
Suboptimality in DeFi

Aviv Yaish1, Maya Dotan1, Kaihua Qin2,4, Aviv Zohar1, and Arthur Gervais3,4

1The Hebrew University
2Yale University

3University College London
4UC Berkeley RDI

Abstract

The decentralized finance (DeFi) ecosystem has proven to be popular in facilitating
financial operations, such as token exchange and lending. The public availability of DeFi
platforms’ code, together with real-time data on all user interactions with them, has given
rise to complex tools that find and seize profit opportunities on behalf of users.

In this work, we show that both users and the aforementioned tools sometimes act
suboptimally: their profits can be increased by more than 100%, with the highest amount
of missed revenue by a suboptimal action reaching 428.14ETH ($517K). To reach these
findings, we examine core DeFi primitives used by over 850 platforms that are responsible
for a daily volume of more than 100 million USD in Ethereum alone: (1) lending and bor-
rowing funds, (2) using flashswaps to close arbitrage opportunities between decentralized
exchanges (DEXs), (3) liquidation of insolvent loans using flashswaps, which combines the
previous two. The profit that can be made from each primitive is then cast as an optimiza-
tion problem that can be solved. We show that missed opportunities to make a profit are
noticed by others and are sometimes followed by back-running transactions that extract
profits using similar actions. By analyzing these events, we find that some transactions
are circumstantially tied to specific miners and hypothesize that they use their knowledge
of private orderflow for a profit. Essentially, this is an instance of miner-extractable value
(MEV) “in action”.
Keywords: Decentralized Finance, Miner Extractable Value, Lending, Exchanges.

1 Introduction
Decentralized finance (DeFi) is an umbrella term for financial platforms that run as smart
contracts on cryptocurrencies, covering use cases such as token exchange to lending [54]. Al-
though on-chain DeFi services appear similar to their off-chain equivalents, they may differ in
subtle but important ways, leading to suboptimal usage of them. This is due to design con-
siderations that are required for the secure and efficient implementation of financial services
in the decentralized and pseudonymous setting in which DeFi platforms operate.

1.1 Our Work
We take the first step towards characterizing theoretically optimal usage of DeFi primitives
that underlie common use-cases, and the suboptimal usage of them in practice:

1

Table 1: A summary of the case studies we analyze in this work.

Case “Lost” Profits Action Type

Case Study 4.7: Justin Sun More than 8.7% Lending
Case Study 4.8: 0x7a1...428 More than 700% Lending
Case Study 5.5: 0x5e1...6c5 More than 94% Flashswap
Case Study 5.6: 0x0f4...74b More than 7000% Flashswap
Case Study 5.7: Inverse Finance Attack More than 39% Flashswap
Case Study 6.9: liquidation tools More than 53% Liquidation

1. Collateralized lending in utilization-based platforms

2. Using flashswaps to profit from arbitrage opportunities in decentralized exchanges (DEXs)

3. Liquidation of insolvent collateralized loans using flashswaps

In particular, while the first two are conceptually independent of each other, they are fre-
quently combined in practice, giving rise to the last primitive. We now give an overview of our
theoretical and empirical results for each one.

Collateralized Lending

In Section 4 we show that while in the off-chain setting, a user with free funds and access
to a positive-interest bearing instrument may be incentivized to invest them in their entirety,
this can be suboptimal in the on-chain DeFi setting. In particular, popular collateralized
lending platforms such as Aave and Compound (as well as Compound’s 127 forks [22]) set
their interest rate curves to be monotonically increasing in the utilization of the platforms’
liquidity, meaning in the ratio between the amount of funds which are loaned-out and the
funds which are deposited.

We formalize such mechanisms in Section 4.1, and make the novel observation that they
sometime allow users who withdraw a partial amount of deposited funds to increase their
revenue. The increase in interest rate stemming from such a withdrawal can be so large, that
the interest accrued on the remaining sum can become even greater than the interest where
the user was to leave its funds unchanged.

We generalize this observation and formulate an optimization problem which, when solved,
provides the optimal lending strategy in a one-shot myopic setting (Optimization Problem 1).
We then use it to analyze the performance of several large investors and show that their
profits can be increased by up to 700% (Case Studies 4.6 to 4.8). Furthermore, we go over
empirical evidence which suggests that currently, market forces are slow to react to shocks
(Remark 4.5), such as when a large amount of deposits is withdrawn in a single transaction.
Thus, even myopically optimizing actions can produce long-lasting profits.

Flashswap-based Arbitrage

In Section 5 we turn our focus to DEXs. If an asset has different prices in two or more DEXs,
actors can take advantage of the price difference to make a profit by simultaneously buying
and selling the asset in these markets, a practice also known as arbitrage. The prevalence of

2

various asset pricing mechanisms on different DEXs means that such price discrepancies exist
between DEXs, too.

Some DEXs such as Uniswap (Uniswap v2 and v3, as well as the 715 platforms that are forks
of either [21]) allow users to perform flashswaps. We formalize this primitive in Section 5.1;
Intuitively, it allows users to swap an x amount of a token X for a y amount of another token
Y without having the required liquidity of an x amount of X tokens up-front, as long as the
exchange is repaid within the same transaction in which the flashswap was performed. Thus,
users can perform arbitrage without requiring initial funds, using the profits they make to fund
their operations instead.

We define an optimization problem for the task of finding arbitrage opportunities using
flashswaps (Appendix A), and show that blockchain users have performed suboptimally in
the past via several case studies (Case Studies 5.2 and 5.5 to 5.7) and a longitudinal study
(Section 5.2.1). In particular, we find instances where missed profits reach more than $517K.
This can be explained by the huge search space for arbitrage opportunities in Ethereum,
stemming from the number of DEXs currently active on it, and the amount of fungible assets
which can be exchanged on them. Furthermore, this space should be traversed within a limited
time-frame, as a new Ethereum block is mined every 12 seconds, meaning that arbitrage
opportunities may be short-lived.

In Section 5.2.2 we show that by closely inspecting the data we analyze in our longitudinal
study, a surprising finding arises that could explain the business model of so-called private
transaction relays. These are communication channels which claim to transmit transactions
in a private manner, without disclosing or acting upon the contents of relayed transactions to
any party besides the recipient, and can be used, for example, by would-be arbitrageurs and
others to prevent profitable transactions from being front-run. Popular relay services offer their
services free of charge, piquing the community’s interest with regard to their sources of revenue.
In particular, we find circumstantial evidence suggesting that the relay service operated by the
Ethermine mining pool has been using “inside information” gained from private transactions
to trim the search space to find profitable arbitrage opportunities, thus gaining an advantage
over others.

Flashswap-based Liquidation

In Section 6, we analyze a primitive which combines the previous two. We formalize in Sec-
tion 6.1 the so-called liquidation mechanisms used by lending platforms to allow users to liq-
uidate (i.e., repay) under-collateralized debt positions and receive the collateral at a discount.
The amount of debt that can be repaid is usually limited by some close factor, that is, a close
factor of 50% permits repaying up to half of the debt position. Tools that automatically act
upon potentially profitable liquidation opportunities commonly repay the maximal amount of
debt possible, and use flashswaps to do so (Case Study 6.9).

We show that this liquidation strategy is suboptimal, and provide a better one. In particu-
lar, we obtain a closed-form solution for the optimal execution of flashswap-based liquidations,
and prove our result’s optimality in Theorem 6.8. Our analysis shows that in certain cases, it
is more profitable to liquidate substantially less than the close factor permits. This is due to
the effects that large swaps may have on the exchange-rates between debt and collateral assets
in constant product automated market makers (CPAMMs).

1.2 Our Contributions
Our contributions can be summarized like so:

3

• Optimal Execution. We examine three core DeFi primitives which are used by over
850 platforms: collateralized lending, flashswaps and flashswap-based liquidations. The
execution of each is cast as an optimization problem. To the best of our knowledge, we
are the first to optimize these primitives.

• Evaluation of Suboptimal Cases. Our optimal execution strategies are used to find
and evaluate multiple case studies showing the suboptimal behavior of significant DeFi
platform actors. We show that in some cases, their revenue can be improved by more
than 700%, with one case which could be improved to earn an additional amount of
428.14 ETH, amounting to 517K USD at the time. Our findings are summarized in
Table 1.

• Longitudinal Study of Suboptimal Arbitrage Flashswaps. We devise a heuristic
to detect suboptimal arbitrage transactions which rely on flashswaps and find over 10K
such instances, which combined have missed revenue in excess of more than 4 million
USD. Furthermore, we find circumstantial evidence tying the Ethermine mining pool to
an address which capitalized on suboptimal transactions, suggesting that miners might
be using or sharing “inside information” for benefit, in spite of publicly committing not
to do so. This is the first evidence of such behavior, to the best of our knowledge.

• Impact of Suboptimality. We show that tools and platforms used to manage over
400 million USD, such as Yearn Finance [18], are suboptimal. We find that, surprisingly,
such suboptimality can benefit certain users. For example, borrowers benefit from the
suboptimality of liquidity providers (LPs).

1.3 Organization
We review related work in Section 2, and go over the required background on cryptocurrencies
in Section 3. We present our analysis of collateralized lending in Section 4, and of the use of
flashswaps for arbitrage in Section 5. In Section 6, we combine the previous two primitives
and analyze the optimal use of flashswaps for the liquidation of insolvent loans. We conclude
with a discussion on the implications of our results in Section 7.

2 Related Work
As far as we know, no previous work has examined user suboptimality in the context of the
DeFi primitives we cover.

Empirical Studies. Gudgeon et al. [37] formalize popular DeFi interest-rate mechanisms
and use historical data to compare them. A systematization of common liquidation mecha-
nisms is given by Qin et al. [50], who also empirically analyze liquidations performed on large
Ethereum lending platforms. The historical performance of Uniswap v2 users performing cyclic
arbitrage swaps is explored by Wang et al. [66], where the profits from each swap are used in
their entirety to pay for the next swap in the cycle, a strategy which is not necessarily optimal.
A larger spectrum of actions that users can use to obtain profits from DEXs is formalized and
examined by Zhou et al. [78]. For example, the authors show that users can both back-run and
front-run other transactions (place their own transactions before or after other transactions,
respectively), possibly even combining the two into a “sandwich” attack. The authors estimate
the profits which can be obtained in that manner in thousands of dollars per day. Qin, Zhou,

4

and Gervais [51] quantify the historical profits made from liquidation, arbitrage and sandwich
attacks, and show that large profits risk the security of the underlying blockchain as they in-
centivize miners to misbehave. Piet, Fairoze, and Weaver [48] and Weintraub et al. [67] analyze
the profits produced by private transactions, but did not consider collateralized lending.

Automatic Tools. Zhou et al. [77] introduce two tools for creating profitable DeFi trans-
actions, one which can detect profitable swap cycles, and another that also detects non-cyclic
ones. Qin, Zhou, and Gervais [51] present a tool which monitors unconfirmed transactions
and attempts to front-run profitable ones by replicating their logic in an application-agnostic
manner. Angeris et al. [7] use convex optimization to identify arbitrage opportunities in a
network of constant function market makers (CFMMs) DEXs and approximate the optimal
solution. In our work, we show that such tools (and their open-source equivalents) may perform
suboptimally.

