
Helium: Scalable MPC among Lightweight Participants
and under Churn

Christian Mouchet∗
Hasso Plattner Institute

christian.mouchet@hpi.de

Sylvain Chatel∗
CISPA Helmholtz Center for Information Security

sylvain.chatel@cispa.de

Apostolos Pyrgelis
RISE Research Institute
apostolos.pyrgelis@ri.se

Carmela Troncoso
EPFL

carmela.troncoso@epfl.ch

ABSTRACT
We introduce Helium, a novel framework that supports scalable
secure multiparty computation for lightweight participants and
tolerates churn. Helium relies on multiparty homomorphic encryp-
tion (MHE) as its core building block. While MHE schemes have
been well studied in theory, prior works fall short of addressing
critical considerations paramount for adoption such as support-
ing resource-constrained participants and ensuring liveness and
security under network churn. In this work, we systematize the
requirements of MHE-based MPC protocols from a practical lens,
and we propose a novel execution mechanism, that addresses those
considerations. We implement this execution in Helium, which
makes it the first implemented solution that effectively supports
sub-linear-cost MPC among lightweight participants and under
churn. This represents a significant leap in applied MPC, as most
previously proposed frameworks require the participants to have
high bandwidth and to be consistently online. We show that a He-
lium network of 30 parties connected with a 100Mbits/s link and
experiencing a system-wide churn rate of 40 failures per minute
can compute the product of a fixed secret 512 × 512 matrix (e.g., a
collectively trained model) with an input secret vector (e.g., a fea-
ture vector) 8.3 times per second. This is ∼1500 times faster than a
state-of-the art MPC implementation without churn.

KEYWORDS
secure multiparty computation, homomorphic encryption

1 INTRODUCTION
Cryptographic techniques for securemultiparty computation (MPC)
can alleviate the need for trust between actors and enable collabora-
tions that may otherwise be impossible due to privacy concerns. For
example, MPC techniques have found applications in medical re-
search [42], fraud detection [7], trading [39], and social sciences [45].
But the deployment of MPC is hindered by practical considerations
related to the particularly resource-demanding nature of current
MPC solutions.

In this work, we focus on a long-standing problem in secure MPC
systems research: performing MPC tasks among computationally
weak and unreliably connected parties [5, 15–17, 21, 33]. The cur-
rent approaches for which open-source implementations exist, such
as SPDZ [32], are mostly based on linear secret-sharing schemes
(LSSS) [30], requiring potentially many rounds of communication.

∗Both authors were affiliated with EPFL at the time of this work.

Hence, to operate, such approaches assume the protocol partici-
pants to be online and responsive for the whole duration of theMPC
process. This requirement is too stringent for many applications
where parties are running on low-end devices (e.g., laptops, mobile
phones) and over unreliable connections. As a way around the high
requirements of MPC, many works employ ad hoc solutions such as
non-colluding servers [18, 25, 32, 35] or secure hardware, hence in-
troducing non-cryptographic assumptions for security. We propose
Helium, the first framework to enable MPC among weak partic-
ipants and under churn without introducing non-cryptographic
assumptions.

MHE-basedMPC. To enable low-requirementMPC, Helium is based
onMultipartyHomomorphic Encryption (MHE) [4, 36, 37]. AnMHE
scheme enables a set of parties to encrypt their inputs in such a way
that (i) it enables arithmetic computation to be performed over the
encrypted data, (ii) it enforces a joint cryptographic access control
over the plaintext data. MHE schemes can be instantiated into a nat-
ural MPC protocol. In its theoretical formulation, this protocol starts
with a setup phase in which a set of public keys necessary for encryp-
tion and evaluation of circuits are created among the parties. Then,
in the compute phase, the computation is performed homomorphi-
cally, under collective encryption, and the final result is obtained
through a decryption protocol. Due to their low communication
complexity and their small number of rounds, the MHE-based MPC
approaches are an ideal choice for low-requirements MPC [4, 37].
Additionally, their public-transcript property [37] enables the par-
ties to delegate most of the communication and computation costs
to a single honest-but-curious third party (e.g., a cloud server), with-
out relying on additional non-cryptographic assumptions such as
trusted hardware or non-collusion. Thanks to these properties,
MHE-based MPC solutions have been successfully proposed in the
secure computation literature, to perform tasks such as federated
training of neural networks [43, 44] and distributed principal com-
ponent analysis [27]. However, their wider adoption is still hindered
by the lack of systematization and software implementations of
MHE-based MPC. Indeed, whereas more than thirty LSSS-based
frameworks were built over the last two decades [41], there was
to date no open-source framework for MHE-based MPC. Hence,
Helium is also the first such implementation.

Challenges of MHE-based MPC. In practice, several challenges arise
when instantiating the MHE-based MPC protocol with realistic op-
erating conditions. A first challenge is to support resource-constrained
parties for which the RAM memory is smaller than the size of a

1

Christian Mouchet, Sylvain Chatel, Apostolos Pyrgelis, and Carmela Troncoso

single round-share in (the theoretical formulation of) the protocol.
A second challenge is to tolerate poorly connected parties that may
have low bandwidth and might experience frequent disconnections
and re-connections from and to the network (i.e., churn). These
challenges are left unaddressed by the prior works on MHE that
typically consider an ideal execution model: a one-time monolithic
execution of the protocol over a reliable network [36, 37]. Hence,
an overarching challenge is to re-formulate the protocol in a more
systematic, functional, and practical way.

In this work, we address these challenges by proposing a novel
systematization of the MHE-based MPC protocol and by designing
an associated protocol-execution mechanism. To support resource-
constrained parties, we design a streamlined execution flow of the
MHE-based MPC protocol in the server-assisted setting. To support
churn, we extend the 𝑇 -out-of-𝑁 -threshold scheme by Mouchet et
al. [36] with a concrete retry mechanism, which was left as an open
question by the authors. By doing so, we discover two failure cases
arising when considering churn in current MHE schemes based on
the ring learning with errors (RLWE) problem. These failure cases
lead to cryptographic attacks, yet were left undiscussed due to the
ideal execution models considered by theoretical works on MHE.
Our execution mechanism prevents these failure cases, by ensuring
that all interactive MHE operations are securely resettable [29].
In summary, we make the following contributions:
• Practical Challenges Identification (§3.2). We identify the

challenges that MHE-based MPC poses in practical settings.
These challenges include preserving the efficiency, security, and
liveness of the protocol under resource-constrained participants
and in the presence of churn.

• Generic Solution Design (§4). We design a non-monolithic
execution of the MHE-based MPC protocol, that addresses the
efficiency, security, and liveness challenges. We define an abstrac-
tion that captures all interactive operations in the MHE scheme
and we define a generic execution method for those operations.

• The Helium Framework (§5). We instantiate our generic exe-
cution method in Helium, an end-to-end framework for MHE-
based MPC which has very low requirements for the parties:
they can run with just several hundreds of megabytes of RAM,
their communication overhead is independent of the number of
parties, and they do not need to be simultaneously online and
reachable for the computation to make progress.

• Implementation (§6). We build our generic solution on top
of the Lattigo library, evaluate it experimentally, and make it
open-source.1 We show that Helium can compute large matrix
operations (as required to perform privacy-preserving machine
learning) among a large number of parties in tens of milliseconds,
even when experiencing a high system-wide churn rate of 40
failures per minute.
Helium is the first available open-source implementation of the

MHE-based generic-MPC protocol, and is, de facto, the first frame-
work for passive-adversary MPC under churn that relies solely on
cryptographic assumptions.

1The code repository is accessible at https://github.com/ChristianMct/helium

2 SYSTEM MODEL
Let P = {𝑃1, ..., 𝑃𝑁 } be a set of 𝑁 parties. Parties in P are resource-
constrained and inconsistently connected (see Churn Model below).
To execute the protocol, the parties receive assistance from a helper
𝐻 which is assumed to run on high-end hardware and to be consis-
tently online (e.g., a server).

Adversarial Model. We assume a passive adversary that can stati-
cally corrupt a subset A ⊂ P of 𝑇 − 1 parties for a fixed threshold
parameter 𝑇 (i.e., any subset of P having a size at least 𝑇 is guar-
anteed to contain at least one honest party). The adversary can
observe the internal state of all corrupted parties in A ∪ {𝐻 }. In
addition, the adversary can eavesdrop on all the network traffic.

Churn Model. We assume that the parties in P can be either online
or offline. In the online state, a party runs the Helium process and
is connected to the network. In the offline state, the party does
not run the Helium process and is disconnected from the network.
We define a failure as the event of a party transitioning from the
online to the offline state, and consider that failure events follow a
random process for which the system-wide failure frequency is Λ𝑓 .
For a party experiencing a failure event, we model the time before
transitioning back to the online state as a random variable for which
the expected value is _−1𝑟 (i.e., _𝑟 is the per-node re-connection rate).
Finally, to model low-resource computing (in which devices might
reboot, or processes might be killed by the operating system to save
resources), we assume that a failure event entails the full erasure
of a party’s volatile memory.

2.1 Requirements
LetM be a plaintext space ring, let 𝑓 :M𝑁→M be an arithmetic
function, and let 𝑥𝑖 ∈ M be a private input held by party 𝑃𝑖 .

Functionality. From 𝑝𝑝 a set of HE scheme parameters,𝐶𝑓 an HE cir-
cuit that computes 𝑓 , and (𝑥1, . . . , 𝑥𝑁) the parties’ plaintext inputs,
Helium computes 𝑓 (𝑥1, . . . , 𝑥𝑁) and outputs the result.

Privacy. We consider the traditional notion of input privacy in MPC,
by requiring that the execution of Helium does not reveal more
information about (𝑥1, . . . , 𝑥𝑁) than what 𝑓 (𝑥1, . . . , 𝑥𝑁) does. We
assume a security parameter _ and require that the advantage of
the adversary A in breaking input privacy is no more than 2−_ .

Scalability. We require that, when executing Helium to compute 𝑓
as above, each party in P has: (i) a computation overhead that is at
most linear in 𝑁 and 𝑇 , and (ii) a communication overhead that is
sub-linear in 𝑁 and 𝑇 .

Liveness. We require that Helium makes progress on the compu-
tation in real time (i.e., it is not waiting for a disconnected party)
whenever the number of connected parties is equal to or above 𝑇 .

Lightweight Clients. The parties in P are assumed to run on low-
end hardware akin to embedded systems. They have access to
a low amount of volatile RAM (i.e., in the orders of hundreds of
megabytes) and a small persistent storage (i.e., in the orders of
hundreds of kilobytes). In addition to being inconsistently online
(see Churn model above), they do not have a public address in the
network and cannot wait for incoming connections.

