
Massive Superpoly Recovery with a
Meet-in-the-middle Framework

Improved Cube Attacks on Trivium and Kreyvium

Jiahui He1,3[0000−0002−4033−588X], Kai Hu1,3,4[0000−0003−3552−7200], Hao Lei1,3,
and Meiqin Wang1,2,3(�)

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
China.

hejiahui2020@mail.sdu.edu.cn,mqwang@sdu.edu.cn,
kai.hu@sdu.edu.cn,leihao@mail.sdu.edu.cn

2 Quan Cheng Shandong Laboratory, Jinan, China
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan, China.
4 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore.

Abstract. The cube attack extracts the information of secret key bits by
recovering the coefficient called superpoly in the output bit with respect
to a subset of plaintexts/IV, which is called a cube. While the division
property provides an efficient way to detect the structure of the super-
poly, superpoly recovery could still be prohibitively costly if the number
of rounds is sufficiently high. In particular, Core Monomial Prediction
(CMP) was proposed at ASIACRYPT 2022 as a scaled-down version of
Monomial Prediction (MP), which sacrifices accuracy for efficiency but
ultimately gets stuck at 848 rounds of Trivium.
In this paper, we provide new insights into CMP by elucidating the alge-
braic meaning to the core monomial trails. We prove that it is sufficient
to recover the superpoly by extracting all the core monomial trails, an ap-
proach based solely on CMP, thus demonstrating that CMP can achieve
perfect accuracy as MP does. We further reveal that CMP is still MP in
essence, but with variable substitutions on the target function. Inspired
by the divide-and-conquer strategy that has been widely used in previous
literature, we design a meet-in-the-middle (MITM) framework, in which
the CMP-based approach can be embedded to achieve a speedup.
To illustrate the power of these new techniques, we apply the MITM
framework to Trivium, Grain-128AEAD and Kreyvium. As a result,
not only can the previous computational cost of superpoly recovery
be reduced (e.g., 5x faster for superpoly recovery on 192-round Grain-
128AEAD), but we also succeed in recovering superpolies for up to 851
rounds of Trivium and up to 899 rounds of Kreyvium. This surpasses the
previous best results by respectively 3 and 4 rounds. Using the memory-
efficient Möbius transform proposed at EUROCRYPT 2021, we can per-
form key recovery attacks on target ciphers, even though the superpoly
may contain over 240 monomials. This leads to the best cube attacks on
the target ciphers.

Keywords: Cube Attack, Superpoly, Trivium, Grain-128AEAD, Kreyvium,
Division Property, Monomial Prediction, Core Monomial Prediction

1 Introduction

Cube attack. Cube attack was proposed by Dinur and Shamir [16] at EURO-
CRYPT 2009 and has become one of the general cryptanalytic techniques against
symmetric ciphers. Since its proposal, it has been applied to analyze various
symmetric ciphers [6,15,17,20,28,31,34,38,40]. In particular, against the Ascon
cipher [18] that is selected by NIST for future standardization of the lightweight
cryptography, the cube attack shows outstanding effectiveness [7,32,36,37]. The
cube attack exploits the fact that each output bit of a cipher can be expressed
as a Boolean function of the key bits and plaintext/IV bits. For a randomly
chosen set I of indices of the plaintext/IV bits, we can form a monomial tI as
the product of the bits indexed by I. After fixing the plaintext/IV bits outside
of I to constant values, we attempt to recover the polynomial related to key
bits, called superpoly, that is multiplied by tI in the output bit. If the superpoly
is obtained, the value of the superpoly can be computed by summing over a
structure called cube, denoted by CI , which consists of all possible combinations
of values that those plaintext/IV bits indexed by I can take. Subsequently, the
information of key bits may be deduced by solving the equation built from the
value of the superpoly.

Division property. The original division property was proposed at EURO-
CRYPT 2015 [46] as a generalization of the integral property. By tracking the
integral characteristics more accurately with the division property, the long-
standing cipher MISTY1 was broken theoretically for the first time [45]. At FSE
2016, the word-based division property was refined into bit-based division prop-
erty [48], with which the experimentally discovered integral characteristics for
bit-based block cipher SIMON32 and Simeck32 are proved for the first time.
The corresponding MILP model for deducing the division property was proposed
by Xiang et al. [54] at ASIACRYPT 2016, where the propagation rules of basic
operations are encoded as linear equalities. This MILP method has been used
to improve the integral attack against many other ciphers [42,41,21,51].

Exact superpoly recovery. Initially, the cube attack treats the target cipher
as a black box [16,20,35], and the structure of the superpoly can only be de-
tected by experimental tests, thus limiting the superpoly to simple forms (e.g.,
linear or quadratic). Later, the Conventional Bit-based Division Property [48]
was introduced into the cube attack [47], so that those secret variables that are
not involved in the superpoly could be efficiently identified. In the same year,
Liu et al. [33] discovered constant superpolies with the numeric mapping tech-
nique. When determining whether a monomial exists in the superpoly, however,
the bit-based division property may produce false positives, so a further series
of work was carried out to improve its accuracy. In [52], Wang et al. took the
cancellation of constant 1 bits into account and proposed the flag technique to

2

improve the precision of the bit-based division property. At ASIACRYPT 2019,
Wang et al. [53] recovered the exact superpoly for the first time with the prun-
ing technique combined with the three-subset division property. However, this
technique is limited by its assumption that almost all elements in the 1-subset
can be pruned. The inaccuracy problem was finally resolved by Hao et al. in [23],
where the unknown subset was discarded and the cancellation of the 1-subset
vectors was transformed into the parity of the number of division trails. This
new variant of division property is called three-subset division property with-
out unknown subset (3SDPwoU), which is interpreted as the so-called monomial
prediction (MP) from a purely algebraic viewpoint [27]. The MILP model of
MP can be further optimized if we represent the propagation of MP as a di-
rected graph [13]. Both the MP and 3SDPwoU will encounter a bottleneck if
the number of division trails exceeds the upper limit of the number of solutions
that can be enumerated by an MILP solver. To this end, Hu et al. [26] proposed
an improved framework called nested monomial prediction to recover massive
superpolies, which can be viewed as a recursive application of the divide-and-
conquer strategy. Recently, He et al. [24] proposed the core monomial prediction
(CMP), which is claimed to sacrifice accuracy for efficiency compared to MP,
thus significantly reducing the computational cost of superpoly recovery.

Motivation. MP can achieve perfect accuracy because we can determine whether
a monomial appears in the output bit by evaluating the parity of the number
of monomial trails, but what information beyond the existence can be brought
to the table by core monomial trails remains unknown. Even in [24], the au-
thors only exploit the existence of a core monomial trail, but do not show how
we can benefit from all core monomial trails. Also, we notice that the defini-
tion of CMP naturally lends itself to forward propagations, i.e., derivation from
round 0 to higher rounds, while recovering the superpoly with MP does not have
such a property, because it does not impose any constraints on the secret vari-
ables. Forward propagation often implies the possibility of improving accuracy
and efficiency, as in the pruning technique [53] where the division property was
propagated and filtered from the bottom up round by round.

Our contributions. This paper aims to recover superpolies for more initializa-
tion rounds of stream ciphers, for which we propose purely CMP-based approach
and framework to improve the efficiency of superpoly recovery.

– Refinement of CMP theory: new CMP-based approach. It was believed in
previous works that CMP is a scaled-down version of MP that sacrifices
accuracy for efficiency. However, in this paper, we prove that CMP is also
perfectly accurate, as the three-subset division property without unknown
subset and monomial prediction, which refines the division property family.
After investigating how each core monomial trail contributes to the compo-
sition of the superpoly, we demonstrate that it is sufficient to recover the
exact superpoly by extracting all core monomial trails.

– Meet-in-the-middle (MITM) framework. Inspired by the divide-and-conquer
strategy, we show that it is possible to split a complex problem of superpoly

3

recovery into multiple simpler problems of superpoly recovery, by perform-
ing forward or backward propagation of CMP. By using these two types of
propagation interchangeably and recursively, we can embed our CMP-based
approach into an MITM framework to further achieve a speedup.

Since it has been shown in [24] that the MILP model for CMP is simpler
than that for MP, we claim that our purely CMP-based approach and framework
perform better than the method in [24] that combines CMP and MP. The most
intuitive evidence for this is that we can reproduce previous superpolies at a
much smaller computational cost. For Trivium, we halve the time it took to
recover the superpolies (see Table 6); for 192-round Grain-128AEAD, we reduce
the time of superpoly recovery to about 1

5 of the original (see Sect. 5.2).
Notably, our MITM framework enables us to extend the number of initializa-

tion rounds of superpoly recovery for several prominent ciphers, including Triv-
ium (ISO/IEC standard [4,1]) and Kreyvium (designed for Fully Homomorphic
Encryption [10]). Ultimately, we succeed in recovering the superpolies for up to
851-round Trivium and up to 899-round Kreyvium, extending the previous best
results by 3 and 4 rounds, respectively. With the help of the memory-efficient
Möbius transform proposed at EUROCRYPT 2021 [14], we can utilize the recov-
ered superpolies to perform key recovery at a complexity lower than exhaustive
search, leading to the best results of cube attacks against target ciphers.

The summary of our cube attack results are provided in Table 1. The source
codes for superpoly recovery, as well as some recovered superpolies, can be found
in our anonymous git repository

https://github.com/viocently/sdfkjxu192lc78-s0.

2 Cube Attack and Monomial Prediction

2.1 Notations and Definitions

In this paper, we use bold italic or Greek letters to represent binary vectors. For
a binary vector x ∈ Fm

2 , its ith bit is represented by x[i]; the Hamming weight
of x is calculated as wt(x) =

∑m−1
i=0 x[i]; the indices of ones in x are represented

by the set Ind[x] = {i | x[i] = 1}. Given two binary vectors x ∈ Fm
2 and u ∈ Fm

2 ,
we use xu to represent

∏m−1
i=0 x[i]u[i]; x[u] =

(
x[i0], . . . , x[iwt(u)−1]

)
∈ Fwt(u)

2

denotes a sub-vector of x with respect to u, where i0, . . . , iwt(u)−1 are elements
of Ind[u] in ascending order. We define x ⪰ u (resp. x ≻ u) if x[i] ≥ u[i] (resp.
x[i] > u[i]) for all i and x ⪯ u (resp. x ≺ u) if x[i] ≤ u[i] (resp. x[i] < u[i]) for
all i. The concatenation of x and u is denoted by x∥u. The bitwise operations
AND,OR,XOR,NOT are denoted by ∧,∨,⊕,¬ respectively and can be applied
to bits or binary vectors. As a special case, we use 0 and 1 to refer to the all-zero
vector and the all-one vector, respectively.

We add subscripts to distinguish n binary vectors that use the same letter
(e.g., x0, . . . ,xn−1) and superscripts to represent the binary vectors associated
with a specific number of rounds (e.g., xi is a binary vector at round i). For

4

https://github.com/viocently/sdfkjxu192lc78-s0

Table 1: Summary of the key recovery attacks on Trivium and Kreyvium
Cipher Rounds #Cube⋆ Cube size Attack type Data Time Reference

Trivium

672 63 12 Cube 218.6 217 [16]
709 80 22-23 Cube 223 229.14 [35]
767 35 28-31 Cube 231 245 [16]
784 42 30-33 Cube 233 239 [20]
799 18 32-37 Cube 238 262 [20]
802 8 34-37 Cube 237 272 [55]
805 42 32-38 Cube 238 241.4 [56]
805 28 28 Correlation Cube 228 273 [34]
806 16 34-37 Cube 238.64 264 [56]
806 29 34-37 Cube 239 239 [44]
808 37 39-41 Cube 244 244.58 [44]
810 39 40-42 Cube 244 244.17 [30]
815 35 44-46 Cube 247 247.32 [11]
820 30 48-51 Cube 253 253.17 [11]
820† 213 38 Correlation Cube 251 260 [49]
825 31 49-52 Cube 253 253.09 [30]
825† 212 41 Correlation Cube 253 260 [49]
830† 213 41 Correlation Cube 254 260 [49]
832 1 72 Cube 272 279 [47,53]
835 41 35 Correlation Cube 235 275 [34]
840 1 78 Cube 278 279.6 [23]
840 3 75 Cube 276.6 277.8 [27]
840 6 47-62 Cube 262 276.32 [26]
841 1 78 Cube 278 279.6 [23]
841 2 76 Cube 277 278.6 [27]
841 3 56-76 Cube 276 278 [26]
842 1 78 Cube 278 279.6 [23]
842 2 76 Cube 277 278.6 [27]
842 3 56-76 Cube 276 278 [26]
843 2 78 Cube 278 279.6 [44]
843 5 56-76 Cube 256 277 [26]
844 28 37-38 Cube 242.8 276 [12]
844 2 54-55 Cube 256 278 [26]
845 2 54-55 Cube 256 278 [26]
846 6 51-54 Cube 251 279 [24]
847 2 52-53 Cube 252 279 [24]
848 1 52 Cube 252 279 [24]
849 2 44 Cube 244 279 Sect. 5.1
850 1 44 Cube 244 279 Sect. 5.1
851 1 44 Cube 244 279 Sect. 5.1

Kreyvium

≤ 893 - ≤ 119 Cube ≤ 2119 ≤ 2127 [22,23,44,47,52]
894 1 119 Cube 2119 2127 [26]
895 1 120 Cube 2120 2127 [24]
896 2 123-124 Cube 2123 2127 Sect. 5.3
897 1 124 Cube 2124 2127 Sect. 5.3
898∗ 2 126 Cube 2127 2127.58 [19]
898 1 124 Cube 2124 2127 Sect. 5.3
899∗ 1 126 Cube 2126 2127.58 [19]
899 1 124 Cube 2124 2127 Sect. 5.3
900∗ 1 126 Cube 2126 2127.58 [19]

⋆ #Cube represents the number of cubes whose superpolies are recovered, but this may not be
equal to the number of cubes eventually used in the key recovery attack.

† The 820-, 825- and 830-round attacks in [49] work for only 279.8, 279.7 and 279.3 of the keys in
the key space, respectively.

∗ We notice that after our submission, the superpolies of up to 900 rounds of Kreyvium have
been recovered in [19], where the complexity analysis is based on the concept of implementation
dependency. This leads to the cube attacks against up to 900 rounds of Kreyvium.

5

clarity, we will use π(x,u) instead of xu when both x and u have superscripts
or subscripts.

When introducing a concrete MILP model, we use regular italic letters to rep-
resent MILP variables, and similarly we add superscripts to denote the number
of rounds if they correspond to a certain round and add subscripts to distinguish
them if they use a same letter.

Let f : Fn
2 → F2 be a Boolean function whose algebraic normal form (ANF)

is represented as f(x) =
⊕

u∈Fn
2
aux

u, where au ∈ F2 and x ∈ Fn
2 . xu is called

a monomial. We say a monomial xu appears in f , if the coefficient of xu in f
is 1, i.e., au = 1, and we denote this case by xu → f ; otherwise, we denote the
absence of xu in f by xu ↛ f .

Let f : Fn
2 → Fm

2 be a vectorial Boolean function with x and y being the
input and output, respectively. Given a monomial yv of y, we can derive a
Boolean function g of x by taking yv as the output of g. In the remainder of
the paper, notations of the form yv may represent either a monomial of y or the
Boolean function g derived from it, depending on the context. We then write
xu → yv if xu → g; otherwise we write xu ↛ yv. The ANF of g is denoted by
Expr ⟨yv,x⟩, which represents a Boolean polynomial of x determined by yv. For
a polynomial p of y, Expr ⟨p,x⟩ is defined as the summation of Expr ⟨yv,x⟩ over
all monomials yv appearing in p. We would like to point out that when we use
above notations, we may not give f explicitly, so the readers should be able to
derive f from the context on their own.

2.2 Cube Attack

The cube attack was proposed by Dinur and Shamir at EUROCRYPT 2009 [16]
as an extension of the higher-order differential attack. Given a cipher with secret
variables k ∈ Fn

2 and public variables v ∈ Fm
2 being the input, any output bit

can be represented as a Boolean function of k and v, denoted by f(k,v).
Given I ⊆ {0, . . . ,m − 1} as a set of indices of the public variables, we can

uniquely express f(k,v) as

f(k,v) = p(k,v) · tI + q(k,v),

where tI =
∏

i∈I v[i], p(k,v) only relates to v[s]’s (s /∈ I) and the secret variables
k, and each monomial appearing in q(k,v) misses at least one variable from
{v[i] | i ∈ I}. I is called cube indices, whose size is denoted by |I|. If we assign
all the possible combinations of 0/1 values to v[j]’s (j ∈ I) and leave v[s]’s
(s /∈ I) undetermined, we can determine a set CI from I, which is called cube.
The coefficient p(k,v) is called the superpoly of the cube CI or the cube indices
I, which can be computed by summing the output bit f(k,v) over the cube,
namely

p(k,v) =
∑
v∈CI

f(k,v).

If we set the non-cube variables v[s]’s (s /∈ I) to constants, the coefficient p(k,v)
reduces to a polynomial that only relates to k, which we denote by Coe⟨f, tI⟩.

6

The typical process for carrying out a cube attack can be summarized as
follows:

– In the offline phase, the attacker recovers superpolies for selected cubes of
the cipher without knowledge of the secret key.

– In the online phase, the attacker exploits the output bits generated under
the unknown key to evaluate the recovered superpolies. This allows building
a system of equations in the key bits.

– Solving this system of equations recovers part of the key. The remaining key
bits can be obtained through an exhaustive search.

The core idea is that the successful recovery of superpolies allows to construct
a solvable system of equations that leak key bits, which can break the security
of the cipher by facilitating full key recovery.

