
Ratel: MPC-extensions for Smart Contracts
Yunqi Li

University of Illinois at
Urbana-Champaign
yunqil3@illinois.edu

Kyle Soska
University of Illinois at
Urbana-Champaign
soska@ramiel.capital

Zhen Huang
Shanghai Jiao Tong University
xmhuangzhen@sjtu.edu.cn

Sylvain Bellemare
The Initiative for CryptoCurrencies

and Contracts
sbellem@gmail.com

Mikerah Quintyne-Collins
HashCloak Inc.

mikerah@hashcloak.com

Lun Wang
UC Berkeley

wanglun@berkeley.edu

Xiaoyuan Liu
UC Berkeley

xiaoyuanliu@berkeley.edu

Dawn Song
UC Berkeley

dawnsong@gmail.com

Andrew Miller
University of Illinois at
Urbana-Champaign
soc1024@illinois.edu

Abstract
Enhancing privacy on smart contract-enabled blockchains has

garnered much attention in recent research. Zero-knowledge proofs
(ZKPs) is one of the most popular approaches, however, they fail to
provide full expressiveness and fine-grained privacy. To illustrate
this, we underscore an underexplored type of Miner Extractable
Value (MEV), called Residual Bids Extractable Value (RBEV). Resid-
ual bids highlight the vulnerability where unfulfilled bids inadver-
tently reveal traders’ unmet demands and prospective trading strate-
gies, thus exposing them to exploitation. ZKP-based approaches
failed to address RBEV as they cannot provide post-execution pri-
vacy without some level of information disclosure. Other MEV
mitigations like fair-ordering protocols also failed to address RBEV.

We introduce Ratel, an innovative framework bridging a multi-
party computation (MPC) prototyping framework (MP-SPDZ) and
a smart contract language (Solidity), harmonizing the privacy with
full expressiveness of MPC with Solidity ’s on-chain programmabil-
ity. This synergy empowers developers to effortlessly craft privacy-
preserving decentralized applications (DApps). We demonstrate
Ratel’s efficacy through two distinguished decentralized finance
(DeFi) applications: a decentralized exchange and a collateral auc-
tion, effectively mitigating the potential RBEV issue. Furthermore,
Ratel is equipped with a lightweight crash-reset mechanism, en-
abling the seamless recovery of transiently benign faulty nodes. To
prevent the crash-reset mechanism abused by malicious entities
and ward off DoS attacks, we incorporate a cost-utility analysis
anchored in the Bayesian approach. Our performance evaluation of
the applications developed under the Ratel framework underscores
their competency in managing real-world peak-time workloads.

1 Introduction
The substantial growth and expansion of cryptocurrencies, marked

by a combined market cap exceeding 1 trillion USD [32], is sig-
nificantly attributed to the versatility of smart contracts. These
blockchain-embedded, user-defined programs have catalyzed the
evolution of decentralized finance (DeFi), flourishing applications
such as decentralized exchanges (DEX) and lending platforms.
Though most leading DeFi projects are plaintext-operated, there’s

a growing demand for privacy to protect proprietary trading strate-
gies and ward off arbitrageurs. Yet, integrating privacy while re-
taining the flexibility of smart contracts remains an open problem.

Commitments and zero-knowledge proofs (ZKPs) are the most
popular for enhancing blockchain privacy [6, 22, 60] but fail to
provide a general-purpose solution. For example, in ZKP-based
sealed-bid auctions, bids remain private until the auction ends, but
winner determination requires either a trusted third party to receive
plaintext bids and compute results [60] or public bid opening. These
approaches fall short in terms of expressiveness; as ZKPs can only
be generated for known secrets, conducting computations among
distrustful parties without information leakage is unfeasible. Mean-
while, they offer limited fine-grained privacy, ensuring bid secrecy
until the auction’s close but not beyond. The lack of post-hoc pri-
vacy is pivotal as the residual bids (failed or partially fulfilled bids)
unwittingly expose traders’ unmet demand and potential future
intentions, making them susceptible to exploitation.

We propose a novel, general-purpose solution leveraging secure
multi-party computation (MPC) to provide privacy for smart con-
tracts. In this model, confidential data are shared in an encodedman-
ner to a consortium of MPC nodes, known as the MPC committee.
The MPC committee collectively carries out computation over se-
cret shared data without revealing them and maintains confidential
storage (retaining secret-shared states) alongside an existing plain-
text blockchain. We introduce a programming framework called
Ratel that integrates MPC extensions to existing smart contract
platforms. We implement the Ratel language as a mashup of the
language forMP-SPDZ [57] (a generic MPC framework) with the So-
lidity [86] smart contract language. This enjoys features from both
existing languages, simplifying the creation of privacy-enhanced
decentralized applications (DApps).

Integrating MPC prototyping frameworks [21, 41, 57, 76] with
smart contract-enabled blockchains presents unique challenges: 1)
MPC Framework Selection: We choose MP-SPDZ [57] due to its
extensive protocols and user-friendly interfaces. In contrast, alter-
natives are restricted to 2 [41] or 3 [21] party computations or lack
malicious security [76]; 2) Public Blockchain and MPC Committee
Coordination: It is essential to seamlessly unify public and private
computation/storage and ensure secure transition data between

1

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

them; 3) Ratel Language Design: The language retains features from
existing interfaces of MP-SPDZ and Solidity. Developers can mark
data fields as private, ensuring any derived computations remain
confidential. The compiler translates the source code for diverse
components, ensuring consistent data type interpretation across
implementations; 4) Performance Optimization: The bottleneck of
MPC is communication latency. We employ concurrent MPC task
execution, which linearly scaled throughput, exemplified in the pro-
portional overall throughput improvement of the automatic market
maker (AMM) we developed with increased trading pools. While
this approach adds complexity to coordination, we ensure user
simplicity by abstracting concurrency control from the frontend.
We also incorporate ZKP in scenarios involving secret data from a
single user to optimize performance. This cuts down the communi-
cation latency, evidenced by a 10% reduction in our AMM’s single
trade processing time.

In enduring systems, even “honest” nodes would crash occasion-
ally, evidenced by the node uptime data we collected from Ripple [9]
where most nodes remain online for less than a year. We consider
a mixed adversary model accounting for both benign and Byzan-
tine faults. We equip the framework with a lightweight crash-reset
mechanism that allows restarted nodes to gracefully rejoin the MPC
committee without halting the system. Current MP-SPDZ software
aborts at any fault (even a benign stop fault) occurs. We enhanced it
with crash fault tolerance1. Our practical solution enables a faulty
node to restore 1000 private states in about 2.6s, using 225KB band-
width. When compiling an application’s source code, the recovering
code is automatically generated. Moreover, since the crash-reset
mechanism consumes resources of other MPC nodes, we offer a
Bayesian-based cost-utility analysis for MPC nodes to evaluate the
feasibility of recovering a node, and deter the exploitation of this
mechanism by Byzantine nodes.

We validate the practicality of our approach by implementing
various applications using the Ratel language and evaluating their
performance under real-world workloads. Two case studies are
primarily highlighted: RatelSwap, a Uniswap-style [3] AMM, and
RatelAuction, a Dutch-style collateral auction as used in Maker-
DAO [64]. We model a 100ms one-way latency between nodes to
mimic a globally distributed network scenario. RatelSwap supports
600 swaps/hour throughput under this, which we argue is adequate
to handle theworkloads of themost popular AMMs (Sushiswap [83],
Uniswap [3] and Trader Joe [53]). This is validated by comparing it
to a 3-day peak trading period (the week following the LUNA and
UST collapse [69]) where the average was 300 swaps/hour, with
peak hours briefly surpassing but not exceeding 700 swaps/hour.We
demonstrate RatelSwap’s efficacy in managing transaction bursts
by testing it against 1-hour of real-world data where throughput
exceeded the system’s average, with temporary congestion resolv-
ing quickly as workloads decrease. For RatelAuction, we conducted
a simulation using data from a large MakerDAO auction involving
the auction of 65, 000, 000DAI. The computation of auction results

1In MP-SPDZ, protocols with malicious security follow the malicious-with-abort model
and will halt if any deviation is detected. This issue can be mitigated by using Verifiable
Secret Sharing (VSS) schemes, which prevent Byzantine nodes from hindering the
distribution of correct shares to honest nodes, allowing the computation to continue.
Alternatively, MP-SPDZ could be extended to include protocols that offer fairness and
guaranteed output delivery, such as HoneyBadgerMPC [63]. However, incorporating
these enhancements falls outside the scope of our current work

Developer
Ratel Contract

masked private &
public input

event log

input mask

MPC Committee

Client

public
output

compile

Blockchain

function secretFunc {
 …

local {…}
…

}

Python

mpc

MP-SPDZ

Solidity

private output

Figure 1: Ratel System Architecture
took 98s, a duration inconsequential compared to the auction’s
2, 940s lifespan.

Section 2 provides essential backgrounds. The motivating issues,
technical challenges, and overarching framework components are
articulated in Section 3. Section 4 delves into the programming
model, the crash-reset mechanism, and the applications developed.
The performance of Ratel is critically evaluated in Section 5. Sec-
tion 6 offers a comprehensive review of related works, and Section 7
discusses the limitations and potential areas for improvement in
our study.

2 Background
Smart Contracts on Public Blockchains. Smart contracts are
user-defined blockchain programs, often written in high-level lan-
guages such as Solidity [86] and compiled into bytecode for ex-
ecution on the Ethereum Virtual Machine (EVM). Users modify
contracts’ persistent states by sending transactions to invoke desig-
nated functions. Users access contract states using getter methods
or by inspecting event logs. Ratel is adaptable and can be seamlessly
deployed on various EVM-compatible platforms, including public
blockchains like Ethereum [87], layer-2 solutions like Arbitrum [54],
or permissioned ecosystems like Hyperledger Fabric [7].
Shamir’s Secret Sharing Based MPC.We demonstrate integrat-
ing MPC protocols with blockchain using Shamir Secret Shar-
ing (SSS) based methods. The MPC committee with 𝑛 nodes S =

{𝑆1, 𝑆2, . . . , 𝑆𝑛} can tolerate up to 𝑡 malicious nodes. Each secret 𝑥
in the prime field F𝑝 is distributed among nodes using a degree-𝑡
polynomial 𝜙 : F𝑝 → F𝑝 , where 𝜙 (0) = 𝑥 and 𝑆𝑖 knows only share
[𝑥]𝑖 = 𝜙 (𝑖), enabling computation on shares without revealing any
secrets. Operations like linear combinations are local to nodes, while
multiplication necessitates inter-node communication. Secrets are
reconstructed by gathering more than 𝑡 shares and interpolating
the polynomial. We follow the standard online/offline paradigm
by continuously running the offline phase to maintain buffers of
preprocessed elements (e.g., random bits, Beaver multiplication
triples [17]) to expedite online execution.

We choose Shamir-based protocols for relatively large-scaleMPC,
as more efficient alternatives provided in MP-SPDZ like Fantastic

2

Ratel: MPC-extensions for Smart Contracts

Four [38] only work for 𝑛 ≤ 4. Ratel also adapts to Replicated
Secret Sharing (RSS), though it struggles with scalability due to
exponentially increasing shares with more participants.
MP-SPDZ. Multi-Protocol SPDZ [57] is selected for its Python-like
high-level programming interface, which lowers the barrier for
developers with limited cryptography knowledge to craft privacy-
preserving DApps. This interface compiles into a common bytecode,
facilitating execution across diverse MPC protocols and security
models, and supports a wide range of operations from basic opera-
tions (comparison, and bit shifts) to advanced mathematical func-
tions (trigonometric, square roots, exponentials, and logarithms),
accommodating both integer and fractional numbers (fixed-point
and floating-point). MP-SPDZ distinguishes itself from other frame-
works mentioned in HHNZ20 [50] by supporting protocols with
more than 4 parties, malicious security, and arithmetic circuits, mak-
ing it ideal for integration with blockchain. Currently, we utilize its
SSS protocol under an honest majority and malicious corruption
model to provide general MPC services for blockchain, aligning
with the requirements for blockchain nodes. The flexibility of MP-
SPDZ allows developers to explore other protocols that may offer
more efficiency or specificity for their DApps. Though not opti-
mized to industry standards, MP-SPDZ establishes a performance
baseline, underscoring the feasibility of our approach.

3 Overview of Ratel

3.1 Motivation: The Residual Bids Problem
The transparent nature of blockchains exposes DeFi users to

"front-running" by malicious actors. Miners, for instance, can ma-
nipulate transaction orders for personal gains after observing trans-
actions in themempool. This phenomenon, termedMiner Extractable
Value (MEV) [37], is widespread today [75]. Current solutions to
mitigate MEV are insufficient for broader scenarios. Highlighting
this, we introduce Residual Bids Extractable Value (RBEV),
capturing potential losses from mismatches between intended and
executed trades, which malicious actors can exploit.
MEV vs. RBEV in Uniswap: Understanding the Difference.
Uniswap [3], a popular DEX, exemplifies issues with MEV and
RBEV. We show pseudocode for the Uniswap contract in List-
ing 1. This contract manages a liquidity pool comprising two to-
kens, enabling users to trade between them. Uniswap implements
a constant-product AMM [68], where prices are determined by
maintaining a constant product of the pool volumes. Due to price
determination at execution time, users must set a slippage limit
(amtB_min in Listing 1) for their trades to account for potential
price fluctuations between trade submission and execution. A trade,
or swap, only succeeds if the actual amount of token bought meets
or exceeds the specified slippage limit; otherwise, the trade is can-
celed. The trade failed due to regular transactions executed before
it, resulting in a price change, even in the absence of front-running
transactions. MEV arises from pre-confirmation activities, where
malicious actors insert or reorder transactions to front-run trades
in mempool. In the case of Uniswap, front-running transactions
manipulate prices to the victim’s slippage limit, ensuring the user’s
trade execution at the least favorable price. RBEV stems from the
on-chain persistence of historical records post-execution. Canceled
trades in Uniswap, due to slippage limit breaches, enable malicious

1 mapping (address => uint) public balA, balB;
2 uint public poolA, poolB;
3 function trade(uint amtA, unit amtB_min) {
4 require(balA[msg.sender] >= amtA);
5 uint amtB = poolB - poolA * poolB / (poolA + amtA);
6 require(amtB >= amtB_min);
7 poolA += amtA; balA[msg.sender] -= amtA;
8 poolB -= amtB; balB[msg.sender] += amtB;
9 }

Listing 1: Pseudocode for Trade on Uniswap Smart Contract

actors to infer traders’ future actions. Moreover, proprietary trading
strategies remain fully transparent on-chain.
Ineffectiveness of MEV Solutions to RBEV. Mitigating MEV pri-
marily entails restricting adversaries from utilizing the knowledge
of pending transactions to manipulate their order in blocks. Fair-
ordering consensus protocols [55, 56] enforce transaction ordering
based on some notion of fairness, such as first-come-first-serve,
thereby preventing miners from unilaterally determining the final
order. However, once transactions get published, the attempted
amounts and slippage limits are revealed. Other methods involve
cryptographic techniques, such as ZKP or threshold encryption,
to maintain trading data privacy pre-execution. However, even if
bids are encoded as proofs, the verification of proofs inadvertently
leaks the residual bid info that arbitrageurs can leverage. The lack
of post-execution privacy in related approaches underscores our
advocacy for MPC as a comprehensive solution to enhance smart
contract privacy and mitigate both MEV and RBEV.

3.2 Technical Challenges and Design Choices in
MPC-Blockchain Hybrid System

Before diving into details of Ratel, we discuss integration chal-
lenges and design choices made, detailed concisely in Appendix A.1.
Incorporate MPC within Blockchain. The first challenge is de-
ciding the appropriate way to integrate MPC into the blockchain.
There are two primary approaches: 1) every blockchain node par-
ticipates in MPC (layer-1); 2) involving a smaller set of parties
conducting MPC parallel to the blockchain (layer-2).
Coordination between Blockchain and MPC. MPC runs asyn-
chronously with the blockchain, and an MPC task may be executed
during a time interval that spans multiple blocks.
Programming Model for Privacy-preserving DApps Develop-
ment. We aim to extend Solidity with MP-SPDZ to enjoy MPC’s
privacy features. Adapting MP-SPDZ, originally intended for one-
time, stateless operations, is crucial for our ongoing, stateful envi-
ronment. Integrating two individual frameworks poses challenges
such as coordinating instruction and data flow, managing public
and private data, and articulating confidentiality disclosure policies.
Access Control of Client Interaction. Careful consideration must
be given to processing client requests to execute MPC tasks, vali-
dating inputs received from clients as they cannot be fully trusted,
and only allowing authorized clients to query private states.
Limited Performance of MPC. Although MPC allows for writing
general-purpose programs, its high communication cost poses a
bottleneck to the system’s performance (shown in Section 5), raising
concerns about its practical adoption.
Tolerating MPC Nodes Failures. To ensure the continuous opera-
tion of a long-term practical MPC system, it is crucial to develop a
strategy for handling non-Byzantine node failures. Most existing

3

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

MPC frameworks [5, 33, 36, 40, 81] are designed for one-shot com-
putations and do not adequately address the issue of node crashes.
When a node becomes unresponsive over extended periods, it risks
missing important state updates and becoming ineligible for subse-
quentMPC tasks. Recovering such a node is particularly challenging
due to the private nature of each node’s internal state, which is not
replicated by other nodes. This poses the challenge of integrating
the privacy strengths of the MPC framework while maintaining
the availability inherent in the blockchain. Current solutions like
Proactive Secret-sharing (PSS) schemes [18, 29, 49, 65] suggest re-
sharing all secret states to a new committee, leading to a quadratic
communication overhead—an impractical solution given our ex-
pansive private state set. Moreover, encompassing the entire state
refresh would disrupt ongoing MPC tasks. As this recovery con-
sumes resources of other MPC nodes, it is susceptible to resource
exhaustion attacks. Moreover, MP-SPDZ assumes the consistent
availability of all players and halts computation upon any deviation,
even a benign fault.

