
An update on Keccak performance on ARMv7-M

Alexandre Adomnicăi

alexandre@adomnicai.me

Abstract. This note provides an update on Keccak performance on the ARMv7-M
processors. Starting from the XKCP implementation, we have applied architecture-
specific optimizations that have yielded a performance gain of up to 21% for the
largest permutation instance.

Keywords: Keccak · SHA-3 · SHAKE · ARM

1 Motivation

Keccak is a multipurpose cryptographic primitive which is notably known for being the
core of the SHA-3 and SHAKE standards [Dwo15]. While Keccak runs fast on high-
end processors thanks to vectorization or dedicated instructions (e.g. ARMv8 SHA3
extension), its largest version does not show outstanding performance on constrained
platforms (e.g. microcontrollers) when fully implemented in software. This is mainly due
to the lack of general purpose registers to hold the entire 1600-bit internal state, leading
to high register pressure and therefore register spilling (i.e. saving and restoring some
intermediate variables to and from memory). By way of illustration, on ARM Cortex-M4
processors, the current fastest Keccak implementation spends around half of the running
time in memory accesses. On top of being a cryptographic primitive itself, Keccak is also
used in other cryptographic algorithms internally, notably many PQC schemes use it for
various purposes, from seed expansion to CPA-to-CCA transforms. For instance, the PQC
algorithms Dilithium [DKL+18] and Kyber [BDK+18] selected by NIST for standardization
rely on Keccak to such an extent that hashing dominates the overall performance up to 85%
on Cortex-M4 [GKS20]. In order to reduce this overload, the Keccak designers suggested
to use a 12-round variant named TurboSHAKE [BDH+23] instead of the 24-round variant,
but NIST stated not being in favor of such a decision1. This highlights the needs for
improvement on architectures where Keccak does not show outstanding performance.

Our contribution This note details how we managed to improve Keccak performance
on ARMv7-M by up to 21% thanks to two kind of optimizations. The first one consists
in taking advantage of the inline barrel shifter in order to get rid of explicit rotations in
the linear layer. Note that this technique has been already reported in the litterature by
Becker and Kannwischer in order to boost Keccak on ARMv8 architectures [BK22] but has
not been ported to ARMv7-M so far. The second optimization consists in a more efficient
memory access scheduling to avoid pipeline hazards. We provide benchmarks for all the
SHA-3, SHAKE and TurboSHAKE instances.

1https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5HveEPBsbxY

mailto:alexandre@adomnicai.me
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5HveEPBsbxY

2 An update on Keccak performance on ARMv7-M

Absorbing phase Squeezing phase

m0

c bits

r bits

f

m1

f

m2

f

m3

f

z0

f

z1

f

z2

Figure 1: The Sponge construction. mi refers to the i-th message block after padding, zi

refers to the i-th hash block (before truncation) and r, c refer to the rate and capacity in
bits, respectively. Taken from [Jea16].

2 Background

2.1 Keccak

Keccak is built upon the sponge construction, depicted in Figure 1, together with a
cryptographic permutation Keccak-p[b, nr] where b and nr refer to the bitwidth of the
permutation and the number of rounds, respectively. In this note, we focus exclusively on
instances where b = 1600, such as the variant Keccak-p[1600,24] used in NIST standards.
The state A is represented as an array of 5 × 5 lanes, each composed of w = b/25 bits.
A[x, y] refers to the lane at position (x, y) and A[x, y, z] refers to the z-th bit of the
lane. Keccak-p is an iterated permutation where each round consists of five consecutive
operations θ, ρ, π, χ and ι, where χ is the only non-linear operation. See the Listing 1 for
a brief description of Keccak-p using pseudo-code.