2.3 Monomial Prediction (MP)

Let f : Fn0
2 → Fnr

2 be a composite vectorial Boolean function built by compo-
sition from a sequence of vectorial Boolean functions f i : Fni

2 → Fni+1

2 , 0 ≤ i ≤
r − 1, i.e.,

f = fr−1 ◦ fr−2 ◦ · · · ◦ f0,

where xi ∈ Fni
2 and xi+1 ∈ Fni+1

2 are the input and output of f i, respectively.
Given a starting number rs and an ending number re with 0 ≤ rs < re ≤ r,

let r′ = re − rs. Given r′ + 1 monomials π(xrs ,urs), · · · , π(xre ,ure), if for each
j, rs ≤ j ≤ re − 1 we have π(xj ,uj) → π(xj+1,uj+1), we write the connection
of these transitions as

π(xrs ,urs)→ π(xrs+1,urs+1)→ · · · → π(xre ,ure),

which is called an r′-round monomial trail. If there exists at least one mono-
mial trail from π(xrs ,urs) to π(xre ,ure), we write π(xrs ,urs) ⇝ π(xre ,ure).
The set containing all the monomial trails from π(xrs ,urs) to π(xre ,ure) is de-
noted by π(xrs ,urs) 1 π(xre ,ure), whose size is represented as |π(xrs ,urs) 1
π(xre ,ure)|. If there is no trail from π(xrs ,urs) to π(xre ,ure), we denote it by
π(xrs ,urs) ̸⇝ π(xre ,ure) and accordingly we have |π(xrs ,urs) 1 π(xre ,ure)| =
0.

The monomial prediction focuses on how to determine accurately whether
π(xrs ,urs)→ π(xre ,ure) for two given monomials π(xrs ,urs) and π(xre ,ure),
and the following theorem relates this problem to the number of monomial trails.

Theorem 1 ([27, Proposition 1]). Use the notations defined above. We have
π(xrs ,urs)→ π(xre ,ure) if and only if

|π(xrs ,urs) 1 π(xre ,ure)| ≡ 1 (mod 2).

Theorem 2 (Superpoly Recovery [27]). Let f be the output bit of a cipher
represented as a monomial of the output state, which is generated from the secret

7

variables k and the public variables x through a series of round functions. Given
the cube indices I and tI =

∏
i∈I v[i], set the non-cube variables v[s]’s (s /∈ I) to

0, then
Coe⟨f, tI⟩ =

∑
|kwtI1f |≡1 (mod 2)

kw,

where kwtI 1 f is the set of monomial trails that propagate kwtI to f through
the round functions.

Propagation rules and MILP models. Since any symmetric primitive can be
constructed from basic operations like XOR, AND and COPY, it is sufficient
to define propagation rules for these basic functions. By listing all input-output
pairs that exhibit monomial prediction, and encoding these pairs as linear in-
equalities [43,39,8], we can model the propagation of monomial prediction in a
way that is amenable to efficient MILP solving. We provide the concrete prop-
agation rules and MILP models in Sup.Mat. A. In this paper, we choose the
state-of-the-art commercial MILP solver, Gurobi [2], to solve our MILP models.

3 Recalling Core Monomial Prediction (CMP)

This paper targets an r-round cipher represented by a parameterized vectorial
Boolean function f(k,v) with secret variables k and public variables v being
the input. f can be written as the composition of a sequence of simple round
functions whose ANFs are known, i.e.,

f(k,v) = fr−1 ◦ fr−2 ◦ · · · ◦ f0, (1)

where f i, 0 ≤ i ≤ r − 1, represents the round function at round i, with input
variables xi ∈ Fni

2 and output variables xi+1 ∈ Fni+1

2 . The initial state x0 is
loaded with k, v, constant 1 bits and constant 0 bits. The output bit z of the
cipher is defined as the sum of several monomials of xr. After choosing the
cube indices I and setting the non-cube variables to constants (not necessarily
constant 0), we aim to efficiently compute Coe⟨z, tI⟩, where tI =

∏
i∈I v[i]. We

first recall some details about the core monomial prediction proposed in [24].

Superpoly recovery method in [24]. Since z is the sum of several monomi-
als of xr, we consider computing Coe⟨π(xr,ur), tI⟩ for each π(xr,ur) satisfying
π(xr,ur) → z. There are two steps for computing Coe⟨π(xr,ur), tI⟩ in [24].
In the first step, the authors choose a fixed middle round rm and recover all
π(xrm ,urm)’s that satisfy: (A) π(xrm ,urm) → π(xr,ur), (B) ∃w such that
kwtI ⇝ π(xrm ,urm). In the second step, compute Coe⟨π(xrm ,urm), tI⟩ by MP.
The sum of all Coe⟨π(xrm ,urm), tI⟩’s is exactly Coe⟨π(xr,ur), tI⟩. In [24], Con-
dition B was characterized by a focus on those bits in π(xrm ,urm) that relate
to cube variables, thus leading to the flag technique.

Flag technique for CMP [24]. Let b be one bit of an intermediate state xi,
b can have three types of flags:

8

1. If b is 0, denote its flag by b.F = 0c;
2. Otherwise, express b as the polynomial of k and cube variables, if none of

cube bits appear in b, denote its flag by b.F = 1c;
3. Otherwise, denote its flag by b.F = δ.

The flags of all bits in xi are denoted by a vector xi.F = (xi[0].F, . . . , xi[ni −
1].F), which can be calculated from x0.F by the following operation rules:

1c × x = x× 1c = x 1c ⊕ 1c = 1c 0c ⊕ x = x⊕ 0c = x
0c × x = x× 0c = 0c δ ⊕ x = x⊕ δ = δ δ × δ = δ

where x can be any of {0c, 1c, δ}.

Remark 1. Note that the flag technique for CMP is essentially different from
the one for the two-subset division property used in [52]. The most significant
difference lies in how to process the secret key bits. In the flag technique for
CMP, the secret key bits are regarded as 1c bits and it is an unalienable part of
the CMP technique, whereas in [52], the secret keys are treated as free variables
and the flag technique is only a skill to improve the precision and efficiency of
the division property.

Definition of core monomial trail [24]. Let Ind[M i,δ] = {j | xi[j].F =
δ}; Ind[M i,1c] = {j | xi[j].F = 1c}; Ind[M i,0c] = {j | xi[j].F = 0c}. The vectors
M i,δ,M i,1c ,M i,0c are called flag masks. Given two monomials π(xrs , trs) and
π(xre , tre) for 0 ≤ rs < re ≤ r, with trs ⪯M rs,δ and tre ⪯M re,δ, if there ex-
ists a monomial π(xrs ,urs) such that urs ∧M rs,δ = trs , urs ∧M rs,0c = 0 and
π(xrs ,urs) → π(xre , tre), then we say π(xrs , trs) can propagate to π(xre , tre)

under the core monomial prediction, denoted by π(xrs , trs)
C→ π(xre , tre); oth-

erwise we denote it by π(xrs , trs)
C→− π(xre , tre).

Let r′ = re − rs. We call the connection of r′ transitions π(xrs , trs)
C→

π(xrs+1, trs+1)
C→ · · · C→ π(xre , tre) an r′-round core monomial trail. If there is at

least one r′-round core monomial trail from π(xrs , trs) to π(xre , tre), we denote
it by π(xrs , trs)

C⇝ π(xre , tre); otherwise we write π(xrs , trs)
C⇝− π(xre , tre).

The set containing all the trails from π(xrs , trs) to π(xre , tre) is denoted by
π(xrs , trs)

C
1 π(xre , tre). The propagation rules and MILP models of CMP are

provided in Sup.Mat. B. In the propagation of CMP, the 0c bits are excluded,
the 1c bits are treated as constants that can be ignored, thus only the δ bits are
tracked.

Limitations of the CMP theory in [24]. In [24], only the existence property
of a core monomial trail was used in theory, and the CMP technique was con-
sidered as a compromised version of MP which sacrificed accuracy for efficiency.
However, we observe that more information has been associated with a core
monomial trail besides the existence property, which was ignored by [24]. When
considering these information, CMP can be as precise as MP. To intuitively show
this, let us consider a simple example.

9

Example 1. Consider a simple cipher f = f2 ◦ f1 ◦ f0 where

x0 = (v[0], v[1], v[2], k[0], k[1], k[2], 0, 1),

x1 = f0(x0) = (x0[0]x0[1] + x0[1]x0[2] + x0[1]x0[4],

x0[0]x0[3] + x0[3], x0[4] + x0[5], x0[7] + x0[6]),

x2 = f1(x1) = (x1[0]x1[2] + x1[0]x1[1], x1[2], x1[3]),

x3 = f2(x2) = (x2[0]x2[1] + x2[0]x2[2]).

Assume tI = v[0]v[1], v[2] = 1 and we want to compute Coe⟨x3[0], tI⟩.
We first compute x0.F = (δ, δ, 1c, 1c, 1c, 1c, 0c, 1c),x

1.F = (δ, δ, 1c, 1c),x
2.F =

(δ, 1c, 1c) and x3.F = (δ). Then, we expand x3[0] into a polynomial of x2 and
combine the monomials according to δ bits.

x3[0] = (x2[1] + x2[2]) · x2[0]

Note that x2[1].F = x2[2].F = 1.c, we derive

x3[0] = (x2[1] + x2[2]) · x2[0] = (1 + k[1] + k[2]) · x2[0].

Similarly, for x2[0] we have

x2[0] = (x1[2]) · x1[0] + x1[0]x1[1] = (k[1] + k[2]) · x1[0] + x1[0]x1[1],

and further for x1[0] and x1[0]x1[1] we have

x1[0] = (x0[2] + x0[4]) · x0[1] + x0[0]x0[1] = (1 + k[1]) · x0[1] + x0[0]x0[1],

x1[0]x1[1] = (x0[2]x0[3] + x0[3]x0[4]) · x0[0]x0[1] + (x0[2]x0[3] + x0[3]x0[4]) · x0[1]

= (k[0] + k[0]k[1]) · x0[0]x0[1] + (k[0] + k[0]k[1]) · x0[1].

Thus, there are two core monomial trails

x0[0]x0[1]
C→ x1[0]

C→ x2[0]
C→ x3[0],

x0[0]x0[1]
C→ x1[0]x1[1]

C→ x2[0]
C→ x3[0],

Multiply the coefficients of each core monomial trail. We take the first core mono-
mial trail as an example. From x0[0]x0[1]

C→ x1[0], the corresponding coefficient
of x0[0]x0[1] is 1; from x1[0]

C→ x2[0], the corresponding coefficient of x1[0] is
k[1]+k[2]; from x2[0]

C→ x3[0], the corresponding coefficient of x2[0] is 1+k[1]+
k[2]. Thus, the first core monomial trail leads to (1 + k[1] + k[2])(k[1] + k[2]).
Similarly, the second core monomial trail leads to (1+k[1]+k[2])(k[0]+k[0]k[1]).
It is easy to verify that Coe⟨x3[0], tI⟩ is just (1 + k[1] + k[2])(k[1] + k[2]) + (1 +
k[1] + k[2])(k[0] + k[0]k[1]).

In [24], all possible concatenations of a core monomial trail of the first rm
rounds and a monomial trail of the subsequent r − rm rounds are enumerated

10

when solving the MILP model in practice. However, the above example reveals
that it is sufficient to compute Coe⟨π(xr,ur), tI⟩ by computing all core mono-
mial trails of the r rounds and then extracting the coefficients from each core
monomial trail, where the latter step is a fully offline process independently
from the MILP solver. Hence, the new method is surely more efficient than the
method in [24].

4 Beyond Existence: Refinement of CMP Theory

In this section, we prove that CMP can reach perfect accuracy as MP does
by developing a purely CMP-based approach for the superpoly recovery, thus
addressing the limitations of the CMP theory. On this basis, we further design
an MITM framework to enhance the CMP-based approach.

4.1 Extending CMP Theory using SR problem

In order to study the CMP theory independently from a specific cryptographic
context, we start by breaking the association between flags and cube indices.
Indeterminate flags. While the flag technique presented in Sect. 3 is defined
based on the chosen cube indices I, the definition and propagation of CMP are
independent of how the flags are defined. Therefore, in the rest of the paper, we
drop the previous definition of flags based on cube variables, which is to say, the
flag of a bit b is no longer based on representing b as a Boolean polynomial of k
and cube variables. Instead, we consider flags as variables that can take values δ,
1c and 0c, which are referred to as indeterminate flags, but the operation rules
remain unchanged. As a result, the flag masks become variables as well, but
for 0 ≤ i ≤ r, the requirement that Ind[M i,δ], Ind[M i,1c] and Ind[M i,0c] form a
partition of {0, . . . , ni − 1} still holds.

Note that different values assigned to the flag masks can result in different
propagation of CMP. Therefore, when we discuss the propagation of CMP from
round rs to round re for 0 ≤ rs < re ≤ r, if the values of M rs,δ,M rs,1c ,M rs,0c

are not clear from the context, we will give specific values for M rs,δ,M rs,1c ,M rs,0c ,
and implicitly assume that the values of M j,δ,M j,1c ,M j,0c , rs < j ≤ re are cal-
culated from round rs according to operation rules.
Extending CMP theory with SR problem. In the context of indetermi-
nate flags, we analyze the reasons why the previous CMP theory is consid-
ered inaccurate. Assume the flag masks M rs,δ,M rs,1c ,M rs,0c take the values
αrs,δ,αrs,1c ,αrs,0c = ¬(αrs,δ ∨αrs,1c). By the definition of CMP, the transition
π(xrs , trs)

C→ π(xre , tre) emphasizes the existence of a w ⪯ αrs,1c such that
π(xrs ,w) · π(xrs , trs) → π(xre , tre), but does not provide explicit information
about the exact value of w. In other words, the definition of CMP does not give
any precise information related to the exact expressions of the monomials ap-
pearing in Expr ⟨π(xre , tre),xrs⟩. Consequently, it may give the impression that
the previous CMP theory is inaccurate.

11

In order to refine the CMP theory to be precise, it is necessary to capture all
w’s that satisfy w ⪯ αrs,1c and π(xrs ,w) ·π(xrs , trs)→ π(xre , tre). This can be
easily achieved if we can obtain the concrete expression of Expr ⟨π(xre , tre),xrs⟩
(e.g., when the vectorial Boolean function mapping xrs to xre is simple). How-
ever, when Expr ⟨π(xre , tre),xrs⟩ is not available, the situation becomes much
more complicated, which deserves further investigation, thus we formalize it as
the following SR problem.

Definition 1 (SR Problem). Let the target cipher f be as defined in Eqn. (1).
Given rs, re, 0 ≤ rs < re ≤ r and the values αrs,δ,αrs,1c ,αrs,0c = ¬(αrs,δ ∨
αrs,1c) assigned to the flag masks M rs,δ,M rs,1c ,M rs,0c , for each j, rs < j ≤
re, let M j,δ,M j,1c ,M j,0c take the values αj,δ,αj,1c ,αj,0c that are calculated
from αrs,δ,αrs,1c ,αrs,0c according to the operation rules of flags. Given two
monomials π(xrs , trs) and π(xre , tre) that satisfy trs ⪯ αrs,δ and tre ⪯ αre,δ,
we can uniquely and symbolically express π(xre ,ure) as a polynomial of xrs , i.e.,

Expr ⟨π(xre , tre),xrs⟩ = p(xrs [αrs,1c ∨αrs,0c]) · π(xrs , trs) + q(xrs), (2)

where each monomial π(xrs ,urs) appearing in q(xrs) satisfies urs ∧αrs,δ ̸= trs .
If we set xrs [αrs,0c] to 0, then the coefficient p(xrs [αrs,1c ∨ αrs,0c]) reduces to
a polynomial that only relates to xrs [αrs,1c]. The question is, what is the exact
expression of this polynomial?

We use SRαrs,δ,αrs,1c ⟨tre , trs⟩ to denote a concrete instance of the SR prob-
lem, which is uniquely determined by six parameters, namely the numbers rs, re
of rounds, the values αrs,δ,αrs,1c assigned to M rs,δ,M rs,1c and the vectors
trs , tre corresponding to the monomials π(xrs , trs), π(xre , tre). The solution of
this instance, denoted by Solαrs,δ,αrs,1c ⟨tre , trs⟩, is the coefficient p(xrs [αrs,1c ∨
αrs,0c]) in Eqn. (2) after setting xrs [αrs,0c] to 0. When αrs,δ,αrs,1c can be in-
ferred from the context without ambiguity, we write SR⟨tre , trs⟩ and Sol⟨tre , trs⟩
for simplicity. Each instance SRαrs,δ,αrs,1c ⟨tre , trs⟩ uniquely corresponds to a
CMP transition π(xrs , trs)

C→ π(xre , tre). In particular, Solαrs,δ,αrs,1c ⟨tre , trs⟩ is
exactly the sum of all w ⪯ αrs,1c that satisfy π(xrs ,w)·π(xrs , trs)→ π(xre , tre).
When Solαrs,δ,αrs,1c ⟨tre , trs⟩ is available, the transition π(xrs , trs)

C→ π(xre , tre)
is considered accurate.

The SR problem can be considered as an extension of the CMP theory used
to specify the precise algebraic information implied by a CMP transition. Hence,
the solution of an instance SRαrs,δ,αrs,1c ⟨tre , trs⟩ not only uniquely determines a
CMP transition, but also reflects the information of exact monomials in the alge-
braic composition of Expr ⟨π(xre , tre),xrs⟩, as stated in Lemma 1 and Lemma 2.
Since these two lemmas are direct consequences of Definition 1, we omit the
proofs of them here.

Lemma 1. Letting αrs,δ,αrs,1c be any values assigned to M rs,δ,M rs,1c and
M rs,0c = ¬(αrs,δ ∨ αrs,1c), for each j, rs < j ≤ re we calculate the values of
M j,δ,M j,1c ,M j,0c as αj,δ,αj,1c ,αj,0c . Then, Sol⟨tre , trs⟩ is not equal to 0 if
and only if π(xrs , trs)

C→ π(xre , tre).