3.3 System Overview
Ratel is a framework for building privacy-preserving applica-

tions, aimed at minimizing MEV and RBEV by incorporating MPC
into smart contracts. Its architecture, key components, and their
interactions are shown in Figure 1, featuring four main entity types:
• The developer writes Ratel source code, compiles it into target

programs (MP-SPDZ, Python, and Solidity), and deploys them to
respective components.

• The application contract deployed on the EVM-compatible public
blockchain acts as the coordinator that orchestrates the MPC
committee and serves as a gateway for receiving and serializing
client requests.

• The MPC committee consists of MPC nodes who run Python pro-
gram that maintains secret-shared states and performs MPC over
secret-shared data (via invoking MP-SPDZ program) following
instructions from the contract.

• The client sends MPC requests that provide both public and
private inputs and query public and authorized private states
from the contract.

3.4 Workflow
We now sketch the workflow for application deployment and

client request execution, providing more details for Figure 1.
a) Application deployment: A developer D writes the Ratel pro-

gram 𝜎𝑅 , which is compiled to EVM bytecode 𝜎𝐸 , Python code 𝜎𝑃 ,
and MP-SPDZ bytecode 𝜎𝑀 , as shown in the compilation process in
Figure 5b. D deploys 𝜎𝐸 to the blockchain and obtains the applica-
tion contract address 𝑝𝑘𝑎𝑝𝑝 . Then,D queries another contract that
manages the membership of MPC committee to obtain the list of
MPC nodes S, and sends 𝜎𝑃 , 𝜎𝑀 , and 𝑝𝑘𝑎𝑝𝑝 to each 𝑆𝑖 ∈ S. 𝑆𝑖 runs
the Python code 𝜎𝑃 to instantiate the new application. 𝜎𝑃 will 1)
watch for any event emitted by 𝑝𝑘𝑎𝑝𝑝 and conduct corresponding
MPC task (an application may contain several MPC tasks); 2) main-
tain preprocessing element buffers; and 3) process HTTP requests
from clients for authorized secret-shared states.

b) Client request execution: The workflow for processing a client
request is depicted in Figure 2. AnMPC task execution is modeled as
(𝑠𝑡 ′

𝑝𝑢𝑏
, 𝑠𝑡 ′

𝑝𝑟𝑖𝑣
) := 𝛿 (𝑠𝑡𝑝𝑢𝑏 , 𝑠𝑡𝑝𝑟𝑖𝑣, 𝑟𝑒𝑞), where request 𝑟𝑒𝑞, consisting

of (𝑖𝑑𝑚𝑝𝑐 , 𝑖𝑛𝑝𝑢𝑏 , 𝑖𝑛𝑝𝑟𝑖𝑣), represents a composite of the MPC task

application
contract

receiving 𝑟𝑒𝑞=(𝑖𝑑𝑚𝑝𝑐, 𝑖𝑛𝑝𝑢𝑏, 𝑖𝑛𝑝𝑟𝑖𝑣) client

public computation

coordinate MPC task 𝑖𝑑𝑚𝑝𝑐

event 𝑒=(𝑖𝑑𝑚𝑝𝑐, 𝑖𝑛𝑝𝑢𝑏,
𝑖𝑛𝑝𝑟𝑖𝑣, 𝑠𝑡𝑝𝑢𝑏)

get public states 𝑠𝑡𝑝𝑢𝑏 load private states 𝑠𝑡𝑝𝑟𝑖𝑣

MPC outputs

exec MPC program 𝑖𝑑𝑚𝑝𝑐

MPC inputs

local
private db

no halt

finalize task abandon task

update private states 𝑠𝑡′𝑝𝑟𝑖𝑣

mark task as finished

public computation

update public states 𝑠𝑡′𝑝𝑢𝑏

MPC node

Figure 2: Ratel End-to-End Workflow

identifier and the public and private inputs. To prepare 𝑟𝑒𝑞, a client
C sends HTTP requests to MPC nodes to obtain input mask𝑚 to
hide their private inputs, with further explanations forthcoming. C
then submits 𝑟𝑒𝑞 to the blockchain, triggering an event 𝑒 containing
both inputs to schedule the task 𝑖𝑑𝑚𝑝𝑐 . Upon monitoring 𝑒 , nodes
carry out MPC with the given inputs, and apply updated private
states 𝑠𝑡 ′

𝑝𝑟𝑖𝑣
to their local confidential key-value store. The MPC

committee applies 𝑠𝑡 ′
𝑝𝑢𝑏

on blockchain to finalize the task.

3.5 Network and Adversary Model
We use an existing blockchain to coordinate MPC committee

and handle the plaintext portion of applications. The blockchain
serves as an authenticated broadcast channel for parties. We as-
sume the underlying blockchain has the following properties: 1)
Availability: Parties can interact with the blockchain by sending
transactions that are committed within Δ, and once a transaction is
committed, every party learns of it within Δ. 2) Finality: Any two
parties eventually observe a consistent sequence of transactions,
i.e. there are no forks. 3) Integrity: Clients are expected to process
the global transaction log following EVM rules, ensuring that any
observed event logs or queries stem from correct executions. The
adversary can fully control any number of clients. For the MPC
committee of size 𝑛, we assume the adversary can actively corrupt
up to 𝑡𝑎 nodes and fail-corrupt up to 𝑡𝑓 nodes, which is similar to
what is described in FHM98 [46]. The consideration of crash faults
captures the behavior of non-Byzantine nodes suffering from spo-
radic crashes in a long-running system. We assume perfectly secure
channels exist between parties. As discussed in Appendix A.6, when
the network is synchronous, our system is secure when we assume
𝑡𝑓 + 2𝑡𝑎 < 𝑛 (due to the adversary’s limited capability and our
effective crash-reset mechanism) and 𝑡𝑎, 𝑡𝑓 are known parameters.

3.6 Security Goals
Briefly, Ratel aims to support general-purpose programs while

enforcing the following properties:
Integrity:We inherit the integrity guarantees of the base blockchain
and the MPC protocol, ensuring accurate computations.
Confidentiality: Secret-shared data stays private unless intention-
ally revealed. Developers must carefully construct application logic
to prevent inadvertent data exposure during computation, although
we don’t cover anonymity and access pattern protection in our
framework’s scope.
Availability: Our aim is to preserve the blockchain’s availability,
even with the integration of an MPC-based sidechain.

4

Ratel: MPC-extensions for Smart Contracts

1 function secretWithdraw(address token, fix amt) {
2 address user = msg.sender
3 require(amt > 0)
4 local(token, amt, user) {
5 $fix balance = load(secretBalance(token, user))
6 zkrp(amt <= balance)
7 mpc(&balance, amt) {
8 balance -= amt
9 }
10 store(secretBalance(token, user), balance)
11 }
12 publicBalance[token][user] += amt
13 }
14

15 function trade(address tokenA, address tokenB,
16 $fix amtA, $fix amtB) {
17 ...
18 disclose(key=f'price_{seq}',users=[msg.sender])
19 local(...) {...}
20 ...
21 }

Listing 2: Ratel Source Code Example

4 Framework

4.1 Ratel Programming Model
We explain our programming model and demonstrate most of

our design features via the example Ratel code in Listing 2.

4.1.1 Building Blocks
Secure Private Input Handling. To ensure the confidentiality of
client private inputs while preventing them from distributing in-
consistent sharings to MPC nodes, we utilize preprocessed random
field elements, or input masks, as demonstrated in MP-SPDZ [57]
and DN07 [39]. To share a secret 𝑥 , C reserves an unused input
mask im𝑖𝑑𝑥 from blockchain, where 𝑖𝑑𝑥 is the unique index. C then
requests shares of im𝑖𝑑𝑥 from MPC nodes, reconstructs it locally,
and publishes the masked value 𝑥 + im𝑖𝑑𝑥 to blockchain. MPC node
𝑆𝑖 retrieves 𝑥 + im𝑖𝑑𝑥 from an event log and recovers their share
[𝑥]𝑖 = (𝑥 + im𝑖𝑑𝑥) − [im𝑖𝑑𝑥]𝑖 . In this way, private inputs can be
posted to the blockchain alongside public inputs.
Access Control for Client Queries. Clients can view public states
through getter methods or event logs, but for private states, we
propose an access control mechanism that allows authorized clients
to make queries. These private states are by default hidden from
external users, accessible only to the application contract’s internal
processes. Nonetheless, situations such as in a privacy-preserving
AMMdemand traders to access prices of their swaps, necessitating a
tailored authorization mechanism for certain private state inquiries.

We enforce the access control policy on the blockchain, while
off-chain retrieval handles the shares. The comparisons with other
design choices are provided in Appendix A.2. For instance, the dis-
close function, as shown in Listing 2 line 18, allows traders to query
the final price. When the blockchain approves a query request, it
notifies the MPC nodes to prepare encrypted shares for the queried
value. The blockchain ensures consistency by coordinating MPC
and query requests together. Clients can then obtain the encrypted
shares through private HTTP requests to access the queried value.
MPC Committee Consensus through Blockchain. We favor on-
chain consensus for simplicity, though high gas costs could warrant
off-chain alternatives. The blockchain consensus helps update pub-
lic MPC outputs and replenish preprocessed element buffers, with

Receiving transaction contains 𝑟𝑒𝑞,𝑆 𝑗 ,{𝜎𝑖 }, apply the state transition
(𝑠𝑡 ′

𝑝𝑢𝑏
, 𝑠𝑡 ′

𝑝𝑟𝑖𝑣
) := 𝛿 (𝑠𝑡𝑝𝑢𝑏 , 𝑠𝑡𝑝𝑟𝑖𝑣, 𝑟𝑒𝑞) iff

𝑆 𝑗 ∈ S ∧ | {𝜎𝑖 |verify(𝜎𝑖) = True} | > 𝑡,

where MPC nodes apply 𝑠𝑡 ′
𝑝𝑟𝑖𝑣

after 𝑘 confirmations.

Figure 3: Propose(𝑟𝑒𝑞,𝑆 𝑗) Subroutine: 𝑆 𝑗 proposes request 𝑟𝑒𝑞
with signatures 𝜎𝑖 from other MPC nodes for consensus.

Initial State: bufinput mask = {im1, . . . , im𝑖−1, im𝑖 , . . . , im𝑗 } with the
first 𝑖 − 1 elements already utilized.
Procedure:

(1) Schedule: invoke Propose(𝑟𝑒𝑞 =“schedule generation of input
masks with batch size 𝐵”,𝑆) IF
𝑗 − 𝑖 < 𝑇 (for normal refill) OR
𝑆 is permitted to rejoin the MPC committee and its input masks
are outdated (for crash reset)

with the state updates AS
(public) Blockchain assigns a version number 𝑣 to the upcom-
ing batch of input masks
(private) Active MPC nodes invoke the adapted offline program
to generate 𝐵 input masks {im′1, im

′
2, . . . , im

′
𝐵
}.

(2) Finalize: invoke Propose(𝑟𝑒𝑞 =“finalize generation of input masks
with version 𝑣”,𝑆) IF input mask generation program completes,
with the state updates AS (private) buf′input mask ={
{im1, . . . , im𝑗 , im′1, . . . , im

′
𝐵
}, normal refill

{im1, . . . , im𝑘 , im′1, . . . , im
′
𝐵
}, crash reset, 𝑖 ≤ 𝑘 ≤ 𝑗

Figure 4: Input Mask Buffer Maintenance: for both normal
refill and crash reset The pre-set parameter 𝑇 ensures the
buffer is replenished in time. 𝑘 ≥ 𝑖 as clients can still reserve
input masks during off-chain generation.

a single MPC node initiating requests that proceed after major-
ity approval. This "one-node-propose" abstraction is also useful in
crash-reset scenarios. The consensus process is outlined in Figure 3
with just one blockchain transaction.
Management of Preprocessed Element Buffers.Nodes in theMPC
committee maintain buffers for various preprocessed elements, in-
cluding random bits, random field elements, Beaver triples, input
masks (for client private inputs), and state masks (for private states
recovery). We would like to reuse MP-SPDZ’s offline program how-
ever they are designed to produce elements specifically for a given
MPC program, leading to an equal number of all types of elements
generated although their actual usage might differ. We enhanced
the MP-SPDZ code to allow the generation of individual types of
elements to cater to distinct needs efficiently, optimizing resource
use. We show the input mask buffer maintenance as an example in
Figure 4, which may also be invoked by the crash-reset mechanism
as detailed in Section 4.2.1.
4.1.2 Source Language
The Ratel language is designed to extend the functionality of Solid-
ity by incorporating MP-SPDZ for additional data confidentiality,
while still utilizing the familiar syntax and structure of Solidity.
And the Python mid-layer serves as a bridge between Solidity and
MP-SPDZ. As Solidity programs define smart contracts as objects
with functions (methods), Ratel adheres to this convention by spec-
ifying which portion of each Solidity function should be executed

5

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

function(...) {

}

Solidity code (schedule)

Solidity code (finalize)

local(...) {

}

load states

store states

zkrp statements

mpc(...) {

}
MP-SPDZ code

(a) Ratel Source Code For-
mat

Ratel code 𝜎𝑅

Solidity code

Python
code
𝜎𝑃

MPC code

EVM
bytecode

𝜎𝐸

MP-SPDZ
bytecode

𝜎𝑀

Solidity compiler MP-SPDZ compiler

Ratel compiler

Source program

Target programs

on-chain program:
run by blockchain node

off-chain programs:
run by MPC node

(b) Ratel Compilation Process

Figure 5: Solidity andMP-SPDZ compilers are integrated into
the Ratel compiler to generate targeted bytecode. The orange
dotted arrows represent the information flow between the
target programs.

off-chain by MPC nodes. Ratel inherits the expressiveness of the
respective languages in each portion.

A function in Ratel follows the code format illustrated in 5a. The
outer layer is Solidity code that runs on the blockchain. The code
inside the local function header is executed by MPC nodes on their
local machines, where the code within thempc function represents
MP-SPDZ code to perform complex operations over secret-shared
data and the rest are mostly Python code. Ratel supports private
data types, indicated by a leading $. Private data remain hidden until
they are explicitly revealed in an mpc function. Ratel introduces
the following new statements and maintains the remaining code
consistent with the semantics of Solidity, Python, and MP-SPDZ:
• local(arg1,arg2,...) where arguments represent data transmitted

from the blockchain to the MPC committee (line 4).
• mpc(arg1,arg2,...) where arguments denote input data to the one-

shot MPC. The reference-typed arguments (e.g., &balance) are
outputs of the computation (line 7).

• load(key) and store(key,value) enables MPC nodes to access the
secret-shared key-value store. key is common to nodes and value
are respective shares of the state (line 5, 10).

• zkrp(expr1 op expr2) allows clients to provide proofs for condi-
tions concerning their private inputs and known secret states. It
validates (in)equality op between arithmetic expressions expr1,
expr2.

• disclose(key,users) authorizes a list of users to query the private
state associated with the given key.

4.1.3 Compilation Process
The Ratel compiler converts the high-level source program into

three components, as depicted in Figure 5b. The Ratel code is first
parsed into Solidity and off-chain portions, with the latter further
divided into Python and MP-SPDZ code. The parsing is performed
in a per-function manner.
Code Parsing. The Solidity code is broken down into distinct
schedule and finalize functions. For instance, the Ratel function
secretWithdraw translates into secretWithdrawSchedule and se-
cretWithdrawFinalize. Clients employ schedule for arranging the
MPC task; MPC nodes utilize finalize to write back public outputs
and trigger side effects on blockchain like updating public account

balances. load, zkrp, and store statements and code triggering the
MP-SPDZ program are contained within a single Python function.
If the finalize Solidity code isn’t empty, the Python code to activate
finalize is generated, enabling MPC nodes to alter public states.
Data Type Interpretation. Ratel handles variable type interpre-
tation across components. Take amtA in the trade function for
example. It is of type $fix (a private fixed-point number). In Ratel, a
fixed-point number 𝑥 is represented by an integer 𝑦 = 𝑥 · 2𝜅 with
precision 𝜅 . The multiplication of two fixed-point numbers equates
to an integer multiplication with subsequent truncation of 𝜅 bits.
This approach simplifies the interpretation of private fixed-point
numbers down to managing private integers. Each private input,
as detailed in Section 4.1.1, is masked by an input mask. In the So-
lidity code, amtA is interpreted as a pair of uint (unsigned 256-bits
integer), denoting the masked value and the input mask’s index.
In the Python code, nodes use this index to locate the input mask
share in the key-value store and then recover the input to a secret
share, a field element that is treated as int type. For MP-SPDZ, it
supports sfix and sint for $fix and $int respectively.
Facilitating Scheduling, Task Execution and Crash Reset. The
schedule function in Solidity assigns each MPC task a sequence
number 𝑠𝑒𝑞, determining the ordering among MPC tasks and also
client queries. Nodes typically use 𝑠𝑒𝑞 to mark task completion, and
in crash-reset, it assists in private state recovery (see Section 4.2.1).
Each schedule function emits an event to relay key information
like 𝑠𝑒𝑞, 𝑖𝑑𝑚𝑝𝑐 , and client inputs from blockchain to MPC com-
mittee. Symmetrically, Python code is equipped with event moni-
toring code to allow MPC nodes to scan event logs in confirmed
blocks and extract MPC task data. To execute MPC on secret-shared
data, the Python and MP-SPDZ programs communicate via gen-
erated interfaces, ensuring smooth input transmission and output
retrieval. Moreover, the interface facilitating crash-reset is gener-
ated, which persists input data on Solidity contract and allows the
Python program to automatically determine the keys each MPC
task has updated by just referencing 𝑠𝑒𝑞.

