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Abstract. We present the first concurrently-secure blind signatures making black-box use of a pairing-
free group for which unforgeability, in the random oracle model, can be proved without relying on the
algebraic group model (AGM), thus resolving a long-standing open question. Prior pairing-free blind
signatures without AGM proofs have only been proved secure for bounded concurrency or relied on
computationally expensive non-black-box use of NIZKs.

Our most efficient constructions rely on the chosen-target CDH assumption and can be seen as blind
versions of signatures by Goh and Jarecki (EUROCRYPT ’03) and Chevallier-Mames (CRYPTO ’05).
We also give a less efficient scheme with security based on (plain) CDH. The underlying signing protocols
consist of four (in order to achieve regular unforgeability) or five moves (for strong unforgeability). All
schemes are proved statistically blind in the random oracle model.

1 Introduction

Blind signatures [26] are interactive protocols that allow a user to obtain a signature on a message in a
way that does not reveal anything about the message-signature pair to the signer. They are a fundamental
building block to achieve anonymity in e-cash [26, 27, 54], e-voting [38], and credentials [24, 10]. They
have also come into use in a number of recent industry applications, such as privacy-preserving ad-click
measurement [2], Apple’s iCloud Private Relay [1], Google One’s VPN Service [4], and various forms of
anonymous tokens [42, 3].

PAIRING-FREE BLIND SIGNATURES. There are at least two reasons that make it desirable to design blind
signatures in pairing-free groups. On the one hand, widely adopted signatures, such as Schnorr signatures [59],
EdDSA [19], and ECDSA [7] rely on such curves. On the other hand, many of the aforementioned applications
are implemented in environments such as Internet browsers where pairing-friendly curves are usually not part
of the available cryptographic libraries (such as NSS and BoringSSL).

The question of designing blind signatures in pairing-free groups has turned out to be extremely chal-
lenging. The main difficulty is finding schemes secure in the sense of one-more unforgeability [45], even when
a malicious user can run several concurrent signing interactions with the signer. Pointcheval and Stern [58]
were the first to prove security of blind Okamoto-Schnorr signatures [53] under bounded concurrency, in
the random oracle model (ROM) [16], assuming the hardness of the discrete logarithm (DL) problem. Their
approach was later abstracted in [41]. Blind Schnorr signatures [28] have also only been proved secure under
bounded concurrency [36, 46], in this case additionally assuming the Algebraic Group Model (AGM) [35],
along with the stronger one-more discrete logarithm (OMDL) assumption [13]. These results are also in some
sense best possible, as recent ROS attacks [18] yield polynomial-time forgery attacks against these schemes
using log p concurrent signing sessions, where p is the group order.

One can rely on boosting techniques [57, 48, 25] to increase the number of concurrent sessions a scheme
such as Okamoto-Schnorr remains secure to. The current state of the art [25] requires a signer whose com-
plexity grows linearly in the number of signing sessions, which still has to be fixed a priori.

A concurrently secure scheme, i.e., one supporting arbitrary concurrent adversarial signing sessions, was
given by Abe [5], but its proof (in the ROM, assuming the hardness of DL) later turned out to be incorrect,
and was only recently re-stablished in the AGM [46]. Similarly, all other provably secure solutions [36, 61, 32]
fundamentally rely on the AGM. Therefore, this paper aims to address the following central question.

Can we give blind signatures in pairing-free groups whose concurrent security, in the ROM, can be
proved without the AGM?
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Table 1. Overview of our results and comparison with other schemes. The three schemes proposed in this
paper, compared with existing 3-move schemes secure in the AGM, with the achieved provable security notions,
number of moves, signature size and communication cost (note: p = |G|), and the assumptions required to achieve the
mentioned security notions. We now clarify the one-more unforgeability variants (OMUF/OMSUF)-X (for X = 1, 2)
in the table: the OMUF (and OMSUF) notion denotes the security where no adversary can output £ + 1 signatures
for distinct messages (and £+ 1 distinct message-signature pairs, respectively), where ¢ denotes the number of started
(for X = 1) or completed (for X = 2) signing sessions. All of the schemes are OMUF secure assuming the ROM. For
the first two schemes BS; and BS,3, we give two versions of the protocol, a more efficient one with computational
blindness and a less efficient one with statistical blindness in the ROM. We also note that the efficiencies of BS3
depend on two parameters N and K, which we set to N =2, K = \.

NON-BLACK-BOX BASELINES. It is however often overlooked that, in principle, we can provide an affirmative
answer to this question by relying on expensive non-black-box techniques. For example, we can instantiate
Fischlin’s transform [34] using generic NIZKs with online extractability in the ROM, such as those from
the MPC-in-the-head paradigm [44]. The signer uses a hash-based signature scheme (which exists under the
hardness of the DL problem) [52] to sign a Pedersen commitment to the message, and the actual signature
for a message is a proof of knowledge of a signature on a commitment to this message. The recent work by
Fuchsbauer and Wolf [37] also relies on generic NIZKs, and assumes Schnorr signatures to be secure for a
given fixed (non random oracle) hash function. The resulting protocol has four moves, and is non-black-box
as well.

We point out here that concurrent work [47] made progress in instantiating Fischlin’s transform in pairing-
free groups without generic NIZKs but with help of the Strong RSA assumption. Here, we aim for a solution
purely based on black-box use of groups, without additional external assumptions.

OUR CONTRIBUTION. We propose the first blind signatures making black-box use of a pairing-free group
whose concurrent security is proved without relying on the AGM. We assume the ROM as well as variants of
the Computational Diffie-Hellman (CDH) assumption. In particular, unlike the aforementioned pairing-free
instantiations, we do not rely on implementing group operations as part of a relation verified by a NIZK
proof.

Our results are summarized in Table 1. Our most efficient constructions are based on the chosen target
CDH (CT-CDH) assumption, a falsifiable assumption introduced by Boldyreva [20] to prove security (in the
pairing setting) of Blind BLS [22], which is a one-more version of CDH.! The signing protocols take four
and five moves, respectively, with the difference being that the latter protocol achieves strong unforgeability.
The starting points of these schemes are the Goh-Jarecki [39] and the Chevallier-Mames [29, 49] signature
schemes, respectively, with a number of modifications based on witness indistinguishable OR~proofs [30] to
be able to prove concurrent security. Our third, more complex, scheme dispenses entirely with interactive
assumptions, and solely relies on (plain) CDH, and the signing protocol requires four moves.

1 We avoid the naming “one-more CDH” to avoid ambiguity, as an alternative interpretation is used e.g. in [8].



ONE-MORE UNFORGEABILITY. Our CT-CDH schemes BS; and BS, achieve a weaker than usual notion of
one-more (strong) unforgeability (which we refer to as OM(S)UF-1) where a malicious user cannot come up
with more signatures than the number of sessions it engages in, regardless of whether these terminate or
not. In constrast, our CDH-based scheme BS3 achieves the standard notion [45] that only counts terminating
sessions (we refer to this as OMUF-2).

Some applications inherently require OMUF-2 (e.g., the atomic swap construction from [43]). Nonetheless,
we consider both BS; and BSs to be valuable, despite the weaker security they achieve. First of all, they
are simpler and serve as stepping stones towards BS3. Moreover, while this calls for a more careful analysis,
OM(S)UF-1 appears sufficient for many applications. For example, in constructions of anonymous tokens [42,
3], the weaker OMUF-1 notion means that the server needs to regard a token as issued as long as the first-
round message to the user is sent. The advantage of OMUF-2 is that it guarantees that if the signing protocol
aborts, the user will not come up with a valid token, but this does not appear to be important in this context,
as the decision to issue a token has been made prior to starting the protocol.

This weaker form of accounting for sessions is also common in the definition of unforgeability used to
prove security of many prominent threshold signatures, such as e.g., SPARKLE [31].

BLINDNESS. For all schemes, we prove statistical blindness assuming bounded queries to a random oracle.
We also give a slightly more efficient version of the first two schemes which is computationally blind under
the discrete logarithm assumption. For the first two schemes, our random oracle proofs only require the
Fiat-Shamir heuristic [33] to be sound for proofs (hence, there is no rewinding). While we do not prove
this formally, we expect blindness of our first two schemes to also hold against quantum adversaries in the
QROM [21], following e.g. [62].

OPEN PROBLEMS: DLOG & ROUND REDUCTION. An elusive open problem is to give blind signatures based
solely on the hardness of the DL problem (or the stronger OMDL assumption), without resorting to NIZKs.
Indeed, techniques from recent works in the AGM [46, 61, 32] are not robust to rewinding in several subtle
ways. One may argue the qualitative improvement is not significant (for several curves, indeed, DL and CDH
are somewhat equivalent [50, 51]), but even in the non-blind setting, signatures with security based on DL
tend to be actually more efficient. For example, it seems unlikely that we can obtain a three-move scheme
without considering DL-based schemes. It should also be noted that we do not expect two-move schemes to
be possible even in the AGM.

Recent work by Barreto and Zanon [12] (expanded in [11]) claims a solution with concurrent security
under the OMDL assumption, which hinges upon a reduction of concurrent security under impersonation
attacks (IMP-CA) to the (concurrent) one-more unforgeability of the associated blind signature scheme. The
proof appears to have some gaps, and we note that in general IMP-CA security does not yield concurrently
secure blind signatures. For instance, Schnorr identification [15] achieves IMP-CA but does not yield secure
blind signatures.

PAPER OUTLINE. Section 2 introduces the basic preliminaries. We then discuss the two schemes based on the
CT-CDH assumption, BS; (achieving OMUF-1) and BSs (achieving OMSUF-1), in Sections 3 and 4 respec-
tively. Lastly, we discuss the scheme BS3 achieving OMUF-2 based on the CDH assumption in Section 5.

1.1 Technical Overview

CT-CDH based schemes. The starting point of our first and simplest scheme BS; is the signature by Goh
and Jarecki [39], which can also be thought of as a “pairing-free” variant of BLS signatures [23]. Given a cyclic
group G with prime order p and generator g, a secret key sk is a random scalar in Z,,, and the corresponding
public key is pk < g*. The signature of a message m is Z < H(m)*, where H is a hash function, along with
a non-interactive proof 7 of discrete logarithm equality (DLEQ), showing that log g Pk = logy(,,) Z.

The generation of such a signature can be seen as an interactive protocol. The user first sends h < H(m)
to the signer. The signer then sends Z < h™ back and initiates an interactive version of the standard DLEQ
proof [60]. In particular, along with Z, the signer sends two nonces Ry « ¢" and Ry, < A" to the user, where
r «s Zp; upon receiving (Rg, Rp), the user picks a challenge ¢ < H'(m, h, Z, Ry, Ri,) to send to the signer,
and the signer replies with z < r 4 ¢-sk. The user accepts if and only if R, = g*pk™“ and Ry = h*Z~¢, and



the signature is ¢ < (Z, 7 = (¢, z)). To verify the signature, with h < H(m), we recover R, < g*pk™ “ and
Ry, < h*Z~¢ and check whether ¢ = H'(m, h, Z, Ry, Rj).

ONE-MORE UNFORGEABILITY. Our first goal is to prove that the above scheme achieves the weaker variant
of one-more unforgeabability (OMUF-1), i.e., the adversary cannot produce signatures for £ + 1 distinct
messages after initiating at most ¢ signing sessions. To do so, we rely on the hardness of the chosen-target
computational Diffie-Hellman (CT-CDH) problem [20], where, given ¢g” for a uniformly random z € Z,, and
{-time access to a DH oracle that takes any group element Y as input and outputs Y*, the adversary’s goal
is to compute Y;* for at least £ + 1 randomly sampled challenges {Y; € G}. (Here, we assume an oracle which
supplies as many challenges as needed, but the attacker just needs to solve £ + 1 of these.)

The reduction idea appears simple: Given an adversary A that breaks OMUF-1, we construct an adversary
B playing the CT-CDH game that runs A with pk < ¢*. Random-oracle queries H(m;) for a message m;
are answered with a challenge Y;. When A starts a signing session with h as the first-round message, B
computes Z < h® by querying the DH oracle and simulates the rest of the signing session by itself. (Note
that a DH query here is necessary, because h can be any group element.) For a valid signature (Z;, ;) for a
message m;, by the soundness property of 7;, Z; = H(m;)* is a solution to the challenge Y; = H(m;) with
overwhelming probability. Therefore, if the adversary A forges valid signatures for ¢ + 1 distinct messages,
B solves the CT-CDH problem.

The challenge here is that the DLEQ proof is merely honest-verifier zero-knowledge, and the adversary
A sends an arbitrary challenge ¢ to the signer, for which B needs to simulate a response. This cannot
be done efficiently without knowing the secret key. To address this, we transform the DLEQ proof into
a witness indistinguishable (WI) OR proof [30] that proves the existence of a witness sk for the DLEQ
proof or knowledge of a witness w = log, W for a public parameter W € G. (This parameter would be
generated transparently in actual implementation.) Now the proof can be generated, indistinguishably, both
with knowledge of sk or with knowledge of w. The former is what the actual protocol does, but the latter is
what the reduction B would do. (The reduction clearly chooses W with a known discrete logarithm w.) The
challenge of this proof will be chosen as before as a hash, and the resulting non-interactive proof 7 will be
included in the signature o = (Z, 7).

However, this brings a new issue. Namely, the soundness of the OR proof 7 does not guarantee that
Z = h, as it is possible, in principle, to use the witness w to generate a valid signature (Z,7) for m
where Z # H(m)%. Our key observation here is that any adversary producing such a signature can be
used to compute w, and thus, to break the discrete logarithm assumption. This argument is rather involved
as it requires a careful use of the Forking Lemma [58]. In essence, 7 gives us two valid proof transcripts
(Ry, Ry, d, z) and (A, e,t), where the former verifies as a valid DLEQ proof for Z = H(m)*, and the latter
attests knowledge of w. Further, we have that d + e = H'(m, h, Z, Ry, Ri,, A). If we fork on this hash query,
we can obtain two extra transcripts (Rg, Ry, d’,2') and (A, €',t’) such that d’ + ¢’ # d + e. Still, we succeed
in extracting w only if e # €/, but this is not necessarily guaranteed if we also have d # d’.

Here, we crucially rely on a property of the DLEQ proof: by fixing (R, R;,) and since Z # H(m)%, there

exists at most one d that can generate an accepting (R, Ry, d, z). Therefore, d = d’ must hold, and hence
e#e.
BLINDNESS. To make the signing protocol of BS; blind, the user additionally samples a random scalar 8 and
computes h < H(m)g”. After receiving Z = h%, the user computes Z’ « Zpk_ﬁ. It is easy to verify that
Z' = H(m)*. Then, the user blinds the OR proof in a way similar to Abe-Okamoto blind signatures [6],
such that after the interaction, the user generates a proof 7/, the distribution of which is independent of the
transcript of the proof.

However, a malicious signer can send an incorrect Z (i.e., Z # h*X) in one of the signing sessions, and
later identify the blinded signature (Z’, 7’) by checking whether Z’ # H(m)*. Fortunately, for the attack to
work, the signer also needs to let the user accept the OR proof during the session where Z # h*. Using a
similar argument as the above, by the soundness of the OR proof, the probability that this occurs is bounded
by the advantage of computing log, W.

If we do not want blindness to rely on the discrete logarithm assumption, we can alternatively let the
signer send a non-interactive proof that Z = A% in the second move. For example, if we use the non-interactive




version of the DLEQ proof, we can show blindness of BS; in the random oracle model. Crucially, this proof
does not need to be blind.