1 # b refers to the permutation width while nr refers to the number of rounds
2 keccak -p[b,nr](A):
3 A = roundperm (A,RC[i]) for i in 0..nr -1
4 return A
5

6 # r[x,y] refer to rotation offsets while RC refers to the round constant
7 roundperm (A,RC):
8 # theta step
9 C[x] = A[x ,0] xor A[x ,1] xor A[x ,2] xor A[x ,3] xor A[x ,4] for x in 0..4

10 D[x] = C[x -1] xor rot(C[x+1] ,1) for x in 0..4
11 A[x,y] = A[x,y] xor D[x] for (x,y) in (0..4 ,0..4)
12 # rho and pi step
13 B[y ,2*x+3*y] = rot(A[x,y], r[x,y]) for (x,y) in (0..4 ,0..4)
14 # chi step
15 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]) for (x,y) in (0..4 ,0..4)
16 # iota step
17 A[0 ,0] = A[0 ,0] xor RC
18 return A

Listing 1: Pseudo-code of the Keccak-p cryptographic permutation.

Alexandre Adomnicăi 3

2.2 ARMv7-M processors
ARMv7-M refers to the microcontroller profile of the ARMv7 architecture. It comes with
sixteen 32-bit registers (r0-r15), out of which one is used as stack pointer (r13), one
is used as link register (r14), and one for the program counter (r15). It supports the
Thumb-2 technology, which means that 16-bit and 32-bit encoding of instructions can
be freely mixed. Thanks to the barrel shifter, flexible second operands can be shifted or
rotated as part of the instruction without any impact on performance (unless the amount
to be shifted or rotated is specified by a register, in which case the instruction will take
an extra cycle to complete). In this note, we consider the ARM Cortex-M3, M4 and M7
processors. All of them are based on the ARMv7-M architecture, but the M4 and M7 also
support additional instructions that are part of the DSP extension (i.e. the ARMv7E-M
architecture). However, we do not use this extension for our Keccak implementations.

Cortex-M3 and M4 The M3 and M4 processors have a 3-stage pipeline. Most instructions
take a single cycle, except branches and memory accesses that may take more cycles. While
load (ldr) and store (str) instructions typically require 2 and 1 cycles, respectively, ldr
instructions can take up to 3 cycles to complete in case of dependency with the previous
instruction. In the absence of such dependency, n ldr can be pipelined together to be
executed in n+1 cycles, and str following ldr takes 0 cycle. Use of the inline barrel shifter
has no impact on performance, unless the amount to be shifted or rotated is specified by a
register, in which case the instruction will take an extra cycle to complete.

Cortex-M7 The M7 is a more powerful processor which embeds a 6-stage pipeline with
dual-instruction issue, enabling it to execute up to two instructions per clock cycle. It also
comes with a branch predictor in addition to instruction and data caches whose sizes may
vary from 4 to 64 KiB. Unfortunately, unlike the M3 and M4 cores, ARM did not make
information about instructions timing on the M7 publicly available. This makes writing
optimized assembly code very difficult given the complexity of the core. Thankfully, some
independent analyses have been conducted by individuals in an attempt to address this
lack of information [Owe22, jnk].

2.3 Keccak-p on ARMv7-M
2.3.1 Optimization techniques

The designers of Keccak have summarized many possible optimizations for software and
hardware implementations in a dedicated document [BDH+12]. The two most useful ones
on ARMv7-M are described below.

Bit-interleaving The intuitive way to implement Keccak-p in software is to follow a lane-
wise architecture (i.e. a register contains one or multiple lanes), as described in Listing 1.
On platforms where registers are not large enough to handle an entire lane, the designers
recommend to use the bit-interleaving technique. For b = 1600 on 32-bit architectures,
it consists in storing bits at odd positions in one register, and bits at even positions in
another register. This way, 64-bit rotations can be easily handled by seperate 32-bit
rotations without additional operations. Note that this requires some extra calculations
for rearranging the lanes at the beginning and at the end of the permutation. However it
is calculated at a higher level (i.e. when adding and extracting data to and from the state),
and therefore it is not taken into account when benchmarking the permutation itself.