4.1.4 Optimizations
Zero-knowledge Range Proof Module. Our first Ratel iteration
highlighted the challenge of numerous communication rounds re-
quired for comparisons in MPC, particularly in functions like se-
cretWithdraw where withdrawals must not surpass private bal-
ances. We introduced a Zero-Knowledge Range Proof (ZKRP) mod-
ule, allowing clients to prove that private inputs meet specific condi-
tions without disclosing the values, improving efficiency as demon-
strated in Listing 2 line 6.

ZKRP statements use zkrp(expr1 op expr2) format, with op as
a comparison operator and expr1, expr2 as arithmetic expressions
involving public and private values. We reduce this to expr>0, form-
ing a ZKRP as ZoK{(expr, 𝑟) : expr ∈ [0, ⌊ 𝑝2 ⌋),𝐶 = 𝑔exprℎ𝑟 } in
Camenisch-Stadler notation [24], where 𝑝 is the field prime and 𝑟 is
an input mask. For linear expr, client C generates 𝑟 , computes com-
mitment𝐶 , and produces a valid range proof prf. Each 𝑆𝑖 processes
[expr]𝑖 locally and jointly verifies prf by opening 𝐶 . Complex expr
operations, like secret-value multiplications, need additional masks
and commitments, detailed in Appendix A.3.

The compiler provides an interface for client proof provision, in
the Solidity function header and event declaration, and server-side

6

Ratel: MPC-extensions for Smart Contracts

0.00 - 0.00
0.00 - 0.01

0.01 - 0.04
0.04 - 0.12

0.12 - 0.37
0.37 - 1.16

1.16 - 3.66

3.66 - 11.57

11.57 - 36.6

36.60 - 115.74

115.74 - 366.00

Node Uptime (Days)

0

50

100

150

Fr
eq

ue
nc

y Full Node
Validator

Figure 6: The empirical uptime distribution for Ripple (XRP)
full nodes (amateurs) and validators (professionals) as of
10/31/2021.

verification, in Python that calls our modified Bulletproofs [23] (the
most efficient protocol for range proofs) Rust library. When multi-
ple ZKRP statements are present, the openings of commitments are
performed together, thus requiring only 1 communication round.
ZKRP statements are verified in the Python program, halting ex-
ecution upon encountering false conditions, before any mpc and
store statements are executed. As a result, invalid ZKRP statements
result in no state update at all.
Concurrency Control. Ratel boosts throughput with parallel MPC
task execution, using concurrency control to manage simultaneous
operations. Tasks that access the same data in the key-value store
are executed in sequence, based on their blockchain position and
transaction fee, ensuring tasks with higher fees get priority.

Concurrency is managed through a locking mechanism. As the
monitor coroutine in Python receives a new MPC task, it acquires
separate locks for each accessed field in the task. Locks are dis-
tributed on a first-come, first-served basis, with priority given to
tasks with smaller sequence numbers. This ensures that competing
tasks are executed in the order determined by the blockchain, and
non-competing tasks, whose execution order has no impact on
the final states, can be executed out-of-order. Unneeded locks are
promptly released to maintain efficiency. Ratel achieves concurrent
execution by assigning different ports to tasks via a port assignment
scheme orchestrated on blockchain.

In summary of Section 4.1, assuming an uncompromised MPC
committee, if the Ratel program is posted on-chain, all honest MPC
nodes would faithfully run the local program. Node actions, such
as MPC task execution and buffer refills, are instructed by the
blockchain, ensuring seamless coordination and conflict-free opera-
tion among MPC nodes. Tasks adhere to an all-or-nothing principle,
where they fully complete and update both public and private states
or result in no changes. Robust input-sharing and access control
mechanisms limit malicious client behavior; inputs placed on the
blockchain ensure uniform outcomes across nodes. Should invalid
inputs be posted, the corresponding MPC task will fail, leaving the
system state intact, yet the malicious client incurs transaction fees.

4.2 Optimizing System Uptime: Enhancing the
Availability of the Framework

Straightforward integration of MPC with blockchain encounters
availability issues. Over long operational periods, occasional benign
failures are expected, as evidenced by the uptime statistics of nodes
in the Ripple network (Figure 6). Ripple’s reliance on a core set
of nodes for network stability and integrity reflects Ratel’s design.

Given that even professional nodes seldom achieve a full year of
continuous uptime, we aim to ensure that crashed nodes can easily
rejoin upon restart. This approach also accommodates rare network
partitions, enabling delayed nodes to synchronize with the network.

4.2.1 Crash-Reset Mechanism
Given that message buffers have limited size, MPC nodes would
cease to sendmessages to nodes with overfilled buffers—particularly
those absent for an extended period. In these scenarios, the crash-
reset mechanism is used to recover missing (private) state updates,
enabling the crashed node to re-engage in upcoming MPC tasks.
Problem Statement. A crashed node 𝑆 𝑗 , whose local secret-shared
key-value store is outdated and thus inhibits its involvement in
future MPC tasks due to invalid initial states 𝑠𝑡𝑝𝑟𝑖𝑣 , sends a crash-
reset request to currently active nodes S𝐴 (𝑆 𝑗 ∉ S𝐴). Our mixed
adversary model requires the presence of more than 𝑡 nodes to
proceed (elaborated in Appendix A.6, with 𝑡 = 𝑡𝑎 in the basic
case and 𝑡 = 2𝑡𝑎 otherwise, where 𝑡𝑎 is the number of Byzantine
faults). S𝐴 evaluate the request based on a cost-benefit analysis. If
approved, 𝑆 𝑗 updates its state to mirror the interim changes and
gear up for upcoming tasks. We elucidate the core elements in the
mechanism, with Figure 7 illustrating the workflow involved.
Private State Recovery. For sporadic recoveries involving a few
nodes (usually just one), utilizing proactive secret sharing to dis-
tribute all secret-shared states to a new committee can be overly
intricate. Thus we introduce a lightweight private state recovery
mechanism outlined below.

Recovering a single secret-shared state [𝑣] 𝑗 with key 𝑢 is similar
to the client input process. Utilizing a state mask sm𝑖𝑑𝑥 (a specific
random field element for private state recovery), 𝑆 𝑗 sends a request
that includes key 𝑢 and state mask index 𝑖𝑑𝑥 to S𝐴 then interpo-
lates the responses {(𝑖, [𝑣]𝑖 + [sm𝑖𝑑𝑥]𝑖)}𝑖≠𝑗 to recover [𝑣] 𝑗 . The
single-state recovery can be extended for batch-state recoveries by
including multiple keys and corresponding state mask indexes in a
single request.

State masks are produced either on-demand when a node re-
quires state recovery or preemptively for anticipated failures. By
invoking Propose(𝑟𝑒𝑞 =“reserve 𝐵 state masks”,𝑆 𝑗), S𝐴 collectively
generates shares of 𝐵 new random field elements specifically for 𝑆 𝑗
to recover its missing states.
MissingMPCTasks Determination. 𝑆 𝑗 identifies missed tasks by
comparing its local records with the data on pub. Use 𝑇𝑋 to denote
the set of MPC tasks corresponding to the sequence numbers in set
𝑋 , and [𝑥] to represent the set of positive integers up to 𝑥 . Given
seq𝐼 , the total count of initialized MPC tasks available on-chain,
and 𝐼 𝑗 , the set of sequence numbers of tasks 𝑆 𝑗 has locally updated
before crashing, 𝑆 𝑗 identifies the tasks it missed as 𝑇[seq𝐼]/𝐼 𝑗 .

Next, 𝑆 𝑗 identifies the states it needs to recover. It uses the
input data available on-chain to compute the updated states for
each task in 𝑇[seq𝐼]/𝐼 𝑗 , focusing on identifying the keys associated
with these states. The set of missing states for 𝑆 𝑗 is then given by
∪𝑥∈[seq𝐼]/𝐼 𝑗 𝑠𝑡

1
𝑥 , 𝑠𝑡

2
𝑥 , . . ., where 𝑠𝑡

𝑦
𝑥 represents the𝑦-th state updated

by the MPC task 𝑇𝑥 .
Preprocessed Elements Buffer Sync. For 𝑆 𝑗 , a node offline for
an extended period, lacking the latest preprocessed elements could
inhibit participation in upcoming MPC tasks. Two options are avail-
able: recover missed elements via private state recovery, consuming

7

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

Propose(req=“reset”,Sj)

recover secret shared
states

collect messages
of ongoing task

engage in new task

consume state masks

reserve state masks

gen input m
asks

check buffer version

gen triples

gen bits

reproduce missed
task execution

…

Figure 7: Crash-Reset (dotted boxes indicate optional steps).

a state mask for each element; or request to generate a new batch of
elements. Considering most applications have an offline phase with
fewer rounds than the online phase, eliminating the need for an
extensive buffer of preprocessed elements, we favor regeneration,
as illustrated in Figure 4. The generation of various preprocessed
elements is optional, independent, and in parallel, contingent on
the consistency of 𝑆 𝑗 ’s local buffer version with S𝐴 .
Uninterrupted Operation.A primary design objective is ensuring
the crash-reset process seamlessly integrates, without interrupting
ongoing tasks or inhibiting the initiation of new MPC tasks. This
goal poses several challenges.

Upon approval of the crash-reset request, certain in-progress
MPC tasks, yet to yield available state updates, pose a challenge.
To address this, we include missed tasks𝑇[seq𝐼]/𝐼 𝑗 (along with state
mask indexes) in the private state recovery HTTP request. Every
𝑆𝑖 ∈ S𝐴 maps out the states aligned with 𝑇[seq𝐼]/𝐼 𝑗 and assigns
each state a counter indicating the number of tasks in 𝑇[seq𝐼]/𝐼 𝑗
influencing it. The counters decrease at each task’s completion. The
initial HTTP response to 𝑆 𝑗 only includes states with a 0 counter.
As tasks progress, 𝑆𝑖 updates these counters and offers updates each
time a state’s counter hits ground 0.

Once Propose(𝑟𝑒𝑞 =“reset”,𝑆 𝑗) is confirmed, buffer sync and state
recovery are triggered. In parallel, S𝐴 continue to process ongo-
ing/new MPC tasks using elements from old buffers. However, 𝑆 𝑗
may not be ready to engage in a newMPC task𝑇𝑤 (𝑤 > seq𝐼) due to
outdated initial states or preprocessed elements. To avoid missing
more tasks, S𝐴 send 𝑇𝑤 ’s messages to 𝑆 𝑗 , which are captured and
stored by 𝑆 𝑗 for local simulation of 𝑇𝑤 once it is ready. An edge
case arises when 𝑆 𝑗 lacks the necessary shares of preprocessed
elements to simulate 𝑇𝑤 . Here, 𝑆 𝑗 issues a second HTTP request to
S𝐴 , offering additional state mask indexes to obtain either missing
preprocessed elements or 𝑇𝑤 ’s results.
4.2.2 Cost-Utility Analysis
We introduce a cost-utility analysis to weigh the resources ex-
pended by MPC nodes in aiding a crashed node’s reset against the
enhanced system robustness, ensuring the crash-reset mechanism
is not abused by Byzantine nodes.
Cost. Our cost analysis for recovering a crashed node is inspired
by Ethereum’s Gas mechanism [87]. We convert various resource
considerations - time, storage, computation, networking, and eco-
nomic costs - into a unified scalar metric (𝑇, 𝑆,𝐶𝑃𝑈 ,𝐶𝑂𝑀, 𝐸𝐶𝑂).
See more details in Appendix A.4.

Utility. The MPC committee may enter a stale state if 𝑡ℎ ≤ 𝑡 ,
with 𝑡ℎ as the count of active non-Byzantine nodes. We denote
reliability - the probability of avoiding stale state - as 𝑅. The utility
from recovering a crashed node is quantified as enhancement in
reliability (Δ𝑅). Through Bayesian analysis, we estimate individual
node reliability 𝑟𝑖 (characterized by the distribution of failure rate
𝜆𝑖), and then determine 𝑅.

We model node 𝑆𝑖 ’s repeated crashes as a Poisson process. This
characterization of each node’s failure rate is known as the fail-
ure rate problem [80]. For 𝑆𝑖 with failure rate 𝜆𝑖 , the likelihood of
experiencing 𝐹𝑖 failures over a time interval 𝑇 is 𝑙 (𝐹𝑖 | 𝜆𝑖 ,𝑇) =
Poisson(𝑥 = 𝐹𝑖 ; 𝜆 = 𝜆𝑖𝑇) = 𝜆𝑥𝑒−𝜆

𝑥 ! . In Bayesian analysis, 𝜆𝑖 is
not a constant but a random variable adhering to a prior distribu-
tion. Gamma distribution is typically selected as the prior, given
the Poisson-distributed likelihood function. This choice simplifies
the derivation of posterior distribution, which remains Gamma-
distributed, though other priors could also be applicable. The prior’s
probability density function (PDF) is 𝑔(𝜆𝑖 | 𝛼, 𝛽) = Gamma(𝑥 =

𝜆𝑖 ;𝛼, 𝛽) = 𝑥𝛼−1𝑒−𝛽𝑥 𝛽𝛼

(𝛼−1)! . Historical data from Ripple (Figure 6) aids in
establishing this prior, specifically, in determining 𝛼 and 𝛽 . Suppos-
ing 𝜇 and 𝜎2 as the mean and variance of Ripple’s validating nodes
uptime, 𝛼 and 𝛽 are obtained by solving 𝜇 = 𝐸 (𝑔(𝜆𝑖 | 𝛼, 𝛽)) =
𝛼𝛽 and 𝜎2 = Var(𝑔(𝜆𝑖 | 𝛼, 𝛽)) = 𝛼𝛽2. When 𝐹𝑖 failures are
observed over the past time frame 𝑇 , the posterior PDF’s hyperpa-
rameters adjust to 𝛼𝑖 = 𝛼 + 𝐹𝑖 and 𝛽𝑖 = 𝛽 +𝑇 . We estimate node 𝑆𝑖 ’s
failure rate with the posterior distribution mean, denoted as 𝜆𝑖 = 𝛼𝑖

𝛽𝑖
.

The node’s reliability, or the probability it remains online through
time 𝑇 , is calculated as 𝑟𝑖 = Poisson(𝑥 = 0; 𝜆 = 𝜆𝑖𝑇) = 𝑒−𝜆𝑖𝑇 .

System reliability 𝑅, considering 𝑛′ (𝑡 < 𝑛′ ≤ 𝑛) active nodes
with reliability 𝑟1, 𝑟2, . . . , 𝑟𝑛′ , is derived by estimating the probabil-
ity that over 𝑡 nodes will remain online post time 𝑇 . Utilizing the
inclusion-exclusion principle, we get𝑅 =

∑𝑛′
𝑖=𝑡+1 (−1)𝑖−𝑡

∑
𝑋 ⊆S, |𝑋 |=𝑖

∏
𝑆 𝑗 ∈𝑋 𝑟 𝑗 .

For a more efficient estimation, approximation algorithms [51] can
be employed.
Mitigating Adversarial Exploitation. Unrestricted crash-reset
requests can expose theMPC committee to denial-of-service attacks
bymalicious nodes. To differentiate between varying recovery costs,
we update 𝐹𝑖 to reflect weighted impacts instead of merely tallying
crash occurrences. It also adjusts during MPC executions upon
deviation detected.

We start with a common prior distribution Gamma(𝛼, 𝛽), allow-
ing nodes to form distinct posterior distributions Gamma(𝛼𝑖 , 𝛽𝑖)
based on their specific crash histories. The variance in posterior
aids in distinguishing potential malicious nodes seeking to exploit
the crash-reset mechanism.

The combined utility and cost equation𝑈 = 𝑈1 (Δ𝑅) − (𝑈2 (𝑇) +
𝑈3 (𝑆) +𝑈4 (𝐶𝑃𝑈) +𝑈5 (𝐶𝑂𝑀) +𝑈6 (𝐸𝐶𝑂)) evaluates the net benefit
of executing the crash-reset. Each 𝑈𝑖 describes the utility of the
corresponding value. S𝐴 approve if𝑈 > 0. The exact parameteriza-
tion is highly specific to factors like MPC committee composition,
blockchain setup, and the system’s anticipated lifespan.