12

Lemma 2. Let the values of flag masks be defined as in Lemma 1. Given any
monomial π(xre , tre) satisfying tre ⪯ αre,δ, after setting xrs [αrs,0c] to 0, if
Expr ⟨π(xre , tre),xrs⟩ ̸= 0, then we can uniquely express π(xre , tre) as

Expr ⟨π(xre , tre),xrs⟩ =
∑

π(xrs ,trs)
C→π(xre ,tre)

Sol⟨tre , trs⟩ · π(xrs , trs),

where the summation is over all trs ’s that satisfy π(xrs , trs)
C→ π(xre , tre).

We would also like to point out that both the SR problem and MP are
concerned with the presence of specific monomials in the polynomial expanded
from a higher-round monomial; the only difference is that MP is concerned with
whether a single monomial exists in the polynomial, whereas the SR problem
is concerned with the existence of several monomials of the same form in the
polynomial. For example, the instance SRαrs,δ,αrs,1c ⟨tre , trs⟩ is concerned with
whether monomials of the form π(xrs ,w) · π(xrs , trs) appear in the polynomial
Expr ⟨π(xre , tre),xrs⟩, where π(xrs ,w) is a monomial in Solαrs,δ,αrs,1c ⟨tre , trs⟩.
Relationships between superpoly recovery and SR problem. Since the
SR problem is accurate as an extension of CMP, we can utilize it to compute
the exact superpoly.

Proposition 1 (Reducing superpoly recovery to solving SR problem).
Recall that the initial state x0 is loaded with k, v, constant 1 bits and constant 0
bits. Let M0,δ,M0,1c and M0,0c take the particular values γ0,δ,γ0,1c and γ0,0c

respectively, where

Ind[γ0,δ] = {i | x(0)[i] is loaded with a cube variable},

Ind[γ0,0c] = {i | x(0)[i] is loaded with a non-cube variable that is set to constant 0}∪
{i | x(0)[i] is loaded with constant 0},

γ0,1c = ¬
(
γ0,δ ∨ γ0,0c

)
. (3)

For each j, 0 < j ≤ r, let γj,δ,γj,1c ,γj,0c be calculated from γ0,δ,γ0,1c ,γ0,0c

according to the operation rules of flags. For tI =
∏

i∈I v[i] and the output
bit z as the sum of monomials of xr, we define two sets S0 = {t0 | t0 ⪯
γ0,δ,Expr

⟨
π(x0, t0),v

⟩
= tI} and Sr = {ur | π(xr,ur) → z,ur ∧ γr,0c = 0}.

Then, either |Sr| = 0, which is easy to verify and indicates that Coe⟨z, tI⟩ = 0,
or we can compute Coe⟨z, tI⟩ as

Coe⟨z, tI⟩ =
∑

ur∈Sr

 ∑
t0∈S0

Expr
⟨
Sol⟨ur ∧ γr,δ, t0⟩,k

⟩
· Expr

⟨
π(xr,ur ∧ γr,1c),k

⟩ .

(4)

Proof. Since z =
∑

π(xr,ur)→z π(x
r,ur) and x0[γ0,0c] is set to 0, we have z = 0

if |Sr| = 0, and z =
∑

ur∈Sr π(xr,ur) otherwise. Hence, the proposition holds

13

in the case |Sr| = 0. When |Sr| ̸= 0, we can calculate Coe⟨z, tI⟩ as

Coe⟨z, tI⟩ =
∑

ur∈Sr

Coe⟨π(xr,ur ∧ γr,δ), tI⟩ · Expr
⟨
π(xr,ur ∧ γr,1c),k

⟩
. (5)

For each π(xr,ur ∧ γr,δ) where ur ∈ Sr, if Expr
⟨
π(xr,ur ∧ γr,δ),x0

⟩
= 0, then

Sol⟨ur ∧ γr,δ, t0⟩ is 0 for any t0. Otherwise, according to Lemma 2, we have

Expr
⟨
π(xr,ur ∧ γr,δ),x0

⟩
=

∑
π(x0,t0)

C→π(xr,ur∧γr,δ)

Sol⟨ur ∧ γr,δ, t0⟩ · π(x0, t0).

Then,

Coe⟨π(xr,ur ∧ γr,δ), tI⟩ =
∑

π(x0,t0)
C→π(xr,ur∧γr,δ)

Expr
⟨
Sol⟨ur ∧ γr,δ, t0⟩,k

⟩
· Coe⟨π(x0, t0), tI⟩.

For each t0 satisfying π(x0, t0)
C→ π(xr,ur ∧ γr,δ), we have t0 ⪯ γ0,δ and

π(x0, t0) only involves those bits of x0 that are loaded with cube variables,
therefore if Coe⟨π(x0, t0), tI⟩ is not 0, it must be 1, which is equivalent to
Expr

⟨
π(x0, t0),v

⟩
= tI . Hence,

Coe⟨π(xr,ur ∧ γr,δ), tI⟩ =
∑

t0∈S0

Expr
⟨
Sol⟨ur ∧ γr,δ, t0⟩,k

⟩
. (6)

Combining Eqn. (6) with Eqn. (5), the proposition is proved. ⊓⊔

In Eqn. (4), it is assumed that Expr
⟨
π(xr,ur ∧ γr,1c),k

⟩
can be calculated

quickly based on the round functions. In practice, due to the diffusion of round
functions, usually the state bits of round r (e.g., r = 850 for Trivium) are
all δ bits, resulting in Expr

⟨
π(xr,ur ∧ γr,1c),k

⟩
being 1. Therefore, computing

Coe⟨z, tI⟩ naturally reduces to the problem of seeking solutions for instances
of the form Solγ0,δ,γ0,1c ⟨tr, t0⟩, where the values of flag masks are given as in
Proposition 1 and tr, t0 can be any vectors that satisfy t0 ∈ S0, tr ⪯ γr,δ.

4.2 Solving SR Problem with CMP

A CMP transition can be refined to be precise if the instance of the SR problem
corresponding to this transition can be solved. Unfortunately, this is not always
achievable for a complex instance. To address this problem, it would be necessary
to study how to split a high-round instance into multiple instances of lower
round, so that we can compute the solution of a complex instance from the
solutions of simpler instances. With a little derivation, we immediately have the
following lemma.

Lemma 3. Assuming rs + 1 < re, let the values of flag masks be defined as
in Lemma 1. Given a monomial π(xre , tre) satisfying tre ⪯ αre,δ, after setting

14

xrs [αrs,0c] to 0, then for any j, rs < j < re, either Expr
⟨
π(xre , tre),xj

⟩
= 0 or

we can calculate Sol⟨tre , trs⟩ as

Sol⟨tre , trs⟩ =
∑

π(xj ,tj)
C→π(xre ,tre)

Expr
⟨
Sol⟨tre , tj⟩,xrs

⟩
· Sol⟨tj , trs⟩, (7)

where the summation is over all tj’s that satisfy π(xj , tj)
C→ π(xre , tre).

Proof. After setting xrs [αrs,0c] to 0, xj [αj,0c] is also set to 0 according to op-
eration rules. According to Lemma 2, either Expr

⟨
π(xre , tre),xj

⟩
= 0 or we can

express π(xre , tre) as

Expr
⟨
π(xre , tre),xj

⟩
=

∑
π(xj ,tj)

C→π(xre ,tre)

Sol⟨tre , tj⟩ · π(xj , tj).

Notice that for each π(xj , tj) satisfying π(xj , tj)
C→ π(xre , tre), Sol⟨tre , tj⟩ only

relates to xj [αj,1c] and can be expressed as polynomial of xrs [αrs,1c], so it
suffices to calculate Sol⟨tj , trs⟩, thus proving the lemma. ⊓⊔

According to Lemma 3, we can calculate Sol⟨tre , trs⟩ as

Sol⟨tre , trs⟩ =
∑
tre−1

Expr
⟨
Sol⟨tre , tre−1⟩,xrs

⟩
· Sol⟨tre−1, trs⟩,

where the summation of over all tre−1’s that satisfy π(xre−1, tre−1)
C→ π(xre , tre).

By applying Lemma 3 to each Sol⟨tre−1, trs⟩ again, we have

Sol⟨tre , trs⟩ =
∑

tre−2,tre−1

Expr
⟨
Sol⟨tre , tre−1⟩ · Sol⟨tre−1, tre−2⟩,xrs

⟩
·Sol⟨tre−2, trs⟩,

where the summation is over all tre−2, tre−1’s that satisfy π(xre−2, tre−2)
C→

π(xre−1, tre−1)
C→ π(xre , tre). This process can be repeated round by round

until we arrive at round rs, namely

Sol⟨tre , trs⟩ =
∑

trs+1,...,tre−1

Expr

⟨
re−1∏
j=rs

Sol⟨tj+1, tj⟩,xrs

⟩
· Sol⟨trs , trs⟩,

where the summation is over all trs+1, . . . , tre−1’s that satisfy π(xrs , trs)
C→

π(xrs+1, trs+1)
C→ · · · C→ π(xre−1, tre−1)

C→ π(xre , tre). Note that Sol⟨trs , trs⟩ is
trivially 1, so we actually get an approach to compute Sol⟨tre , trs⟩ based on core
monomial trails. We next formalize this approach as a theory, where the role of
each core monomial trail is explicitly specified.

15

Definition 2 (Contribution of core monomial trail). Let the values of flag
masks be defined as in Lemma 1. For any core monomial trail ℓ written as

π(xrs , trs)
C→ π(xrs+1, trs+1)

C→ · · · C→ π(xre , tre),

we define the contribution of this trail as

Contrαrs,δ,αrs,1c ⟨l⟩ =
re−1∏
j=rs

Solαj,δ,αj,1c ⟨tj+1, tj⟩.

If αrs,δ,αrs,1c are clear from the context, we write Contr⟨l⟩ for simplicity.

The contribution of a core monomial trail specifies the algebraic information
carried by the trail. Collecting the contributions of all core monomial trails
enables us to solve a complex instance efficiently. More precisely,

Proposition 2 (Solving SR problem by core monomial trails). Let the
values of flag masks be defined as in Lemma 1. Given an instance of the SR
problem denoted by SR⟨tre , trs⟩, if π(xrs , trs)

C⇝− π(xre , tre), the solution of this
instance is 0; otherwise, we can calculate the solution of this instance by

Sol⟨tre , trs⟩ =
∑

ℓ∈π(xrs ,trs)
C
1π(xre ,tre)

Expr ⟨Contr⟨ℓ⟩,xrs⟩ .

Proof. We prove this proposition by fixing rs and performing induction on re.
When re = rs + 1, the proposition clearly holds according to Definition 2 and
Lemma 2. Assuming the proposition holds for re < m, we are going to prove
that it also holds for re = m.

If π(xrs , trs)
C⇝− π(xm, tm), then either Expr

⟨
π(xm, tm),xm−1

⟩
= 0, meaning

that Sol⟨tm, trs⟩ = 0, or π(xrs , trs)
C⇝− π(xm−1, tm−1) for each π(xm−1, tm−1)

satisfy π(xm−1, tm−1)
C→ π(xm, tm). For the latter case, we set xrs [αrs,0c] to 0

and calculate Sol⟨tm, trs⟩ according to Lemma 3 as

Sol⟨tm, trs⟩ =
∑

π(xm−1,tm−1)
C→π(xm,tm)

Expr
⟨
Sol⟨tm, tm−1⟩,xrs

⟩
· Sol⟨tm−1, trs⟩. (8)

According to the induction hypothesis, π(xrs , trs)
C⇝− π(xm−1, tm−1) leads to

Sol⟨tm−1, trs⟩ = 0, thus for the latter case we also have Sol⟨tm, trs⟩ = 0.
If π(xrs , trs)

C⇝ π(xre , tre), similarly we set xrs [αrs,0c] to 0 and obtain
Eqn. (8). According to the induction hypothesis we made at the beginning,

Sol⟨tm−1, trs⟩ =
∑

ℓ∈π(xrs ,trs)
C
1π(xm−1,tm−1)

Expr ⟨Contr⟨ℓ⟩,xrs⟩ . (9)

16

Define the set S as

S = {(tm−1, ℓ) | π(xm−1, tm−1)
C→ π(xm, tm), ℓ ∈ π(xrs , trs)

C
1 π(xm−1, tm−1)}.

Combining Eqn. (8) and Eqn. (9), we have

Sol⟨tm, trs⟩ =
∑

(tm−1,ℓ)∈S

Expr
⟨
Sol⟨tm, tm−1⟩ · Contr⟨ℓ⟩,xrs

⟩
, (10)

where the summation is over all the pairs (tm−1, ℓ) ∈ S. Notice that Eqn (10) is
equivalent to

Sol⟨tm, trs⟩ =
∑

ℓ′∈π(xrs ,trs)
C
1π(xm,tm)

Expr ⟨Contr⟨ℓ′⟩,xrs⟩ ,

which proves the proposition. ⊓⊔

Corollary 1. Let the values of flag masks be defined as in Lemma 1. Then,
π(xrs , trs)

C⇝ π(xre , tre) if π(xrs , trs)
C→ π(xre , tre).

Proof. We prove the contrapositive of this corollary. Since π(xrs , trs)
C⇝− π(xre , tre),

|π(xrs , trs)
C
1 π(xre , tre)| = 0. According to Proposition 2, Sol⟨tre , trs⟩ = 0. As

stated by Lemma 1, this holds if and only if π(xrs , trs)
C→− π(xre , tre). ⊓⊔

As mentioned earlier, each round function f j , 0 ≤ j ≤ r in Eqn. (1) performs
a simple transformation and its ANF has been determined, which means we can
calculate the contribution of a core monomial trail efficiently. Hence, Proposi-
tion 2 provides a feasible CMP-based way to solve SRαrs,δ,αrs,1c ⟨tre , trs⟩ even if
the concrete expression of Expr ⟨π(xre , tre),xrs⟩ is not available, thus completing
the refinement of the CMP theory.

Since both the SR problem and MP are concerned with the presence of
monomials, it would be necessary to investigate the relationship between the
CMP-based approach in Proposition 2 and the usual MP-based method in The-
orem 2. In fact, we can equivalently relate CMP and MP by means of variable
substitution.
Equivalence between CMP and MP. Let the values of flag masks be defined
as in Lemma 1. We set xrs [αrs,0c] to 0. Given an instance SRαrs,δ,αrs,1c ⟨tre , trs⟩,
we illustrate how to solve this instance based on MP. First, theoretically we can
perform iterative variable substitutions following Algorithm 1. The basic idea
behind Algorithm 1 is, if we regard Solαj,δ,αj,1c ⟨tj+1, tj⟩ as a single bit c for the
transition π(xj , tj)→ π(xj+1, tj+1), then we have c · π(xj , tj)→ π(xj+1, tj+1),
thus establishing the equivalence between CMP and MP.

In Line 5–8, we describe a generic approach to perform variable substitu-
tion for a round function f j , but this may not always be practical to directly
implement as it requires enumerating an exponential number of monomials. Cor-
responding to the propagation rules of CMP, we propose several rules to replace
Line 5–8 to optimize the substitution process.

17

Algorithm 1: Iterative variable substitutions
1 Procedure VariableSubstitution(SRαrs,δ,αrs,1c ⟨tre , trs⟩):
2 Initialize an integer j = rs and an empty hash table T
3 Initialize re − rs empty vectors crs , crs+1, . . . , cre−1 of variables
4 while j < re do
5 for each possible pair (tj , tj+1) satisfying π(xj , tj)

C→ π(xj+1, tj+1) do
6 Calculate Sol⟨tj+1, tj⟩
7 Substitute Sol⟨tj+1, tj⟩ by a new variable c such that

c · π(xj , tj)→ π(xj+1, tj+1)
8 Add c to the end of cj , and store the substitution by letting

T [c] = Sol⟨tj+1, tj⟩
9 Increment j by one // j = j + 1

10 return crs , crs+1, . . . , cre−1, T

Rule 1 (COPY) Assume the round function f j is the basic operation COPY
with xj [0]

COPY−−−−→ (xj+1[0], . . . , xj+1[m−1]). We do not need to perform variable
substitution because Sol⟨tj+1, tj⟩ = 1 if π(xj , tj)

C→ π(xj+1, tj+1).

Rule 2 (AND) Assume the round function f j is the basic operation AND with
(xj [0], xj [1], . . . , xj [m−1]) AND−−−→ xj+1[0]. If {1c, δ} ⊆ {xj [0].F, xj [1].F, . . . , xj [m−
1].F} and xj+1[0].F = δ, we substitute a new variable c for

∏
0≤i<m

xj [i].F=1c

xj [i], add

c to the end of cj, and store the substitution by letting T [c] =
∏

0≤i<m
xj [i].F=1c

xj [i];

otherwise we do not perform variable substitution.

Rule 3 (XOR) Assume the round function f j is the basic operation XOR with
(xj [0], xj [1], . . . , xj [m−1]) XOR−−−→ xj+1[0]. If {1c, δ} ⊆ {xj [0].F, xj [1].F, . . . , xj [m−
1].F}, we substitute a new variable c for

∑
0≤i<m

xj [i].F=1c

xj [i], add c to the end of

cj, and store the substitution by letting T [c] =
∑

0≤i<m
xj [i].F=1c

xj [i]; otherwise we do

not perform variable substitution.

Rule 4 (S-boxes) Let f j be a function that consists of m S-boxes, denoted by
S0, . . . , Sm−1. We can set cj and T following Algorithm 2.

Utilizing the new variables crs , crs+1, . . . , cre−1, T returned by Algorithm 1,
we are able to establish a one-to-one correspondence between core monomial
trails and monomial trails.