Efficient in-place processing When updating the internal state during the round function,
it is possible to store all processed data back into the same memory location it was loaded

4 An update on Keccak performance on ARMv7-M

from. This way only a single instance of the state (instead of two) must be preserved.
Because the π operation moves lanes within the state, it requires to define a mapping
between the lane coordinates and the memory location depending on the round number.
The Keccak designers propose a linear map using a matrix of order 4, which means the
state will return to its initial memory location after 4 rounds.

2.3.2 Performance

On 32-bit architectures, each round of Keccak-p[1600, ·] consists of 152 XORs, 50 ANDs, 50
NOTs and 58 rotations thanks to the bit-interleaving technique. On ARM, it is possible to
merge 1 AND and 1 NOT into a single bic instruction and the rotations during the θ step
can be easily combined with an XOR thanks to the inline barrel shifter. This leads to 250
instructions per round overall: 152 eor, 50 bic and 48 ror. Assuming logical instructions
take 1 cycle, the raw cost of Keccak-p[1600, 24] on this platform should theoretically
be 250 × 24 = 6 000 clock cycles. However, given the fact that the state is 1600-bit
long and that ARMv7-M only offers 14 32-bit general purpose registers to work with, it
implies that performance will inevitably bear the cost of many loads and stores on the
stack. As reference, we consider the ARMv7-M implementation from the eXtended Keccak
Code Package (XKCP) [BDH+]. Because it contains optimized, free and open-source
implementations for various platforms and architectures, it is often used as a third-party
software component. According to previous research, the assembly implementation of
Keccak-p[1600, 24] from XKCP requires 12 969 clock cycles on the Cortex-M4 [Sto19],
meaning that around 54% of the cycles are spent in memory accesses. However, there is
still room for improvement as explained in the next section.

3 Architecture specific optimizations
3.1 Pipelining memory accesses
The ARMv7-M assembly implementation provided by XKCP at the time of writing2 works
as follows. At the beginning of each round, all the parity lanes (namely D[x] on line 10 of
Listing 1) are precomputed. To compute half a parity lane, the code relies on a macro xor5
which consists of 5 ldr and 4 exlcusive-OR (eor) instructions, as detailed in Listing 2.

1 . macro xor5 result ,b,g,k,m,s
2 ldr \result , [r0 , #\b]
3 ldr r1 , [r0 , #\g]
4 eors \result , \result , r1
5 ldr r1 , [r0 , #\k]
6 eors \result , \result , r1
7 ldr r1 , [r0 , #\m]
8 eors \result , \result , r1
9 ldr r1 , [r0 , #\s]

10 eors \result , \result , r1
11 .endm

Listing 2: ARMv7-M assembly code to compute half a parity lane. Note that memory
accesses are interleaved with logic operations.

Once this precomputing phase is complete, it executes the θ, ρ, π, χ and ι steps by group
of 5 half lanes at a time, as detailed in Listing 3. Note that round constants for the ι step
are precomputed (i.e. hardcoded in ROM) instead of being computed on-the-fly.

2https://github.com/XKCP/XKCP/commit/7fa59c0ec4b5802b7c269ddd9ef0ef35999b4f0f

https://github.com/XKCP/XKCP/commit/7fa59c0ec4b5802b7c269ddd9ef0ef35999b4f0f

Alexandre Adomnicăi 5

1 . macro KeccakThetaRhoPiChi aB1 , aA1 , aDax , rot1 , \
2 aB2 , aA2 , aDex , rot2 , \
3 aB3 , aA3 , aDix , rot3 , \
4 aB4 , aA4 , aDox , rot4 , \
5 aB5 , aA5 , aDux , rot5
6 ldr \aB1 , [r0 , #\aA1]
7 ldr \aB2 , [r0 , #\aA2]
8 ldr \aB3 , [r0 , #\aA3]
9 ldr \aB4 , [r0 , #\aA4]