2

https://github.com/ChristianMct/helium

Helium: Scalable MPC among Lightweight Participants and under Churn

2.2 User Interface
Helium is de facto a sub-component in a larger distributed system,
which we refer to as the user application. We consider two phases
in the user application life-cycle: the conception and the opera-
tion phase. In the conception phase, the user-application designer
translates the setting, the adversarial model (P,𝑇), and the target
function 𝑓 into a homomorphic circuit 𝐶𝑓 and a set of HE parame-
ters 𝑝𝑝 . We voluntarily leave the aspects related to circuit design
and HE parameterization outside the scope of this work. Although
these aspects are important for assisting non-experts during the
conception phase, they are orthogonal to our contributions and are
addressed by the literature on HE compilers [3, 10, 14, 19, 24, 46]. In
the operational phase, Helium is initialized at each party from the
public parameters 𝑝𝑝 , the circuit𝐶𝑓 , the identity of the parties in P,
and the address of the cloud helper 𝐻 . Helium then generates the
computation outputs by executing the MHE-based MPC protocol,
which we now describe.

3 MHE-BASED MULTIPARTY COMPUTATION
We first recall some background on MHE-based MPC in §3.1. Then,
in §3.2, we isolate and characterize challenges that these protocols
face in practice.

3.1 MHE-based MPC: Background
The main primitive of MHE-based MPC is an MHE scheme, which
is instantiated in a higher-level MPC protocol. We recall the se-
mantics of MHE schemes below and we refer unfamiliar readers to
Appendix A for a more exhaustive description.

MHE Scheme. An MHE scheme over a plaintext space M is a
set of algorithms and protocols MHE = {ΠSecKeyGen, ΠEncKeyGen,
ΠEvalKeyGen, Encrypt, Eval, ΠDecrypt}. The secret-key generation
protocol ΠSecKeyGen creates a secret key per party, which can be
seen as a secret share of a collective secret key. The public-key
generation protocols (ΠEncKeyGen, ΠEvalKeyGen) output public keys
necessary for the encryption and evaluation algorithms, respec-
tively. Both protocols require the parties to have access to a com-
mon random string (CRS) denoted by crs. The Encrypt algorithm
uses the key generated by the ΠEncKeyGen protocol to encrypt the
plaintext data. The Eval algorithm uses the keys generated by the
ΠEvalKeyGen protocols to evaluate functions over the ciphertexts.
Finally, the ΠDecrypt protocol decrypts the final result.

MPC Protocol. TheMHE−MPC protocol shown in Protocol 1 has
two phases, Setup and Compute. Each of these phases consists of
running several MHE protocols as sub-protocols. During the Setup
phase, the parties collectively run the MHE key-generation sub-
protocols to generate the private and public key material required
for the Compute phase: (i) a collective encryption-key cpk (with
ΠEncKeyGen) for encrypting the inputs, and (ii) all the evaluation
keys required to evaluate the target function (with multiple calls
to ΠEvalKeyGen, one per operation type used in the homomorphic
circuit). During theCompute phase, the parties encrypt their inputs
under the collective public key cpk, evaluate the target function un-
der homomorphic encryption (with Eval), and collectively decrypt
the result with ΠDecrypt.

Protocol 1. MHE−MPC ⊲ MHE-based MPC (helper-assisted, public output)

Private input: 𝑥𝑖 for each party 𝑃𝑖 ∈P
Public input: 𝑓 the circuit, crs a common random string
Output for 𝑅: 𝑦 = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑁)

Setup:
1. (SecKeyGen) all parties in P execute the secret-key generation protocol

sk𝑖 ← MHE.ΠSecKeyGen (),
2. (PubKeyGen) any subset of parties P′ ⊆ P, with | P′ | ≥ 𝑇 executes

the required public-key generation protocols:

cpk← MHE.Πcrs
EncKeyGen (sk1, . . . , sk|P′ |),

evkop ← MHE.Πcrs
EvalKeyGen (op, sk1, . . . , sk|P′ |), ∀op ∈ 𝑓 .

Compute:
1. (Input) each party in P encrypts its input 𝑥𝑖 as

𝑐𝑖 ← MHE.Encrypt(𝑥𝑖 , cpk),
and sends 𝑐𝑖 to 𝐻 .

2. (Eval) the helper 𝐻 computes the encrypted output as

𝑐′ ← MHE.Eval(𝑓 , {evkop}op∈𝑓 , 𝑐1, 𝑐2, . . . , 𝑐𝑁),
and sends 𝑐′ to the parties in P.

3. (Output) any subset of parties P′ ⊆ P with | P′ | ≥ 𝑇 re-encrypts the
output 𝑐′ under the receiver’s key as

𝑐′𝑅 ← MHE.ΠDecrypt (sk1, . . . , sk|P′ |, pk𝑅, 𝑐′) .

In this work, we consider the helper-assisted setting for the
MHE−MPC protocol [37], in which a helper node 𝐻 assists the
parties in the protocol execution. The role of the helper is two-fold:
(i) It acts as an evaluator, i.e., it computes the homomorphic circuit
on the parties’ encrypted inputs during the Eval step, and (ii) it acts
as an aggregator, i.e., it collects parties shares in the sub-protocols,
aggregates them, and makes the result available to the parties. As
a result, the communication overhead of each party no longer de-
pends on the total number of parties (𝑁) in the computation.

Monolithic Execution. Priorworks [4, 36, 37] assume thatMHE−MPC-
like protocols are executed in four broadcast rounds: SecKeyGen,
PubKeyGen, Input, and Output (one for each interactive step of
Protocol 1), and that these rounds are executed as a monolith. This
means that (i) the parties execute these rounds in a predefined order,
(ii) for any round that involves multiple sub-protocols, the parties
compute a single round-share as the concatenation of the involved
sub-protocols’ shares, and (iii) the protocol terminates after the
Output round.

The monolithic execution assumption implies that, by design,
parties are synchronized. Thismakes it trivial to realize assumptions
such as the access to the CRS, e.g., for the public-key generation sub-
protocols (ΠEncKeyGen, ΠEvalKeyGen). This common string ensures
that randomness (i) is the same for each party, (ii) is fresh for
each sub-protocol execution, and (iii) is uniformly distributed in
the ciphertext-space ring. However, although such a monolithic
execution is convenient to theoretically analyze the security and
correctness of theMHE−MPC protocol, it leads to challenges when
implementing it in practice.

3

Christian Mouchet, Sylvain Chatel, Apostolos Pyrgelis, and Carmela Troncoso

3.2 MHE-based MPC: Practical Challenges
We now discuss the challenges arising when instantiating the
MHE−MPC protocol in practice, and we outline our solutions to
those challenges.

Challenge 1. Non-monolithic MHE-based MPC Execution:
To implement the MHE-based MPC protocol in a usable and main-
tainable framework, a systematization effort is necessary. This is
because the theoretical formulation does not capture several de-
sirable features of MHE-based MPC. Notably, it does not account
for the fact that both its phases can be run in parallel. In practice,
the Compute phase should begin as soon as the collective key cpk
is generated, and the evaluation should proceed as soon as the
relevant evaluation keys are generated; this reduces the latency to
output. Moreover, neither phase is required to terminate. Rather,
the parties can evaluate arbitrarily many circuits with the generated
keys and they can generate new evaluation keys to support new
circuits. Finally, the theoretical formulation does not account for
the common structure among the MHE sub-protocols and hence
misses the opportunity to define generic execution strategies.

We propose a reformulation of theMHE−MPC protocol based
on two abstractions: an external (user-facing) one and an inter-
nal (implementation-facing) one. Our user-facing abstraction is to
re-frame the protocol in terms of a session: a logical computation
context for which the data access control is cryptographically en-
forced. Our implementation-facing abstraction is a generalization
of the MHE sub-protocols, which enables us to define an execution
mechanism for such protocols, in a generic way.

Challenge 2. Supporting Resource-Constrained Nodes: As
per our system model, the parties in P have constrained hardware
resources, such as small RAM and low-power CPU. Under such
restrictions, a monolithic execution of the MHE−MPC is not only
undesirable but also impossible. This is because it might require
the computation of more sub-protocol shares than parties can fit in
their memory. Particularly at risk is the PubKeyGen step (step 2. in
the Setup phase of Protocol 1), for which the round share per party
is the concatenation of potentially many ΠEvalKeyGen shares (which
we refer to as amonolithic share). For example, the monolithic share
of a single party for executing the Setup phase of the encrypted
neural network training circuit proposed in [44] (on the MNIST
dataset) is as large as ∼ 3GB. This is because their circuit relies on
many types of homomorphic automorphism operations, each one
requiring a different evaluation key.

To address this challenge, we observe that the parties in P do
not need to store their shares in the sub-protocols and they can free
the allocated memory as soon as the share is sent. Hence, instead
of computing a single monolithic share, we propose to run the
sub-protocols independently and asynchronously. This enables the
parties to limit the number of concurrently running sub-protocols
and to execute them in a streamlinedmanner, hence to execute large
setups such as that of [44] with only ∼64MB of RAM (as opposed
to the ∼3𝐺𝐵 necessary for the monolithic execution). However, we
must ensure that independent execution of sub-protocols does not
break the correctness and security of the protocol, which can be
non-trivial under churn (see Challenge 4).

Challenge 3. Liveness under Churn: Our liveness requirement
necessitates a𝑇 -out-of-𝑁 -thresholdMHE scheme in order for𝑇 par-
ties to make progress without waiting for offline parties. Asharov et
al. proposed a direct approach to𝑇 -out-of-𝑁 -thresholdMHE, which
is to share the initial random coins of each party among the other
parties with the Shamir secret-sharing scheme and to reconstruct
the offline parties’ shares when needed. But this approach does
not compose well with our session-like approach because exposing
parties’ secrets permanently alters the security guarantees within
the session (i.e., by giving more than 𝑇 − 1 shares of the secret-key
to the adversary). As a result, securely re-integrating the returning
party would require interaction initiated by all parties, to either
renew their secret-key shares (in a proactive fashion [31]) or to
re-create a session from scratch. Indeed, both are expensive and,
hence, are undesirable in our weak-participants setting.

Instead, we use the 𝑇 -out-of-𝑁 -threshold scheme introduced by
Mouchet et al. [36], which enables each MHE sub-protocol to be
run with any𝑇 -subset of parties, without compromising the keys of
the failing parties (and thus also without compromising the session).
However, this scheme has two important limitations: (i) the set of𝑇
participating parties to each sub-protocol needs to be known before
the parties can generate their shares, and (ii) if any of the 𝑇 parties
in the set crashes before providing its share, the protocol cannot
complete until this party reconnects. We address (i) by having the
helper keep a view of the network and decide on the sets of 𝑇
connected parties for each protocol. By choosing the𝑇 parties right
before the protocol execution, the helper can greatly reduce (but not
completely annihilate) the probability of the failure case of (ii). To
fully address (ii), we also introduce a sub-protocol retry mechanism
that lets the helper execute the same protocol over a different set
of parties. However, sub-protocol retries are not captured by the
existing security analyses of MHE-based MPC [4, 37], and we need
to ensure that they do not break the security of the scheme. This
issue was left unaddressed by the work of Mouchet et al. [36] and
we describe it as Challenge 4.

