ = H1z

′ + s1, then the first
condition of a solution, H̄(z′′, z′) = (s1,H2z

′) = s̄ is satisfied. We need to verify

that (z′′, z′) has the desired weight distribution, i.e., (z′′, z′) ∈
(
Bn−k−ℓ
w−p′ × Bk+ℓ

p′

)
.

When wt(z′′) = w − p′, we observe that wt(z̄) = w for z̄ = (z′′, z′). Thus, Pz̄ is
the solution to the SDP.
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3.2 Computational Complexity

We review the complexity analysis of the depth-2 BJMM algorithm. The time
complexity per iteration of repeat in Algorithm 1 is dominated by the time
complexity of Gaussian elimination Tge = (n − k)2n and Tsearch required for
the Search component. Tsearch is the sum of the time complexities for base list
construction and for the merging of lists at each depth. For |L(2)| =

(
(ℓ+k)/2

p/2

)
and |L(1)| = max(1, 2−ℓ1 |L(2)|2), we obtain that

Tsearch = 2|L(2)|+ 2max(|L(2)|, 2−ℓ1 |L(2)|2 +max(|L(1)|, 2−ℓ+ℓ1 |L(1)|2). (5)

Note that we do not need space for L(0) since we can enumerate z′ on-the-fly from

L
(1)
1 and L

(1)
2 . The set of obtainable permuted solutions is E = Bn−k−ℓ

w−p′ × Bk+ℓ
p′ .

The success probability q is given by

q =

(
n−k−ℓ
w−p′

)(
k+ℓ
p′

)(
n
w

) . (6)

The average time complexity is Eq. (1) with Tge = (n−k)2n, Eq. (5) and Eq. (6).
The space complexity of the BJMM algorithm is

(n− k)n+ 2|L(2)|+ 2max(1, 2−ℓ1 |L(2)|2). (7)

In practice, we search for a valid integer parameter set (p, ℓ, ℓ1) to minimize the
time complexity. To efficiently find it, several estimators have been proposed
(e.g., [17,19]). The parameter ℓ1 must be chosen carefully as it is related to the
representations.

A (split) representation of a weight-ω1 vector z ∈ Fn
2 is a pair of vectors

(z1, z2) ∈ Fn
2 × Fn

2 , satisfying z = z1 + z2 and wt(z1) = wt(z2) = ω2 ≥ ω1/2. In
the BJMM algorithm, the number of representations for a weight-p′ z′ as a sum

of two weight-p vectors z
(1)
1 , z

(1)
2 is

R =

(
p′

p′/2

)(
k + ℓ− p′

p− p′/2

)
. (8)

In [25], valid parameters are searched under the condition that at least a single
representation of a solution is expected to be contained in L(0), i.e., ℓ1 ≤ log2 R.
In [20], the authors consider the case where ℓ1 > log2 R. When ℓ1 > log2 R, the
probability ρrepr of at least one representation being included in L(0) is given by

ρrepr := 1− (1− 2−ℓ1)R ≈ 2−ℓ1R. (9)

They demonstrate that the decrease in the number of representations can be
compensated by repeating the Search component ρrepr

−1 times. The time com-
plexity for the BJMM algorithm in the case of ℓ1 > log2 R is given by

q−1(Tge + ρrepr
−1 Tsearch).
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The advantage of setting ℓ1 > log2 R is to show a time-memory trade-off for
cases where ℓ1 ≤ log2 R, which implies that a portion of the space complexity
required in the Search component can be offset by additional time complexity.
Adopting a relatively large ℓ1 can also result in practical reductions in actual
runtime, as indicated in [20,30].

4 Improved Depth-2 BJMM Algorithm

In this section, we present the improved depth-2 BJMM algorithm and its con-
crete complexity analysis.

4.1 Algorithm Detail

Algorithm 2: Improved Depth-2 BJMM

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , w ∈ N
Output: e ∈ Fn

2 of weight w s.t. He = s
1 Choose optimal ℓ, ℓ1, p
2 repeat
3 Pick random permutation matrix P

4 H̄ =

(
In−k−ℓ H1

O H2

)
= GHP

5 s̄ = (s1, s2) = Gs
6 Compute

L̄
(2)
1 = L̄

(2)
3 = {z(2)1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2 | 0 ≤ wt(z

(2)
1 ) ≤ p/2}

L̄
(2)
2 = L̄

(2)
4 = {z(2)2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2 | 0 ≤ wt(z
(2)
2 ) ≤ p/2}

7 Compute

L̄
(1)
1 = {z(1)1 = z

(2)
1 + z

(2)
2 | πℓ1(H2z

(1)
1 ) = t} from L̄

(2)
1 and L̄

(2)
2

L̄
(1)
2 = {z(1)2 = z

(2)
1 + z

(2)
2 | πℓ1(H2z

(1)
1 + s2) = t} from L̄

(2)
3 and L̄

(2)
4

8 Compute L̄(0) = {z′ = z
(1)
1 + z

(1)
2 | H2z

′ = s2} from L̄
(1)
1 and L̄

(1)
2

9 for z′ ∈ L̄(0) do
10 z̄ = (H1z

′ + s1, z
′)

11 if wt(z̄) = w then
12 return Pz̄

Algorithm 2 describes the pseudo-code of the improved depth-2 BJMM al-
gorithm. Line 6 and 11 in Algorithm 2 are different compared with the standard
depth-2 BJMM algorithm. In Line 6, we enumerate all vectors whose weights are
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less than or equal to p/2, instead of specifically enumerating weight-p/2 vectors,

L̄
(2)
1 = L̄

(2)
3 =

{
z
(2)
1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2

∣∣∣ 0 ≤ wt(z
(2)
1 ) ≤ p/2

}
,

L̄
(2)
2 = L̄

(2)
4 =

{
z
(2)
2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2

∣∣∣ 0 ≤ wt(z
(2)
2 ) ≤ p/2

}
.