10 ldr \aB5 , [r0 , #\aA5]
11 eors \aB1 , \aB1 , \aDax
12 eors \aB3 , \aB3 , \aDix
13 eors \aB2 , \aB2 , \aDex
14 eors \aB4 , \aB4 , \aDox
15 eors \aB5 , \aB5 , \aDux
16 rors \aB1 , #32 -\ rot1
17 .if \rot2 > 0
18 rors \aB2 , #32 -\ rot2
19 . endif
20 rors \aB3 , #32 -\ rot3
21 rors \aB4 , #32 -\ rot4
22 rors \aB5 , #32 -\ rot5
23 xandnot \aA1 , r3 , r4 , r5
24 xandnot \aA2 , r4 , r5 , r6
25 xandnot \aA3 , r5 , r6 , r7
26 xandnot \aA4 , r6 , r7 , r3
27 xandnot \aA5 , r7 , r3 , r4
28 .endm

Listing 3: ARMv7-M assembly implementation of the Keccak round function w/o the ι
step. Note that memory accesses are grouped together.

3.1.1 Cortex-M3 and M4

On the Cortex-M3 and M4, it is clear that the xor5 macro suffers pipeline stalls since only
2 out of the 5 ldr instructions are consecutive. While grouping all these loads together
would allow to save 3 cycles per macro call, this requires to change the way variables are
assigned to registers since r1 is used as the only destination of ldr instructions in order
to preserve the other registers. Nevertheless, we managed to relax the register pressure
thanks to another register allocation, allowing us to pipeline all the 5 ldr together within
the xor5 macro. To further improve memory access pipelining, we also reordered some
other instructions. Notably, we moved str instructions after multiple ldr as much as
possible.

3.1.2 Cortex-M7

Due to discrepancies in the pipeline architecture, our optimizations discussed above are
not relevant on the Cortex-M7. While the M3 and M4 benefit from grouping all memory
accesses together, the M7 benefits from interleaving memory accesses with arithmetic or
logic operations to maximize dual-issue pipeline capabilities [Lor16]. Indeed, according
to independent benchmarks, loads from the same memory interface cannot be dual
issued [Owe22, jnk]. Therefore, to avoid pipeline stalls due to consecutive ldr instructions
at the beginning of the KeccakThetaRhoPiChi macro (i.e. lines 6 to 10 of Listing 3), we
interleaved them with the subsequent logic operations in a similar way to which it is done
in Listing 2.

6 An update on Keccak performance on ARMv7-M

3.2 Lazy rotations
The XKCP implementation makes use of explicit rotations for the ρ step through ror
instructions. While it makes the code easy to follow, it requires 47 such instructions per
round. As recently proposed by Becker and Kannwischer on AArch64 [BK22], one can
omit those explicit rotations by means of lazy rotations (i.e. rotating the second operands
thanks to the inline barrel shifter) during subsequent operations. They recommend to
defer the explicit rotations until the θ step in the next round: once all the (unrotated)
parity lanes have been calculated, then they are rotated explicitly. By proceeding this way,
the (unrotated) state lanes are lazily rotated when treated as second operands during the
XOR with the (rotated) parity lanes, so that the internal state is back to the classical
representation and the process can be reiterated thereafter. While it would be also possible
to keep deferring rotations, it would require to fully unroll the permutation code, resulting
in substantial impacts on code size.

On AArch64, it leads to 3 explicit rotations instead of 5 since 2 deferred rotation values
are in fact 0. While it should theoretically result to 6 explicit rotations on ARMv7-M
because of its 32-bit architecture, it is possible to stick to 3 rotations overall as described
below. Thanks to the bit-interleaving technique, computing a 1-bit rotation on a 64-bit
word can be achieved using a single 32-bit rotation only. Therefore, when computing the
parity lanes, only 5 eor instructions need to rotate their second operand, leaving the barrel
shifter available for deferred rotations during the remaining 5 eor. In the end, only 3
explicit rotations remain per round instead of 47.

