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Abstract. The XOR of two independent permutations (XoP) is a well-
known construction for achieving security beyond the birthday bound
when implementing a pseudorandom function using a block cipher (i.e.,
a pseudorandom permutation). The idealized construction (where the
permutations are uniformly chosen and independent) and its variants
have been extensively analyzed over nearly 25 years.
The best-known asymptotic information-theoretic indistinguishability bound
for the XoP construction is O(q/21.5n), derived by Eberhard in 2017,
where q is the number of queries and n is the block length.
A generalization of the XoP construction outputs the XOR of r ≥ 2
independent permutations, and has also received significant attention in
both the single-user and multi-user settings. In particular, for r = 3,
the best-known bound (obtained by Choi et al. [ASIACRYPT’22]) is
about q2/22.5n in the single-user setting and

√
uq2max/2

2.5n in the multi-
user setting (where u is the number of users and qmax is the number of
queries per user).
In this paper, we prove an indistinguishability bound of q/2(r−0.5)n for
the (generalized) XoP construction in the single-user setting, and a bound
of

√
uqmax/2

(r−0.5)n in the multi-user setting. In particular, for r = 2, we
obtain the bounds q/21.5n and

√
uqmax/2

1.5n in single-user and multi-
user settings, respectively. For r = 3 the corresponding bounds are
q/22.5n and

√
uqmax/2

2.5n. All of these bounds hold assuming q < 2n/2
(or qmax < 2n/2).
Compared to previous works, we improve all the best-known bounds
for the (generalized) XoP construction in the multi-user setting, and the
best-known bounds for the generalized XoP construction for r ≥ 3 in the
single-user setting (assuming q ≥ 2n/2). For the basic two-permutation
XoP construction in the single-user setting, our concrete bound of q/21.5n

stands in contrast to the asymptotic bound of O(q/21.5n) by Eberhard.
Since all of our bounds are matched (up to constant factors) for q ≥ 2n/2

by attacks published by Patarin in 2008 (and their generalizations to the
multi-user setting), they are all tight.
We obtain our results by Fourier analysis of Boolean functions. Most of
our technical work involves bounding (sums of) Fourier coefficients of the
density function associated with sampling without replacement. While
the proof of Eberhard relies on similar bounds, our proof is elementary
and simpler.



1 Introduction

Many cryptosystems such as encryption modes, MAC algorithms and authen-
ticated encryption schemes require pseudorandom functions to achieve security.
However, in practice, pseudorandom functions are typically implemented by
block ciphers, which are pseudorandom permutations that are only secure up
to the birthday bound of q = 2n/2 queries (where n is the block length). In order
to overcome this limitation, achieving security beyond the birthday bound has
become a prominent research area, initiated by the seminal papers by Bellare,
Krovetz, and Rogaway [2], and by Hall, Wagner, Kelsey, and Schneier [18].

1.1 The XoP Construction

One of the main constructions analyzed in the literature for achieving secu-
rity beyond the birthday bound is the XOR of permutations (XoP) construc-
tion, which has two main variants. One variant uses two permutations π1, π2 :
{0, 1}n 7→ {0, 1}n to define fπ1,π2

: {0, 1}n 7→ {0, 1}n by f(x) = π1(x) ⊕ π2(x).
In practice, π1 and π2 are implemented using a block cipher, instantiated with
independent keys. In the following, we simply refer to this variant as the XoP
construction. Another variant uses a single permutation π : {0, 1}n 7→ {0, 1}n
to define fπ : {0, 1}n−1 7→ {0, 1}n by f(x) = π(0∥x) ⊕ π(1∥x) (where ∥ denotes
concatenation). We refer to this construction as a single-permutation XoP con-
struction. Similarly to the two-permutation variant, π is implemented using a
block cipher. However, in information-theoretic security proofs, the block ciphers
in both variants are replaced by idealized random permutations.

We note that there are other variants of the XoP construction defined in
the literature that we do not deal with in this paper. For example, the recent
result [16] by Gunsing et al. analyzes a variant where the underlying permuta-
tions are public and the adversary is allowed to query them. Previous works that
analyze additional variants include [3,4,7,17].

Previous results. There have been several works on the security of the (ide-
alized) XoP construction [1,20,25,27], analyzing one or both of its variants. Yet,
a simple and verifiable proof that the XoP construction variants achieve secu-
rity up to q = O(2n) queries was only published in 2017 in a paper by Dai,
Hoang, and Tessaro [11]. Specifically, [11] proved that any adversary that makes
q queries to the (two-permutation) XoP construction can distinguish it from a

truly random function with advantage of at most (about) q1.5

21.5n .

Independently, in [13, Thm. 1.5] Eberhard proved a substantially better in-
distinguishability bound of O( q

21.5n ), relying and extending results of [14] in addi-
tive combinatorics. The bound was given in asymptotic form with an unspecified
constant. An additional paper that analyzed the XoP construction is [12].

For the single-permutation XoP variant, the distinguishing advantage was
bounded in [11,12] by about q

2n . The works of [8,12], essentially confirm (and
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improve) the results obtained earlier by Patarin [25,27] (using the so-called mir-
ror theory technique).

The indistinguishability bound q
2n for the single permutation XoP construc-

tion variant is essentially tight. Indeed, it is matched by a simple attack based
on the observation that since π is a permutation, for all x ∈ {0, 1}n−1, f(x) =
π(0∥x)⊕ π(1∥x) ̸= 0⃗, while for a random function, 0⃗ is output with probability
2−n for each query.

The attack above does not work for the variant where the permutations are
independent, and indeed the bound O( q

21.5n ) of [13] for this variant is much better
(particularly when q is large). This bound is matched by an attack published by
Patarin [26,28], which obtains distinguishing advantage of about q

21.5n , assuming
q = O(2n). Note that if q = 2n, then the distinguishing advantage is close to 1
since the XOR of the outputs of all inputs to f(x) = π1(x)⊕ π2(x) is 0⃗.

Multi-user setting. The XoP construction also recently received attention in
the multi-user setting in [6,7]. A trivial extension of the result in [13] gives a
bound of O(u·qmax

21.5n ) in the multi-user setting, where u is the number of users and
qmax is the allowed number of queries to each user.

In terms of attacks, one can generically extend the attacks by Patarin [26,28]
to the multi-user setting by independently applying the single-user attacker to
each user, and then taking the majority of answers (which attempt to deduce
whether the oracle is the XoP construction or a random function). Applying
a standard Chernoff bound, the attack achieves a distinguishing advantage of

about
√
uqmax

21.5n .

Generalized XoP construction. A natural generalization of the XOR con-
struction defines f by XORing together r ≥ 2 permutations, where r is a (small)
parameter. As in the case of r = 2, the generalized construction also has two
variants, but we focus on the case where all permutations are independent.

Previous results. This construction was first analyzed by Lucks [20] and this
analysis was improved by Cogliati, Lampe, and Patarin [9], who proved security
up to roughly 2rn/(r+1) queries (also see [22]). More recently, this analysis has
been improved in [11], which obtained an indistinguishability bound to about
( q
2n )

1.5⌊r/2⌋ using the generic amplification technique of Maurer, Pietrzak, and
Renner [21]. The specific case of k = 3 was analyzed in [7] by Choi et al., who

proved an indistinguishability bound of about
√
uq2max

22.5n in the multi-user setting.

On the other hand, the best known attacks on the generalized XoP construc-
tion, published in [26,28], obtained distinguishing advantage of about q

2(r−0.5)n .
One can also consider attacks on the generalized XoP construction in the multi-
user setting. Similarly to the case of r = 2, the best known attack is the generic
extension of the single-user attack by Patarin [26,28] to the multi-user setting,

which achieves advantage of about
√
u·qmax

2(r−0.5)n .
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1.2 Our Contribution

Our results. In this paper, we prove an indistinguishability bound of q
2(r−0.5)n

for the (generalized) XoP construction in the single-user setting, and a bound of√
uqmax

2(r−0.5)n in the multi-user setting. Specifically, for the basic two-permutation XoP

construction, we obtain a bound of q
21.5n in the single-user setting and

√
uqmax

21.5n

in the multi-user settings. All of these bounds have no hidden constants. They
hold as long as q < 2n/2 (or qmax < 2n/2 in the multi-user setting), assuming
2n ≥ 1000.

Compared to previous results, we improve all the best-known bounds for the
(generalized) XoP construction in the multi-user setting, and the best-known
bounds for the generalized XoP construction for r ≥ 3 in the single-user setting
(assuming q ≥ 2n/2). For the basic XoP construction (with r = 2), our concrete
bound of q/21.5n in the single-user setting stands in contrast to the asymptotic
bound of O(q/21.5n), derived in [13].

All of our bounds are tight assuming q ≥ 2n/2, as they match (up to constant
factors) the single-user attacks published by Patarin in [26,28], as well as their
trivial generalization to the multi-user setting.

Our techniques. Similarly to [13,14], the main framework that we use to obtain
our results is Fourier analysis (of Boolean functions). This is a standard tool for
analyzing probability distributions in mathematics, yet it is not commonly used
as a main framework in information-theoretic security proofs in symmetric-key
cryptography. For example, [5] used Fourier analysis as an auxiliary tool in order
to prove an internal lemma, but not as the main framework. The application of
Fourier analysis in the more recent work [19] is somewhat more related to ours.
We summarize the main ideas of our proof below.

First, the distinguishing advantage of the adversary is bounded by the statis-
tical distance between the distribution generated by the XoP construction and
the uniform distribution. Consider a sample in Fq×n

2 composed of q elements in
{0, 1}n, generated by the XoP construction. We can bound the statistical dis-
tance of this distribution from the uniform distribution in the “Fourier domain”
by bounding the bias (i.e., Fourier coefficient) of each of the 2q·n possible masks
(i.e., linear equations over F2) applied to the bits of the sample. To gain in-
tuition, note that for the uniform distribution over Fq×n

2 , all non-empty linear
equations have 0 bias (i.e., hold with probability 1/2), and thus a distribution
that is close to uniform has biases (Fourier coefficients) that are very close to 0.