STRONG UNFORGEABILITY. BS; is not strongly unforgeable, i.e., we cannot guarantee that the adversary
cannot produce (¢ + 1) distinct valid message-signature pairs after ¢ signing sessions. Indeed, suppose all
signing sessions start with the same first-round message h = H(m) for some m. Then, BS; shares the structure
of Abe-Okamoto blind signatures [6], and a variant of the recent ROS attacks [18] yields an adversary that
starts [logp| signing sessions and outputs [logp] + 1 distinct signatures for the message m. To transform
BS; into a strongly unforgeable scheme, referred to as BSs, the idea is to let H also take (R4, A) as input,
i.e., the group elements from the OR proof which are independent of h. In particular, we let the signer send
(Rg, A) to the user before h is sent, adding an extra move to the signing protocol. The user then computes
h — H(m, Ry, A) and the rest of the protocol remains as in BS;. The resulting signature is the same as the
Chevallier-Mames signature scheme [29, 49] except that we replace the DLEQ proof with the OR, proof.

Achieving OMUF-2 from CDH. Our security proof of BS; fails to show the usual one-more unforgeability
notion, i.e. OMUF-2, which guarantees that the adversary cannot output more message-signature pairs than
the number of completed signing sessions. Indeed, the reduction queries its DH oracle to obtain Z = A% in
order to answer the first-round query for each signing session, and thus, needs to output more solutions than
the number of started sessions.

One possible fix is that instead of sending Z and Rj, in the clear, we let the signer send commitments
of Z and R}, denoted by comy and compg, respectively, in the first round. Later in the second round, the
signer opens these commitments accordingly. If the commitment scheme is homomorphic (with respect to
the group operation) and equivocable, then, we can adapt the security reduction to simulate the signing
protocol given w = log, W as follows: (1) in the first signing round, generate com as a random commitment
and compute compg, from comyz using the homomorphic property of the commitment scheme (the original
reduction computed Ry, from Z), (2) in the second signing round, query the DH oracle for Z = h™ and use
equivocation to open comyz to Z. The interactive proof can still be simulated using w as in the proof of BS;.
Notice that the number of DH oracle queries is now the number of completed signing sessions, as we only
query the oracle when completing the last round.

Unfortunately, all existing homomorphic equivocal commitments based on pairing-free groups [9, 55, 56]
can only equivocate a random commitment to a group element of which the discrete logarithm to some
pre-established base is known. This is not the case for Z obtained from the DH oracle, as h is adversarially
chosen and the reduction does not know sk. To address this, we instead realize that a better starting point
is to rely on a scheme which is secure under the CDH assumption directly. In particular, to obtain our third
scheme BS3, we go through the following two steps, which we explain below:

1. We apply ideas similar to those used for BS; above to a recently proposed pairing-based blind signature
scheme, called Rai-Choo [40], which only relies on the plain CDH assumption. Doing so, we obtain a
pairing-free OMUF-1-secure blind signature scheme based on CDH.

2. We then realize that the structure of the resulting scheme and its security proof will allow us to upgrade
its security to OMUF-2 using pairing-free homomorphic equivocal commitments.

PAIRING-FREE RAI-CHOO. Abstractly, one can interpret the CT-CDH assumption as stating the unforgeabil-
ity of an interactive version of BLS signatures implemented in a pairing-free setting where efficient verification
is not possible (the DH oracle is the signing oracle, and the challenge oracle corresponds to the random or-
acle). Similarly, as an intermediate abstraction, we can think of a game that captures the unforgeability of
(non-blind) Rai-Choo in a pairing-free setting (where, again, efficient verifiability is lost). Its signing protocol
proceeds as follows (where pk = g*):

. On an input message m, the user computes, for (i, j) € [K] x [N], a commitment p; ; < H,(m, ¢; ;) to
m and a random value ¢; ;, a commitment com; ; «— Hcom(p:,;), and a group element h; ; — H(u; ;).
Then, it computes J « Hee((comy 5, hi j)ie[x],e[N]) € [N]¥, describing cut-and-choose indices for which
the user has to reveal p;; for all i € [K] and j # J;. Finally, the message sent to the signer is
(j; ((:ui,j)j;&j} ) hi,j;7 Comi7ﬁ)ie[K])-



« Then, the signer recomputes (com, ;, hi:j)ie[K] e, and checks that J = Hee((comy j, hi )i ;). If the check
passes, it samples uniformly random (sk;);e[x] where Zfil sk; = sk and sends ((pk; < gSki)ie[K], S
K Sk,;
[T hzj;)
- The final signature is o = ((pk;, ¢; 7 )ie[x] S) and inefficient verification checks whether pk = Hfil pk;
and § = [/S, H(H,(m, ¢, 7)) Pk,

Similar to BSj, to translate this signing protocol into a blind signature scheme with efficient verifica-
tion, we extend it to have the signer interact with the user to generate a non-interactive proof m that

shows the knowledge of either the witness log, W or the witness {ski}ic[x] such that pk, = g%k and

S =TT5, H(H,(m, ;. 7.))%. The final signature consists of o and 7.

One can show that if there exists an adversary that breaks OMUF-1 for this scheme, then either (1) the
adversary outputs one more valid Rai-Choo signatures than the number of signing sessions, which breaks
the OMUF of Rai-Choo (and in turns this can be reduced to breaking the CDH assumption), or (2) the
adversary outputs an invalid Rai-Choo signature but with a valid OR proof (and this can be reduced to
finding the discrete logarithm of W).

UPGRADING TO OMUF-2. Still, this approach can only show OMUF-1 security for the scheme. The rather
technical reason is due to how the random-oracle programming of H(H,,(m, ¢)) is carried out in the reduction
to CDH behind Step 1. Essentially, if the user signs honestly, the first-round message sent in the k-th session
uniquely links this session with a message m*), which can be extracted from the prior random-oracle queries.
To properly simulate the signer’s response to the first message in the k-th session, the reduction needs to
ensure that, with sufficiently high probability, the random oracles are set up so that the discrete logarithm
of H(H,,(m™®), @Ek})) is known for some ¢ € [K]. For this reason, no CDH solution can be extracted from

a signature on any of the messages associated with such a session. Therefore, for the reduction to succeed,
a forgery needs to contain a signature for a message which was not associated with one of the sessions,
regardless of whether these sessions were actually concluded.

To upgrade to OMUF-2 security, we instead use a homomorphic commitment scheme HECom with special
equivocation (formally defined in Section 5.1) derived from the commitment scheme in [9]. More precisely,
the scheme can embed a base X # 1g into the commitment key, which then allows opening a commitment
of a group element S to another element S’ = SX¢ for any ¢ thanks to a trapdoor generated along with the
key. Then, instead of sending S in clear, we let the signer send the commitment comg of S. Then, in the
second round, the signer sends the opening of the commitment along with the same OR proof response.

While we defer the rather involved details to the body of the paper, the crucial point is that this will
enable a new reduction which only needs to know the discrete logarithm of the H(H,,(m(*), goik}_))’s if the
k-th session indeed reaches the final message and terminates. o

2 Preliminaries

NOTATION. For a positive integer n, we write [n] for {1,...,n}. We use A to denote the security parameter.
A group parameter generator is a probabilistic polynomial time algorithm GGen that takes an input 1* and
outputs a cyclic group G of A-bit prime order p and a generator g of the group. We tacitly assume standard
group operations in G can be performed in time polynomial in A and adopt multiplicative notation. We will
often compute over the finite field Z,, (for a prime p) and do not write modular reduction explicitly when it
is clear from the context. Also, we write a = log, A € Z,, for a group element A € G where A = g°.

Throughout this paper, we adopt a variant of the “Game-Playing Framework” by Bellare and Rog-
away [17] for both definitions and proofs.

CRYPTOGRAPHIC ASSUMPTIONS. In this paper, we rely on the assumed hardness of the discrete logarithm
(DL), the computational Diffie-Hellman (CDH), and the chosen-target computational Diffie-Hellman (CT-
CDH) [20] problems. To capture these, for any adversary A, we define the advantage of A playing the games




Game DLOGZ.,,(\) : Game CDHZ: () :

(G,p, 9) <3 GGen(1*) ; X «$G (G, p,9) <5 GGen(1*) ; @,y «<$ 7,

z — A(G,p, g, X) Z — AG,p,9,9%,9)

If g” = X then return 1 If ¢*Y = Z then return 1

Return 0 Return 0

Game CT-CDHZy,, (M) : Oracle CHAL :

(G, p, g) <8 GGen(1™) ; z «<$ 7, cid « cid +1

cid«-0;£«0 Yeia <3G

(i Zi)ieter1) — A“PNG, p, g, g%) Return Yeiq

If |{j1,...,Jes1}l=€+1and Vie [£+1]: Z; =YJ“: then M
return 1 Le—L+1

Return 0 Return Y*

Fig. 1. The DLOG, CDH and CT-CDH games.

{DLOG, CDH, CT-CDH} (these games are defined in Figure 1) as
Advas/edb/etedh 4 3y .~ Pr[(DLOG/CDH/CT-CDH)&e.,(A) = 1] .

We note that the hardness of the CT-CDH problem implies the hardness of the CDH problem, which in turn
implies the hardness of the DL problem.

BLIND SIGNATURES. This paper focuses on four-move and five-move blind signature schemes. Formally, a
four-move (and five-move respectively) blind signature scheme BS is a tuple of efficient (randomized) algo-
rithms

BS = (BS.Setup, BS.KG, BS.S, BS.S, BS.Uy, BS.Us, BS.Us, BS.Ver);
BS = (BS.Setup, BS.KG, BS.S1, BS.Ss, BS.S3, BS.Uy, BS.Us, BS.Us, BS.Ver);

with the following behavior:

. The parameter generation algorithm BS.Setup(1*) outputs a string of public parameters par, whereas the
key generation algorithm BS.KG(par) outputs a key-pair (sk, pk), where sk is the secret (or signing) key
and pk is the public (or verification) key. All other algorithms of BS implicitly take par as input.

. The interaction between the user and the signer to sign a message m € {0, 1}* with a key-pair (pk, sk) is
defined by the following experiments (1) for four-move and (2) for five-move blind signatures:

(st¥,umsg;) < BS.U;(pk,m), (st?, smsg;) < BS.S;(sk,umsg; ),
(sty,umsg,) < BS.Ux(st¥, smsg, ), smsg, < BS.Sa(st®, umsg,), (1)
o <« BS.Us(sty,smsg,) .

(stj,smsg;) < BS.S;(sk), (st¥, umsg;) < BS.U;(pk, m, smsgy),
(St§7 Smsg2) N BS‘SQ(Sti um5g1)7 (Stg7 um5g2) A BS'UQ(StqlLv Sm5g2)7 (2)
smsgy < BS.S3(sts, umsg,), o < BS.Usz(sty, smsgs) .

Here, o is either the resulting signature or an error message L.
. The (deterministic) verification algorithm outputs a bit BS.Ver(pk, m, o).

We say that BS is (perfectly) correct if for every message m € {0, 1}*, with probability one over the sampling
of parameters and the key pair (pk,sk), the corresponding experiment (either 1 or 2) returns o such that
BS.Ver(pk,m, o) = 1. All of our schemes are going to be perfectly correct.

ONE-MORE UNFORGEABILITY. We consider variants of one-more (strong) unforgeability, denoted OMUF-X
and OMSUF-X for X € {1,2}. OMUF-1 ensures that no adversary playing the role of a user and starting ¢
signing interactions with the signer, in an arbitrarily concurrent fashion, can issue £+ 1 signatures (or more)
for distinct messages. For OMSUF-1, we instead only require the adversary to output £+ 1 distinct message-
signature pairs. For the OMUF-2 and OMSUF-2 notions, £ is defined as the number of completed signing




r bl
Game \LOMUF—X’BAS()\)J\, OMSUF-Xgt (A) | Oracle S; (sid, umsg) : Ji=1,...,r
=====s==o / If BS is 5-move and j = 1,
par < BS.Setup(1™) // the input umsg is set as an empty string
(sk, pk) < BS.KG(par) Ifsid ¢ T Tj—1 or
L—03Th,.... T, <& pra oIt

* % S1yeens Sp sid € Z; then return L
{(my, o ) refer1) <3 AL " (par, pk) Z; « I; u {sid}

ittt e A
1 If 3 kq #kz,mfl =my, then If 5 = 1 then
ffffffffffffffffff ) P
iy J For X =1
3k # ks, (mkl’dh) B (mk2’ok2) then (stSiq,smsg) <« BS.S;(sk, umsg)
return 0 If 7 > 1 then
If 3 k € [€ + 1] such that iIfj =7 then £ « £+ 1} J For X =2
BS.Ver(pk, mif, o) = 0 then (stSiq,smsg) <« BS.S;(stS;4, umsg)
return 0 J for j =mr sty =L
Return 1

Return smsg

Fig. 2. The OMUF-X and OMSUF-X security games for a 4-move or 5-move blind signature scheme BS, where r = 2
if BS is 4-move and r = 3 if BS is 5-move. The input umsg of S; is set as an empty string if BS is 5-move. The
highlighted boxes along with the commented X value indicating how ¢ is counted in OMUF-X and OMSUF-X. The
OMUF-X game contains everything but the solid boxes, and the OMSUF-X game contains everything but the dashed
boxes.

Game BLINDgE()) : Oracle Uj (i, smsg(¥) : Ji=1,...,3
par « BS.Setup(1*) // If BS is 4-move and j = 1,
b s {0,1} / the input smsg(*) is set as an empty string
bp—b;b —1—0 If ¢ ¢ {0,1} or sess; # j then return L
b s ANTU1.U2.U3 (551) sess; < sess; + 1
If b’ = b then return 1 If 5 = 1 then
Return 0 (sty', umsg(?) « BS.U1 (pk, my,,, smsg(®))
Oracle INIT(p~k7 Mo, M1) : Return umsg(’)
sessg « 1 ; sess; « 1 If j = 2 then
pk «— pk (st umsg(?) — BS.Uz (st} smsg(?))
mo < Mg ; M1 < M1 Return umsg(®
ap, BS.U3(st¥, smsg(?) Ji=3
If sessg = sess; = 4 then
If 09 # L and o1 # L then return (o¢,o01)
Return (L, 1)
Return (, closed)

Fig. 3. The BLIND security game for a 4-move or 5-move blind signature scheme BS. The only difference between
the game defined for 4-move schemes and the game defined for 5-move schemes is that if BS is a 4-move scheme, the
input smsg of U; is set as an empty string.

interactions instead, which is the more standard notion of one-more unforgeability used in the literature.
The OMUF—X“B45 and OMSUF—X“B“s games for a blind signature scheme BS are defined in Figure 2. The
corresponding advantage of A is defined as Advggmf_x/omSUf_X(A, A) := Pr[(OMUF-X/OMSUF-X)gs(\) = 1].
All of our analyses will further assume one or more random oracles, which are modeled as an additional
oracle to which the adversary A is given access.

BLINDNESS. We also consider the standard notion of blindness against a malicious server that can, in partic-
ular, attempt to publish a malformed public key. The corresponding game BLIND“B45 is defined in Figure 3,
and for any adversary A, we define its advantage as Advpe™® (A, \) := |Pr[BLINDé5()\) =1]-3

FORKING LEMMA. In our proof, we utilize the general forking lemma in the version introduced by Bellare
and Neven [14] stated below:

Lemma 2.1 (General Forking Lemma [14]). Fiz an integer ¢ = 1 and a set H of size h = 2. Let A
be a randomized algorithm that on input x,hi,..., hey returns a pair (I,aux), the first element of which is
an integer in the range 1,...,q or L and the second element of which we refer to as a side output. Let 1G
be a randomized algorithm that we call the input generator. The accepting probability of A, denoted acc, is



defined as the probability that I # 1 in the following experiment
x<«slG; hy,...,hg <s H; (I,aux) <s A(x, h1,...,hq)
The forking algorithm F4(x) associated with A is a randomized algorithm on input x defined as follows:

« Pick a random tape p for A and sample hy, ..., hy s H.