We implemented this technique on ARMv7-M along with the in-place processing opti-
mization in two different ways. While the most efficient approach is to use lazy rotations
for all rounds, it requires to have specific routines for the first and last rounds to deal
with input and output misalignements since the internal state is expected to be properly
aligned at function entry and exit. When considering in-place processing, and therefore a
quadruple round routine, it results in a code size increase by half since the first and last
rounds should both come in two variants. In order to boost the performance while limiting
the impact on code size, we also propose a variant where lazy rotations are applied for
three-quarters of the rounds only. This way, explicit rotations are used every 4 rounds to
ensure the internal state is correctly aligned when entering the quadruple round. Still, a
potential drawback of deferring rotations is that it affects the code readability, which may
make the integration of side-channel countermeasures (e.g. masking) more cumbersome.

4 Results summary
4.1 Benchmark settings
For our benchmarks, we used the three development boards described below. All implemen-
tations were compiled using arm-none-eabi-gcc 10.3.1 along with the -O3 optimization
flag, and clock cycles were measured using the DWT_CYCCNT cycle counter register. These
results were obtained by simply measuring the execution of a single function call. Our
implementations are publicly available at https://github.com/aadomn/keccak_armv7m.

STM32L100C. It features a Cortex-M3 running up to 32MHz, 256KB of flash memory
and 16KB of RAM. The core was clocked at 16MHz to execute code from flash with
zero-wait state.

STM32F407VG. It features a Cortex-M4 running up to 168MHz, 1024KB of flash
memory and 192KB of RAM divided into three blocks: two contiguous blocks of SRAM

https://github.com/aadomn/keccak_armv7m

Alexandre Adomnicăi 7

Table 1: Keccak-p[1600, 24] benchmark on ARMv7-M processors.

Ref.
Implementation characteristics* Speed (clock cycles) Code size RAM

ldr/str lazy ror in-place M3 M4 M7 (bytes) (bytes)

XKCP3 mostly grouped 7 3 11 707 11 749 6 162 5 576 264

interleaved 7 7 12 409 12 445 5 578 2 904 464
grouped 7 3 10 339 10 375 6 571 5 772 264
grouped 3 (3/4) 3 9 403 9 439 6 694 6 556 264

Ours4

grouped 3 (4/4) 3 9 206 9 242 6 725 9 536 264

*All listed implementations take advantage of the bit-interleaving technique.

connected to the bus matrix with different interconnects, and a core coupled memory
(CCM) block which is connected directly to the core. We exclusively used the 64KB CCM
to achieve the best performance with a clock core speed of 24MHz to execute code from
flash with zero-wait state.

STM32F746NG. It features a Cortex-M7 running up to 216MHz with 4KB data and
4KB instruction caches, 1024KB of flash memory and 320KB of RAM divided into
three blocks: two contiguous blocks of SRAM connected to the bus matrix with different
interconnects, and a data tightly-coupled memory (DTCM) block which is connected
directly to the core. To achieve the best performance, we exclusively used the 64KB
DTCM and accessed the flash memory via the ITCM bus with a core clock speed of 24MHz
for zero-wait state accesses.

4.2 Keccak permutation
Table 1 provides a benchmark of Keccak-p[1600, 24] for different implementation character-
istics. The first one, denoted by ldr/str, refers to the memory access pipelining strategy.
In this context, the term "mostly grouped" signifies that while the majority of memory
accesses are packed together, this is not the case during the parity lanes precomputation.
The other two characteristics indicate, respectively, the utilization and degree of lazy
rotations, as well as the implementation of in-place processing. In our scenario, the
performance impact of in-place processing is negligible. Therefore, the primary reason
for deactivating it is to emphasize its influence on memory usage. It is important to note
that the situation might vary when accessing the flash memory through the AXI master
interface, as it can trigger the operation of the instruction cache, if present. In this case,
if the instruction cache is limited to only 4KB, optimizing the code size to ensure it fits
entirely within the cache can lead to improved performance.