Proposition 3. There is a core monomial trail written as

π(xrs , trs)
C→ π(xrs+1, trs+1)

C→ · · · C→ π(xre , tre)

18

Algorithm 2: Perform variable substitution on f j that consists of multiple
S-boxes

1 for each S-box Si, 0 ≤ i < m do
2 for each possible pair (tj , tj+1) satisfying that π(xj , tj) only relates to the

input δ bits of Si, π(xj+1, tj+1) only relates to the output δ bits of Si,
and π(xj , tj)

C→ π(xj+1, tj+1) do
3 Calculate Sol⟨tj+1, tj⟩
4 Substitute Sol⟨tj+1, tj⟩ by a new variable c such that

c · π(xj , tj)→ π(xj+1, tj+1)
5 Add c to the end of cj , and store the substitution by letting

T [c] = Sol⟨tj+1, tj⟩

if and only if there is a monomial trail written as

π(crs∥ · · · ∥cre−1∥xrs ,wrs∥ · · · ∥wre−1∥trs)
→ π(crs+1∥ · · · ∥cre−1∥xrs+1,wrs+1∥ · · · ∥wre−1∥trs+1)

→ · · ·
→ π(cre−1∥xre−1,wre−1∥tre−1)

→ π(xre , tre). (11)

Moreover, by substituting each variable c in cj , rs ≤ j < re back with T [c], we
can get a polynomial of xrs , . . . ,xre−1 from π(crs∥ · · · ∥cre−1,wrs∥ · · · ∥wre−1),
which is exactly the contribution of the core monomial trail.

Proof. For each j, rs ≤ j < re, according to the process of iterative vari-
able substitutions, π(xj , tj)

C→ π(xj+1, tj+1) if and only if there is an unique
wj such that π(cj∥xj ,wj∥tj) → π(xj+1, tj+1). Combining all these MP tran-
sitions π(crs∥xrs ,wrs∥trs) → π(xrs+1, trs+1), π(crs+1∥xrs+1,wrs+1∥trs+1) →
π(xrs+2, trs+2), . . . , π(cre−1∥xre−1,wre−1∥tre−1)→ π(xre , tre) yields an equiv-
alent monomial trail described in the proposition. ⊓⊔

We can therefore also solve SRαrs,δ,αrs,1c ⟨tre , trs⟩ by extracting all mono-
mials trails of the form (11) after performing the iterative variable substitu-
tions, which gives an equivalent MP-based interpretation for the CMP-based
approach in Proposition 2. For ease of understanding, we give a concrete exam-
ple in Sup.Mat. D.

4.3 MITM Framework

At this point, we have a complete process for computing the superpoly Coe⟨z, tI⟩,
i.e., we first reduce the superpoly recovery to the instances of the SR problem
using Proposition 1 and then solve the instances by the CMP-based approach in
Proposition 2. The remaining question is how to further improve the efficiency of

19

this process. A similar issue has been also encountered in previous work related
to MP [26,27], and it is resolved by a divide-and-conquer strategy, which can be
further used in a nested fashion. Inspired by this, we have also tailored a nested
divide-and-conquer framework for solving the SR problem.

Divide-and-conquer: forward expansion and backward expansion. As
a natural corollary of Proposition 2, Eqn. (7) in Lemma 3 can be enhanced to

Sol⟨tre , trs⟩ =
∑
tj

Expr
⟨
Sol⟨tre , tj⟩,xrs

⟩
· Sol⟨tj , trs⟩,

where the summation is over all tj ’s that satisfy both π(xrs , trs)
C→ π(xj , tj)

and π(xj , tj)
C→ π(xre , tre). This reveals the following two perspectives for com-

puting Sol⟨tre , trs⟩ by the divide-and-conquer strategy:

– Forward expansion: We choose a j between rs and re, and determine all
π(xj , tj)’s that satisfy π(xrs , trs)

C⇝ π(xj , tj). For each such π(xj , tj), we
precompute Sol⟨tj , trs⟩. If Sol⟨tj , trs⟩ is not 0 (i.e., π(xrs , trs)

C→ π(xj , tj)),
we store Sol⟨tj , trs⟩ and then focus on computing Sol⟨tre , tj⟩.

– Backward expansion: We choose a j between rs and re, and determine all
π(xj , tj)’s that satisfy π(xj , tj)

C⇝ π(xre , tre). For each such π(xj , tj), we
precompute Sol⟨tre , tj⟩. If Sol⟨tre , tj⟩ is not 0 (i.e., π(xj , tj)

C→ π(xre , tre)),
we store Sol⟨tre , tj⟩ and then focus on computing Sol⟨tj , trs⟩.

Typically, we will choose j close to re in the backward expansion and j close
to rs in the forward expansion, so that the precomputation takes only a small
amount of time.

One obvious advantage of these two expansions is that both of them split
a complex instance into multiple simpler instances that are easier to deal with.
Furthermore, if not using any expansion, solving SR⟨tre , trs⟩ would require enu-
merating |π(xrs , trs)

C
1 π(xre , tre)| core monomial trails, but with backward

expansion the total number of enumerated core monomial trails will be (ignor-
ing the core monomial trails needed for the precomputation)∑

π(xj ,tj)
C→π(xre ,tre)

|π(xrs , trs)
C
1 π(xj , tj)|,

which is not larger than |π(xrs , trs)
C
1 π(xre , tre)|, so the backward expansion

reduces the number of required core monomial trails, and the same is also true
for forward expansion.

Forward and backward overlaps. We further discuss the rationale behind
the forward and backward expansion. Now consider that we want to solve two
instances denoted by SR⟨tre0 , trs⟩ and SR⟨tre1 , trs⟩ simultaneously with the flag
masks taking the same values as in Lemma 3. If we use the backward expansion

20

from round re to round j separately on the two instances, the total number of
enumerated core monomial trails will be∑

π(xj ,tj)
C→π(xre ,tre0)

|π(xrs , trs)
C
1 π(xj , tj)|+

∑
π(xj ,tj)

C→π(xre ,tre1)

|π(xrs , trs)
C
1 π(xj , tj)|,

where the left summation is for SR⟨tre0 , trs⟩ and the right summation is for
SR⟨tre1 , trs⟩. However, if there exists a π(xj , tj) satisfying both π(xj , tj)

C→
π(xre , tre0) and π(xj , tj)

C→ π(xre , tre1), we can observe that the core monomial
trails in π(xrs , trs)

C
1 π(xj , tj) can only be enumerated once for both SR⟨tre0 , trs⟩

and SR⟨tre1 , trs⟩, and we say that SR⟨tre0 , trs⟩ and SR⟨tre1 , trs⟩ have a backward
overlap at π(xj , tj). Therefore, in total we actually only need to enumerate∑

tj |π(xrs , trs)
C
1 π(xj , tj)| trails, where the summation is over all tj ’s that

satisfy one of the following three conditions:

1. π(xj , tj)
C→ π(xre , tre0), π(xj , tj)

C→− π(xre , tre1);
2. π(xj , tj)

C→− π(xre , tre0), π(xj , tj)
C→ π(xre , tre1);

3. π(xj , tj)
C→ π(xre , tre0), π(xj , tj)

C→ π(xre , tre1).
Condition 3 is exactly the condition that should be satisfied by those π(xj , tj)’s
where SR⟨tre0 , trs⟩ and SR⟨tre1 , trs⟩ have backward overlaps. For m instances de-
noted by SR⟨tre0 , trs⟩, . . . , SR⟨trem−1, t

rs⟩, if there are any two of them that have a
backward overlap at π(xj , tj), we say these m instances have a backward overlap
at π(xj , tj).

Similarly, for two instances denoted by SR⟨tre , trs0 ⟩ and SR⟨tre , trs1 ⟩ with
the values of flag masks determined as in Lemma 3, we say SR⟨tre , trs0 ⟩ and
SR⟨tre , trs1 ⟩ have a forward overlap at π(xj , tj) if the π(xj , tj) satisfies both
π(xrs , trs0)

C→ π(xj , tj) and π(xrs , trs1)
C→ π(xj , tj). The concept of forward

overlaps can be extended to multiple instances in the same way as backward
overlaps. Naturally, the more backward (resp. forward) overlaps occurs at round
j, the more effective we consider the backward (reps. forward) expansion to be.

π(xrs , trs0) π(xrs , trs1)

π(xj , tj0) π(xj , tj1) forward overlap π(xj , tj2)

π(xre , tre)

Sol⟨t j
0 , t r

s0 ⟩

precomputation
So
l⟨t
j
1
, t
r s
0
⟩

pr
eco

mpu
tat

ion
Sol⟨t j

1 , t r
s1 ⟩

precomputation
So
l⟨t
j
2
, t
r s
1
⟩

pr
eco

mpu
tat

ion

Sol
⟨t
re , t

j
0
⟩

?

S
o
l⟨t

r
e,t

j1 ⟩
?

Sol⟨t re, t j
2 ⟩?

π(xre , tre0) π(xre , tre1)

π(xj , tj0) π(xj , tj1) backward overlap π(xj , tj2)

π(xrs , trs)

So
l⟨t
re
0
, t
j
0
⟩

pr
eco

mpu
tat

ion
Sol⟨t r

e0 , t j
1 ⟩

precomputation
So
l⟨t
re
1
, t
j
1
⟩

pr
eco

mpu
tat

ion
Sol⟨t r

e1 , t j
2 ⟩

precomputation

Sol⟨t j
0 , t rs⟩?

S
o
l⟨t

j 1
,t

r
s
⟩

? Sol
⟨t
j
2
, t
rs ⟩

?

Fig. 1: Forward and backward overlaps

The forward and backward overlaps can be illustrated by Fig. 1, where we
use sold lines to indicate the parts that are precomputed and dashed lines to

21

indicate the parts that are to be computed. The monomial highlighted in red
indicates where the forward or backward overlap occurs.
Computing the superpoly with MITM framework. As mentioned in
Proposition 1, computing the superpoly, i.e., Coe⟨z, tI⟩, reduces to solving con-
crete instances of the form SRγ0,δ,γ0,1c ⟨tr, t0⟩ with γ0,δ,γ0,1c determined by
Eqn. (3). Assuming π(x0, t0)

C⇝ π(xr, tr), then we can solve SRγ0,δ,γ0,1c ⟨tr, t0⟩
by applying the forward expansion and backward expansion interchangeably and
recursively as follows, where the forward depth r0 and the backward depth r1
represent the number of rounds affected each time we use the forward and back-
ward expansion, respectively.

1. Initialize M0,δ = γ0,δ,M0,1c = γ0,1c ,M0,0c = ¬(γ0,δ ∨ γ0,1c) according to
Eqn. (3). For each j, 0 < j ≤ r, calculate the values of M j,δ,M j,1c ,M j,0c

as γj,δ,γj,1c ,γj,0c according to the operation rules of flags.
2. Prepare a hash table P whose key is an instance and value is a Boolean poly-

nomial of x0 and initialize P as P [SR⟨tr,γ0,δ⟩] = 1. Initialize rs = 0, re = r.
Prepare a binary variable d to represent the direction of the expansion and
initialize d = 1. Initialize a Boolean polynomial p = 0 to store the results.

3. If re < B, we flip the value of d. Prepare an empty hash table Pe of the same
type as P to store the new instances generated by the expansion.

4. If d = 0, we use forward expansion. Namely, for each instance SR⟨tre , trs⟩ as
a key of P :
(a) Determine all π(xrs+r0 , trs+r0)’s that satisfy π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0).
(b) For each such π(xrs+r0 , trs+r0), compute Sol⟨trs+r0 , trs⟩ using Proposi-

tion 2, and if Sol⟨trs+r0 , trs⟩ is not 0, we consider two cases: if the instance
SR⟨tre , trs+r0⟩ is already a key of Pe, we update Pe by Pe[SR⟨tre , trs+r0⟩] =
Pe[SR⟨tre , trs+r0⟩]+Expr

⟨
Sol⟨trs+r0 , trs⟩,x0

⟩
·P [SR⟨tre , trs⟩]; otherwise

we add the instance SR⟨tre , trs+r0⟩ to Pe by letting Pe[SR⟨tre , trs+r0⟩] =
Expr

⟨
Sol⟨trs+r0 , trs⟩,x0

⟩
· P [SR⟨tre , trs⟩].

(c) Let P = Pe and update rs by rs = rs + r0.
5. If d = 1, we use backward expansion. Namely, for each instance SR⟨tre , trs⟩

as a key of P :
(a) Determine all π(xre−r1 , tre−r1)’s that satisfy π(xre−r1 , tre−r1)

C⇝ π(xre , tre).
(b) For each such π(xre−r1 , tre−r1), compute Sol⟨tre , tre−r1⟩ using Proposi-

tion 2, and if Sol⟨tre , tre−r1⟩ is not 0, we consider two cases: if the instance
SR⟨tre−r1 , trs⟩ is already a key of Pe, we update Pe by Pe[SR⟨tre−r1 , trs⟩] =
Pe[SR⟨tre−r1 , trs⟩]+Expr

⟨
Sol⟨tre , tre−r1⟩,x0

⟩
·P [SR⟨tre , trs⟩]; otherwise

we add the instance SR⟨tre−r1 , trs⟩ to Pe by letting Pe[SR⟨tre−r1 , trs⟩] =
Expr

⟨
Sol⟨tre , tre−r1⟩,x0

⟩
· P [SR⟨tre , trs⟩].

(c) Let P = Pe and update re by re = re − r1.
6. For each instance SR⟨tre , trs⟩ as a key of P , if P [SR⟨tre , trs⟩] is 0, we remove

SR⟨tre , trs⟩ from the keys of P .
7. If the size of P is not larger than N , we jump to Step 3; otherwise we start

to solve the instances in P and prepare an empty hash table Pu of the same
type as P to store the unsolved instances that will be generated later.

22

8. For each instance SR⟨tre , trs⟩ as a key of P , we solve it using Proposition 2
within a time limit τ re−rs . If the instance is solved within the time limit,
we obtain Sol⟨tre , trs⟩ and update p by p = p + Expr

⟨
Sol⟨tre , trs⟩,x0

⟩
·

P [SR⟨tre , trs⟩]; if the instance is determined to have the solution 0, we discard
it; if the instance is not solved within the time limit, we add the pair to Pu

by letting Pu[SR⟨tre , trs⟩] = P [SR⟨tre , trs⟩].
9. If the size of Pu is 0, then p is returned as the final result; otherwise we

let P = Pu and jump back to Step 3 to continue expanding and solving
instances in P .

As the above process advances, the gap between rs and re decreases progres-
sively, hence we call it a meet-in-the-middle (MITM) framework. The parame-
ters B,N, r0, r1, τ

re−rs appearing in the process depends on the structure of a
cipher, so we will give their values on the spot when applying the framework to a
specific cipher. In particular, the time limit τ re−rs increases as the gap between
rs and re shrinks to ensure that more time resources are allocated to solving
sufficiently simple instances rather than complex ones. We also set very small
values for the forward depth r0 and the backward depth r1 (e.g., r0 = 5 and
r1 = 20 for Trivium) so that solving instances during the expansion process,
namely Step 4b and 5b, can be completed quickly. The way we update Pe in
Step 4b and 5b can be thought of as a direct reflection of the role of (forward or
backward) overlaps.

For each instance SR⟨tre , trs⟩ as a key of P in Step 8, it is very likely
π(xrs , trs)

C⇝− π(xre , tre), resulting in the instance being determined to have
the solution 0 and then discarded. Therefore, we can adjust Step 4a to directly
identify all π(xrs+r0 , trs+r0)’s that satisfy both π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0)

and π(xrs+r0 , trs+r0)
C⇝ π(xre , tre), which can be implemented using the call-

back interface provided by the Gurobi solver. A similar adjustment can be
made to Step 5a. Details on how to use callbacks for expansion are discussed in
Sup.Mat. E.

Forward or backward. We compare the forward expansion and backward
expansion strategies heuristically to explain why we set a parameter B in the
MITM framework. In Step 3, we have to determine which expansion strategy to
adopt for the hash table P . It can be predicted that some instances in P may
have forward overlaps at round rs+r0, while others may have backward overlaps
at round re−r1. Nevertheless, we observe that for each instance SR⟨tre , trs⟩ in P ,
the Hamming weight of tre is much greater than that of trs . For example, when
rs = 25, re = 289 for 849-round Trivium with the cube indices chosen as I3 in
Table 2, wt(trs) is approximately 40, but wt(tre) is only about 20. This means,
if we assume two instances denoted by SR⟨tre0 , trs0 ⟩ and SR⟨tre1 , trs1 ⟩ in P are
independently stochastic, i.e., the binary vectors tre0 , trs0 , tre1 , trs1 are independent
and random, then it is more likely that these two instances will have a forward
overlap at round rs + r0 than that they will have a backward overlap at round
re− r1, and therefore we believe that the forward expansion lessens the amount

23

of trails that must be enumerated to a greater degree compared to the backward
expansion.

However, high Hamming weights also present some challenges. One critical
limitation of the forward expansion is that the size of the hash table P grows
dramatically as the forward depth r0 increases. While the backward expansion
faces a similar issue as the backward depth r1 rises, P expands at a smaller rate
compared to the forward expansion. For this reason, the backward depth r1 is
set greater than the forward depth r0. If we use the difference between rs and
re to evaluate the difficulty of each instance in P , then the backward expansion
closes the gap between rs and re much faster than the forward expansion, and
the resulting new instances are simpler.

In summary, the faster closure of the gap between rs and re achieved through
backward expansion as opposed to forward expansion renders it most suitable
when re is significantly large (e.g., over 350 for Trivium). In contrast, when
re falls below a certain threshold B, forward and backward expansion can be
applied interchangeably. This allows balancing the benefits and drawbacks of
both strategies to optimize performance.

Ultimately, our overall process for computing Coe⟨z, tI⟩ can be summarized as
follows: we first reduce the superpoly recovery to the instances of the SR problem
using Proposition 1 and then solve each instance using the MITM framework
(i.e., Step 1 to Step 9). For the implementation of Proposition 2 in the MITM
framework, more details can be taken into account for optimization.

4.4 Optimizing the Implementation of Proposition 2

According to Proposition 2, one straightforward implementation of solving the
instance SRαrs,δ,αrs,1c ⟨tre , trs⟩ is to construct an MILP model using the propa-
gation models of CMP and then extract all core monomial trails from π(xrs , trs)
to π(xre , tre) via model solution enumeration, as shown in Algorithm 5. This
procedure can be prohibitively time-intensive if there is a vast number (e.g.,
more than 100 000) of core monomial trails, so we propose two optimizations to
speed up it.