This approach leads to an slight increase in the base list size,

|L̄(2)| =
∑

0≤i≤p/2

(
(k + ℓ)/2

p/2− i

)
.

However, this also increases the number of permuted solutions in the final list
L̄(0). In Line 11, we check wt(z̄) = w instead of the original way wt(H1z

′+s1) =
w − 2p, as suggested in [8]. This corresponds to removing the constraint on the
weight distribution of the solution. In [8], the authors showed that this replace-
ment increases the success probability to find the solution with no additional
cost. We show that combining Line 6 with Line 11 maximizes the success prob-
ability with a slight increase in computational complexity.

4.2 Concrete Complexity Analysis

To obtain the concrete complexity of the improved BJMM algorithm, we first
show the probability that a permuted solution with a specific weight distribution
is included in the final list L̄(0).

a p1 ≤ p/2

b p2 ≤ p/2

c = a+ b i− a a(p1 + p2 − i)/2

Fig. 2. An example of F2-addition that yields a weight-i vector c from a weight-p1
vector a and a weight-p2 vector b. We have (p1 + p2 − i)/2 positions of 1’s duplicated
between a and b. In this example, we have i− a ones on the left side of c and a ones
on the right side.

Proposition 4.1. Let i, j ∈ N such that 0 ≤ i, j ≤ p. Assuming that P permutes

the solution as Pe = (e′′, e′) so that e′′ ∈ Bn−k−ℓ
w−i−j and e′ ∈

(
B(k+ℓ)/2
i × B(k+ℓ)/2

j

)
,

Then, we say

Pr
[
e′ ∈ L̄(0)

]
= ρi,j , (10)
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where

ρi,j :=

{
1− (1− 2−2ℓ1)R

2
0 (i = j = 0),

1− (1− 2−ℓ1)RiRj (otherwise),

Ri :=
∑

(p1,p2)∈Pi

(
i

⌊i/2⌋

)(
(k + ℓ)/2− i

(p1 + p2 − i)/2

)
, (11)

Pi :=
{
(p1, p2)

∣∣∣ p1, p2 ≤ p

2
, |p1 − p2| ≤ i ≤ p1 + p2, p1 + p2 ≡ i mod 2

}
. (12)

Proof. First, we derive a set Pi, which consists of feasible weight splits (p1, p2) of
i, i.e., we enumerate possible weight pair (wt(a),wt(b)) for F2-addition c = a+b
with wt(c) = i, where wt(a) ≤ p/2 and wt(b) ≤ p/2. Let ϵ be the number of
duplicates in 1’s position between a and b. Then, we can enumerate (p1, p2)
satisfying i = p1 + p2 − 2ϵ for 0 ≤ 2ϵ ≤ min(p1, p2), which corresponds to Pi.

We can count the number of representations for e′ = z
(1)
1 + z

(1)
2 . Let Ri,p1,p2

be the number of representations of a vector a = b + c, where a ∈ B(k+ℓ)/2
i ,

b ∈ B(k+ℓ)/2
p1 and c ∈ B(k+ℓ)/2

p2 , as depicted in Figure 2. The set of 1-coordinates
in a can be split in

(
i

⌊i/2⌋
)
ways as 1 = 1+0 or 1 = 0+1, where ⌊·⌋ is required to

account for the case where i is an odd integer. For each split representation, the
set of 0-coordinates can be split in

(
(k+ℓ)/2−i

(p1+p2−i)/2

)
ways by 0 = 1 + 1. In total, a

has Ri,p1,p2 =
(

i
⌊i/2⌋

)(
(k+ℓ)/2−i

(p1+p2−i)/2

)
representations. Hence, for e′ = z

(1)
1 + z

(1)
2 we

have
∑

(p1,p2)∈Pi
Ri,pi,p2

∑
(p1,p2)∈Pj

Rj,p1,p2 representations, which corresponds

to RiRj in Eq. (11).

When e′ ̸= 0 for a representation e′ = z
(1)
1 + z

(1)
2 satisfying πℓ1(H2z

(1)
1 ) =

t, then πℓ1(H2z
(1)
2 + s2) = t automatically holds. Since the probability of

πℓ1(H2z
(1)
1 ) = t is 2−ℓ1 and we have RiRj representations for e′, Eq. (10)

is 1 − (1 − 2−ℓ1)RiRj . Note that each representation has a random value for

πℓ1(H2z
(1)
1 ) and we consider the probability that at least one out of RiRj rep-

resentations satisfies πℓ1(H2z
(1)
1 ) = t. When e′ = 0, both πℓ1(H2z

(1)
1 ) = t and

πℓ1(H2z
(1)
2 + s2) = t hold only when πℓ1(H2z

(1)
1 ) = t and πℓ1(s2) = t hold.

Hence, Eq. (10) is 1− (1− 2−2ℓ1)R
2
0 . ⊓⊔

From the above proposition, we can derive the concrete complexity of the
BJMM algorithm. The set of obtainable permuted solutions E for the proposed
algorithm is given by

E =
⋃

0≤i,j≤p

Ci,j ,

where Ci,j := Bn−k−ℓ
w−i−j×B(k+ℓ)/2

i ×B(k+ℓ)/2
j and |Ci,j | =

(
n−k−ℓ
w−i−j

)(
(k+ℓ)/2

i

)(
(k+ℓ)/2

j

)
.