Our task is thus to bound the Fourier coefficients for the distribution function
generated by the XoP construction.1 Next, we use standard techniques to reduce
this task to the task of bounding the Fourier coefficients for the distribution gen-
erated by the underlying primitive, namely, a random permutation. Specifically,
we consider k elements (for any 1 ≤ k ≤ q) drawn uniformly without replace-

1 More accurately, the task is to bound the Fourier coefficients for the normalized
distribution function (i.e., density function) generated by the XoP construction.
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ment. Our goal is reduced to bounding two quantities of Fourier coefficients on
masks that involve all of these k elements (called level-k coefficients).

1. The maximal level-k Fourier coefficient in absolute value.
2. The level-k Fourier weight, which is equal to the sum of squares of all Fourier

coefficients of level k.

Intuitively, level-k (Fourier) weight is a measure of dependence between k ele-
ments drawn from the distribution. For example, the level-k Fourier weight of a
q-wise uniform distribution is 0 for any 1 ≤ k ≤ q. We remark that calculating
the above two Fourier quantities for various levels has the additional advantage
of hinting at the best attack strategy. In particular, we show that for the XoP
construction, level-2 Fourier coefficients are dominant. This suggests that the
best attack strategy should consider pairwise relations, and indeed, the optimal
attacks by Patarin [26,28] count pairwise collisions.

Most of our technical work involves bounding the two quantities above, which
is non-trivial due to intricate dependencies among the bits of the sample. This
analysis does not directly deal with the XoP construction, but rather derives
fundamental Fourier properties of the sampling without replacement distribu-
tion.

Bounding the quantities. We briefly summarize the main ideas used to bound
each of the above quantities. Fix a mask involving bits from exactly k elements.
In order to bound the associated bias of the linear equation (in absolute value),
we devise an algorithm that allows to partition a subset of the sample space into
sample couples with opposite signs (i.e., one satisfies the linear equation and
one does not). Thus, the bias (in absolute value) is bounded by the fraction of
samples that are not coupled. This fraction is bounded by probabilistic analysis
of the algorithm. We note that our analysis does more than merely bound the
maximal level-k Fourier coefficients. It actually classifies them into types (or
groups) and obtains a refined bound for each type.

Our bound on the maximal level-k Fourier coefficient is tight, yet by itself,
it is not sufficient in order to derive tight indistinguishability bounds for the
XoP construction. For this purpose, we bound the level-k Fourier weight of the
sampling without replacement distribution. While an exact expression for the
weight is relatively easy to derive, this expression is a complex sum of terms,
and therefore not immediately useful. Hence, we manipulate this expression in
two main steps. First, we show how to compute the level-k Fourier weight via
a recursive formula, and then we bound this weight by induction. Overall, al-
though the weight is bounded by elementary analysis, it requires insight which
is somewhat non-trivial.

Remark 1. Our bounds on the level-k Fourier weight can be formulated in terms
of the so-called Efron–Stein orthogonal decomposition [24, Ch. 8] of the density
function of sampling without replacement. This decomposition is independent
of a specific Fourier basis, and thus these bounds apply more generally to the
density function of sampling without replacement from an arbitrary set.
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Technical comparison to previous works. Below, we compare our tech-
niques to those of [13,14]. We then compare them to additional proof techniques.

Comparison to [13,14]. The papers [13,14] obtained several results in additive
combinatorics. One of them is [13, Thm. 1.5], which gives an asymptotic in-
distinguishability bound of O( q

21.5n ) for the two-permutation XoP construction.
We compare our result and techniques to the ones of [13,14], focusing on the
aforementioned result.

Both our proof and the one of [13,14] use Fourier analysis and (in our lan-
guage) bound the (sums of) Fourier coefficients of the density function of sam-
pling without replacement. However, the proof of [13, Thm. 1.5] is significantly
more complicated. In particular, it relies on several bounds which are not re-
quired to obtain our result. Moreover, it uses complex analysis, whereas our
proof is elementary.

We remark, however, that [13, Thm. 1.5] is stronger than our result in the
sense that it is applicable all the way up to q ≤ 2n − 1, whereas our analogous
result is only applicable up to q ≤ 2n−1 − 1. While it is not difficult to extend
our result to q ≤ C · 2n for some constant C > 1/2, our bounds do not seem
sufficient to reach q = 2n − 1. For such a result, the additional bounds of [13,
Thm. 1.5] indeed seem necessary. On the other hand, while the difference between
q ≤ 2n− 1 and q ≤ 2n−1− 1 is crucial in [13, Thm. 1.5], it is not very important
from a cryptographic viewpoint.

The two bounds that we use (mentioned above) have comparable bounds
in [13,14]. The analog of our first bound (the maximal level-k Fourier coefficient
in absolute value) is [13, Lem. 4.1]. After normalization, our bound is identical
for even k and slightly better for odd k. It is proved using a completely different
technique. The analog of our second bound (the level-k Fourier weight) is [13,
Thm 2.3] ([14, Thm. 5.1]). After normalization, our bound is somewhat inferior
for small k (e.g., for k ≤ 2n/3), and becomes better for large k (e.g., denoting
N = 2n, it is better by a factor of 2Ω(N) for k ≥ Ω(N)). However, such an
improvement seems insignificant to the asymptotic results of [13,14]. Our proof
of the second bound begins by deriving an exact expression for the weight, as
the proof of [14, Thm. 5.1]. On the other hand, our analysis of this expression
is elementary, while the one of [14] is based on complex analysis.

In terms of generality of results, [13, Thm. 1.5] was proved for a (general-
ized variant of the) XoP construction defined over an arbitrary additive abelian
group. While our results only apply to the original XoP construction, it is not
difficult to extend them to the variant defined over an arbitrary abelian group.
In fact, our second bound is already independent of the actual group (see Re-
mark 1), and it only remains to modify the proof of the first bound. However,
we leave this to future work.

Techniques not based on Fourier analysis. Additional techniques for obtaining
indistinguishability results for the XoP construction used either the chi-squared
method (devised in [11]), or mirror theory (devised in [25,27]), or a combination
(or a variant) of them. However, when applied to the XoP construction (e.g.,
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with r = 2), these methods have shortcomings that result in sub-optimal bounds.
We elaborate on these shortcomings below, and explain why they are not present
when using Fourier analysis.

The shortcoming of the chi-squared method is that when applying it the
XoP construction, the analysis seems to require revealing the intermediate values
output by the permutations. This extra information cannot be deduced from the
output of the XoP construction, and it gives the adversary extra power, typically
leading to a loose bound. While revealing the intermediate permutation values
is not a strict prerequisite for the application of the chi-squared method, it
seems very difficult to analyze the XoP construction without it. On the other
hand, Fourier analysis deals with bounding the bias of the XOR of subsets of
bits of the sample, and does not reveal any extra information to the adversary.
We remark, however, that both Fourier analysis and the chi-squared method
essentially bound the distance in L2 norm between the output distribution of
the cryptosystem and the uniform distribution, treated as vectors over R (yet,
internally this is done using different techniques).

In contrast to the chi-squared method, mirror theory does not reveal extra
information to the adversary. Yet, its main shortcoming is that it (essentially)
considers a worst-case scenario over the samples received by the adversary. In
other words, it bounds the maximal distinguishing advantage of the adversary
over the output space of the XoP construction. This bound can potentially be
much larger than the average bound over the samples, which, by definition, is the
actual distinguishing advantage. On the other hand, Fourier analysis considers
the average case over the sample when analysing biases of linear equations on
subsets of its bits.

Other related papers. Superficially related papers in the area of linear cryptanal-
ysis [10,23] show that most fixed idealized block ciphers (permutations) do not
have a good linear approximation. Such results are different than ours as we deal
with a distribution, rather than any fixed permutation. We are not aware of pre-
vious works (other than [13,14]) that analyze Fourier properties of the sampling
without replacement distribution over the domain {0, 1}n.

Moreover, a linear approximation table of an n-bit block cipher includes a bias
per each of the 22n possible masks (subsets of input and output bits), assuming
the block cipher input is selected uniformly. On the other hand, we analyze biases
(only) among subsets of output bits of a random permutation, as a function of
the number of elements of {0, 1}n involved in the XOR relation. The number of
possible masks over k elements is about 2kn ≫ 22n (when k > 2). Such masks
can have rather complex structures that the analysis needs to account for.

1.3 Paper Structure

The rest of this paper is organized as follows. We describe preliminaries in Sec-
tion 2. In Section 3, we summarize our bounds on the two Fourier properties
of sampling without replacement, and use them to prove indistinguishability
bounds for the XoP construction. Finally, we prove these bounds in Section 4
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and Section 5. Specifically, in Section 4 we bound the maximal (absolute value
of the) level-k Fourier coefficient of the sampling without replacement density
function, while in Section 5, we bound its level-k Fourier weight.

2 Preliminaries

For a natural number m, denote [m] = {1, 2, . . . ,m}. For natural numbers m1

and m2 such that m1 ≤ m2, denote [m1,m2] = {m1,m1 + 1, . . . ,m2}. For a set
A, denote its size by |A|. For any integer k > 0 and a real number t, define the
falling factorial as (t)k = t(t− 1) . . . (t− (k − 1)). Further define (t)0 = 1.

Let F be a field and v ∈ Fk1×k2 a matrix of elements in F. We index the
elements of v in a natural way, namely, for i ∈ [k1], vi ∈ Fk2 is the i’th row of v
and for j ∈ [k2], vi,j ∈ F is its j’th entry.

For two vectors v, u ∈ Fk, we denote by ⟨u, v⟩F =
∑

i∈[k] uivi their inner

product. Similarly, for matrices v, u ∈ Fk1×k2 , ⟨u, v⟩F =
∑

(i,j)∈[k1]×[k2]
ui,jvi,j .

In this paper, we typically deal with matrices x ∈ Fk×n
2 , where n is consid-

ered a parameter and k may vary. We denote N = 2n. We further denote by
(e1, e2, . . . , en) the standard basis vectors of Fn

2 .

2.1 Probability

Definition 1 (Density function). A (probability) density function on Fq×n
2

is a nonnegative function φ : Fq×n
2 7→ R≥0 satisfying Ex∈Fq×n

2
[φ(x)] = 1, where

x ∈ Fq×n
2 is uniformly chosen.

We write x ∼ φ to denote that x is a random string drawn from the associated
probability distribution, defined by

Pr
x∼φ

[x = y] = φ(y)/2n·q for every y ∈ Fq×n
2 .