Optimization 1: equivalent instances. We begin by defining a special rela-
tionship between instances of the SR problem. Specifically, we say that multiple
instances are equivalent if their solutions can be derived from each other. Hav-
ing established this notion of equivalent instances, the following lemma presents
a constructive approach for obtaining additional instances that stand in this
relationship to a given instance.

Lemma 4 (Equivalent instances). Given one instance A of the SR problem
denoted by SRαrs,δ,αrs,1c ⟨tre , trs⟩ with trs ≺ αrs,δ, we arbitrarily choose a bi-
nary vector βrs,δ such that trs ⪯ βrs,δ ≺ αrs,δ. Further, letting βrs,1c = αrs,1c ,
βrs,0c = ¬(βrs,δ ∨ βrs,1c), and for each j, rs < j ≤ re βj,δ,βj,1c ,βj,0c be cal-
culated from βrs,δ,βrs,1c ,βrs,0c according to the operation rules of flags, we
can construct another instance B, denoted by SRβrs,δ,βrs,1c ⟨tre ∧ βre,δ, trs⟩. If

24

tre ∧ βre,0c = 0 and Expr
⟨
π(xre , tre ∧ βre,1c),xrs

⟩
̸= 0 after setting xrs [βrs,0c]

to 0, instances A and B are equivalent; otherwise the solution of instance A is
0.

Proof. After setting xrs [βrs,0c] to 0, it follows from the definition of the SR
problem that

Solαrs,δ,αrs,1c ⟨tre , trs⟩
= C · Solβrs,δ,βrs,1c ⟨tre ∧ βre,δ, trs⟩,

where

C =

{
Expr

⟨
π(xre , tre ∧ βre,1c),xrs

⟩
if tre ∧ βre,0c = 0 ,

0 otherwise .

If tre ∧βre,0c = 0 and Expr
⟨
π(xre , tre ∧ βre,1c),xrs

⟩
̸= 0, C is not 0 and can be

calculated easily, indicating that instances A and B are equivalent; otherwise C
is 0, resulting in the solution of instance A being 0. ⊓⊔

If an instance denoted by SRαrs,δ,αrs,1c ⟨tre , trs⟩ satisfies αrs,δ = trs , we refer
to it as an optimal instance. According to Lemma 4, a non-optimal instance either
has the solution 0 or can be transformed into an equivalent optimal instance.
Compared to the non-optimal instances, optimal instances can be solved more
efficiently due to reduced number of core monomial trails required when applying
Proposition 2.

Proposition 4. Assuming each round function f j is a basic operation, let in-
stances A and B be defined as in Lemma 4. If tre ∧ βre,0c = 0 (this condition
is weaker than the condition that instances A and B are equivalent), solving in-
stance B using Proposition 2 requires no more core monomial trails than solving
instance A.

Proof. The proof of this proposition is provided in Sup.Mat. C. ⊓⊔

Optimization 2: partial XOR and two-step trail extraction. For an in-
stance SRαrs,δ,αrs,1c ⟨tre , trs⟩, we extract the core monomial trails in π(xrs , trs)

C
1

π(xre , tre) in two steps, by dividing the propagation rule of XOR into two parts,
which are referred to as partial XOR and the complement of partial XOR. These
two parts and the corresponding MILP models are illustrated in Sup.Mat. F.1.

In the first step, we construct an MILP modelM0 following the propagation
models of CMP, but for the basic operation XOR we use the partial XOR model
(Model 8) instead of the full XOR model (Model 6). We then find all solutions
of M0 by an MILP solver and obtain a subset of π(xrs , trs)

C
1 π(xre , tre). The

construction of M0 is provided in Algorithm 6.
In the second step, we aim to capture the missing trails in π(xrs , trs)

C
1

π(xre , tre) due to the use of partial XOR. To this end, we use Rule 13 and
Model 9 to capture the transition π(xj , tj)

C→ π(xj+1, tj+1) that is allowed by

25

the full XOR rule but not by the partial XOR rule. Following Algorithm 7, we
can construct an MILP model M1 and all solutions of M1 exactly correspond
to the core monomial trails in π(xrs , trs)

C
1 π(xre , tre) that are not identified in

the first step.
Since a CMP transition characterizable by the complete XOR rule will prob-

ably also be characterizable by the partial XOR rule, we anticipate the number
of M0 solutions will surpass the number of M1 solutions. This suggests the
primary computational difficulty lies in solving M0, which is less complex than
the MILP model used in the direct implementation of Proposition 2. Our exper-
imental results confirmed that if M0 is solved within a time limit, then usually
M1 is also solvable within the same time limit.

The final implementation of Proposition 2 utilizes both optimizations to-
gether as follows: When given an instance, we first check if it is optimal. If not,
then by Lemma 4 it either has the solution 0 or can be reduced to an opti-
mal instance. If it is already an optimal instance, we solve it with the two-step
optimization.

5 Applications

We apply our MITM framework to three stream ciphers that have been targeted
in previous research: Trivium, Grain-128AEAD and Kreyvium. As a result, we
are able to verify previous results at a much lower time cost, and also recover
the exact superpolies for up to 851 rounds of Trivium and up to 899 rounds of
Kreyvium. All experiments are conducted using the Gurobi Solver (version 9.1.2)
on a workstation equipped with high-speed processors (totally 32 cores and 64
threads). The source code and some of the recovered superpolies are available in
our git repository.

More specifically, when referring to the number of rounds for a stream cipher
as r, we are considering that the initialization phase of the cipher consists of r
rounds, and we assume that we have access to the output bits produced after
this initialization phase. We also omit the description of how to construct an
MILP model of CMP or MP for a concrete cipher, as they can be found in
previous literature [23,27,24]. For the cube indices that we will mention later in
this section, we also attempt to recover the superpolies by re-running the code
provided by [24] on our platform, so that we can compare the time consumption
of our MITM framework against the framework presented in [24].

For the cube indices used in this section, we always set the non-cube variables
to constant 0, though our MITM framework works no matter what constant
values the non-cube variables take.

5.1 Superpoly Recovery for Trivium

Trivium is a hardware-efficient, synchronous stream cipher designed by De Can-
nière and Preneel [9]. It has been selected as one of the Profile 2 Algorithms in the
eSTREAM portfolio [1] and standardized by ISO/IEC as International Standard

26

https://github.com/viocently/sdfkjxu192lc78-s0

29192-3 [4], cementing its status as a trusted cryptographic primitive. The inter-
nal state of Trivium is represented by a 288-bit state s = (s[0], s[1], . . . , s[287])
divided into three registers. At the initialization phase, the 80-bit secret key K
is loaded to the first register, and the 80-bit initialization vector IV is loaded
into the second register. The other state bits are set to 0 except the last three
bits in the third register. Namely, the initial state is represented as

(s[0], s[1], . . . , s[92])← (K[0],K[1], . . . ,K[79], 0, . . . , 0)

(s[93], s[94], . . . , s[176])← (IV [0], IV [1], . . . , IV [79], 0, . . . , 0)

(s[177], s[178], . . . , s[287])← (0, 0, . . . , 0, 1, 1, 1)

The update function is given by the following pseudo-code:

t1 ← s[65]⊕ s[90] · s[91]⊕ s[92]⊕ s[170]

t2 ← s[161]⊕ s[174] · s[175]⊕ s[176]⊕ s[263]

t3 ← s[242]⊕ s[285] · s[286]⊕ s[287]⊕ s[68]

(s[0], s[1], . . . , s[92])← (t3, s[0], s[1], . . . , s[91])

(s[93], s[94], . . . , s[176])← (t1, s[93], s[94], . . . , s[175])

(s[177], s[178], . . . , s[287])← (t2, s[177], s[178], . . . , s[286])

After 1152 rounds of initialization, one key stream bit z = s[65]⊕s[92]⊕s[161]⊕
s[176]⊕ s[242]⊕ s[287] is produced by every update function.
Parameters. For the parameters required by the MITM framework, we set
B,N, r0, r1 to 350, 50 000, 5, 20, respectively. The time limit τ re−rs is selected
according to Algorithm 8.
Superpoly verification for up to 848 rounds of Trivium. The cube indices
of Trivium used for verification are listed in Table 5. For each cube listed in
Table 5, we verified its superpoly using our MITM framework in almost half the
time it took in [24]. The verification results are provided in Table 6.
Superpoly recovery for up to 851 rounds of Trivium. To the best of our
knowledge, currently there is no dedicated method for selecting a good cube that
can yield a simple superpoly. However, we notice that using the vector numeric
mapping technique published in [49], the authors in [50] discovered two cubes,
which we refer to as I3 and I4 in Table 2, whose 844-round superpolies are simpler
than superpolies of any cubes previously found. This strongly suggests that the
superpolies of these two cubes may still maintain manageable complexity even
at higher numbers of rounds beyond 844. With this in mind, we applied the
MITM framework to these two cubes and successfully recovered the superpolies
for up to 851 rounds of Trivium. The details of the recovered superpolies are
given in Table 3. Since the memory required to store the monomials contained
in each superpoly exceeds the memory of workstation, we evaluated the number
of monomials, the number of involved key bits and the algebraic degree without
considering monomial cancellation, and thus the corresponding data in Table 3
is only an upper bound.

We also attempted to reproduce the 851-round superpoly of I3 using the
framework introduced in [24]. Unfortunately, the program had still not termi-

27

Table 2: The cube indices for Trivium up to 851 rounds
I Indices Size

I3

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30,
32, 34, 36, 39, 41, 43, 45, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75,
77, 79

44

I4

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30,
32, 34, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 64, 67, 69, 71, 73, 75,
77, 79

44

Table 3: Details related to the superpolies recovered for Trivium
I Rounds Time Cost Balancedness§ #Monomials⋆ #Key Bits⋆ Degree⋆
I3 849 24 hours 0.50 337 087 128 231 80 32
I4 849 52 hours 0.50 189 293 249 301 80 32
I3 850 81 hours 0.50 3 291 633 158 676 80 34
I3 851 600 hours 0.50 20 129 749 853 208 80 36
§ The balancedness of each superpoly is estimated by testing 215 random keys.
⋆ An upper bound on the number of monomials, the number of involved key bits

or the algebraic degree.

nated even after two months (1440 hours). This demonstrates that our MITM
framework outperforms previous approaches in terms of computational efficiency
and is capable of exceeding what previous work has been able to achieve.

5.2 Superpoly Recovery for Grain-128AEAD

For the cipher Grain-128AEAD, whose specification is provided in Sup.Mat. G.2,
we set the parameters B,N, r0, r1 that are required by the MITM framework
to 90, 15 000, 1, 1, respectively. The time limit τ re−rs is selected according to
Algorithm 9.

Superpoly verification for up to 192 rounds of Grain-128AEAD. In [24],
the authors recovered a 192-round superpoly with the cube indices chosen as I =
{0, 1, 2, . . . , 95}\{42, 43}. We re-ran the code provided by them on our platform
and verified the result after about 45 days. In contrast, our MITM framework
only took about 9 days to recover this superpoly, reducing the time to 1

5 of the
original.

5.3 Superpoly Recovery for Kreyvium

In Sup.Mat. G.3, we provide the specification of Kreyvium and discuss the limi-
tations of the effectiveness of our MITM framework on Kreyvium. For the param-
eters required by the MITM framework, we set B,N, r0, r1 to 270, 15 000, 5, 20,
respectively. The time limit τ re−rs is selected according to Algorithm 10.

28

Table 4: Details related to the superpolies recovered for Kreyvium
I Rounds Time Cost Balancedness #Monomials #Key Bits Degree
I1 896 180 hours 0.50 29 30 2
I2 896 58 hours 0 0 0 0
I2 897 67 hours 0.50 83 60 3
I3 898 182 hours 0.50 102 75 4
I3 899 272 hours 0.50 4793 121 7

Superpoly verification for 895-round Kreyvium. Using the code provided
by [24] on our platform, we reproduced the 895-round superpoly of the cube in-
dices I0 = {0, 1, . . . , 127}\{66, 72, 73, 78, 101, 106, 109, 110} in about two weeks.
In contrast, our MITM framework took only about 9 days to recover this super-
poly.
Superpoly recovery for up to 899 rounds of Kreyvium. By adjusting the
cube indices I0 slightly, we finally determine three cube indices that can lead to
more than 895 rounds of simple superpolies. These cube indices are referred to as
I1 = {0, 1, . . . , 127}\{66, 73, 106, 109, 110}, I2 = {0, 1, . . . , 127}\{66, 73, 106, 110}
and I3 = {0, 1, . . . , 127}\{66, 73, 85, 87}, respectively. The details of the recov-
ered superpolies are given in Table 4.

6 Key Recovery Attack

Since the 851-round superpoly of Trivium contains a large number of monomials
and involves full key bits, we encounter another crucial challenge in the cube
attack, namely how to extract the information of the secret key from such a
massive superpoly.

Assume the 851-round superpoly is denoted by p and leads to an equation
p(k) = a in the online phase, where a is constant 0 or 1. A straightforward idea
is that we guess 79 secret key bits and reduce p(k) = a to an equation of the
remaining one secret key bit, then we solve this equation and check if our guess
is correct by performing an encryption call. This idea works only when evalu-
ating p once is faster than performing one encryption call, but this is obviously
impossible for a massive p. Another typical idea is the Möbius transform, with
which we can compute the truth table of a Boolean function from its ANF more
efficiently. The standard Möbius transform is introduced in Sup.Mat. H. We as-
sume the standard Möbius transform requires n · 2n bit operations and 2n-bits
memory.
Memory-efficient Möbius transform [14]. We want to evaluate a polynomial
F (x[0], . . . , x[n−1]) of degree d on the space {0, 1}n using the Möbius transform.
Assume that d is not too large and the polynomial is represented by a binary
vector of size

(
n
↓d
)
, where

(
n
↓d
)
=

∑d
i=0

(
n
i

)
. A fast algorithm for computing the

Möbius transform is based on the decomposition

F (x[0], . . . , x[n− 1]) = x[0] ·F0(x[1], . . . , x[n− 1]) +F1(x[1], . . . , x[n− 1]). (12)

29

Thus, we can evaluate F recursively by first evaluating F1(x[1], . . . , x[n−1]) (i.e.,
F (x) for x[0] = 0), and then calculating and evaluating F0(x[1], . . . , x[n− 1]) +
F1(x[1], . . . , x[n− 1]) (i.e., F (x) for x[0] = 1). Denoting the memory complexity
required to evaluate a d-degree polynomial of n variables by M(n, d), we have
M(n, d) = M(n − 1, d) +

(
n
↓d
)

and M(n, n) = 2n. Therefore, the total memory
complexity is less than n ·

(
n
↓d
)
, and the time complexity in bit operations is

bounded by
(
n
↓d
)
+ 2 ·

(
n−1
↓d

)
+ · · ·+ 2n−d−1 ·

(
d+1
↓d

)
+ 2n−d · d · 2d, which is below

n · 2n.
Thanks to the memory-efficient Möbius transform proposed by Dinur at EU-

ROCRYPT 2021 [14], we can further reduce the memory complexity. Specifically,
we choose a parameter m. At the top m levels of the recursion, we recursively
evaluate the input polynomial on all 2m values of x[0], . . . , x[m−1] independently.
At the bottom levels, we switch to the in-place implementation of the standard
Möbius transform to evaluate the polynomial on all values of x[m], . . . , x[n− 1].
The memory required for the independent evaluations at the top m levels is
bounded by 2 ·

(
n
↓d
)
, while for the in-place Möbius transform, 2n−m-bits memory

is sufficient. In [14], the parameter m is chosen as m ≈ n − log
(
n
↓d
)
, so that

the final memory complexity is bounded by 3 ·
(
n
↓d
)
. The complexity analysis of

the memory-efficient Möbius transform is general, but in practice we are dealing
with a sparse superpoly whose number of monomials is known, hence it may be
possible to further reduce the memory complexity.
Key recovery for 851-round Trivium. We focus on the equation p(k) =
a established by the 851-round superpoly p(k). According to our tests with-
out considering the monomial cancellation, the superpoly p(k) contains ap-
proximately 20 129 749 853 208 monomials and its degree is bounded by 36, we
therefore roughly estimate that the actual number of monomials in p(k) is
20 129 749 853 208

10 ≈ 240.87.
Instead of representing p(k) by a binary vector of size

(
80
↓36

)
, we represent

it as an array of size 240.87. Each element in the array is 80 bits in size and
represents a monomial in p(k), so the array takes up a total of 240.87×80 ≈ 247.19

bits of memory. Similar to the memory-efficient Möbius transform, we choose a
parameter m and solve the equation p(k) = a as follows:
1. Based on the formula (12), we first recursively evaluate p(k) on all 2m values

of k[0], . . . , k[m− 1] independently.
2. For each value of k[0], . . . , k[m − 1] that reduces p(k) to a polynomial p′ of

k[m], . . . , k[79]:
(a) We switch to the in-place implementation of the standard Möbius trans-

form to build the truth table of p′.
(b) If the value of p′ is equal to a on a value of k[m], . . . , k[79], then together

with the value of k[0], . . . , k[m−1] we get a candidate solution for p(k) =
a. We can check if this candidate solution is correct by performing an
additional encryption call.

The memory required for the independent evaluations is bounded by 2 ·
247.19 = 248.19 bits, while the in-place implementation of the Möbius transform

30

requires 280−m-bits memory, so we choose m = 32 and thus our memory com-
plexity is slightly more than 249 bits. The final time complexity is bounded by
232 · (240.87 + 48 × 248) ≈ 285.58 bit operations plus 279 encryption calls, which
is slightly more than 279 Trivium calls.
Key recovery for 899-round Kreyvium. Since the 899-round superpoly of
Kreyvium only involves 121 key bits, we can easily mount a key-recovery attack
against 899-round Kreyvium with a time complexity of about 2127.