From Proposition 4.1, we expect to have

|Ci,j | · Pr
[
e′ ∈ L̄(0)

∣∣∣ e′ ∈ (
B(k+ℓ)/2
i × B(k+ℓ)/2

j

)]
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obtainable permuted solutions for each pair (i, j). Hence, q := Pr[P is good] is
given by

q =

∑
0≤i,j≤p |Ci,j |ρi,j(

n
w

) . (13)

For the time complexity, we obtain

Tsearch = 2|L̄(2)|+ 2max(|L̄(2)|, 2−ℓ1 |L̄(2)|2) + max(|L̄(1)|, 2−ℓ+ℓ1 |L̄(1)|2), (14)

where, |L̄(2)| =
∑

0≤i≤p/2

(
(ℓ+k)/2
p/2−i

)
and |L̄(1)| = max(1, 2−ℓ1 |L̄(2)|2). The average

time complexity of the improved BJMM algorithm is described by Eq. (1) with
Eq. (13), Eq. (14) and Tge = (n− k)2n. The space complexity of the algorithm
is

(n− k)n+ 2|L̄(2)|+ 2max(1, 2−ℓ1 |L̄(2)|2). (15)

From Eq. (14) and Eq. (15), the increase ratios for both time and space complex-
ities from original BJMM are dominated by |L̄(2)|, given that ℓ1 ≈ log2 |L̄(2)|.
The increase ratio of the base list is

|L̄(2)|
|L(2)|

= 1 +
p

k + ℓ− p+ 2
+O(p2k−2).

Since p ≪ k, it is dominated by pk−1, which is negligible for large k.
The improved BJMM algorithm also provides time-memory trade-offs by

selecting a large ℓ1. A larger ℓ1 reduces both the space complexity and the
expected number of obtainable solutions

∑
0≤i,j≤p |Ci,j |ρi,j , which is directly

compensated for by increasing the number of outer loops.

5 Asymptotic Analysis for Schroeppel–Shamir ISD

This section provides asymptotic complexity analysis of Dumer’s algorithm and
the time-memory trade-off MMT algorithm with the Schroeppel–Shamir tech-
nique.

5.1 The Schroeppel–Shamir Technique

The Schroeppel–Shamir technique [34] can reduce the memory complexity of a
standard meet-in-the-middle (MITM) attack for the 2-list matching problem.
Assume that we aim to find a pair (x1,x2) ∈ L1 × L2 such that x1 = x2 on
certain ℓ coordinates. This can be solved by the MITM in time O(|D|) and
memory O(|D|), where |D| = |L1| = |L2| and ℓ = log2 |D|. When employing the
Schroeppel–Shamir technique, it is known that this problem can be solved with
the same time complexity and reduced memory complexity of O(|D|1/2).

The algorithm decomposes L1 = L1,1 × L1,2 and L2 = L2,1 × L2,2, where

|Li,j | = |D|1/2. We set r = log2 |D|1/2 = ℓ/2. Then, we create a list L̃1 from L1,1
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and L1,2, which is a 2−r-fraction of L1 consisting of x1 = x1,1+x1,2 s.t. πr(x1,1)+

πr(x1,2) = t for some t ∈ Fr
2, where x1,1 ∈ L1,1 and x1,2 ∈ L1,2. The list L̃1

is constructed in time and memory of |D|1/2. Analogously, L̃2 is constructed
from L2,1 and L2,2 consisting of x2 = x2,1 + x2,2, s.t. πr(x2,1) + πr(x2,2) = t.

We obtain a 2−r-fraction of solution pairs in time |L̃1||L̃2|/2ℓ−r = |D|1/2 and
memory |D|1/2. Note that for all pairs (x1,x2) ∈ L̃1×L̃2, x1 = x2 is satisfied on r
coordinates. Therefore, we need to find a pair matching the remaining ℓ−r = ℓ/2
coordinates. The above procedure is iterated |D|1/2 times for all t ∈ Fr

2. In total,
we obtain all solution pairs (x1,x2) ∈ L1 × L2 in time O(|D|1/2|D|1/2) = O(D)
and memory O(|D|1/2).

5.2 Dumer’s Algorithm with Schroeppel–Shamir Technique

We review the asymptotic complexity analysis of Dumer’s algorithm shown
in [24] and provide a numerical optimization result. Assume we have the semi-
systematic form H̄ and the syndrome s̄ as shown in Eq. (3). In Dumer’s algo-

rithm, we aim to find a permuted solution ē ∈
(
Bn−k−ℓ
w−2p × B(k+ℓ)/2

p × B(k+ℓ)/2
p

)
.

To do so, we construct two base lists as follows:

L
(1)
1 =

{
z
(1)
1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2

∣∣∣ wt(z(1)1 ) = p
}
,

L
(1)
2 =

{
z
(1)
2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2

∣∣∣ wt(z(1)2 ) = p
}
.

We then enumerate all pairs (z
(1)
1 , z

(1)
2 ) ∈ L

(1)
1 × L

(1)
2 s.t. H2z

′ = s2, where

z′ = z
(1)
1 + z

(1)
2 . For z′′ = H1z

′ + s1, if wt(z
′′) = w − 2p, then, P(z′′, z′) is the

solution. There is no representation in Dumer’s algorithm. The asymptotic time
complexity of Dumer’s algorithm is

q−1 max(|D|, 2−ℓ|D|2), (16)

where q =
(
k+ℓ
2p

)(
n−k−ℓ
w−2p

)(
n
w

)−1
and |D| =

(
(k+ℓ)/2

p

)
. For readability, we omit

Stirling’s approximation from the asymptotic complexity. We employ the ap-

proximation
(
k+ℓ
2p

)
≈

(
(k+ℓ)/2

p

)2
, which is equivalent asymptotically. The space

complexity is |D| when we ignore polynomial factors.
One can apply the Schroeppel–Shamir technique in Dumer’s algorithm by

decomposing L
(1)
1 = L

(2)
1 × L

(2)
2 and L

(1)
2 = L

(2)
3 × L

(2)
4 :

L
(2)
1 =

{
z
(2)
1 ∈ F

k+ℓ
4

2 × 0
3(k+ℓ)