« Run (I,aux) «— A(x, h1,...,hqg;p)

o« If I =1, return 0

. Sample bY, ... hy <s H, run (I';aux’) < A(z,hy,...,hi—1, B}, ..., hisp)
o If I =1 and hy # by, return 1. Otherwise, return 0.

Let frk = Pr[b=1: x «s1G;b«s Fa(z)]. Then,

acc 1
frk > acc ( — h) , or alternatively, acc < v/q - frk + % .
q

3 Four-Move Blind Signatures from CT-CDH

We present a four-move blind signature scheme BS;, described in Figure 4 (a protocol diagram is also
presented in Figure 13). The scheme can be viewed as a blind version of the signature scheme by Goh and
Jarecki [39], where a signature consists of an element Z = H(m)% with a discrete-log equality (DLEQ)
proof proving that the discrete logarithms of (pk, Z) are equal with respect to the base (g,H(m)). However,
we replace this proof with a witness-indistinguishable OR proof, which additionally accepts the discrete
logarithm of a public random parameter W as a witness. Needless to say, this parameter is meant to be
generated transparently, e.g., by hashing a constant, and nobody is meant to know this second witness. It is
easy to show that the scheme satisfies correctness, but for completeness, we prove this in Section 3.1.

BLINDNESS. The following theorem, proved in Section 3.2, shows that BS; is statistically blind when H” is
modeled as a random oracle. This property relies on the NIZK proof highlighted in Figure 4 to show equality
of discrete logarithms of (pk, Z) to the base (g, h). In Section 3.3, we also show that if we omit this NIZK
proof, we still achieve computational blindness under the discrete logarithm assumption, without random
oracles.

Theorem 3.1 (Blindness of BS;). Assume that GGen outputs the description of a group of prime order
p = p(A), and let BS; = BS;[GGen]. For any adversary A for the game BLIND making at most Qu» = Qur ()
queries to H”, modeled as a random oracle, we have

" 2Quw
Advgd (A, \) < .

p
ONE-MORE UNFORGEABILITY. The following theorem establishes the OMUF-1 security of BS; in the random
oracle model under the CT-CDH assumption. We refer to Section 1.1 for a proof sketch, whereas the full
proof is in Section 3.4.

Theorem 3.2 (OMUF-1 of BS;). Assume that GGen outputs the description of a group of prime order
p = p(N), and let BS; = BS1[GGen]. For any adversary A for the game OMUF-1 with running time t 4 =
t4(N), making at most £ = £(\) queries to S1 and Qu, = Qn, (\) queries to H, € {H,H/H"}, modeled as
random oracles, there exist adversaries B and B’ for the games DLOG and CT-CDH, respectively, such that

gM_i_ QH’
p

(0+1) <\/ QuAdVEE (B, \) + p) + AdvEcedh(pr )) |

Advge™ (A, \)

Furthermore, B runs in time tg ~ 2t 4, and B' runs in time tg ~ t 4, makes Qu challenge queries to CHAL
and £ queries to DH.



Algorithm BS;.Setup(1?) : Algorithm BS;.Us(st3, smsg,) :

(G,p,g) <$GGen(1*) ; W «$ G (e, @0, a1,%0,71, 2, Z', A, Rg, Ry, st}') « sty
Select H : {0, 1}* — G (m, B, pk, h', h) < st} ; (d, e, 20, 21) < smsg,
’ nl . * Ifc#d+eor
Select H', [H”]: {0,1}* - 7, oot B 2 % (40 170 o
Return par « (G, p, g, W, H, H', [H"]) AW® # g*1 then
Algorithm BS;.KG(par) : , return L ,
d«—d+y ;e —et+mn
(G,p,g,W,H,H’,)epar 20« zo + g 2 — 21+ oy
k87, ; pk g™ Return o — (2/,d’, ¢/, ), 2})
Return (sk, pk) Algorithm BS;.S; (sk, h) :
Algorithm BS;.U; (pk, m) : 7 « B3k
ﬁ<—$ZP 217657'()"73; Zp
h' «—H(m) ; h < h'g? Ry < g"0 ; Ry < h"™0 ; A g1 W™*

st « (m, B, pk, b, h)

Return (st} h)

Algorithm BS;.Uz (st} smsg;) :
(m, B, pk, k', h) < sty

(Z,Ry, R, A, [1]) < smsg; ;[(d,s") <

8 «— H'(h, g™, Z, g% h%)
7« (0,5 + 6 - sk)

st® « (sk, z1,e,70) ; smsg; < (Z, Ry, Ry, A, [7])
Return (st”, smsg;)

Algorithm BS;.S2(st®, ¢) :

If § # H”(h, pk, Z, g% pk—%, h*' Z~%) then (sk, z1, ¢, 70) — st°
return L d«—c—e;zo<«10+d-sk
a0, 01,70, V1 <5 Zyp Return (d, e, 20, z1)
Z' — Zpk™F ; ng < Rgpk™70g%0 Algorithm BS;.Ver(pk, m, o) :
R}, « RyR,PZ/=0p/*0 (Z,d, e, z0,21) «— o
Al AW g1 h«—H(m); A« g"tw=¢
c «—H((m,h, 2, qu, R;,A") Ry «— g*0pk=? ; Ry, «— h*0 7z~
c—cd —v—m If d 4+ e # H (m, h, Z, Ry, Ry, A) then
sty « (¢, @0, @1,%0,7v1,Z, Z', A, Ry, Ry, st}) return 0
Return (sty, ¢) Return 1

Fig. 4. The blind signature scheme BS; = BS;[GGen]. The public parameters par, as stated before, are implicit
input to every algorithms except BS;.KG. The highlighted boxes denote the NIZK proof used to show the equality of
discrete logarithm of (pk, Z) to the base (g, h). We also give a protocol diagram of BS; in Figure 13.

3.1 Correctness of BS;
Theorem 3.3. BS; satisfies correctness.

Proof. Consider an honestly generated signature o = (Z/,d’, ¢/, 2, z}) for a message m. We use variables as
defined in the signing protocol.

First, we argue that the checks in BS;.Us and BS;.Us verifies. For the check in BS;.Us, since s’ = s+ -sk
and pk = g%, Z = h%* we have ¢"pk™® = ¢* and h¥ Z=% = h*. Thus, H”(h,pk, Z, g% pk~°,hs' Z7%) =
H/I(h7gSk,Z, gs,hs) =94.

For the check in BS;.Us, ¢ = d+ e by how the signer computes e, AW = g** by how A is generated, and
lastly (R,pk?, Ry Z%) = (grotdsk protdsk) — (g2 p20) where the first equality follows from R, = g", R, =
ho pk = g%, Z = h* and the second equality follows from zy = r¢ + d - sk.

Now, to argue the validity of the signature, let h’ = H(m). Then, we argue the following to say that the
signature is valid:

1. ¢ =d +¢. This follows from c=d+eas =c+y+n=d+etp+mn=d+¢.
2. g2W~¢ = A’. This follows from 2] = z; + a1 and € = e + 71, as

GAW T = (W) (g W) = AW g = A
3. gzépk*d/ = R}, This follows from zj = 20 + ap and d’ = d + 7, as
g7opk™" = (g7 pk™") (g pk 1) = Rypk g™ = R}, ,

where the second equality follows from the check Rgpkd = g*° in BS;.U;3.
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4. Wz~ = Rj,. This follows from 2}, = 20 + g, d’ = d + vo, ' = hg™", and Z' = Zpk™” as

h/z(') Zlfd' _ (h/zo Zlfd)(h/ao Z’*’YO)
_ (hzo Z—d)(gzo pkfd)—[f(h/au Z/—’yo)
= RhRg—ﬁz’—’Yoh/ao _ ;L ,
where the second to last equality follows from the checks R, Z% = g* and Rgpkd = g*° in BS;.Us.

By all of the above, we have

H’(m, h/7 Z/Mgz(’)pkfd', h/zézl—d'7gzllw—e’)

H'(m, 1, 2, R}, R}, A')
d=d+¢,

proving the scheme’s correctness. m|

3.2 Proof of Theorem 3.1 (Blindness of BSy)

To prove blindness, we consider the following sequence of games.

Game Gg': This game is the BLIND game of BS; where A has Qu~ queries access to the random oracle
H”. We additionally assume w.l.o.g. that A already makes the random oracle queries to H” which the user
oracle has to make when checking 7.

Game G1': This game made the following changes:

« The oracle INIT(pk, mg, m;) additionally computes sk < log, pk by exhaustive search.

. For each signing session 7 € {0,1}, when the oracle Ug(i,smsggi)) receives smsggi) from A, it parses

(Zi,Rgi, Ri iy Aiymi = (04, 8:)) < smsggi). Then, it computes Sy ; = gsipk ™%, Sh,i = hfi’Zi_‘si, where h;
is the message returned by U (i), and checks whether §; = H”(h;, pk, Z;, Sg.i,Sh,i). If this check passes,
the game now aborts if Z; # h$*.

The success probability of A only changes when the new abort occurs in either signing sessions, which
corresponds to the following event:

Zi # b3 A 8 = H'(hi,pk, Zi, Sg.is Shi) -

We will argue that this event occurs with negligible probability. Specifically, with how S ;, S}, ; is defined,
_ ) S S s =0 _ .

we have (5,;) logg hs Sh,i = (h;* hfZSk)h?Zi % = (hi_SkZZ-) . Since h; skZ, # 1g, there is only one value of

0; € Z,, that satisfies such equation. Since §; is sampled uniformly at random after fixing the query, and A

makes at most Qu~ queries to H”, by the union bound over the two signing sessions, we have

IPriGgt = 1] — Pr[G{' = 1]| < % :

For the last step, we show that the transcript and returned signatures are distributed identically between
both cases of b = 0 and b = 1, which implies Pr[G{' = 1] = % concluding the proof.

To show this, first, assume w.l.0.g. that the randomness of A is fixed and A only outputs messages in the
transcript where neither the game nor the user oracles abort; thus, A receives valid signatures (o¢, 01). (If a
user oracle aborts, for each signing session, the adversary will only see h; and ¢; which are both blinded to
be uniformly random over G and Z, respectively.)

Let View 4 denote the set of all possible views of A in the game Gf'. A view A € View4 is of the
form A = (VV, pk, mo, My, To, Tl, ago, 0'1) where for i € {0, ].}, T’z = (hz, Zl', Rg,ia Rhﬂ', Ai, Ci, di, €i,20,i5 Zlﬂ')
denotes the transcript of the interaction between A and the user oracles in signing session ¢ (we omitted

m; as it is distributed independently of (mq,m1) given (h;, Z;)), and o; = (Z;,d;, e}, %) ;, 21 ;) denotes the
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valid signature for the message m;. We need to show that the actual adversarial view, denoted as v4, is
distributed identically between b = 0 and b = 1. Since the randomness of A is fixed, v 4 only depends on the
user randomness 17 = (3;, @i, O1,i,70,i, V1,i)ief0,1}- We write v4(n) to make this explicit.

Since we assume A does not make the game abort, for the signatures oy, = (Z;,,dy,, €y, 205,521 5,) in
any view A € View 4, we have that Z; = hgiSk where hj, = H(my,). This is because of the abort introduced
in G{* that induces Z; = h$* leading to Z; = Zipk =P = (hyg=Biysk = hgiSk.

To show that the distribution of v 4 is identical between b = 0 and b = 1, consider a view A € View 4.
We now show that there exists a unique 7 such that v4(n) = A, regardless of whether b = 0 or b = 1. More
specifically, we claim that for both b = 0 and b = 1, v4(n) = A if and only if for i € {0, 1}, n satisfies

. A
Bi - 1Ogg h’Z - logg h’bi )
A /
Qi = Zop, T 204, Qg = 21, — 2 (3)

!/ /
Yo,i =dp, —diy M1,i =€, — € -

For the “only if” direction, i.e., if v4(n) = A, then 7 satisfies Equation (3), this is true by how the user
algorithm of BS; is defined.

To show the “if” direction, suppose 7 satisfies Equation (3), we show that v4(n) = A. Particularly, we
have to show that the user messages and signatures from oracles Uy, Uy and Us are (hg, k1), (co,c1), and
(00, 01) respectively.

Again, since we only consider a view A where neither the game nor the oracle aborts, we have the
following guarantees for i € {0,1}:

k
C; = dl + €, Rgﬂ'pkdi = gzo’i7 Rh,zZZdl = h:o’i, AiWei = gZI'i ’ (5)
dy + ey = H (my,, by , Zj,, pk~ i g0, 77 =iy Fovi e gty (6)

where Equation (4) follows from the discussion above, Equation (5) follows from the checks in BS;.Us, and
Equation (6) follows from the validity of the signatures.

First, we argue that h; is the user message from Uy (¢) for ¢ € {0, 1}: recall that the user oracle outputs
H(my,)g”% and by the value of 3; from Equation (3), H(ms,)g% = hgigﬁi = h;, so the user’s first message is
consistent with A. Thus, the next message from A will be (Z;, Ry i, Rp i, A;) from the view A.

Next, we argue that the user’s second message from Us(i,-) is ¢;. To do this, we consider the blinded
values of Z;, Ry ;, Ry, and A;.

Zipk P = pkgTOisk — (pg7 Py = hf,fk = Z,,, Last equality by equation (4)
R ; = Rgipk 7%ig®i = (pk~%g®)pk 70 g?¢; By equation (5)

— pk 40 groit a0 — pl=h 6200, By equation (3)

hi = Rh,iR;fi B
= (Z R (pk =T g*) P Zy Ty, O By equation (5)
(2o g 24,
= Zz/)fdr%’ihgizo’ﬁao’i = Zz',;d;’i h?,iz‘/)’bi, By equation (3)

Al = AW Thighhs = (Wi gP )W 7 g®his By equation (5)
— W gPLit L — ¢ e By equation (3) .
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Therefore, the message returned from Usy(4,-) is
/ / —Bi / / /
H (mb,;a hb,;a Zipk ) Rg,ia h,i» Az) - 70,1' - 71,2’
—H n k—dgv 24 b, 7! —dy, B 0., W—eév 21y,
= H'(my,, by, 2y, pk™ i g™0b, Z, (S igT) = Y0, — Y1
! /
= dbi + €p, — 0, — Vi = di +e =c¢,

which is consistent with A. Thus, the next message from A will be (d;, e;, 70,4, 21,;) from the view A. Lastly,
the signatures from the oracle Us, for i € {0, 1}, are as follows

—Bi (g 1t ’ _
(Zipk™7  di + 0,55 €5 + V105 20,0 + Q0,21 + 1) = (Zy,, dy, s €520 5 Z1b;) = Tbis

which are exactly the signatures in A. |

3.3 Computational Blindness of BS; without NIZK

As mentioned earlier, we can remove the NIZK proof from our scheme BS; (resulting in a scheme which we
will call BS] in this subsection to distinguish from the scheme with NIZK) and still achieve computational
blindness according to the following theorem. We stress that here we make no assumptions on the hash
functions used by BS].

Theorem 3.4 (Computational Blindness of BS}). Assume that GGen outputs the description of a group
of prime order p = p(\), and let BS] = BS|[GGen]. For any adversary A for the game BLIND running in
time t 4 = tA(\), there exists an adversary B for the game DLOG running in time tp ~ 2t 4 such that

. 2
Advgdl (A, X) < 24/Advges (B, ) + S

Proof. The proof for this theorem mainly follows the proof of Theorem 3.1 with the only difference being
the game G1' and its transition from Gg'. We define the game Gf' as follows:
Game G7': This game made the following changes:

. The oracle INIT(pk, mg, m1) additionally computes sk « log, pk by exhaustive search.