Challenge 4. Security under Churn: We make the critical ob-
servation that the existing security analyses of MHE-based MPC
[4, 37] do not hold under churn. This is not only due to our retry
mechanism but also because parties can output correlated shares
as a result of a sate-less restart. For example, a party might crash
while transmitting its share to a sub-protocol, then re-transmit a
new, yet correlated, share to the same sub-protocol when coming
back online. We show in §4.3 that, in current (R)LWE-based MHE,
this leads to possible cryptographic attacks that were, to the best
of our knowledge, not discussed in the existing literature on MHE.

We address this issue by specifying how the various randomness
sources required by the sub-protocols are seeded, and we ensure
that this results in a resettable [29] variant of the sub-protocols. As
a result, we obtain a solution that covers both the case of a party
re-outputting a share and the case of protocol retries.

4

Helium: Scalable MPC among Lightweight Participants and under Churn

3.3 Roadmap
In the rest of this work, we propose a novel execution flow for
theMHE−MPC protocol that addresses the aforementioned chal-
lenges. We proceed with a constructive approach: In §4, we pro-
pose a generic execution mechanism for MHE sub-protocols. This
mechanism enables running those sub-protocols independently
and provides both liveness and security under churn. In §5, we
instantiate this generic execution mechanism in our helper-assisted
model and complement it with circuit-evaluation capabilities. As
a result, we obtain a complete, non-monolithic execution flow for
the MHE−MPC protocol.

4 MHE−MPC SUB-PROTOCOLS EXECUTION
In this section, we present our mechanism for executing the sub-
protocols of the MHE−MPC. We proceed in two steps: In §4.1, we
define an abstraction for RLWE-based MHE sub-protocols. This
abstraction enables us to define an execution flow that is generic
across the sub-protocols. In this execution flow, that we present
in §4.2 and §4.3, the sub-protocols are run independently in an
efficient and churn-tolerant way. Indeed, the ability to run proto-
cols independently will be key for addressing Challenge 1, while
efficiency and fault tolerance are key to addressing Challenges 2-4.

4.1 The PAT Protocol Abstraction
We define an abstraction that captures the core functionality of all
secret-key-dependent MHE sub-protocols (i.e., all sub-protocols be-
side theMHE.ΠSecKeyGen). This abstraction is framework-facing: it
enables us to define ourMHE−MPC protocol execution mechanism
in terms of a generic sub-protocol executor.

Preliminaries. The ciphertext space of the MHE scheme is a poly-
nomial ring R in which the RLWE problem is hard [34]. Informally,
for 𝑎 a publicly known element, and for 𝑠 and 𝑒 two secret values
sampled from low-norm distributions over R, the distribution of
(𝑎𝑠 + 𝑒, 𝑎) is computationally indistinguishable from the uniform
distribution over R2.

At initialization,MHE.ΠSecKeyGen protocol privately outputs, to
each session node 𝑃𝑖 ∈ P, a 𝑇 -out-of-𝑁 -threshold secret-share
𝑠𝑖 ∈ R of the collective secret key 𝑠 (see [36]). More precisely, to
each party 𝑃𝑖 ,MHE.ΠSecKeyGen outputs a point (𝛼𝑖 , 𝑆 (𝛼𝑖)) of some
secret degree-𝑇 −1 polynomial 𝑆 ∈ R[𝑋] for which 𝑆 (0) = 𝑠 . Hence,
any subset P′ of P with |P′ | ≥ 𝑇 could reconstruct 𝑠 from their
shares {𝑠𝑖 }𝑃𝑖 ∈P′ as

𝑠 = 𝑆 (0) =
∑︁

𝑃𝑖 ∈P′

∏
𝑃 𝑗 ∈P′
𝑃 𝑗≠𝑃𝑖

𝛼 𝑗

𝛼 𝑗 − 𝛼𝑖
𝑠𝑖 =

∑︁
𝑃𝑖 ∈P′

_
(P′)
𝑖

𝑠𝑖 , (1)

where _ (P
′)

𝑖
denotes the Lagrange interpolation coefficient for the

share of party 𝑃𝑖 in the reconstruction among set P′. Note that, in
practice, the secret key 𝑠 is never reconstructed.

The PAT Protocol Abstraction. Although MHE schemes consist of
many secret-key-dependent sub-protocols, all these protocols im-
plement the same functionality at their core: they compute a noisy
affine function of the form 𝑎𝑠 + 𝑒 , where 𝑠 is the collective secret
key, 𝑎 is a public polynomial and 𝑒 is some small error term [37].
For example, theMHE.ΠEncKeyGen protocol generates a collective

public encryption key of the form (𝑝0, 𝑝1) = (𝑠𝑝1 + 𝑒pk, 𝑝1) by set-
ting 𝑎 to be a uniform value sampled from the common random
string. Similarly, the MHE.ΠDecrypt protocol performs the decryp-
tion of a ciphertext (𝑐0, 𝑐1) in two steps: It first computes a term
ℎ = 𝑠𝑐1 + 𝑒dec (i.e.,𝑎 = 𝑐1); then it computes a noisy message as
𝑚noisy ≈ 𝑐0 + ℎ which can be decoded into𝑚 (provided that the
noise is not too large).

To compute this noisy product, any group P′ of size at least 𝑇
exploits the linearity of the Shamir secret-sharing scheme: each
party in P′ computes and discloses its respective linear term (its
share in the protocol) plus some additional fresh error. Due to this
added fresh error term, the shares are safe to disclose (i.e., do not
compromise the parties’ secret keys) under the RLWE assumption
and the noisy product can be computed by summing up the shares.
Hence, we say that the MHE protocols have public aggregatable
transcripts, and we refer to them as PAT protocols. More formally,
MHE protocols have a common structure that can be expressed as
a tuple PAT = (GenShare,AggShare, Finalize) of algorithms with
the following syntax and semantics:
- Share Generation: 𝑣𝑖 ← PAT.GenShare(𝑠𝑖 , 𝑎,P′; 𝜒)
From the secret-key share 𝑠𝑖 , a publicly known polynomial 𝑎
and a set of participating parties P′, GenShare outputs a share
𝑣𝑖 = _

(P′)
𝑖

𝑠𝑖𝑎 + 𝑒𝑖 , with 𝑒𝑖 ← 𝜒 .

- Share Aggregation: 𝑣agg ← PAT.AggShare({𝑣𝑖 }𝑃𝑖 ∈P′)
From the shares {𝑣𝑖 }𝑃𝑖 ∈P′ of the participating partiesP′,AggShare
outputs a single aggregated share

𝑣agg =
∑︁

𝑃𝑖 ∈P′
𝑣𝑖 = 𝑠𝑎 +

∑︁
𝑃𝑖 ∈P′

𝑒𝑖

- Finalization: out← PAT.Finalize(𝑣agg, in)
From the aggregation of all shares of the parties in P′ and some
public auxiliary input polynomial in, Finalize outputs the result
out of the protocol.
In the key-generation protocols (ΠEncKeyGen and ΠEvalKeyGen),
the auxiliary input in is the public polynomial 𝑎 and Finalize
outputs the resulting key as out = (𝑣agg, 𝑎). In the decryption
protocol (ΠDecrypt), the auxiliary input in is the element 𝑐0 of
the ciphertext and Finalize outputs the decrypted ciphertext as
out = 𝑐0 + 𝑣agg.
Overall, the execution of the MHE−MPC protocol (see Proto-

col 1) reduces to the execution of many PAT protocol instances,
which need to be orchestrated efficiently and securely. More specifi-
cally, to evaluate a circuit 𝑓 , the parties first parse 𝑓 and obtain: (1) A
list of public keys required for the MHE.Encrypt and MHE.Eval al-
gorithms; those correspond to the list of public-key generation
PAT protocols to be run in the Setup phase. (2) A list of inputs to
provide in the Compute phase. (3) A list of decryption gates in the
circuit: those correspond to the list of decryption PAT protocols to
be run in the Compute phase. Then, the actual execution consists
of independently executing all the PAT protocols in the lists.

4.2 PAT Protocol Execution Mechanism
In this section, we present an execution mechanism for PAT proto-
cols. This mechanism considers a session-like execution (addressing
Challenge 1) and can be executed by resource-constrained session

5

Christian Mouchet, Sylvain Chatel, Apostolos Pyrgelis, and Carmela Troncoso

nodes (addressing Challenge 2). However, it only partially addresses
the liveness and security challenges (Challenges 3 and 4). This is
because we assume, for the sake of the exposition, a restricted churn
model in which parties involved in the execution of a PAT protocol
do not fail during its execution. We then lift this assumption in §4.3.

4.2.1 Nodes. We refer to all actors in our system as nodes. Each
node is associated with an identifier (i.e., a unique string of charac-
ters provided by the high-level user application) and holds a public
key certificate for that identifier. There are two types of nodes in
Helium. First, session nodes which have inputs to the computation
(i.e., the parties in P). Session nodes hold a share of the collective
secret key (ensuring their inputs’ access-control), hence are the
nodes that provide inputs when executing the MHE sub-protocols.
Second, a helper node that assists the parties in the computation.
The helper node does not have private inputs to the computation
and, hence, does not hold a share of the secret key.

4.2.2 Sessions. Analogously to secure communication protocols
such as TLS2, we view MHE sessions as a long-lived logical se-
cure multiparty computation context. We define the public session
parameters as

PubSessParams := {SessionID,Nodes,HEParams, PublicSeed}.
where SessionID is a unique system-wide identifier for the session,
Nodes is the identities of the 𝑁 nodes in P,HEParams are the MHE
scheme parameters, and PublicSeed is a public bit-string seed for
the public randomness source. These parameters are set by the user
application. We define the session parameters for node 𝑃𝑖 as

SessParams𝑖 := {PubSessParams, PrivateSeed𝑖 , sk𝑖 }.
wherePubSessParams are the public session parameters,PrivateSeed𝑖
is a private bit-string seed for the randomness source of each party,
and sk𝑖 is the node’s share in the MHE ideal secret-key. These
parameters are generated or read from a file system by the frame-
work. Each node must securely store the session parameters, and
we require that they suffice for a session node to recover a session
correctly and securely (e.g., after a node crash).

From this point onward, our discussion focuses on a single ses-
sion, and hence on a single instance of a long-livedMHE−MPC pro-
tocol. For conciseness, in the following, we refer to theMHE−MPC
protocol as the session and to its sub-protocols simply as protocols.

4.2.3 Roles. Recall that there are two kinds of nodes in our model:
session nodes (who have a share of the secret key) and helper nodes
(who do not). For each PAT protocol, the nodes can assume different
roles:
• The Protocol Participants are the 𝑇 session nodes that provide a

share in the PAT protocol. We denote the set of participants as
P′ ⊆ P.