In particular, the uniform probability density function over Fq×n
2 is the constant

function 1, and we denote it by 1q·n.
Let A ⊆ Fq×n

2 . We write x ∼ A to denote that x is selected uniformly at
random from A.

Definition 2 (Collision probability). The collision probability of a density
function φ : Fq×n

2 7→ R≥0 is

Col[φ] = Pr
x,x′∼φ

independently

[x = x′].

Definition 3 (Convolution). Let f, g : Fq×n
2 7→ R. Their convolution is the

function f ∗ g : Fq×n
2 7→ R defined by

(f ∗ g)(x) = E
y∼Fq×n

2

[f(y)g(x⊕ y)].
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For a function f : Fq×n
2 7→ R and a natural number r ≥ 2, we denote the r-fold

convolution of f with itself by f (∗r) = f ∗f ∗ . . .∗f (in particular f (∗2) = f ∗f).

Proposition 1 ([24], Proposition 1.26). If φ,ψ : Fq×n
2 7→ R≥0 are density

functions, then so is φ ∗ ψ. It represents the distribution over Fq×n
2 given by

choosing y ∼ φ and z ∼ ψ independently and setting x = y ⊕ z.

Definition 4 (Statistical distance). The statistical distance between two prob-
ability density functions φ,ψ : Fq×n

2 7→ R≥0 is

SD(φ,ψ) = 1/2 · E
x∼Fq×n

2

|φ(x)− ψ(x)|.

2.2 Fourier Analysis

We define the Fourier-Walsh expansion of functions on the Boolean cube, adapted
to our setting, and state the basic results that we will use. These results are taken
from [24].

Definition 5 (Fourier expansion). Given α ∈ Fq×n
2 , define χα : Fq×n

2 7→
{−1, 1} by

χα(x) = (−1)⟨α,x⟩F2 =
∏
i∈[q]

(−1)⟨αi,xi⟩F2 =
∏

i∈[q],j∈[n]

(−1)αi,j ·xi,j .

The set {χα}α∈Fq×n
2

is an orthonormal basis for the set of functions {f | f :

Fq×n
2 7→ R}, with respect to the normalized inner product 1

|Fq×n
2 |

⟨f, g⟩R =

Ex∼Fq×n
2

[f(x)g(x)]. Hence each {f | f : Fq×n
2 7→ R} can be decomposed to

f =
∑

α∈Fq×n
2

f̂(α)χα,

where f̂(α) = E[χαf ], and in particular, f̂(0) = E[f ].
Each element in {χα}α∈Fq×n

2
is called a character. We refer to α as a mask,

and to f̂(α) as the Fourier coefficient of f on α. To distinguish the domain of

characters from the input domain we write it as F̂Fq×n
2

, and thus

f(x) =
∑

α∈F̂q×n
2

f̂(α)χα(x).

For a mask α ∈ F̂q×n
2 , we write

supp(α) = {i | αi ̸= 0} and #α = |supp(α)|.

We call #α the level of α, and f̂(α) is a Fourier coefficient of level #α.
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Definition 6 (Fourier weight and maximal magnitude). For a function
f : Fq×n

2 7→ R, we define the Fourier weight of f at level k to be

W=k[f ] =
∑

α∈F̂q×n
2

#α=k

f̂(α)2.

The Fourier weight of f up to level k is W≤k[f ] =
∑k

i=0 W
=i[f ].

The maximal magnitude of a level-k Fourier coefficient of f is

M=k[f ] = max
α∈F̂q×n

2
#α=k

{|f̂(α)|}.

Finally, let M≥1[f ] = maxα∈F̂q×n
2

α ̸=0

{|f̂(α)|} denote the maximal magnitude of a

Fourier coefficient on a non-zero mask.

Proposition 2 ([24], Fact 1.21). If φ : Fq×n
2 7→ R≥0 is a density function

and f : Fq×n
2 7→ R, then

E
x∼φ

[f(x)] = E
x∼Fq×n

2

[φ(x)f(x)].

Proposition 3 ([24], Theorem 1.27 – Fourier coefficients of convolu-

tion). Let f, g : Fq×n
2 7→ R. Then for all α ∈ F̂q×n

2 , f̂ ∗ g(α) = f̂(α)ĝ(α).

Proposition 4 ([24], Exercise 1.23 – relation between Fourier weight
and collision probability). For a density function φ : Fq×n

2 7→ R≥0,

W≤q[φ] = Col[φ] · 2q·n.

Proposition 5 ([24], Proposition 1.13 – variance). The variance of f :
Fq×n
2 7→ R is

Var[f ] = E[f2]− E[f ]2 =
∑

α∈F̂q×n
2

α ̸=0

f̂(α)2 =

q∑
k=1

W=k[f ].

Proposition 6 ([24], Exercise 1.23 – bound on statistical distance from
uniform). Let φ : Fq×n

2 7→ R≥0 be a density function. Then

SD(φ,1q·n) ≤
1

2

√
Var[φ].

We prove two additional basic results regarding variance.

Proposition 7 (Variance reduction by convolution). Let φ : Fq×n
2 7→ R≥0

be a density function. Let r1, r2 be integers such that 0 < r2 < r1. Then,

Var[φ(∗r1)] ≤ (M≥1[φ])2(r1−r2) Var[φ(∗r2)].
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Proof. By Proposition 5 and Proposition 3,

Var[φ(∗r1)] =
∑

α∈F̂q×n
2

α̸=0

φ̂(∗r1)(α)2 =
∑

α∈F̂q×n
2

α̸=0

φ̂(α)2r1

≤ (M≥1[φ])2(r1−r2)
∑

α∈F̂q×n
2

α̸=0

φ̂(α)2r2 = (M≥1[φ])2(r1−r2) Var[φ(∗r2)].

■

Proposition 8 (Variance of independent samples). Let φ : Fq×n
2 7→ R≥0

be a density function. Let u be a natural number and let φ×u : F(q·u)×n
2 7→ R≥0

be the density function obtained by concatenating u independent samples drawn
from φ. Then,

Var[φ×u] ≤ 2u ·Var[φ], assuming u ·Var[φ] ≤ 1/2.

Proof. By independence of the u samples, we have Col[φ×u] = Col[φ]u. Applying
Proposition 4 and Proposition 5,

W≤q·u[φ×u] = Col[φ×u] · 2q·n·u = (Col[φ] · 2q·n)u = (W≤q[φ])u =
(
φ̂(0)2 +Var[φ]

)u
.

Writing z = Var[φ] and noting that φ̂(0)2 = 1 since φ is a density function, we
have W≤q·u[φ×u] = (1+z)u = 1+

∑u
i=1

(
u
i

)
zi. The ratio between two consecutive

terms in the sum
∑u

i=1

(
u
i

)
zi is upper bounded by u·z ≤ 1/2 (by the assumption).

Thus, the sum is upper bounded by a geometric series with ratio 1/2 (i.e., twice
the first term). We conclude that

W≤q·u[φ×u] ≤ 1 + 2u · z = φ̂×u(0)2 + 2u · z.

Hence, by Proposition 5, Var[φ×u] =
∑q·u

k=1 W
=k[φ×u] ≤ 2u · z. ■

2.3 Cryptographic Preliminaries and Sampling Without
Replacement

We use the standard notion of PRF security, as defined below. Let H : K ×
{0, 1}m1 7→ {0, 1}m2 be a family of functions and Func(m1,m2) be the set of all
functions g : {0, 1}m1 7→ {0, 1}m2 . Let A be an algorithm with oracle access to
a function f : {0, 1}m1 7→ {0, 1}m2 . The PRF advantage of A against H is

AdvprfH (A) =

∣∣∣∣ PrK∼K
[AHK(·) ⇒ 1]− Pr

f∼Func(m1,m2)
[Af(·) ⇒ 1]

∣∣∣∣ .
We also define the optimal advantage

OptprfH (q) = max{AdvprfH (A) | A makes q queries}.
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In this paper we also consider the multi-user setting, where we have u users,
each with an independent instantiation of the cryptosystem. The adversary can
issue (up to) qmax queries to each user with the goal of distinguishing the u
instantiations of the cryptosystem from u instantiations of a random function.
Extending the single-user definitions, we define the PRF advantage of A against
H in the multi-user setting as

Advmu-prf
H,u (A) =

∣∣ Pr
K1,...,Ku∼K

[AHK1
(·),...,HKu (·) ⇒ 1]

− Pr
f1,...,fu∼Func(m1,m2)

[Af1(·),...,fu(·) ⇒ 1]
∣∣

We further define the optimal advantage

Optmu-prf
H,u (qmax) = max{Advmu-prf

H,u (A) | A makes qmax queries to each user}.

The XoP[r, n] construction and sampling without replacement. Let
Perm(n) be the set of all permutations on {0, 1}n (i.e., the set of all π : {0, 1}n 7→
{0, 1}n). For natural numbers r, n such that r ≥ 2, define the family of functions
XoP[r, n] : (Perm(n))r × {0, 1}n 7→ {0, 1}n by

XoP[r, n](π1, . . . , πr, i) = π1(i)⊕ π2(i)⊕ . . .⊕ πr(i).

The main goal of this paper is to bound OptprfXoP[r,n](q) as a function of the pa-

rameters r, n, q. By symmetry of the randomly chosen permutations π1, . . . , πr,
an adversary against XoP[r, n] obtains the XOR of r independent samples, each
containing q elements of {0, 1}n, chosen uniformly without replacement (regard-
less of the actual queries). Below, we formalize this statement.

Definition 7 (Density function of sampling without replacement). For
natural numbers n, q such that 1 ≤ q ≤ 2n, let µn,q : Fq×n

2 7→ R≥0 be the density
function associated with the process of uniformly sampling q elements from Fn

2

without replacement. Specifically, for x ∈ Fq×n
2 ,

µn,q(x) =

{
(N−q)!

N ! ·Nq if xi ̸= xj for all i, j ∈ [q] (i ̸= j),

0 otherwise.

Furthermore, define µn,0 to be the constant 1.

Then, by Proposition 1 an adversary against XoP[r, n] that makes q distinct

queries obtains a sample from µ
(∗r)
n,q . By well-known properties of statistical dis-

tance,

OptprfXoP[r,n](q) ≤ SD(µ(∗r)
n,q ,1q·n). (1)

Therefore, our task reduces to upper bounding SD(µ
(∗r)
n,q ,1q·n).