. For each signing session i € {0, 1}, when the oracle Us (i,smsgéi)) is queried, it parses the signer’s first
and second messages as (Z;, Rgi, Rn,i, Ai) — smsggl) and (d;, €, 204, 21,i) < smsgg). Then, if the user
algorithm BS).Us does not abort but Z; # h?k where h; is the message returned by Uj (i), the game

aborts.

Fix a signing session i € {0,1} and let Bad; be the event where the abort described occurs in signing
session i, i.e., Z; # h¥* but the user algorithm does not abort. This gives

Pr[G{* = 1] — Pr[G¢! = 1]| < Pr[Bado v Bad,] .

Note that the event Bad; only depends on the user messages in the signing protocol, i.e., (h;,¢;) (since the
event occurs before the signatures are returned).

To bound the probability of event Bad; occurring, we will construct a reduction B rewinding the adversary
A and argue that if Bad; occurs in both runs, B can extract log, W.

Before describing B, we make the following observation that h; and ¢; are uniformly random in G and Z,
respectively. First, denote (8;, a.:, 1.4, 70,i,71,i) as the user randomness for signing session ¢ € {0, 1}. To see
this, consider that, as computed in the user algorithm, h; = hlg% and ¢; = H' (my,, b}, Z!, Ry, Ry, i A7) —
Y0,i — 71,; where h; = H(my,) and ZZ{,R;J,R%J,AQ are the blinded values of Z;, Ry ;, Ry, A; respectively.
We specifically note that A, = A;¢* W=7 is uniform over G and is independent of ~y; ;. This is because
conditioning on a value of 1 ;, A} takes on any element in G with probability 1/p due to a1 ; being uniform

over Z, and independent of 1 ;. Then, the distribution of (h;,¢;) can now be seen as dependent only on the
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signer messages Ry ;, A;, Rp, i, Z;, the randomness f3;, &4, 70,i,71,; and a uniformly random A}. Conditioning
on every values other than 3; and 7 ;, we can see that h; is uniform over G as 3; is uniform over Z,, and ¢;
is uniform over Z, as 71, is uniform over Z,. This means that the probability of Bad; stays the same even
if h; and ¢; are uniformly randomly sampled instead of generated by following the protocol.

Then, using the above observation, consider the following reduction B playing the DLOG game and
running A.

1. The reduction B takes as input (G,p, g, W) and runs A on input par «— (G,p,g, W). It also fixes the
randomness to be used in the signing session 1 — ¢ and the user’s first message h; of signing session ¢ in
advance.

2. The oracles INtT, U (1 — i), Us(1 —4,-), and Uz(1 —4,-) are simulated as in the game Gg'. The oracle
U, (7) instead of computing the values as usual answers with h; instead. While for Us(i, ), B returns
Ci s Lp.

3. For the call to Us(i, smsgéi)), if the user algorithm does not abort B rewinds the adversary .4 to when
it queries Us(4, smsggi)) and returns ¢} «<s Z,. The oracles for the signing session 1 — 7 still use the same
randomness from the previous run.

4. After the rewinding, for the call to Us(s, smsg’Q(Z)), if the user algorithm does not abort, we can parse
(diyei, 20,y 21,1) < smsgg) and (dj, e}, 2 ;, 2] ;) < smsgh @

L el If e; # €}, the reduction returns (z;; —
21 ;)(ei — €;)7'. Otherwise, abort.

It is clear that the running time of B is about twice of A’s. Then, we argue the success probability of the
reduction B by considering the event Bad;. We note that the event Bad; cannot be detected efficiently;
however, here we show that if such event occurs in both runs (even without B detecting Bad;), the reduction
B will find log, W. More specifically, we consider the following event frk where Bad; occurs in both the first
and the rewound run of A in the reduction B and that the outputs of Us(i, ) over the two runs are different
(i.e., ¢ # ¢;). If this event occurs, then A has sent (Z;, Ry, Ry, A;) and (d;, e, 20,4, 214), (d}, e Z,zo’i,zi’i)
such that

() Z; # h*

(ii) d; + el—c,;&c =d, + €.

(i) (Rgl,R;”) (g7 pk % hZ“Z;di) — (g7oipk % h10r Z 7%
) A

(IV J— gzl iW e = gzl’LW e

By considering (iii),

Zidz‘*d; _ hjo,rz(’),i _ g(zUYi—z[’),i)logy hi _ pk(difd;)logg hi _ h:k(drd;) .
Then, d; = d; follows from Z; # h$k. Thus, e; # €} and (21,; — 2y )(ei — eyt = log, W by (iv). This shows
that if frk occurs, then B succeeds in the DLOG game. Thus, Pr[frk] < Advéléfn (B, A).

Now, we bound Pr[frk] using the forking lemma (Lemma 2.1). To this end, we define a wrapper A; over
A where A; takes as input the instance (G, p, g, W), the challenge ¢;, and a randomness p which is used to
derive the random tape for A, h;, and the randomness used in signing session 1 — . The wrapper A; then
simulates the user oracles as B does and returns I = 1 when Bad; occurs. Otherwise A; returns L. This
means that the probability that I = 1 # L is Pr[Bad;]. Also, we can see that the event frk corresponds to
the event where A; is run twice with the same inputs except the two different ¢; # ¢}, and both runs return
I and I’ such that I = I’ # 1. Thus by the forking lemma, we have

1
Pr[Bad,] < +/Prl[frk] + o AdveE (B, \) + ~
Applying the union bound over i € {0,1} concludes the proof. O
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Game Ga“, [G:zﬂ, , Oracle S;(sid, h):
(G, p, g) <$ GGen(lA) if sid{e Ill t;en re%urn J_'d
[W<—$Gj J G& -G ZH hJsrk i Tn I v {sid}
R - -
Lu,):_f?’li‘ivff,giu / G5 -Gt z1,€,m0 <$ Zp
Pa“—(GJhg,W)k Ry < g™ ; Ry, < hT0
SkH$ZP;pngS z] =z A A
L—0;T1,Io — ‘ A= g W™ [ Gy — Gy
{(mF, o) eres1) <3 AS152 (par, pk) 20,d, 71 <S Zy
k % —

If 3 ktl #* 182 such that mi = my, then Ry <« g0pk d

return 20 7—d
I3 ke [£+ 1] such that LSS R

BS;.Ver(pk, mf, (7;:) = 0 then A—g" [ Gy

return 0 : sS$Z, ;0 H” (h, pk, Z, g°, h*)

{For k € [¢+ 1]: i
(ZE,dif s eifs 25k 210) < o
If Z}¥ # H(m¥)™ then : Bl
return 0 J G{ - G'f‘ If H” (h, pk, Z, g° pk™°,h*Z7°) # L then

ek abort game

7 — (8,8 sk + s) //G('flfG;‘

67s/<—$Zp;7T<—(5,S,) //G?—Gf

Return 1

" s’ -6 sr7—08
Oracle H, (str) for Hy € {H, H',H"}: H”(h,pk, Z, g* pk™°,h"Z7°) <&
If H,(str) # L then Return (Z, Ry, Ry, A, )
return H, (str) Oracle Sa(sid, ¢) :
H (str) <SG /1t H'; :NH If sid ¢ Z; or sid € Z, then return L
H (str) «S Z,, JIEH e (W R |7, 7 L (sid)
Return H, (str)
ide—c—e
iz0 7o +d - ski /G —G3
e—c—d
21 <711 te-w J G

Return (d, e, 2o, 21)

Fig. 5. The OMUF-1 = G§' security game for BS; and the subsequent games Gi' — Gi'. We remark that H, H and
H” are modeled as random oracles to which A has access. Each box type indicates the changes made in the game
name contained in the box. Also, to make things clearer, for each box, the comments indicate which game the changes
in the boxes correspond to. Moreover, the signer state is omitted and we assume that each variable initialized in Si
of the same sid can be accessed in Sa.

3.4 Proof of Theorem 3.2 (OMUF-1 of BS,)

To prove one-more unforgeability of BS;, we consider the following sequence of games. Here, we describe the
sequence of games in text, while the pseudocode version of the games can be found in Figure 5.

Game G641 The game first generates the public parameters par <—s BS;.Setup(1*) and the secret and public
keys (sk, pk) <—s BS;1.KG(par). Then, the game interacts with an adversary .A(par, pk) with access to the
signing oracles S1, Ss and the random oracles H, H’, H” which are simulated by lazy sampling. The adversary
A queries the signing oracle S; for £ times and the random oracles H,H’ and H” for Qn, Q' and Qn~ times
respectively. At the end of the game, A outputs £+ 1 message-signature pairs (m;, o) pers+1]- The adversary
A succeeds if for all ki # ko, mg # mj and for all k € [¢ + 1], BS;.Ver(pk,m},0}) = 1. We additionally
assume w.l.o.g. that A does not make the same random oracle query twice and already makes the random
oracle queries that would be made in BS;.Ver when the game checks the validity of the signatures. The
success probability of A in game GOA is exactly its advantage in the game OMUF-1, i.e.,

AdvRE (A, \) = Pr[Ggt = 1] .
Game G1': This game is identical to Gg' except that for the message-signature pairs (M, o ) ke[e+1] output

by the adversary A, for k € [ + 1], after parsing (Z},d}, e, 25 1., 27 1) < 0f, the game additionally requires
that Z = H(m} ).
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Then, by Lemma 3.5, there exists an adversary B for the game DLOG, running in time ¢tz ~ 2t 4, such
that

PGt =1] = Pr[Gg = 1] — (£ + 1) <\/QH/Adv‘élg§n(B, A) + Qp”’) .
Game G“24: This game is identical to Gf‘ except that when generating the group element W in par, the
game generates w <s Z, and sets W <« g*. Since W still has the same distribution, the success probability
of A is exactly as in G7'.
Pr[G#t = 1] = Pr[G* =1] .

Game Gg“: This game is identical to Gi' except that the signing oracle S; generates the proof 7 by sampling
s',0 «s Z, and programming H” (h, pk, Z, g°pk™%, h*'Z79) as §. The game aborts if H” is already defined at
(h,pk, Z,g* pk=°, h' Z79).

The view of A is identical to its view in Gg' if the game does not abort. Moreover, the game only aborts
if (h, pk, Z, gslpk_‘s, hS/Z*‘s) has been queried or programmed beforehand, but gslpk_(S is uniformly random
and independent of the view of A and previous programming attempts of H” as s’ is uniformly random
and independent at the time that the oracle tries to program H”. Thus, by applying the union bound over
possible collision events, i.e., all pairs of queries to oracle S; and queries to both H” and S; (accounting for
attempts to program H"),

PrGA — 1] > PrlG# — 1] - A @) +pQ“”> .
Game G37': This game is identical to Gg“ except that the signing oracles are simulated by using w instead
of sk. More specifically, (A4, Ry, Ry, d, €, 20, 21) are now generated as follows:

1. Sample rq,d, zy < Z, and set A — g™, (R, Rp,) < (ng’pl(d7 h* Z=9).
2. After receiving ¢, set e <~ c—d and z1 < r; + e w.

Since the joint distributions of (A4, Ry, Ry, d, e, 29, z1) in the games G{f‘ and Gf are identical, the view of A
remains the same. Thus,
Pr(Gi = 1] = Pr[G5' = 1] .

Lastly, we give a reduction B’ playing the CT-CDH game using the adversary A as a subroutine. The
reduction B’ is defined as follows:

1. The reduction B’ takes as input a CT-CDH instance (G, p, g, X ), samples w «s Z,,, and sets W «— g*.
It then sends par — (G,p,g, W), pk — X to A.

2. The simulations of H' and H” are done as in G'. However, for queries to H (labeling each with j € [Qn]),
the reduction B’ queries the challenge oracle CHAL and receives a random group element Y; which it
returns as the random oracle output. (This means that B’ makes @y queries to CHAL.)

3. The signing oracles are also simulated as in G4* except for the computation of Z = h* in S; which is
done by querying its DH oracle instead, i.e., Z < DH(h).

4. After receiving the message-signature pairs (mj, o} )epe+1] from A, B’ checks if all the messages are
distinct and all the pairs are valid. If not, it aborts. Next, 5" identifies jj for each k € [£ + 1] where jj
is the index of the hash query H(m;}) made by A. Since m} are distinct, there are exactly ¢ + 1 distinct
Jk- Lastly, B’ returns (ji, Z;)re[e+1] where Zj is the corresponding value in o).

It is clear that the running time of B’ is about that of A. For the success probability of the reduction, we
can see that B’ simulates the oracles identically to the game Gi'. Then, if A succeeds in the game Gy, then

A returns Zjf = H(m})* = Y;:gg Y forall ke [£ + 1] where sk = log, pk = log, X. Thus, B’ succeeds in the

game CT-CDH, as it returns ¢ + 1 correct CT-CDH solutions while only querying DH for ¢ times. Therefore,
Pr(G# = 1] < AdviZd™ (B, \). Then, by combining all the advantage changes,

e »6 " ’
< % +(0+1) <\/QH/Adv‘G“g§n (B,)\) + Qp“) + AdvEesdh (B ) o

AdvgE™ 1 (A, )
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Lemma 3.5. There exists an adversary B for the game DLOG, running in time tg ~ 2t 4, such that

PriG{ = 1] > Pr[Gg' = 1] — (£ + 1) (X/QH/Advggegn(B, A) + Qp”’) :

Proof. Let Bad be the event where G64 outputs 1 but G1* outputs 0. This corresponds to the following event:
A outputs £ + 1 message-signature pairs (mj, o} )ree+1) such that (1) for all ky # ko, mj # mj_, (2) for
all k € [£ + 1], BS;.Ver(pk,m},0}) = 1, and (3) there exists some k € [£ + 1] where parsing the signature
(ZF,df el 28,25 ,) < of, we have that Zf # H(m})*. Then, we can write Pr[G{* = 1] > Pr[Gg' =
1] — Pr[Bad].

Also, define the event Bady for k € [¢ + 1] which is event Bad with the condition (3) specified only for
the k-th pair (m},o}). This gives Bad = ”1 1 Bady,.

Now, define a wrapper A over the adversary A where Ay receives the following inputs: an instance
(G, p,g,W), the output tape (ci,...,cq,, ) of H', and a random tape p.

1. Extract (sk € Zy, (s; € Zp,70,i € Lp,ei € Ly, 21,i € Lp)ice)s (hi € G)ie[@u]» (6i € Zp)ic[0yn+0], £) from the
random tape p.

2. Set par < (G,p, g, W), pk < g<.

3. Run (m}, 0 ) kefe1] < Asl’S%H’H/’H”(par, pk; p') where each oracle is simulated as follows:

« For the signing query with session ID j (j € [¢]) to S1 and S, use (sk, s;,70,;, €;, 21,;) t0 answer the
query as in BS;.S; and BS;.S; respectively.

. For the i-th query (i € [Qu]) to H, return h;.

. For the i-th query (i € [@Qn]) to H', return ¢;.

. For the i-th query (i € [Qu~ + £]) to H”, return §;. (Note: In these queries, we accounted for the
queries that the wrapper made to generate 7 in each query to Si.)

4. If the event Badj does not occur, return (L, L). Otherwise, return (I, (mj,o})) where I is the index
of the query to H’ that corresponds to the verification of (mj, o). More specifically, after parsing
(Z:,dz,ez,za"yk,sz) — of, I is the index corresponding to the query (m,h, Z, Rg4, Ry, A) to H where
m =m¥, h=H(m),Z = ZF Ry = g7orpk % Ry, = hoxZ=4 A = g"lxWW—F . Note that I is well-
defined as we assume that all random oracle queries in forgery verification are made by A beforehand.
Also, it is easy to see that the running time of Ay is roughly the running time of A.