7 Conclusion

In this paper, we analyze algebraically how core monomial trails contribute to
the composition of the superpoly, based on the basic definition of core monomial
prediction (CMP), thus establishing a theory of superpoly recovery that relies
exclusively on CMP. This CMP-based approach can be equivalently linked to MP
by means of a variable substitution technique. For a further speedup, we design
a meet-in-the-middle (MITM) framework to embed our CMP-based approach.
Using this framework, we are able to recover the superpolies for reduced-round
versions of the ciphers Trivium and Kreyvium with 851 and 899 rounds, result-
ing in cube attacks that cover more rounds than previous work.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the quality of the pa-
per. This research is supported by the National Key Research and Development
Program of China (Grant No. 2018YFA0704702), the National Natural Science
Foundation of China (Grant No. 62032014, U2336207), Department of Science
& Technology of Shandong Province (No. SYS202201), Quan Cheng Laboratory
(Grant No. QCLZD202301, QCLZD202306). Kai Hu is supported by the “ANR-
NRF project SELECT”. The scientific calculations in this paper have been done
on the HPC Cloud Platform of Shandong University.

References
1. eSTREAM: the ECRYPT stream cipher project (2018). https://www.ecrypt.eu.

org/stream/. Accessed: 2021-03-23.
2. Gurobi Optimization. https://www.gurobi.com.
3. Gurobi Optimization Reference Manual. https://www.gurobi.com/wp-content/

plugins/hd_documentations/documentation/9.1/refman.pdf.
4. ISO/IEC 29192-3:2012: Information technology Security techniques Lightweight

cryptography part 3: Stream ciphers. https://www.iso.org/standard/56426.
html.

5. Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new
version of Grain-128 with optional authentication. Int. J. Wirel. Mob. Comput.,
5(1):48–59, 2011.

6. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers
and key recovery attacks on reduced-round MD6 and trivium. In Orr Dunkelman,
editor, FSE 2009, volume 5665 of LNCS, pages 1–22. Springer, 2009.

31

https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://www.gurobi.com
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf
https://www.iso.org/standard/56426.html
https://www.iso.org/standard/56426.html

7. Jules Baudrin, Anne Canteaut, and Léo Perrin. Practical cube attack against
nonce-misused ascon. IACR Trans. Symmetric Cryptol., 2022(4):120–144, 2022.

8. Christina Boura and Daniel Coggia. Efficient MILP modelings for sboxes and
linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol., 2020(3):327–361,
2020.

9. Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw
and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists,
volume 4986 of LNCS, pages 244–266. Springer, 2008.

10. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical solu-
tion for efficient homomorphic-ciphertext compression. J. Cryptol., 31(3):885–916,
2018.

11. Cheng Che and Tian Tian. An experimentally verified attack on 820-round trivium.
In Yi Deng and Moti Yung, editors, Information Security and Cryptology - 18th
International Conference, Inscrypt 2022, Beijing, China, December 11-13, 2022,
Revised Selected Papers, volume 13837 of Lecture Notes in Computer Science, pages
357–369. Springer, 2022.

12. Cheng Che and Tian Tian. A new correlation cube attack based on division
property. In Leonie Simpson and Mir Ali Rezazadeh Baee, editors, Information
Security and Privacy - 28th Australasian Conference, ACISP 2023, Brisbane, QLD,
Australia, July 5-7, 2023, Proceedings, volume 13915 of Lecture Notes in Computer
Science, pages 53–71. Springer, 2023.

13. Stéphanie Delaune, Patrick Derbez, Arthur Gontier, and Charles Prud’homme. A
simpler model for recovering superpoly on trivium. In Riham AlTawy and Andreas
Hülsing, editors, Selected Areas in Cryptography - 28th International Conference,
SAC 2021, Virtual Event, September 29 - October 1, 2021, Revised Selected Papers,
volume 13203 of Lecture Notes in Computer Science, pages 266–285. Springer, 2021.

14. Itai Dinur. Cryptanalytic applications of the polynomial method for solving mul-
tivariate equation systems over GF(2). In Anne Canteaut and François-Xavier
Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696
of Lecture Notes in Computer Science, pages 374–403. Springer, 2021.

15. Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal Straus.
Cube attacks and cube-attack-like cryptanalysis on the round-reduced keccak
sponge function. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 733–761. Springer, 2015.

16. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In
Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 278–299.
Springer, 2009.

17. Itai Dinur and Adi Shamir. Breaking Grain-128 with dynamic cube attacks. In
Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages 167–187. Springer,
2011.

18. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. As-
con v1.2: Lightweight authenticated encryption and hashing. J. Cryptol., 34(3):33,
2021.

32

19. Hao Fan, Yonglin Hao, Qingju Wang, Xinxin Gong, and Lin Jiao. Key filtering in
cube attacks from the implementation aspect. In Jing Deng, Vladimir Kolesnikov,
and Alexander A. Schwarzmann, editors, Cryptology and Network Security - 22nd
International Conference, CANS 2023, Augusta, GA, USA, October 31 - November
2, 2023, Proceedings, volume 14342 of Lecture Notes in Computer Science, pages
293–317. Springer, 2023.

20. Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and 799
rounds of trivium using optimized cube attacks. In Shiho Moriai, editor, FSE 2013,
volume 8424 of LNCS, pages 502–517. Springer, 2013.

21. Yuki Funabiki, Yosuke Todo, Takanori Isobe, and Masakatu Morii. Improved
integral attack on HIGHT. In ACISP 2017, pages 363–383, 2017.

22. Yonglin Hao, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju Wang.
Links between division property and other cube attack variants. IACR Trans.
Symmetric Cryptol., 2020(1):363–395, 2020.

23. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset - improved cube
attacks against Trivium and Grain-128AEAD. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, volume 12105 of LNCS, pages 466–495. Springer,
2020.

24. Jiahui He, Kai Hu, Bart Preneel, and Meiqin Wang. Stretching cube attacks:
Improved methods to recover massive superpolies. In Shweta Agrawal and Dongdai
Lin, editors, Advances in Cryptology - ASIACRYPT 2022 - 28th International
Conference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5-9, 2022, Proceedings, Part IV, volume 13794 of Lecture
Notes in Computer Science, pages 537–566. Springer, 2022.

25. Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hirotaka
Yoshida. Grain-128AEAD - A lightweight AEAD stream cipher. NIST Lightweight
Cryptography, Round, 3, 2019.

26. Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, and Qingju Wang. Massive super-
poly recovery with nested monomial predictions. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Singapore, December 6-10, 2021, Proceedings, Part I, volume 13090 of Lecture
Notes in Computer Science, pages 392–421. Springer, 2021.

27. Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and key-
independent sums. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT
2020, Part I, volume 12491 of LNCS, pages 446–476. Springer, 2020.

28. Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.
Conditional cube attack on reduced-round keccak sponge function. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EU-
ROCRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, volume 10211 of Lecture Notes in Computer Science, pages
259–288, 2017.

29. Antoine Joux. Algorithmic cryptanalysis. CRC press, 2009.
30. Hao Lei, Jiahui He, Kai Hu, and Meiqin Wang. More balanced polynomials: Cube

attacks on 810- and 825-round trivium with practical complexities. IACR Cryptol.
ePrint Arch., page 1237, 2023.

33

31. Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved conditional
cube attacks on keccak keyed modes with MILP method. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I,
volume 10624 of Lecture Notes in Computer Science, pages 99–127. Springer, 2017.

32. Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on round-
reduced ASCON. IACR Trans. Symmetric Cryptol., 2017(1):175–202, 2017.

33. Meicheng Liu. Degree evaluation of NFSR-based cryptosystems. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, volume 10403 of LNCS, pages
227–249. Springer, 2017.

34. Meicheng Liu, Jingchun Yang, Wenhao Wang, and Dongdai Lin. Correlation cube
attacks: From weak-key distinguisher to key recovery. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume
10821 of Lecture Notes in Computer Science, pages 715–744. Springer, 2018.

35. Piotr Mroczkowski and Janusz Szmidt. The cube attack on stream cipher Trivium
and quadraticity tests. Fundam. Informaticae, 114(3-4):309–318, 2012.

36. Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. Misuse-free key-
recovery and distinguishing attacks on 7-round ascon. IACR Trans. Symmetric
Cryptol., 2021(1):130–155, 2021.

37. Raghvendra Rohit and Santanu Sarkar. Diving deep into the weak keys of round
reduced ascon. IACR Trans. Symmetric Cryptol., 2021(4):74–99, 2021.

38. Md. Iftekhar Salam, Harry Bartlett, Ed Dawson, Josef Pieprzyk, Leonie Simpson,
and Kenneth Koon-Ho Wong. Investigating cube attacks on the authenticated
encryption stream cipher ACORN. In Lynn Batten and Gang Li, editors, ATIS
2016, volume 651 of Communications in Computer and Information Science, pages
15–26, 2016.

39. Yu Sasaki and Yosuke Todo. New algorithm for modeling s-box in MILP based
differential and division trail search. In Pooya Farshim and Emil Simion, editors,
SecITC 2017, volume 10543 of LNCS, pages 150–165. Springer, 2017.

40. Ling Song, Jian Guo, Danping Shi, and San Ling. New MILP modeling: Improved
conditional cube attacks on keccak-based constructions. In Thomas Peyrin and
Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part
II, volume 11273 of Lecture Notes in Computer Science, pages 65–95. Springer,
2018.

41. Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based division
property for ARX ciphers and word-based division property. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, volume 10624 of LNCS, pages
128–157. Springer, 2017.

42. Ling Sun, Wei Wang, and Meiqin Wang. Milp-aided bit-based division property
for primitives with non-bit-permutation linear layers. IET Information Security,
14(1):12–20, 2020.

43. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Auto-
matic security evaluation and (related-key) differential characteristic search: Ap-
plication to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block
ciphers. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I,
volume 8873 of LNCS, pages 158–178. Springer, 2014.

34

44. Yao Sun. Automatic search of cubes for attacking stream ciphers. IACR Trans.
Symmetric Cryptol., 2021(4):100–123, 2021.

45. Yosuke Todo. Integral cryptanalysis on full MISTY1. In Rosario Gennaro and
Matthew Robshaw, editors, CRYPTO 2015, volume 9215 of LNCS, pages 413–
432, 2015.

46. Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, volume 9056 of LNCS,
pages 287–314. Springer, 2015.

47. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In Jonathan Katz and Ho-
vav Shacham, editors, CRYPTO 2017, volume 10403 of LNCS, pages 250–279.
Springer, 2017.

48. Yosuke Todo and Masakatu Morii. Bit-based division property and application to
Simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages
357–377. Springer, 2016.

49. Jianhua Wang, Lu Qin, and Baofeng Wu. Correlation cube attack revisited: Im-
proved cube search and superpoly recovery techniques. Cryptology ePrint Archive,
Paper 2023/1408, 2023. https://eprint.iacr.org/2023/1408.

50. Jianhua Wang, Baofeng Wu, and Zhuojun Liu. Improved degree evaluation and
superpoly recovery methods with application to trivium. CoRR, abs/2201.06394,
2022.

51. Qingju Wang, Lorenzo Grassi, and Christian Rechberger. Zero-sum partitions of
PHOTON permutations. In Nigel P. Smart, editor, CT-RSA 2018, volume 10808
of LNCS, pages 279–299. Springer, 2018.

52. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi
Meier. Improved division property based cube attacks exploiting algebraic proper-
ties of superpoly. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO
2018, volume 10991 of LNCS, pages 275–305. Springer, 2018.

53. SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. MILP-aided
method of searching division property using three subsets and applications. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, volume 11923
of LNCS, pages 398–427. Springer, 2019.

54. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, volume 10031 of LNCS, pages 648–678. Springer, 2016.

55. Chen-Dong Ye and Tian Tian. A new framework for finding nonlinear superpolies
in cube attacks against trivium-like ciphers. In Willy Susilo and Guomin Yang,
editors, ACISP 2018, volume 10946 of LNCS, pages 172–187. Springer, 2018.

56. Chen-Dong Ye and Tian Tian. A practical key-recovery attack on 805-round triv-
ium. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceed-
ings, Part I, volume 13090 of Lecture Notes in Computer Science, pages 187–213.
Springer, 2021.

35

https://eprint.iacr.org/2023/1408

Appendix

A Propagation Rules and Models for MP

In this section, we give the concrete propagation rules and models for MP. We
consider a round function f j , 0 ≤ j < r, whose input and output are xj ∈ Fnj

2

and xj+1 ∈ Fnj+1

2 , respectively.

A.1 Propagation Rules

Rule 5 (COPY [23]) Let f j be the basic operation COPY (nj+1 = nj+m−1)
with xj = (xj [0], xj [1], . . . , xj [nj−1]) and xj+1 = (xj [0], . . . , xj [0], xj [1], . . . , xj [nj−
1]), where the first m bits of xj+1 are generated from xj [0] by COPY. Given the
monomial π(xj , tj), π(xj , tj) can propagate to π(xj+1, tj+1), i.e., π(xj , tj) →
π(xj+1, tj+1) only when tj+1 satisfies

– tj+1[m+ k − 1] = tj [k] ∀ 1 ≤ k ≤ nj − 1.
– tj+1[0] ∨ tj+1[1] ∨ · · · ∨ tj+1[m− 1] = tj [0].

Rule 6 (AND [23]) Let f j be the basic operation AND (nj+1 = nj −m+ 1)
with xj = (xj [0], xj [1], . . . , xj [nj − 1]) and xj+1 = (xj [0] ∧ xj [1] ∧ · · · ∧ xj [m −
1], xj [m], . . . , xj [nj − 1]). Given the monomial π(xj , tj), π(xj , tj) can propagate
to π(xj+1, tj+1), i.e., π(xj , tj)→ π(xj+1, tj+1) only when tj+1 satisfies

– tj+1[k −m+ 1] = tj [k] ∀ m ≤ k ≤ nj − 1.
– ∀ k ∈ {0, 1, . . . ,m− 1}, tj+1[0] = tj [k].

Rule 7 (XOR [23]) Let f j be the basic operation XOR (nj+1 = nj −m + 1)
with xj = (xj [0], xj [1], . . . , xj [nj − 1]) and xj+1 = (xj [0]⊕ xj [1]⊕ · · · ⊕ xj [m−
1], xj [m], . . . , xj [nj − 1]). Given the monomial π(xj , tj), π(xj , tj) can propagate
to π(xj+1, tj+1), i.e., π(xj , tj)→ π(xj+1, tj+1) only when tj+1 satisfies

– tj+1[k −m+ 1] = tj [k] ∀ m ≤ k ≤ nj − 1.
– tj+1[0] = tj [0] + tj [1] + · · ·+ tj [m− 1].

A.2 Propagation Models

Model 1 (COPY [23]) Let f j be the basic operation COPY (nj+1 = nj+m−
1) with xj = (xj [0], xj [1], . . . , xj [nj−1]) and xj+1 = (xj [0], . . . , xj [0], xj [1], . . . , xj [nj−
1]), where the first m bits of xj+1 are generated from xj [0] by COPY. Let
a, b0, b1, . . . , bm−1 be the MILP variables corresponding to xj [0], xj+1[0], . . . , xj+1[m−
1] such that a COPY−−−−→ (b0, b1, . . . , bm−1) is a propagation trail of COPY. The fol-
lowing inequalities are sufficient to describe all the valid trails for COPY:

M.var ← a, b0, b1, . . . , bm−1 as binary;
M.con← b0 + b1 + · · ·+ bm−1 ≥ a;

M.con← a ≥ bi, ∀ i ∈ {0, 1, . . . ,m− 1}.

36

If the MILP solver supports the OR (∨) operation, then the model can also be
represented by: {

M.var ← a, b0, b1, . . . , bm−1 as binary;
M.con← a = b0 ∨ b1 ∨ · · · ∨ bm−1.

Model 2 (AND [23]) Let f j be the basic operation AND (nj+1 = nj−m+1)
with xj = (xj [0], xj [1], . . . , xj [nj − 1]) and xj+1 = (xj [0] ∧ xj [1] ∧ · · · ∧ xj [m −
1], xj [m], . . . , xj [nj − 1]). Let a0, a1, . . . , am−1, b be the MILP variables corre-
sponding to xj [0], . . . , xj [m − 1], xj+1[0] such that (a0, a1, . . . , am−1)

AND−−−→ b is
a propagation trail of AND. The following inequalities are sufficient to describe
all the valid trails for AND:{

M.var ← b, a0, a1, . . . , am−1 as binary;
M.con← b = ai, ∀ i ∈ {0, 1, . . . ,m− 1}.

Model 3 (XOR [23]) Let f j be the basic operation XOR (nj+1 = nj −m +
1) with xj = (xj [0], xj [1], . . . , xj [nj − 1]) and xj+1 = (xj [0] ⊕ xj [1] ⊕ · · · ⊕
xj [m − 1], xj [m], . . . , xj [nj − 1]). Let a0, a1, . . . , am−1, b be the MILP variables
corresponding to xj [0], . . . , xj [m−1], xj+1[0] such that (a0, a1, . . . , am−1)

XOR−−−→ b
is a propagation trail of XOR. The following inequalities are sufficient to describe
all the valid trails for XOR:{

M.var ← b, a0, a1, . . . , am−1 as binary;
M.con← b = a0 + · · ·+ am−1.

B Propagation Rules and Models for CMP

In this section, we give the concrete propagation rules and models for CMP. We
consider a round function f j , 0 ≤ j < r, whose input and output are xj ∈ Fnj

2

and xj+1 ∈ Fnj+1

2 , respectively. Here, to emphasize that our theory is indepen-
dent of how round functions are defined, we also give the propagation rule of
CMP when passing through S-boxes. Note that the following propagation rules
are based on the premise that all 0c bits have been set to constant 0. When all
state bits become δ bits, the CMP propagation will degenerate to MP propaga-
tion.