• The Protocol Aggregator is a designated node that collects the 𝑇
shares from all protocol participants (generatedwith thePAT.GenShare
method) and aggregates them (with the PAT.AggShare method).
Due to the publicly aggregatable property of PAT protocols, this
role can in theory be assumed by any node in the system. In
our helper-assisted setting, the helper assumes this role, which

2https://www.rfc-editor.org/rfc/rfc8446

results in communication overhead for the protocol participants
that is independent of 𝑁 and 𝑇 .

• The Coordinator is a designated node that initiates and keeps
track of the execution of PAT protocols, hence ensuring that
the session (i.e., the MHE−MPC protocol) progresses. As for the
aggregator, the coordinator role does not require any secret
session parameter, hence can be assumed by any node in the
system. However, it is crucial that the coordinator reliably keeps
the state of the session (i.e., the list of executed PAT protocols).
In our helper-assisted setting, the helper also assumes this role.

4.2.4 Coordination Messages. To coordinate the execution of PAT
protocols, our mechanism relies on two types of coordination mes-
sages. We now describe these messages, and detail how they are
used by our execution mechanism in §4.2.5.

• A protocol signature, by analogy to programming languages, des-
ignates a PAT protocol prototype. It is defined as a tuple

PSig := {PType, PArgs}
wherePType designates the type of protocol (i.e.,PType ∈ {ΠEncKeyGen,
ΠEvalKeyGen, ΠDecrypt}), and PArgs denotes the public inputs
(i.e., the arguments) of the protocol. For example, a protocol that
generates a public evaluation key for an operation op is repre-
sented by the signature {ΠEvalKeyGen, op}, while a decryption
of ciphertext is represented by {ΠDecrypt, ctid} where ctid is an
identifier for the ciphertext. A protocol signature constitutes a
description of the functionality of a PAT protocol.

• A protocol descriptor extends a protocol signature with a role
assignment. It is defined as a tuple

PDesc := {PSig, PParticipants, PAggregator}
where is PSig the protocol signature, PParticipants is the set
of 𝑇 session nodes that provide a share in the protocol, and
PAggregator is the identity of the aggregator for this protocol.
The protocol descriptor constitutes an unequivocal description
of a given PAT protocol execution. As such, it can be viewed as
the runtime version of the protocol signature.

4.2.5 Protocol Execution. To execute a PAT protocol with signature
sig, the nodes proceed as follows:

(1) The coordinator picks a set of protocol participants P′ and
a protocol aggregator 𝑃𝐴 . The participants in P′ can be any
online session node (i.e.,P′ ⊆ P) and the aggregator can be
any online and reachable node (i.e., 𝑃𝐴 ∈ P ∪ {H}). Then,
the coordinator sends PDesc = {PSig = sig, PParticipants =

P′, PAggregator = 𝑃𝐴} to all nodes in P′ ∪ {𝑃𝐴}.
(2) Upon receiving PDesc, each protocol participant 𝑃𝑖 ∈ P′ com-

putes its respective share as 𝑣𝑖 = ΠPSig .GenShare(𝑠𝑖 , 𝑎,P′; 𝜒)
and sends it to the aggregator 𝑃𝐴 . The aggregator aggregates
the received shares on-the-fly, with ΠPSig .AggShare.

(3) Upon receiving all the 𝑇 shares for the participants in P′, the
aggregator reports to the coordinator that the protocol has been
completed successfully.

At the end of this execution, any node in the system can, if required,
obtain the output of the PAT protocol by querying the aggregator
for 𝑣agg, and by computing ΠPSig .Finalize(𝑣agg, 𝑎).

6

https://www.rfc-editor.org/rfc/rfc8446

Helium: Scalable MPC among Lightweight Participants and under Churn

Public Polynomials. Note that Step 2 above requires each participant
to obtain the public polynomial 𝑎. We now discuss how this is im-
plemented in our execution flow. Indeed, a tempting solution would
be to pass the protocol’s public polynomial as a protocol argument
in the PSig.PArgs field. This is an unsatisfying solution for two
reasons: The first reason is performance-related: the size of the
polynomial 𝑎 is in the order of kilobytes to megabytes. Sending it as
an argument would make the coordination messages significantly
larger. By keeping the synchronization messages small, we open the
possibility for re-connecting nodes to rebuild the state of the ses-
sion by downloading a concise history of protocol descriptors. We
will exploit this in our helper-assisted setting, in §5.1. The second
reason is security-related: to enable our churn-tolerant mechanism
(described in §4.3) to work securely, public polynomials must be
decoupled from the protocol signature. Instead, we let protocol
participants derive or retrieve the public polynomial 𝑎:

In the decryption protocol, 𝑎 is an element of a ciphertext and we
let the nodes retrieve this element, onlywhen needed, by interacting
with the network. We further discuss this point when we present
the data layer of Helium in §5.3.

In the public-key generation protocols, 𝑎 is sampled from the
CRS, which can be done locally. For the security of PAT protocols
to hold, the public polynomial must not be reused across multiple
protocols, i.e., there must be a fixed mapping between protocols
and fixed, non-overlapping, sections of the CRS. To instantiate
a long enough CRS without having to store it (which would be
very inefficient), we can use the common approach of expanding
it from a keyed PRF that we seed with the session’s public seed
PublicSeed (see §4.2.2). Although this approach is satisfactory for
a monolithic execution [4, 37], it is not in our case. This is because
mapping from protocols to the CRS sections requires taking into
account that (i) new protocols can be executed at any time in our
session-like execution and (ii) that not all nodes are online and
participate in all the protocols. As a consequence, our approach
requires random access to the CRS. To implement this, we branch
the CRS for each protocol: to sample 𝑎 for a protocol with signature
PSig, each participant first computes a protocol public seed as

ProtPubSeed := PublicSeed| |PSig,
where PublicSeed is read from the session parameters (see §4.2.2),
then samples 𝑎 from a keyed PRF seeded with ProtPubSeed.

Liveness and Security under Restricted Churn. Since the coordinator
chooses the protocol participants based on its view of the network,
our execution mechanism ensures liveness as long as at least 𝑇
parties are online. Indeed, this is because we consider a restricted
churn model in which, once the set of protocol participants P′ has
been decided for a given PAT protocol, no participant fails before
providing its share in that protocol. In such an ideal model, we
observe that our mechanism simply emulates a monolithic exe-
cution by running each required protocol once (hence addresses
Challenges 3 and 4 in this model). However, it is indeed unrealistic
to assume anything about the precise time at which a node crashes.
As a consequence, fully addressing Challenges 3 and 4 in our unre-
stricted churn model of §2 requires lifting those assumptions. This
is done in the next section.

4.3 Secure Churn Handling
To address the liveness and security challenges under churn (Chal-
lenges 3 and 4), the protocol must operate correctly regardless of
when participants fail during the PAT protocol execution [36].

Recall that, in the MHE scheme of Mouchet et al. , the set P′ of
protocol participants must be known by the protocol participants
to generate their shares [36]. As a result, any protocol participant
failing before or while providing its share would stale the protocol.
In their work, Mouchet et al. observe that, when such failures are
rare, the solution of simply re-trying the PAT protocol execution is
efficient. However, they leave the exact formulation of this failure-
retry mechanism undefined. We now instantiate this mechanism in
our non-monolithic execution setting.

Protocol Retry Mechanism.Assuming that the coordinator can detect
PAT protocol failures (we discuss how such detection is done in He-
lium in §5), failure handling reduces to the ability of securely retry-
ing protocols. From the semantic perspective, the retry of a protocol
with protocol descriptor PDesc can be naturally expressed in our
execution mechanism of §4.2, by having the coordinator issue a new
protocol descriptor PDesc′ with PDesc.PSig = PDesc′ .PSig (i.e., an
equivalent protocol) and with a different participant set. From the
security perspective, however, there is an important consideration:
Nodes might participate in the same PAT protocol multiple times,
as a result of a re-connection event or as part of a retry. As a conse-
quence, our execution mechanism no longer emulates a monolithic
execution; this requires us to study the security implications of PAT
protocol retries.

Secure Protocol Retries.We must ensure that the additional shares
sent by the parties as part of re-connection and retries do not break
the simulatability of the MHE−MPC protocol. More specifically,
we consider the two failure cases below:
• Failure Case A: A party generates and sends two shares for a PAT

protocol with the public polynomial 𝑎. This is possible when a
participant experiences a failure event during the transmission
of the first share, reconnects before the timeout, and recomputes
and transmits a share for the same protocol. In this case, the
disclosure of both shares _ (P

′)
𝑖

𝑠𝑖𝑎 + 𝑒𝑖 and _ (P
′)

𝑖
𝑠𝑖𝑎 + 𝑒′𝑖 directly

leads to an attackwhere the adversary can average the two shares
to gain information on 𝑠𝑖𝑎.

• Failure Case B: An (insecure) retry mechanism which simply
re-runs the protocol with the same public polynomial 𝑎 but over
a different set of parties P′′. In this case, a participant would
disclose two related shares _ (P

′)
𝑖

𝑠𝑖𝑎 + 𝑒𝑖 and _
(P′′)
𝑖

𝑠𝑖𝑎 + 𝑒′𝑖 , for
which the RLWE secrets are linearly related. As a consequence,
an adversary can distinguish between the two related shares
and two random ring elements by multiplying both shares by
the inverse of their Lagrange coefficient (which can be publicly
computed); this breaks the simulatability of the protocols.
In both cases, security issues arise from disclosing two related

shares. As a consequence, the existing security analysis of the
MHE−MPC protocol [4, 37] would not apply to our executionmech-
anism, because the behavior of our nodes could not be simulated
by an RLWE challenger oracle in these two failure cases. Failure
case A corresponds to the ability of an adversary to rewind the exe-
cution of the oracle and force it to re-output a correlated challenge.

7

Christian Mouchet, Sylvain Chatel, Apostolos Pyrgelis, and Carmela Troncoso

Failure case B corresponds to the ability of the adversary to directly
re-query a correlated challenge.

We first observe that we can exclude both failure cases by re-
quiring that nodes never output two different shares for the same
PAT protocol. Hence, a trivial solution would be to require parties
to write their shares in their persistent storage until the protocol
is completed. Such a solution, however, would not only contradict
the low-persistent memory requirement (see §2) but would also not
prevent failure case B. Instead, we propose to further specify how
PAT protocols sample their randomness, in order to make their exe-
cution completely deterministic (given all the session parameters).

Protocol Private Randomness Initialization. To prevent failure case
A, we make the share of each node deterministic (given the node’s
session parameters) by ensuring that the fresh error terms sampled
during the execution of a PAT protocol (see §4.1) is itself determin-
istic. We achieve this by seeding the PRNG used to sample these
terms, as we discuss below.