Next, we consider the following reduction B playing the discrete logarithm game defined as follows:

1. On the input (G, p, g, W), B samples c1,...,cq,, < Z, along with the random tape p of A.
Run (Ia (ma U)) s Ak((Gap>g7 W)a (Cla ceey CQH/); P)
3. If I = 1, abort. If not, sample cf, ..., C’Q, «s 7, and
H
run (', (m’,0")) < Ax((G,p, g, W), (c1, ..., cr-1,¢}, - ¢, )i p)-
4. f I =TI and ¢} # ¢y, parse (Z,d, e, z9,21) « 0,(Z',d',€,2,7) < o, and return (z; — 2})(e — ¢’)
Otherwise, abort.

N

-1

Since B runs Ay, twice and the running time of Ay is about that of A, tg ~ 2t 4. Next, we show that if B does
not abort (i.e., I = I' # 1 and ¢; # ¢), then it returns a discrete logarithm of W. Since I = I' # 1, the
message-signature pairs (m, o) and (m’,o’): (a) are valid signatures corresponding to the I-th query from A
to H' of the form (m, h, Z, Ry, Ry, A) and (b) satisfy Z # H(m)* and Z’ # H(m’)*. By (a), we know the
following

(i) m=m/,h=H(m)=H(m'),Z = 7"

(ii) C]_d+6 dr=d+e¢.

(i) Ry = g*pk™ 4 — gopk~ ¢ Ry = h*Z % =pzz-7,
(iv) A=gaW—e=gaWw—¢.
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We will argue that d = d’. First, the equations in (iii) give Zd=d' = pzo—z = g(z‘)*z(/)) logg h — pk(d_dl)logg h =
hk(d=d) Since Z # h%, only d = d’ satisfies the equation. Since d + e = ¢ # ¢; = d’ + ¢/, we have e # ¢’
Thus, by (iv), B returns (z; — z)(e — €/)~" = log, W. Hence,

AdVESE (B, ) = Pr[B does not abort] = Pr[I = I' AT # L acp # ¢i].

Lastly, by the fact that B rewinds Ay which only outputs I # 1 when Badj occurs, we can apply the forking
lemma (Lemma 2.1),
Qw

p
The lemma statement follows from the union bound over Bady, for k € [¢ + 1]. |

Pr[Bady] < \/ QuAdVESE (B, \) +

4 Strong Unforgeability from CT-CDH

It turns out that the scheme BS; from Section 3 is not one-more strongly unforgeable. We omit a formal proof,
but the basic idea is to consider an adversary attempting to produce ¢ + 1 signatures on the same message
m by starting ¢ signing sessions with h = H(m), fixing h and Z = h*¢ in all of them. After this, the structure
of the signing protocol becomes essentially equivalent to that of the Abe-Okamoto blind signature [6], which
is subject to a variant of ROS attacks [18].

To obtain a strongly unforgeable scheme, we modify BS; by adding a first move where the signer sends
the nonces R, and A (note that these do not depend on h in BS;), and the user then sets h — H(m, Ry, A)
instead of H(m) as in BS;. The resulting five-move scheme BS, is presented in Figure 6 (a protocol diagram is
also presented in Figure 14), and we will show it indeed satisfies OMSUF-1 under the CT-CDH assumption.
This scheme can be seen as a blind version of Chevallier-Mames signatures [29, 49]. It is easy to show that
the scheme satisfies correctness (see Section 4.1 for a proof).

BLINDNESS. As with BSy, the scheme can be shown computationally blind under the DL assumption, without
any further assumption on the hash functions used by the scheme, or statistically blind by modeling H” as
a random oracle, once again using the highlighted NIZK proof. Below, we state a theorem for the latter
property and prove it in Section 4.2. While for the version of the scheme without the NIZK, we give the
proof for computational blindness in Section 4.3.

Theorem 4.1 (Blindness of BSy). Assume that GGen outputs the description of a group of prime order
p = p(A), and let BSy = BSy[GGen]. For any adversary A for the game BLIND making at most Qur = Qur ()
queries to H”, modeled as a random oracle, we have

. 2Qu
Advgd™ (A, \) < .
ONE-MORE UNFORGEABILITY. The following theorem establishes the OMSUF-1 security of BS, in the ran-

dom oracle model under the CT-CDH assumption. We give a proof sketch below, whereas the full proof can
be found in Section 4.4.

Theorem 4.2 (OMSUF-1 of BSy). Assume that GGen outputs the description of a group of prime order
p = p(A\), and let BSy = BS3[GGen]|. For any adversary A for the game OMSUF-1 with running time
ta = ta(N), making at most £ = L(\) queries to Sy, Qu, = Qn, (\) queries to Hy € {H,H',H"}, modeled as
random oracles, there exist adversaries B and By for the game DLOG, and adversaries B' and By for the
game CT-CDH, such that

Advges™™l (A, )) < W +(C+1) <\/QH/Adv‘él§egn (B, ) + Qp”’)

+ AdVECE (B1, A) + Advggin™ (B2, A) + Advggin™ (B, ) .

Furthermore, B and By run in time tg ~ 2t 4 and tp, ~ ta respectively, whereas B' runs in time tp ~ t4,
makes Qu queries to CHAL, and £ queries to DH, and lastly, Ba runs in time tg, ~ ta, and makes ¢ + 1
queries to CHAL, and { queries to DH.
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Algorithm BSs.Setup(1?) :

(G,p,g) <$GGen(1*) ; W «$ G
Select H: {0,1}* - G

Select H, {0,1}* > 7,
Return par = (G, p, g, W, H, H, )
Algorithm BS3.KG(par) :

(G.p. g, W, H, W, [H7])  par

sk «$ Z, ; pk < gSk

Return (sk, pk)

Algorithm BS3.S1(sk) :

z1,€,1m0 <3 7Zp

Ry« g0 ;A gslWw™®

st] <« (sk,z1,e,70) ; smsg; «— (Rg, A)

Return (stj,smsg;)

Algorithm BS2.Sa(st7, h) :

(sk, z1, e, 1) « st]

Z «— h¥* ; R, «— h"0

5«87, ;8 «— H'(h, g™, Z, ¢° h%)

7 — (8,5 + & - sk)

smsg, < (Z, Ry, [7])

Return (stj,smsg,)

Algorithm BS3.S3(st3, ¢) :

(sk, z1,e,10) « st

d«—c—e;zog«—10+d-sk

Return (d, e, 2o, 21)

Algorithm BSs.Ver(pk, m, o) :

(Z,d,e,20,21) < 0

Ry « g*0pk™ @ ; A — gs1W ¢

h « H(m, Ry, A) ; Ry, < h*0Z~¢

If d +e # H(m,h, Z, Ry, Rp,, A) then
return 0

Return 1

Algorithm BS2.U1 (pk, m,smsg;) :

(Rg, A) « smsg,

By a0, 1,70, 71 <8 Zp

Rl « Rgpk~70g%0

A" — AW g

h' — H(m, R, A")

h « h'gﬁ

st < (m, 8, a0, @1,70,71,pk, h', h, Rg, R, A, A")
Return (st}', h)

Algorithm BS3.Uz (st} , smsg,) :

(m, B, @0, @1,70,71, Pk, b’ b, Rg, R, A, A") « st}

(2, R, [x]) < smsgy ; |(3,8") < m

If 5 # H'(h, pk, Z, g° k=%, h*' Z=%) then
return L

Z' — Zpk~P

R}, « RyR;PZ/=70p/*0
¢« H(m,h',Z' R R, A
ce—c—y-m

sty « (¢, Z,Z', Ry, st})
Return (sty, c)

Algorithm BS3.Us(st3, smsgs) :

(¢, Z,Z', Ry, st}) « sty
(m, B, a0, @1, 70,71, Pk, B, hy Ry, R, A, A) « st}
(d, e, 20,21) < smsgs
Ifc#d+eor

(Rgpk?, Ry Z%) # (970, h*0) or

AW® # g*1 then

return L

d—d+v;e —e+m
25— zo+ o 2 — 21+
Return o « (Z',d', €', 2(, 21)

Fig. 6. The blind signature scheme BS; = BS3[GGen]. The public parameters par, as stated before, are implicit
input to every algorithms except BS2.KG. The highlighted boxes denote the NIZK proof used to show the equality of
discrete logarithm of (pk, Z) to the base (g, h). We also give a protocol diagram of BSs in Figure 14.

The proof builds on top of the approach for proving OMUF-1 of BS;. Specifically, we show that after start-
ing ¢ signing sessions, no adversary can forge ¢ + 1 valid message-signature pairs {(m;, (Z;,d;, e, 20,i, 21,:)) }
with distinct (m;, Ry;, A;), where Ry; = g7 ipk~% and A; = ¢#iW~%. To see that this implies the
OMSUF-1 security of BSy, we only need to show that no adversary can output two distinct pairs (m;, (Z;,d;,
€i, 20,i,21,:)) and (m;,(Z;,d;,e;, 20,5, 21,5)) with (m;, Ry, A;) = (mj, Ry j, A;). Suppose such an adversary
exists. Then, there are three cases: (1) Z; # Z;, (2) (di,20,:) # (dj, 20,5), and (3) (es, z1:) # (ej,21,5). If
Z; # Zj, one of Z; and Z; is not equal to H(m,, Rg’i,Ai)Sk and thus, we can follow the same argument as
BS, to extract the discrete logarithm of W. If (d;, z;) # (d;, z;), since g%pk™ % = R,; = R, ; = g% pk %, we
can extract sk. If (e;,t;) # (ej,t;), since g"W~% = A; = A; = g"W =% we can extract log, W. Therefore,
such an adversary contradicts the discrete logarithm assumption.

4.1 Correctness of BS,
Theorem 4.3. BSy satisfies correctness.

Proof. Consider an honestly generated signature o = (Z',d’, ¢/, z{, #{) for a message m and the variables as
defined in the signing protocol.
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First, we argue that the checks in BS;.Us and BS,.Us verifies. For the check in BS5.Us, since s’ = s+4d-sk
and pk = ¢%%,Z = h%, we have gs/pk76 = ¢° and h¥'Z=9% = h®. Thus, H”(h, pk, Z, gslpl(‘s7 h*"'/Z_‘S) =
H”(h,gSk,Z, gs7hs) =4.

For the check in BSs.Us, ¢ = d+ e by how the signer computes e, AW = g** by how A is generated, and
lastly (Rgpkd7 RpZ%) = (grotdsk protdsky — (g20 h#0) where the first equality follows from R, = ¢g", R, =
ho pk = g%, Z = h* and the second equality follows from zg = ¢ + d - sk.

Now, to argue the validity of the signature, let h' = H(m, R}, A") where R; = Rypk™°g* A" =
AW =7 g%, Then, we have to argue the following to say that the signature is valid:

1. d =d +¢. This follows fromc=d+casd =c+yp+mn=d+e+vw+y=d +¢.
2. g2rW—¢ = A’. This follows from 2] = z; + o and €' = e + v, as

gzllw—e’ _ (gz1 W—e)(w—'ylgal) _ A(W_’Ylgal) _ A/ .
3. gzépkfd' = R;. This follows from z{, = 2o + ap and d’ = d + 7o, as
g7pk™" = (gpk™") (pk°g™) = Ry(pk™9") = Ry,

where the second equality follows from the check Rgpkd = ¢g® in BS5.U3.
4. W*0Z'=¢ = R, . This follows from z}, = 2o + ag,d’ = d + v0, h' = hg~?, and Z' = Zpk™"

h/z(’) Z/—d’ — p/%0 Z/—d(h/ao Z/—'yo)
= h?o Z—d(gzopkfd)—ﬂ (h/ao Z/—fyo)
= RhRg—ﬁ(h/aoZ/—vo) - R;z ,

where the second to last equality follows from the check Rj,Z¢ = g* and Rgpkd = ¢® in BS5.Us.
By the points above, we have H(m,gzﬁ pk_d/,gzlll/V’el) = H(m, R, A’) = h/ and
H'(m, 1, 2, gopk™" W52 g W) = W(m, ', Z' Ry R} A) = =d + ¢,

proving the scheme’s correctness. ]

4.2 Proof of Theorem 4.1 (Blindness of BS;)

To prove blindness, we consider the following sequence of games.

Game Gg': This game is the BLIND game of BS, where A has Qu~ queries access to the random oracle
H”. We additionally assume w.l.0.g. that A already makes the random oracle queries to H” which the user
oracle has to make when checking 7.

Game G1': This game made the following changes:

« The oracle INIT(pk, mg, m) additionally computes sk < log, pk by exhaustive search.

. For each signing session ¢ € {0,1}, when the oracle Ug(i,smsgg)) receives smsgéi) from A, it parses
(Zi, Rpiymi = (04, 8:)) < smsgg). Then, it computes S, ; = gsipkf‘si, Sh,i = hfiZ;‘S"' where h; is the
message returned by Uy (4, ), and checks whether §; = H”(h;, pk, Z;, Sq.i, Sh.s). If this check passes, the

game now aborts if Z; # h$<.

The success probability of A only changes when the new abort occurs in either signing sessions which
corresponds to the following event:

Zi # b3 A 8 = H'(hi,pk, Zi, Sgi, Shi)-
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We will argue that this event occurs with negligible probability. Specifically, with how S, ; and Sj; are

. _ . 51 5 S =8 .
defined and that Z; # htk = pk'®8s " we have (S,,;)” %" S}, ; = (h; = hS™)R Z7% = (h7**Z;)""". Since
h;SkZZ- # 1g, there is only one value of §; € Z,, that satisfies such equation. Since J; is sampled uniformly at
random after fixing the query, and A makes at most Quy» queries to H”, by the union bound over the two
signing sessions, we have

2 "
IPrGgt = 1] — Pr[G{' = 1]| < %” :

For the last step, we show that the transcript and returned signatures are distributed identically between
both cases of b = 0 and b = 1, which implies Pr[G{' = 1] = % concluding the proof.

To show this, first, assume w.l.0.g. that the randomness of A is fixed and A only outputs messages in the
transcript where neither the game nor the user oracles abort; thus, A receives valid signatures (o¢, 01). (If a
user oracle aborts, for each signing session, the adversary will only see h; and ¢; which are both blinded to
be uniformly random over G and Z, respectively.)

Let View 4 denote the set of all possible views of A that can occur in the game G1*. A view A € View 4 is of
the form A = (W, pk, mo, My, TQ, Tl, ago, 0'1) where for i € {O, 1}, E = (hl, Zi; Rg,ia Rh,i; Ai, Ci, di, €iy 20,5 Zl,i)
denotes the transcript of the interaction between A4 and the user oracles in signing session ¢ (we omitted
m; as it is distributed independently of (mq,m1) given (h;, Z;)), and o; = (Z;,d;, e;, %) ;, 21 ;) denotes the
valid signature for the message m;. We need to show that the distribution of the actual adversarial view,
denoted as vy, is distributed identically between b = 0 and b = 1. Since the randomness of A is fixed, v 4

only depends on the user randomness 1 = (i, @0,i, 1,4, 70,i, V1,i)iefo,1}- We Write v4(n) to make this explicit.
Since we assume A does not make the game abort, for the signatures oy, = (Z;,,d;,., €p,., 24,521 ,) in
any view A € View 4, we have that Z; = hgfk where hy, = H(my,, pk ™ i g70bs YW % g1bs ). This is because
of the abort introduced in Gi* that induces Z; = h* leading to Z, = Zipk P = (hyg=Biysk = hgfk.
To show that the distribution of v 4 is identical between b = 0 and b = 1, consider a view A € View 4.