4

∣∣∣ wt(z(2)1 ) = p/2
}
,

L
(2)
2 =

{
z
(2)
2 ∈ 0

k+ℓ
4 × F

(k+ℓ)
4

2 × 0
k+ℓ
2

∣∣∣∣ wt(z(2)2 ) = p/2

}
,

L
(2)
3 =

{
z
(2)
3 ∈ 0

k+ℓ
2 × F

(k+ℓ)
4

2 × 0
k+ℓ
4

∣∣∣∣ wt(z(2)3 ) = p/2

}
,

L
(2)
4 =

{
z
(2)
4 ∈ 0

3(k+ℓ)
4 × F

k+ℓ
4

2

∣∣∣ wt(z(2)4 ) = p/2
}
.
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We create a 2−r-fraction list L̃
(2)
1 ⊂ L

(2)
1 ×L

(2)
2 , whose element is z

(1)
1 = z

(2)
1 +z

(2)
2 ,

s.t. πr(H2z
(2)
1 )+πr(H2z

(2)
2 ) = t, where r = |D|1/2 ≤ ℓ is a parameter and t ∈ Fr

2

is some vector. The time and memory complexities required to construct L̃
(1)
1

are |D|1/2. Analogously, we create a 2−r-fraction list L̃
(1)
2 ⊂ L

(2)
3 × L

(2)
4 , whose

element is z
(1)
2 = z

(2)
3 + z

(2)
4 , s.t. πr(H2z

(2)
3 ) + πr(H2z

(2)
4 ) = πr(s2) + t.

We want to find 2−r-fraction of ℓ-matched pairs (z
(1)
1 , z

(1)
2 ) ∈ L

(1)
1 × L

(1)
2

s.t. H2z
(1)
1 + H2z

(1)
2 = s2. Since we already have a 2−r-fraction of r-matched

pairs (z
(1)
1 , z

(1)
2 ) ∈ L̃

(1)
1 × L̃

(1)
2 s.t. πr(H2z

(1)
1 ) + πr(H2z

(1)
2 ) = πr(s2), this can be

obtained in time max(|D|1/2, 2r−ℓ|D|1/2|D|1/2) and memory |D|1/2. We iterate
the above procedure for all t. Therefore, the asymptotic time complexity is

q−12r max(|D|1/2, 2r−ℓ|D|). (17)

When ℓ ≥ r/2, Eq. (17) is equivalent to Eq. (16). The space complexity is
reduced to |D|1/2.

Numerical Optimization We implement Dumer’s ISD with the Schroeppel–
Shamir technique using the library developed by Esser3 [16], and perform nu-
merical optimization in the full distance decoding setting. In the optimization,
binomial coefficients are approximated by Stirling’s approximation. For each pa-
rameters oi used in ISD algorithms, let oi = õi · n, where 0 ≤ õi ≤ 1. We
denote k̃ = k/n as the code rate. During optimization, we search for parameters

that yield minimal time complexity T k̃
min for each code rate k̃. In full distance

decoding, we set w̃ = H−1(1− k̃). The asymptotic time complexity is maxk̃ T
k̃
min.

The asymptotic complexity of Dumer’s algorithm is

T = 20.116n and S = 20.0177n,

at k̃ = 0.43 and w̃ = 0.1273, with optimal parameters of

p̃ = 0.005088, r̃ = 0.01766, ℓ̃ = 0.03532.

The Schroeppel–Shamir technique reduces the asymptotic space complexity from
the original value S = 20.0353n to its square root S = 20.0177n while maintaining
the same time complexity, where r = |L(2)| and ℓ = 2r.

5.3 MMT Algorithm with Schroeppel–Shamir Technique

We provide an analysis of the time-memory trade-off MMT algorithm with the
Schroeppel–Shamir technique, which is initially introduced in [20]. First, we cre-

ate depth-1 lists L
(1)
1 and L

(1)
2 via Schroeppel–Shamir. Since z

(1)
1 is constructed

from a pair (z
(2)
1 , z

(2)
2 ), where z

(1)
1 = z

(2)
1 + z

(2)
2 , we can consider a 2−r fraction

of the set of pairs by imposing πr(H2z
(2)
1 ) = t1 and πr(H2z

(2)
2 ) = t1 for r ≤ ℓ1

3 Available at https://github.com/Memphisd/Revisiting-NN-ISD.

https://github.com/Memphisd/Revisiting-NN-ISD
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and some t1 ∈ Fr
2. Analogously, z

(1)
2 is formed from a pair (z

(2)
3 , z

(2)
4 ), where

z
(1)
2 = z

(2)
3 + z

(2)
4 . A 2−r fraction is obtained by imposing πr(H2z

(2)
3 ) = t2

and πr(H2z
(2)
4 ) = πr(s2) + t2 for some t2 ∈ Fr

2. There are 22r combinations
for a pair (t1, t2), as t1 is independent of t2. Therefore, we have 2−2r fraction

of (z
(1)
1 , z

(1)
2 ) ∈ L

(1)
1 × L

(1)
2 for some pair (t1, t2), i.e., for depth-2 Schroeppel–

Shamir, we require 2−2r iterations as compensation for reducing the list size to
2−r.

Concretely, we first create depth-3 lists by decomposing L
(2)
i = L

(3)
2i−1 × L

(3)
2i

for 1 ≤ i ≤ 4.