We further consider the multi-user setting. Observe that in this setting, an

adversary against XoP[r, n] obtains a sample of (µ
(∗r)
n,qmax)

×u : F(qmax·u)×n
2 7→

12



R≥0, where (µ
(∗r)
n,qmax)

×u is the density function obtained by concatenating u

independent samples drawn from µ
(∗r)
n,qmax . Similarly to the single-user setting,

Optmu-prf
XoP[r,n],u(qmax) ≤ SD((µ(∗r)

n,qmax
)×u,1u·qmax·n). (2)

Therefore, in this setting our task reduces to upper bounding SD((µ
(∗r)
n,qmax)

×u,1u·qmax·n).

3 Indistinguishability Bounds for XoP[r, n] Using Fourier
Properties of Sampling Without Replacement

In this section we derive tight indistinguishability bounds for XoP[r, n] and then
extend them to the multi-user setting. For this purpose, we start by stating the
fundamental Fourier properties of µn,k that we prove in this paper.

3.1 Basic Properties of µn,k

We will obtain bounds for the maximal magnitude of Fourier coefficients by level,
namely M=k[µn,q], and Fourier weight by level, namely W=k[µn,q]. First, note
that if x ∼ µn,q, then for every set of k distinct indices {i1, i2, . . . , ik} ⊆ [q],
(xi1 , . . . , xik) are k elements that are marginally sampled without replacement
from Fk×n

2 , namely, (xi1 , . . . , xik) ∼ µn,k. Therefore, for 1 ≤ k ≤ q, we have

M=k[µn,q] = M=k[µn,k] and

W=k[µn,q] =
∑

α∈F̂q×n
2

#α=k

µ̂n,q(α)
2 =

∑
{i1,...,ik}⊆[q] distinct

∑
β∈F̂k×n

2

supp(β)={i1,...,ik}

µ̂n,k(β)
2

=
∑

{i1,...,ik}⊆[q] distinct

W=k[µn,k] =

(
q

k

)
W=k[µn,k].

Consequently, our main results bound M=k[µn,k] and W=k[µn,k]. Lemma 1 below
is proved in Section 4, while Lemma 2 is proved in Section 5.

Lemma 1 (Bounds on magnitude of level-k Fourier coefficients). We
have M=2[µn,2] ≤ 1

N−1 . Generally,

M=k[µn,k]
2 ≤


1

(Nk)
if k < N/2 is even,

1

(Nk)
· k+1
N−k <

1

(Nk)
if k < N/2 is odd.

Note that the bound M=2[µn,2] ≤ 1
N−1 is slightly better (by a factor of about√

2) than the generic bound for k = 2. The quantity M=2[µn,2] plays a significant
role in our analysis, as it is the maximal magnitude of a Fourier coefficient with
a non-zero mask (M=1[µn,1] = 0 can be deduced from Lemma 2 below).
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Lemma 2 (Bounds on weight of level-k Fourier coefficients). We have

W=1[µn,1] = 0,W=2[µn,2] =
1

N − 1
, and W=3[µn,3] =

4

(N − 1)(N − 2)
.

Generally,

W=k[µn,k] ≤


(N(k−1))k/2

(N)k
≤ ΨN (k) if k ≥ 2 is even,

(N(k−1))(k+1)/2

(N)k+1
≤ ΨN (k + 1) if k ≥ 3 is odd,

where

ΨN (k) =

(
k

N − k

)k/2

exp

(
− k(k − 2)

8N(N − k) + 2 · k2

)k/2

.

Remark 2. The fact that W=1[µn,1] = 0 is obvious since µn,1 is the uniform
distribution over {0, 1}n, and thus all non-empty linear equations on these bits
are unbiased.

Remark 3. For k < N/2, k
N−k < 1. Therefore, the lemma shows that the Fourier

weight of µn,k at level k is exponentially small in k up to k < N/2. In particular,
in the extreme case of k ≈ N/2, we have

exp

(
− k(k − 2)

8N(N − k) + 2 · k2

)k/2

≈ exp

(
− N2/4

4N2 +N2/2

)N/4

= e−N/72 ≈ e−k/36.

Nevertheless, we will only use a simpler bound of the formW=k[µn,k] ≤
(

k
N−k

)k/2
in our application. Furthermore, since W=k[µn,q] =

(
q
k

)
W=k[µn,k], the number

of queries q obviously also plays a significant role in the analysis.

3.2 Application to Indistinguishability Bounds for XoP[r, n]

We now use the results about µn,k in our main application to derive indistin-
guishability bounds for XoP[r, n], starting with r = 2.

Theorem 1. For N ≥ 1000 and q < N/2,

OptprfXoP[2,n](q) ≤
q

2 · (N − 1)3/2
<

q

N3/2
.

Proof. Using (1), and applying Proposition 6,

OptprfXoP[2,n](q) ≤ SD(µn,q ∗ µn,q,1q·n) ≤
1

2

√
Var[µn,q ∗ µn,q].

Thus, it remains to prove that

Var[µn,q ∗ µn,q] ≤
q2

(N − 1)3
. (3)

14



Applying Proposition 5, and then Proposition 3, we have

Var[µ(∗2)
n,q ] =

∑
α∈F̂q×n

2
α̸=0

̂µn,q ∗ µn,q(α)
2 =

∑
α∈F̂q×n

2
α ̸=0

µ̂n,q(α)
4 =

q∑
k=1

∑
α∈F̂q×n

2
#α=k

µ̂n,q(α)
4

≤
q∑

k=1

M=k[µn,q]
2
∑

α∈F̂q×n
2

#α=k

µ̂n,q(α)
2 =

q∑
k=1

M=k[µn,q]
2 ·W=k[µn,q]

=

q∑
k=1

M=k[µn,k]
2 ·
(
q

k

)
W=k[µn,k],

where the final equality exploits the symmetry of µn,q. Next, applying Lemma 1,
and using the fact that W=1[µn,1] = 0 (by Lemma 2),

Var[µ(∗2)
n,q ] ≤ 1

(N − 1)2
·
(
q

2

)
·W=2[µn,2] +

q∑
k=3

(
q
k

)(
N
k

)W=k[µn,k]

≤ q2

(N − 1)2
· (1/2) ·W=2[µn,2] +

q∑
k=3

(q)(q − 1) . . . (q − (k − 1))

(N)(N − 1) . . . (N − (k − 1))
W=k[µn,k]

≤ q2

(N − 1)2
· (1/2) ·W=2[µn,2] +

q∑
k=3

(q/N)k ·W=k[µn,k]

≤ q2

(N − 1)2

(
(1/2) ·W=2[µn,2] +

q∑
k=3

(q/N)k−2 ·W=k[µn,k]

)
We now apply Lemma 2. We will also separate the term W=3[µn,3] =

4
(N−1)(N−2)

from the sum of terms for k ≥ 4. For these we use a simple bound

W=k[µn,k] ≤
(

k + 1

N − k − 1

)k/2

≤
(
2(k + 1)

N

)k/2

,

which holds both for even and odd k, and uses the fact that k ≤ q < N/2. We
will further split the remaining sum at k = 4n and use once again the fact that

q/N < 1/2. Thus, Var[µ
(∗2)
n,q ] is upper bounded by

q2

(N − 1)2
·

(
(1/2) ·W=2[µn,2] + (q/N) ·W=3[µn,3] +

4n∑
k=4

(q/N)k−2 ·W=k[µn,k]

)

+

q∑
k=4n+1

(q/N)k ·W=k[µn,k]

≤ q2

(N − 1)2
·

(
1

2(N − 1)
+

2

(N − 1)(N − 2)
+ 4

4n∑
k=4

2−k ·
(
2(k + 1)

N

)k/2
)

+

q∑
k=4n+1

2−k

≤ q2

(N − 1)2
·

(
1

2(N − 1)
+

2

(N − 1)(N − 2)
+ 4

4n∑
k=4

(
k + 1

2N

)k/2
)

+N−4.
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We now upper bound
∑4n

k=4

(
k+1
2N

)k/2
. The (inverse) squared ratio between two

consecutive terms is

((k + 1)/2N)k

((k + 2)/2N)k+1
=

(
k + 1

k + 2

)k

· 2N

k + 2
=

(
1− 1

k + 2

)k

· 2N

k + 2

≥ e−2k/(k+2) 2N

k + 2
≥ e−2 2N

k + 2
≥ 2N

(4n+ 2)e2
.

where we have used the inequality 1− (x/2) > e−x, which holds for 0 < x ≤ 1,
as well as the fact that k ≤ 4n in the analyzed sum. Since 2N

(4n+2)e2 ≥ 4 holds

for N ≥ 1000, the sum is upper bounded by the sum of a geometric series with

ratio at most 1/2. Hence,
∑4n

k=4

(
k+1
2N

)k/2 ≤ 2
(

5
2N

)2
= 25

2N2 . Also, noting that
N−4 ≤ (q2/(N − 1)2) · 1/N2, we plug these into the above bound and obtain

Var[µ(∗2)
n,q ] ≤ q2

(N − 1)2
·
(

1

2(N − 1)
+

2

(N − 1)(N − 2)
+

50

N2
+

1

N2

)
.

As each one of the last three summands is bounded by 1
8(N−1) assuming N ≥

1000, we conclude that Var[µ
(∗2)
n,q ] ≤ q2

(N−1)3 as in (3). ■
Next, we generalize Theorem 1 to derive indistinguishability bounds for

XoP[r, n] for arbitrary r ≥ 2.

Theorem 2. For N ≥ 1000, q < N/2 and r ≥ 2,

OptprfXoP[r,n](q) ≤
q

2 · (N − 1)r−(1/2)
<

q

Nr−(1/2)
,

where the last inequality assumes r ≤ N/2.