We now show that there exists a unique 7 such that v4(n) = A, regardless of whether b = 0 or b = 1. More
specifically, we claim that for both b = 0 and b = 1, v4(n) = A if and only if for i € {0, 1}, n satisfies

— !
/Bi - logg h’L - logg hb7
! /
Q0 = Zp, T 20, Qi = 2, T Pl (7)

! !
Yoi =dp, —diy 1,0 =€, — €.

For the “only if” direction, i.e., if v4(n) = A, then 7 satisfies Equation (7), this is true by how the user
algorithm of BSs is defined.

To show the “if” direction, suppose 7 satisfies Equation (7), we need to show that v4(n) = A. Partic-
ularly, we have to show that the user messages from oracles U, Uy and the signatures from oracle Ug are
(ho, h1), (co, 1), and (o9, 01) respectively.

Again, since we only consider a view A where neither the game nor the oracle aborts, we have the
following guarantees for ¢ € {0,1}:

k
Zi =¥, Zy, =™, (8)
ci = di + €5, Ryipk®™ = g7, Ry, Z = b, AW = g7t (9)
d;i + egi = H’(mbi, Zi, Zl/nw pk_d;’i gzévbi , Z{)i_dbi hgi #0,b; , W_e;’z‘ gzll«bi) , (10)

where Equation (8) follows from the discussion above, Equation (9) follows from the checks in BS;.Us, and
Equation (10) follows from the validity of the signatures.
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First, we argue that h; is the user message from Uy (i, -) for ¢ € {0, 1}. Since the randomness of A is fixed,
A’s first message will be (Ry ;, A;) from the view A. Consider the blinded values of R, ; and A;

Ry ; = Ry pk g
= (pk_ding’-ri)pk_"’o’ig’lo’i; By equation (9)
= pk 0 gE a0 — g0
AL = AW gos
= (W% g* iYW~ "ig*i: By equation (9)
= WeMigritani - - 61’ 21, , By equation (7)

, By equation (7)

Then, by the value of §; from Equation (7), the user’s first message is
H(ma,, Ry, A7)g™ = H(m,, pk™ % g Wb 7o) g
= hi, g% = hi,
which is consistent with A. Thus, the next message from A will be (Z;, Ry ;) from the view A.

Next, we argue that the user’s second message from Us(i, -) will be ¢;. To do this, we consider the blinded
values of Z; and Ry ; (the blinded values of R, ; and A; are already argued above).

Zipk P = hkg=Pisk — (hyg=Piysk = hy, < _ = 7, , Last equality by equation (8)
hi = Rh7iR;fi Z{)i_%’lhgao”
= (Z7 4 h*") (pk~ i goi)Piz) T by 2% By equation (9)
(2R by 2y,
= Zz/),‘,_di_mihgizo’ﬁao"i = Z{,i_d/bi hgfé’bi, By equation (7)

Therefore, the message returned from Us (3, -) is

Hl(mbivhgiazipk_ﬁl R;m ;LmA ) Y0,s — V1,i

—d —dj, 0.5 TI/—Ch, 71
= H'(mu,, By, Z4,, k™ i goe, 23, ~ Tl 200 Wb g ) — g — 1
=dy, + ey, — Vo5~ =di e =ci,

so the user’s second message is consistent with A. Thus, the next message from A will be (d;, e;, 0.4, 21,:)
from the view A. Lastly, the signatures from the oracle Us, for ¢ € {0, 1}, are as follows

—B; ’ ’ / ’ ’
(Zipk ™% di + 70,4, €5 + Y140 20,0 + Q0,6 21 + 1) = (Zh, dy, €45 20,5 Z1p,) = O,

which are exactly the signatures in A. m]

4.3 Computational Blindness of BS; without NIZK

As mentioned earlier, we can remove the NIZK proof from our scheme BSs (resulting in a scheme which we
will call BSj in this subsection to distinguish from the scheme with NIZK) and still achieve computational
blindness according to the following theorem. We stress that here we make no assumptions on the hash
functions used by BS}.

Theorem 4.4 (Computational Blindness of BS,). Assume that GGen outputs the description of a group
of prime order p = p(\), and let BS, = BS,[GGen]. For any adversary A for the game BLIND running in
time t 4 = tA()\), there exists an adversary B for DLOG with tg ~ 2t 4 such that

AdvgE (A, A) < 24/ Advgds (B,N) + =
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Proof. The proof for this theorem mainly follows the proof for Theorem 4.1 with the only difference being
the game G1' and its transition from Gg'. We define the game G{' as follows:
Game G7': This game made the following changes:

« The oracle INIT(pk, mg, m) additionally computes sk < log, pk by exhaustive search.

. For each signing session ¢ € {0,1}, when the oracle Ug(i,smsgg)) is queried, it parses all the signer

messages as (Rg iy Ai) — smsg:(f-)7 (Zi, Rpi) < smsgéi) and (d;, e;, 20,4, 21,4) < smsgg). Then, if the user
algorithm BS}.Uz does not abort but Z; # h$* where h; is the message returned by U (i, -), the game

aborts.

Fix a signing session i € {0, 1} and let Bad; be the event where the abort described occurs in signing session
i, i.e., Z; # h$ but the user algorithm does not abort. This gives

Pr[G{* = 1] — Pr[G¢' = 1]| < Pr[Bado v Bad,] .

Note that the event Bad; only depends on the user messages in the signing protocol, i.e., (h;,¢;) (since the
event occurs before the signatures are returned).

To bound the probability of event Bad; occurring, we will construct a reduction B rewinding the adversary
A and argue that if Bad; occurs in both runs, B can extract log, W.

Before describing B, we make the following observation that h; and c¢; are uniformly random in G and
Z,, respectively. First, denote (5;, o4, @1.4,%0,5,71,:) as the user randomness for signing session ¢ € {0, 1} To
see this, consider that, as computed in the user algorithm, h; = hig® and ¢; = H'(my,, hl, Z! R Ry, A
—’y i — 71,i, where Z! R; i h ;» Al are the blinded values of Z;, Ry ;, Ry, A; respectively, and R} = H(Tm7

R, ;, A}). We specifically note that Aj = A;g***W =711 is uniform over G and is independent of ;,;. This is

because conditioning on a value of v; ;, A; takes on any element in G with probability 1/p due to a; ; being
uniform over Z, and independent of 7 ;. Then, the distribution of (h;,¢;) can now be seen as dependent
only on the signer messages R ;, A;, Rp i, Z;, the randomness 3;, a,i,70,s, 71, and A}. Conditioning on every
values other than 3; and 71 ;, we can see that h; is uniform over G as 3; is uniform over Z,, and ¢; is uniform
over Zjy, as 7y1,; is uniform over Z,. This means that the probability of Bad; stays the same even if h; and ¢;
are uniformly randomly sampled instead of generated by following the protocol.

Then, using the above observation, consider the following reduction B playing the DLOG game and
running A twice.

1. The reduction B takes as input (G,p, g, W) and runs A on input par < (G,p, g, W). It also fixes the
randomness to be used in the signing session 1 — ¢ and the user’s first message h; of signing session ¢ in
advance.

2. The oracles INtT, Uy (1 —14,-), Us(1 —1i,-), and Uz(1 —4,-) are simulated as in the game Gg'. The oracle
U, (4, ) instead of computing the values as usual answers with h; instead. While for Ug(4, ), B returns
¢; s L.

3. For the call to Us(i, smsg:(3 )), if the user algorithm does not abort B rewinds the adversary A to when

it queries Usa(i, smsgé )) and returns ¢ «<s Z,. The oracles for the signing session 1 — ¢ still use the same

randomness from the previous run. ‘
4. For the call (after the rewinding) to Us(%, smsgg(l)) if the user algorithm does not abort, we can parse

(di,ei, 20,4, 21,5) < smsggi) and (d}, €} zo’i,zi’i) — smsg’() If e; # €}, the reduction returns (z;; —

Rt X}

21.0)(e — ei)~t. Otherwise, abort.

It is clear that the running time of B is about twice of 4’s. Then, we argue the success probability of the re-
duction B by considering the event Bad;. We note that the event Bad; cannot be detected efficiently; however,
here we show that if such event occurs in both runs (even without B detecting Bad;), the reduction B will find
log, W. More specifically, we consider the following event frk such that the event Bad; occurs in both the first
and the rewound run of A in the reduction B and that the outputs of Us(3, -) over the two runs are different
(i-e., ¢ # ¢;). If this event occurs, then A has sent (Z;, Ry, Rn i, Ai) and (di, €i, 20,4, 21.4), (i, €}, 20 4, 21 ;)
such that
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’

(i) (R, Rni) = (g70pk™% B0 Z7%) = (g7 pk™% b 7, %)

By considering (iii),

Z;ii—d; _ h:o,i_z(/),i, _ g(zo,ifzgyi)logg hi _ pk(dq,—d'i)logg hi _ h:k(di—d;)
Then, d; = d; follows from Z; # h$*. Thus, e; # ¢} and (21, — 2 ;)(e; — €;) ™1 = log, W by (iv). This shows
that if frk occurs, B succeeds in the DLOG game, i.e., Pr[frk] < Advélgfn(B, A).

Now, we bound Pr[frk] using the forking lemma (Lemma 2.1). To this end, we define a wrapper A; over
A where A; takes as input the instance (G, p, g, W), the challenge ¢;, and a randomness p which is used to
derive the random tape for A, h;, and the randomness used in signing session 1 — . The wrapper A; then
simulates the signing oracles as B does and returns I = 1 when Bad; occurs. Otherwise A; returns L. This
means that the probability that I = 1 # 1 is Pr[Bad;]. Also, we can see that the event frk corresponds to
the event where A; is run twice with the same inputs except the two different ¢; # ¢}, and both runs return
I and I’ such that I = I’ # L. Thus by the forking lemma, we have

1 1
Pr[Bad,] < +/Prl[frk] + 5 S \/AdVEE (B, \) + =L

Applying the union bound over i € {0, 1} concludes the proof. |

4.4 Proof of Theorem 4.2 (OMSUF-1 of BS5)

To prove one-more strong unforgeability (OMSUF-1) for BSs, we consider the following sequence of games
(pseudocode description of the games can be found in Figure 7).

Game G64: The game first generates the public parameters par «<—s BS,.Setup(1*) and the secret and public
keys (sk, pk) «—s BSo.KG(par). Then, the game interacts with an adversary A(par, pk) with access to the signing
oracles S1, Sy, S3 and the random oracles H, H',H” which are simulated by lazy sampling. The adversary A
queries the signing oracle S; for £ times and the random oracles H,H and H” for Qu, Qn and Qu~ times
respectively. At the end of the game, A outputs £+ 1 message-signature pairs (mj, o) refr+1]- The adversary
A succeeds if for all ky # ko, (mf ,0% ) # (mf,,0f)) and for all k € [£ + 1], BSy.Ver(pk, mj, o) = 1. We
additionally assume w.l.o.g. that A does not make the same random oracle query twice and already makes
the random oracle queries that would otherwise be made in BS;.Ver when the game checks the validity of
the signatures. The success probability of A in game Gg' is exactly its advantage in game OMSUF-1, i.e.,

Advgs;™ ™ (A, X) = Pr{Gg! = 1]

Game G1': This game is identical to Gg' except that for the message-signature pairs (M, o ) ke[e+1] output
by the adversary A, for k € [£ + 1], after parsing the signature (Z,f,dz,ez,z&k,zik) «— o} and setting
* % %
R;,k — gForpk VAR — gtk W’e;:, the game additionally requires that Z}F = H(mJ, R;k,A,’:)Sk.
By Lemma 4.5, there exists an adversary B playing the game DLOG, running in time tz ~ 2t 4, such

that

PrGA =1] = Pr[GA = 1] — (£ + 1) <\/QH/Adv‘élé’§n(B, A) + Qp*“) .
Game G3': This game is identical to Gf' except that the signing oracle S, generates the proof 7 by
programming the random oracle H”, i.e., it samples s', § «s Z,, and programs H” at (h, pk, Z, g*pk=°, b Z %)
as 0. The game aborts if H” is already defined at (h, pk, Z, g pk 0, hSIZ*‘S).
The view of A is identical to its view in G1' if the game does not abort. Moreover, the game only aborts
if (h, pk, Z, gs/pkf‘s, hS/Z_‘S) has been queried or programmed beforehand, but gs/pk75 is uniformly random
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.y A
Ga,{GH;

Oracle Sq(sid):

G, 5 GGen (1> B Tf sid € Z, then return L
(G,p, g) — en( ) (2SS )
:

‘zl,e ro <$Zp |
‘R «— g0 :
‘A<—g21W_E // Gyt -Gyt

S /o -
par — (G,p, g, W)
sk «$ Zy ; pk « g%

EH£§£1712,I3H® ¢ s zo,d r1 <$Zp
{(mk » O )}ke[£+1] «—$ A%1:°2:73 (par, Pk) :Rg P gzopk—d :
For k: [K*Jr 1]: . / parsmf LA gy GsAJ
(% df el = 2 ol Return (Ry, A)
* (>)kk —d¥ i
RY < g Okpk "k Oracle Sa(sid, h) :
¥ % If sid ¢ Z, or sid € Z> then return L
A¥ — gTLEW Tk J G — G2 |, « T, U {sid}
* * — * %
If 3 ky # ko, (mkl,akl)—(rn,€2 O’k2) //G(’)quf
* * * *
or (mk1 Ry, ky’ k1) = (mj; Rg ko’ kz) L / ng‘
/ G5~ Gé“ r
then return 0
If 3 k € [€ + 1] such that
BSz.Ver(pk, m¥,o¥) =0 T
2:r(P7mk70) i B A‘65<—$Zp,w<—(6s)//GA G,
Z H s VALY G -G
or hk #* (mk g,k ) // 1 5 \If H”(}ka, Z,g' pk_é,h' Vi (5) £ 1 :
then return 0 I I
Return 1 : then abort garzle :
" .5
Oracle H, (str) for H, € {H,H’, H"}: Ij ,(}E Ek, ,Z,g, ,plf _ ,}i = ,):t,é, _a
If H,(str) # L then Return (Z, Ry, 7)
return H, (str) Oracle S3(sid, ¢) :
H. (str) <3G /1t Hv; ://H If sid ¢ Z; or sid ¢ Zz or sid € Z3 then return L
H. (str) <8 Zy /I He € {H',H"} I3 — I3 v {sid}
Return H, (str) [ T
1@« Cc—¢€ |
‘20477“0+d sk_l //G(’)Afo
B
| e —c—d |
‘zl<—'r1+e w‘ //G?

Rcturn (d,e, zo,zl)

Fig.7. The OMSUF-1 = Gg' security game for BSy and the subsequent games Gi* — G£. We remark that H,H’
and H” are modeled as random oracles to which A has access. Each box type indicates the changes made in the
game name contained in the box. Also, to make things clearer, for each box, the comments indicate which game the
changes in the boxes correspond to. Moreover, the signer state is omitted and we assume that each variable initialized
in signing oracles of earlier round can be accessed by the signing oracles of the same sid in later rounds.

and independent of the view of A and previous programming attempts of H” as s’ is uniformly random and
independent at the time that the oracle tries to program H”. Thus, by applying the union bound over possible
collision events, i.e., all pairs of queries to Se and queries to both H” and Ss (accounting for attempts to
program H”).