L
(3)
1 = L

(3)
5 =

{
z
(3)
1 ∈ F

k+ℓ
4

2 × 0
3(k+ℓ)

4

∣∣∣ wt(z(3)1 ) = p/4
}
,

L
(3)
2 = L

(3)
6 =

{
z
(3)
2 ∈ 0

k+ℓ
4 × F

(k+ℓ)
4

2 × 0
k+ℓ
2

∣∣∣∣ wt(z(3)2 ) = p/4

}
,

L
(3)
3 = L

(3)
7 =

{
z
(3)
3 ∈ 0

k+ℓ
2 × F

(k+ℓ)
4

2 × 0
k+ℓ
4

∣∣∣∣ wt(z(3)3 ) = p/4

}
,

L
(3)
4 = L

(3)
8 =

{
z
(3)
4 ∈ 0

3(k+ℓ)
4 × F

k+ℓ
4

2

∣∣∣ wt(z(3)4 ) = p/4
}
,

where |L(3)
i | =

(
(k+ℓ)/4

p/4

)
≈ |D|1/2 for |D| =

(
(k+ℓ)/2

p/2

)
. For a parameter r ≤ ℓ1, we

create 2−r-fraction lists L̃
(2)
i ⊂ L

(3)
2i−1 × L

(3)
2i for 1 ≤ i ≤ 4, where each element

is defined as follows:

z
(2)
1 = z

(3)
1 + z

(3)
2 s.t. πr(H2z

(3)
1 ) + πr(H2z

(3)
2 ) = t1,

z
(2)
2 = z

(3)
3 + z

(3)
4 s.t. πr(H2z

(3)
3 ) + πr(H2z

(3)
4 ) = t1,

z
(2)
3 = z

(3)
1 + z

(3)
2 s.t. πr(H2z

(3)
1 ) + πr(H2z

(3)
2 ) = t2,

z
(2)
4 = z

(3)
3 + z

(3)
4 s.t. πr(H2z

(3)
3 ) + πr(H2z

(3)
4 ) = πr(s2) + t2,

where t1, t2 ∈ Fr
2. The time complexity for depth-2 lists is max(|D|1/2, 2−r|D|).

The size of a depth-2 list is |L̃(2)| = max(1, 2−r|D|). For depth 1-lists, we obtain

2−r-fraction lists L̃
(1)
i ⊂ L̃

(2)
2i−1×L̃

(2)
2i for i = 1, 2 with time max(|L̃(2)|, 2r−ℓ1 |L̃(2)|2)

and space |L̃(1)| = max(1, 2r−ℓ1 |L̃(2)|2). Finally, we merge L̃
(1)
1 and L̃

(1)
2 in

time max(|L̃(1)|, 2ℓ1−ℓ|L̃(1)|2) and obtain a fraction of the permuted solution

with probability ρrepr = min(1, 2−ℓ1−2rR), where, R =
(
2p
p

)
≈

(
p

p/2

)2
. When

2−ℓ1−2rR < 1, we need to iterate the Search component 2ℓ1+2rR−1 times to
yield one permuted solution expectedly under a good permutation. The asymp-
totic time complexity is

q−1 ρrepr
−1 max(|L(3)|, |L̃(2)|, |L̃(1)|, 2ℓ1−ℓ|L̃(1)|2),

where q =
(
k+ℓ
2p

)(
n−k−ℓ
w−2p

)(
n
w

)−1
. The space complexity is max(|L(3)|, |L̃(2)|, |L̃(1)|).
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Numerical Optimization The asymptotic complexity of the time-memory
trade-off MMT algorithm for full distance decoding is

T = 20.111n and S = 20.0376n,

at k̃ = 0.44 and w̃ = 0.1273, with optimal parameters of

p̃ = 0.01073, r̃ = 0, ℓ̃1 = 0.03764, ℓ̃ = 0.07527.

We confirm that the Schroeppel–Shamir technique cannot reduce memory with-
out sacrificing time complexity for the MMT algorithm. Nevertheless, it still
results in almost the same space complexity as 20.0375n, as derived in [20].
This implies that the time-memory trade-off term ρrepr introduced in [20] plays
a crucial role in reducing space complexity. Note that T is minimized when
ℓ1 = log2

(
(k+ℓ)/2

p/2

)
, which leads to S = |L(2)| = |L(1)|.

Asymptotic Complexity of the Improved BJMM Algorithm The asymp-
totic complexity of the improved BJMM algorithm is the same as the depth-2
BJMM algorithm. This is because a specific weight distribution pair (i, j), which
maximizes |Ci,j |ρi,j in Eq. (13), dominates over all weight distributions. The
asymptotic complexity of the depth-2 BJMM algorithm is

T = 20.105n and S = 20.0659n,

at k̃ = 0.43 and w̃ = 0.1273, with optimal parameters

p̃′ = 0.01076, p̃ = 0.01812, ℓ̃1 = 0.06588, ℓ̃ = 0.1318.

Note that T is minimized when 2ℓ1 = S = |L(2)| = |L(1)| = R, where |L(2)| =(
(k+ℓ)/2

p′

)
and R ≈

(
2p
p

)(
k+ℓ−2p
2p′−p

)
.

6 Cryptanalysis

In this section, we present security estimates of Classic McEliece, BIKE, and
HQC for existing ISD algorithms. We use CryptographicEstimators4, which is
the latest cryptanalysis library developed by Esser et al. [19]. The SDP parameter
sets we target are listed in Table 2.

6.1 Classic McEliece

First, we present the estimated bit time complexity and its corresponding space
complexity for all parameter sets of Classic McEliece in Table 3.

In our cryptanalysis, we consider eight ISD algorithms including MMT-
tmto and BJMM-tmto, which are time-memory trade-off variants of the MMT

4 https://github.com/Crypto-TII/CryptographicEstimators

https://github.com/Crypto-TII/CryptographicEstimators
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Table 2. Parameter sets for Classic McEliece, BIKE and HQC proposals.