Proof. By (1) and Proposition 6, OptprfXoP[r,n](q) ≤ SD(µ
(∗r)
n,q ,1q·n) ≤ 1

2

√
Var[µ

(∗r)
n,q ],

and thus it remains to prove that

Var[µ(∗r)
n,q ] ≤ q2

(N − 1)2r−1
. (4)

Applying Proposition 6 and then Proposition 7 (with r2 = 2),

Var[µ(∗r)
n,q ] ≤ (M≥1[µn,q])

2r−4 ·Var[µ(∗2)
n,q ] = ( max

0<k≤q
{M=k[µn,k]})2r−4 ·Var[µ(∗2)

n,q ],

where the final equality is by symmetry of µn,q. Next, note from Lemma 1 that

(the bound on) M=k[µn,k] is maximized for k = 2 assuming q < N/2, and

M=2[µn,2] ≤ 1
N−1 . Moreover Var[µ

(∗2)
n,q ] ≤ q2

(N−1)3 by (3). Hence,

Var[µ(∗r)
n,q ] ≤ 1

(N − 1)2r−4

q2

(N − 1)3
=

q2

(N − 1)2r−1
.

■
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The multi-user setting. We extend Theorem 2 to derive indistinguishability
bounds for XoP[r, n] in the multi-user setting.

Theorem 3. For N ≥ 1000, q < N/2 and r ≥ 2,

Optmu-prf
XoP[r,n],u(qmax) ≤

√
u/2 · qmax

(N − 1)r−(1/2)
≤

√
u · qmax

Nr−(1/2)
,

assuming

√
u/2·qmax

(N−1)r−(1/2) ≤ 1/2 (and r ≤ N/3 for the last inequality).

Proof. By (2) and Proposition 6,

Optmu-prf
XoP[r,n],u(qmax) ≤ SD((µ(∗r)

n,qmax
)×u,1u·qmax·n) ≤

1

2

√
Var[(µ

(∗r)
n,qmax)

×u],

and thus is remains to prove that Var[(µ
(∗r)
n,qmax)

×u] ≤ 2u·q2max

(N−1)2r−1 .

Applying Proposition 8 (assuming u ·Var[µ(∗r)
n,qmax ] ≤ 1/2), we have

Var[(µ(∗r)
n,qmax

)×u] ≤ 2u ·Var[µ(∗r)
n,qmax

] ≤ 2u · q2max

(N − 1)2r−1
,

where the final inequality is by (4). Finally, note that by (4), u · Var[µ(∗r)
n,qmax ] ≤

u·q2max

(N−1)2r−1 , so the condition for applying Proposition 8 is assured if
u·q2max

(N−1)2r−1 ≤

1/2, namely

√
u/2·qmax

(N−1)r−(1/2) ≤ 1/2. ■

4 Bounding M=k[µn,k] (Proof of Lemma 1)

The goal of this section is to prove Lemma 1. We first bound the Fourier coef-
ficients on a specific subset of masks (called masks of type K = (k)). We will
later generalize these results to all mask.

4.1 Bounding |µ̂n,k(α)| for α of Type K = (k)

Definition 8 (Mask of type K = (k)). Let α ∈ F̂k×n
2 be a non-zero mask

such that #α = k (i.e., αi ̸= 0 for all i ∈ [k]). We define the type of α to be
K = (k), if for every i ∈ [k], αi,1 = 1.

In other words, α is of type K = (k) if the first bit of all of its k elements
is 1. The bounds on the Fourier coefficients are formulated using the following
function.

Definition 9. For natural numbers a, b such that b is even and a ≥ b let

Γ (a, b) =
∏

i=1,3,...,b−1

b− i

a− i
.
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The main result of this section is as follows.

Proposition 9. Let α ∈ F̂k×n
2 be of type K = (k). Then,

|µ̂n,k(α)| ≤ Γ (N, k) =
∏

i=1,3,...,k−1

k − i

N − i

if k is even and 0 otherwise.

In particular,

|µ̂n,1(α)| = 0, |µ̂n,2(α)| ≤
1

N − 1
, |µ̂n,3(α)| = 0, |µ̂n,4(α)| ≤

3

(N − 1)(N − 3)
,

etc. We need the following definitions.

Definition 10 (Pairing of two elements). Two elements a, b ∈ Fn
2 are paired

on bit j ∈ [n] if a ⊕ b = ej (where ej ∈ Fn
2 is the j’th vector of the standard

basis).

Definition 11 (Pairing of a sequence of elements). Let x = (x1, . . . , xk) ∈
Fk×n
2 . Then, x is self-paired on bit j ∈ [n] if (x1, . . . , xk) are distinct (i.e.,
xi1 ̸= xi2 for i1 ̸= i2), and for every i1 ∈ [k], there exists i2 ∈ [k] such that
(xi1 , xi2) are paired on bit j.

Note that since (x1, . . . , xk) are distinct, each element xi cannot be paired to
more than one other element on bit j, and thus if x is self-paired (on any j ∈ [n]),
then k is even.

In order to prove Proposition 9, we define the following algorithm.

1. Sample x ∼ µn,k.
2. If x is self-paired on bit 1, return 1. Else, return 0.

Define the random variable T (x) for the output of the algorithm.

We will prove the following two claims, whose combination immediately im-
plies Proposition 9.

Proposition 10 (Magnitude of Fourier coefficient bounded by success
probability). |µ̂n,k(α)| ≤ Prx∼µn,k

[T (x) = 1].

Proposition 11 (Bound on success probability).

Pr
x∼µn,k

[T (x) = 1] =

{
Γ (N, k) if k is even,

0 if k is odd.
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Proof (of Proposition 10). By Proposition 2,

|µ̂n,k(α)| = | E
x∼Fn

2

[µn,k(x)χα(x)]| = | E
x∼µn,k

[χα(x)]|

= | Pr
x∼µn,k

[T (x) = 1] E
x∼µn,k

[χα(x) | T (x) = 1]

+ Pr
x∼µn,k

[T (x) = 0] E
x∼µn,k

[χα(x) | T (x) = 0]|

≤ | Pr
x∼µn,k

[T (x) = 1] E
x∼µn,k

[χα(x) | T (x) = 1]|

+ | Pr
x∼µn,k

[T (x) = 0] E
x∼µn,k

[χα(x) | T (x) = 0]|

≤ | Pr
x∼µn,k

[T (x) = 1] E
x∼µn,k

[|χα(x)| | T (x) = 1]|

+ | Pr
x∼µn,k

[T (x) = 0] E
x∼µn,k

[χα(x) | T (x) = 0]|

= Pr
x∼µn,k

[T (x) = 1] + | Pr
x∼µn,k

[T (x) = 0] E
x∼µn,k

[χα(x) | T (x) = 0]|.

(5)

Next, we prove that Ex∼µn,k
[χα(x) | T (x) = 0] = 0, which concludes the proof.

This is proved by partitioning the sample space of the algorithm conditioned on
T (x) = 0 into couples of the form (x, x′) such that χα(x) = −χα(x

′). Since all
samples in the space (conditioned on T (x) = 0) have identical probability, the
total contribution of each couple to the expectation is χα(x)+χα(x

′) = 0, which
proves that Ex∼µn,k

[χα(x) | T (x) = 0] = 0.
We now define how to couple the samples. Assume that T (x) = 0. Then,

there exists an element of x that is not paired. Define in(x) ∈ [k] to be the
index of the first unpaired element in [k]. Then, x′ = (x1, . . . , xin(x)−1, xin(x) ⊕
e1, xin(x)+1, . . . , xk) is a valid sample from the space (conditioned on T (x) = 0).
We couple together (x, x′). Note that we need to prove that this is a valid
coupling, i.e., if x is coupled to x′, then x′ is coupled to x. This indeed holds
since in(x′) = in(x), as x and x′ only differ on the element with index in(x).

Finally, we prove that χα(x) = −χα(x
′) or χα(x)χα(x

′) = −1. As α ∈ F̂k×n
2

is of type K = (k), then αi,1 = 1 for any i ∈ [k]. Therefore,

χα(x)χα(x
′) = (−1)⟨α,x⟩F2 (−1)⟨α,x

′⟩F2 = (−1)⟨α,x⊕x′⟩F2

=(−1)⟨αin(x),e1⟩F2 = (−1)1·1 = −1.

■
Proof (of Proposition 11). First, if k is odd, then x cannot be self-paired. Hence,
Prx∼µn,k

[T (x) = 0] = 1 and Prx∼µn,k
[T (x) = 1] = 0.

Next, assume that k is even and consider x1. There is a single element it can
be paired to on bit 1, which is x1 ⊕ e1. The probability that x1 ⊕ e1 appears
among x2, . . . , xk is k−1

N−1 . Next, assuming x1 is paired, continue by induction
after removing the pair from the set of available elements. We obtain

Pr
x∼µn,k

[T (x) = 1] =
k − 1

N − 1

k − 3

N − 3
. . .

1

N − k + 1
= Γ (N, k),

as claimed. ■
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4.2 Classification of Masks

Towards proving bounds on the magnitude of Fourier coefficients on general
masks, we define two basic operations on masks and prove that they preserve
Fourier coefficients. These operations will allow us to focus on a subset of masks
whose associated Fourier coefficient is easier to bound. Bounds on the magnitude
of Fourier coefficients on the remaining masks will follow by preservation of
Fourier coefficients.

Proposition 12 (Permuting elements preserves Fourier coefficients).

Let α ∈ F̂k×n
2 . Let π : [k] 7→ [k] be a permutation and define the mask απ ∈ F̂k×n

2

by απ
i = απ(i) for i ∈ [k]. Then, µ̂n,k(α

π) = µ̂n,k(α).

Proof. Similarly to the definition of απ, for x ∈ Fk×n
2 , define xπ ∈ Fk×n

2 by
xπi = xπ(i) for i ∈ [k]. Observe that since π merely permutes the elements of x, it
preserves equality and inequality among elements, and thus µn,k(x) = µn,k(x

π).
Furthermore χα(x) = χαπ (xπ) as inner product in invariant under permutation
of elements of α and x. Combining these observations,

µ̂n,k(α) = E
x∼Fk×n

2

[µn,k(x)χα(x)] = E
x∼Fk×n

2

[µn,k(x
π)χαπ (xπ)]

= E
y∼Fk×n

2

[µn,k(y)χαπ (y)] = µ̂n,k(α
π).

■

Proposition 13 (Invertible element-wise linear operations preserve Fourier

coefficients). Let α ∈ F̂k×n
2 . Let L ∈ Fn×n

2 be an invertible matrix and define

the mask αL ∈ F̂k×n
2 by αL

i = αi ·L for i ∈ [k] (where we view αi as a row vector
in Fn

2 , multiplied with L). Then, µ̂n,k(α
L) = µ̂n,k(α).