00+ Qur)

—

Game G#': This game is identical to G“24 except that for A to succeed, the game additionally requires that
each random oracle call to H corresponding to the verification of (mj, o}) for k € [£+1] are all distinct. More

Pr(Gs' = 1] = Pr[Gf = 1] -

specifically, this means that after parsing (Z},d}, e}, 25, 27 ) < o} and setting R;“ B ngik pk_d: VAR —
g7k W<k for all k e [¢ + 1], for any ki # ko,

(mzla gklaA*) (mZQa ;kQa ;:2)

The change in success probability of A corresponds to the event where A outputs ¢ + 1 distinct and valid
message-signature pairs, but there exists k1 # ko such that (mjg , Ry, A} ) = (mf,, i,). Consider
all the cases where this occurs:

*
g,k2?
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1. Case E1: ef # ef,. As aresult of Af = A}, we can extract the discrete logarithm of W as (zf,, —
szl)(ez2 — ezl)*l. Then, we can bound the probability of event F, by a direct reduction B receiving
inputs (G, p, g, W), simulating the game G3' against .4 and returning (zi",,€2 — z{‘ikl)(e"k‘2 - e;';l)*l when
FE occurs. Thus, the probability of Fy occurring is bounded by Advélgfn(lgl, A). We can also see that the
running time of 53; is about that of A.

2. Case Es: d,’:l # sz. With the same argument and R;kl = R;kz,
logarithm of pk. However, the reduction here would need to send Z = h% to the adversary without
knowing sk. To achieve this, we give the following reduction By to CT-CDH assumption instead.

« At the beginning, Bs receives the CT-CDH instance (G, p, g, X) and queries CHAL for £+ 1 challenges
Yi,..., Y41 It then computes W «— ¢g* where w «s Z,, and sends par — (G, p, g, W), pk — X to A.
The random oracles are simulated with lazy sampling as in G3A.

. For each Sy query, By samples zo,d, r; «<s Z, and returns (R, < g@pk ™4 A — gm).

. For each Sy query, By forwards its query h to its own DH oracle and receives Z = h'°%s X | instead of
using the secret key sk = log, pk = log, X to compute Z, and simulates the protocol on by setting
Ry, < h*Z~4 (using 2, d initialized in S; query of the same session ID). It then returns (Z, Rp,).

. Lastly, for each S3 query, By returns (d,e < ¢ —d, 20,21 < 71 + e - w) (using zp, d initialized in S;
query of the same session ID). Note here that the simulations of the oracle S1, So, S3 do not require
the reduction to know sk = log, pk.

. At the end when E» occurs, By extracts the discrete logarithm of X as x = (2§, — 25, ) (df, —df)
and returns the CT-CDH solutions as (k, Y}’ ) xers41]-

Since the distribution of (A, Ry, Ry, d, €, 29, 1) in this reduction is still identical to signing with sk, the
probability of F5 occurring in the game simulated by Bs is exactly the same as in G{{‘. With z = log, X,
By succeeds in the CT-CDH game if Es occurs. Thus, the probability of the event E5 is bounded by
AdvEcd (B, \). We can also see that the running time of By is about that of A.

3. Case E3: (df ,ei ) = (df,, ef,). Consider that E;kl = Ry, and A} = A} . By how R}, and A;:.are
defined and that (dj; , e} ) = (dj,, €f,), we can infer that 25, = 27, and 2T, = 2z¥, . Moreover, since

this allows us to extract the discrete

-1

(mf o) # (mf,,of ) and mj = mj , we have Z}} # Z . However, by the change in G,
k k
Z;:l = H(mzﬂ ;,kw ;:1)5 = H(mZy ;,kgv ;:2)5 = Zl;kg .
Thus, this event cannot occur.
Hence, applying the union bound on the three cases,
PriGs' = 1] = Pr[Gg' = 1] — AdveE (By, A) — Advazsdh (By, \)

ame : This game is identical to except that when generating the componen in par, the game
G G4': Thi is identical to G' t that wh ting th t Wi th
generates the discrete logarithm w «<—s Z, and sets W « g*.

Since the game runs the oracles in the same way and W still has the same distribution as in Gg“, we have

PriGit = 1] = Pr[G5' =1] .

Game G¢': This game is identical to Gj' except that the signing oracles are modified to use w instead of sk
in the signing protocol. More specifically, the values (A, Ry, Ry, d, €, 29, 21) are now generated as follows:

1. Sample 71, d, zg < Zy, and set A < g™, Ry < gZOpkfd. Later, after receiving h, set Ry, «— h*Z~%.
2. After receiving ¢, set e <~ c—d and 21 < r; + e w.

Since the joint distributions of (A4, Ry, Ry, d, €, 2o, z1) in the games Gf and Gg‘l are identical, the view of A
remains the same. Thus,
Pr[Ggl = 1] = Pr[Gyl = 1] .

Lastly, we give a reduction B’ playing the CT-CDH game using the adversary A as a subroutine. The
reduction B’ is defined as follows:

26



1. The reduction B’ takes as input a CT-CDH instance (G, p, g, X ), samples w «s Z,,, and sets W «— g*.
It then sends par — (G,p,g, W), pk — X to A.

2. The simulations of H' and H” are done as in Gz'. However, for queries to H (labeling each with j € [Qu]),
the reduction B’ queries the challenge oracle CHAL and receives a random group element Y; which it
returns as the random oracle output. (This means that B’ makes Qu queries to CHAL.)

3. The signing oracles are also simulated as in Gg“ except for the computation of Z = h™ in Sy which is
done by querying its DH oracle instead, i.e., Z < DH(h).

4. After receiving the message signature pairs (mjf, o} ) ree+1] from A, B’ parses (Z}F, e}, dif, za")k, zi“k) — oy,

sets R |« gzakkpk v JAY — g ey el , and checks if (mj, o) and (mjf, R} ;, Af) are distinct for all
kelt ¥ 1] and that all the message- 51gnature pairs are valid. If not, it aborts.

Next, B’ identifies ji for k € [£ + 1] such that j; is the index of the hash query H(mj, R} ;, A}) made
by A. Since (mj, R} ;, Ay) are distinct, ji are all distinct, meaning there are exactly ¢ + 1 such indices.
Lastly, B’ returns the CT CDH solutions (jx, Z})ke[e+1]-

It is clear that the running time of B’ is about that of A. For the success probability of the reduction, we

can see that B’ simulates the oracles identically to the game GA Then, if A succeeds in game G5 , then A
returns Z}F = H(m}, R;"’k,A;:)Sk = leogg for all k € [¢ + 1] where sk = log, pk = log, X. Thus, B’ returns
£+ 1 correct CT-CDH solutions while only querying the oracle DH for at most ¢ times. Hence, if A succeeds

in the game Gg“, B’ succeeds in the game CT-CDH. Thus,
Pr(Gz! = 1] < AdvEsd™ (B, )) .

By combining all the advantage changes,

AdV%?;Uf-l(A, /\) < M (f + 1 (\/QH/AdVélgegn (B )\) Qwr )
p p

+ AdVEE (B1, \) + Advacsd™ (By, A) + AdvEcsdh (B, )) .

Lemma 4.5. There exists an adversary B for the game DLOG, running in time tg ~ 2t 4, such that

PrGA =1] = Pr[GA = 1] — (£ + 1) <\/QH/Adv‘G“(§’§n(B, A) + Q“’) .
p
Proof. Let event Bad be the event where G“O“ outputs 1 but Gi' outputs 0. This corresponds to the
following event: A outputs ¢ + 1 message-signature pairs (mZ,aZ‘)kE[zH] which we parse for each k €
[¢+ 1], (Z,:f,dz,ek,z()k,zl ) < op and set R, « gzskvkpkfdf,Az — ngkW_e:; then, (1) for all k; #
ko, (mf ,of ) # (m§,, 0%, ), (2 ) for all k € [¢ + 1], BSz.Ver(pk,mf,0¥) = 1, and (3) there exists some

ke [+ 1] where Z} # H(m}, R¥ ,, A¥)**. Then, we can write

9 k>
Pr[Gt = 1] = Pr[Gg' = 1] — Pr[Bad] .

Also, define the event Bady, for k € [¢ + 1] which is event Bad with the condition (3) modified to be for only
the k-th pair (mj, o) where we have Z} # H(mk,R;‘k,AZ)Sk. This gives Bad = Hl 1 Bad,.
Now, define a wrapper Aj over the adversary A where Ay receives the follovvlng inputs: instance

(G, p,g, W), outputs (ci,...,cq,, ) of H, and a random tape p. Ay, is defined as follows:

1. Extract (sk € Zy, (s; € Zp,70,i € Lp,ei € Lp, 21, € Lp)ic)s (hi € G)ie[@u], (0i € Zp)ic[0+01, £') from the
random tape p.

2. Set par < (G,p, g, W), pk « g*.

3. Run (m}, o) kefer1) < AS1:82.88. HHL BT (har ok o) where each oracle is answered as follows:

27



« For the signing query with session ID j (j € [£]) to S1,Sa2, and Ss, use (sk, 7, €;, 21,4, $;) to answer
the query as in BS5.51, BS2.S5 and BS5.S3 respectively.

. For the i-th query (i € [Qu]) to H, return h;.

. For the i-th query (i € [Qu]) to H’, return ¢;.

. For the i-th query (i € [Qus + £]) to H”, return ;. (Note: In these queries, we accounted for the
queries that the wrapper made to generate 7 in each query to Si.)

4. If the event Bady does not occur, return (L, 1). Otherwise, return (I, (mj}, o})) where I is the index of
the query to H’ from A that corresponds to the verification of (m},o}). More specifically, after parsing
(ZF,d},ef, 28 o z;‘k) «— o}, I is the index that corresponds to the query (m,h, Z, Ry, Ry, A) to H" where
m = m¥ R, = gorpk %, A = g?teW—k h = H(m, Ry, A),Z = ZF,Ry = h*xZ~% Note that I
is well-defined as we assume that all random oracle queries made during verification are made by A
beforehand. Also, it is easy to see that the running time of Ay is roughly the running time of A.

Next, we consider the following reduction B playing the discrete logarithm game defined as follows:

1. On the input (G, p, g, W), B samples ci,...,cq,, < Z, along with the random tape p for Ag.
Run (Ia (ma U)) s Ak((Gap>g7 W)a (Cla ceey CQH/); P)
3. If I = 1, abort. If not, sample ¢}, ..., cf,, «sZ;, and
H
run (I, (m/,0")) < A ((G,p, g, W), (c1,. .., cr-1,¢}, ..., ¢ )i p)-
4. If I = I' and ¢} # ¢y, parse (Z,d,e,20,21) < o,(Z',d' e, 2}, 2]) < o', and return (21 — 24)(e —¢’) 7L
Otherwise, abort.

N

Since B runs Ay, twice and the running time of Ay is about that of A, tg ~ 2t 4. Next, we show that if B does
not abort (i.e., I = I' # L and ¢; # ¢}), then it returns a discrete logarithm of W. Since I = I’ # L, the
message-signature pairs (m, o) and (m’,o’): (a) are valid signatures corresponding to the I-th query from
A to H" of the form (m, h, Z, Ry, Ry, A) and (b) satisfy Z # H(m, Ry, A)* and Z’ # H(m’,R;,A’)Sk where

Ry = g% pk™@ A = g W e, R, = gzépk_d/, and A’ = g\W~¢ . By (a), we know the following

(i) m=m',h =H(m, Ry, A) = H(m', R, A"), Z = Z'.

(ii) e =d+ed; = d’,—&-e'.
(iii) g¥pk~? = geopk™¢ h20Z~% = proz~4
(iv) A=gaW e =gaW—e.
We will argue that d = d’. First, the equations in (iii) give Z4~¢ = pz0—% = glzo—20)log,h pk(d=d)logg I _
hk(d=d) Since Z # H(m, Ry, A)* = bk, only d = d’ satisfies the equation. Since d +e =c; # ¢; =d + ¢/,
we have e # ¢/. Thus, by (iv), B returns (21 — 21)(e — ¢/)~! = log, W. Hence,

AdVEE (B, ) = Pr[B does not abort] = Pr[I = I' AT # L acp # ¢f].

Lastly, by the fact that B rewinds A which only outputs I # | when Bady occurs, we can apply the forking
lemma (Lemma 2.1),

Pr[Bady] < \/QH/Advgz’fn(B, A) + Q;/ .

The lemma statement follows from the union bound over Bady for k € [¢ + 1]. m]

5 Achieving OMUF-2 security from CDH

In this section, we present a four-move blind signature scheme BS3, described in Section 5.3, achieving the
OMUF-2 security based on the CDH assumption. The key ingredients used in this construction are the
homomorphic equivocal commitment HECom, given in Section 5.1, and a non-interactive proof system IT
(for guaranteeing blindness), given in Section 5.2.
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Algorithm Gen(par = (G, p, g)): Algorithm Com(ck = A € G®*2,S € G;crnd € Z?]):
Return ck «$ G2*2 Return com « (A1 49792 g gSmd1 yemdzy
Algorithm TGen(par = (G, p, g), X): Algorithm TCom(td = (D, X), S’ € G):
dy1,di2, d21,daz <3 Zp T,p S 7L,
De(dll d12) com(—(gT,Sl-Xp);StH(D,X,S',T,p)
d21 da2 Return (com, st)
11 gdi2

ck «— (}g(dm f(dQQ) Algorithm TOpen(st = (D, X, S’, 7, p),c € Zp):
Ret (ck, td — (D, X)) If D is not invertible, then return L

eturn (ck, ) Return (SHS,-XC,CI’ndFD_l(T,pfc)T)

Game Binding{jcom (A):

par «$ GGen(1™)

ck <8 Gen(par); (S, S’,crnd, crnd’) <8 A(par, ck)

If Com(ck, S;crnd) # Com(ck, S’;crnd’) or S = S’
then return 0

Return 1

Fig. 8. Description of the special commitment scheme HECom = HECom[GGen] and its binding game. For the
algorithms Com, TCom, and TOpen, par = (G, p, g) is taken as an implicit input.

5.1 Homomorphic Equivocal Commitment Scheme

In this section, we present the commitment scheme HECom which is a tuple of algorithms (Gen, TGen, Com,
TCom, TOpen), described in Figure 8. The algorithm Gen generates a uniform commitment key ck «s G2*2,
which can be done transparently. For the rest of the scheme, one can view our commitment as a variant of
the commitment scheme of [9]. Both commitments commit to a group element, and are additively homomor-
phic and computationally binding based on the DLOG assumption. For equivocation, we can generate the
commitment key with a base X € G embedded, allowing us to open a commitment of S’ to S = S/ X¢ for any
¢ € Zp. On the other hand, their equivocation allows opening a commitment to g* X for a uniformly random
a € Zy and any c € Zj,. The following theorem summarizes the properties of our commitment scheme.

Theorem 5.1. Assume that GGen outputs the description of a group G of prime order p = p(\). The
commitment HECom = HECom[GGen] satisfies the following properties:

. Additive Homomorphism. For comg,com; € G2, denote comg - com; as element-wise application of
group operation. For all (G,p,g) < GGen(1*),ck € G**2, Sy, 51 € G, and crdy, crndy € Z2,

Com(ck, Sp; crndg) - Com(ck, Sy;crndy) = Com(ck, SyS1;crndg + crndy) .