Optimal Uniswap V3 Liquidity Provisioning. Fan et al. [34, 33] study strategic Uniswap
V3 LPs who have some predefined set of beliefs regarding the price evolution of assets, and
formalize their optimal behavior in various settings. In contrast, our work differs by considering
additional forms of DeFi platforms other than DEXs (e.g., interest-bearing liquidity pools such
as Aave and Compound, for which we consider both liquidity provisioning and liquidations),
and with respect to Uniswap-esque DEXs, we examine flashswaps, which were not considered
in these preceding works.

Optimizing Flashloan Attacks. Previous work has examined specific instances of flashloan
attacks and has shown that the profits made by them can be improved. For example, Qin
et al. [52] did so in two specific cases, the famous bZx “Pump & Arbitrage” and “Oracle
Manipulation” attacks. Cao, Zou, and Cheng [11] present a tool that analyzes flashloan attacks,
and use it to perform a similar analysis on the bZx “Pump & Arbitrage” attack. We extend these
cases to a more general formalization of suboptimality. In particular, we also examine “honest”
users, and additional types of primitives, such as flashswaps (which generalize flashloans),
lending, and liquidations.

Miner Extractable Value. Angeris, Evans, and Chitra [6] cast the action-space which
miners have at their disposal when constructing a block as an optimization problem (e.g., which
transactions to include and in what order), while accounting for the profit that can be made
from transaction reordering and sandwich attacks. Obadia et al. [45] present a formal study
of the MEV that can be obtained by miners that operate on multiple blockchains. The game-
theoretic aspects of MEV are analyzed by Kulkarni, Diamandis, and Chitra [38], specifically in
the context of CFMM DEXs. Yaish, Tochner, and Zohar [74] show that miners can manipulate
the rate at which blocks are mined in popular proof-of-work (PoW) mechanisms, and that
although such manipulations can reduce the profits from incentives such as block rewards,
they can be used to create profitable interest-rate gaps between on-chain lending platforms.
The authors show that the attack can be prevented by limiting system parameters, e.g., the
interest-rate offered by DeFi platforms.

Preventing MEV and Miner Malfeasance. Orda and Rottenstreich [46] and Xavier
Ferreira and Parkes [70] attempt to prevent profitable transaction reordering, with the latter
focusing on specifically on such manipulations in the context of DEXs. Yaish, Stern, and

5

Zohar [73] show that in PoW-based Ethereum-like blockchains, miners can risklessly retroac-
tively replace blocks, and indeed have done so in Ethereum before it transitioned to a different
consensus mechanism. The authors suggest various mitigation techniques for the attack, and
note such manipulations let miners “replay” [51, 49] profitable transactions.

3 Preliminaries
We now go over the preliminaries required for our work. Notations are introduced as necessary,
and all are summarized in Appendix B.

3.1 Background
Blockchains. Cryptocurrencies like Ethereum [68, 9] process financial transactions between
users by collecting them in a ledger comprised of blocks, with each block specifying an order
on transactions contained within it. Each block points to a preceding block, implying that
the resulting blockchain maintains order between transactions. As blocks are size-limited,
users compete for block-space and can offer fees to prioritize their transactions [36]. Most
cryptocurrencies operate in a decentralized manner and rely on pseudonymous users called
miners to create blocks, a process also called mining. In proof-of-stake (PoS) blockchains such
as Ethereum, these entities are also known as proposers; for brevity and generality, we use the
term miners. Miners, who are supposed to maintain the system’s integrity, can increase their
revenue by deviating from the mining protocol, or by manipulating transaction order [16]. The
value earned from these exploits is termed MEV.

Lending Platforms. Certain DeFi platforms, like Aave and Compound, let users take and
give loans [74]. Commonly, platforms rely on user-provided liquidity for their operation, with
funds collected in liquidity pools, and with users who supply funds called LPs. Due to the
pseudonymous nature of cryptocurrencies, it is impossible to assure borrowers will repay their
debt without a form of collateral. Thus, platforms offer collateralized loans which are secured
by up-front deposits that are at least equal in value to the loan taken. If the collateral loses
in value relative to the loan, it is offered for liquidation [50].

Decentralized Exchanges. DEXs allow the exchange, or swapping, of tokens [71]. Plat-
forms like Uniswap [63] allow swaps between a pair of tokens to be performed using user-
provided liquidity which is collected in liquidity pools, with swaps usually costing a propor-
tional fee. Platforms which use automated mechanisms to determine exchange-rates between
tokens are also known as automated market makers (AMMs). Platforms commonly collect
liquidity for each token pair in a different pool. If users wish to swap between pairs that do
not have a designated pool, they can do so by chaining together multiple swaps in a single
multi-hop swaps, with certain platforms offering tools to facilitate such actions [60, 62].

ERC20 Tokens. Ethereum specifies the ERC20 standard, that lets contracts create and
interact with fungible tokens known as ERC20 tokens [26, 64]. DeFi platforms may also create
ERC20 tokens for protocol-specific versions of other ERC20 tokens that they support. For
example, Compound created cUSDT, a platform-integrated version of the USDT token [13].
By interacting with cUSDT’s contract, users can deposit and withdraw USDT to and from
Compound. In our work, we examine case studies involving such tokens, specifically the USDT
and USDC tokens (which strive to maintain a one-to-one peg with the USD [44]), Wrapped

6

Ethereum (WETH) (a “wrapped” version of the Ethereum token designed to enable easier
interoperability between contracts and the token [10]), Wrapped Bitcoin (WBTC), and CRV
[15].

3.2 Model
System Model. Our system consists of a blockchain that supports smart contracts. On
top of this blockchain, there are at least two types of DeFi platforms implemented as smart
contracts:

1. Collateralized lending platforms where users can lend or borrow funds

2. DEXs which let users trade one currency for another

User Model. Blockchain users can perform the following actions, which we define as needed:

1. Taking and repaying loans

2. Exchanging one currency for another

3. Liquidating insolvent loans

All actions can be executed using single transactions (e.g., if necessary, can be implemented in
a smart contract that executes multiple actions in sequence).

4 Lending Suboptimality
Aave [69] and Compound [40] are collateralized lending platforms. At the time of writing,
both hold a combined amount of 12.96 billion USD [23], making them the most popular lend-
ing platforms on Ethereum. Moreover, Compound’s mechanism is used by 129 other lending
protocols, contributing an additional 2.9 billion USD in stored funds [22]. To incentivize liquid-
ity provisioning by users, platforms give interest on funds stored in their pools [37]. Although
interest is usually associated with lending, any platform that rewards liquidity provisioning in
a compounding manner is essentially paying interest.

4.1 Utilization-based Kinked Interest Rate Schemes
We now present a general model for the lending mechanisms that we consider. At their core
is the utilization metric, which we denote by u and formalize in Definition 4.1.

Definition 4.1 (Utilization). Given a liquidity pool where the total amount of deposited liq-
uidity equals d and b ≤ d is borrowed, then the pool’s utilization is: u

def
= b

d .

When the utilization is close to 1, a lending pool can be vulnerable in the event of economic
shock or borrower insolvency. To protect against such events, lending pools commonly reserve
some of the interest paid by borrowers, as formalized by Definition 4.2.

Definition 4.2 (Reserve Factor). The reserve factor of a pool r ∈ [0, 1) is the fraction of the
interest paid by borrowers that is retained by the pool, and not paid to liquidity suppliers.

7

0% 20% 40% 60% 80% 100%
Utilization, in percentage

0%

20%

40%

60%

80%

Ye
ar

ly
 in

te
re

st
 ra

te
, i

n
pe

rc
en

ta
ge

Compound borrow rate
Compound deposit rate
Compound kink
Aave borrow rate
Aave deposit rate
Aave kink

(a) Compound’s and Aave’s APY on USDT de-
posits and borrows, as functions of the utilization.
Both have a “kink”, at 80% and 90%, respectively.

0% 20% 40% 60% 80% 100%
Withdrawal amount, in percent of deposited funds

-100%

0%

100%

200%

300%

400%

500%

U
til

ity
 im

pr
ov

em
en

t,
in

 p
er

ce
nt

LP with 50% of pool funds
LP with 25% of pool funds
LP with 10% of pool funds
LP with 5% of pool funds
LP with 1% of pool funds
Optimum

(b) The increase in utility a LP can make by with-
drawing funds, as a function of the percentage of
withdrawn funds, for LPs of different sizes.

Figure 1: Optimal liquidity provisioning strategies may not always prescribe depositing all
funds available to a user, as this can sometime lower profits.

For each token, the interest rates for deposits and borrows are determined according to
the utilization of the token’s liquidity pool. For the mechanisms we consider, the interest-
rate curve for borrowers is “kinked” (see Definition 4.3): it has some “baseline” rate I0, which
increases at some rate I1 before a predefined target utilization value uopt, and at a (commonly
higher) rate of I2 afterward. The resulting function looks like it has a “kink” at that point, as
can be seen in Fig. 1a, hence the name.

Definition 4.3 (Borrow Rate). Let the baseline interest rate be I0 and the slopes before and
after the kink uopt be I1 and I2, respectively. The per-block interest for borrowers is:

Ib (u)
def
= I0 +min (u, uopt) · I1 + (max (u, uopt)− uopt) · I2.

For suppliers, the curve is a function of the borrow rate and the reserve factor (see Defini-
tion 4.4). By definition, it is quadratic in the utilization of the pool and, moreover, lower than
the borrow rate, thereby preventing trivial arbitrage opportunities where actors can profit by
borrowing funds and depositing them in the same pool.

Definition 4.4 (Supply Rate). Let the baseline interest rate be I0 and the slopes before and
after the kink uopt be I1 and I2, respectively. The per-block interest for liquidity suppliers is:

Id (u)
def
= u · (1− r) · Ib (u) .

Real-world examples of interest curves are shown in Fig. 1a. Note that Definitions 4.3
and 4.4 are per-block, while the depicted examples extrapolate the per-block interest into the
annualized interest, also known as the annual percentage yield (APY).

4.2 Optimal Liquidity Provisioning
The amount of yield on a given deposit is dependent on both the amount of funds deposited
and the interest rate. The rate is also dependent on the amount of funds deposited, as the rate
is a function of the utilization, which in turn is a function of the total amount of deposited
funds. Crucially, the latter amount can be manipulated by LPs.

8

maximize
d∗

d∗ · Id (u)

subject to d∗ ≥ 0

d∗ ≤ dmax

u =
b

d+ d∗

Optimization Problem 1: Our optimization problem for optimal liquidity provisioning to
utilization-based lending pools, see Section 4.1 for additional details.

We now generalize this observation to any liquidity pool relying on utilization-based mech-
anisms. By inputting the pool’s parameters, the optimal amount to deposit is found by solving
the optimization problem written in Optimization Problem 1.

Remark 4.5 (Long-term Considerations). Optimization Problem 1 considers a one-shot set-
ting. An actor can ensure that indeed the utilization will be unchanged for at least the span of
a single block, by paying the appropriate amount of fees such that its transaction will be the
last in the block [16], or by sending the transaction as part of a bundle [6].

In case the actor’s liquidity is large compared to others’, Fig. 1b shows that the potential
profits from even a single block can be substantial. As previous research shows, the majority of
funds in most pools are held by a few independent actors [37], meaning that such considerations
are relevant.