We start by re-defining the protocol public seed (formerly intro-
duced in §4.2.5), by integrating the participant set in the seed:

ProtPubSeed := PublicSeed| |PSig| |ℎ(PParticipants),

whereℎ : Powerset(P) → {1, 0}∗ is an injective function that maps
participant lists to bit-strings (recall that PublicSeed is loaded from
the session parameters, and PSig is the protocol’s signature see
§4.2.2). This seed is unique for each possible PAT protocol instance
and can be publicly computed. Then, by concatenating the protocol
public seed with the session private seed of the session node 𝑃𝑖 , we
obtain the node’s protocol secret seed:

ProtSecSeed𝑖 := PrivateSeed𝑖 | |ProtPubSeed,

that the session nodes use as a private randomness source to sample
error terms in a given protocol instance. Through this initialization,
all participants use fresh secret values when generating their shares
for each protocol and they never output two different shares for
the same protocol in the same session.

Protocol Public Randomness Initialization. To prevent failure case B,
common random polynomials must be fresh for each protocol exe-
cution. This requires accounting for two cases: when these public
polynomials are sampled from the CRS (i.e., in the key-generation
protocols of the Setup phase) and when they are elements of ci-
phertexts (i.e., in the decryption step of the Compute phase).

In the CRS sampling case, we let the parties sample the pub-
lic polynomial by reading from a keyed PRF initialized with the
newly redefined protocol public seed ProtPubSeed. Observe that
the corresponding protocol public seed produces different public
polynomials for each retry, since retries are new protocols with
the same signature yet a different set of participants. Also, note
that retries with the same participant set as in the original (failed)
protocol are not excluded by our mechanism. From the security
standpoint, this case is equivalent to that of having all participants
of the original protocol re-send their shares, which is covered by
preventing failure case A.

In the decryption protocol case, protocols operate on an input
ciphertext (𝑐0, 𝑐1) by producing one or multiple shares of the form
𝑠𝑐1 + 𝑒 for some secret polynomials 𝑠 and 𝑒 (i.e., samples from the
RLWE distribution). Since we cannot simply sample a different 𝑐1

element for each protocol retry (because 𝑐1 is taken from the ci-
phertext), we propose a mechanism to re-randomize the ciphertext.

The homomorphic property ofMHE schemes enables re-randomization
of ciphertexts through the homomorphic addition of the cipher-
text to re-randomize with a fresh encryption of zero. Such a zero-
encrypting ciphertext can be generated from the session’s public
key cpk, by running the MHE.Encrypt algorithm. This leads to a
simple approach where a designated node (e.g., the coordinator) can
generate a new re-randomized ciphertext for each retry. Yet, this is
unsatisfactory because it would require sending this new cipher-
text to the participants at each retry. Instead, we employ a more
efficient solution: We let the parties re-randomize the ciphertext
non-interactively, by running the MHE.Encrypt over the common
random string. More specifically, the parties sample the secret poly-
nomials required by the encryption algorithm from a keyed PRF
initialized with the protocol public seed ProtPubSeed. The security
of using a publicly re-randomized ciphertext to generate RLWE
samples follows from Lemma 4 in [8].

4.4 Addressing Practical Challenges
We now summarise how the PAT execution mechanism presented
in this section addresses the challenges of §3.2.

Non-monolithic Execution (Challenge 1). Our execution mechanism
enables a node to run PAT protocols independently, within a defined
session. As a result, the nodes can adapt the execution to the current
condition of the network, by running the protocols in a streamlined
fashion and by limiting the number of concurrent protocols.

Resource-Constrained Nodes (Challenge 2). The aggregator assumes
most of the overhead of a PAT protocol execution, as it receives
and aggregates the 𝑇 shares. On the protocol participant side, the
network overhead for each PAT protocol is constant and their com-
putation overhead only weakly depends on 𝑁 and𝑇 [36]. Moreover,
the critical state that the session nodes have to store reliably, i.e., the
session parameters (see §4.2.2), is also compact: its size is dominated
by the node’s secret-key share, which is a single polynomial in R.

Liveness and Security under Churn (Challenges 3 and 4). Our ex-
ecution mechanism enables nodes to re-execute a failed or stale
PAT protocol. As a result, achieving liveness under churn for the
full protocol simply requires us to define a policy for when PAT
protocols should be retried. Hence, the last step towards a complete
implementation of the MHE−MPC protocol is to instantiate this
execution mechanism and to complement it with homomorphic
circuit evaluation capabilities.

5 HELIUM
We introduce Helium, an end-to-end implementation of the full
MHE−MPC protocol (Protocol 1) that addresses the challenges
described in §3.2. Helium instantiates the PAT protocol execution
mechanism of §4 in the helper-assisted setting, complementing it
with circuit evaluation capabilities.

Aggregator and Coordinator. In Helium, we let the helper node 𝐻
assume the roles of the aggregator and the coordinator in the PAT
protocol execution (see §4.2). Recall that we assume this node to be
highly reliable in terms of availability, but a passive adversary in

8

Helium: Scalable MPC among Lightweight Participants and under Churn

terms of threat model. This design choice brings several advantages:
(i) it enables resource constraint nodes to keep optimal, constant
overhead by offloading the bulk of the protocol’s overhead (i.e., the
reception and aggregation of𝑇 shares) to a powerful machine, (ii) it
centralizes all the coordination and all the non-security-critical state
storage to a single node, which considerably benefits practicality
and ease of deployment, and yet (iii) it keeps all the security-critical
state (i.e., the session parameters) decentralized, which ensures
input-privacy relying on cryptographic assumptions rather than
trust. Indeed, the assumption of a reliable (yet curious) node is
easy to realize nowadays, as availability and reliability are the core
features ensured by cloud-computing services.

Two-Services: Setup and Compute. Helium relies on a two-services
design: The Setup service implements the Setup phase. The nodes
query the Setup service to obtain public keys for encryption and
evaluation (i.e., cpk and evk in Protocol 1, respectively). We describe
this service in §5.2. The Compute service implements the Compute
phase. It offers an interface for the user-application to evaluate
circuits. We describe this service in §5.3. To execute the various
PAT protocols required for their functionality, both the Setup and
Compute services query a protocol layer, that we describe next.

5.1 Protocol Layer
We now specify how Helium instantiates the PAT protocol exe-
cution mechanism of §4 in the helper-assisted setting. In essence,
the helper manages a queue of protocol signatures to be executed,
which we denote SigQueue. To coordinate the execution of those
protocols, the helper manages a public log PLog of synchroniza-
tion messages of the form: SynMsg := {PDesc, PStatus}, where
PDesc is a protocol descriptor and PStatus ∈ {Started, Completed,
Failed} is a status indicator for the protocol defined by PDesc. This
log enables the session nodes to have a complete view of the ses-
sion’s progress. The helper can orchestrate execution by appending
synchronization messages to PLog.

Figure 1 details the helper-assisted execution, for the session
nodes (left) and the helper node (right). The execution consists of an
initialization routine, Initialize, and three non-terminating routines:
Coordinate, ExecutePAT, and Interface, which are executed by all
nodes. Coordinate processes the protocol log PLog, and sends tasks
(i.e.,PAT protocol descriptors) to ExecutePAT. Interface handles re-
quests from the Setup and Compute services.

Workload Control. In Helium, nodes control the workload by setting
a limit on the number of concurrently executing PAT protocols. The
helper manages its own workload by controlling the pace at which
the Coordinate picks new signatures from SigQueue. It should set
this limit to a manageable memory overhead (for storing one ag-
gregated share per protocol) and inbound traffic (for receiving the
𝑇 shares). The session nodes manage their workload by control-
ling the pace at which the ExecutePAT picks protocol descriptors
from its queue. They should set this limit so that they have enough
memory to store one share per protocol.

Failure Handling. The Coordinate routine implements the failure-
retry mechanism. It is parameterized by a protocol completion dead-
line PDeadline, which corresponds to the time after which a non-
completed protocol is considered stale.When idle,Coordinate looks

for stale protocols and re-queues their signatures to launch a retry
of their execution. Thanks to the PAT formalism and the techniques
described in §4.3, retries can be seen as equivalent, yet uncorrelated,
protocols, and hence are secure to execute. Helium implements
a simple approach where the helper marks the stale protocol as
Failed before re-queuing it, even though it is (in theory) possible
that the protocol completes before its retry. In practice, however,
since the routine is idling when scheduling retries, the retry is likely
to be executed immediately. The rationale for scheduling retries
in idle periods rather than enforcing a strict deadline for protocol
completion is that failed nodes can reconnect before the session
stops making progress due to stale protocols. Hence, to avoid the
additional cost of a retry, it is better to wait until no more progress
can be made before triggering a new execution. The session node’s
Initialize routine also plays a role in failure handling. It reconstructs
the protocol state for a node (re-)connecting to a session (for the
first time or after a crash). Because shares are deterministic given a
party’s session parameters, PAT protocols are resettable, and exe-
cuting them after a stateless restart does not compromise security.

5.2 The Setup Service
The Setup service offers an interface for obtaining the public keys
required to encrypt and evaluate circuits within the session, i.e., it
fulfills the role of the Setup phase of the MHE−MPC. To generate
or retrieve public keys, the Setup service acts as a translation layer
over the protocol layer: It translates the queried-key’s type into
the signature PSig of the protocol that generates this key in the
MHE scheme. Then, the service submits PSig to the Interface of the
protocol layer, waits for the result (i.e., the public key), and returns
it. For example, when queried for the collective public key cpk,
the service queries PSig = {PType = EncKeyGen, PArgs = ()} to
the protocol layers and return the returned cpk. When queried for
the evaluation key of operation op, the service queries for PSig =

{PType = EvalKeyGen, PArgs = (op)} and returns the returned
evkop.

Persistence. In practical implementations, the service can provide
more functionality. For instance, it can cache into session nodes
persistence storage the result of relevant PAT to reduce the network
overhead at initialization. For example, nodes might cache the result
of the ΠEncKeyGen protocol as they will use this collective public
key to encrypt their inputs throughout execution. Conversely, re-
sults from the ΠEvalKeyGen protocols are not used by the session
nodes (as the helper evaluates the whole homomorphic evaluation
circuit), and hence should not be cached. Note that, when caching
the results of key-generation PAT protocols, the nodes can simply
store the aggregated share (agg in Figure 1) along with the protocol
descriptor. Then, they can reconstruct the result from the public
seed, the protocol descriptor, and the Finalize method for that pro-
tocol. We note that persistence is not necessary for nodes to safely
and efficiently restart from the session parameters (§2).

5.3 The Compute Service
The Compute service offers an interface to execute circuits. It im-
plements most of Helium’s user-facing interface, fulfilling the role
of theMHE−MPC Compute phase (see §3).