B.1 Propagation Rules

Rule 8 (COPY [24]) Let f j be the basic operation COPY (nj+1 = nj+m−1)
with xj = (xj [0], xj [1], . . . , xj [nj−1]) and xj+1 = (xj [0], . . . , xj [0], xj [1], . . . , xj [nj−
1]), where the first m bits of xj+1 are generated from xj [0] by COPY. Given the
monomial π(xj , tj) that only relates to the δ bits of round j, π(xj , tj) can prop-
agate to π(xj+1, tj+1), i.e., π(xj , tj)

C→ π(xj+1, tj+1) only when tj+1 satisfies

37

– tj+1[m+ k − 1] = tj [k] ∀ 1 ≤ k ≤ nj − 1.
– tj+1[0] ∨ tj+1[1] ∨ · · · ∨ tj+1[m− 1] = tj [0].

Rule 9 (AND [24]) Let f j be the basic operation AND (nj+1 = nj −m+ 1)
with xj = (xj [0], xj [1], . . . , xj [nj − 1]) and xj+1 = (xj [0] ∧ xj [1] ∧ · · · ∧ xj [m −
1], xj [m], . . . , xj [nj − 1]). Given the monomial π(xj , tj) that only relates to the
δ bits of round j, π(xj , tj) can propagate to π(xj+1, tj+1), i.e., π(xj , tj)

C→
π(xj+1, tj+1) only when tj+1 satisfies

– tj+1[k −m+ 1] = tj [k] ∀ m ≤ k ≤ nj − 1.
– tj+1[0] = tj [0] ∨ tj [1] ∨ · · · ∨ tj [m− 1].
– ∀ k ∈ {0, 1, . . . ,m− 1}, if xj [k].F = δ, tj+1[0] = tj [k].

Rule 10 (XOR [24]) Let f j be the basic operation XOR (nj+1 = nj −m+1)
with xj = (xj [0], xj [1], . . . , xj [nj − 1]) and xj+1 = (xj [0]⊕ xj [1]⊕ · · · ⊕ xj [m−
1], xj [m], . . . , xj [nj − 1]). Given the monomial π(xj , tj) that only relates to the
δ bits of round j, π(xj , tj) can propagate to π(xj+1, tj+1), i.e., π(xj , tj)

C→
π(xj+1, tj+1) only when tj+1 satisfies

– tj+1[k −m+ 1] = tj [k] ∀ m ≤ k ≤ nj − 1.
– If {1c, δ} ⊆ {xj [0].F, xj [1].F, . . . , xj [m − 1]}, tj+1[0] ≥ tj [0] + tj [1] + · · · +

tj [m− 1]; otherwise tj+1[0] = tj [0] + tj [1] + · · ·+ tj [m− 1].

Note that when {1c, δ} ⊆ {xj [0].F, xj [1].F, . . . , xj [m − 1]}, we allow tj [0] =
0, tj [1] = 0, . . . , tj [m−1] = 0 to propagate to tj+1[0] = 1. This may seem strange
at first glance, but it does fit the definition of CMP.

Rule 11 (S-boxes) Let f j be a function that consists of m S-boxes, denoted by
S0, . . . , Sm−1. For each S-box Si, we construct a table Pi by precomputation to
store all the pairs (tj , tj+1) that satisfy

– π(xj , tj) only relates to the input δ bits of Si; π(xj+1, tj+1) only relates to
the output δ bits of Si.

– π(xj , tj)
C→ π(xj+1, tj+1).

Now given a monomial π(xj , tj) that only relates to the δ bits of round j, we
decompose it into the product of m monomials, i.e., π(xj , tj) =

∏m−1
i=0 π(xj , tji),

such that π(xj , tji) only relates to the input of Si. Then, π(xj , tj) can prop-
agate to π(xj+1, tj+1), i.e., π(xj , tj)

C→ π(xj+1, tj+1) only when we can also
decompose π(xj+1, tj+1) into the product of m monomials, i.e., π(xj+1, tj+1) =∏m−1

i=0 π(xj+1, tj+1
i), such that π(xj+1, tj+1

i) only relates to the output of Si, and
the pair (tji , t

j+1
i) can be found in the table Pi.

B.2 Propagation Models

Model 4 (COPY [24]) Let f j be the basic operation COPY (nj+1 = nj+m−
1) with xj = (xj [0], xj [1], . . . , xj [nj−1]) and xj+1 = (xj [0], . . . , xj [0], xj [1], . . . , xj [nj−

38

1]), where the first m bits of xj+1 are generated from xj [0] by COPY. Let
a, b0, b1, . . . , bm−1 be the MILP variables corresponding to xj [0], xj+1[0], . . . , xj+1[m−
1] such that a COPY−−−−→ (b0, b1, . . . , bm−1) is a propagation trail of COPY. The fol-
lowing inequalities are sufficient to describe all the valid trails for COPY:

M.var ← a, b0, b1, . . . , bm−1 as binary;
M.con← b0 + b1 + · · ·+ bm−1 ≥ a;

M.con← a ≥ bi, ∀ i ∈ {0, 1, . . . ,m− 1}.

If the MILP solver supports the OR (∨) operation, then the model can also be
represented by: {

M.var ← a, b0, b1, . . . , bm−1 as binary;
M.con← a = b0 ∨ b1 ∨ · · · ∨ bm−1.

Model 5 (AND [24]) Let f j be the basic operation AND (nj+1 = nj−m+1)
with xj = (xj [0], xj [1], . . . , xj [nj − 1]) and xj+1 = (xj [0] ∧ xj [1] ∧ · · · ∧ xj [m −
1], xj [m], . . . , xj [nj − 1]). Let a0, a1, . . . , am−1, b be the MILP variables corre-
sponding to xj [0], . . . , xj [m − 1], xj+1[0] such that (a0, a1, . . . , am−1)

AND−−−→ b is
a propagation trail of AND. The following inequalities are sufficient to describe
all the valid trails for AND:

M.var ← b, a0, a1, . . . , am−1 as binary;
M.con← a0 + a1 + · · ·+ am−1 ≥ b;

M.con← b ≥ ai, ∀ i ∈ {0, 1, . . . ,m− 1};
M.con← b = ai if xj [i].F = δ, ∀ i ∈ {0, 1, . . . ,m− 1}.

If the MILP solver supports the OR (∨) operation, then the model can also be
represented by:

M.var ← b, a0, a1, . . . , am−1 as binary;
M.con← b = a0 ∨ a1 ∨ · · · ∨ am−1;

M.con← b = ai if xj [i].F = δ, ∀ i ∈ {0, 1, . . . ,m− 1}.

Model 6 (XOR [24]) Let f j be the basic operation XOR (nj+1 = nj −m +
1) with xj = (xj [0], xj [1], . . . , xj [nj − 1]) and xj+1 = (xj [0] ⊕ xj [1] ⊕ · · · ⊕
xj [m − 1], xj [m], . . . , xj [nj − 1]). Let a0, a1, . . . , am−1, b be the MILP variables
corresponding to xj [0], . . . , xj [m−1], xj+1[0] such that (a0, a1, . . . , am−1)

XOR−−−→ b
is a propagation trail of XOR. The following inequalities are sufficient to describe
all the valid trails for XOR:
M.var ← b, a0, a1, . . . , am−1 as binary;
M.con← b ≥ a0 + · · ·+ am−1, if {1c, δ} ⊆ {xj [0].F, xj [1].F, . . . , xj [m− 1].F};
M.con← b = a0 + · · ·+ am−1, otherwise.

39

Algorithm 3: Generate MILP model for f j that consists of multiple S-boxes
1 for each S-box Si, 0 ≤ i < m do
2 Prepare an empty table Pi

3 for each possible pair (tj , tj+1) that satisfies π(xj , tj) only relates to the
input δ bits of Si, π(xj+1, tj+1) only relates to the output δ bits of Si,
and π(xj , tj)

C→ π(xj+1, tj+1) do
4 Add the pair (tj , tj+1) to Pi

5 Generate linear inequalities with respect to a0, . . . , anj−1, b0, . . . , bnj+1−1

using mathematical tools (e.g., Sagemath) to constrain the pairs in Pi

6 Add the linear inequalities to M.con

Model 7 (S-boxes) Let f j be a function that consists of m S-boxes, denoted
by S0, . . . , Sm−1. Let a0, . . . , anj−1 and b0, . . . , bnj+1−1 be the MILP variables
corresponding to xj and xj+1, respectively. We can model the CMP propagation
through f j by adding linear constraints following Algorithm 3.

C Proof of Proposition 4

Proof. In the proof we will consider the propagation of CMP under different
values of the flag masks, so in order to avoid confusion, we refer to M rs,δ,M rs,1c

taking the values αrs,δ,αrs,1c as case 1 and M rs,δ,M rs,1c taking the values
βrs,δ,βrs,1c as case 2, which correspond to instances A and B, respectively. To
be accurate, we are going to prove

|π(xrs , trs)
C
1 π(xre , tre)| in case 1 ≥ |π(xrs , trs)

C
1 π(xre , tre ∧ βre,δ)| in case 2.

Assuming the values of flag masks at each round j, rs < j ≤ re in case 1 are
calculated as αj,δ,αj,1c ,αj,0c according to the operation rules of flags, we notice
that αj,δ ⪰ βj,δ,αj,1c ⪯ βj,1c ,αj,0c ⪯ βj,0c .

We prove the proposition by fixing rs and performing induction on re. First,
we consider re = rs + 1. If π(xrs , trs)

C→ π(xrs+1, trs+1 ∧ βrs+1,δ) in case 2,
there must exist a wrs

0 ,wrs
0 ⪯ βrs,1c = αrs,1c such that π(xrs , trs ∨wrs

0) →
π(xrs+1, trs+1 ∧ βrs+1,δ). Moreover, the assumption that frs is a basic oper-
ation guarantees that there exists a wrs

1 ,wrs
1 ⪯ βrs,1c = αrs,1c such that

π(xrs ,wrs
1) → π(xrs+1, trs+1 ∧ βrs+1,1c). Since trs+1 ∧ βrs+1,0c = 0, we have

π(xrs , trs ∨wrs
0 ∨wrs

1) → π(xrs+1, trs+1), which indicates that |π(xrs , trs)
C→

π(xrs+1, trs+1)| in case 1. This means the proposition holds for re = rs + 1.
Assume the proposition holds for re < m, now we want to prove it also holds
for re = m.

40

In case 1, solving instance A requires |π(xrs , trs)
C
1 π(xm, tm)| core monomial

trails and

|π(xrs , trs)
C
1 π(xm, tm)| =

∑
π(xm−1,tm−1)

C→π(xm,tm)

|π(xrs , trs)
C
1 π(xm−1, tm−1)|.

In case 2, solving instance B requires |π(xrs , trs)
C
1 π(xm, tm ∧ βm,δ)| core mono-

mial trails and

|π(xrs , trs)
C
1 π(xm, tm ∧ βm,δ)| =

∑
π(xm−1,ttm−1)

C→π(xm,tm∧βm,δ)

|π(xrs , trs)
C
1 π(xm−1, ttm−1)|.

Let

S1 = {tm−1 | π(xm−1, tm−1)
C→ π(xm, tm) in case 1},

S2 = {ttm−1 | π(xm−1, ttm−1)
C→ π(xm, tm ∧ βm,δ) in case 2}.

Due to the assumption that fm−1 is a basic operation, there exists a vector
wm−1

0 ,wm−1
0 ⪯ βm−1,1c such that π(xm−1,wm−1

0) → π(xm, tm ∧ βm,1c). We
next define a mapping φ from S2 to S1. Given ttm−1 as a vector in S2, we can
define its image tm as follows.

– Find a vector wm−1
1 ,wm−1

1 ⪯ βm−1,1c such that π(xm−1,wm−1
1 ∨ ttm−1)→

π(xm, tm ∧ βm,δ).
– Since tm∧βm,0c = 0, we have π(xm−1, ttm−1 ∨wm−1

0 ∨wm−1
1)→ π(xm, tm).

Hence, we define tm−1 = φ(ttm−1) = (ttm−1 ∨wm−1
0 ∨wm−1

1) ∧αm−1,δ.

The mapping is one-to-one, therefore |S1| ≥ |S2|. Furthermore, notice that for
each tm−1 ∈ S1 as the image of a ttm−1 ∈ S2, tm−1 ∧ βm−1,0c = 0. According
to the induction hypothesis,

|π(xrs , trs)
C
1 π(xm−1, tm−1)| in case 1 ≥ |π(xrs , trs)

C
1 π(xm−1, ttm−1)| in case 2.

Combining |S1| ≥ |S2|, we conclude that

|π(xrs , trs)
C
1 π(xm, tm)| in case 1 ≥ |π(xrs , trs)

C
1 π(xm, tm ∧ βm,δ)| in case 2,

thus proving the proposition. ⊓⊔

D Example for the Equivalence Between MP and CMP

Example 2. Let x0 = (x0[0], . . . , x0[3], x0[4]) and x0.F = {δ, δ, 1c, 1c, 0c}. Let
x1 = (x1[0], . . . , x1[3]) = f0(x0) with x1[0] = x0[0]x0[2] + x0[2] + x0[3] +���x0[4],
x1[1] = x0[1]x0[2] + x0[0]x0[1]x0[3] +(((((((

x0[0]x0[1]x0[4], x1[2] = x0[2], x1[3] = x0[3].
Let x2 = (x2[0], x2[1], x2[2], x2[3]) = f1(x1) with x2[0] = x1[0] + x1[2], x2[1] =

41

x1[1], x2[2] = x1[2], x2[3] = x1[3]. Given π(x0, t0) = x0[0]x0[1] and π(x2, t2) =
x2[0]x2[1], we want to calculate Sol⟨t0, t2⟩. According to operation rules of flags,
we can calculate the flags of x1 and x2, i.e.,

x1.F = {δ, δ, 1c, 1c},x2.F = {δ, δ, 1c, 1c}.

After setting the 0c bits of x0 (i.e., x0[4]) to 0, the monomial x0[4] in x1[0] and
the monomial x0[0]x0[1]x0[4] in x1[1] are removed. We can compute that there
are two core monomial trails

x0[0]x0[1]
C→ x1[1]

C→ x2[0]x2[1],

x0[0]x0[1]
C→ x1[0]x1[1]

C→ x2[0]x2[1].

Let t10 = (0, 1, 0, 0) and t11 = (1, 1, 0, 0) such that π(x1, t10) = x1[1], π(x1, t11) =
x1[0]x1[1]. We can calculate that

Sol⟨t2, t10⟩ = x1[2], Sol⟨t10, t0⟩ = x0[3],

Sol⟨t2, t11⟩ = 1, Sol⟨t11, t0⟩ = x0[2] + x0[3].

Hence, according to Proposition 2, we can calculate Sol⟨t0, t2⟩ as

Sol⟨t0, t2⟩ = Expr
⟨
x0[3]x1[2] + x0[2] + x0[3],x0

⟩
= x0[3]x0[2] + x0[2] + x0[3].

On the other hand, f0 is an S-box that maps 5 bits to 4 bits and f1 is the
basic operation XOR, so we perform iterative variable substitutions by applying
Rule 3 for f1 and Rule 4 for f0. For f0, we compute

x1[0]x1[1] = (x0[2] + x0[2]x0[3]) · x0[1] + (x0[2] + x0[3]) · x0[0]x0[1].

Along with the expressions of x1[0] and x1[1], we generate c0 = (c0[0], . . . , c0[5])
by substituting c0[0], . . . , c0[5] for x0[2], x0[2]+x0[3], x0[2], x0[3], x0[2]+x0[2]x0[3],
x0[2] + x0[3] (underlined parts), respectively. While for f1, we generate c1 =
(c1[0]) by only substituting c1[0] for x1[2]. Corresponding to the two core mono-
mial trails, we can compute there are two monomial trails

c0[3]c1[0]x0[0]x0[1]→ c1[0]x1[1]→ x2[0]x2[1],

c0[5]x0[0]x0[1]→ x1[0]x1[1]→ x2[0]x2[1].

By substituting c0[3], c0[5], c1[0] back with x0[3], x0[2]+x0[3], x1[2], respectively,
we obtain x0[3]x1[2] from c0[3]c1[0] and x0[2]+x0[3] from c0[5], which are exactly
the contributions of the two core monomial trails. This confirms Proposition 3.

E Expansion with Callback

What is callback? The callback function is a user interface provided by the
Gurobi solver that allows the user to define a function that allows Gurobi to

42

interrupt the solving process at a certain point in the internal solving process
and run the callback function instead, and then continue the solving process
when the callback function finishes. In this paper, we configure Gurobi to jump
to the callback function every time it finds a solution. In the callback function,
we can add constraints called lazy constraints to the model. For more details,
please refer to [3].
What can we do with callback? The basic components of an MILP model
are MILP variables and MILP constraints. If there exist certain values that can
be assigned to the MILP variables to satisfy the MILP constraints, we call these
values a solution to the model. However, in some cases we may only be concerned
with what values some of the MILP variables can take. For example, assume an
MILP model is composed of 10 MILP variables, denoted by s0, . . . , s9, but we
only focus on the values s0, . . . , s4 can take. In this case, we can use the callback
interface to have Gurobi jump to the callback function every time a solution is
found. In the callback function, we extract the values of s0, . . . , s4 and add lazy
constraints to exclude these values from the solution space. Then, Gurobi will
jump back to the solving process and continue solving the model. The above
process will be repeated until all possible values that s0, . . . , s4 can take are
found.
Expansion with callback. Considering that Step 4a and Step 5a are very
similar, here we only discuss how to determine those π(xrs+r0 , trs+r0)’s that
satisfy both π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0) and π(xrs+r0 , trs+r0)
C⇝ π(xre , tre).