Furthermore, empirical data suggest that the market is slow to react to liquidity shocks.
Notably, Aave’s CRV pool recently experienced a series of shocks, starting with a single with-
drawal of more than 24% of its liquidity performed at block 16011068 by a single actor. After
this action, the pool’s utilization remained at roughly the same level for a period of 1172 blocks.
The same actor performed more large withdrawals and deposits between the 6th and 27th of
November 2022. As no-one would “fill the void” left by the actor’s withdrawals, Aave passed
proposals to (1) Temporarily disable new borrows and withdrawals from this pool, (2) Tweak
the pool’s interest-rate curve. After restrictions were lifted, the actor continued performing
actions of a similar magnitude.

We further note that the impact of such manipulations can be extended to multiple blocks by
relying on other techniques which are outside the scope of this work, such as mempool Denial-of-
Service attacks which allow an attacker to discard transactions from miner’s queue of pending
transactions, thereby possibly postponing their acceptance to a block [41, 72].

4.3 Suboptimal Lending
Fig. 1b shows that the optimal action given by Optimization Problem 1 for a LP in possession
of large amounts of funds is not necessarily to deposit all of its money. For example, a LP
who owns 25% of all funds deposited in a pool can withdraw almost half of its funds, thereby
increasing per-block profits by more than 10%.

We now share notable examples of suboptimal capital allocation to interest-bearing pools
by large LPs. We begin by showing in Case Study 4.6 that Yearn, the largest investment
platform on the Ethereum blockchain, is suboptimal.

Case Study 4.6 (Yearn Finance). Yearn Finance is an on-chain yield aggregator or yield
farming service, which is essentially an investment platform that automates the distribution

9

of funds across platforms for users, claiming to maximize the interest rate the user can yield
out of its respective funds [14, 74]. Yearn is currently the largest on-chain yield aggregator on
the Ethereum blockchain [19], with a total value locked (TVL) of $400 million at the time of
writing (and reaching over $6.5 billion at its peak) [18].

Yearn follows the “all-in” approach by comparing interest rates across platforms, and de-
positing all funds in the platform offering the best rates [31, 76]. As we have shown, this
"all-in" approach is, in fact, suboptimal.

Case Study 4.7 covers a specific instance of a user performing suboptimally.

Case Study 4.7 (Justin Sun). Compound’s largest LP for the cUSDT token at block 13632753
was address 0x3dd...296, associated with Justin Sun [30], providing 2.8 billion cUSDT. At the
time, the supply annual percentage yield (APY) was 3.52% owing to a utilization of 80.09%.
Mr. Sun left all of his funds deposited, and earned 40.55 cUSDT by the next block.

By acting rationally, Mr. Sun can increase these profits by withdrawing funds. Specifically,
by withdrawing 0.7 billion cUSDT, Mr. Sun can increase the utilization to 81.3%, thus increas-
ing supply APY to 5.15%. Therefore, his per-block profit would grow by 8.7% to 44.1 cUSDT.
This increase will remain until other users interact with the liquidity pool to the degree that
utilization is changed, thus this profit can be assured for the next block if the transaction that
performs the withdrawal is placed as the last transaction of the block.

This suboptimality is two-fold: by withdrawing the aforementioned funds, Mr. Sun could
invest them, for example, by depositing them in another pool.

In Case Study 4.8, also depicted in Fig. 2, we cover a more dramatic case.

Case Study 4.8 (Account 0x7a1...428). Address 0x7a1...428 had a deposit of 132.9 million
CRV in Aave at block 15529008, amounting to 85% of the pool’s liquidity at the time. The
pool’s utilization at the time was equal to 45.66%. According to the pool’s interest-rate scheme,
at this utilization the supply APY is 3.88%. As the pool’s kink is precisely at 45%, the supply
rate can be increased drastically by withdrawing even a small amount of funds. Indeed, our LP
can increase the utilization to 60.6% by withdrawing 38 million CRV. This modest bump in
utilization increases the supply APY to 44.6%, thereby increasing our LP’s profit by 700%.

4.4 Discussion
Although LPs miss revenue by acting suboptimally, any optimal action they may take serves
to increase both supply and borrow interest rates, due to the underlying mechanism’s reliance
on the utilization metric. Thus, LP suboptimality leads to lower interest rates for both lenders
and borrowers, meaning that the latter profit off the suboptimality of the former.

5 Flashswap Suboptimality
DEXs such as Uniswap let users exchange, or swap tokens in a decentralized manner. Currently,
the leading DEX platforms on the Ethereum blockchain are Uniswap v2 [4], Uniswap v3 [5],
Sushiswap [57] and Balancer [43], which together comprise roughly 75% of the daily volume
of all token exchanges in Ethereum [20]. In particular, 627 additional platforms rely on the
same mechanism employed by Uniswap v2, and similarly, 88 platforms are based on the one
used by Uniswap v3 [21]. We note that Uniswap v1 is considered as a proof-of-concept by its
creators [59], and thus was not included in our work. Surprisingly, even sophisticated users such

10

https://etherscan.io/block/13632753
https://etherscan.io/address/0x3ddfa8ec3052539b6c9549f12cea2c295cff5296
https://etherscan.io/address/0x7a16ff8270133f063aab6c9977183d9e72835428
https://etherscan.io/block/15529008

Liquidity
Provider

Utilization

In
te

re
st

 R
at

e

45.66%

3.88%

0% 100%
0%

100%

Utilization

In
te

re
st

 R
at

e

60.6%

44.6%

0% 100%
0%

100%

Remove liquidity No action

Utilization

In
te

re
st

 R
at

e
45.66%

3.88%

0% 100%
0%

100%

Figure 2: Counter-intuitively, the LP presented in Case Study 4.8 could increase its per-block
profit by 700% by withdrawing 38 million CRV from the pool.

as cryptocurrency swappers, who are savvy enough to find extremely short-lived opportunities
to make a profit by swapping multiple assets across different DEXs, do not always do so
optimally.

5.1 Using Flashswaps to Perform Arbitrage
Arbitrage. DEXs often rely on different mechanisms and sources of information to deter-
mine the exchange-rates between tokens, thereby the same asset might have different prices in
different DEXs. This can create arbitrage opportunities [56] where users can generate a net
profit by trading across platforms with different exchange-rates [77, 66]. The act of profiting
from arbitrage is called closing the arbitrage, and users who commonly engage in this prac-
tice are often called arbitrageurs. Arbitrage is prevalent in the current DeFi ecosystem, with
arbitrageurs making an average monthly profit of more than 12 million USD [66].

Flashswaps. Flashswaps [61] are a DeFi instrument implemented in most major DEXs in
Ethereum. In fact, in Uniswap v2 and v3, as well as in Sushiswap, all swaps are implemented
as flashswaps [4, 32, 59], while Balancer’s “batch swaps” are also implemented as flashswaps
[8].

Flashswaps let users exchange one currency for another without having the initial liquidity
requirements in advance, and work similarly to flashloans [16]. Generally, given that a user
wants to obtain a c amount of token C as part of a flashswap, it has to:

1. Write and deploy a smart contract which has a callback function that receives this amount
and executes the wanted action.

11

Uniswap V3Uniswap V2

Arbitrageur

Profit: 454 ETH

Pay 3.1K ETH

Get 3.9M USDC

Get 3.6K ETH

Pay 3.9M USDC

Time

Figure 3: A depiction of Example 5.1, showing how flashswaps can be used to close arbitrage
opportunities without having the required funds up-front. Instead, one can use part of the
profits made to pay for the necessary operations.

2. Call a DEX’s flashswap function, passing c and the callback as arguments.

Then, given that the DEX has more than a c amount of token C, it will transfer the
requested token to the smart contract, execute the user’s code, and afterwards verify that the
code either returned the tokens in full, or repaid an equivalent amount of another token D
according to the DEX’s C ↔ D exchange-rate. Platforms can also ask for a predetermined
fee which is equal to a fraction of the given tokens, for example 0.3% in Uniswap v2 [61]. If
the user’s callback function did not satisfy these conditions, the transaction is reverted. To
prevent spamming by users, reverted transactions still have to pay transaction fees [72].

Using Flashswaps for Arbitrage. To illustrate how flashswaps can be used, in Example 5.1
(and the corresponding Fig. 3) we go over a real-world transaction that relies on this primitive
to close an arbitrage opportunity.

Example 5.1. In transaction 0x9ae...bc4, the address 0x5e1...6c5 exploited an arbitrage op-
portunity between the Uniswap v2 and Uniswap v3 platforms, arising from different ETH to
USDC exchange rates on the two platforms. We now go over this transaction step-by-step.

First, the user obtained 3.6K ETH from Uniswap v3 against a debt of 3.9 million USDC by
using a flashswap; the user pays this debt in its entirety using profits made from the arbitrage.
Then, 3.1K ETH were swapped for 3.9 million USDC on Unsiwap v2. Finally, the flashswap
was repaid by transferring 3.9 million USDC to Uniswap v3, leaving the user with a net profit
of 454 ETH, translating to about 600K USD, according to the rate at the time.

Notice that the arbitrageur does not need to have any amount of funds upfront, as the second
swap was paid in full using the initial flashswap, while the initial flashswap was repaid using
the profits obtained from the second swap, with all operations executed within the span of a
single transaction.

12

https://etherscan.io/tx/0x9aee1422a91c645a4ebcedc4607abef2f0dce649eb6506642c17ad065c213bc4
https://etherscan.io/address/0x5e19abde092fa437ca9206ab7748d166402766c5

5.2 Flashswap Arbitrage Suboptimality
We now turn to quantifying the suboptimality of arbitrageurs. Intuitively, even without going
into the details of how to optimally devise flashswap arbitrage transactions (which we cover
in Appendix A), there are many tokens and DEXs that can be used to capitalize on arbitrage
opportunities, thus the search space for the problem is huge. Furthermore, the optimal solution
also depends on the current state of the blockchain, which changes with every new block. In
particular, Ethereum’s block rate is currently set to 12 seconds [25, 75].

The time it takes nodes to broadcast messages over the network and validate incoming
messages means that one cannot wait until the end of the allocated 12 seconds to create a
block [58, 24]. Therefore, exhaustively searching for an optimal arbitrage transaction and
executing it while it is still valid becomes quite tricky. As such, it is not surprising that
existing tools and works do not attempt to perform an exhaustive search.

Case Study 5.2 (Arbitrage Tools). Finding and acting on arbitrage opportunities requires
considerable technical skill, giving rise to tools which attempt to automate much of the actions
required to do so. As the DeFi ecosystem is rapidly evolving, with DEXs in particular, not all
tools cover the entire spectrum of platforms and tokens which can be used to obtain profits.

Zhou et al. [77] formulate and implement an algorithm that detects profitable arbitrage
opportunities across a variety of DEXs and tokens. The authors note that their tool obtains
results within an average of 5.39 seconds, even though it does not perform an exhaustive search
and thus is suboptimal. The tool’s run-time was achieved by (1) applying heuristics to trim the
search-space (implying suboptimality), and (2) running on powerful hardware.

Popular open-source tools further trim the search space by limiting themselves to single-hop
swaps [47, 2], which can under-perform relative to multi-hop ones.

5.2.1 Longitudinal Study

We devise a simple yet effective heuristic in Definition 5.3 to uncover suboptimal flashswaps
from blockchain data and use this heuristic to perform a longitudinal study of arbitrage sub-
optimality. At each block, our heuristic searches for sequences of consecutive flashswap-based
arbitrage transactions, where the profit made by each transaction could have been made by
the one preceding it, thereby meaning that preceding transactions are suboptimal.