9

Christian Mouchet, Sylvain Chatel, Apostolos Pyrgelis, and Carmela Troncoso

Initialize
Session Node 𝑃𝑖 Helper Node

• load the session parameters and initialize an empty PLog
• query the helper for PLog messages until present
• for each non-completed, non-failed PDesc in PLog:

if 𝑃𝑖 ∈ PDesc.PParticipants: send PDesc to Execution

• load the public session parameters
• initialize SigQueue, PLog
• initialize a key-value store ResTable

Coordinate
Session Node 𝑃𝑖 Helper Node
Upon new SynMsg = {PDesc, PStatus}:

if PStatus = Started and 𝑃𝑖 ∈ PDesc.PParticipants :
send PDesc to the Execution routine

• append SynMsg to PLog

Upon new signature sig from queue:
• pick P′ from the set of online nodes
• append SynMsg={PDesc={sig, P′ }, PStatus=Started} to PLog

Upon idle:
• lookup the oldest non-completed PDesc in PLog
if PDesc started for longer than PDeadline:

• append SynMsg={PDesc, PStatus=Failed} to PLog
• put PDesc.PSig back in SigQueue

ExecutePAT
Session Node 𝑃𝑖 Helper Node
Upon new PDesc = {sig, P′ }:

if sig ∈ {EncKeyGen, EvalKeyGen}: compute 𝑎 = CRS(PDesc)
else if sig = Decrypt: retrieve 𝑎 from the helper
send Πsig .GenShare(𝑠𝑖 , 𝑎, P′) to the helper

Upon new PDesc = {sig, P′ }:
• collect the𝑇 shares from P′ and set agg = Πsig .AggShare
• set ResTable[PDesc] = agg.
• append SynMsg={PDesc, PStatus=Completed} to PLog

Upon query PDesc from a session node:
return agg = ResTable[PDesc] to the node.

Interface
Session Node 𝑃𝑖 Helper Node
Upon query sig from a service:

• retrieve the latest completed PDesc for sig in PLog or wait
• query agg from the helper node
if sig ∈ {EncKeyGen, EvalKeyGen}: compute 𝑎 = CRS(PDesc)
else if sig = Decrypt: retrieve 𝑎 from the helper
return Πsig .Finalize(agg, 𝑎) to the service

Upon query sig from a service:
if no completed PDesc for sig is in PLog:

• put sig in SigQueue and wait
• retrieve agg from the ResTable[PDesc].
if sig ∈ {EncKeyGen, EvalKeyGen}: compute 𝑎 = CRS(PDesc)
else if sig = Decrypt: retrieve 𝑎 from the ciphertext table
return Πsig .Finalize(agg, 𝑎) to the service

Figure 1: Psdeudo-code description of the helper-assisted execution in Helium.

The interface of theCompute service lets the user-application reg-
ister circuits of the form: {CName,CDef},whereCName is a string
identifier for the circuit and CDef is the circuit definition (i.e., a rep-
resentation of the function 𝑓 the application wants to compute) in
a Helium-readable format (we provide more detail on circuit repre-
sentations in §5.3.1). After circuit registration, the Compute service
interface lets the user-application submit circuit evaluation requests
in the form of a circuit signature: CSig := {CName,CID,CRecvr},
where CName is a registered circuit name, CID is a unique iden-
tifier for that circuit execution, and CRecvr is the identity of the
designated output receiver. Then, the service of this receiver node
outputs the plaintext computation result.

Service Execution. The circuit execution mechanism is similar to
the protocol layer of §5.1. The helper node holds a queue of circuit
signatures and maintains a log of started and completed circuits. By
tracking this log, the session nodes can send their encrypted inputs
when required. To obtain the required public keys, the Compute
service makes queries to the Setup service.

At the session nodes, the Compute service queries the public
encryption key cpk from the Setup service and then tracks the
circuit execution log. Upon receiving a circuit signature CSig :=
{CName,CID,CRecvr}, it encrypts the node’s input with the cpk,

then sends the inputs to the helper node. Then, if 𝑃𝑖 = CRecvr, the
service waits for a completion message in the log and queries the
helper for the result.

At the helper node, the Compute service queries the public eval-
uation key evkop for each op required in the registered circuit(s). In
parallel, it triggers the execution of circuit by circuit signatures to
the circuit execution log. To decrypt the outputs, the Compute
service queries the protocol layer with signatures of the form
PSig = {PType = Decrypt, PArgs = (CTLabel)}, where CTLabel
is a label is a unique identifier in Helium’s data layer (see below)
that corresponds to the ciphertext to decrypt.

Data Layer. All inputs and output values in Helium circuits are
MHE ciphertexts, and Helium uses a unique identifier for each of
these ciphertexts. Hence, the data layer of Helium consists of key-
value store that is hosted at the helper, and a traditional put and
get interface (e.g.,HTTP, FTP, or more advanced RPC protocols) for
parties to upload their inputs and download their results.

The ability to exploit existing paradigms for our data layer is a
considerable advantage of the MHE-based MPC approach. Indeed,
whereas traditional MPC solutions based on secret-sharing of the
data fundamentally require interaction among 𝑁 parties for each
input wire and among 𝑇 parties for each output wire, both input

10

Helium: Scalable MPC among Lightweight Participants and under Churn

1 func(sess helium.Session) {
2 // read the nodes ' inputs
3 op1 := sess.Input("//node -a/in")
4 op2 := sess.Input("//node -b/in")
5
6 // multiply the inputs
7 res := sess.MulNew(op1 , op2)
8 sess.Relinearize(res , res)
9
10 // decrypt and output the result
11 resDec := sess.Decrypt(res)
12 sess.Output("/out", resDec)
13 }

Listing 1: The Helium program for two-party component-
wise vector multiplication.

and output MHE ciphertexts can be retrieved in a single interaction.
To further exploit this advantage Helium uses a URI scheme as
ciphertext identifier, which we describe in Appendix B.

5.3.1 Circuit Representation. As for any MPC system, the evalu-
ation mechanism takes as input the representation of the target
circuit in some language and acts as an (interactive) interpreter for
this language. In the case of MHE-based MPC, the circuit is simply
a traditional HE circuit, with extra labels on the input and output
wires to designate the providers and receivers, respectively. At this
time, there exists no well-established language that is specifically
designed to represent HE circuits. Thus, for our current imple-
mentation, we provide the user application with a Go interface
for building MHE circuits. This interface (named helium.Session)
exposes the usual HE operations (in our case, those provided by
the Lattigo library interface), as well as IO primitives (i.e., labeled
input and output gates). Listing 1 provides an example of a simple
Helium program for computing a component-wise vector product
between two parties.

The Go-interface-based approach has three benefits: First, we
do not need to implement a specific interpreter. Instead, Helium
exploits Go’s execution directly. Second, we enable the user appli-
cation to fully control the circuit execution flow, including exploit-
ing Go’s built-in parallelism primitives and hardware accelerators.
Third, it does not preclude the user from designing their own lan-
guage and interpreter, as long as this can be initialized and executed
from a Go function.

6 IMPLEMENTATION AND EVALUATION
We implemented Helium in Go.3 We rely on the Lattigo library [26]
for the cryptographic operations and on the gRPC framework4
for the transport and service layers. The gRPC framework offers a
remote procedure calls (RPC) abstraction, which is ideal for capturing
and expressing the interactions among the nodes. This is because
ourMHE−MPC protocol executionmechanism requires only client-
server interactions in single-round protocols and server-to-client
streaming for the synchronization messages. Our implementation
also lets the user provide its own transport layer (through a generic
interface) if the user application already has its own.

Our experimental evaluation has two parts. In §6.1, we bench-
markHelium in a networkwith low bandwidth andmemory-limited
3https://golang.org
4https://grpc.io

clients, but without any churn yet. This enables us to run another
MPC framework based on LSSS in the same setting and use it as
a comparison baseline. In §6.2, we benchmark the performance of
Helium under churn.

Experimental Setup. We use Docker containers5 to run all nodes
over two machines with Intel Xeon E5-2680 v3 processors (2.5 GHz,
2×12 cores), 256 GB of RAM, and connected using a LAN network
of 30Gbits/sec. with a latency of 0.1ms. All containers executing
the session nodes are running on the first machine, and the helper
node runs on the second machine. At initialization, each session
node 𝑃𝑖 is started with an already established session SessParams𝑖
(see §4.2.2), but no PAT protocol has been run yet (i.e., no key has
been generated yet). The helper node is initialized with the session
public parameters. To simulate low-end network conditions, we
limit the egress and ingress traffic of each container individually to
100Mbits and introduce an artificial delay of 30ms. We also limit
the memory assigned to each session node’s container to 128MB.

MPC Task. We consider the task of a matrix-vector multiplication
over a prime field. More specifically, we consider a scenario where
the parties collectively hold a secret 512×512 matrix𝑀 , and a single
party 𝑃0 wants to obtain the product 𝑦 = 𝑀𝑥0 for some private
input 𝑥0. For example, the 𝑀 could be a linear model trained in
a previously executed MPC task, and our considered MPC tasks
correspond to evaluating this model over some private inputs 𝑥0.
In Helium, the helper already holds a collectively encrypted matrix
𝑀 . In the LSSS baseline, the parties hold their shares of𝑀 .

Parameters. We consider the BGV scheme with a ring degree of 212
and a coefficient size of 109 bits. According to the current estimates,
this corresponds to a security of 128 bits [1]. We use a 16-bit prime
(79873) as our plaintext modulus.

6.1 Experiment I: Lightweightness & Scalability
In this experiment, we evaluate Helium’s execution when there
is a large number of resource-constraints participants. We do not
consider any churn and set the threshold to 𝑇 = 𝑁 , and thus we
can use an existing LSSS-based MPC implementation as a baseline.
More specifically, we consider the semi-honest, dishonest major-
ity protocols implemented in the MP-SPDZ library [32] at v0.3.6.
Figure 2 shows the wall time and network traffic per circuit evalua-
tion (i.e., per matrix-vector multiplication), at party 𝑃0: the result
receiver. For comparison, we also show the per-circuit cost for the
LSSS-based MPC protocols. We observe that Helium achieves its
scalability and lightweightness goals. This is mainly due to the
properties of the MHE-based MPC protocol for which the network
cost does not depend on 𝑁 . We also observe that the setup latency
and time per circuit evaluation have a very weak dependency on
𝑁 , because the network communication still dominates the cost of
aggregating the 𝑁 shares in the PAT protocols.

6.2 Experiment II: Churn Tolerance
In this second experiment, we evaluate the performance of Helium
under churn. We consider the same circuit and parameter as in the
first experiment, yet this time for a computation among 𝑁 = 30

5https://docker.com

11

https://golang.org
https://grpc.io
https://docker.com

Christian Mouchet, Sylvain Chatel, Apostolos Pyrgelis, and Carmela Troncoso

2 4 6 8 10N =
0

50

100

150

200
[Sec]

Time per circuit

2 4 6 8 10
0

1

2

3
[GB]

Com. per circuit

Helium Hemi Semi Soho Temi

Figure 2: Cost per matrix-vector multiplication. Time (left)
and per-party communication (right) for an increasing num-
ber of session nodes and several MPC implementations.
Hemi, Semi, Soho, and Temi, refer to the semi-honest proto-
cols implemented in MP-SPDZ [32]. Average over 10 runs.