The corresponding MILP model is illustrated in Algorithm 4.
Benefits and drawbacks of using callback functions. We take Step 4a
as an example. If we only want to compute all π(xrs+r0 , trs+r0)’s that satisfy
π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0), then the computational burden will be negligi-
ble, since we only need to start from π(xrs , trs) and derive forward following
the propagation rules, which can even be done manually. The cost is that at
Step 8 we have to deal with a large number of instances whose final solutions
are determined to be 0. In contrast, if we directly compute all π(xrs+r0 , trs+r0)’s
that satisfy π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0) and π(xrs+r0 , trs+r0)
C⇝ π(xre , tre)

at Step 4a, we save a lot of time that would otherwise be spent in Step 8,
but at the cost that we are required to solve an MILP model as shown in
Algorithm 4. If re − rs is large, such an MILP model can be very complex
and difficult to solve. Hence, in practice, when re − rs is large, we use a non-
callback mode at Step 4a, namely we only compute all π(xrs+r0 , trs+r0)’s that
satisfy π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0); when re − rs is reduced to a relatively
small number, we adjust Step 4a to adopt a callback mode, namely we com-
pute all π(xrs+r0 , trs+r0)’s that both satisfy π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0) and
π(xrs+r0 , trs+r0)

C⇝ π(xre , tre).

43

Algorithm 4: Determine all π(xrs+r0 , trs+r0)’s that satisfy both
π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0) and π(xrs+r0 , trs+r0)
C⇝ π(xre , tre)

1 Procedure CallbackFunc(M, srs+r0
0 , . . . , srs+r0

nrs+r0
−1):

2 Extract the values of srs+r0
0 , . . . , srs+r0

nrs+r0
−1 as trs+r0

3 Save π(xrs+r0 , trs+r0) as a monomial that satisfies both
π(xrs , trs)

C⇝ π(xrs+r0 , trs+r0) and π(xrs+r0 , trs+r0)
C⇝ π(xre , tre)

4 Initialize a linear expression L = 0
5 for i = 0 to nrs+r0 − 1 do
6 if trs+r0 [i] = 1 then L = L+ 1− srs+r0

i

7 else L = L+ srs+r0
i

8 M.con← L ≥ 1 // Exclude trs+r0 from the solution space

9 Procedure CallbackCMPModel(SRαrs,δ,αrs,1c ⟨tre , trs⟩):
10 Starting from Mrs,δ = αrs,δ,Mrs,1c = αrs,1c , calculate the values of flag

masks in each round according to the operation rules of flags
11 Prepare an empty MILP model M
12 M.var ← srsi for i ∈ {0, 1, . . . , nrs − 1} as binary
13 for i = 0 to nrs − 1 do
14 M.con← srsi = 1 if trs [i] = 1
15 M.con← srsi = 0 if trs [i] = 0

16 for j = rs to rs + r0 − 1 do
17 Update sj0, . . . , s

j
nj−1 to sj+1

0 , . . . , sj+1
nj+1−1 according to the propagation

models of CMP
18 Set CallbackFunc as a callback function, so that Gurobi will jump to it

every time a solution is found
19 for j = rs + r0 to re − 1 do
20 Update sj0, . . . , s

j
nj−1 to sj+1

0 , . . . , sj+1
nj+1−1 according to the propagation

models of CMP
21 for i = 0 to nre − 1 do
22 M.con← srei = 1 if tre [i] = 1
23 M.con← srei = 0 if tre [i] = 0

24 return M

44

F Optimizing the Implementation of Proposition 2

F.1 Partial XOR and its Complement

Rule 12 (Partial XOR [24]) For the propagation rule of the basic operation
XOR described in Rule 10, we consider a partial adoption as follows:

– tj+1[k −m+ 1] = tj [k] ∀ m ≤ k ≤ nj − 1.
– tj+1[0] = tj [0] + tj [1] + · · ·+ tj [m− 1].

That is, we remove the propagation from tj [0] = 0, tj [1] = 0, . . . , tj [m − 1] = 0
to tj+1[0] = 1.

Model 8 (Partial XOR [24]) For the propagation model of the basic opera-
tion XOR described in Model 6, we consider a partial adoption as follows:{

M.var ← b, a0, a1, . . . , am−1 as binary;
M.con← b = a0 + · · ·+ am−1.

Rule 13 (Complement of Rule 12 in Rule 10) For the propagation rule of
the basic operation XOR described in Rule 10, we consider a partial adoption
as follows:

– tj+1[k −m+ 1] = tj [k] ∀ m ≤ k ≤ nj − 1.
– tj+1[0] > tj [0] + tj [1] + · · ·+ tj [m− 1].

Model 9 (Complement of Model 8 in Model 6) On the basis of the prop-
agation model listed in Model 6 for f j as the basic operation XOR, we add an
additional linear constraint as follows: we construct a linear expression Lj =
b−

∑m−1
i=0 ai and add the constraint Lj = 1 to M.con.

F.2 Direct Implementation of Proposition 2

45

Algorithm 5: Construct an MILP model to extract the core monomial trails
in π(xrs , trs)

C
1 π(xre , tre) for the instance SRαrs,δ,αrs,1c ⟨tre , trs⟩

1 Procedure ExtractCMPTrails(SRαrs,δ,αrs,1c ⟨tre , trs⟩):
2 Starting from Mrs,δ = αrs,δ,Mrs,1c = αrs,1c , calculate the values of flag

masks in each round according to the operation rules of flags
3 Prepare an empty MILP model M
4 M.var ← srsi for i ∈ {0, 1, . . . , nrs − 1} as binary
5 for i = 0 to nrs − 1 do
6 M.con← srsi = 1 if trs [i] = 1
7 M.con← srsi = 0 if trs [i] = 0

8 for j = rs to re − 1 do
9 Update sj0, . . . , s

j
nj−1 to sj+1

0 , . . . , sj+1
nj+1−1 according to the propagation

models of CMP
10 for i = 0 to nre − 1 do
11 M.con← srei = 1 if tre [i] = 1
12 M.con← srei = 0 if tre [i] = 0

13 Configure the MILP solver to find all the solutions of M and start to solve
M

14 if M is solved (i.e., all the solutions have been found) then
15 Prepare an empty set S to store core monomial trails
16 for Each solution of M do
17 for j = rs to re do
18 Extract the values of sj0, . . . , s

j
nj−1 as tj

19 We obtain a core monomial trail written as
π(xrs , trs)

C→ π(xrs+1, trs+1)
C→ · · · C→ π(xre , tre) and add this

trail to S

20 return S

F.3 Two-step Implementation of Proposition 1

46

Algorithm 6: Construct an MILP model M0 to extract a subset of
π(xrs , trs)

C
1 π(xre , tre) for the instance SRαrs,δ,αrs,1c ⟨tre , trs⟩ in the first

step
1 Procedure FirstStepCMPModel(SRαrs,δ,αrs,1c ⟨tre , trs⟩):
2 Starting from Mrs,δ = αrs,δ,Mrs,1c = αrs,1c , calculate the values of flag

masks in each round according to the operation rules of flags
3 Prepare an empty MILP model M0

4 M0.var ← srsi for i ∈ {0, 1, . . . , nrs − 1} as binary
5 for i = 0 to nrs − 1 do
6 M0.con← srsi = 1 if trs [i] = 1
7 M0.con← srsi = 0 if trs [i] = 0

8 for j = rs to re − 1 do
9 if f j is the basic operation XOR then

10 Update sj0, . . . , s
j
nj−1 to sj+1

0 , . . . , sj+1
nj+1−1 according to the partial

XOR model (Model 8)
11 else
12 Update sj0, . . . , s

j
nj−1 to sj+1

0 , . . . , sj+1
nj+1−1 according to the

propagation models of CMP

13 for i = 0 to nre − 1 do
14 M0.con← srei = 1 if tre [i] = 1
15 M0.con← srei = 0 if tre [i] = 0

16 return M0

47

Algorithm 7: Construct an MILP model M1 to extract the missing trails
due to the use of partial XOR

1 Procedure SecondStepCMPModel(SRαrs,δ,αrs,1c ⟨tre , trs⟩):
2 Starting from Mrs,δ = αrs,δ,Mrs,1c = αrs,1c , calculate the values of flag

masks in each round according to the operation rules of flags
3 Prepare an empty MILP model M1

4 M1.var ← srsi for i ∈ {0, 1, . . . , nrs − 1} as binary
5 for i = 0 to nrs − 1 do
6 M1.con← srsi = 1 if trs [i] = 1
7 M1.con← srsi = 0 if trs [i] = 0

8 Initialize a linear expression L = 0
9 for j = rs to re − 1 do

10 if f j is the basic operation XOR then
11 Update sj0, . . . , s

j
nj−1 to sj+1

0 , . . . , sj+1
nj+1−1 according to the full

XOR model (Model 6)
12 Construct a linear expression Lj in the same way as done in

Model 9 for f j , but do not add the constraint Lj = 1.
13 L = L+ Lj

14 else
15 Update sj0, . . . , s

j
nj−1 to sj+1

0 , . . . , sj+1
nj+1−1 according to the

propagation models of CMP

16 for i = 0 to nre − 1 do
17 M1.con← srei = 1 if tre [i] = 1
18 M1.con← srei = 0 if tre [i] = 0

19 M1.con← L ≥ 1
20 return M1

48

G Applications to Ciphers

G.1 Trivium

Algorithm 8: Choose the time limit τre−rs for Trivium
1 if re − rs > 600 then τre−rs = 40
2 else if re − rs > 500 then τre−rs = 80
3 else if re − rs > 400 then τre−rs = 160
4 else if re − rs > 300 then τre−rs = 320
5 else if re − rs > 250 then τre−rs = 640
6 else if re − rs > 100 then τre−rs = 1200
7 else if re − rs > 20 then τre−rs = 3600
8 else τre−rs =∞

Table 5: Cube indices of Trivium used for verification
I Indices Size

I0

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51,
53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 75, 77, 79

55

I1

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53,
55, 57, 60, 62, 64, 66, 68, 70, 72, 75, 77, 79

54

I2

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57,
60, 62, 64, 66, 68, 70, 72, 77, 75, 79

52

49

Table 6: Verification and comparison of previous results for Trivium
I Rounds Status Time Cost⋆([24]) Time Cost (ours)
I0 845 Verified(✓) 20 hours 9 hours
I1 845 Verified(✓) 9 hours 4 hours
I2 848 Verified(✓) 11 days 5 days
⋆ The time cost is evaluated by re-running the code provided

by [24] on our platform.

G.2 Grain-128AEAD

Grain-128AEAD [25] is an authenticated encryption algorithm with support for
associated data and has been selected as one of the ten finalist candidates of the
NIST LWC standardization process. The design of Grain-128AEAD is closely
based on Grain-128a [5] introduced in 2011. Once the pre-output generator has
been initialized, a 64-bit shift register and a 64-bit accumulator are initialized
with the pre-output keystream to generate the authentication tag later. We fol-
low the assumption made in [23] that the first pre-output bit could be observed.

The internal state of the pre-output generator in Grain-128AEAD can be
represented by two 128-bit registers, namely b = (b[0], b[1], . . . , b[127]) and s =
(s[0], s[1], . . . , s[127]). To initialize the pre-output generator, the 128-bit key K
is loaded into the first register and the 96-bit Nonce N is loaded into the second
register. The other state bits of the second register are set to 1 except that the
least one bit. Namely, the internal state bits are represented as

(b[0], b[1], . . . , b[127])← (K[0],K[1], . . . ,K[127])

(s[0], s[1], . . . , s[127])← (N [0], N [1], . . . , N [95], 1, . . . , 1, 0).

During the initialization of the pre-output generator, the update function is given
by the following pseudo-code:

g ← b[0]⊕ b[26]⊕ b[56]⊕ b[91]⊕ b[96]⊕ b[3]b[67]⊕ b[11]b[13]⊕ b[17]b[18]

⊕ b[27]b[59]⊕ b[40]b[48]⊕ b[61]b[65]⊕ b[68]b[84]⊕ b[88]b[92]b[93]b[95]

⊕ b[22]b[24]b[25]⊕ b[70]b[78]b[82],

f ← s[0]⊕ s[7]⊕ s[38]⊕ s[70]⊕ s[81]⊕ s[96],

h← b[12]s[8]⊕ s[13]s[20]⊕ b[95]s[42]⊕ s[60]s[79]⊕ b[12]b[95]s[94],

z ← h⊕ s[93]⊕ b[2]⊕ b[15]⊕ b[36]⊕ b[45]⊕ b[64]⊕ b[73]⊕ b[89],

(b[0], b[1], . . . , b[127])← (b[1], . . . , b[127], g ⊕ s[0]⊕ z),

(s[0], s[1], . . . , s[127])← (s[1], . . . , s[127], f ⊕ z).

After updating the state 256 times without producing an output in the initial-
ization, z is used as a pre-output key stream instead of being fed back to the
state. Hereinafter, the assume that the first bit of the pre-output key stream can
be observed.

50

Algorithm 9: Choose the time limit τre−rs for Grain-128AEAD
1 if re − rs > 120 then τre−rs = 60
2 else if re − rs > 110 then τre−rs = 120
3 else if re − rs > 100 then τre−rs = 180
4 else if re − rs > 33 then τre−rs = 360
5 else if re − rs > 10 then τre−rs = 360
6 else τre−rs =∞

G.3 Kreyvium

Kreyvium is a stream cipher that is designed for the use of fully Homomorphic
encryption [10]. As a variant of Trivium, Kreyvium offers a higher security level
with 128-bit key and IV, but without increasing the multiplicative depth of the
corresponding circuit. The internal state of Kreyvium is composed of 5 registers.
Three of them are similar to those in Trivium, while the other two registers
correspond to the secret key and the IV, denoted by K∗ = (K∗[0], . . . ,K∗[127])
and IV ∗ = (IV ∗[0], . . . , IV ∗[127]), respectively. The initial state of Kreyvium
is set as

(s[0], s[1], . . . , s[92])← (K[0],K[1], . . . ,K[92]),

(s[93], s[94], . . . , s[176])← (IV [0], IV [1], . . . , IV [83]),

(s[177], s[178], . . . , s[287])← (IV [84], . . . , IV [127], 1, . . . , 1, 0),

(IV ∗[127], . . . , IV ∗[0])← (IV [0], . . . , IV [127]),

(K∗[127], . . . ,K∗[0])← (K[0], . . . ,K[127]).

The update function is given by the following pseudo-code:

t1 ← s[65]⊕ s[92], t2 ← s[161]⊕ s[176], t3 = s[242]⊕ s[287]⊕K∗[0],

z ← t1 ⊕ t2 ⊕ t3,

t1 ← t1 ⊕ s[90]s[91]⊕ s[170]⊕ IV ∗[0],

t2 ← t2 ⊕ s[174]s[175]⊕ s[263],

t3 ← t3 ⊕ s[285]s[286]⊕ s[68],

t4 ← K∗[0], t5 ← IV ∗[0],

(s[0], s[1], . . . , s[92])← (t3, s[0], s[1], . . . , s[91]),

(s[93], s[94], . . . , s[176])← (t1, s[93], s[94], . . . , s[175]),

(s[177], s[178], . . . , s[287])← (t2, s[177], s[178], . . . , s[286]),

(K∗[127],K∗[126], . . . ,K∗[0])← (t4,K
∗[127], . . . ,K∗[1]),

(IV ∗[127], IV ∗[126], . . . , IV ∗[0])← (t5, IV
∗[127], . . . , IV ∗[1]).

After 1152 rounds of initialization, the key stream bit z is produced by every
update function.
Limitations of CMP on Kreyvium. Compared to Trivium, Kreyvium in-
creases the size of the IV from 80 to 128, plus we choose cube indices with more

51

than 120 dimensions, so many of the 288 bits of the initial state s are flagged
as δ bits if we set the flags of the initial state according to Eqn. (3). Under
the influence of the update function of Kreyvium, it will not take too many
rounds for all of these 288 bits to become δ bits. For example, when we choose
I3 = {0, 1, . . . , 127}\{66, 73, 85, 87} for Kreyvium, it only takes 158 rounds for
the 288-bit state of Kreyvium to become all δ bits, but if we choose I3 in Table 2
for Trivium, it would take 228 rounds for all 288 bits to become δ bits.

The advantage of CMP is that only δ bits are tracked, so the fewer the δ
bits in the round state, the more effective CMP is. Therefore, it can be expected
that CMP will be more effective on Trivium. In other words, the reduction in
superpoly recovery time by CMP is not so significant on Kreyvium as it is on
Trivium.

On the other hand, since Kreyvium has a more complex update function
than Trivium, the resulting MILP model is more difficult to solve. As a result,
most of the time spent in our MITM framework is devoted to reducing re to a
sufficiently small value through backward expansion, so that the MILP model is
easier to solve.

Algorithm 10: Choose the time limit τre−rs for Kreyvium
1 if re − rs > 600 then τre−rs = 40
2 else if re − rs > 500 then τre−rs = 320
3 else if re − rs > 400 then τre−rs = 320
4 else if re − rs > 300 then τre−rs = 320
5 else if re − rs > 250 then τre−rs = 640
6 else if re − rs > 100 then τre−rs = 1200
7 else if re − rs > 20 then τre−rs = 3600
8 else τre−rs =∞

H Möbius Transform

Standard Möbius transform. Given the ANF of a Boolean function F (x)
of n variables represented by a binary vector of 2n entries corresponding to its
2n coefficients, the truth table of F (also represented by a binary vector of 2n
entries) can be computed from the ANF of F via the Möbius transform over Fn

2 .
The standard implementation of the Möbius transform is based on the formula

F (x[0], . . . , x[n− 1]) = x[0] · F0(x[1], . . . , x[n− 1]) + F1(x[1], . . . , x[n− 1]).

With the knowledge of the truth tables of F0 and F1 (the ANFs of F0 and F1 can
be obtained from the ANF of F directly), one can compute the truth table of F
with 2n−1 bit operations. Denoting the time complexity of the Möbius transform
on a Boolean function of n variables by T (n), we have T (n) = 2T (n−1)+2n−1,

52

and hence T (n) ≤ n · 2n−1 < n · 2n. In this paper, we assume the standard
Möbius transform requires n · 2n bit operations and 2n-bits memory. For more
details, please refer to [29].

53