Definition 5.3 (Suboptimal arbitrage heuristic). Let τ1, τ2 be two consecutive transactions
contained within the same block, sorted by their order. We call τ1 a suboptimal arbitrage
transaction if τ1 relies on swaps to profit off of arbitrage opportunities, and transaction τ2
solely relies on flashswaps to do so.

In Definition 5.3, as τ2 only utilized flashswaps to perform the arbitrage, then transaction
τ1 could have imitated the actions taken by τ2, thereby making the same profit. Thus, τ1 was
suboptimal. We generalize this notion in Definition 5.4.

Definition 5.4 (Suboptimal sequence heuristic). Let τ1, . . . , τn be a sequence of consecutive
transactions contained within the same block. We call this a suboptimal arbitrage sequence if
∀i < n, transaction τi is suboptimal.

Results. We now provide evidence that suboptimal behavior is prevalent. By applying our
heuristics to the time period starting at block 10749295 and ending at 15450669, we discover
over 9875 suboptimal transactions which fit Definition 5.3, with a total lost profit of more than
4.38 million USD. During the same period, an average of 2.91 ETH per day was lost due to

13

Aug '20 Dec '20 Mar '21 Jun '21 Sep '21 Jan '22 Apr '22 Jul '22
Date

0

1

2

3

4
C

um
ul

at
iv

e
Lo

st
 P

ro
fit

s,
 in

 M
illi

on
 U

SD

Figure 4: In our longitudinal study (see Section 5.2), we find that the cumulative lost profits
by suboptimal flashswaps exceed 4 million USD over the examined time period.

suboptimality. 0.2% of blocks contain at least one suboptimal sequence, where the longest is 7
transactions long, all contained in block 15243809, starting at transaction 209. The cumulative
losses in profit over time are shown in Fig. 4.

Using our heuristic, we discover interesting cases that are worth additional attention. For
example, Case Study 5.5 shows that even arbitrageurs who are proficient enough to make large
profits are not always optimal.

Case Study 5.5 (Account 0x9ae...bc4). Recall the transaction covered in Example 5.1. Al-
though it produced a net profit of 454 ETH (equal at the time to 600K USD), it is, in fact,
not optimal. Afterward, came a second transaction, with hash 0x580...eff . This transaction
executed another flashswap, utilizing a similar arbitrage opportunity between Sushiswap (note
that Sushiswap uses the same code for swaps as Uniswap v2) and Uniswap v3. This transac-
tion was able to extract an extra 428 ETH in revenue, equal to $517K, and roughly 94% of
the profit of the previous transaction. As the second transaction relied on flashswaps, the first
arbitrageur could have performed the same actions in its first transaction, thereby obtaining at
least the same amount of profits.

A more extreme case of suboptimality is given in Case Study 5.6.

Case Study 5.6 (Account 0x0f4...74b). In transaction 0xb67...4a6, the user 0x0f4...74b cap-
tured a “two-hop” arbitrage opportunity between three platforms. The user swapped 1.13 ETH
for 4316 USDT on Sushiswap, then swapped 4316 USDT for 6058 USDC on Uniswap v2 and
finally swapped 6058 USDC for 1.35 ETH on Balancer, earning 0.22 ETH, or just under 900
USD when considering the exchange-rate at the time (note we refer to USD, not to the USDC
token). Although not to be sneezed at, this is suboptimal.

This was followed by transaction 0xc07...a2b. This transaction followed in the footsteps of
the previous one, and involves the same order of operations and tokens, but on different DEXs

14

https://etherscan.io/block/15243809
https://etherscan.io/tx/0xc298a3021e28f141fadfd14393cb06a68f4893254ea9e0a40c36b6b7a16671d9
https://etherscan.io/tx/0x58018fa8f7cc3e24ca9a5fd50f61a861b39a5cf3c14ec1fdee820e6da4160eff
https://etherscan.io/tx/0xb6794f4dac522ed602d2782f8843842c395b854ed561b92f4b56a279c6ad94a6
https://etherscan.io/address/0x0f424034fa825bcfaf22b2ff0eca53de4915b74b
https://etherscan.io/tx/0xc07fef54d9c6254d6c988b38427cd719295f3a2eeb1fa6cbfb20e3e2ad777a2b

Table 2: The top 5 arbitrageurs found in our longitudinal study.

Arbitrageur Address Number of Backrun Transactions

0x000...f56 13K
0x860...f66 6K
0xe33...c85 6K
0x911...116 3.6K
0x584...dba 3.6K

– Uniswap v2 was used to swap ETH for USDT and USDT for USDC, and Sushiswap was used
to swap USD to ETH. This latter transaction was even more successful, extracting an extra
170 ETH in revenue (worth 694K USD at the time), making the initial transaction suboptimal
by a factor of ≈ 770.

5.2.2 Trimming the Search Space With Inside Information

A careful inspection of the results we gather reveals that some arbitrageurs are more actively
back-running suboptimal transactions, with the top 5 arbitrageurs listed in Table 2.

Some miners allow users to relay transactions directly to them via so-called private relays
instead of using the public peer to peer (p2p) network, while guaranteeing the privacy of
transactions sent in that manner [35, 27]. This may be done to prevent adversarial actors
from taking advantage of transactions, e.g., by front-running them. Such channels are widely
adopted by arbitrageurs and miners alike [51].

In this regard, arbitrageur 0x584...dba should be particularly noted: circumstantial evidence
suggests it is possibly related to the Ethermine mining pool [53], which was the largest before
Ethereum’s transition to PoS [73]. Specifically:

1. All the arbitrageur’s transactions appeared solely in Ethermine’s blocks.

2. The arbitrageur’s first and last transactions correspond to the times at which Ethermine
launched and shut down its private channel [29, 28].

This is the first evidence of such miner behavior.
We raise the possibility that the success of 0x584...dba in identifying unexploited arbitrage is

due to “inside information” it has from ties to a private relay. This information can be used, for
example, to trim the large arbitrage search space by heuristically copying the actions employed
by private transactions. Indeed, in cases found by our heuristics, neighboring transactions use
almost identical operations, usually only differing in the DEXs used (e.g., Case Study 5.5 and
Case Study 5.6).

5.3 Discussion
Suboptimal arbitrage transactions, by their nature, do not always close all arbitrage opportuni-
ties and may even create new ones. As arbitrageurs are actively seeking out such opportunities
[66, 51], this means that unexploited arbitrage leaves the door open to potentially other trans-
actions which will attempt to capitalize on it. Thus, this suboptimality can result in increased
congestion [42], leading to higher transaction fees for all users.

15

https://etherscan.io/address/0x0000000000007f150bd6f54c40a34d7c3d5e9f56
https://etherscan.io/address/0x860bd2dba9cd475a61e6d1b45e16c365f6d78f66
https://etherscan.io/address/0xe33c8e3a0d14a81f0dd7e174830089e82f65fc85
https://etherscan.io/address/0x911605012f87a3017322c81fcb4c90ada7c09116
https://etherscan.io/address/0x58418d6c83efab01ed78b0ac42e55af01ee77dba

A different aspect which is interesting to consider is that, in certain cases, the suboptimality
of a transaction may incentivize others to promptly include it in a block, if, for example, it
creates arbitrage opportunities. This can be considered as the DeFi equivalent of the so-called
“undercutting” attack by Carlsten et al. [12]. We discuss an example of such an occurrence in
Case Study 5.7.

Case Study 5.7 (DeFi Attack Suboptimality: Inverse Finance). A transaction with hash
0x958...13c, sent by 0x7b7...ec6, began propagating on Ethereum’s p2p network at Thursday,
16th of June 2022, about 9am Central European Time. The transaction contained code for a
DeFi attack, which entailed requesting a 0.5 billion USD flashloan that was intended to be used
by an attacker to extract a profit of 1.2 million USD from its victim.

An automated arbitrage bot listening to Ethereum’s p2p network overheard this transaction,
which was not yet included in a block, and realized that the transaction’s significant financial
volume opens up an arbitrage opportunity that was overlooked by the attacker and which can be
used to make a profit. Thus, the arbitrageur bundles the attack together with an arbitrage trans-
action with hash 0xfa1...6bd, and submits the bundle to a front-running-as-a-service (FaaS)
provider, while paying a bribe of 83.95 ETH to the winning miner, Ethermine, making a profit
of 168.88 ETH in the process. At the time, the net profit and the fee paid were worth a total
of 471K USD, meaning the attacker could have increased its profit by more than 39%. Thus,
even savvy DeFi attackers do not always execute optimal attacks.

Knowingly or not, the arbitrageur as well as the FaaS assisted the attacker, while also
rewarding the miner with a reward exceeding the average per-block rewards than can be earned
from block-rewards and transaction tips by more than 4000%.

Related work has shown how such a MEV opportunity would incentivize even a 2% hash
rate miner to fork the chain and destabilize the consensus mechanism [78]. Note that at the
time, over 50% of Ethereum mining power was held by 4 mining pools, each holding more than
8% of all mining power [73].

6 Liquidation Suboptimality
In this section, we analyze the suboptimality of common liquidation strategies, primarily of
those who rely on flashswaps (or equivalently, on flashloans followed by ordinary swaps), and
thus this section combines the previous two. In lending platforms, LPs bear the risk that
borrowers may default. A default can happen if the collateral asset cannot cover the loan, for
example due to a drop in the asset’s exchange-rate. Platforms commonly define a liquidation
threshold, below which other users can buy, or liquidate, a debt position, while receiving the
collateral at a discount. This discount is called the liquidation spread.

6.1 Fixed Spread Liquidation
Currently, fixed spread liquidation (FSL) is the prevalent method for securing LP capital [50].
On a high level, FSL incentivizes so-called liquidators to repay the outstanding debt of a
borrower. In return, the liquidator is allowed to acquire pro rata collateral from the borrower.
By design, the value of the acquired collateral exceeds the debt repaid by a liquidator, which
underpins the incentive compatibility of FSL. We proceed to formulate the FSL mechanism.

Liquidation Mechanism. We assume a debt position collateralized by cryptocurrency C
with an outstanding debt in cryptocurrency D, and denote the amount of collateral and debt
by c and δ respectively. In practice, a debt position can have multi-cryptocurrency collateral

16

https://etherscan.io/tx/0x958236266991bc3fe3b77feaacea120f172c0708ad01c7a715b255f218f9313c
https://etherscan.io/tx/0xfa15c45e5d9f7fdc2a32de50f03cbf0a9d678eac87c71e630fc2afc552d3e6bd

(debt). For simplicity, we assume that the collateral (debt) is in a single cryptocurrency. We
apply the USD price of C and D to unify financial value calculation, denoted by pC and pD
respectively.

To measure the “health” of a debt position, that is, how close it is to insolvency, platforms
use a metric called the health factor, which we formalize in Definition 6.1.

Definition 6.1 (Health Factor). Consider a debt position of a δ amount of D tokens, collat-
eralized by a c amount of C tokens, where the price of 1 D token is pD USD, and of 1 C token
is pC USD. Given a liquidation threshold τ ∈ (0, 1), the health factor of the debt position:
η

def
= pC·c

pD·δ · τ.