0

100

200

[Sec]
Setup Phase

0 10 20 30 40 50 60 [Fail.
min]

0.0

0.2

0.4

0.6

[Sec]
Compute Phase

T = 10, measured
T = 10, ideal
E[Online] < 10

T = 16, measured
T = 16, ideal
E[Online] < 16

T = 20, measured
T = 20, ideal
E[Online] < 20

Figure 3: Setup phase latency (up) and average time per
matrix-vector multiplication (down) for increasing failure
rates. For 𝑁 = 30 parties. Average over 10 runs.

session nodes. To the best of our knowledge, no MPC framework
available to date supports churning parties. Moreover, 30-party
computation would take a significant amount of time for LSSS-
based systems even without churn. We therefore analyze our results
compared to theoretical baselines.

For this experiment, we consider a Markovian failure-recovery
model in which the nodes have a fixed probability to fail (respec-
tively, re-connect) at each epoch, independently. We denote this
probability _𝑓 (respectively, _𝑟). A property of this model is that
the expected number of online nodes converges over time to an
equilibrium 𝐸 [𝑁𝑜𝑛𝑙𝑖𝑛𝑒] = 𝑁

_𝑟
_𝑓 +_𝑟 . To map our failure model (see

§2), we can compute the system-wide failure rate (at equilibrium) as
Λ𝑓 = _𝑓 ·𝐸 [𝑁𝑜𝑛𝑙𝑖𝑛𝑒]. We start all experiments with a random set of
𝐸 [𝑁𝑜𝑛𝑙𝑖𝑛𝑒] online nodes. To simulate failures and re-connections,
we kill and restart the containers on the session nodes.

Figure 3 shows the performance of Helium for a system of𝑁 = 30
nodes, an increasing system-wide failure rate, and a fixed average
re-connection time _−1𝑟 = 20 [sec]. As a theoretical baseline, we
consider the ideal execution time: the measured execution time for
fixed 𝑁𝑜𝑛𝑙𝑖𝑛𝑒 = 𝑇 (i.e., the churn-free execution time), divided by
𝑃𝑟 [𝑁𝑜𝑛𝑙𝑖𝑛𝑒 ≥ 𝑇] (i.e., the expected fraction of time for which the
system has at least 𝑇 online nodes). For our churn model, we have
𝑃𝑟 [𝑁𝑜𝑛𝑙𝑖𝑛𝑒 ≥ 𝑇] =

∑𝑇−1
𝑡=0

(𝑁
𝑡

)
(_𝑟
_𝑓 +_𝑟)

𝑡 (1 − _𝑟
_𝑓 +_𝑟)

𝑁−𝑡 .
We observe that Helium successfully satisfies the churn-tolerance

requirement of §2: For failure rates below the 𝐸 [𝑁𝑜𝑛𝑙𝑖𝑛𝑒] ≥ 𝑇

threshold (plotted as dashed lines), we observe that the latency is
close to the ideal one. Furthermore, whenever Pr[𝑁𝑜𝑛𝑙𝑖𝑛𝑒 ≥ 𝑇] is
close to zero, the latency is close to linear in the failure rate with
a very small slope. This is because few parties’ failures actually
cause a PAT protocol failure (as the crashing parties might have
already provided their shares or might not be involved at all in
the currently running protocols). This observation is corroborated
by the fact that the factor increases with 𝑇 (which increases the
probability that a given party participates in a given protocol).

6.3 Discussion
In both experiments, we demonstrate a new level of practicality for
MPC. In Experiment I, we show that the Helium scales to large num-
bers of parties, even when these parties are resource-constrained
or have limited connectivity. This is mainly due to the properties of
the MHE-based MPC protocol and Helium’s helper-assisted setting.
In Experiment II, we show that our system can handle churn, which
is an inevitable concern for systems with a large number of nodes.
We demonstrate that our failure-handling mechanism enables high
churn rates (i.e., in the order of one failure/re-connection per sec-
ond) and, thus, enables performing MPC tasks live whenever the
expected number of online nodes is above the threshold.

7 RELATEDWORK
Secure Multiparty Computation. Resilience to crashes and discon-
nections is a fundamental problem in MPC. Prior theoretical works
have proposed solutions to this problem by relying on techniques
such as Shamir’s secret sharing and error correcting codes which
ensure that honest parties obtain the correct output of the MPC
functionality [6, 20–23, 28] or that a dynamic set of participants
can execute the computation task (known as fluid MPC) [15, 40].
Although these works generally consider stricter security models
(e.g., covert and active security), it is still unclear how feasible their
implementation is in practice. A notable exception is HoneyBad-
gerMPC and AsynchroMix [33], which has a public implementation.
However, it assumes a reliably-performed offline phase and its focus
onmalicious security makes it incompatible with lightweight partic-
ipants. Other existing MPC implementations such as MP-SPDZ [32],
MOTION [9], and HyperMPC [5], do not provide satisfactory solu-
tions for MPC under churn in the general case: they do not tolerate
node disconnections, and their execution requires high bandwidth
and memory requirements for the participants (even in the absence
of churn). To circumvent these limitations, most of the practical
uses of MPC techniques to date introduce non-cryptographic as-
sumptions such as non-collusion between a smaller number of
servers [18, 25, 35]. While Helium also uses delegation to achieve

12

Helium: Scalable MPC among Lightweight Participants and under Churn

sub-linear costs for the participants, it solely relies on cryptographic
assumptions to do so in the plain honest-but-curious model.

Verifiable (M)HE. Recently, significant advances have been made
in verification techniques for MHE operations [12], HE encryp-
tion [13], and HE evaluation [2, 11, 47]. As the overheads of these
methods are still out of reach for resource-constrained participants,
integrating them in Helium is an interesting avenue for future work
to extend it beyond the passive adversary setting.

8 CONCLUSION
Deploying MPC protocols in practice is notoriously challenging.
Existing MPC frameworks require a large bandwidth and assume
high availability of the participants. Helium is a significant leap
toward practical MPC, as it enables scalable, lightweight, and churn-
resistant MPC in challenging environments. Moreover, Helium is
a milestone for the study of MHE-based MPC. This work is, to
the best of our knowledge, the first one to consider the security
implication of failures in RLWE-based MHE systems, and it stands
out as their first open-source end-to-end implementation.

REFERENCES
[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[2] Diego F. Aranha, Anamaria Costache, Antonio Guimaraes, and Eduardo Soria
Vazquez. 2024. A Practical Framework for Verifiable Computation over Encrypted
Data. https://fhe.org/conferences/conference-2024/ 3rd Annual FHE.org Confer-
ence on Fully Homomorphic Encryption ; Conference date: 24-03-2024 Through
24-03-2024.

[3] David W Archer, José Manuel Calderón Trilla, Jason Dagit, Alex Malozemoff,
Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. 2019. Ramparts: A programmer-
friendly system for building homomorphic encryption applications. In Proceed-
ings of the 7th acm workshop on encrypted computing & applied homomorphic
cryptography. 57–68.

[4] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. 2012. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In Advances in
Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings 31. Springer, 483–501.

[5] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. 2018. An end-to-end
system for large scale P2P MPC-as-a-service and low-bandwidth MPC for weak
participants. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 695–712.

[6] Zuzana Beerliová-Trubíniová and Martin Hirt. 2008. Perfectly-secure MPC
with linear communication complexity. In Theory of Cryptography Conference.
Springer, 213–230.

[7] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. 2015. How the
estonian tax and customs board evaluated a tax fraud detection system based
on secure multi-party computation. In International Conference on Financial
Cryptography and Data Security. Springer, 227–234.

[8] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Fully homomorphic encryp-
tion from ring-LWE and security for key dependent messages. In Advances in
Cryptology–CRYPTO 2011: 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings 31. Springer, 505–524.

[9] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko.
2022. Motion–a framework for mixed-protocol multi-party computation. ACM
Transactions on Privacy and Security 25, 2 (2022), 1–35.

[10] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. 2015. Armadillo: a compilation
chain for privacy preserving applications. In Proceedings of the 3rd International
Workshop on Security in Cloud Computing. 13–19.

[11] Sylvain Chatel, Christian Knabenhans, Apostolos Pyrgelis, and Jean-Pierre
Hubaux. 2022. Verifiable Encodings for Secure Homomorphic Analytics. arXiv
preprint arXiv:2207.14071 (2022).

[12] Sylvain Chatel, Christian Mouchet, Ali Utkan Sahin, Apostolos Pyrgelis,
Carmela Troncoso, and Jean-Pierre Hubaux. 2023. PELTA - Shielding
Multiparty-FHE against Malicious Adversaries. In Proceedings of the 2023 ACM

SIGSAC Conference on Computer and Communications Security (<conf-loc>,
<city>Copenhagen</city>, <country>Denmark</country>, </conf-loc>) (CCS
’23). Association for Computing Machinery, New York, NY, USA, 711–725.
https://doi.org/10.1145/3576915.3623139

[13] Sylvain Chatel, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, and Jean-
Pierre Hubaux. 2021. Privacy and Integrity Preserving Computations with CRISP.
In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,
2111–2128. https://www.usenix.org/conference/usenixsecurity21/presentation/
chatel

[14] Eduardo Chielle, Oleg Mazonka, Homer Gamil, Nektarios Georgios Tsoutsos,
and Michail Maniatakos. 2018. E3: A framework for compiling C++ programs
with encrypted operands. Cryptology ePrint Archive (2018).

[15] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel
Kaptchuk. 2021. Fluid MPC: secure multiparty computation with dynamic par-
ticipants. In Advances in Cryptology–CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceed-
ings, Part II 41. Springer, 94–123.

[16] Ashish Choudhury, Martin Hirt, and Arpita Patra. 2013. Asynchronous multi-
party computation with linear communication complexity. In Distributed Com-
puting: 27th International Symposium, DISC 2013, Jerusalem, Israel, October 14-18,
2013. Proceedings 27. Springer, 388–402.

[17] Ashish Choudhury and Arpita Patra. 2015. Optimally resilient asynchronous
MPC with linear communication complexity. In Proceedings of the 16th Interna-
tional Conference on Distributed Computing and Networking (ICDCN). 1–10.

[18] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, robust, and scalable
computation of aggregate statistics. In 14th Symposium on Networked Systems
Design and Implementation (NSDI 17). 259–282.

[19] Eric Crockett, Chris Peikert, and Chad Sharp. 2018. Alchemy: A language and
compiler for homomorphic encryption made easy. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. 1020–1037.

[20] Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou. 2021. Phoenix:
Secure computation in an unstable network with dropouts and comebacks. Cryp-
tology ePrint Archive (2021).

[21] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. 2009.
Asynchronous multiparty computation: Theory and implementation. In Public
Key Cryptography–PKC 2009: 12th International Conference on Practice and Theory
in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings 12.
Springer, 160–179.