4.2.1 Cortex-M3 and M4

On the M3 and M4, the pipeline optimizations introduced thanks to our new register
allocation resulted in a performance boost of 11.6 %. Note that it comes at the cost of
a slight code size increase due to the fact that some ldr instructions are now using hi
registers (i.e. r8 to r14) as destination, leading to a 32-bit encoding (versus 16-bit when
using lo registers). When combined with the use of lazy rotations, we managed to achieve
up to a 21.4% performance boost. Nevertheless, the majority of the remaining instructions
that were initially encoded on 16 bits have now been 32-bit encoded. This is because the

3https://github.com/XKCP/XKCP/commit/7fa59c0ec4b5802b7c269ddd9ef0ef35999b4f0f
4https://github.com/aadomn/keccak_armv7m/commit/0bf17a342569774c844f3151b9b0dfc0f0b20324

https://github.com/XKCP/XKCP/commit/7fa59c0ec4b5802b7c269ddd9ef0ef35999b4f0f
https://github.com/aadomn/keccak_armv7m/commit/0bf17a342569774c844f3151b9b0dfc0f0b20324

8 An update on Keccak performance on ARMv7-M

Table 2: SHA-3 and SHAKE benchmark on ARMv7-M processors.

Algorithm r
Speed (cycles per byte)
M3 M4 M7

SHA3-224 1 152 72.1 72.4 46.4
SHA3-256 1 088 76.7 77 49.1
SHA3-384 832 97.5 97.9 61.5
SHA3-512 576 138 138.4 85.5

SHAKE128 1 344 62.1 62.3 39.3
SHAKE256 1 088 75.9 76.2 47.5

TurboSHAKE128 1 344 34.1 34.2 22.7
TurboSHAKE256 1 088 41.1 41.2 26.8

second operands undergo systematic rotation using the inline barrel shifter. As discussed
in Section 3.2, the variant that utilizes lazy rotations for all rounds incurs a 50% increase
in code size for a minor performance gain of less than 3%. While we could have potentially
made it more compact, we believe that doing so would have compromised the performance
advantage, resulting in no overall benefits compared to the other variant. Therefore, when
code size is a critical factor, we suggest to favor the implementation that uses lazy rotations
for three-quarters of the rounds only in order to minimize the memory footprint.

4.2.2 Cortex-M7

On the Cortex-M7, our pipeline optimizations did not only consist in interleaving memory
accesses with arithmetic/logic operations. Another optimization that was taken into
consideration was to ensure that rotations are not manipulating the result of the previous
instruction to avoid one-cycle delays [Owe22]. All in all, it allowed us to achieve a 10%
performance boost compared to the reference implementation. However, in contrast to the
M3 and M4, the use of lazy rotations does not improve performance on this platform but
makes it even worse. This can be explained by the fact that, on this platform, instructions
with shifted/rotated second operand cannot be dual issued [Owe22, jnk]. Therefore,
we did not consider an implementation that combines lazy rotations with our pipeline
optimizations on this platform as we do not expect any benefits from it.

4.3 SHA-3 and SHAKE
Table 2 provides benchmark of the Keccak-based functions defined in the FIPS 202 standard,
along with the 12-round variants TurboSHAKE128 and TurboSHAKE256. For each processor,
we considered the fastest variant of Keccak-p[1600] reported in Table 1. Results were
obtained when computing a digest on 8 192 bytes for the hash functions and expanding
a 32-byte seed into 8 192 bytes for the extandable-output functions. Performance are
expressed in cycles per byte. The careful reader will note a slight performance overhead
compared to raw Keccak-p[1600]. This is due to the fact that the r-bit input/output blocks
are mapped to/from the bit-interleaving representation when being absorbed/squeezed by
the state, outside the permutation itself. This extra cost could be discarded when strict
compliance with the standard is not needed, without affecting security.