8

Ratel: MPC-extensions for Smart Contracts

4.3 Applications
We present two DeFi applications implemented in Ratel, high-

lighting our solutions to privacy issues, particularly addressing
RBEV. See more applications in Appendix A.5 2.

MPC stands out for its exceptional expressiveness, and Ratel am-
plifies this by granting developers the liberty to mark specific data
fields for privacy. However, the realized privacy level is intrinsi-
cally tied to the application’s distinct logic. It’s unfeasible to assess
privacy guarantees in isolation from the application context. Hence,
we evaluate the leakage function in applications to articulate the
afforded privacy.
4.3.1 Constant Product AMM - RatelSwap
As explained in Section 3.1, Uniswap suffers from both MEV and
RBEV issues. In response, we introduce RatelSwap, a privacy-enhancing
variant 3 of Uniswap V2 [3]. Amounts in add/remove liquidity and
trade (swap) are marked as private. This ensures associated values,
including pool volumes, token balances, and bid closing prices, re-
main private unless explicitly revealed. For brevity, we will focus
on trade, omitting the discussion on liquidity operations.

In RatelSwap, clients transfer funds from the blockchain to the
application contract, enabling MPC committee to maintain private
in-application balances. Trade amounts are concealed, with signs
indicating swap size (negative) and slippage limit (positive), ensur-
ing swap directions remain undisclosed. We mitigate RBEV through
batched public price discovery and delayed private price disclosure.
At the end of a trade, only the trader is allowed to query whether
it was fulfilled and at what price. Liquidity pool volumes and in-
application account balances are concealed to prevent adversaries
from inferring swap statuses based on changes in these values.
Clients can query their own balances while pool volumes remain
undisclosed. We strike a balance between privacy and price discov-
ery by disclosing the average prices of recent swap batches to guide
the setting of slippage limits 4. A mandatory delay before traders
can access swap prices and updated balances thwarts adversaries’
attempts to deduce liquidity pool states via consecutive trades.

Consider a batch of 𝐵 bids {𝑏𝑖𝑑𝑖 = (𝑎𝑖 , 𝑏𝑖 ,𝑚𝑖 , 𝑠𝑖)}𝑖∈[𝐵] , with 𝑏𝑖𝑑𝑖
submitted by trader𝑖 , expressing the intention to exchange𝑚𝑖 units
of token 𝑎𝑖 for at least 𝑠𝑖 units of token𝑏𝑖 . The outcome of executing
𝑏𝑖𝑑𝑖 yields 𝑐𝑖 , with 1 for success and 0 for failure. The price of 𝑏𝑖𝑑𝑖
is:

𝑝𝑖 =

0 if 𝑐𝑖 = 0
𝑠′
𝑖
/𝑚𝑖 if 𝑐𝑖 = 1 and address(𝑎𝑖) < address(𝑏𝑖)

𝑚𝑖/𝑠′𝑖 otherwise.
The leakage function for trade is represented as:

Ltrade =

{
{𝑎𝑖 , 𝑏𝑖 }𝑖∈[𝐵] ,Mean({𝑝𝑖 }𝑖∈[𝐵],𝑐𝑖=1) to the public
𝑏𝑖𝑑𝑖 , 𝑐𝑖 , 𝑝𝑖 to trader𝑖

Here, {𝑎𝑖 , 𝑏𝑖 } denotes an unordered pair, meaning the public is
aware of the pool a trader engages with but remains uninformed
about the exact swap direction. If the MPC committee remains
uncompromised, the MPC nodes gain no more information than
the public.
2Notably, Ratel’s RockPaperScissors implementation offers availability unattainable
with standard ZKP-based approaches.
3Source code of RatelSwap.
4A similar decision has been adopted by Rialto [48] where they reveal top-k settlement
prices in their double orderbook DEX.

RatelSwap mitigates MEV by concealing swap size and slippage
limits, preventing adversaries from identifying vulnerable transac-
tions. Swaps details and results stay confidential post-execution,
guarding against RBEV.
4.3.2 Collateral Auction - RatelAuction
In DeFi lending protocols, collateral assets are liquidated via an
auction process to pay off loan debt when their prices fall. Maker-
DAO [64], a popular lending protocol, employs a Dutch auction to
entice bidders, where the collateral’s price methodically reduces
starting from an oracle-referenced initial price. An auction ends
when either all collateral is bought, the loan is entirely repaid, or
the auction reaches its expiry.

In such public auctions, bidders, by observing the bidding fre-
quency, bids’ size, and remaining collateral, can strategically place
their bids towards the auction’s end to secure the lowest price, re-
sulting in collaterals being undervalued. This price discrimination
is especially severe for high-volume auctions, which tend to have
longer durations and give liquidators ample time to respond to
market shifts. As per [74], by April 2021, the profit from 28,138
liquidations in MakerDAO totaled 63.59M USD. This profit stems
from the gap between the auctioned collateral’s price and its mar-
ket value. The discrimination is an implicit form of RBEV, if we
view the auction as a single massive order, with bidders trading
against it. The auction “order” is at a disadvantage since the large
unfulfilled amounts are public knowledge. Moreover, bidders face
potential MEV issues during the auction’s concluding moments;
those who successfully settle their bids secure favorable positions,
while others miss out.

The goal of designing a “fair” collateral auction scheme is to
prompt liquidators to repay the loan at a price consistent with
their true willingness to pay (usually the market price), regard-
less of the auction’s current status. We improve the liquidation
auction by marking the price and size of all bids as private and
consequently make the remaining collateral volume private 5. Rate-
lAuction accepts bids priced above the auction’s floor price. Given
the descending nature of the auction’s price, RatelAuction periodi-
cally checks if the cumulation of accepted bids with a price above
the current price suffices to cover the debt - concluding the auction
upon affirmation. Should the auction’s closure yield an excess of
qualified bids, preference is accorded to earlier submissions. This
mechanism incentivizes fast bid placements, accelerates the auc-
tion progression, and culminates in a more favorable price for the
auctioneer.

Consider a collateral auction with an expiry 𝑇 and a total col-
lateral amount 𝑉 . The function 𝑝 (·) captures the price change in
the auction, with 𝑝 (𝑡) = 𝑝 (𝑇) when 𝑡 ≥ 𝑇 . Given that, at time 𝑡 ,
the application has collected bids {𝑏𝑖𝑑𝑖 = (𝑣𝑖 , 𝑝𝑖)}. In the original
MakerDAO auction, anyone can calculate the remaining collateral
volume 𝑟 (𝑡) = max(0,𝑉 −∑𝑝𝑖≥𝑝 (𝑡) 𝑣𝑖), enabling them to estimate
the auction’s end time and discern the reason for its conclusion.
However, the leakage function for RatelAuction is

LRatelAuction (𝑡) =
{
(|{𝑏𝑖𝑑𝑖 }|, term,𝑉 , 𝑝 (𝑡)) to the public
𝑏𝑖𝑑𝑖 , 𝑣

′
𝑖

to trader𝑖 if term = 1
indicating that only the total count of bids collected and whether
the auction was terminated or not (without the underlying reason)
5Source code of RatelAuction.

9

https://anonymous.4open.science/r/HoneyBadgerSwap-5F06/ratel/src/rl/hbswap.rl
https://anonymous.4open.science/r/HoneyBadgerSwap-5F06/ratel/src/rl/colAuction.rl

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

are disclosed. trader𝑖 learns the fulfilled volume 𝑣 ′
𝑖
≤ 𝑣𝑖 at the

auction’s end. Hiding 𝑟 (𝑡) effectively prevents bidders from forming
an accurate expectation regarding the auction’s remaining duration.

RatelAuction minimizes RBEV and aims to bridge the 63M USD
profit gap liquidators currently exploit 6. We expect the auction
price to be slightly above market price due to the auctioneer’s
less favorable market position. Although bid concealment does
not completely eliminate MEV, it reduces its impact. Blind bidding
encourages prioritization, expediting auction closure and yielding
a fairer final price.
5 Evaluation

We implement the Ratel framework and benchmark it, finding
that MPC communication latency is the primary bottleneck. Our
evaluation demonstrates Ratel’s capability to efficiently manage
real-world workloads for RatelSwap and RatelAuction. Evaluation
on crash-reset is in Appendix B.
Implementations and Optimizations.We adapted the MP-SPDZ
codebase with several modifications to meet our specific needs: 1) It
only supported revealing cleartext outputs to parties. We extended
it to output secret shares to MPC nodes for storage in the confi-
dential key-value store; 2) We refined its offline phase to enable
the generation of specific types of preprocessed elements in des-
ignated batch sizes; 3) We enhanced it with crash fault tolerance,
allowing MPC to proceed even when some parties are absent; 4)
We reengineered its sockets to support asynchronous read/write,
enabling nodes to send messages to absent peers who can later
retrieve and simulate the MPC independently; 5) We optimized its
startup phase, reducing it from over 80 to just 7 communication
rounds by removing redundant socket setup processes and adding
multithreading for socket setup.

Since the crash-reset involves massive Geth queries, we opti-
mized it by employing the batch query function of the aio_eth
library [70]. we also introduced multiprocessing to accelerate the
private state interpolation process.

We enhanced the performance of RatelSwap through application-
level optimizations detailed in Appendix B.1.
Experiment Setup. We established a private blockchain using
Geth [47] and utilized its Proof-of-Authority consensus protocol,
enabling us to configure block time and simulate various public
blockchains. We assume the MPC committee consists of servers
run by reputable organizations, located across diverse geographical
regions. To mimic such MPC nodes distribution 7 , we run all MPC
nodes on a single machine (with an Intel Xeon E5-2620 v4 CPU and
128 GiB of RAM running Ubuntu 20.04) and incorporate a simu-
lated latency (causing packet delays of 100 ± 5ms). This approach,
excluding random network fluctuations and packet losses, assures
stable benchmark results. For MPC programs, we use 128-bit field
elements, with a precision of 𝜅 = 16 for fixed-point numbers.

6In an ideal, risk-neutral competitive market, excess profit diminishes, leaving negligi-
ble profit margins for liquidators.
7Unlike our approach, studies like P2DEX [15] and Kicking-the-Bucket [35] present
testing scenarios that don’t accurately mimic the conditions of real-world DApps.
They report server latencies under 25ms and ping times around 1.003ms, respectively,
which are significantly lower than the usual latencies seen in AWS instances [67],
indicating an overly optimistic testing environment.

Our chosen Shamir-based protocol (CGH+18 [28]) effectively
scales with the number of participants. Given the significant com-
munication overheads, the computational costs tied to an increased
number of MPC nodes are relatively minor, as depicted in Figure 11.
This is largely because each round involves parties exchanging mes-
sages. When faced with high communication latency, the additional
overhead frommore participants becomes negligible unless𝑛 grows
exceptionally large. Consequently, our primary experiments use
𝑛 = 4 and 𝑡𝑎 = 1, focusing on assessing application performance
under normal conditions (𝑡𝑓 = 0).

Our benchmark focuses on Shamir-based protocol, ideal for
general-purpose use cases. For applications that require fewer MPC
nodes (𝑛 ≤ 4), Replicated-based protocols, like Fantastic Four [38],
may offer notable performance improvements over Shamir.
5.1 Bottleneck Analysis

As a framework composed of multiple components, we are cu-
rious about which part or factor is the performance bottleneck of
Ratel. Evaluating a general-purpose framework like Ratel holds no
significance without being contextualized within a specific applica-
tion. Therefore, we benchmark Ratel using the trade operation in
RatelSwap, as it is the most frequently used operation in our most
representative application.
Latency. A trade request is first sent to blockchain and executed by
MPC committee once the corresponding transaction is confirmed.
The confirmation time of the blockchain portion varies with the
configuration of blockchain being used, which dramatically ranges
from a few seconds to several minutes. The Proof-of-Stake-based
Ethereum network produces blocks every 12s on average, with most
exchanges and merchants waiting for 10-50 confirmations thus
resulting in a latency of 2-13min. Other popular EVM-compatible
chains such as Binance Smart Chain [26] and Avalanche [84] have
faster confirmation times of approximately 3s, and 2s respectively.

The overall off-chain execution time (to run Python program) of
trade without using ZKRP is measured to be 5.9s (0.08s without the
simulated network latency). Since database access takes less than
0.001s, the majority of latency comes from the MP-SPDZ program.
The tradeMP-SPDZ program has 48 communication rounds and
the online phase takes 5.12s. The remaining 0.779s comes from
socket setup which could be amortized by reusing the same sockets
across multiple MP-SPDZ programs.

The offline phases are run in advance to ensure that preprocessed
elements are readily available. The tradeMPC program consumes 2
input masks, 876 beaver triples, and 2738 random bits. Generating
different preprocessed elements can run in parallel and the time cost
to generate required triples and bits takes 2.4s and 3.3s respectively,
which means offline phase runs faster than online phase. Similar to
the online phase, at least 0.7s are used for socket setup.

The use of ZKRP reduced the off-chain running time by 0.4s,
where it takes 5.18s for the MP-SPDZ program to process all private
data, plus the 0.23s for the 1 round of communication to open the
commitment to secret-shared states. Our use of ZKRP requires MPC
nodes to verify 3 ranged proofs and reconstruct 2 commitments
taking 0.006s per ranged proof and 0.014s per commitment.
Throughput.The throughput of RatelSwap is dependent onwhether
trades are parallelizable off-chain and the block time and block ca-
pacity of the underlying blockchain network. In particular, trades

10

Ratel: MPC-extensions for Smart Contracts

0 2 4 6 8 10 12 14 16
Trading pool number

0

1

2

3

4

5

6

7

8

Av
er

ag
e

tra
de

s l
at

en
cy

(s
)

latency

0
20
40
60
80
100
120
140
160
180

Av
er

ag
e

tra
de

s t
hr

ou
gh

pu
t(/

m
in

)throughput

Figure 8: Performance of RatelSwap over
Multiple Trading Pools (with Concurrent
Execution)

0
2
4
6
8
10
12
14
16
18

Tx
 d

en
sit

y(
/1

5s
)

tx density

0 1000 2000 3000
Tx submission time(s)

0

20

40

60

80

100

120

140

W
ai

t t
im

e(
s)

wait time

Figure 9: MPC Task Wait Time vs. Trans-
action Submission Frequency: simulate
RatelSwap over a one-hour period of the
real-world workload from the USCD.e-
WAVAX pool on Trader Joe.

0 20 40 60 80 100 120 140 160
Wait time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

Figure 10: Wait time probability distri-
bution of simulating RatelSwap over 3
days of historical data from the USCD.e-
WAVAX pool on Trader Joe.

0 2 4 6 8 10 12 14 16
Number of MPC servers

0.0
2.5
5.0
7.5

10.0

Av
er

ag
e

la
te

nc
y(

s)

overall latency

0.0
2.5
5.0
7.5
10.0

pure computational latency

Figure 11: Comparison of overall latency versus computa-
tional latency in the Trade MPC program as the number of
MPC nodes increases.

sent to the same pool must be executed in sequence, as they access
the same fields such as pool volume sizes. The throughput in a
single pool is 10 trades per minute.

Figure 8 illustrates that maximum concurrency is achieved when
trades, originating from distinct users, are directed to different trad-
ing pools. These trades, being data-independent, are processed in
parallel. The total throughput of RatelSwap exhibits linear scal-
ability with the increase in the number of trading pools, capped
by the parallel computing capacity of the underlying hardware.
Interestingly, the serial latency is minimally impacted and remains
relatively constant.

A trade transaction consumes under 40k units of gas. Even when
all input data is stored on-chain (for crash-reset), the cost remains
a modest 204k units - comparable to the 101k and 141k units ex-
pended by FairMM and Uniswap respectively. On the Ethereum
network, with a 30m unit gas limit per block, over 150 trades can be
accommodated in each block, equating to a maximum throughput
of 600 trades per minute. On the Binance Smart Chain, with 140m
block gas limit, the peak throughput reaches about 13k trades per
minute.
Economic Cost.We evaluate the financial overhead to run MPC
nodes. The pure computation time for trade on the MPC committee
is approximately 0.1s, with an extra 0.37s for the offline phase, and
the cost of generating input masks is negligible. Considering the on-
demand hourly rate for Amazon EC2 m5.xlarge instances is 0.192
USD [11], and the data exchange per trade is just a few megabytes,
the overall amortized cost is negligible, compared to the average

transaction fee of approximately 1 USD paid on Avalanche or more
than 30 USD paid on Ethereum during our observations.
Bandwidth. The bandwidth used by MP-SPDZ program is modest
and does not saturate a broadband connection, with each server
transmitting 0.17MB of data per trade.

5.2 Performance over Real-World Data
We demonstrate the effectiveness of Ratel, by collecting and

analyzing the historical data of AMM and collateral auction on
the public blockchains. Our results indicate that Ratel is capable of
handling real-world traffic for both applications.
RatelSwap Under High-Traffic Conditions in the Most Pop-
ular Trading Pool. We monitor all transactions submitted to
Sushiswap [83] and Uniswap [3] on the Ethereum network, and
Trader Joe [53] on the Avalanche network, over a period of 5 days
in May 2022. This period follows the collapse of LUNA and UST,
resulting in especially elevated on-chain trading activity.