Proof. For x ∈ Fk×n
2 , define xL ∈ Fk×n

2 similarly to the definition of αL. By the
properties of the inner product, for any a, b ∈ Fn

2 ,

⟨a, b⟩F2 = ⟨a · L · L−1, b⟩F2 = ⟨a · L, b · L−T ⟩F2 ,

where LT is the transpose of L and L−T is the inverse of LT . Hence, χα(x) =

χαL(xL
−T

). Furthermore, since L−T is an invertible transformation on the el-
ements of x, it preserves equality and inequality among elements, and thus

µn,k(x) = µn,k(x
L−T

). Therefore,

µ̂n,k(α) = E
x∼Fk×n

2

[µn,k(x)χα(x)] = E
x∼Fk×n

2

[µn,k(x
L−T

)χαL(xL
−T

)]

= E
y∼Fk×n

2

[µn,k(y)χαL(y)] = µ̂n,k(α
L).

■
These two propositions motivate the following definition.
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Definition 12 (Equivalence of masks). Masks α, β ∈ F̂k×n
2 are called equiv-

alent (with respect to µn,k) if β can be obtained from α by permuting its elements
and performing invertible element-wise linear operations.

By invertibility of the basic operations, equivalence of masks is a well-defined
equivalence relation. By the above propositions, if α and β are equivalent, then
µ̂n,k(α) = µ̂n,k(β) (and obviously #α = #β).

We now define a classification of masks that will later be used to bound their
associated Fourier coefficients.

Definition 13 (Rank of mask). Let α ∈ F̂k×n
2 be a non-zero mask. We define

the rank of α as its rank when viewed as a k × n matrix over F2.

The following definition generalizes Definition 8.

Definition 14 (Type of mask). Let α ∈ F̂k×n
2 be a mask such that #α =

k > 0. Let K = (k1, k2, . . . , kt) be a t-tuple of natural positive indices such that
kj < kj+1 for all j ∈ [t− 1] and kt = k. Define k0 = 0. We define the type of α
to be K, if for every j ∈ [t], the following two conditions hold:

1. For every i ∈ [kj−1 + 1, kj ], αi,j = 1.
2. For every i ∈ [kj + 1, k], αi,j = 0.

If α is not of type K for any tuple K, then we define its type to be NULL.

In other words, α is of type K = (k1, k2, . . . , kt) if the first bit of its first k1
elements is 1, and the first bits of elements xk1+1, . . . , xk is 0. Next, bit 2 of
elements xk1+1, . . . , xk2 is 1, while bit 2 of elements xk2+1, . . . , xk is 0, and so
forth.

Example 1. Let n = 4 and k = 3 and assume the leftmost bit is the first bit.
Then, the mask (1011, 1101, 1001) is of type (3), (1011, 0110, 0101) is of type
(1, 3), (1011, 0110, 0011) is of type (1, 2, 3), while (1011, 0101, 1001), (1011, 0010, 0101)
and (1011, 0110, 0001) are all of type NULL.

While many non-zero masks have type NULL, they can be easily transformed
to a non-NULL type by basic operations. More specifically, the following holds.

Proposition 14 (Every non-zero mask is equivalent to a mask of non-

NULL type). Let α ∈ F̂k×n
2 have #α = k > 0 and rank r. Then, α is equivalent

to some β ∈ F̂k×n
2 of type K = (k1, . . . , kt), such that kt = k and t = r.

Proposition 14 thus allows us to focus on bounding the Fourier coefficients on
masks of non-NULL type.
Proof. We transform α to β by basic operations as follows. First, since the rank
of α is r, it contains r linearly independent elements. Define and apply to α
an invertible linear transformation that maps the first r linearly independent
elements (in lexicographical order) to the first r vectors of the standard basis of
Fn
2 , e1, . . . , er. Denote the outcome by α′.
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Next, permute the elements of α′ by moving all elements α′
i such that α′

i,1 = 1
to be first, and elements with α′

i,1 = 0 to be last. Let k1 be the index such that
α′
i,1 = 1 if i ≤ k1 and α′

i,1 = 0 if i > k1. Note that k1 ≥ 1 since the first
bit of e1 is 1 and k1 ≤ k − r + 1, as the first bit of all the elements e2, . . . , er
is 0. If r = 1, then since #α = k we must have k1 = k (otherwise, α has
two linearly independent elements). Thus, define β = α′, which is of type (k),
and we are done after 1 step. If r > 1, define k2 after permuting the elements
α′
k1+1, . . . , α

′
k according to their second bit and continue inductively. After the

process terminates, define β = α′.
Denote by t the total number of steps in the process. The process cannot end

with t < r as the first bit set to j in ej has index j, and thus ej will be among
the elements α′

kj−1+1, . . . , α
′
kj

. On the other hand, the process cannot end with

t > r steps, since vectors α′
k1
, . . . , α′

kt
are linearly independent. Therefore, t = r.

Furthermore, kt = k since #α = k. We conclude that α is equivalent to β = α′

of type K = (k1, . . . , kt) such that kt = k and t = r. ■

4.3 Bounding |µ̂n,k(α)| for general α.

In this section we prove bounds on the magnitude of Fourier coefficients on
general masks. The main result of this section is the following.

Proposition 15 (Bounds on Fourier magnitude for general masks).
We have

M=k[µn,k] ≤

{
Γ (N, k) if k < N/2 is even,

Γ (N, k − 1) · k
N−k if k < N/2 is odd.

Equivalently, let α ∈ F̂k×n
2 have #α = k. Then,

|µ̂n,k(α)| ≤

{
Γ (N, k) if k < N/2 is even,

Γ (N, k − 1) · k
N−k if k < N/2 is odd.

Lemma 1 (stated in Section 3) is proved in Appendix A based on this proposition
by a straightforward bound on Γ (N, k).

Proposition 15 is a consequence of the following proposition.

Proposition 16 (Bounds on Fourier magnitude for masks of non-NULL

type). Let α ∈ F̂k×n
2 be of type K = (k1, . . . , kt) where kt = k. Then,

|µ̂n,k(α)| ≤

{
Γ (N, k) if k < N/2 is even,

Γ (N, k − 1) · k
N−k if k < N/2 is odd.

Proof (of Proposition 15). Let α ∈ F̂k×n
2 have #α = k. Then, by Proposition 14,

it is equivalent to some β ∈ F̂k×n
2 of type K = (k1, . . . , kt) where kt = k (with

the same rank as α). This proposition follows by applying Proposition 16 to β.
■

It remains to prove Proposition 16. We need the following additional defini-
tion.
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Definition 15 (Pairing of a subsequence of elements). Let x = (x1, . . . , xk) ∈
Fk×n
2 . Let k′ ∈ [k]. Define (xk′ , . . . , xk) as paired within x = (x1, . . . , xk) on bit
j ∈ [n] if (x1, . . . , xk) are distinct (i.e, xi1 ̸= xi2 for i1 ̸= i2), and for every
i1 ∈ [k′, k], there exists i2 ∈ [k] such that (xi1 , xi2) are paired on bit j.

We define the following algorithm that generalizes the algorithm of Sec-
tion 4.1 to handle a mask with arbitrary non-NULL type. It takes as input
the tuple K = (k1, . . . , kt) (recall the k0 = 0 by definition).

1. Sample x ∼ µn,k.
2. For all j ∈ [t]:

(a) If (xkj−1+1, . . . , xkj
) are paired within (x1, . . . , xkj

) on bit j, con-
tinue by incrementing j.

(b) Otherwise, return 0.
3. Return 1.

For j ∈ [t], define the random variable Tj(x) to be equal to 1 if the algorithm has
not returned 0 in iterations 1, . . . , j, and let Tj(x) = 0 otherwise. Furthermore,
define T (x) = Tt(x) to be the output of the algorithm.

We need the following definition.

Definition 16. For integers a, b ≥ 0, c ≥ 1 such that a ≥ b+ c (a > b+ c if c is
odd), define

Λ(a, b, c) =

{∏
i=1,3...,c−1

b+c−i
a−b−i =

b+c−1
a−b−1

b+c−3
a−b−3 . . .

b+1
a−b−c+1 if c is even,∏

i=1,3...,c
b+c−i
a−b−i = b+c−1

a−b−1
b+c−3
a−b−3 . . .

b
a−b−c if c is odd.

Note that for even k, Γ (N, k) = Λ(N, 0, k).

Proposition 16 immediately follows from the three propositions below (that
refer to the type of α, namely K = (k1, . . . , kt)).

Proposition 17 (Magnitude of Fourier coefficient bounded by success
probability). |µ̂n,k(α)| ≤ Prx∼µn,k

[T (x) = 1].

Proposition 18 (Bound on success probability). If k1 is even, then

Pr
x∼µn,k

[T (x) = 1] ≤ Γ (N, k1) ·
t∏

j=2

Λ(N, kj−1, kj − kj−1),

while if k1 is odd then, Prx∼µn,k
[T (x) = 1] = 0.

Proposition 19. For even k1, we have

Γ (N, k1) ·
t∏

j=2

Λ(N, kj−1, kj − kj−1) ≤

{
Γ (N, k) if k = kt < N/2 is even,

Γ (N, k − 1) · k
N−k if k = kt < N/2 is odd.
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In the rest of this section we will prove Proposition 17 and Proposition 18.
Proposition 19 is proved in Appendix A by elementary analysis.
Proof (of Proposition 17). The proof is a generalization of the proof of Propo-
sition 10, and we focus on the differences. As in (5),

|µ̂n,k(α)| ≤ Pr
x∼µn,k

[T (x) = 1] + | Pr
x∼µn,k

[T (x) = 0] E
x∼µn,k

[χα(x) | T (x) = 0]|,

and it remains to prove that Ex∼µn,k
[χα(x) | T (x) = 0] = 0. Once again this is

proved by partitioning the sample space conditioned on T (x) = 0 into couples
(x, x′) that satisfy χα(x) = −χα(x

′). However, this time the coupling depends
on the iteration j ∈ [t] which the algorithm executed and returned 0, namely,
Tℓ(x) = 1 for ℓ ∈ [j − 1] and Tj(x) = 0. Fix this iteration j ∈ [t], let in(x) ∈
[kj−1+1, kj ] be the index of the first unpaired element among (xkj−1+1, . . . , xkj ).