[22] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. 2010. Perfectly secure multi-
party computation and the computational overhead of cryptography. In Annual
international conference on the theory and applications of cryptographic techniques.
Springer, 445–465.

[23] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and unconditionally
secure multiparty computation. In Annual International Cryptology Conference.
Springer, 572–590.

[24] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and
Madan Musuvathi. 2020. EVA: An encrypted vector arithmetic language and
compiler for efficient homomorphic computation. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation. 546–
561.

[25] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In NDSS.

[26] EPFL-LDS, Tune Insight SA. 2023. Lattigo v4. Online: https://github.com/
tuneinsight/lattigo.

[27] David Froelicher, Hyunghoon Cho, Manaswitha Edupalli, Joao Sa Sousa, Jean-
Philippe Bossuat, Apostolos Pyrgelis, Juan R Troncoso-Pastoriza, Bonnie Berger,
and Jean-Pierre Hubaux. 2022. Scalable and Privacy-Preserving Federated Prin-
cipal Component Analysis. In 2023 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 888–905.

[28] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,
Tal Rabin, and Sophia Yakoubov. 2021. YOSO: You Only Speak Once: Secure MPC
with Stateless Ephemeral Roles. In Annual International Cryptology Conference.
Springer, 64–93.

[29] Vipul Goyal and Amit Sahai. 2009. Resettably secure computation. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 54–71.

[30] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. 2019.
SoK: General purpose compilers for secure multi-party computation. In 2019
IEEE symposium on security and privacy (SP). IEEE, 1220–1237.

[31] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. 1995. Proac-
tive secret sharing or: How to cope with perpetual leakage. In Advances in
Cryptology—CRYPT0’95: 15th Annual International Cryptology Conference Santa
Barbara, California, USA, August 27–31, 1995 Proceedings 15. Springer, 339–352.

[32] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party com-
putation. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 1575–1590.

13

https://fhe.org/conferences/conference-2024/
https://doi.org/10.1145/3576915.3623139
https://www.usenix.org/conference/usenixsecurity21/presentation/chatel
https://www.usenix.org/conference/usenixsecurity21/presentation/chatel
https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo

Christian Mouchet, Sylvain Chatel, Apostolos Pyrgelis, and Carmela Troncoso

[33] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical asyn-
chronous MPC and its application to anonymous communication. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
887–903.

[34] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices and
Learning with Errors over Rings. In Advances in Cryptology–EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, French Riviera, May 30-June 3, 2010, Proceedings, Vol. 6110.
Springer, 1.

[35] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable
privacy-preserving machine learning. In 2017 38th IEEE Symposium on Security
and Privacy (SP). IEEE, 19–38.

[36] Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. 2023. An Effi-
cient Threshold Access-Structure for RLWE-Based Multiparty Homomorphic
Encryption. Journal of Cryptology 36 (2023).

[37] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-
Pierre Hubaux. 2021. Multiparty Homomorphic Encryption from Ring-Learning-
with-Errors. Proceedings on Privacy Enhancing Technologies 4 (2021), 291–311.

[38] Jeongeun Park. 2021. Homomorphic encryption for multiple users with less
communications. IEEE Access 9 (2021), 135915–135926.

[39] Antigoni Polychroniadou, Gilad Asharov, Benjamin Diamond, Tucker Balch,
Hans Buehler, Richard Hua, Suwen Gu, Greg Gimler, and Manuela Veloso. 2023.
Prime Match: A Privacy-Preserving Inventory Matching System. Cryptology
ePrint Archive (2023).

[40] Rahul Rachuri and Peter Scholl. 2022. Le mans: Dynamic and fluid MPC for
dishonest majority. In Annual International Cryptology Conference. Springer,
719–749.

[41] Dragos, Rotaru. 2017. awesome-mpc. https://github.com/rdragos/awesome-mpc.
[42] Sinem Sav, Jean-Philippe Bossuat, Juan R Troncoso-Pastoriza, Manfred Claassen,

and Jean-Pierre Hubaux. 2022. Privacy-preserving federated neural network
learning for disease-associated cell classification. Patterns 3, 5 (2022), 100487.

[43] Sinem Sav, Abdulrahman Diaa, Apostolos Pyrgelis, Jean-Philippe Bossuat, and
Jean-Pierre Hubaux. 2022. Privacy-Preserving Federated Recurrent Neural Net-
works. arXiv preprint arXiv:2207.13947 (2022).

[44] Sinem Sav, Apostolos Pyrgelis, Juan R Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. 2021. POSEIDON:
Privacy-preserving federated neural network learning. 28th Annual Network and
Distributed System Security Symposium (2021).

[45] Amos Treiber, Dirk Müllmann, Thomas Schneider, and Indra Spiecker genannt
Döhmann. 2022. Data Protection Law and Multi-Party Computation: Applica-
tions to Information Exchange between Law Enforcement Agencies. In Proceed-
ings of the 21st Workshop on Privacy in the Electronic Society. 69–82.

[46] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. 2023.
{HECO}: Fully Homomorphic Encryption Compiler. In 32nd USENIX Security
Symposium (USENIX Security 23). 4715–4732.

[47] Alexander Viand, Christian Knabenhans, and Anwar Hithnawi. 2023. Verifiable
fully homomorphic encryption. arXiv preprint arXiv:2301.07041 (2023).

A MHE SEMANTICS
Let P be a set of 𝑁 parties, and let the threshold 𝑇 be the size
of the smallest subset of P that is guaranteed to contain at least
one honest party. Given a plaintext space with arithmetic structure
M, an MHE scheme over P andM is a tuple of algorithms and
multiparty protocolsMHE = (GenParam, ΠSecKeyGen, ΠEncKeyGen,
ΠEvalKeyGen, Encrypt, Eval, ΠDecrypt) whose elements have the fol-
lowing syntax and semantic:

- Public parameters gen.: 𝑝𝑝 ← GenParam(_, ^,P,𝑇 , F)
Given the security parameter _ and the homomorphic capacity
parameter ^ , the identities of the set of parties in P, the threshold
𝑇 , and a set F of arithmetic functions 𝑓 :M𝐼 →M, GenParam
outputs a public parameterization 𝑝𝑝 . This parameterization is
an implicit argument to the following algorithms and protocols.

- Secret-key generation: {sk𝑖 }𝑃𝑖 ∈P ← ΠSecKeyGen ()
From the public parameters, ΠSecKeyGen outputs a secret-key sk𝑖
to each party 𝑃𝑖 ∈ P.

- Encryption-key gen.: cpk← ΠEncKeyGen ({sk𝑖 }𝑃𝑖 ∈P′)

From any subset of secret keys {sk𝑖 }𝑃𝑖 ∈P′ such that P′ ⊆ P and
|P′ | ≥ 𝑇 , ΠEncKeyGen outputs a collective public encryption key
cpk.

- Eval.-key gen.: evkop ← ΠEvalKeyGen (op, {sk𝑖 }𝑃𝑖 ∈P′)
Given a homomorphic operation op to be supported by the Eval
algorithm and any subset of secret keys {sk𝑖 }𝑃𝑖 ∈P′ such that
P′ ⊆ P and |P′ | ≥ 𝑇 , ΠEvalKeyGen outputs a public evaluation-
key evkop for operation op.

- Encryption: ct← Encrypt(𝑚, pk)
Given the public encryption key pk, and a plaintext 𝑚 ∈ M,
Encrypt outputs a ciphertext ct that is the encryption of𝑚.

- Evaluation: ctres ← Eval(𝑓 , {evkop}op∈ 𝑓 , ct1, . . . ct𝐼)
Given an arithmetic function 𝑓 :M𝐼 →M, the evaluation key
evkop for each homomorphic operation op used in 𝑓 and an 𝐼 -
tuple of ciphertexts (ct1, ..., ct𝐼) encrypting (𝑚1, . . . ,𝑚𝐼) ∈ M𝐼 ,
Eval outputs a ciphertext ctres that is the encryption of𝑚res =
𝑓 (𝑚1, . . . ,𝑚𝐼).

- Decryption: 𝑚 ← ΠDecrypt (ct, {sk𝑖 }𝑃𝑖 ∈P′)
Given ct an encryption of 𝑚, and any subset of secret keys
{sk𝑖 }𝑃𝑖 ∈P′ such that P′ ⊆ P and |P′ | ≥ 𝑇 , ΠDecrypt outputs𝑚.
Current MHE scheme constructions [37] are based on the ring-

learning with errors (RLWE) problem [34]. The plaintext space of
such schemes is a ring of polynomials of fixed (power-of-two) de-
gree. Their Eval algorithm supports additions and multiplications
in this ring. They also support homomorphic rotations over the
coefficients of the message. Each homomorphic operation (besides
the addition) requires its own evaluation key to be provided to
the Eval algorithm, hence it requires the execution of a separate
instance of the ΠEvalKeyGen protocol. We note that the “rotation of 𝑘
positions” operation is considered an individual operation for each
required value of 𝑘 in the circuit, and it is common for applications
to generate many such evaluation keys. This is because rotations
are costly and achieving a desired rotation by composition (e.g., of
many rotations by 𝑘 = 1) is often impractical. A notable aspect of
the current MHE schemes is that all their protocols can be executed
in a single round of communication [37, 38]. We provide a unified
model for these protocols in Section 4.1.

B URI SCHEME
In our URI scheme, each ciphertext can be identified by its holder
node identifier, circuit identifier, and ciphertext identifier:

helium://<NodeID>/<CircuitID>/<CiphertextID>

Depending on the context, parts of the identifiers can be omitted by
the user application designer (as in Listing 1), and expanded by the
framework at execution time. This enables the application designer
to define Helium programs in a generic way and to execute them
several times (see Challenge 1). For instance, the SessionID and
CircuitID fields can be expanded to the session identifier in which
the circuit was executed and the circuit identifier that was attributed
to it. Similarly, the NodeID field (the host part) can be omitted for
intermediate values and the output, as it can be assumed to be the
circuit’s evaluator. Note that when all three fields are present, the

14

https://github.com/rdragos/awesome-mpc

Helium: Scalable MPC among Lightweight Participants and under Churn

URI enables a ciphertext to be located unambiguously within the
system, hence is also a URL.

15

	Abstract
	1 Introduction
	2 System Model
	2.1 Requirements
	2.2 User Interface

	3 MHE-based Multiparty Computation
	3.1 MHE-based MPC: Background
	3.2 MHE-based MPC: Practical Challenges
	3.3 Roadmap

	4 MHE-MPC Sub-Protocols Execution
	4.1 The PAT Protocol Abstraction
	4.2 PAT Protocol Execution Mechanism
	4.3 Secure Churn Handling
	4.4 Addressing Practical Challenges

	5 Helium
	5.1 Protocol Layer
	5.2 The Setup Service
	5.3 The Compute Service

	6 Implementation and Evaluation
	6.1 Experiment I: Lightweightness & Scalability
	6.2 Experiment II: Churn Tolerance
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References
	A MHE Semantics
	B URI Scheme