When a debt position’s collateral value decreases because of, for example, price decline (i.e.,
pC
pD

↓), then its health factor decreases, indicating that the borrower is more likely to default.
Liquidators can repay part (or all) of the debt of “unhealthy” positions and acquire a

corresponding part of their collateral at a discount, which is defined in Definition 6.2. Lending
pools may limit the amount of debt that can be repaid in a single FSL, per Definition 6.3.

Definition 6.2 (Liquidation Spread). Once a borrowing position’s health factor falls below
one, it becomes available for liquidations. Any liquidator is then allowed to repay some of the
position’s debt to the liquidity pool, while receiving a corresponding amount of the collateral at
a discount. The discount is called the liquidation spread and is denoted by a fixed ratio σ.

Definition 6.3 (Close Factor). The close factor κ constrains the maximal amount of debt that
can be repaid in a single FSL. Given a debt position of δ tokens, one may only repay ϱ tokens,
where: κ ≥ ϱ

δ .

Using the aforementioned definitions, we can reason about the amount of collateral acquired
in a liquidation, and the corresponding liquidator profit.

Definition 6.4 (Acquired Collateral). Given a debt position of δ tokens, a liquidator that
repays ϱ tokens acquires the following part of the collateral: α

def
= pD·(1+σ)

pC
· ϱ.

Remark 6.5. For brevity, we define the following: pliq
def
= pD·(1+σ)

pC
, thereby we can simplify

the acquired collateral to α = pliq · ϱ.

Definition 6.6 (Liquidation Profit). Given a debt position of δ tokens, a liquidator that repays
ϱ tokens and obtains α tokens receives a profit equal to profitt(ϱ)

def
= pC · α− pD · ϱ = σ · pD · ϱ.

Flashloans and Flashwaps. FSL may require a liquidator to hold various assets upfront
for debt repayment. This presents operational risks to liquidators due to the price volatility
of most cryptocurrencies. Because of such risks, flashloans [52] have become a popular option
for liquidators [39, 65]. Exactly in the same manner, these risks can be avoided by using
flashswaps. With a flashswap, a liquidator can borrow assets in D to repay liquidated debt
and acquire collateral in C, with the latter user to repay the flashswap, all within the span
of a single transaction. We emphasize that due to the equivalence between flashwaps and
combining a flashloan and a swap, the results contained within this section are applicable to
both liquidation schemes.

Constant Product Rule. We focus on flashswaps obtained from DEXs that use the con-
stant product rule, a prevalent DEX pricing formula [78]. Such DEXs are referred to as
CPAMMs. A CPAMM contract reserves a pair of tokens, allowing any trader to trade against

17

maximize
ϱ

σ · pD · ϱ

subject to ϱ ≤ κ · d

Optimization Problem 2: Our program for optimal liquidations, see Section 6.2 for details.

it by sending one cryptocurrency to the contract and, in exchange, taking the other cryptocur-
rency from the contract per the CPAMM’s exchange rate, as defined in Definition 6.7. As
the name suggests, the constant product rule requires that trades preserve the product of the
amounts of each asset held.

Definition 6.7 (Constant Product Market Maker Swap). Given a CPAMM with xc of C and
xd of D reserved, the amount of D tokens received for providing a ∆ amount of C is:

SwapC→D(∆)
def
= xd −

xc · xd

xc +∆
.

6.2 Optimal Flashswap-based Liquidation
A program for optimal-profit FSLs is formalized in Optimization Problem 2. Presumably, to
optimize liquidation profits, a liquidator should liquidate up to the close factor constraint,
because profitt(ϱ) increases monotonically with regards to (w.r.t.) ϱ. However, this intuition
does not hold when a CPAMM is used to perform an asset exchange from C to D in the
liquidation process, due to the effect large trades have on CPAMM exchange-rates. This
insight is crystallized in Theorem 6.8.

Theorem 6.8 (Optimal liquidation). Consider a debt position that is available for liquidation,
where the debt is in cryptocurrency D, and is collateralized by funds in cryptocurrency C. If a
user wishes to perform the liquidation using a swap obtained from a CPAMM with xc of C and
xd of D reserved, then the optimal amount to repay is:

ϱ∗ = min

(
κ · δ,

√
pliq · xc · xd − xc

pliq

)
.

Proof. We assume that the liquidator wishes to perform the liquidation using a flashswap over
a CPAMM DEX D, and thus will obtain token D, use it to perform the liquidation, then receive
token C in return, which is finally used to cover the flashswap. Technically, a liquidator can
exchange an arbitrary amount of C to D as long as the swap can be covered.

At the time of liquidation, the spot price from C to D on D is pC→D = xd

xc
, by the definition

of the constant product rule. The exchange-rate from C to D on D may, however, diverge
from the spot price due to the so-called slippage, which is defined as the difference between the
current price of a trade, and the actual price at which it was carried out. Given a trade of size
∆, we denote the slippage as Slippage(∆).

Slippage(∆)
def
= pC→D ·∆− SwapC→D(∆) (1)

The slippage rate is a multiplicative version, defined in the following manner.

SlippageRate(∆)
def
=

pC→D ·∆− SwapC→D(∆)

pC→D ·∆
(2)

18

maximize
ϱ

xd −
xc · xd

xc + pliq · ϱ
− ϱ

subject to ϱ ≤ κ · δ

Optimization Problem 3: Our program for optimal flashswap-based liquidations.

Therefore, SwapC→D(∆), representing the amount of D that is received when exchanging ∆
units of C over D, is formulated in Eq. (3).

SwapC→D(∆) = (1− SlippageRate(∆)) · pC→D ·∆ (3)

The slippage rate is defined generally. However, it can be written more concretely when
considering DEXs that use the constant product rule, and have xc and xd reserved.

SlippageRate(∆) = 1− xc

∆
+

xc

∆

1 + ∆
xc

(4)

Observe that the slippage rate is monotonically increasing w.r.t. to the trade, implying that
the exchange rate becomes less favorable for a trader when the trading volume increases.

Using the above results and previously made notations and definitions, the liquidation
profit with a flashswap is hence outlined in Eq. (5).

profitf (ϱ) = pD · SwapC→D(α)− pD · ϱ
= pD · (1− SlippageRate(α)) · pC→D · α− pD · ϱ
= pD · (pC→D · pliq · (1− SlippageRate (pliq · ϱ))− 1) · ϱ (5)

Note that SlippageRate (pliq · ϱ) is monotonically increasing w.r.t. ϱ. So, profitf (ϱ) is
concave w.r.t. ϱ, indicating that liquidating up to the close factor might not be the optimal
strategy for FSL. Given this insight, we write a program for finding optimal-profit flashswap-
based liquidations in Optimization Problem 3.

By differentiating Optimization Problem 3 with respect to ϱ, we get:

pliq · xc · xd

(ϱ · pliq + xc)
2 − 1 (6)

By solving this equation, we find that the optimal amount to repay is upper bounded by:
√
pliq · xc · xd − xc

pliq
(7)

Due to the close factor, this means that the optimal amount ϱ∗ to repay is:

ϱ∗ = min

(
κ · δ,

√
pliq · xc · xd − xc

pliq

)
(8)

As we show in Case Study 6.9, the optimal strategy we present in Theorem 6.8 can im-
prove profits compared to a naïve strategy that liquidates up to the close factor, even when
considering relatively small debt positions.

19

0 5000 10000 15000 20000 25000 30000 35000
Insolvent Loan Size, in USDC

0

1000

2000

3000

4000

5000

6000

O
pt

im
al

 R
ep

ay
m

en
t,

in
 U

SD
C

20%

25%

30%

35%

40%

45%

50%

O
pt

im
al

 R
ep

ay
m

en
t,

in
 P

er
ce

nt
 o

f L
oa

n

Repayment, in USDC
Repayment, in %

Figure 5: Optimal repayment in a swap-based
liquidation for Aave’s USDC pool, that has a
close factor of 50%. Due to exchange-rate slip-
page, it is suboptimal to repay large illiquid
positions up to the close factor.

0 5000 10000 15000 20000 25000 30000 35000
Insolvent Loan Size, in USDC

65%

70%

75%

80%

85%

90%

95%

100%

Pr
of

it
R

at
io

 B
et

w
ee

n
N

aï
ve

 a
nd

 O
pt

im
al

 S
tra

te
gi

es

Figure 6: The ratio between profits made by
naïve and optimal flashswap based liquida-
tions for Aave’s USDC pool. The ratio drops
below 1 for large loans, indicating that the
naïve strategy is suboptimal.

Case Study 6.9 (Flashswap Liquidation Tools). Popular tools which automatically look for
insolvent debt positions and liquidate them using flashwaps (or flashloans and swaps), do not
follow the optimal strategy we present in Theorem 6.8, instead naïvely performing liquidations
up to the close factor [55, 1, 17].

To illustrate the gap between the two strategies mentioned above, in Fig. 6 we plot the
ratio between the profit obtained by the naïve one and our optimal one. Moreover, we plot the
corresponding absolute and relative amounts that should be liquidated in Fig. 5. Both figures
assume that the debt to be liquidated is in Aave’s USDC liquidity pool, and the DEX used is
Uniswap v2, with all parameters set to their real-world values as of block 15731128.

As Fig. 6 shows, naïve liquidations may produce 65% less profit than optimal ones in certain
cases, or, conversely, the latter can outperform the former by more than 53%.

6.3 Discussion
Aave advertises their liquidation mechanism as beneficial for the health of the platform [3], as
liquidations ensure that unhealthy positions are adequately collateralized. When users liqui-
date bad debt, they perform a service for the platform, driven by the possibility of obtaining
a debtor’s collateral at a discount. For large positions, the funds required for liquidation can
be substantial. Users who lack such funds are required to rely on actions such as flashloans
and swaps. As we have shown, in such cases utility-maximizing users may prefer to repay
only a small amount of debt, possibly not enough to pull the position’s health factor back
to a reasonable level according to the mechanism’s risk parameters. Thus, the health of the
platform is potentially harmed.

7 Conclusion
In this work, we study three core DeFi primitives: lending, flashswaps, and flashswap-based
liquidations. We derive their optimal usage, and show that even large platforms and market
actors behave suboptimally. We perform a longitudinal study on one of them, and show that
the losses due to suboptimality exceeded 4 million USD over the examined period. Importantly,

20

through our longitudinal study, we uncover the first instance of a miner using inside information
to its benefit. We hope our work draws attention to under-explored aspects of DeFi which are
important for the integrity and efficient operation of platforms.

Acknowledgements
This research was supported by the Ministry of Science & Technology, Israel.

References
[1] 0xnivek. Joe Liquidator. 2021. url: https://web.archive.org/web/20221012180624/

https://github.com/0xnivek/joe-liquidator.

[2] 6eer. uniswap-sushiswap-arbitrage-bot. 2021. url: https://github.com/6eer/uniswap-
sushiswap-arbitrage-bot.

[3] Aave. Liquidations. 2022. url: https://web.archive.org/web/20221013175355/
https://docs.aave.com/developers/guides/liquidations.

[4] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core. 2020. url:
https://web.archive.org/web/20220126073458/https://uniswap.org/whitepaper
.pdf.

[5] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson.
Uniswap v3 core. 2021. url: https://web.archive.org/web/20221011013240/https:
//uniswap.org/whitepaper-v3.pdf.

[6] Guillermo Angeris, Alex Evans, and Tarun Chitra. A Note on Bundle Profit Maximiza-
tion. 2021.