We now consider two cases depending on whether xin(x)⊕ ej appears among
xkj+1, . . . , xk (note that it does not appear among (x1, . . . , xkj

) since xin(x) is
not paired to any of these elements).

If xin(x)⊕ej does not appear among (xkj+1, . . . , xk), then it does not appear
among (x1, . . . , xk), and thus we couple x and x′ = (x1, . . . , xin(x)−1, xin(x) ⊕
ej , xin(x)+1, . . . , xk), as in the proof of Proposition 10. Specifically, in this case
we have in(x) = in(x′). Moreover, since α is of type K, then αi,j = 1 for all
i ∈ [kj−1 + 1, kj ], and in particular, αin(x),j = 1. Since xin(x),j ̸= x′in(x),j and

they are they equal otherwise, χα(x) = −χα(x
′). The proof of this case is thus

essentially the same as the one of Proposition 10.
We remain with the case that there exists i ∈ [kj + 1, k] such that xi =

xin(x) ⊕ ej . In this case, we couple (x, x′), where x′ is defined by exchanging the
positions of elements xin(x) and xi in x, namely, x′in(x) = xi, x

′
i = xin(x) and

x′ℓ = xℓ for all ℓ /∈ {in(x), i}.
This is indeed a valid coupling since the execution of the algorithm on x′

returns 0 for the same iteration j and in(x) = in(x′). Moreover, since α is of
type K, then αin(x),j = 1, but αi,j = 0 (as i ∈ [kj + 1, k]). Thus,

χα(x)χα(x
′) = (−1)⟨α,x⊕x′⟩F2 = (−1)⟨αin(x),ej⟩F2 (−1)⟨αi,ej⟩F2 = −1 · 1 = −1,

i.e., χα(x) = −χα(x
′). This concludes the proof. ■

Proof (of Proposition 18). First, if k1 is odd then already T1(x) = 0 and
Prx∼µn,k

[T (x) = 1] = 0.
Next, assume that k1 is even. We prove by induction on j ∈ [t] that

Pr
x∼µn,k

[Tj(x) = 1] ≤ Γ (N, k1) ·
j∏

ℓ=2

Λ(N, kℓ−1, kℓ − kℓ−1).

The result then follows since T (x) = Tt(x).
For the base case of j = 1, we have Prx∼µn,k

[T1(x) = 1] ≤ Γ (N, k1) as in the
proof of Proposition 11. For the induction step, we have

Pr
x∼µn,k

[Tj(x) = 1] = Pr
x∼µn,k

[Tj−1(x) = 1] · Pr
x∼µn,k

[Tj(x) = 1 | Tj−1(x) = 1].
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Thus, we need to prove that

Pr
x∼µn,k

[Tj(x) = 1 | Tj−1(x) = 1] ≤ Λ(N, kj−1, kj − kj−1).

Fix any values for x1, . . . , xkj−1 which have positive probability. We prove the
above inequality by taking the probability only over the selection of xkj−1+1, . . . , xkj

(which we may assume are only selected in iteration j of the algorithm).
We show that Λ(N, kj−1, kj − kj−1) is an upper bound on the probability

to pair (xkj−1+1, . . . , xkj
) within (x1, . . . , xkj

) on bit j. For this purpose, we
assume that all x1, . . . , xkj−1 are available for pairing on bit j, namely, they are
not paired among themselves on bit j (this assumption can only increase the
success probability of the algorithm, i.e., its pairing probability).

We upper bound Prx∼µn,k
[Tj(x) = 1 | Tj−1(x) = 1] as follows: the prob-

ability that the first element in (xkj−1+1, . . . , xkj
) is paired with one of the

kj − 1 other elements in x1, . . . , xkj
is (at most)

kj−1
N−kj−1−1 . Assuming this

occurs, we remove both of these elements and then the probability that the
next element in (xkj−1+1, . . . , xkj

) is paired is either
kj−3

N−kj−1−3 (if the first ele-

ment was paired among (xkj−1+1, . . . , xkj
) or

kj−3
N−kj−1−2 (if the first element was

paired among (x1, . . . , xkj−1
). In any case, this probability is at most

kj−3
N−kj−1−3 .

Continue this way until all elements in (xkj−1+1, . . . , xkj ) are paired. Clearly, if
kj −kj−1 is even, then at least (kj −kj−1)/2 pairings are required (which occurs
if (xkj−1+1, . . . , xkj

) are only paired among themselves).
Taking the product of the corresponding (kj − kj−1)/2 terms,

Pr
x∼µn,k

[Tj(x) = 1 | Tj−1(x) = 1]

≤ kj − 1

N − kj−1 − 1

kj − 3

N − kj−1 − 3
. . .

kj−1 + 1

N − kj + 1
= Λ(N, kj−1, kj − kj−1),

as claimed. If kj−kj−1 is odd, then at least (kj−kj−1+1)/2 pairing are required.
Similarly,

Pr
x∼µn,k

[Tj(x) = 1 | Tj−1(x) = 1]

≤ kj − 1

N − kj−1 − 1

kj − 3

N − kj−1 − 3
. . .

kj−1

N − kj
= Λ(N, kj−1, kj − kj−1).

■

5 Bounding W=k[µn,k] (Proof of Lemma 2)

The goal of this section is to prove Lemma 2. We start by deriving an exact (but
unwieldy) expression for W=k[µn,k].

Proposition 20.

For 0 ≤ k ≤ 2n, W=k[µn,k] =

k∑
i=0

(−1)k−i

(
k

i

)
N i

(N)i
.
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Proof. For any integer 0 ≤ i ≤ k, Col[µn,i] = Prx,x′∼µn,i
[x = x′] = (N−i)!

N ! = 1
(N)i

.

Hence, by Proposition 4,

W≤i[µn,i] = Col[µn,i] ·N i =
N i

(N)i
. (6)

For a subset S ⊆ [k] of size |S|, define the functions h(S) = W=|S|[µn,|S|] and

g(S) = W≤|S|[µn,|S|]. Then, g(S) =
∑

R⊆S h(R), and by the inclusion-exclusion

principle [15, Pg. 1049], h(S) =
∑

R⊆S(−1)|S|−|R|g(R) =
∑

R⊆S(−1)|S|−|R|W≤|R|[µn,|R|].
Therefore,

W=k[µn,k] = h([k]) =
∑
S⊆[k]

(−1)k−|S|W≤|S|[µn,|S|] =

k∑
i=0

(−1)k−i

(
k

i

)
W≤i[µn,i]

=

k∑
i=0

(−1)k−i

(
k

i

)
N i

(N)i
,

where the third equality is by the symmetry of µn,k, and the final equality is
by (6). ■

The following definition will be useful in deriving a useful bound onW=k[µn,k]
for all k.

Definition 17. For a positive integer N and non-negative integers k, a such
that N ≥ k + a, let

FN (k, a) =

k∑
i=0

(−1)k−i

(
k

i

)
N i

(N − a)i
.

Note that by Proposition 20, W=k[µn,k] = FN (k, 0). We now derive a recursive

formula which will allow to analyze W=k[µn,k].

Proposition 21 (Recursive formula for level-k weight). For k ≥ 2,
FN (k, a) satisfies the recurrence relation

FN (k, a) =
a

N − a
· FN (k − 1, a+ 1) +

(k − 1)N

(N − a)(N − a− 1)
· FN (k − 2, a+ 2),

with the starting conditions FN (0, a) = 1 and FN (1, a) = N
N−a − 1 = a

N−a .

Proof. The starting conditions are easily checked by plugging in the parameters
into the explicit formula for FN (k, a). We now prove the recurrence relation holds
assuming k ≥ 2.

To simplify notation, denoteGi =
Ni

(N−a)i
and write FN (k, a) =

∑k
i=0(−1)k−i

(
k
i

)
Gi.

For 1 ≤ i ≤ k − 1, substitute
(
k
i

)
=
(
k−1
i

)
+
(
k−1
i−1

)
and

(
k
0

)
=
(
k−1
0

)
,
(
k
k

)
=
(
k−1
k−1

)
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into the expression, which divides each term into a pair of terms. We obtain

FN (k, a) =

k∑
i=0

(−1)k−i

(
k

i

)
Gi

=

(
(−1)k

(
k − 1

0

)
·G0 + (−1)k−1

(
k − 1

0

)
G1

)
+

(
(−1)k−1

(
k − 1

1

)
G1 + (−1)k−2

(
k − 1

1

)
G2

)
+ . . .+

(
(−1)k−(k−1)

(
k − 1

k − 1

)
Gk−1 + (−1)k−k

(
k − 1

k − 1

)
Gk

)
=

k∑
i=1

(−1)k−i

(
k − 1

i− 1

)
(Gi −Gi−1) .

We have Gi = Gi−1 · N
N−a−(i−1) , so Gi − Gi−1 = Gi−1 · ( N

N−a−(i−1) − 1) =

Gi−1 · a+(i−1)
N−a−(i−1) . Therefore, the above expression is equal to

k∑
i=1

(−1)k−i

(
k − 1

i− 1

)
Gi−1 ·

a+ (i− 1)

N − a− (i− 1)

=

k∑
i=1

(−1)k−i

(
k − 1

i− 1

)
(a+ (i− 1))N i−1

(N − a)(N − a− 1) . . . (N − a− (i− 1))

=
1

N − a
·

k∑
i=1

(−1)k−i

(
k − 1

i− 1

)
(a+ (i− 1))N i−1

(N − a− 1)i−1

=
1

N − a
·
k−1∑
i=0

(−1)k−1−i

(
k − 1

i

)
(a+ i)N i

(N − a− 1)i

=
a

N − a
·
k−1∑
i=0

(−1)k−1−i

(
k − 1

i

)
N i

(N − a− 1)i

+
1

N − a
·
k−1∑
i=1

(−1)k−1−i

(
k − 1

i

)
i ·N i

(N − a− 1)i

=
a

N − a
· FN (k − 1, a+ 1)

+
N

(N − a− 1)(N − a)
·
k−1∑
i=1

(−1)k−1−i

(
k − 1

i

)
i ·N i−1

(N − a− 1)i−1
.