Figure 13 shows the average number of swap rates over the top 40
trading pairs in these markets. The most prolific pool is the Trader
Joe USCD.e-WAVAX pair on Avalanche, with 324 swaps/hour on
average. This is less than the maximum throughput of RatelSwap,
which is around 600 swaps/hour.

Although RatelSwap is able to handle the average sustained
workload of the most prolific measured pool, it may still experi-
ence temporary backlogging during periods of acute activity. The
per-hour trading history of the USCD.e-WAVAX pool during our
observation period is illustrated in Figure 14. We simulated Ratel-
Swap over the 1-st hour of our observation period, during which
there are 622 swaps in total by submitting swap transactions to
RatelSwap at the exact times measured in the pool. We then ob-
served the queuing time of each swap, which is the delay between a
transaction being confirmed by the blockchain and the MPC nodes
starting to execute the MPC task. The results, as shown in Figure 9,
indicate that during sharp bursts of transactions, the MPC commit-
tee becomes congested, and confirmed transactions may be queued
for up to 101 seconds before being executed. However, when the
workload decreases, the queue clears quickly, and the delay drops
back to a typical wait time of less than a minute.

11

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

Figure 10 shows the cumulative distribution of the transaction
delays obtained by performing repeated simulations of the entire
3-day history that we collected from the USDC.e-WAVAX pool. The
simulation found that 83.77% of trades have a wait time of less than
1min with 58.44% of trades being queued for less than 5s.
RatelAuction in a Rarely Occurring Large-Scale Auction. We
evaluate RatelAuction using the data of an ETH-A auction with
65, 000, 000Dai (1Dai≈ 1USD) that happened onMakerDAO. There
is only one multiplication in the MP-SPDZ program for bid submis-
sion, which is merely at no cost. At the end of the auction, all 49
received bids are traversed to determine the exact collateral payouts
for each bid. The traverse takes 98s, which is acceptable compared
with its 2940s lifetime. Moreover, the final settlement operation
is run once per auction and such large auctions are infrequent in
general.

6 Related Work
Most popular DEXes [1, 3, 4, 13, 45, 52, 53, 62, 83] lack protection

against MEV and RBEV. Several solutions exist to mitigate MEV by
enforcing specific order, either in the consensus layer [56, 61, 88],
or in the application layer [31]. However, these solutions do not ad-
dress RBEV. Another approach is hiding the content of bids to mix
potential victim bids with all other bids. We categorize these works
according to their generality and underlying cryptographic primi-
tives used to provide privacy in Table 3. Some works are designed
specifically for DEX and can be compared with RatelSwap, while
others are more general-purpose frameworks like Ratel providing
privacy for blockchain.

Some works [19, 27, 42, 72, 77] use Trusted Execution Environ-
ments (TEEs) such as Intel Software Guard Extensions (SGX) [34]
to emulate a trusted third-party operating the exchanges, but these
have to trust that the chip manufacturers do not leave backdoors
and also known side-channel have been patched. However, new
attacks are still possible. ZKP-based approaches [22, 30, 43, 44, 58–
60, 66, 71, 82] is efficient to provide privacy and prevent MEV with-
out additional trust assumptions, but it is limited to specific types
of DEXes as no one has the ability to provide proof of secret data
from other parties. ZKP approaches also have availability issues as
they rely on the data provider to be online to provide the original
data whenever required.

Cartlidge et al. [25] first proposed using MPC to mitigate price
impact and front-running in dark pools, followed by Kicking-the-
Bucket [35] that further optimizes the matching algorithms, and
Asharov et al. [10, 12] that combines MPC and homomorphic en-
cryption to address privacy concerns. P2DEX [15] uses publicly
verifiableMPC and threshold signatures to resist both front-running
and secret key theft in cross-chain exchanges. It shares similarities
with Rialto [48] as they both implement a double order-book DEX
with fixed-size orders, considering only order prices. Rialto and
Ratel are on the same path that combines MPC and ZKP, striking
a balance between efficiency and functionality. However, double
order-book DEXes may not be able to tolerate the high latency
of MPC as they are sensitive to market price fluctuation and the
sorting algorithm involves too many comparison operations, which
is very expensive in MPC.

Several general-purpose frameworks have been proposed to pro-
vide privacy for blockchains using either MPC or Homomorphic
Encryption (HE) schemes. Gage MPC [5] uses non-interactive MPC
for short-term strong security but may leak residual bids for long-
term use in a DEX. GABLE [33] uses garbled circuit schemes directly
on smart contracts, but it is not practical for complex dApps on
popular blockchains like Ethereum due to high costs. None of these
MPC-based frameworks [16, 33, 40, 79] considers programmability
or has a user-friendly front-end. White-City [79] and Eagle [16]
model a private state machine replication similar to Ratel, but Eagle
does not address crash reset. ZeeStar [81] and Pesca [36] provide
a programming framework for non-experts to instantiate private
smart contracts, similar to Ratel, they both use HE along with ZKP
for privacy guarantees. However, ZeeStar uses additive HE, which
limits its expressivity to linear operations over foreign data. Pesca is
the most relevant work to Ratel, which uses fully HE (FHE) instead
of MPC so that private data could be stored on the mainchain for
better reliability, but the tradeoff is the high storage gas expenses.
CrashRecovery in theMPCLiterature.MATRIX [14] and FlexSMC [85]
are MPC management and orchestration frameworks that assign
MPC nodes to execute user-registered MPC programs. Both frame-
works follow the traditional approach of considering stateless, one-
shot computation and not storing private states for future use.
FlexMPC addresses node failures and communication interruptions
by using a centralized gateway to monitor servers in an MPC ses-
sion and restart the session if necessary. Partisia [73] is another
MPC-as-a-Service framework, which stores secret variables off-
chain but does not address how secret variables are maintained
over time. Proactive Secret-sharing (PSS) schemes [18, 29, 49, 65]
allow secret states shared in an old MPC committee to be reshared
with a new committee, but this is inefficient in our setting and can
halt the system from taking on new MPC tasks. White-City [79]
is a concurrent work to Ratel that supports crash-reset recovery
by recording all MPC messages in the encrypted form on a public
bulletin board, but this approach is not practical for mainstream
blockchains like Ethereum due to high on-chain storage costs. In
contrast, Ratel proposes a more lightweight recovery mechanism
that only sends shares of missing states to the reset server and does
not halt the system from taking on new MPC tasks.

7 Discussions and Conclusion
Ratel demonstrates how the synergy of MPC and blockchain can

effectively craft privacy-preserving DApps, notably addressing the
RBEV challenge. We identify key areas for future improvement of
the framework.

We useMP-SPDZ as an attestation of our approach to integrating
an MPC framework and blockchain, however, it is unnecessary to
stick with this specific framework. Any MPC framework providing
a easy-to-use high-level language like MP-SPDZ should be a good
fit, as we aim to seamless experience provide a for non crypto expert
DeFi developers. The Ratel compiler requires not much changes
when switching to another framework, except for changing the
interface to call a different MPC compiler rather than MP-SPDZ.

The definition of end-to-end latency in RatelSwap is ambiguous
due to batching and delayed price disclosure. While sequential
ordering remains vital, latency is only problematic if it constitutes a

12

Ratel: MPC-extensions for Smart Contracts

significant part of the disclosure window. The current performance
might be insufficient as trading pool activity rises. A potential
remedy is segmenting the pool into sub-pools to distribute workload
and letting market dynamics dictate each sub-pool’s priority.

Rethinking the fee mechanism is essential due to the introduc-
tion of concurrency control through the locking mechanism. The
evaluation should not only consider traditional metrics like gate
numbers and circuit depth but also the count of locks and total
blocking time associated with an MPC task. These dynamic fac-
tors, often discerned at runtime, influence overall performance. A
model akin to Ethereum’s gas mechanism, where fees are estimated
upfront and states reverted if prepaid fees fall short, could be an
effective approach.

We have primarily discussed managing private states within
individual applications. However, our framework can be extended
to support interoperability across various applications, allowing
them to share private data fields. For an in-depth explanation of
one possible approach, refer to Appendix C.

The current Ratel compiler offers limited support for the ZKRP
module, requiring developers to discern when to substitute MPC
operations with ZKRP. An enhanced Ratel compiler could auto-
determine the computations suited for ZKP, optimizing MPC work-
load. Ultimately, a holistic integration of smart contracts, MPC, and
ZKP is a promising avenue for refining privacy and efficiency in
future developments.

8 Acknowledgments
This work was supported in part by the National Science Foun-

dation (NSF) under Award No. 1943499, the Berkeley Research and
Development Initiative (RDI) Center, and the industry sponsors of
the Initiative for Cryptocurrencies and Contracts (IC3).

References
[1] 0x. 2022. 0x: Powering the decentralized exchange of tokens on Ethereum.

https://www.0x.org.
[2] Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi.

2021. Viaduct: An Extensible, Optimizing Compiler for Secure Distributed Pro-
grams. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (Virtual, Canada) (PLDI
2021). Association for Computing Machinery, New York, NY, USA, 740–755.
https://doi.org/10.1145/3453483.3454074

[3] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.
[4] AirSwap. 2022. AirSwap: Peer-to-peer Token Trading DEX and Open Source

Developer DAO. https://www.airswap.io.
[5] Ghada Almashaqbeh, Fabrice Benhamouda, Seungwook Han, Daniel Jaroslawicz,

Tal Malkin, Alex Nicita, Tal Rabin, Abhishek Shah, and Eran Tromer. 2021.
Gage MPC: Bypassing Residual Function Leakage for Non-Interactive MPC.
Proceedings on Privacy Enhancing Technologies 2021 (2021), 528 – 548.

[6] O Andreev, B Glickstein, V Niu, T Rinearson, D Sur, and C Yun. 2019. ZkVM: fast,
private, flexible blockchain contracts. Technical Report. Technical report, Online.

[7] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18).
Association for Computing Machinery, New York, NY, USA, Article 30, 15 pages.
https://doi.org/10.1145/3190508.3190538

[8] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Łukasz
Mazurek. 2016. Secure multiparty computations on bitcoin. Commun. ACM 59,
4 (2016), 76–84.

[9] Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef,
and Erik Zenner. 2015. Ripple: Overview and outlook. In Trust and Trustworthy
Computing: 8th International Conference, TRUST 2015, Heraklion, Greece, August

24-26, 2015, Proceedings 8. Springer, 163–180.
[10] Gilad Asharov, Tucker Hybinette Balch, Antigoni Polychroniadou, and Manuela

Veloso. 2020. Privacy-Preserving Dark Pools. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (Auckland,
New Zealand) (AAMAS ’20). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 1747–1749.

[11] AWS. 2022. Amazon EC2 On-Demand Pricing. https://aws.amazon.com/ec2/
pricing/on-demand/.

[12] Tucker Balch, Benjamin E. Diamond, and Antigoni Polychroniadou. 2021. Secret-
Match: Inventory Matching from Fully Homomorphic Encryption. In Proceedings
of the First ACM International Conference on AI in Finance (New York, New York)
(ICAIF ’20). Association for Computing Machinery, New York, NY, USA, Article
15, 7 pages. https://doi.org/10.1145/3383455.3422569

[13] Bancor. 2022. Bancor V3 - Bancor V3 Technical Docs. https://
docs.bancor.network/about-bancor-network/bancor-v3.

[14] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. 2018. An End-to-
End System for Large Scale P2P MPC-as-a-Service and Low-Bandwidth MPC
for Weak Participants. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (Toronto, Canada) (CCS ’18). As-
sociation for Computing Machinery, New York, NY, USA, 695–712. https:
//doi.org/10.1145/3243734.3243801

[15] Carsten Baum, Bernardo David, and Tore Kasper Frederiksen. 2021. P2DEX:
Privacy-Preserving Decentralized Cryptocurrency Exchange. In Applied Cryp-
tography and Network Security, Kazue Sako and Nils Ole Tippenhauer (Eds.).
Springer International Publishing, Cham, 163–194.

[16] Carsten Baum, James Hsin yu Chiang, Bernardo David, and Tore Kasper Fred-
eriksen. 2022. Eagle: Efficient Privacy Preserving Smart Contracts. Cryp-
tology ePrint Archive, Paper 2022/1435. https://eprint.iacr.org/2022/1435
https://eprint.iacr.org/2022/1435.

[17] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization.
In Advances in Cryptology — CRYPTO ’91, Joan Feigenbaum (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 420–432.

[18] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020. Can a Public
Blockchain Keep a Secret?. In Theory of Cryptography, Rafael Pass and Krzysztof
Pietrzak (Eds.). Springer International Publishing, Cham, 260–290.

[19] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari
Juels. 2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted
Hardware. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). Associ-
ation for Computing Machinery, New York, NY, USA, 1521–1538. https:
//doi.org/10.1145/3319535.3363221

[20] Iddo Bentov and Ranjit Kumaresan. 2014. How to Use Bitcoin to Design Fair
Protocols. In Advances in Cryptology – CRYPTO 2014, Juan A. Garay and Rosario
Gennaro (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 421–439.

[21] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework
for Fast Privacy-Preserving Computations. In Computer Security - ESORICS 2008,
Sushil Jajodia and Javier Lopez (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 192–206.

[22] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. 2020. ZEXE: Enabling Decentralized Private Computation. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA, USA,
947–964. https://doi.org/10.1109/SP40000.2020.00050

[23] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and
More. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco,
CA, USA, 315–334. https://doi.org/10.1109/SP.2018.00020

[24] Jan Camenisch and Markus Stadler. 1997. Efficient group signature schemes for
large groups. In Advances in Cryptology — CRYPTO ’97, Burton S. Kaliski (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 410–424.

[25] John Cartlidge, Nigel P. Smart, and Younes Talibi Alaoui. 2019. MPC Joins
The Dark Side. In Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security (Auckland, New Zealand) (Asia CCS ’19). As-
sociation for Computing Machinery, New York, NY, USA, 148–159. https:
//doi.org/10.1145/3321705.3329809

[26] BNB Smart Chain. 2018. BNB Smart Chain: A Parallel BNB Chain to Enable
Smart Contracts. https://www.binance.org/en/smartChain.

[27] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform
for Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts.
In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
Stockholm, Sweden, 185–200. https://doi.org/10.1109/EuroSP.2019.00023

[28] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda
Lindell, and Ariel Nof. 2018. Fast Large-Scale Honest-Majority MPC for Malicious
Adversaries. In Advances in Cryptology – CRYPTO 2018, Hovav Shacham and
Alexandra Boldyreva (Eds.). Springer International Publishing, Cham, 34–64.

[29] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel
Kaptchuk. 2020. Fluid MPC: Secure Multiparty Computation with Dynamic

13

https://www.0x.org
https://doi.org/10.1145/3453483.3454074
https://www.airswap.io
https://doi.org/10.1145/3190508.3190538
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://doi.org/10.1145/3383455.3422569
https://docs.bancor.network/about-bancor-network/bancor-v3
https://docs.bancor.network/about-bancor-network/bancor-v3
https://doi.org/10.1145/3243734.3243801
https://doi.org/10.1145/3243734.3243801
https://eprint.iacr.org/2022/1435
https://eprint.iacr.org/2022/1435
https://doi.org/10.1145/3319535.3363221
https://doi.org/10.1145/3319535.3363221
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1145/3321705.3329809
https://doi.org/10.1145/3321705.3329809
https://www.binance.org/en/smartChain
https://doi.org/10.1109/EuroSP.2019.00023

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

Participants. IACR Cryptol. ePrint Arch. 2020 (2020), 754.
[30] Shumo Chu, Qiudong Xia, and Zhenfei Zhang. 2020. Manta: Privacy Preserving

Decentralized Exchange. Cryptology ePrint Archive, Paper 2020/1607. https:
//eprint.iacr.org/2020/1607 https://eprint.iacr.org/2020/1607.

[31] Michele Ciampi, Muhammad Ishaq, Malik Magdon-Ismail, Rafail Ostrovsky, and
Vassilis Zikas. 2022. FairMM: A Fast and Frontrunning-Resistant Crypto Market-
Maker. In Cyber Security, Cryptology, and Machine Learning: 6th International
Symposium, CSCML 2022, Be’er Sheva, Israel, June 30 – July 1, 2022, Proceedings
(Be’er Sheva, Israel). Springer-Verlag, Berlin, Heidelberg, 428–446. https://
doi.org/10.1007/978-3-031-07689-3_31

[32] CoinMarketCap. 2022. CoinMarketCap Total Cryptocurrency Market Cap. https:
//coinmarketcap.com/charts/.

[33] Christopher Cordi, Michael P. Frank, Kasimir Gabert, Carollan Helinski, Ryan C.
Kao, Vladimir Kolesnikov, Abrahim Ladha, and Nicholas Pattengale. 2022. Au-
ditable, Available and Resilient Private Computation on the Blockchain via MPC.
In Cyber Security, Cryptology, andMachine Learning, Shlomi Dolev, Jonathan Katz,
and Amnon Meisels (Eds.). Springer International Publishing, Cham, 281–299.

[34] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. 2016 (2016), 86.

[35] Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P.
Smart, and Younes Talibi Alaoui. 2022. Kicking-the-Bucket: Fast Privacy-
Preserving Trading Using Buckets. In Financial Cryptography and Data Security,
Ittay Eyal and Juan Garay (Eds.). Springer International Publishing, Cham, 20–37.