Alexandre Adomnicăi 9

5 Conclusion
In this note we explained how we managed to enhance Keccak-p[1600] performance up
to 21% on ARMv7-M processors. Optimizing this permutation not only brings inherent
advantages but also holds substantial value for other cryptographic primitives, such as
forthcoming NIST PQC standards. Although we believe that there is limited scope for
further enhancements on the Cortex-M3 and M4, there is a possibility that we missed
some pipeline optimizations on the Cortex-M7 core due to its more complex architecture
and the lack of timing information.

References
[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,

and Ronny Van Keer. XKCP: eXtended Keccak Code Package. https://
github.com/XKCP/XKCP. commit 7fa59c0.

[BDH+12] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Keccak implementation overview. https://keccak.
team/files/Keccak-implementation-3.2.pdf, 2012. Accessed: 2023-05-26.

[BDH+23] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
Ronny Van Keer, and Benoît Viguier. TurboSHAKE. Cryptology ePrint
Archive, Paper 2023/342, 2023. https://eprint.iacr.org/2023/342.

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: A CCA-Secure Module-Lattice-Based KEM. In EuroS&P,
pages 353–367. IEEE, 2018.

[BK22] Hanno Becker and Matthias J. Kannwischer. Hybrid Scalar/Vector Im-
plementations of Keccak and SPHINCS+ on AArch64. In Takanori Isobe
and Santanu Sarkar, editors, Progress in Cryptology – INDOCRYPT 2022,
pages 272–293, Cham, 2022. Springer International Publishing. https:
//eprint.iacr.org/2022/1243.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A Lattice-Based
Digital Signature Scheme. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(1):238–268, Feb. 2018.

[Dwo15] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, 2015-08-04 2015.

[GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels.
Compact Dilithium Implementations on Cortex-M3 and Cortex-M4. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):1–24,
Dec. 2020.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[jnk] jnk0le. random. https://github.com/jnk0le/random/tree/master/
pipeline%20cycle%20test#cortex-m7. commit 725a014.

https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://eprint.iacr.org/2023/342
https://eprint.iacr.org/2022/1243
https://eprint.iacr.org/2022/1243
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://github.com/jnk0le/random/tree/master/pipeline%20cycle%20test#cortex-m7
https://github.com/jnk0le/random/tree/master/pipeline%20cycle%20test#cortex-m7

10 An update on Keccak performance on ARMv7-M

[Lor16] Thomas Lorenser. The DSP capabilities of ARM Cortex-M4 and
Cortex-M7 Processors. https://community.arm.com/cfs-file/__key/
communityserver-blogs-components-weblogfiles/00-00-00-21-42/
7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_
M4-and-Cortex_2D00_M7.pdf, 2016. Accessed: 2023-05-26.

[Owe22] Mark Owen. Cortex-M7 instruction cycle counts, timings, and dual-issue com-
binations. https://www.quinapalus.com/cm7cycles.html, 2022. Accessed:
2023-05-26.

[Sto19] Ko Stoffelen. Efficient Cryptography on the RISC-V Architecture. In Progress in
Cryptology – LATINCRYPT 2019: 6th International Conference on Cryptology
and Information Security in Latin America, Santiago de Chile, Chile, October
2–4, 2019, Proceedings, page 323–340, Berlin, Heidelberg, 2019. Springer-Verlag.

https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://www.quinapalus.com/cm7cycles.html

	Motivation
	Background
	Keccak
	ARMv7-M processors
	Keccak-p on ARMv7-M

	Architecture specific optimizations
	Pipelining memory accesses
	Lazy rotations

	Results summary
	Benchmark settings
	Keccak permutation
	SHA-3 and SHAKE

	Conclusion