To complete the proof, it remains to show that

k−1∑
i=1

(−1)k−1−i

(
k − 1

i

)
i ·N i−1

(N − a− 1)i−1
= (k − 1) · FN (k − 2, a+ 2).
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Observe that i ·
(
k−1
i

)
= (k − 1) ·

(
k−2
i−1

)
. Therefore,

k−1∑
i=1

(−1)k−1−i

(
k − 1

i

)
i ·N i−1

(N − a− 1)i−1

=(k − 1) ·
k−1∑
i=1

(−1)k−1−i

(
k − 2

i− 1

)
N i−1

(N − a− 1)i−1

=(k − 1) ·
k−2∑
i=0

(−1)k−i

(
k − 2

i

)
N i

(N − a− 2)i

=(k − 1) · FN (k − 2, a+ 2).

This completes the proof. ■

Next, we use the recurrence relation to bound FN (k, a).

Proposition 22.

FN (k, a) ≤


(N(a+k−1))k/2

(N−a)k
if k is even,

(N(a+k−1))(k−1)/2·(a+k−1)
(N−a)k

if k is odd.

Proof. We prove the result using Proposition 21 by induction on k. It is easy to
verify that it holds for k = 0 and k = 1 by the starting conditions. We prove the
induction step.

If k is odd, then by the assumption

FN (k, a) =
a

N − a
· FN (k − 1, a+ 1) +

(k − 1)N

(N − a)(N − a− 1)
· FN (k − 2, a+ 2)

≤ a

N − a
· (N(a+ k − 1))(k−1)/2

(N − a− 1)k−1

+
(k − 1)N

(N − a)(N − a− 1)
· (N(a+ k − 1))(k−3)/2(a+ k − 1)

(N − a− 2)k−2

= a · (N(a+ k − 1))(k−1)/2

(N − a)k
+ (k − 1) · (N(a+ k − 1))(k−1)/2

(N − a)k

=
(N(a+ k − 1))(k−1)/2 · (a+ k − 1)

(N − a)k
,
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as desired. If k is even, then

FN (k, a) ≤ a

N − a
· (N(a+ k − 1))(k−2)/2 · (a+ k − 1)

(N − a− 1)k−1

+
(k − 1)N

(N − a)(N − a− 1)
· (N(a+ k − 1))(k−2)/2

(N − a− 2)k−2

= a · (N(a+ k − 1))(k−2)/2 · (a+ k − 1)

(N − a)k
+ (k − 1)N · (N(a+ k − 1))(k−2)/2

(N − a)k

=
(N(a+ k − 1))(k−2)/2

(N − a)k
· (a(a+ k − 1) + (k − 1)N).

It remains to prove that a(a+k−1)+(k−1)N ≤ N(a+k−1) or a+k−1 ≤ N ,
which indeed holds (as the quantity a+ k is preserved throughout the recursive
calls). ■

Finally, Lemma 2 is proved in Appendix B by straightforward manipulation
of the bound on FN (k, a) of Proposition 22, and based on the fact that by
Proposition 20, W=k[µn,k] = FN (k, 0).
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A Missing Proofs from Section 4

Proof (of Lemma 1). We use Proposition 15 to bound M=k[µn,k]. First we have
M=2[µn,2] ≤ Γ (N, 2) = 1

N−1 .
Next, for even k, by Proposition 15,

M=k[µn,k]
2 ≤ Γ (N, k)2 =

(
k − 1

N − 1

)2(
k − 3

N − 3

)2

. . .

(
1

N − (k − 1)

)2

≤ k

N

k − 1

N − 1

k − 2

N − 2

k − 3

N − 3
. . .

2

N − (k − 2)

1

N − (k − 1)
=

1(
N
k

) .
Similarly, for odd k,

M=k[µn,k]
2 ≤ Γ (N, k − 1)2 ·

(
k

N − k

)2

≤ 1(
N

k−1

) · ( k

N − k

)2

=
1(
N
k

) · N − (k − 1)

k

(
k

N − k

)2

=
1(
N
k

) · N − (k − 1)

N − k

k

N − k

<
1(
N
k

) · N − (k − 1)

N − k

k + 1

N − (k − 1)
=

1(
N
k

) · k + 1

N − k
.
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■
Proof (of Proposition 19). First assume that k is even. If t = 1, then the claim
holds with equality. We thus assume that t > 1. For the purpose of analyzing
the expressions Λ(N, kj−1, kj − kj−1) it is convenient to order the numerators
of their terms (of the form a/b) from smallest to largest. Specifically, for even
kj − kj−1 write

Λ(N, kj−1, kj − kj−1) =
kj − 1

N − kj−1 − 1

kj − 3

N − kj−1 − 3
. . .

kj−1 + 1

N − kj + 1

=
kj−1 + 1

N − kj−1 − 1

kj−1 + 3

N − kj−1 − 3
. . .

kj − 1

N − kj + 1
.

and reorder similarly for odd kj−kj−1. Moreover, write Γ (N, k1) =
1

N−1
3

N−3 . . .
k1−1

N−k1+1 .
We have

Γ (N, k) =
1

N − 1

3

N − 3
. . .

k − 1

N − k + 1
.

Hence, Γ (N, k) is a product of k/2 terms of the form a/b.
Note that every Λ(N, kj−1, kj − kj−1) is a product of at least (kj − kj−1)/2

terms, hence the expression Γ (N, k1) ·
∏t

j=2 Λ(N, kj−1, kj − kj−1) is a product
of at least k/2 terms.

We claim that the product of the first (i.e., largest) k/2 denominators in
the expression Γ (N, k1) ·

∏t
j=2 Λ(N, kj−1, kj − kj−1) is at least (N − 1)(N −

3) . . . (N−k+1), which is the product of denominators in Γ (N, k). Indeed, taking
the first k/2 denominators in the order they appear in Γ (N, k1)Λ(N, k1, k2 −
k1) . . . Λ(N, kt−1, kt − kt−1), the first denominator in Γ (N, k1) is N − 1, and we
claim that consecutive denominators do not drop by more than 2.

This is clear for consecutive denominators inside Γ (N, k1) and Λ(N, kj−1, kj−
kj−1), which drop by exactly 2. Moreover, the smallest denominator in Λ(N, kj−1, kj−
kj−1) is either N − kj + 1 or N−kj (depending on the parity of kj−kj−1), while
the largest denominator in Λ(N, kj , kj+1−kj) is N − kj − 1 = (N − kj + 1)−2.
This is also true when considering the smallest denominator of Γ (N, k1) and the
largest denominator of Λ(N, k1, k2 − k1).

Next, we claim that the product of the first (i.e., smallest) k/2 numerators is
at most 1·3 . . . (k−1), which is the product of numerators in Γ (N, k). Indeed, the
smallest numerator in Γ (N, k1) is 1 and we claim that consecutive numerators
do not increase by more than 2.

This is clear for consecutive numerators inside Γ (N, k1) and Λ(N, kj−1, kj −
kj−1), which increase by exactly 2. Moreover, the largest numerator in Λ(N, kj−1, kj−
kj−1) is kj−1 , while the smallest numerator in Λ(N, kj , kj+1−kj) is either kj or
kj+1 = (kj−1)+2 (depending on the parity of kj+1−kj). This also holds for the
largest numerator of Γ (N, k1) and the smallest numerator of Λ(N, k1, k2 − k1).

Finally, after factoring out the k/2 largest denominators and k/2 smaller nu-
merators in Γ (N, k1) ·

∏t
j=2 Λ(N, kj−1, kj −kj−1), we remain with an expression

that is smaller than 1, as the smallest remaining denominator is at least N − k
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and the largest remaining numerator is at most k < N − k, as k < N/2. This
proves the claim for even k.

The proof for odd k is similar with the additional observation that Γ (N, k1) ·∏t
j=2 Λ(N, kj−1, kj −kj−1) is a product of at least (k+1)/2 terms as k1 is even.

Once again, comparing the largest denominators and smallest numerators to the
(k + 1)/2 terms of Γ (N, k − 1) · k

N−k proves the result. ■

B Missing Proofs from Section 5

Proof (of Lemma 2). By Proposition 20, W=k[µn,k] = FN (k, 0). Therefore, the

equalities for W=k[µn,k] where k ∈ {1, 2, 3} and the first part of the inequalities

for W=k[µn,k] directly follow from Proposition 21 and Proposition 22, respec-

tively. Below we prove that for even k, (N(k−1))k/2

(N)k
≤ ΨN (k). Then, for odd k,

we have

W=k[µn,k] ≤
(N(k − 1))(k−1)/2 · (k − 1)

(N)k
≤ (Nk)(k+1)/2

(N)k+1
≤ ΨN (k + 1),

as claimed.

By rearranging terms we have

(N(k − 1))k/2

(N)k
≤ (Nk)k/2

(N)k

=
(Nk)k/2

(N(N − k)) · ((N − 1)(N − k + 1)) · . . . · (N − k/2 + 1)(N − k/2)

=

(k/2)−1∏
i=0

Nk

(N − i)(N − k + i)
.

(7)

We now analyze (the inverse of) each term of the product (recalling that i < k/2).

(N − i)(N − k + i)

Nk
=
N2 −Nk + ik − i2

Nk
=
N − k

k
+
i(k − i)

Nk

≥ N − k

k
+

ik

2Nk
=
N − k

k
+

i

2N
=
N − k

k

(
1 +

ik

2N(N − k)

)
.

Next, using the fact that for every x > −1, 1 + x ≥ exp(x/(x + 1)), and that
i < k/2, we upper bound the expression above as

≥ N − k

k
exp

(
ik

2N(N − k) + ik

)
≥ N − k

k
exp

(
ik

2N(N − k) + k2/2

)
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Plugging this into (7), we obtain

(N(k − 1))k/2

(N)k
≤
(

k

N − k

)k/2

exp

−
(k/2)−1∑

i=0

ik

2N(N − k) + k2/2


=

(
k

N − k

)k/2

exp

(
− k2((k/2)− 1)/4

2N(N − k) + k2/2

)
=

(
k

N − k

)k/2

exp

(
− k(k − 2)

8N(N − k) + 2 · k2

)k/2

= ΨN (k).

■
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