[36] Wei Dai. 2022. PESCA: A Privacy-Enhancing Smart-Contract Architecture.
Cryptology ePrint Archive, Paper 2022/1119. https://eprint.iacr.org/2022/1119
https://eprint.iacr.org/2022/1119.

[37] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Ben-
tov, Lorenz Breidenbach, and Ari Juels. 2020. Flash Boys 2.0: Frontrunning in
Decentralized Exchanges, Miner Extractable Value, and Consensus Instability.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA,
USA, 910–927. https://doi.org/10.1109/SP40000.2020.00040

[38] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2021. Fantastic
four:{Honest-Majority}{Four-Party} secure computation with malicious secu-
rity. In 30th USENIX Security Symposium (USENIX Security 21). 2183–2200.

[39] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and Unconditionally
Secure Multiparty Computation. In Advances in Cryptology - CRYPTO 2007,
Alfred Menezes (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 572–590.

[40] Didem Demirag and Jeremy Clark. 2021. Absentia: Secure Multiparty Com-
putation on Ethereum. In Financial Cryptography and Data Security. FC 2021
International Workshops, Matthew Bernhard, Andrea Bracciali, Lewis Gudgeon,
ThomasHaines, Ariah Klages-Mundt, Shin’ichiroMatsuo, Daniel Perez, Massimil-
iano Sala, and SamWerner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
381–396.

[41] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In NDSS.
USENIX Association, San Diego, California, USA.

[42] DerivaDEX. 2021. Introduction to DerivaDEXArchitecture. https://medium.com/
derivadex/introduction-to-derivadex-architecture-1dac2910cd81.

[43] Felix Engelmann, Thomas Kerber, Markulf Kohlweiss, and Mikhail Volkhov.
2022. Zswap: zk-SNARK Based Non-Interactive Multi-Asset Swaps. https:
//eprint.iacr.org/2022/1002 https://eprint.iacr.org/2022/1002.

[44] Felix Engelmann, Lukas Müller, Andreas Peter, Frank Kargl, and Christoph Bösch.
2021. SwapCT: Swap confidential transactions for privacy-preserving multi-
token exchanges.

[45] EtherDelta. 2022. EtherDelta. https://etherdelta.com.
[46] Matthias Fitzi, Martin Hirt, and Ueli Maurer. 1998. Trading correctness for privacy

in unconditional multi-party computation. In Advances in Cryptology — CRYPTO
’98, Hugo Krawczyk (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 121–
136.

[47] Ethereum Foundation. 2021. Go Ethereum. https://github.com/ethereum/go-
ethereum.

[48] Kavya Govindarajan, Dhinakaran Vinayagamurthy, Praveen Jayachandran, and
Chester Rebeiro. 2022. Privacy-Preserving Decentralized Exchange Marketplaces.
In 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
IEEE, Shanghai, China, 1–9. https://doi.org/10.1109/ICBC54727.2022.9805505

[49] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yi-
fan Song. 2022. Storing and Retrieving Secrets on a Blockchain. In Public-Key
Cryptography – PKC 2022, Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe
(Eds.). Springer International Publishing, Cham, 252–282.

[50] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. 2019.
Sok: General purpose compilers for secure multi-party computation. In 2019 IEEE
symposium on security and privacy (SP). IEEE, 1220–1237.

[51] Klaus D Heidtmann. 1982. Improved method of inclusion-exclusion applied to
k-out-of-n systems. IEEE Transactions on Reliability 31, 1 (1982), 36–40.

[52] IDEX. 2022. IDEX High-Performance Decentralized Exchange. https://
docs.idex.io.

[53] Trader Joe. 2023. Trader Joe Decentralized Exchange. https://traderjoexyz.com

[54] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-
ward W Felten. 2018. Arbitrum: Scalable, private smart contracts. In 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association, BALTIMORE,
MD, USA, 1353–1370.

[55] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.
2021. Themis: Fast, Strong Order-Fairness in Byzantine Consensus. Cryptology
ePrint Archive, Paper 2021/1465. https://eprint.iacr.org/2021/1465 https://
eprint.iacr.org/2021/1465.

[56] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-
Fairness for Byzantine Consensus. In Advances in Cryptology – CRYPTO 2020,
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer International Pub-
lishing, Cham, 451–480.

[57] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Com-
putation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS ’20). Association for Com-
puting Machinery, New York, NY, USA, 1575–1590. https://doi.org/10.1145/
3372297.3417872

[58] Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. 2021. KACHINA –
Foundations of Private Smart Contracts. In 2021 IEEE 34th Computer Security
Foundations Symposium (CSF). IEEE, Dubrovnik, Croatia, 1–16. https://doi.org/
10.1109/CSF51468.2021.00002

[59] Rami Khalil, Arthur Gervais, and Guillaume Felley. 2019. TEX - A Securely
Scalable Trustless Exchange. Cryptology ePrint Archive, Paper 2019/265. https:
//eprint.iacr.org/2019/265 https://eprint.iacr.org/2019/265.

[60] Ahmed Kosba, AndrewMiller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. 2016. Hawk: The blockchainmodel of cryptography and privacy-preserving
smart contracts. In 2016 IEEE symposium on security and privacy (SP). IEEE, IEEE,
San Jose, CA, USA, 839–858.

[61] Klaus Kursawe. 2020. Wendy, the Good Little Fairness Widget: Achieving Order
Fairness for Blockchains. In Proceedings of the 2nd ACMConference on Advances in
Financial Technologies (New York, NY, USA) (AFT ’20). Association for Computing
Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/3419614.3423263

[62] kyberswap. 2022. KyberSwap Docs. https://docs.kyberswap.com.
[63] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket

Kate, and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical
Asynchronous MPC and Its Application to Anonymous Communication. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (London, United Kingdom) (CCS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 887–903. https://doi.org/10.1145/3319535.3354238

[64] MakerDAO. 2022. The Maker Protocol’s Collateral Auction House (Liquida-
tion System 2.0). https://docs.makerdao.com/smart-contract-modules/dog-and-
clipper-detailed-documentation.

[65] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang,
Ari Juels, and Dawn Song. 2019. CHURP: Dynamic-Committee Proactive Secret
Sharing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, United Kingdom) (CCS ’19). Association for
Computing Machinery, New York, NY, USA, 2369–2386. https://doi.org/10.1145/
3319535.3363203

[66] Fabio Massacci, Chan Nam Ngo, Jing Nie, Daniele Venturi, and Julian Williams.
2018. FuturesMEX: Secure, Distributed Futures Market Exchange. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, San Francisco, CA, USA, 335–353.
https://doi.org/10.1109/SP.2018.00028

[67] matt adorjan. 2023. CloudPing - AWS Latency Monitoring. https://
www.cloudping.co/grid#

[68] Vijay Mohan. 2022. Automated market makers and decentralized exchanges: a
DeFi primer. Financial Innovation 8, 1 (2022), 1–48.

[69] Q. ai-Powering a Personal Wealth Movement. 2022. What Really Happened
To LUNA Crypto? https://www.forbes.com/sites/qai/2022/09/20/what-really-
happened-to-luna-crypto/

[70] Narasimha1997. 2023. aio-eth - Asynchronous JSON-RPC client for Ethereum.
https://github.com/Narasimha1997/aio-eth

[71] Chan Nam Ngo, Fabio Massacci, Florian Kerschbaum, and Julian Williams. 2021.
Practical Witness-Key-Agreement for Blockchain-Based Dark Pools Financial
Trading. In Financial Cryptography and Data Security, Nikita Borisov and Claudia
Diaz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 579–598.

[72] obscuro. 2021. Obscuro: Confidential Smart Contracts for Ethereum. https:
//whitepaper.obscu.ro/assets/images/obscuro-whitepaper-0-9.pdf.

[73] Partisia. 2021. MPC Techniques Series, Part 10: MPC-as-a-Service —
the Partisia Blockchain Infrastructure. https://medium.com/partisia-
blockchain/mpc-techniques-series-part-10-mpc-as-a-service-the-partisia-
blockchain-infrastructure-9b4833e77965.

[74] Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais.
2021. An Empirical Study of DeFi Liquidations: Incentives, Risks, and Instabilities.
In Proceedings of the 21st ACM Internet Measurement Conference (Virtual Event)
(IMC ’21). Association for Computing Machinery, New York, NY, USA, 336–350.
https://doi.org/10.1145/3487552.3487811

[75] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain
extractable value: How dark is the forest?. In 2022 IEEE Symposium on Security

14

https://eprint.iacr.org/2020/1607
https://eprint.iacr.org/2020/1607
https://eprint.iacr.org/2020/1607
https://doi.org/10.1007/978-3-031-07689-3_31
https://doi.org/10.1007/978-3-031-07689-3_31
https://coinmarketcap.com/charts/
https://coinmarketcap.com/charts/
https://eprint.iacr.org/2022/1119
https://eprint.iacr.org/2022/1119
https://doi.org/10.1109/SP40000.2020.00040
https://medium.com/derivadex/introduction-to-derivadex-architecture-1dac2910cd81
https://medium.com/derivadex/introduction-to-derivadex-architecture-1dac2910cd81
https://eprint.iacr.org/2022/1002
https://eprint.iacr.org/2022/1002
https://eprint.iacr.org/2022/1002
https://etherdelta.com
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://doi.org/10.1109/ICBC54727.2022.9805505
https://docs.idex.io
https://docs.idex.io
https://traderjoexyz.com
https://eprint.iacr.org/2021/1465
https://eprint.iacr.org/2021/1465
https://eprint.iacr.org/2021/1465
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1109/CSF51468.2021.00002
https://doi.org/10.1109/CSF51468.2021.00002
https://eprint.iacr.org/2019/265
https://eprint.iacr.org/2019/265
https://eprint.iacr.org/2019/265
https://doi.org/10.1145/3419614.3423263
https://docs.kyberswap.com
https://doi.org/10.1145/3319535.3354238
https://docs.makerdao.com/smart-contract-modules/dog-and-clipper-detailed-documentation
https://docs.makerdao.com/smart-contract-modules/dog-and-clipper-detailed-documentation
https://doi.org/10.1145/3319535.3363203
https://doi.org/10.1145/3319535.3363203
https://doi.org/10.1109/SP.2018.00028
https://www.cloudping.co/grid#
https://www.cloudping.co/grid#
https://www.forbes.com/sites/qai/2022/09/20/what-really-happened-to-luna-crypto/
https://www.forbes.com/sites/qai/2022/09/20/what-really-happened-to-luna-crypto/
https://github.com/Narasimha1997/aio-eth
https://whitepaper.obscu.ro/assets/images/obscuro-whitepaper-0-9.pdf
https://whitepaper.obscu.ro/assets/images/obscuro-whitepaper-0-9.pdf
https://medium.com/partisia-blockchain/mpc-techniques-series-part-10-mpc-as-a-service-the-partisia-blockchain-infrastructure-9b4833e77965
https://medium.com/partisia-blockchain/mpc-techniques-series-part-10-mpc-as-a-service-the-partisia-blockchain-infrastructure-9b4833e77965
https://medium.com/partisia-blockchain/mpc-techniques-series-part-10-mpc-as-a-service-the-partisia-blockchain-infrastructure-9b4833e77965
https://doi.org/10.1145/3487552.3487811

Ratel: MPC-extensions for Smart Contracts

and Privacy (SP). IEEE, 198–214.
[76] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. 2014. Wysteria: A

Programming Language for Generic, Mixed-Mode Multiparty Computations. In
2014 IEEE Symposium on Security and Privacy. IEEE, Berkeley, CA, USA, 655–670.
https://doi.org/10.1109/SP.2014.48

[77] SecretSwap. 2021. SecretSwapUpdate: AMMRewards +Governance Token. https:
//scrt.network/blog/secretswap-update-amm-rewards-governance-token.

[78] Shantanu Sharma and Wee Keong Ng. 2020. Scalable, On-Demand Secure Mul-
tiparty Computation for Privacy-Aware Blockchains. In Blockchain and Trust-
worthy Systems, Zibin Zheng, Hong-Ning Dai, Mingdong Tang, and Xiangping
Chen (Eds.). Springer Singapore, Singapore, 196–211.

[79] Omer Shlomovits. 2020. White-City: A Framework For Massive MPC with Partial
Synchrony and Partially Authenticated Channels. https://github.com/ZenGo-
X/white-city/blob/master/White-City-Report/whitecity_new.pdf.

[80] JK Shultis, DE Johnson, GA Milliken, and ND Eckhoff. 1981. GAMMA: a code for
the analysis of component failure rates with a compound Poisson-gamma model.
Final technical report. Technical Report. Kansas State Univ., Manhattan (USA).
Dept. of Nuclear Engineering.

[81] Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin Vechev.
2022. ZeeStar: Private Smart Contracts by Homomorphic Encryption and Zero-
knowledge Proofs. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, IEEE, SAN FRANCISCO, CA, & ONLINE, 1543–1543.

[82] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov,
and Martin Vechev. 2019. Zkay: Specifying and Enforcing Data Privacy in Smart
Contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, United Kingdom) (CCS ’19). Association for
Computing Machinery, New York, NY, USA, 1759–1776. https://doi.org/10.1145/
3319535.3363222

[83] SushiSwap. 2022. SushiSwap. https://dev.sushi.com/docs/intro.
[84] Dmitry Tanana. 2019. Avalanche blockchain protocol for distributed computing

security. In 2019 IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom). IEEE, 1–3.

[85] Marcel von Maltitz, Stefan Smarzly, Holger Kinkelin, and Georg Carle. 2018. A
management framework for secure multiparty computation in dynamic environ-
ments. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Sym-
posium. IEEE, Taipei, Taiwan, 1–7. https://doi.org/10.1109/NOMS.2018.8406322

[86] MaximilianWohrer and Uwe Zdun. 2018. Smart contracts: security patterns in the
ethereum ecosystem and solidity. In 2018 International Workshop on Blockchain
Oriented Software Engineering (IWBOSE). IEEE, Campobasso, Italy, 2–8.

[87] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[88] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi.
2020. Byzantine Ordered Consensus without Byzantine Oligarchy. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association, virtual, 633–649. https://www.usenix.org/conference/
osdi20/presentation/zhang-yunhao

15

https://doi.org/10.1109/SP.2014.48
https://scrt.network/blog/secretswap-update-amm-rewards-governance-token
https://scrt.network/blog/secretswap-update-amm-rewards-governance-token
https://github.com/ZenGo-X/white-city/blob/master/White-City-Report/whitecity_new.pdf
https://github.com/ZenGo-X/white-city/blob/master/White-City-Report/whitecity_new.pdf
https://doi.org/10.1145/3319535.3363222
https://doi.org/10.1145/3319535.3363222
https://dev.sushi.com/docs/intro
https://doi.org/10.1109/NOMS.2018.8406322
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

A Design Details

A.1 Challenges and Solutions
Incorporate MPC within Blockchain. The first challenge is de-
ciding the appropriate way to integrate MPC into the blockchain.
There are two primary approaches: 1) every blockchain node par-
ticipates in MPC (layer-1); 2) involving a smaller set of parties
conducting MPC parallel to the blockchain (layer-2).

For Ratel, we opt for the layer-2 approach, utilizing a separate and
smaller set of nodes, the MPC committee, operate a “sidechain”. The
MPC committee is assumed to consist of a consortium of reputable
parties. Private contract states are moved into a confidential zone
backed by the MPC committee, and MPC nodes store these values
encoded as secret shares. Computations involving private data are
carried out using MPC, specifically using the MP-SPDZ framework
as the backend. We choose the layer-2 approach as the stringent
requirements (e.g., intensive computation, high bandwidth, and
consistent online presence necessitated by the complex recovery
processes on the MPC “sidechain”) on MPC nodes are unsuitable
for regular nodes in a permissionless blockchain.
Coordination between Blockchain and MPC. MPC runs asyn-
chronously with the blockchain, and an MPC task may be executed
during a time interval that spans multiple blocks.

In Ratel, off-chain MPC tasks are scheduled by the blockchain 8,
which ensures that the order of MPC tasks is well-agreed upon. The
blockchain also helps with deploying the MPC committee, such as
authenticating the list of MPC nodes and ensuring preprocessed
elements are available before a task is scheduled to run.
Programming Model for Privacy-preserving DApps Develop-
ment.We aim to add MP-SPDZ as an extension to Solidity to enjoy
MPC’s privacy features. However, given that MP-SPDZ is designed
for one-shot, stateless computation, adaptations are essential to fit
our continuously running, stateful system. The integration of two
individual frameworks also presents design challenges, including
the transmission of instructions and data, managing both public and
private data storage, and articulating confidentiality and disclosure
policies.

When designing the Ratel language, we start with a straightfor-
ward mashup. Programmers explicitly annotate sections of their
code designated for MP-SPDZ, while the rest belongs to Solidity
programs, so the compiler can simply split them. 9 We introduce
a mid-layer in Python that runs off-chain by every MPC node.
This intermediary layer maintains a key-value store for confiden-
tial secret-shared data, persisting private states between rounds. It
maintains preprocessed element buffers to ensure adequate supply
for the online phase. It actively monitors event logs to extract in-
formation from the blockchain and wrap up transactions invoking
callback methods to finalize MPC tasks on-chain. Ratel provides de-
velopers with the flexibility to define disclosure policies. By default,
access to the confidential storage is limited to functions defined by
the same application. However, allowances can be made to disclose
data to authorized users identified by their addresses.