Scheme Category n k w

1 3488 2720 64
3 4608 3360 96

Classic McEliece 5 6688 5024 128
5 6960 5413 119
5 8192 6528 128

1 24646 12323 134
BIKE (message) 3 49318 24659 199

5 81946 40973 264

1 24646 12323 142
BIKE (key) 3 49318 24659 206

5 81946 40973 274

1 35338 17669 132
HQC 3 71702 35851 200

5 115274 57637 262

and the BJMM algorithm [20]. BJMM+ represents the improved BJMM algo-
rithm. To derive the estimated complexity for Sieving ISD, we use open-source
code provided by the authors5. The bold font indicates the minimal bit time com-
plexity (T) or bit space complexity (M). Among these ISD algorithms, BJMM+

achieves the smallest time complexity across all categories when assuming unlim-
ited memory capacity and constant memory access cost. Additionally, BJMM+

reduced bit security for Classic McEliece 3 by 11 bits from MMT-tmto, and 3
bits from BJMM-tmto.

In [18], the authors confirm that the assumption of the logarithmic memory
access cost model aligns well with actual implementation. We also verify the
validity of this assumption for our implementation. We also evaluate the security
of NIST-PQC candidates under realistic memory constraints, considering both
the logarithmic access model and a maximum memory capacity of 243 or 260

bits (equivalent to 1 terabyte and 155 petabytes), denoted as BJMM+
M≤43 and

BJMM+
M≤60 in each table.

As a result, the security levels of Classic McEliece for Categories 1, 5a, 5b,
and 5c have sufficiently large security margins from the security requirements
(128 bits for Category 1, 192 bits for Category 3, and 256 bits for Category 5)
when memory constraints are assumed. However, for Category 3, the security
level remains below the desired security level for the BJMM+ algorithm.

6.2 BIKE and HQC

Since both BIKE and HQC use a quasi cyclic code, it is known that the time
complexities of several ISD algorithms can be decreased by leveraging the cyclic

5 https://github.com/vunguyen95/Review-ISD-Sieving

https://github.com/vunguyen95/Review-ISD-Sieving
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Table 3. Estimated bit security and bit space complexity for Classic McEliece. Un-
derlines indicate a deficiency in meeting the specified security requirements (128 bits
for Category 1, 192 bits for Category 3, and 256 bits for Category 5).

Category 1 3 5a 5b 5c
(n = 3488) (n = 4608) (n = 6688) (n = 6960) (n = 8192)

T M T M T M T M T M

BJMM+ 140 98 179 116 245 146 245 169 275 174
Prange 173 22 217 23 296 24 297 24 334 24
Dumer 151 58 193 60 268 89 268 90 303 109

MMT-tmto 148 59 190 70 261 90 261 91 294 102
BJMM-tmto 142 98 182 122 248 162 248 160 277 189
May-Ozerov 141 87 180 115 246 165 246 160 276 194
Both-May 142 88 181 113 248 143 247 145 279 149
Sieving ISD 143 58 184 65 257 91 257 92 291 95

BJMM+
M≤43 147 43 191 43 267 43 268 43 304 43

BJMM+
M≤60 143 60 186 55 261 58 261 59 297 60

nature of the code. We present the results of our security estimations for BIKE
and HQC in Table 4 and 5, respectively.

For the key security of BIKE, the time complexities of all ISD algorithms
are reduced by a factor of k without any additional effort. To attack the secret
key of BIKE, we need to solve the quasi cyclic SDP, where the syndrome is the
zero vector. This SDP contains k different solutions, which decrease the expected
number of loops required for any ISD by a factor of k. For the bit security, we
present the results with log2 k subtracted from the estimations.

In the case of message security for BIKE and HQC, several ISD algorithms
can reduce time complexity by implementing the Decoding-One-Out-of-Many
(DOOM) strategy, as described in [35]. For Dumer, MMT-tmto, BJMM-
tmto, and BJMM+, we can reduce the time complexity by Ω(

√
k), where

k = n/2, by utilizing the asymmetrical base list construction technique, as shown
in [18].

For May-Ozerov and Both-May, concrete algorithms for realizing DOOM
speedups have not yet been developed. In this paper, a common assumption of√
k speedup is applied to them, as in [17]. For Sieving ISD, the authors claim

k times speedups by leveraging the rotations of the syndrome while enlarging
vectors in the search phase.

From Tables 4 and 5, both BIKE and HQC meet the desired level of bit
security across all categories. The difference in time complexity between sieving
ISD and other ISDs for quasi-cyclic codes stems mainly from discrepancies in
the speedup gains of DOOM. To our knowledge, there is currently no practical
evidence for the sieving ISD for quasi-cyclic SDP instances. Hence, in this paper,
we also employ the improved BJMM algorithm for memory-constrained estima-
tions. The verification of the sieving ISD for quasi-cyclic codes remains a future
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Table 4. Estimated bit security and bit space complexity for BIKE.

Category 1 3 5
(n = 24646) (n = 49318) (n = 81946)

T M T M T M

k
ey

se
cu

ri
ty

BJMM+ 146 54 210 59 277 62
Prange 168 28 234 30 304 32
Dumer 148 40 211 43 279 45

MMT-tmto 148 38 211 40 279 41
BJMM-tmto 147 55 211 57 278 61
May-Ozerov 147 55 210 57 278 61
Both-May 147 55 210 57 278 61
Sieving ISD 141 46 204 50 271 53

BJMM+
M≤43 146 42 211 43 280 41

BJMM+
M≤60 146 44 210 47 277 50

m
es
sa
g
e
se
cu

ri
ty

BJMM+ 145 46 210 59 275 63
Prange 167 28 235 30 301 32
Dumer 146 41 211 44 276 46

MMT-tmto 146 38 211 40 276 41
BJMM-tmto 146 38 211 40 276 61
May-Ozerov 146 55 211 57 276 61
Both-May 146 55 211 57 276 61
Sieving ISD 135 46 198 50 262 53

BJMM+
M≤43 145 42 212 40 278 41

BJMM+
M≤60 145 43 210 46 275 48

challenge. When assuming a logarithmic memory access cost and constrained
memory capacity, both BIKE and HQC still have sufficiently large security mar-
gins.

7 Experiments

This section describes details regarding our GPU implementation of the im-
proved BJMM algorithm and the record computation for the McEliece-1409
instance.