[7] Guillermo Angeris, Alex Evans, Tarun Chitra, and Stephen Boyd. “Optimal Routing
for Constant Function Market Makers”. In: Proceedings of the 23rd ACM Conference on
Economics and Computation. EC ’22. Boulder, CO, USA: Association for Computing
Machinery, 2022, pp. 115–128. isbn: 9781450391504. doi: 10.1145/3490486.3538336.
url: https://doi.org/10.1145/3490486.3538336.

[8] Balancer. Flash Swaps. 2023. url: https://github.com/balancer/docs/blob/309ee
3/docs/reference/swaps/flash-swaps.md.

[9] Vitalik Buterin. Ethereum Whitepaper. July 2022. url: https://web.archive.org/
web/20220728020709/https://ethereum.org/en/whitepaper/.

[10] Giulio Caldarelli. “Wrapping Trust for Interoperability: A Preliminary Study of Wrapped
Tokens”. In: Information 13.1 (2021), p. 6. doi: 10.3390/info13010006.

[11] Yixin Cao, Chuanwei Zou, and Xianfeng Cheng. Flashot: A Snapshot of Flash Loan
Attack on DeFi Ecosystem. 2021. doi: 10.48550/ARXIV.2102.00626. url: https:
//arxiv.org/abs/2102.00626.

[12] Miles Carlsten, Harry Kalodner, S. Matthew Weinberg, and Arvind Narayanan. “On
the Instability of Bitcoin Without the Block Reward”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’16. Vienna, Aus-
tria: Association for Computing Machinery, 2016, pp. 154–167. isbn: 9781450341394. doi:
10.1145/2976749.2978408. url: https://doi.org/10.1145/2976749.2978408.

[13] Compound. cTokens. 2022. url: https://compound.finance/docs/ctokens.

21

https://web.archive.org/web/20221012180624/https://github.com/0xnivek/joe-liquidator
https://web.archive.org/web/20221012180624/https://github.com/0xnivek/joe-liquidator
https://github.com/6eer/uniswap-sushiswap-arbitrage-bot
https://github.com/6eer/uniswap-sushiswap-arbitrage-bot
https://web.archive.org/web/20221013175355/https://docs.aave.com/developers/guides/liquidations
https://web.archive.org/web/20221013175355/https://docs.aave.com/developers/guides/liquidations
https://web.archive.org/web/20220126073458/https://uniswap.org/whitepaper.pdf
https://web.archive.org/web/20220126073458/https://uniswap.org/whitepaper.pdf
https://web.archive.org/web/20221011013240/https://uniswap.org/whitepaper-v3.pdf
https://web.archive.org/web/20221011013240/https://uniswap.org/whitepaper-v3.pdf
https://doi.org/10.1145/3490486.3538336
https://doi.org/10.1145/3490486.3538336
https://github.com/balancer/docs/blob/309ee3/docs/reference/swaps/flash-swaps.md
https://github.com/balancer/docs/blob/309ee3/docs/reference/swaps/flash-swaps.md
https://web.archive.org/web/20220728020709/https://ethereum.org/en/whitepaper/
https://web.archive.org/web/20220728020709/https://ethereum.org/en/whitepaper/
https://doi.org/10.3390/info13010006
https://doi.org/10.48550/ARXIV.2102.00626
https://arxiv.org/abs/2102.00626
https://arxiv.org/abs/2102.00626
https://doi.org/10.1145/2976749.2978408
https://doi.org/10.1145/2976749.2978408
https://compound.finance/docs/ctokens

[14] Simon Cousaert, Jiahua Xu, and Toshiko Matsui. SoK: Yield Aggregators in DeFi. May
2021. arXiv: 2105.13891 [q-fin.PM].

[15] Curve. Curve DAO. 2021. url: https://web.archive.org/web/20210811065239/
https://curve.fi/files/CurveDAO.pdf.

[16] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. “Flash Boys 2.0: Frontrunning in Decentralized Ex-
changes, Miner Extractable Value, and Consensus Instability”. In: 2020 IEEE Symposium
on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. San Fran-
cisco, CA, USA: IEEE, 2020, pp. 910–927. doi: 10.1109/SP40000.2020.00040.

[17] Mike De’Shazer. FlashLoanLiquidation. 2020. url: https://web.archive.org/web/
20221012180627/https://github.com/mikedeshazer/FlashLoanLiquidation.

[18] DeFiLlama. Yearn Finance: TVL and Stats. 2022. url: https://web.archive.org/
web/20221013234041/https://defillama.com/protocol/yearn-finance.

[19] DefiLlama. DeFi Dashboard. 2022. url: https://defillama.com.

[20] DefiLlama. DEXs Ethereum Volumes. 2022. url: https://web.archive.org/web/
20221011072608/https://defillama.com/dexs/ethereum.

[21] DefiLlama. Forks. May 2024. url: https://defillama.com/forks.

[22] DefiLlama. Forks - Compound V2. May 2024. url: https://defillama.com/forks/
Compound%20V2.

[23] DefiLlama. Lending TVL Rankings. 2024. url: https : / / web . archive . org / web /
20240517081433/https://defillama.com/protocols/Lending.

[24] Ben Edgington. Upgrading Ethereum | One Page Annotated Spec. Dec. 2022. url: https:
//web.archive.org/web/20221218133524/https://eth2book.info/bellatrix/
annotated-spec/%5C#seconds_per_slot.

[25] Ethereum. Blocks. 2022. url: https://web.archive.org/web/20220922171539/
https://ethereum.org/en/developers/docs/blocks/#block-time.

[26] Ethereum.org. ERC-20 Token Standard. 2021. url: https://ethereum.org/en/devel
opers/docs/standards/tokens/erc-20/.

[27] ethermine.eth. Want to keep your dex trades away from the public mempool? We are
proud to announce the Ethermine Private RPC endpoint. 2021. url: https://web.
archive.org/web/20221013133550/https://nitter.it/ethermine_org/status/
1443502516604477445.

[28] ethermine.eth. Ethermine is pleased to say that it has secured the #Ethereum network for
the past 7 years and mined 3,271,518 Blocks and a total of 9,836,656 Ether. 2022. url:
https://web.archive.org/web/20221013230053/https://nitter.it/ethermine_
org/status/1570302744992583681.

[29] ethermine.org. We are proud to announce the next step of #Ethermine MEV Beta Ether-
mine MEV Relay! 2021. url: https://web.archive.org/web/20221019190843/
https://nitter.it/ethermine_org/status/1404464604663713798?lang=en.

[30] Etherscan. Compound USDT (cUSDT) Token Tracker. 2022. url: https://etherscan.
io/token/0xf650c3d88d12db855b8bf7d11be6c55a4e07dcc9#balances.

22

https://arxiv.org/abs/2105.13891
https://web.archive.org/web/20210811065239/https://curve.fi/files/CurveDAO.pdf
https://web.archive.org/web/20210811065239/https://curve.fi/files/CurveDAO.pdf
https://doi.org/10.1109/SP40000.2020.00040
https://web.archive.org/web/20221012180627/https://github.com/mikedeshazer/FlashLoanLiquidation
https://web.archive.org/web/20221012180627/https://github.com/mikedeshazer/FlashLoanLiquidation
https://web.archive.org/web/20221013234041/https://defillama.com/protocol/yearn-finance
https://web.archive.org/web/20221013234041/https://defillama.com/protocol/yearn-finance
https://defillama.com
https://web.archive.org/web/20221011072608/https://defillama.com/dexs/ethereum
https://web.archive.org/web/20221011072608/https://defillama.com/dexs/ethereum
https://defillama.com/forks
https://defillama.com/forks/Compound%20V2
https://defillama.com/forks/Compound%20V2
https://web.archive.org/web/20240517081433/https://defillama.com/protocols/Lending
https://web.archive.org/web/20240517081433/https://defillama.com/protocols/Lending
https://web.archive.org/web/20221218133524/https://eth2book.info/bellatrix/annotated-spec/%5C#seconds_per_slot
https://web.archive.org/web/20221218133524/https://eth2book.info/bellatrix/annotated-spec/%5C#seconds_per_slot
https://web.archive.org/web/20221218133524/https://eth2book.info/bellatrix/annotated-spec/%5C#seconds_per_slot
https://web.archive.org/web/20220922171539/https://ethereum.org/en/developers/docs/blocks/#block-time
https://web.archive.org/web/20220922171539/https://ethereum.org/en/developers/docs/blocks/#block-time
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://web.archive.org/web/20221013133550/https://nitter.it/ethermine_org/status/1443502516604477445
https://web.archive.org/web/20221013133550/https://nitter.it/ethermine_org/status/1443502516604477445
https://web.archive.org/web/20221013133550/https://nitter.it/ethermine_org/status/1443502516604477445
https://web.archive.org/web/20221013230053/https://nitter.it/ethermine_org/status/1570302744992583681
https://web.archive.org/web/20221013230053/https://nitter.it/ethermine_org/status/1570302744992583681
https://web.archive.org/web/20221019190843/https://nitter.it/ethermine_org/status/1404464604663713798?lang=en
https://web.archive.org/web/20221019190843/https://nitter.it/ethermine_org/status/1404464604663713798?lang=en
https://etherscan.io/token/0xf650c3d88d12db855b8bf7d11be6c55a4e07dcc9#balances
https://etherscan.io/token/0xf650c3d88d12db855b8bf7d11be6c55a4e07dcc9#balances

[31] Etherscan. Contract 0x83f798e925BcD4017Eb265844FDDAbb448f1707D. Yearn’s yUSDT
token rebalances itself in line 682 if a certain platform offers a better interest rate, by with-
drawing all funds from the current platform and depositing in the new one. 2022. url:
https://etherscan.io/address/0x83f798e925bcd4017eb265844fddabb448f1707d%
5C#code%5C#L682.

[32] Etherscan. Contract 0xCBCdF9626bC03E24f779434178A73a0B4bad62eD. 2022. url: ht
tps://etherscan.io/address/0xcbcdf9626bc03e24f779434178a73a0b4bad62ed%5C#
code%5C#F1%5C#L777.

[33] Zhou Fan, Francisco Marmolejo-Cossio, Daniel Moroz, Michael Neuder, Rithvik Rao, and
David C. Parkes. “Strategic Liquidity Provision in Uniswap V3”. In: 5th Conference on
Advances in Financial Technologies (AFT 2023). Ed. by Joseph Bonneau and S. Matthew
Weinberg. Vol. 282. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 25:1–25:22. isbn:
978-3-95977-303-4. doi: 10.4230/LIPIcs.AFT.2023.25. url: https://drops.dagstuh
l.de/entities/document/10.4230/LIPIcs.AFT.2023.25.

[34] Zhou Fan, Francisco Marmolejo-Cossío, Ben Altschuler, He Sun, Xintong Wang, and
David C. Parkes. Differential Liquidity Provision in Uniswap v3 and Implications for
Contract Design. 2022. doi: 10.48550/ARXIV.2204.00464. url: https://arxiv.org/
abs/2204.00464.

[35] Flashbots. Flashbots. 2022. url: https://github.com/flashbots/pm.

[36] Yotam Gafni and Aviv Yaish. Greedy Transaction Fee Mechanisms for (Non-)myopic
Miners. 2022. doi: 10.48550/arXiv.2210.07793. url: https://arxiv.org/abs/
2210.07793.