8We primarily use on-chain primitives for simplicity, though off-chain alternatives,
executed by consensus among MPC nodes, could be considered if gas costs become a
concern.
9Approaches like Viaduct [2] that automate this partitioning according to high-level
instructions would be complimentary.

Access Control of Client Interaction. Careful consideration must
be given to processing client requests to execute MPC tasks, vali-
dating inputs received from clients as they cannot be fully trusted,
and only allowing authorized clients to query private states.

The blockchain acts as a gateway for clients to submit MPC re-
quests. Requests are formulated as transactions and serialized using
the consensus core of blockchain. We adopt a robust input-sharing
scheme to ensure that clients can post masked private inputs on-
chain and guarantee that MPC nodes receive consistent shares of
inputs. Access control for client queries is enforced through the
mechanism implemented on the blockchain.
Limited Performance of MPC. Although MPC allows for writing
general-purpose programs, its high communication cost poses a
bottleneck to the system’s performance (shown in Section 5), raising
concerns about its practical adoption.

To address this challenge, we focus on two aspects: 1) optimizing
Ratel’s performance and 2) identifying suitable applications that
require high expressiveness despite high latency. We propose a
concurrency control mechanism for executingMPC tasks in parallel
to improve throughput, and a Zero Knowledge Range Proof (ZKRP)
module to reduce expensive comparison operations in MPC. We
present two applications: 1) an AMM where the price of swaps is
determined by their position in the waiting queue, which is ordered
by the blockchain and unaffected by MPC, and 2) an auction where
the computation-intensive settling phase is insignificant compared
to the long bid collecting phase.
ToleratingMPCNodes Failures. Implementing a long-term practi-
cal MPC system necessitates a strategy formanaging non-Byzantine
node crashes and ensure uninterrupted computation. Yet, MP-SPDZ
assumes the consistent availability of all players and halts computa-
tion upon any deviation, even a benign fault. This poses a complex
issue: integrating the privacy strengths of MP-SPDZ while main-
taining the availability inherent in the blockchain. If a node crashes
for an extended time, it can miss vital state updates, disqualifying
it from future MPC tasks. Node recovery is complex because each
MPC node’s internal state is private and not directly replicated
by others. Current solutions like Proactive Secret-sharing (PSS)
schemes [18, 29, 49, 65] suggest resharing all secret states to a new
committee, leading to a quadratic communication overhead—an
impractical solution given our expansive private state set. Moreover,
encompassing the entire state refresh would disrupt ongoing MPC
tasks. As this recovery consumes resources of other MPC nodes, it
is susceptible to resource exhaustion attacks.

We enhanced the MP-SPDZ networking code to mask socket-
level errors and disconnections. If a node is unavailable to receive
messages, the sender buffers the message until the socket becomes
available or the buffer is full. We modified MP-SPDZ to resume the
MPC execution, excluding nodes identified as faulty, ensuring task
completion. A lightweight crash-reset mechanism is introduced,
enabling specific nodes to restore their lost private state updates
and re-engage in upcoming MPC tasks without disrupting ongoing
operations. Integrated within the programming framework, this
mechanism automatically identifies the set of missing states for
efficient recovery. Furthermore, we provide a Bayesian-based cost-
utility analysis that identifies and mitigates the influence of nodes
exhibiting fault patterns indicative of abuse, thus limiting their
impact on the system.

16

Ratel: MPC-extensions for Smart Contracts

A.2 Reasoning About Access Control for Client
Queries

A fully on-chain scheme for access control is expensive as it
requires a transaction to be sent to the blockchain, and MPC nodes
need to encrypt their respective shares of the queried value under
the client’s public key and post the encrypted shares back to the
chain. On the other hand, a fully off-chain scheme suffers from syn-
chronization issues, as the private state transition keeps happening
in the MPC committee, and due to network latency, the time when
MPC nodes receive off-chain queries might differ. Clients have
to specify the version of the private outputs to obtain consistent
shares. Thus we chose a design in the middle.

A.3 Further Details about Zero-Knowledge
Range Proofs

MPC nodes Open Commitment The server 𝑆𝑖 has shares [𝑥]𝑖 , [𝑟]𝑖
and they need to compute𝐶 = 𝑔𝑥ℎ𝑟 . They locally calculate𝑔[𝑥]𝑖ℎ [𝑟]𝑖
and broadcast it. After the broadcast, 𝑆𝑖 has a list of points {(𝑥 =

𝑗, 𝑦 = 𝑔[𝑥] 𝑗ℎ [𝑟] 𝑗)} 𝑗∈Z∗𝑛 . For simplicity, we assume the first 𝑡 + 1
points come from honest servers. Then they get the value

𝑔𝑥ℎ𝑟 =

𝑡+1∏
𝑗=1

𝑦 𝑗
𝑙 𝑗 (0)

=

𝑡+1∏
𝑗=1

𝑔[𝑥] 𝑗 ∗𝑙 𝑗 (0)ℎ [𝑟] 𝑗 ∗𝑙 𝑗 (0)

= 𝑔
∑𝑡+1

𝑗=1 [𝑥] 𝑗 𝑙 𝑗 (0)ℎ
∑𝑡+1

𝑗=1 [𝑟] 𝑗 𝑙 𝑗 (0) ,

where {𝑙 𝑗 (𝑥)} 𝑗∈Z∗
𝑡+1

is Lagrange basis.

Multiplication Proof in ZKRP For multiplication in ZKRP, we
need to provide proof for 𝑧 = 𝑥𝑦 ∈ [0, 𝑅), where both 𝑥 and 𝑦 are
secret-shared states and 𝑐 is a public range. We omit the range proof
for 𝑧 ∈ [0, 𝑅) and only show the proof for relation 𝑧 = 𝑥𝑦.

Client request input masks 𝑟𝑥 and 𝑟𝑦 from MPC nodes. Clients
do the following things:

• samples random field elements 𝑟𝑧 , 𝑘𝑥 , 𝑘𝑦, 𝑘′𝑥 , 𝑘′𝑦, 𝑘′𝑧
$← F𝑝 .

• 𝐶𝑥 = 𝑔𝑥ℎ𝑟𝑥 ,𝐶𝑦 = 𝑔𝑦ℎ𝑟𝑦 ,𝐶𝑧 = 𝐶
𝑦
𝑥ℎ

𝑟𝑧 = 𝑔𝑥𝑦ℎ𝑟𝑥 𝑦+𝑟𝑧 .
• 𝐾𝑥 = 𝑔𝑘𝑥ℎ𝑘

′
𝑥 , 𝐾𝑦 = 𝑔𝑘𝑦ℎ

𝑘 ′𝑦 , 𝐾𝑧 = 𝐶
𝑘𝑦
𝑥 ℎ𝑘

′
𝑧 .

• compute challenge using Fiat-Shamir heuristic 𝑐
$← 𝐻 (𝐾𝑥 |𝐾𝑦 |𝐾𝑧)

where 𝐻 is a hash function.
• 𝑠𝑥 = 𝑐𝑥+𝑘𝑥 , 𝑠′𝑥 = 𝑐𝑟𝑥 +𝑘′𝑥 , 𝑠𝑦 = 𝑐𝑦+𝑘𝑦, 𝑠′𝑦 = 𝑐𝑟𝑦+𝑘′𝑦, 𝑠′𝑧 = 𝑐𝑟𝑧+𝑘′𝑧 .• post (𝐶𝑧 , 𝑝𝑟 𝑓) to the blockchain, where

𝑝𝑟 𝑓 = (𝐾𝑥 , 𝐾𝑦, 𝐾𝑧 , 𝑠𝑥 , 𝑠𝑦, 𝑠′𝑥 , 𝑠′𝑦, 𝑠′𝑧) .
On the server side, they:

• collaborate to open 𝐶𝑥 and 𝐶𝑦 .
• check 𝑔𝑠𝑥ℎ𝑠

′
𝑥

?
= 𝐶𝑐𝑥𝐾𝑥 .

• check 𝑔𝑠𝑦ℎ𝑠
′
𝑦

?
= 𝐶𝑐𝑦𝐾𝑦 .

• check 𝐶𝑠𝑦𝑥 ℎ𝑠
′
𝑧

?
= 𝐶𝑐𝑧𝐾𝑧 .

A.4 Crash-reset Cost Analysis
The time required to assist a crashed server to rejoin the pro-

tocol is roughly𝑚𝑎𝑥 (𝑡𝑏𝑢𝑓 𝑓 𝑒𝑟 , 𝑡𝑠𝑡𝑎𝑡𝑒) where 𝑡𝑏𝑢𝑓 𝑓 𝑒𝑟 is the time to
sync preprocesed element buffer and 𝑡𝑠𝑡𝑎𝑡𝑒 is the time required to
generate up to |𝑆 | state masks and recover |𝑆 | states. The input

mask generation costs are the same for every out-of-date node
and require 𝐵 parallel rounds of communication and an on-chain
transaction of fixed size whose cost depends on the market for gas
prices of the chain. The amount of CPU and network overhead
for state recovery scales linearly with the amount of out-of-date
states |𝑆 | which will depend on the specific workload and number
of missed tasks. Fortunately, this operation is highly parallelizable,
and each state field can be recovered simultaneously. For many
realistic workloads the same state fields will be updated multiple
times so |𝑆 | will be sublinear in the number of tasks that have been
missed.

A.5 Other Applications Implemented in Ratel
Rock Paper Scissors This is a two-player lottery game that re-

quires financial fairness [8, 20] and additionally privacy [60]. Be-
yond that, the MPC committee provides data availability so that the
first player does not need to wait for another player to show up and
reveal their inputs in person. Each player in the game submits their
action (rock, paper, or scissors) in the secret sharing form. At the
end of the game, an MPC function is invoked to compare their ac-
tions without revealing what the actions are. The only information
revealed is the winner of a game, whereas the behavior patterns of
the players remain hidden.

Double Orderbook Exchange Volume matching is a practical algo-
rithm to realize a double orderbook exchange. Buy and sell orders
are matched in terms of volume, while the price is provided by
an external price oracle. Volume matching is widely used in dark
pools, in which the volumes of orders are hidden to reduce the price
impact. We follow the same design as in [25] and also integrate it
with a blockchain payment system. The matching process involves
the computation of private data from multiple sellers and buyers,
which is not suitable for the use of ZK-based approaches. We imple-
ment volume matching to demonstrate the feasibility of achieving
a double-orderbook exchange, while other forms of matching algo-
rithms (continuous double auction, periodic auction, etc.) are also
achievable by the MPC committee framework.

Supply Chain We implemented a database application that col-
lects statistics on private user data. Users input their personal in-
formation into the database, but only authorized or paid parties
can access the information of other users. The MPC committee
framework enables fine-grained disclosure policies that maximize
flexibility while ensuring privacy, which also provides a practical
means of enabling government audits and compliance policies.

A.6 Security Analysis
The Basic Case. We start with the security analysis considering a
synchronous network and an adversary capable of statically com-
promising up to 𝑡𝑎 (Byzantine) nodes and dynamically crashing 𝑡𝑓
non-Byzantine nodes, assuming 𝑡𝑓 + 2𝑡𝑎 < 𝑛 (due to their limited
capability and our effective crash-reset mechanism) 10 and 𝑡𝑎, 𝑡𝑓 are

10The adversary can simultaneously sustain the crash state of 𝑡𝑓 nodes. To crash an
additional node, they must relinquish control over one of the already compromised 𝑡𝑓
nodes. Moreover, the adversary’s ability to induce a crash in another node is outpaced
by the crash-reset process.

17

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

known parameters, as we described in Section 3.5. Our implemen-
tation is based on MP-SPDZ framework and uses its Shamir-based
protocol for malicious honest majority 11. The corresponding MPC
protocol is CGH+18 [28], ensuring security against a static mali-
cious adversary with honest majority. The protocol is secure with
abort and lacks fairness. We argue the security goals defined in
Section 3.6 are achieved during normal MPC task execution and
crash-reset paths by setting the threshold of Shamir secret sharing
to 𝑡𝑎 .

Ratel inherits integrity from the underlying blockchain and
CGH+18 protocol during the input, MPC execution, and finalize
phases. As for crash-reset, by conducting the private state recovery
scheme using verifiable secret sharing (VSS), Byzantine nodes are
incapacitated from preventing MPC nodes from receiving correct
shares. For confidentiality, in the input phase, masked data posted
on-chain remain private since malicious nodes cannot reconstruct
the associated input masks. Throughout the MPC execution, an
honest majority ensures the protocol’s security. During crash-reset,
Byzantine nodes do not learn any extra information. Availability is
guaranteed in a synchronous network where a minimum of 𝑡𝑎 + 1
honest nodes consistently participate. Our enhancement to MP-
SPDZ facilitates recovery from failed MPC executions by initiating
a rerun with a refined set of MPC nodes, excluding identified faulty
ones. For crash-reset, the continuous online presence of at least 𝑡𝑎+1
non-faulty nodes aids the swift progress catch-up of recovering
nodes.
Further AnalysisWe also explore the possibility of relaxing the
strong assumptions made in the basic case.

Under synchrony but with an unrestricted 𝑡𝑓 (the adversary may
crash any number of non-Byzantine nodes), safety (confidentiality
and integrity) can be guaranteed while availability may not when
there are insufficient non-Byzantine nodes online.

Safety firstly hinges on the active participation of at least 2𝑡𝑎 +
1 MPC nodes to ensure an honest majority. On the other hand,
given that Byzantine nodes can feign crashes, at least 2𝑡𝑎 + 1 non-
Byzantine nodes are essential to advance in the presence of dormant
Byzantine entities. Therefore, 3𝑡𝑎 < 𝑛 is necessary to guarantee
safety.

However, the protocol can only proceed when 3𝑡𝑎 < 𝑛 − 𝑡𝑓 .
Otherwise, the system enters a stale state (no availability), halting
MPC executions and barring benign node recovery. In this case, a
system “reboot” is initiated to restore normal operations from last
checkpoint (the last on-chain finalized MPC task), as the finaliza-
tion implies the successful storage of output states by a minimum
of 2𝑡𝑎 + 1 non-Byzantine nodes. This reboot is contingent on the
online status of a specific set of non-Byzantine nodes, or alter-
natively, computations can resume from a preceding checkpoint,
albeit necessitating repeated computation.

Given the indefinite nature and unpredictable recovery timing
of benign crashes, this scenario parallels an asynchronous net-
work subjected to 𝑡𝑎 Byzantine faults, characterized by indeter-
minate honest node message delays. In these non-basic cases, the

11Ratel is compatible with any Shamir-based protocol. Replacing CGH+18 with a fully
secure MPC protocol like DN07 [39] enhances fairness and output delivery, reducing
rerun overheads amid frequent MPC failures.

integration of an asynchronous MPC protocol, such as Honeybad-
gerMPC [63], is necessary, with protocol proceeds with the fastest
2𝑡𝑎 + 1 nodes.

B More Evaluation Results

B.1 Application Level Optimization for
RatelSwap

For RatelSwap, we make two optimizations specific to the trade
function, as it is the most frequently used function. To ensure the
validity of the amounts provided by users, we employ the ZKRP
module to replace a series of comparisons and multiplications for
these checks. Additionally, to avoid the complexity of a division
operation, we opt to not calculate the closing price of a trade in the
MPC program. Instead, we provide shares of changes in both to-
kens, allowing traders to independently calculate the reconstructed
values.

B.2 Crash Recovery Latency Analysis
We assess the crash-reset overhead with 𝑛 = 4, 𝑡𝑓 = 1, and 𝑡𝑎 = 0.

we simulate latency to emphasize the impact of communication
rounds over server count. We simplify by setting 𝑡𝑎 = 0, which is
equivalent to 𝑛′ = 𝑛 + 𝑡𝑎 for 𝑡𝑎 > 0.

We measure the time required for a single MPC node 𝑆4 to re-
cover with the assistance of three other active MPC nodes 𝑆1 − 𝑆3.
The overall latency is affected by various factors, including the
number of states to recover and certain steps outlined in Figure 7
that may be skipped.

In the best case scenario, where 𝑆4 still possesses consistent
batches of preprocessed elements with other MPC nodes and am-
ple state masks, 𝑆4 only needs to receive approval from the MPC
committee and recover any missing states. The time required for
approval takes either one or two blockchain confirmation times,
depending on the implementation of the approval process, and we
call this request approval time. For state recovery, it takes an ad-
ditional request approval time for 𝑆4 to mark state masks to use
on-chain, as well as the off-chain latency, which includes the sum
of communication, interpolation, and database storage latency, as
shown in Table 1. There is only one round trip communication be-
tween 𝑆4 and 𝑆1 − 𝑆3. When an active MPC node receives a request
from 𝑆4, it must calculate the set of states to recover, which invokes
the eth_call API of Geth to query input data of MPC tasks. The
bandwidth listed is for a single response and the total bandwidth
usage should be roughly multiplied by the number of MPC nodes 𝑛,
whereas in a proactive secret-sharing scheme, the overhead needs
to be multiplied by 𝑛2.