7.1 A GPU Implementation of the BJMM Algorithm

We provide the improved BJMM algorithm as a Compute Unified Device Ar-
chitecture (CUDA) implementation (cuBJMM). Our implementation is developed
as an improved variant of the CUDA MMT implementation (cuMMT [30]6). In

6 The reference implementation for cuMMT is available at https://www.jstage.jst.g
o.jp/article/transfun/E106.A/3/E106.A_2022CIP0023/_pdf/

https://www.jstage.jst.go.jp/article/transfun/E106.A/3/E106.A_2022CIP0023/_pdf/
https://www.jstage.jst.go.jp/article/transfun/E106.A/3/E106.A_2022CIP0023/_pdf/
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Table 5. Estimated bit security and bit space complexity for HQC.

Category 1 3 5
(n = 35338) (n = 71702) (n = 115274)

T M T M T M

BJMM+ 145 48 213 52 275 55
Prange 166 29 236 31 300 33
Dumer 145 43 213 46 275 48

MMT-tmto 145 38 213 40 275 42
BJMM-tmto 145 38 213 40 275 42
May-Ozerov 146 39 214 42 276 44
Both-May 146 39 214 42 276 44
Sieving ISD 141 46 204 50 271 53

BJMM+
M≤43 145 43 214 40 276 42

BJMM+
M≤60 145 43 213 47 275 49

cuBJMM, only two lists L̄
(2)
1 and L̄

(1)
1 , are constructed as simple one-dimensional

integer arrays during the list construction phase. These arrays function as hash

maps, with keys corresponding to πℓ1(H2z
(2)
1 ) or πℓ−ℓ1(H2z

(1)
1 ). When merging

two lists, GPU threads virtually construct the other list by enumerating ele-
ments meeting the list constraint. We utilize asynchronous concurrent writing
technique in list merging to enhance the effectiveness of parallel list merging. In
addition, we deployed several improvements as listed below.

1. (CPU-GPU parallelism) The outer loop (permutation) in the improved BJMM
algorithm is parallelized by multi-threading on CPU, i.e., we run N -BJMM
procedures independently for N different permutations, where N is the num-
ber of CPU thread. Then, each BJMM routine borrows a memory segment
on a GPU and executes parallel list construction.

2. (Fast Gaussian elimination) We use an optimized implementation of the
Method of Four Russians for Inversion (M4RI) [1], improved by Esser, May
and Zweydinger7.

3. (Memory optimization) We transform the non-variable values into constants
by using the constexpr feature in C++ to reduce memory access costs.

With these improvements, cuBJMM achieved a 23.4× faster expected runtime
compared to cuMMT for the McEliece-1409 instance.

7.2 Decoding McEliece-1409 Challenge

We estimated the bit complexity and optimal parameters for McEliece-1409 us-
ing CryptographicEstimators, under constraints of M ≤ 33 (1 gigabyte) and
the logarithmic access model in Table 6. It is observed that BJMM+ is 3.3×
7 Available at https://github.com/FloydZ/cryptanalysislib.

https://github.com/FloydZ/cryptanalysislib
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faster than BJMM-tmto and still 1.9× faster than May-Ozerov, which yields
the smallest time complexity for McEliece instances among the ISD algorithms
in [17]. Note that there is no practical implementation for May-Ozerov and
Both-May due to the low efficiency of the local sensitive hashing (LSH) tech-
nique. In our estimation the LSH cost is derived from the Indyk–Motwani nearest
neighbor algorithm [23]. The space complexity of Prange corresponds to the
size of parity-check matrix H.

Table 6. Estimated complexity and optimal parameters for McEliece-1409 with M ≤
33 (1 gigabyte) and the logarithmic memory access cost model.

Algorithm T M p′ p ℓ1 ℓ w1 w2 depth

BJMM+ 70.1 31.5 – 4 14 36 – – 2
Prange 88.6 18.6 – – – – – – –
Dumer 72.4 28.8 – 2 – 19 – – 1

MMT-tmto 71.8 32.3 2 4 13 36 – – 2
BJMM-tmto 71.8 32.3 2 4 13 36 – – 2
May-Ozerov 71.0 32.2 2 4 – 13 – – 2
Both-May 71.1 32.2 2 4 – 13 0 0 2
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Fig. 3. Estimated runtime and memory consumption of cuBJMM for McEliece-1409 with
varying the number of CPU threads on the desktop PC.

In practice, we use p = 4, ℓ1 = 14, ℓ = 35 for our implementation to solve the
McEliece-1409 instance, as it requires two large integer arrays of sizes 2ℓ1 and
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2ℓ−ℓ1 . Figure 3 shows the expected runtime and the memory consumption. The
estimated runtime is given by Tloopq

−1, where Tloop is the measured runtime for
one iteration with cuBJMM. We parallelized 16 CPU threads in our experiments,
requiring an expected 563 days and 822 megabytes (232.6 bits) on one desktop
PC to solve McEliece-1409. The maximal number of GPU threads is set to
2−ℓ1 |L(2)|2 = 1, 684, 900 per CPU thread, resulting in a total of 26, 958, 400
GPU threads per PC.

With 10 desktop PCs (5 each equipped with an RTX 4080 GPU and an Intel
Core i9-12900 CPU, and 5 with an RTX 3090 GPU and the same CPU), we
achieve an expected runtime of 65.3 days for McEliece-1409. As a result, we
solved the McEliece-1409 instance in 29.6 hours.