[37] Lewis Gudgeon, Sam Werner, Daniel Perez, and William J. Knottenbelt. “DeFi Protocols
for Loanable Funds: Interest Rates, Liquidity and Market Efficiency”. In: AFT ’20: 2nd
ACM Conference on Advances in Financial Technologies, New York, NY, USA, October
21-23, 2020. ACM, 2020, pp. 92–112. doi: 10.1145/3419614.3423254.

[38] Kshitij Kulkarni, Theo Diamandis, and Tarun Chitra. Towards a Theory of Maximal
Extractable Value I: Constant Function Market Makers. 2022. doi: 10.48550/ARXIV.
2207.11835. url: https://arxiv.org/abs/2207.11835.

[39] Alfred Lehar and Christine A Parlour. Systemic Fragility in Decentralized Markets. 2022.

[40] Robert Leshner and Geoffrey Hayes. Compound: The money market protocol. 2019.

[41] Kai Li, Yibo Wang, and Yuzhe Tang. “DETER: Denial of Ethereum Txpool SERvices”.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security. CCS ’21. Virtual Event, Republic of Korea: Association for Computing
Machinery, 2021, pp. 1645–1667. isbn: 9781450384544. doi: 10.1145/3460120.3485369.
url: https://doi.org/10.1145/3460120.3485369.

[42] Yulin Liu, Yuxuan Lu, Kartik Nayak, Fan Zhang, Luyao Zhang, and Yinhong Zhao. “Em-
pirical Analysis of EIP-1559: Transaction Fees, Waiting Times, and Consensus Security”.
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security. CCS ’22. Los Angeles, CA, USA: Association for Computing Machin-
ery, 2022, pp. 2099–2113. isbn: 9781450394505. doi: 10.1145/3548606.3559341. url:
https://doi.org/10.1145/3548606.3559341.

[43] Fernando Martinelli and Nikolai Mushegian. Balancer Whitepaper. 2019. url: https:
//web.archive.org/web/20220623220539/https://balancer.fi/whitepaper.pdf.

23

https://etherscan.io/address/0x83f798e925bcd4017eb265844fddabb448f1707d%5C#code%5C#L682
https://etherscan.io/address/0x83f798e925bcd4017eb265844fddabb448f1707d%5C#code%5C#L682
https://etherscan.io/address/0xcbcdf9626bc03e24f779434178a73a0b4bad62ed%5C#code%5C#F1%5C#L777
https://etherscan.io/address/0xcbcdf9626bc03e24f779434178a73a0b4bad62ed%5C#code%5C#F1%5C#L777
https://etherscan.io/address/0xcbcdf9626bc03e24f779434178a73a0b4bad62ed%5C#code%5C#F1%5C#L777
https://doi.org/10.4230/LIPIcs.AFT.2023.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.25
https://doi.org/10.48550/ARXIV.2204.00464
https://arxiv.org/abs/2204.00464
https://arxiv.org/abs/2204.00464
https://github.com/flashbots/pm
https://doi.org/10.48550/arXiv.2210.07793
https://arxiv.org/abs/2210.07793
https://arxiv.org/abs/2210.07793
https://doi.org/10.1145/3419614.3423254
https://doi.org/10.48550/ARXIV.2207.11835
https://doi.org/10.48550/ARXIV.2207.11835
https://arxiv.org/abs/2207.11835
https://doi.org/10.1145/3460120.3485369
https://doi.org/10.1145/3460120.3485369
https://doi.org/10.1145/3548606.3559341
https://doi.org/10.1145/3548606.3559341
https://web.archive.org/web/20220623220539/https://balancer.fi/whitepaper.pdf
https://web.archive.org/web/20220623220539/https://balancer.fi/whitepaper.pdf

[44] Amani Moin, Kevin Sekniqi, and Emin Gun Sirer. “SoK: A classification framework for
stablecoin designs”. In: International Conference on Financial Cryptography and Data
Security. Springer. Springer International Publishing, 2020, pp. 174–197. doi: 10.1007/
978-3-030-51280-4_11.

[45] Alexandre Obadia, Alejo Salles, Lakshman Sankar, Tarun Chitra, Vaibhav Chellani, and
Philip Daian. Unity is Strength: A Formalization of Cross-Domain Maximal Extractable
Value. 2021. doi: 10.48550/ARXIV.2112.01472. url: https://arxiv.org/abs/2112.
01472.

[46] Ariel Orda and Ori Rottenstreich. “Enforcing Fairness in Blockchain Transaction Order-
ing”. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
San Francisco, CA, USA: IEEE, May 2019, pp. 368–375. doi: 10.1109/BLOC.2019.
8751349.

[47] paco0x. AMM Arbitrageur. 2021. url: https://github.com/paco0x/amm-arbitrageu
r.

[48] Julien Piet, Jaiden Fairoze, and Nicholas Weaver. Extracting Godl [sic] from the Salt
Mines: Ethereum Miners Extracting Value. 2022.

[49] Kaihua Qin, Stefanos Chaliasos, Liyi Zhou, Benjamin Livshits, Dawn Song, and Arthur
Gervais. “The blockchain imitation game”. In: Proceedings of the 32nd USENIX Confer-
ence on Security Symposium. SEC ’23. Anaheim, CA, USA: USENIX Association, 2023.
isbn: 978-1-939133-37-3.

[50] Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais. “An
Empirical Study of DeFi Liquidations: Incentives, Risks, and Instabilities”. In: Pro-
ceedings of the 21st ACM Internet Measurement Conference. IMC ’21. Virtual Event:
Association for Computing Machinery, 2021, pp. 336–350. isbn: 9781450391290. doi:
10.1145/3487552.3487811. url: https://doi.org/10.1145/3487552.3487811.

[51] Kaihua Qin, Liyi Zhou, and Arthur Gervais. “Quantifying Blockchain Extractable Value:
How dark is the forest?” In: 43rd IEEE Symposium on Security and Privacy, SP 2022,
San Francisco, CA, USA, May 22-26, 2022. San Francisco, CA, USA: IEEE, 2022,
pp. 198–214. doi: 10.1109/SP46214.2022.9833734. url: https://doi.org/10.
1109/SP46214.2022.9833734.

[52] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the DeFi
Ecosystem with Flash Loans for Fun and Profit. Mar. 2021. doi: 10.1007/978-3-662-
64322-8_1. arXiv: 2003.03810 [cs.CR].

[53] M. Rosenfeld. Analysis of Bitcoin Pooled Mining Reward Systems. Dec. 2011. arXiv:
1112.4980 [cs.DC].

[54] Fabian Schär. “Decentralized Finance: On Blockchain-and Smart Contract-based Finan-
cial Markets”. In: Available at SSRN 3571335 103.2 (Apr. 2021), pp. 153–174. doi: 10.
20955/r.103.153-74. url: https://ideas.repec.org/a/fip/fedlrv/91428.html.

[55] Hayden Shively and Adam Egyed. Nantucket. 2021. url: https://web.archive.org/
web/20221012180650/https://github.com/haydenshively/Nantucket.

[56] Andrei Shleifer and Robert W. Vishny. “The Limits of Arbitrage”. In: The Journal of
Finance 52.1 (1997), pp. 35–55. doi: https://doi.org/10.1111/j.1540-6261.1997.
tb03807.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-
6261.1997.tb03807.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1540-6261.1997.tb03807.x.

24

https://doi.org/10.1007/978-3-030-51280-4_11
https://doi.org/10.1007/978-3-030-51280-4_11
https://doi.org/10.48550/ARXIV.2112.01472
https://arxiv.org/abs/2112.01472
https://arxiv.org/abs/2112.01472
https://doi.org/10.1109/BLOC.2019.8751349
https://doi.org/10.1109/BLOC.2019.8751349
https://github.com/paco0x/amm-arbitrageur
https://github.com/paco0x/amm-arbitrageur
https://doi.org/10.1145/3487552.3487811
https://doi.org/10.1145/3487552.3487811
https://doi.org/10.1109/SP46214.2022.9833734
https://doi.org/10.1109/SP46214.2022.9833734
https://doi.org/10.1109/SP46214.2022.9833734
https://doi.org/10.1007/978-3-662-64322-8_1
https://doi.org/10.1007/978-3-662-64322-8_1
https://arxiv.org/abs/2003.03810
https://arxiv.org/abs/1112.4980
https://doi.org/10.20955/r.103.153-74
https://doi.org/10.20955/r.103.153-74
https://ideas.repec.org/a/fip/fedlrv/91428.html
https://web.archive.org/web/20221012180650/https://github.com/haydenshively/Nantucket
https://web.archive.org/web/20221012180650/https://github.com/haydenshively/Nantucket
https://doi.org/https://doi.org/10.1111/j.1540-6261.1997.tb03807.x
https://doi.org/https://doi.org/10.1111/j.1540-6261.1997.tb03807.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-6261.1997.tb03807.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-6261.1997.tb03807.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1997.tb03807.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1997.tb03807.x

[57] SushiSwap. SushiSwap Docs. 2022. url: https://web.archive.org/web/20220901181030/
https://docs.sushi.com/.

[58] Adrian Sutton. Understanding Attestation Misses. Sept. 2022. url: https://web.arch
ive.org/web/20220925110330/https://symphonious.net/2022/09/25/understandi
ng-attestation-misses/.

[59] Uniswap. Uniswap v2 Overview. 2020. url: https://web.archive.org/web/20220917011113/
https://uniswap.org/blog/uniswap-v2.

[60] Uniswap. Auto Router V2. 2021. url: https://web.archive.org/web/20211216202805/
https://uniswap.org/blog/auto-router-v2.

[61] Uniswap. Flash Swaps. 2022. url: https://web.archive.org/web/20220905142459/
https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/
using-flash-swaps.

[62] Uniswap. Multihop Swaps. 2022. url: https://docs.uniswap.org/protocol/guides/
swaps/multihop-swaps.

[63] Uniswap. Uniswap v2 SDK. 2022. url: https://github.com/Uniswap/v2-sdk.

[64] Fabian Vogelsteller and Vitalik Buterin. EIP-20: Token Standard. 2015. url: https:
//eips.ethereum.org/EIPS/eip-20.

[65] Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu Wang,
and Kui Ren. “Towards A First Step to Understand Flash Loan and Its Applications
in DeFi Ecosystem”. In: Proceedings of the Ninth International Workshop on Security in
Blockchain and Cloud Computing. SBC ’21. Virtual Event, Hong Kong: Association for
Computing Machinery, 2021, pp. 23–28. isbn: 9781450384056. doi: 10.1145/3457977.
3460301. url: https://doi.org/10.1145/3457977.3460301.

[66] Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang Deng, and Roger Wattenhofer.
Cyclic Arbitrage in Decentralized Exchanges. 2021. doi: 10.48550/ARXIV.2105.02784.
url: https://arxiv.org/abs/2105.02784.

[67] Ben Weintraub, Christof Ferreira Torres, Cristina Nita-Rotaru, and Radu State. “A
Flash(Bot) in the Pan: Measuring Maximal Extractable Value in Private Pools”. In:
Proceedings of the 22nd ACM Internet Measurement Conference. IMC ’22. Nice, France:
Association for Computing Machinery, 2022, pp. 458–471. isbn: 9781450392594. doi:
10.1145/3517745.3561448. url: https://doi.org/10.1145/3517745.3561448.