In a worse case, extra work might be required including updat-
ing outdated preprocessed elements and reserve state masks. We
assume that there is no ongoing MPC task that the MPC nodes need
to wait for in order to get the outputs, as it is difficult to accurately
estimate their finish time. The generation of preprocessed elements
and state masks both involve on-chain triggering (1 blockchain con-
firmation time required) and random field element generation, and
preprocessed elements generation requires 1 more confirmation
time to finalize on-chain. The state mask generation must be com-
pleted before the state recovery, which will inevitably introduce

18

Ratel: MPC-extensions for Smart Contracts

#States Comm w/(w/o)
Latency(s)

Interpolate
shares(s)

DB
Store(s)

Bandwidth of
Resp(Bytes)

100 0.7013 (0.2966) 0.1402 0.0012 7696
1000 2.3545 (1.7239) 0.2363 0.0067 76890
2000 4.3432 (3.3093) 0.3388 0.0113 153728
4000 7.5974 (6.3534 0.5394 0.0224 307417

Table 1: Off-chain Overheads to Recover States: The total latency is the sum of one round-trip communication, interpolating
shares and storing states shares in the database. The communication time, without latency, is used to query the Geth node and
calculate the set of states to recover.

Batch Size 4000 8000 16000 32000 64000

Time(s) 2.39202 2.69845 3.10843 3.38505 4.21237
Table 2: Time to Generate Input/State Masks.

extra latency. Not only offline phases for different purposes can be
run concurrently, they can also run in parallel with the state recov-
ery phase. Whichever finishes last determines the total latency of
the crash recovery process. We list the time to generate random
field elements under simulated latency with different batch size in
Table 2.

In a worse-case scenario, extra work may be required, including
updating outdated preprocessed elements and reserving statemasks.
We assume that there is no ongoingMPC task that the nodes need to
wait for in order to obtain the outputs, as it is difficult to accurately
estimate their finish time. The generation of preprocessed elements
and state masks both invokes REQUEST (1 request approval time)
and off-chain generation. The generation of preprocessed elements
requires 1 more block confirmation time to finalize on-chain. The
state mask generation must be completed before the state recovery,
which will inevitably introduce extra latency. Whichever finishes
last determines the total latency of the crash reset process.

C Application Interoperability
The unit of data management is per the application contract.

There are three levels of visibility for data: 1) private: only accessi-
ble by the owner contract(application) itself. 2) external-read-only:
readable by authorized contracts. 3) external-read-and-write: modi-
fiable by authorized contracts. Every application contract specifies
a set of administrators at the creation time. The administrators
have the ability to authorize any external contract to access some
data field. When an application intends to read or write data from
another contract, MPC nodes need to check whether they have
permission to access the corresponding field. More details are in
Listing 3 and Figure 12.

1 contract{
2 view isReadAllowed(externalContractAddr,key)
3 view isWriteAllowed(externalContractAddr,key)
4 function authorize(addr,key,approv,allowWrite){
5 verify(approv is from admins)
6 isReadAllowed[addr][key] = true
7 if (allowWrite)
8 isWriteAllowed[addr][key] = true
9 }
10 }

Listing 3: Solidity Program: Access Authorization for Exter-
nal Contracts

Suppose an application 𝐵 would like to write to field 𝑥 of applica-
tion 𝐴.
Application Launch:
• Deploy contract to the blockchain to get the contract address
𝑎𝑑𝑑𝑟𝐵.
• Acquire authorization from contract 𝐴. Once the authorization

is ready, send request to the MPC committee to launch the new
application.

• Upon receiving request, for thewriteDB(key = 𝑥 , owner=𝑎𝑑𝑑𝑟𝐴,
value=𝑦) statement in 𝐵’s Ratel code, since the owner is not
𝑎𝑑𝑑𝑟𝐵, MPC nodes check if 𝑖𝑠𝑊𝑟𝑖𝑡𝑒𝐴𝑙𝑙𝑜𝑤𝑒𝑑(𝑎𝑑𝑑𝑟𝐵, 𝑘𝑒𝑦) in
contract 𝐴 is 𝑇𝑟𝑢𝑒 . If not, reject to launch 𝐵.

• The writeDB(key=𝑥 , owner=𝑎𝑑𝑑𝑟𝐴, value=𝑦) statement is com-
piled to writeDB(key=𝑎𝑑𝑑𝑟𝐴+𝑥 , value=𝑦).

Figure 12: Interoperability Support

19

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

D Extra Code Listings

1 event SecretWithdraw(
2 address token, uint amt,
3 address user, uint seq
4);
5

6 event Trade(
7 uint seqTrade, address user,
8 address tokenA, address tokenB,
9 uint idxAmtA, uint maskedAmtA,
10 uint idxAmtB, uint maskedAmtB
11);
12

13 function secretWithdraw(
14 address token, uint amt
15) public {
16 address user = msg.sender;
17 require(amt > 0);
18 uint seq = getUniqueSeq();
19

20 emit SecretWithdraw(token, amt, user, seq);
21 }
22

23 function publicBalanceAdd(uint amt,
24 address token, address user, uint seq
25) public onlyServer {
26 address server = msg.sender;
27 require(
28 publicBalanceValue[token][user][seq][server]==0);
29 require(
30 publicBalanceFinish[token][user][seq]==false);
31

32 publicBalanceValue[token][user][seq][server]=amt;
33 publicBalanceCount[token][user][seq][amt]++;
34 if (publicBalanceCount[token][user][seq][amt]>T){
35 publicBalanceFinish[token][user][seq] = true;
36 publicBalance[token][user] += amt;
37 }
38 }
39

40 function trade(
41 address tokenA, address tokenB,
42 uint256 idxAmtA, uint256 maskedAmtA,
43 uint256 idxAmtB, uint256 maskedAmtB
44) public {
45 require(inputMaskOwner[idxAmtA]==msg.sender);
46 require(inputMaskOwner[idxAmtB]==msg.sender);
47 ...
48 emit Trade(
49 user, tokenA, tokenB,
50 idxAmtA,maskedAmtA,
51 idxAmtB,maskedAmtB
52);
53 }

Listing 4: Solidity Program

1 // read data from input file
2 secretBalance = read_sfix(0)
3 amt = read_cfix(1)
4

5 enough = (secretBalance >= amt).reveal()
6

7 // write to output file
8 cint.write_to_file(enough)

Listing 5: MPC Program: secretWithdraw

1 async def runSecretDeposit(server, log):
2 // parse log
3 token = log['args']['token']
4 amt = log['args']['amt']
5 user = log['args']['user']
6 seq = log['args']['seq']
7

8 ... // acquire all read, write, and port locks
9

10 // readDB
11 secretBalance=bytes_to_int(
12 server.db.Get(f'balance_{token}_{user}')
13)
14

15 // prepare mpc inputs
16 with open(location_sharefile, "wb") as f:
17 f.write(
18 int_to_hex(secretBalance)
19 + int_to_hex(amt)
20)
21

22 // execute mpc program
23 await run_online(server.serverID,
24 server.players, server.threshold, 'secretWithdraw')
25

26 // get mpc outputs
27 input_arg_num = 2
28 with open(location_sharefile, "rb") as f:
29 f.seek(input_arg_num * sz)
30 enough = hex_to_int(f.read(sz))
31
32

33 if (enough == 1):
34 // update private output to local db
35 secretBalance -= amt
36 server.db.Put(
37 f'balance_{token}_{user}',
38 int_to_bytes(secretBalance)
39)
40

41 // upload public output to blockchain
42 tx = server.contract.functions.publicBalanceAdd(
43 amt, token, user, seq).buildTransaction()
44 sign_and_send(tx, server.web3, server.account)
45

46 // release locks
47 // mark task-seqSecretDeposit as finished
48

49 async def runTrade(server, log):
50 // parse log
51 idxAmtA=log['args']['idxAmtA']
52 maskedAmtA=log['args']['maskedAmtA']
53 idxAmtB=log['args']['idxAmtB']
54 maskedAmtB=log['args']['maskedAmtB']
55

56 // recover masked inputs
57 amtA=recover_input(db,maskedAmtA,idxAmtA)
58 amtB=recover_input(db,maskedAmtB,idxAmtB)
59 ...

Listing 6: Python Program

20

Ratel: MPC-extensions for Smart Contracts

1 mpcext(...) {
2 ...
3 set(varName, index, value)
4 add(varName, index, seq, value)
5 }

Listing 7: Ratel Program: Upload Data to blockchain

1 function varNameSet(index, value) {
2 server = msg.sender
3 require(isServer[server])
4 prevValue = varNameValue[index][server]
5 if (prevValue) {
6 varNameCount[index][prevValue]--
7 }
8 varNameValue[index][server] = value
9 varNameCount[index][value]++
10 if (varNameCount[index][value] > T) {
11 varName[index] = value
12 }
13 }
14

15 function varNameAdd(index, seq, value) {
16 server = msg.sender
17 require(isServer[server])
18 require(varNameValue[index][seq][server] == 0)
19 require(varNameFinish[index][seq] == false)
20 varNameValue[index][seq][server] = value
21 varNameCount[index][seq][value]++
22 if (varNameCount[index][seq][value] > T) {
23 varNameFinish[index][seq] = true
24 varName[index] += value
25 }
26 }

Listing 8: Solidity Program: Upload Data to blockchain

E Notations

[𝑡]𝑛 the number of MPC nodes
𝑡 general fault tolerance
𝑡𝑎 Byzantine faults
𝑡𝑓 benign faults
𝑡ℎ = 𝑛 − 𝑡𝑎 − 𝑡𝑓 number of active honest nodes
S the set of MPC nodes
𝑆𝑖∈N MPC node i
S𝐴 the set of active MPC nodes
𝑥 secret
F𝑝 prime field
𝜙 polynomial

[𝑥]𝑖 share of 𝑥 to 𝑆𝑖
D developer
𝜎𝑅 Ratel program
𝜎𝐸 Solidity program
𝜎𝑃 Python program
𝜎𝑀 MP-SPDZ program
𝑝𝑘𝑎𝑝𝑝 application contract address
𝛿 state transitin
𝑠𝑡𝑝𝑢𝑏 , 𝑠𝑡𝑝𝑟𝑖𝑣 global public/private states
𝑟𝑒𝑞 MPC request
𝑖𝑑𝑚𝑝𝑐 MPC task ID
𝑖𝑑𝑝𝑢𝑏 , 𝑖𝑑𝑝𝑟𝑖𝑣 public/private inputs
C client
im𝑖𝑑𝑥 input mask
sm𝑖𝑑𝑥 state mask
𝜎𝑖 signature of 𝑆𝑖
𝜅 fixed-point number precision
𝑠𝑒𝑞 MPC task sequence number

(𝑢, [𝑣]𝑖) key and secret-shared value of a state
𝐵 batch size
𝑇𝑋 MPC tasks with sequence numbers 𝑋
𝑇𝑥 MPC task with sequence number 𝑥
[𝑥] positive integers{1, 2, . . . , 𝑥}
seq𝐼 count of initialized MPC tasks
𝐼 𝑗 locally updated MPC tasks for 𝑆 𝑗
𝑠𝑡
𝑦
𝑥 𝑦-th state updated by MPC task 𝑇𝑥

𝑅 system reliability
𝑟𝑖 reliability of node 𝑆𝑖
𝜆𝑖 failure rate of node 𝑆𝑖

21

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

F Figures
tra

de
rjo

ev
2_

US
DC

.e
_W

AV
AX

tra
de

rjo
ev

2_
W

AV
AX

_U
SD

T.
e

un
isw

ap
v2

_W
ET

H_
LU

NA
un

isw
ap

v2
_U

SD
C_

W
ET

H
tra

de
rjo

ev
2_

W
ET

H.
e_

W
AV

AX
un

isw
ap

v2
_W

ET
H_

US
DT

tra
de

rjo
ev

3_
CR

A_
W

AV
AX

tra
de

rjo
ev

2_
M

IM
_W

AV
AX

tra
de

rjo
ev

3_
JO

E_
W

AV
AX

un
isw

ap
v2

_S
AI

TA
M

A_
W

ET
H

tra
de

rjo
ev

2_
W

AV
AX

_D
AI

.e
su

sh
isw

ap
_U

SD
C_

W
ET

H
tra

de
rjo

ev
3_

US
DC

.e
_U

SD
C

tra
de

rjo
ev

2_
W

AV
AX

_T
IM

E
tra

de
rjo

ev
2_

W
BT

C.
e_

W
AV

AX
su

sh
isw

ap
_U

ST
_W

ET
H

un
isw

ap
v2

_H
EX

_W
ET

H
un

isw
ap

v2
_D

AI
_W

ET
H

tra
de

rjo
ev

2_
JO

E_
US

DC
.e

tra
de

rjo
ev

3_
PT

P_
W

AV
AX

tra
de

rjo
ev

3_
W

AV
AX

_C
LY

su
sh

isw
ap

_S
US

HI
_W

ET
H

tra
de

rjo
ev

3_
KL

O_
W

AV
AX

un
isw

ap
v2

_S
HI

B_
W

ET
H

tra
de

rjo
ev

2_
JO

E_
US

DT
.e

tra
de

rjo
ev

2_
BN

B_
W

AV
AX

un
isw

ap
v2

_E
LO

N_
W

ET
H

tra
de

rjo
ev

2_
LI

NK
.e

_W
AV

AX
tra

de
rjo

ev
2_

QI
_W

AV
AX

su
sh

isw
ap

_D
AI

_W
ET

H
tra

de
rjo

ev
3_

W
AV

AX
_X

AV
A

tra
de

rjo
ev

2_
US

DC
.e

_U
SD

T.
e

un
isw

ap
v2

_S
AN

D_
W

ET
H

su
sh

isw
ap

_S
PE

LL
_W

ET
H

un
isw

ap
v2

_M
AT

IC
_W

ET
H

un
isw

ap
v2

_C
EL

_W
ET

H
un

isw
ap

v2
_U

FO
_W

ET
H

tra
de

rjo
ev

2_
W

ET
H.

e_
US

DC
.e

su
sh

isw
ap

_L
DO

_W
ET

H
tra

de
rjo

ev
3_

gO
HM

_W
AV

AX

Pool name

0
50

100
150
200
250
300
350

Sw
ap

s p
er

 h
ou

r

Figure 13: Pool Swap Rates for the Top 40 Trading Pairs
in Sushiswap and Uniswap on the Ethereum Network, and
Trader Joe on the Avalanche Network, over a period of 5 days
post the collapse of LUNA and UST.

05/13 05/14 05/15 05/16 05/17 05/18
Date

0

100

200

300

400

500

600

700

Sw
ap

s p
er

 h
ou

r

Figure 14: Trader Joe USDC.e-WAVAX Pool Trading History

0
1
2
3
4
5
6
7

Bi
ds

 n
um

be
r

bids number

1800 2000 2200 2400 2600 2800 3000
Bids submission timestamp(s)

0

2

4

6

8

10

12

W
ai

t t
im

e(
s)

wait time

Figure 15: Queuing time of submitBid in RatelAuction

22

Ratel: MPC-extensions for Smart Contracts

G Table of Related Works

23

Yunqi Li, Kyle Soska, Zhen Huang, Sylvain Bellemare, MikerahQuintyne-Collins, Lun Wang, Xiaoyuan Liu, Dawn Song, and Andrew Miller

Table 3: Related work that provides privacy to decentralized exchanges (DEX) or underlying blockchain, which can be useful in
preventing residual bids and miner extractable value (MEV).

TEE ZKP MPC HE w/ ZKP

Application Only
Tesseract [19]
DerivaDEX [42]
SecretSwap [77]

SwapCT [44]
ZSwap [43]
Manta [30]

WKA for Dark Pools [71]
FuturesMEX [66]

Tex [59]

P2DEX [15]
Rialto [48] (+ZKP)

Framework Ekiden [27]
Obscuro [72]

Hawk [60]
ZEXE [22]

KACHINA [58]
zkay [82]

Absentia [40]
White-City [79]

Scalable,On-demand MPC [78]
GABLE [33]

Gage MPC (+ZKP) [5]
Eagle (+ZKP) [16]

ZeeStar [81]
Pesca [36]

24

	1 Introduction
	2 Background
	3 Overview of Ratel
	3.1 Motivation: The Residual Bids Problem
	3.2 Technical Challenges and Design Choices in MPC-Blockchain Hybrid System
	3.3 System Overview
	3.4 Workflow
	3.5 Network and Adversary Model
	3.6 Security Goals

	4 Framework
	4.1 Ratel Programming Model
	4.2 Optimizing System Uptime: Enhancing the Availability of the Framework
	4.3 Applications

	5 Evaluation
	5.1 Bottleneck Analysis
	5.2 Performance over Real-World Data

	6 Related Work
	7 Discussions and Conclusion
	8 Acknowledgments
	References
	A Design Details
	A.1 Challenges and Solutions
	A.2 Reasoning About Access Control for Client Queries
	A.3 Further Details about Zero-Knowledge Range Proofs
	A.4 Crash-reset Cost Analysis
	A.5 Other Applications Implemented in Ratel
	A.6 Security Analysis

	B More Evaluation Results
	B.1 Application Level Optimization for RatelSwap
	B.2 Crash Recovery Latency Analysis

	C Application Interoperability
	D Extra Code Listings
	E Notations
	F Figures
	G Table of Related Works