7.3 Validation of the Result

There may be concerns regarding the disparity between the expected runtime
and the actual runtime for the McEliece-1409 record. To verify the correctness,
we conducted a comprehensive experiment for the SDP with parameters n = 808,
k = 647, and w = 17, whose bit complexity is 249.5. The average number of
iterations required to solve the instance is q−1 = 219.17. We solved the instance
103 times. Fig. 4 shows a histogram for the number of iterations.
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Fig. 4. Histogram of the exponent α for the number of iterations 2αq−1 required to
solve the McEliece-808 instance for 103 trials. Here, q−1 = 219.17 represents the average
number of iterations to solve the instance. The vertical red line represents α = −6.3,
which corresponds to our McEliece-1409 record.
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The number of successful trials maximizes when the number of iterations
approaches the average. No successes are observed for iterations exceeding 23

times the average. On the other hand, even for a number of iterations that is 28

times smaller than the average, there are still successes. For the McEliece-1409
record, α = −6.3 is obtained, which is also depicted in the figure.

We also compute the probability of finding a solution within a specified run-
time. The probability density function for the N -th iteration at which the algo-
rithm terminates is given by f(N) = q(1 − q)N−1, which is the geometric dis-
tribution. Since the total time complexity of an ISD algorithm up to the N -th
iteration is N(Tge+Tsearch), f(N) can be extended to a map between the runtime
and the probability of success: f(t) = q(1−q)t/T−1, where T = Tge+Tsearch. The
cumulative distribution function for f(t) is F (t) = 1− (1− q)t/T . Our interest is
to determine two positions tα and t1−α, where F (tα) = α and F (t1−α) = 1− α,
as illustrated in Figure 5.

0

f(t) := q(1− q)
t
T

−1

α

α

0 tα q−1T t1−α t

Fig. 5. This figure illustrates tα ≈ q−1Tα and t1−α ≈ q−1T lnα−1 w.r.t. a parameter
0 ≤ α ≤ 1. f(t) := q(1− q)t/T−1 is a map from the runtime t to the success probability
f(t) at which an ISD algorithm terminates. We draw f(t) with q = 0.01 for simplicity.

We can compute tα by solving the following equation for t: 1−(1−q)t/T = α,
which gives

tα =
(
q−1α+O(q−1α2)

)
T, (18)

by series expansion. Assuming q ≪ 1 and α ≪ 1, Eq. (18) is approximated by

tα ≈ q−1Tα. (19)

Similarly, t1−α can be determined by solving the following equation for t: 1 −
(1− q)t/T = 1− α, which gives

t1−α =

(
q−1 − 1

2
+O(q)

)
T lnα−1. (20)

Assuming q ≪ 1, then Eq. (20) is approximated by

t1−α ≈ q−1T lnα−1. (21)

It is noteworthy that Eq. (21) increases on a logarithmic scale with decreasing
in α, whereas Eq. (19) linearly decreases as q ≪ 1 is satisfied in ISD algorithms.
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7.4 Comparison with Latest Implementations

We compare the performance of cuBJMM with other ISD implementations. Fig-
ure 6 shows estimated runtimes and bit complexities of cuBJMM, along with com-
putation results. Below, we describe recent record computations for McEliece
instances.
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Fig. 6. Bit complexities and estimated running times to solve each McEliece challenge
with one desktop PC equipped with an Intel Core i9-12900 CPU and an RTX 4080
GPU. Instances that were successfully solved by our implementation are marked with
small squares. The red dashed line represents the runtime q−1Tα and the blue dashed
line represents the runtime q−1T lnα−1 with a probability α = 2−8.

McEliece-1161 was solved in 15.66 days by Narisada, Fukushima, and Kiy-
omoto using a GPU implementation of Dumer’s algorithm on an Intel Xeon
E5-2686v4 server and an NVIDIA Tesla V100 [29].

Esser, May, and Zweydinger achieved the first records for McEliece-1223 and
McEliece-1284 at 2.45 days and 31.43 days, respectively, using their fast imple-
mentation of the MMT/BJMM algorithm with 4 AMD EPYC 7742 CPUs [18].
Their implementation was later improved by introducing time-memory trade-
offs, achieving an expected runtime of 13.10 days for McEliece-1284 [20].

Recently, Bernstein, Lange, and Peters solved McEliece-1347 using software
they developed on several clusters of computers [9]. According to the website8,
it is stated that the expected runtime of their implementation for McEliece-1284
with 4 AMD EPYC 7742 CPUs is 31.56 days.

8 https://isd.mceliece.org/1347.html, published on February 26, 2023.

https://isd.mceliece.org/1347.html
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The expected runtimes of cuBJMM with one desktop PC under the memory
constraints of M ≤ 33 for McEliece-1284 and McEliece-1347 are 23.30 days
and 108.39 days, respectively. For McEliece-1473 and McEliece-1536, expected
runtime of our implementation with M ≤ 33 are 2474 days and 11552 days,
respectively.

8 Conclusion

In this paper, we propose an improved variant of the depth-2 BJMM algorithm.
This algorithm offers the lowest bit security level for Classic McEliece among
existing ISD algorithms. We also present the first publicly available GPU imple-
mentation of the improved BJMM algorithm. We solve McEliece-1409 for the
first time in 30 hours using 10 desktop PCs. These results provide both theoret-
ical and practical evidence for the reliability of code-based NIST-PQC round 4
candidates.

Future work should include concrete analysis for newer ISDs, such as the
May–Ozerov, Both–May, and sieving ISD algorithms. It is important to verify the
resilience of the remaining code-based NIST-PQC candidates against quantum
ISD algorithms from both theoretical and practical perspectives.

Acknowledgments

This study was supported by JSPS KAKENHI JP22KJ0554 and the Joint Re-
search Center for Advanced and Fundamental Mathematics for Industry, Insti-
tute of Mathematics for Industry, Kyushu University (2022a015).

References

1. Albrecht, M., Bard, G.: The M4RI Library. The M4RI Team (2023), https://bi
tbucket.org/malb/m4ri

2. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram,
V., Von Maurich, I., Misoczki, R., Niederhagen, R., et al.: Classic mceliece: con-
servative code-based cryptography (2022)

3. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Ga-
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