[68] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[69] wow. AAVE Protocol. 2020. eprint: https://git.io/JLQVx. url: https://git.io/
JLQVx.

[70] Matheus Venturyne Xavier Ferreira and David C. Parkes. “Credible Decentralized Ex-
change Design via Verifiable Sequencing Rules”. In: Proceedings of the 55th Annual ACM
Symposium on Theory of Computing. STOC 2023. Orlando, FL, USA: Association for
Computing Machinery, 2023, pp. 723–736. isbn: 9781450399135. doi: 10.1145/3564246.
3585233. url: https://doi.org/10.1145/3564246.3585233.

[71] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. “SoK: Decentralized
Exchanges (DEX) with Automated Market Maker (AMM) Protocols”. In: ACM Comput.
Surv. 55.11 (Feb. 2023). issn: 0360-0300. doi: 10.1145/3570639. url: https://doi.
org/10.1145/3570639.

25

https://web.archive.org/web/20220901181030/https://docs.sushi.com/
https://web.archive.org/web/20220901181030/https://docs.sushi.com/
https://web.archive.org/web/20220925110330/https://symphonious.net/2022/09/25/understanding-attestation-misses/
https://web.archive.org/web/20220925110330/https://symphonious.net/2022/09/25/understanding-attestation-misses/
https://web.archive.org/web/20220925110330/https://symphonious.net/2022/09/25/understanding-attestation-misses/
https://web.archive.org/web/20220917011113/https://uniswap.org/blog/uniswap-v2
https://web.archive.org/web/20220917011113/https://uniswap.org/blog/uniswap-v2
https://web.archive.org/web/20211216202805/https://uniswap.org/blog/auto-router-v2
https://web.archive.org/web/20211216202805/https://uniswap.org/blog/auto-router-v2
https://web.archive.org/web/20220905142459/https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/using-flash-swaps
https://web.archive.org/web/20220905142459/https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/using-flash-swaps
https://web.archive.org/web/20220905142459/https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/using-flash-swaps
https://docs.uniswap.org/protocol/guides/swaps/multihop-swaps
https://docs.uniswap.org/protocol/guides/swaps/multihop-swaps
https://github.com/Uniswap/v2-sdk
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://doi.org/10.1145/3457977.3460301
https://doi.org/10.1145/3457977.3460301
https://doi.org/10.1145/3457977.3460301
https://doi.org/10.48550/ARXIV.2105.02784
https://arxiv.org/abs/2105.02784
https://doi.org/10.1145/3517745.3561448
https://doi.org/10.1145/3517745.3561448
https://git.io/JLQVx
https://git.io/JLQVx
https://git.io/JLQVx
https://doi.org/10.1145/3564246.3585233
https://doi.org/10.1145/3564246.3585233
https://doi.org/10.1145/3564246.3585233
https://doi.org/10.1145/3570639
https://doi.org/10.1145/3570639
https://doi.org/10.1145/3570639

[72] Aviv Yaish, Kaihua Qin, Liyi Zhou, Aviv Zohar, and Arthur Gervais. “Speculative Denial-
of-Service Attacks in Ethereum”. In: 33rd USENIX Security Symposium (USENIX Se-
curity 24). USENIXSEC ’24. Philadelphia, PA: USENIX Association, Aug. 2024. eprint:
https://ia.cr/2023/956. url: https://www.usenix.org/conference/usenixsecur
ity24/presentation/yaish.

[73] Aviv Yaish, Gilad Stern, and Aviv Zohar. “Uncle Maker: (Time)Stamping Out The Com-
petition in Ethereum”. In: Proceedings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’23). CCS ’23. Copenhagen, Denmark: Asso-
ciation for Computing Machinery, 2023. isbn: 9798400700507. doi: 10.1145/3576915.
3616674.

[74] Aviv Yaish, Saar Tochner, and Aviv Zohar. “Blockchain Stretching & Squeezing: Manip-
ulating Time for Your Best Interest”. In: Proceedings of the 23rd ACM Conference on
Economics and Computation. EC ’22. Boulder, CO, USA: Association for Computing
Machinery, 2022, pp. 65–88. isbn: 9781450391504. doi: 10.1145/3490486.3538250.
url: https://doi.org/10.1145/3490486.3538250.

[75] YCHARTS. Ethereum Average Block Time. 2022. url: https://web.archive.org/
web/20221009031833/https://ycharts.com/indicators/ethereum_average_block_
time.

[76] yearn. yearn-vaults/contracts/BaseStrategy.sol. 2022. url: https://github.com/yearn
/yearn-vaults/blob/efb47d8a/contracts/BaseStrategy.sol%5C#L539.

[77] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais. “On the
Just-In-Time Discovery of Profit-Generating Transactions in DeFi Protocols”. In: 42nd
IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021. San Francisco, CA, USA: IEEE, 2021, pp. 919–936. doi: 10.1109/SP40001.
2021.00113. url: https://doi.org/10.1109/SP40001.2021.00113.

[78] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc Viet Le, and Arthur Gervais. “High-
Frequency Trading on Decentralized On-Chain Exchanges”. In: 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. San Francisco,
CA, USA: IEEE, May 2021, pp. 428–445. doi: 10.1109/SP40001.2021.00027.

26

https://ia.cr/2023/956
https://www.usenix.org/conference/usenixsecurity24/presentation/yaish
https://www.usenix.org/conference/usenixsecurity24/presentation/yaish
https://doi.org/10.1145/3576915.3616674
https://doi.org/10.1145/3576915.3616674
https://doi.org/10.1145/3490486.3538250
https://doi.org/10.1145/3490486.3538250
https://web.archive.org/web/20221009031833/https://ycharts.com/indicators/ethereum_average_block_time
https://web.archive.org/web/20221009031833/https://ycharts.com/indicators/ethereum_average_block_time
https://web.archive.org/web/20221009031833/https://ycharts.com/indicators/ethereum_average_block_time
https://github.com/yearn/yearn-vaults/blob/efb47d8a/contracts/BaseStrategy.sol%5C#L539
https://github.com/yearn/yearn-vaults/blob/efb47d8a/contracts/BaseStrategy.sol%5C#L539
https://doi.org/10.1109/SP40001.2021.00113
https://doi.org/10.1109/SP40001.2021.00113
https://doi.org/10.1109/SP40001.2021.00113
https://doi.org/10.1109/SP40001.2021.00027

A Optimal Flashswap Arbitrage
We now formally define an optimization problem for the task of finding an arbitrage opportu-
nity that can be closed using a single transaction that is comprised solely of flashswaps.

Tokens and DEXs. Denote all tokens that exist in our economy by C1, . . . , Cn. For brevity,
we may refer to tokens by their index, e.g., use i instead of Ci. Let the set of all DEXs be S,
and for each DEX D ∈ S, denote the set of token-pairs which it allows to swap as:

TokenPairs(D) def
= {(i, j) | i, j are valid token pair in D} .

Swaps. We notate the action of swapping a ∆ amount of the i-th token in exchange for a δ
amount of j tokens on DEX D with δ = Swapi→j

D (∆), and any debt or fees incurred in the i-th
token with ϕi = Debt

(
Swapi→j

D (∆)
)
.

Remark A.1. Note that a flashswap which is to be repaid with the received token can be
denoted as a swap between token pair (i, i).

Arbitrageur. For simplicity, we assume an arbitrageur wishes to maximize profits in some
token i∗, and is willing to perform up to kend swaps in a single transaction (when kend > 1,
this is also known as a multi-hop swap; see Remark A.2 for additional details). Note that
decreasing kend allows reducing the time required for finding a solution, thus allowing the
consideration of time-constrained arbitrageurs. In case kend > 1, we denote by ck,i the amount
of token i that is held or owed by the user at the end of the k-th step of the transaction.

Remark A.2 (Multi-hop Swaps). “Complex” swaps may require multiple function calls. For
example, a cross-platform swap requires calling the Swap function of different DEXs. Addi-
tionally, performing multiple function calls is required when swapping more than two assets
in the same or different platforms, an operation also known as a “multi-hop” swap. Due to
Ethereum’s specification, a single transaction can only call one function. This function can, in
turn, call multiple other ones. To create a single transaction that performs multiple function
calls, one must either use an existing smart contract which supports such logic, or create a new
one [62] which incorporates all logic within a single function.

Optimal Execution. Finally, the arbitrageur should solve the problem in Optimization
Problem 4.

27

maximize ckend,i∗

subject to ∀k ∈ [kend] : Dk ∈ S

∀k ∈ [kend] : (ik, jk) ∈ TokenPair (Dk)

∀k ∈ [kend] : ∆k > 0

∀k ∈ [kend] : δk = Swapik→jk
Dk

(∆k)

∀k ∈ [kend] : ck,jk = ck−1,jk + δk

∀k ∈ [kend] : ϕk,i = Debt(Swapik→jk
Dk

(∆k))

∀i ∈ [n] : ckend,i −
kend∑
k=0

ϕk,i ≥ 0

Optimization Problem 4: A program for creating optimal flashswap arbitrage transactions, see
Appendix A for details.

28

B Glossary
A summary of all symbols and acronyms used in the paper.

B.1 Symbols

α The collateral acquired by a liquidator.
b Total amount of borrowed funds, denoted in tokens.
κ The debt that can be repaid within a single FSL, also known as the close factor.
c The amount of collateral securing a position.
δ The amount of debt for a position.
d Total amount of deposited funds, denoted in tokens.
D A DEX.
η The health of a debt position, or how close it is to insolvency.
I The yearly interest-rate.
Ib The yearly interest-rate for taking liquidity.
Id The yearly interest-rate for supplied liquidity.
σ The liquidation spread.
τ Liquidation threshold, defined to be ∈ (0, 1).
p The United States Dollar (USD) price of a token.
ϱ The amount of debt that a liquidator is repaying.
r The reserve factor.
u The utilization of the liquidity pool.

B.2 Acronyms

AMM automated market maker
APY annual percentage yield
CFMM constant function market maker
CPAMM constant product automated market maker
CRV Curve token
cUSDT Compound’s wrapped version of USDT
DeFi decentralized finance
DEX decentralized exchange
ERC Ethereum request for comments
ETH Ethereum
FaaS front-running-as-a-service
FSL fixed spread liquidation
LP liquidity provider
MEV miner-extractable value
p2p peer to peer
PoS proof-of-stake
PoW proof-of-work
TVL total value locked
USD United States Dollar
USDC USD Coin, a USD stablecoin
USDT Tether’s USD stablecoin

29

w.r.t. with regards to
WBTC Wrapped Bitcoin
WETH Wrapped Ethereum

30

	Introduction
	Our Work
	Our Contributions
	Organization

	Related Work
	Preliminaries
	Background
	Model

	Lending Suboptimality
	Utilization-based Kinked Interest Rate Schemes
	Optimal Liquidity Provisioning
	Suboptimal Lending
	Discussion

	Flashswap Suboptimality
	Using Flashswaps to Perform Arbitrage
	Flashswap Arbitrage Suboptimality
	Longitudinal Study
	Trimming the Search Space With Inside Information

	Discussion

	Liquidation Suboptimality
	Fixed Spread Liquidation
	Optimal Flashswap-based Liquidation
	Discussion

	Conclusion
	Optimal Flashswap Arbitrage
	Glossary
	Symbols
	Acronyms