. Special Equivocation. For all par <s GGen(11), X # 1g and (ck,td) <s TGen(par, X) such that D
contained in td = (D, X) is invertible, and for any group element S = X¢S’, the following distributions
Dy and D are identical:

Dy := {(com, S, crnd) : (com, st) <s TCom(td, S") ; (S,crnd) <—s TOpen(st,c)} ,

Dy := {(com,S, crnd) : crnd «s Zf, ; com «— Com(ck,S;crnd)} .
. Uniform Keys. For all par <s GGen(1") and X # 1g, ck generated by (ck,td) <—s TGen(par, X) is
uniformly distributed in G?*? (i.e., distributed identically to ck <s Gen(par)).
. Computationally Binding. For any adversary A for the game Binding (described in Figure 8) with
running time t 4 = t4(\), there exists an adversary B for the game DLOG with running time tg ~ t4
such that the advantage of A in the game is bounded by

Advyedins (A A) = Pr[Bindingfizcom(A) = 1] < Advacs (B, A) + S
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Proof. We consider each property as follows:

. Additive Homomorphism. Consider ck = A € G**2, 5, 51 € G and crndg, crnd; € Z2.

Com(ck, Sp; crndg) - Com(ck, Sy; crndy)
crndp,1 4crndg, 2 crndg;1 4crndp, 2 crndy;1 4crndy 2 crndy;y 4crndy 2
= (An A12 aSOA21 A22 ) ’ (A11 A12 751A21 A22 )
crndg,1+crndy 1 4crndg 2 +crndy 2 crndg,1+crndy 1 4crndg 2 +crndy 2
= (An A12 15051 ‘A21 A22 )
= Com(ck, SpS1; crndg + crndy) .

. Special Equivocation. To show this, suppose X # 1g and the trapdoor D is invertible. Let S = S’ X¢
for S’ € G and ¢ € Z,. Then, we will argue that the crnd generated using the trapdoor is uniformly
random and the commitment com is exactly Com(ck,S;crnd). By the algorithms TCom and TOpen,
we have that crnd = D™Y(7,p — ¢)” for uniformly random 7, p «<—s Z,. Because D is invertible, crnd is
uniformly random in Zi. Moreover,

com=(g7,8 - XP)=(¢7,5'X- X)) = (97,5 - XP~°)

Then, by how crnd is defined, we have that Com(ck, S;crnd) = (¢7, 5 - XP~°).
« Uniform Keys. Consider when X # 1g, meaning X is a generator of G. Then, for uniformly random

din ,di2
dy1,d12, d21, dag <3 Z,,, we have that ck = <§d21 Xd22> is uniformly distributed in G2*2.

. Computational Binding.

?4 )B( where
r<«sZ,, A, B «s G, it aborts if » = 0. Otherwise, it runs A on the input ((G, p, g), ck). After A returns
(S,8’,crnd, crnd’), it checks if A succeeds in the game, i.e., Com(ck,S;crnd) = Com(ck, S’;crnd’) and
S # S’ Finally, B returns r(crnd] — crndy)(crndg — crndy) L.

First, the distribution of ck that B generates is exactly uniform in G2*? except when the reduction
aborts (which occurs with probability at most 1/p). Consider the output of A. Since Com(ck, S;crnd) =
Com(ck, S’;crnd’), we have that

Consider a reduction B which on input (G, p, g, X) generates the commitment key ck «—

r(crnd'l7crnd1)Xcrnde,7crnd2 _ SlsflAcrndllfcrndl Bcrndfzfcrndg

g :lG-

Then, with 7 # 0 and g being a generator, if crndj, = crnds, we have crnd] = crnd; and S = S’. Hence,
crndy # crndy and r(crnd] — crndy)(crndy — crndy) ! is well-defined as log, X. Thus, Advpiidine( 4 3) <
AdVECE (B, ) + 1. =

5.2 Proof System IT

In this section, we present a non-interactive proof system II, described in Figure 9, with access to a hash
function Hy : {0,1}* — Z,. The proof system IT attests membership of the language Lg k, defined for a
group G of prime order p with a generator g, and a positive integer K as follows:

K
= = lo k;
EG,K = {(ga (hz’ pk'L)ZE[K]?‘S) 1S = th bo P 1} .
i=1
We require that II satisfies completeness, soundness, and zero-knowledge as established by the following
lemma with the hash function Hyr : {0,1}* — Z, modeled as a random oracle.

Lemma 5.2. Let G be a group of prime order p = p(\) with generator g and K = K(\) be a positive integer.
The proof system II (defined in Figure 9) satisfies the following properties with respect to Lg x where the
corresponding security games are defined in Figure 10:
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IT1.Prove™ (g, (hi, Pk, )ie k7> ), (k) ie[x]) -

FesZK

For i € [K]: R; «— g™

R« Hf{:l h?

c < Hm(g, (hi,pk;)icrk]: S5 (Ri)ic(x], R)
Forie [K]:5; « 7 +c-sk;

Return 7 « (c, §)

IT.Ver"1T ((g, (hi, Pk, )ic(k], S), ) :

(¢,8) «m

For i € [K]: R; « g ipk;®

R« S—°¢ H,fil hii - B

If ¢ # Hiz (g, (hi, pk;)ie[ k], S5 (Ri)ie[ k], R) then
return 0

Return 1

Fig. 9. Description of the proof system IT with access to the hash function Hy : {0,1}* — Z,

Game Soundﬁ()\)

(G, p, g) «$ GGen(1*)

(9, (hi, pk;)ie(x, S, m) <8 A" (G, p, g)

I I.Ver((g. (hi. py)ierx), §), ) = 1
and (g, (hi, pk;)ie[x],S) ¢ Lc,x then

Oracle CHAL(g, (hi, pk;)ic[K]> S, (ski)ie[x]) *

If 3i € [K], pk; # g™ or § # [[X | hzki then

return L B
If b = 0 then 7 «$ IT.Provel' ((g, (hi, Pk;)ierx1, S)s (ski)ie[ k)
If b = 1 then m <% Sim(g, (h;, pki)iE[K],S')

Return =«

Algorithm Sim(g, (hi, pk;)ie[x]» S):

C87p,, 58 Zf

For i € [K]: R; « g%ipk; ©

R<— ST, hz;l

If Hr (g, (hi, pk;)ierk]s S5 (Ri)ie[k]> R) # L then
return L B B

Program Hrr (g, (hi, pk;)ie[x], Ss (Ri)ie[x]: R) < ¢
Return m « (¢, §

return 1
Return 0

Game ZK7; (\)
(G, p,g) <5 GGen(1*) ; b s {0,1}
b/ s ACHAL,HI—[ (G, P, g)

If b = b’ then return 1
Return 0

Oracle Hpy (str) :

If Hpy (str) # L then return Hp (str)
Hp (str) —$ Zp

Return Hyy(str)

Fig. 10. The security games Soundy and ZKﬁyb for the proof system II.

. Completeness: For any st = (g, (h;, pki)ie[K],S) € Lg i and sk; = log, pk; forie [K],
Pr[I1.Ver™7 (st, 7) = 1| «s IT.Prove" ™ (st, (sk;)ic[x])] = 1 .

. Soundness: For any adversary A for the game Sound and making Qu, = Qu, (\) queries to the random
oracle Hyr, we have
Quy

p
. Zero-Knowledge: There exists a simulator Sim, which can program the random oracle Hry, such that
for any adversary A for the game ZK, making Qu,, = Qu, (\) queries to the random oracle H and
Qcuar = Qcuan(N) queries to CHAL, we have

Pr[Sound7r(\) = 1] <

PHZKAN) — 1] — 4| < Qeuns(Qeiuns + Qi)

2 D

Proof. We consider each of the listed properties.

. Completeness. Completeness follows by inspection. ~
. Soundness. Let A be an adversary playing the soundness game and outputting (g, (h;, pki)ie[K],S) ¢

log,, pk;
i .

Lg.x and a proof m = (¢, §) where §e Z{f. Since the statement is not in the language, S # ]_[lel h
Also, because  is a valid proof for (g, (hi, pk;)ie[x]: )

K
c= HH <g7 (hu pki)iE[K]7 57 (g% pk;c)iE[K]ag_c H h?)
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Here, w.l.o.g., assume that A already made this query as it is done when checking the validity of 7

anyways. Then, consider any query (g, (hi, pk;)ie(x]s S, (Ri)ie[x], R) to H where S # Hfil hiogg Pk We
will show that there is exactly one ¢ € Z,, which allows the existence of §€ Z[* such that

K
pkéR; = ¢ for i € [K], and S°R = nhf’ .
i=1

We consider such ¢, which gives us the above equations. Then, by raising pk{R; = g% to log, hi, we have
clog, pk; log, h; 3 . K i plogg M K ;35 dc b
h, ¢ 97" = h;" for all 4 € [K]. Thus, we have that [[,_, h R, =Tl hi" = S°R,

‘R clog, pk
: I —log, hi log, pk; 5-1\° o log,, pk; g .
implying RIS, R, **" = (HK h; %P S 1) . Since [T, b, % "“S~1 % 1g, there exists only one

i 4 i
i=11%
c satisfying this equation. Then, for any query to Hy; involving a statement not in the language, the
probability of getting ¢ which allows the adversary to give a valid proof is at most 1/p. Hence, since A
makes Qu,, queries to Hy,
QHn

p

. Zero-knowledge. Consider the simulator Sim as described in Figure 10 which programs the random
oracle Hyy. First, we can see that if the simulator Sim does not abort, then the adversary’s view is exactly
the same as when the proofs are generated honestly. Then, to bound the abort probability, the simulator
aborts if it tries to program the oracle at a point which was queried or programmed before. Since the
simulator programs at a tuple which includes Ry = g% pk; © for 5} < Z,, which is uniformly random over
G, the probability that a tuple including R; has been initialized on Hyy before is at most (Qup +Qcuar)/pP
(counting the random oracle queries and the programming attempts). Thus, bounding this over Qcpar
queries to CHAL,

Pr[Soundp (\) = 1] <

1 < QCHAL(QCHAL + QHn) )

S

2 P

PriZKa(\) = 1] —

5.3 Four-Move Blind Signatures from CDH

The scheme BSs is described across Figures 11 and 12. (A protocol diagram is also presented in Figure 15.)
Our starting point is Rai-Choo [40], a two-move blind signature scheme which is OMUF secure based on
the CDH assumption in a pairing group. To better abstract our ideas, we consider a pairing-free analogue

of Rai-Choo producing signatures of the form ((pk;, ¢:)ic[x], S) with inefficient verification checking

K K
pk = [ [ pk; and § = [TH(H(m, @) %0 .
1=1 =1

To make the scheme efficiently verifiable, we apply a witness-indistinguishable OR, proof showing that the
signature is valid, i.e., ((pk;)se[x],S) satisfies the verification equation with regard to (H(H,(m,©:)))ex],
or that we know the discrete logarithm of a public parameter . Finally, using the homomorphic equivocal
commitment HECom from Section 5.1, the signer commits to the group element S from the Rai-Choo protocol
and the nonce R in the OR proof as comg and com  respectively. These commitments are sent in the second
move instead of S and R and opened later in the last move. The final signature consists of a Rai-Choo
signature ((pk;, (Pi)ie[K]ag), the OR proof response (d, €, 2, 71), and the commitment randomness used to
compute comg and comp. It is easy to show that this scheme satisfies correctness, but for completeness, we
prove this in Section 5.4.

As mentioned in the prior section, the commitment key of HECom can be generated transparently; thus,
so are the public parameters of BSs. We also remark that the complexity of the scheme depends on two
parameters N and K of which N~ needs to be negligible for the OMUF proof. To achieve the signature

size and communication in Table 1, we set N = 2 and K = .
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Algorithm BSg.Setup(l’\, K,N):
(G, p, g) <3 GGen(1*)
W «$G ; ck <3 HECom.Gen((G, p, g))
Select H,,, Heom : {0,1}* — {0,1}*
Select H: {0,1}* - G
Select Hg, H',Hpr : {0, 1}* - Zyp
Select Hee : {0,1}* — [N]¥
par — (G,p, g, W,ck, K, N,

H,,Heom, H, Hg, H'  Hmg,Hee)
Return par
Algorithm BS3.KG(par) :
(G,p,g,W,ck, K, N,

Hu, Heom, HyHg, H' , Hir, Hee) <« par
sk «$ Zy ; pk < gSk
Return (sk, pk)

Algorithm BS3.S1(sk, umsg;) :

(5 ((rig) 2 7, c0m; 70 by 7, )ie[K]) < umsg;
If Check(umsg;) =0
then return L
Forie [K —1]:
sk; «<$Zp ; pk; «— gSki
sk <« sk — Zfi;l sk;
pky — K
z1,e «S$ Ly, Ty «$ Z;f
& K sk
S —TJLL, hi,fi
A—girtw—e
R (g701,...,g70K)
R<TIE, h:ojz
crndg, crndg «<$ Zf)
comg « Com(S;crndg)
comp <« Com(R;crnd)
Return ((pk;) e 17, comg, B, com g, A)

Algorithm BS3.S2(c) :
d—c—e
For i € [K]:
Z0,i < To,i + d - sk; B
input « (g, (hlj7 s PRy )ie[x]: S)
m « Provel'nr (input, (ski)se[x])
Return (d, e, 2o, 21, S, R,crndg, crnd 5, )

Algorithm BS3.Uq (pk, m) :
For (i,7) € [K] x [N]:
@i <85{0,1}* 5 pij — Hu(m, @i ;)
eij <8 {0,1}* 5 Bij — Hg(eij)
Fij < (Wi j;€i5) 3 comij — Heom(ri ;)
Wiy Hpig) 5 hig < hi ;970
com <« (com; ;)ie[K],je[N] ; b < (Ri j)ie[K],je[N]
J « Hee(com, h)

Return (J, ((ri,j)j;é.fi’comi,fi’ hi”fi)ie[K])

Algorithm BS3.Uz(smsg;) :

((pk;)ie[r—1], comg, R, comp, A) < smsg,
Pk — Pk Liepay PR; "
a1, 70,71 <8 Ly 5 Go S LS ;5 5,0 S L]
-8, -
com « comg - Com(ck, Hfil pk;, o, ds)
((PK})se[ k7> coms, 7) «<$ ReRa((pk,, h/iyji)ie[K] , com,)
For i € [K]: R «— R;pk,~70g%0.i
comp «— Com([TX | R'l bJi gy 7 F0,i555)
i,J;

com’s «— comp - comz” 0 - comp
A — AW 71 g1
¢« H'(m, (h,zf1 , PK} ) se[ K], com’s, R, com’z, A)
ce—c —v—m
Return ¢
Algorithm BS3.Ug(smsg,) :
(d, e, Zo, 21,5, R,crndg, crnd g, ) < smsg,
Ifc#d+eor AW® # g°1 or

3i e [K], Ripk?d # ¢g*0:% or

RS £ 1K, hjojf or

comg # Com(SL; crndg) or

comp # Com(R;crndg) or

Ver'T ((g, (h; 7., Pk;)ie[x], §), ™) = O then

e

return L
g a1k Vi, 7
8"« STIiL, pk, v h;,ji”
d —d+ o ; e — e+

264730+620+d~7_";z'1<721+a1
crnds, «—crndg + 05
crnd’; < crndg — 0 - crnds + 6r

’7 ad ! - ’ / ’
o — ((pkys #;, 7, )iex), S» d' €', %y, 21, endy, ernd’g )
Return o

Fig.11. The setup and key generation algorithms along with the signing protocol of the blind signature scheme BSs =
BS3[GGen]. The verification algorithm BSs.Ver, the algorithms Check and ReRa are given separately in Figure 12,
while the proof system IT = (H.ProveH”, H.VerH”) is given in Figure 9. For ease of understanding, we omitted the
states of both the user and signer algorithms and assume that any values initialized in the prior rounds are accessible
to the later rounds. The public parameters par, as stated before, are implicit input to every algorithms except BS3.KG.
The notation Com(- ; -) denotes HECom.Com(ck, - ; -) for the commitment scheme HECom from Section 5.1. Similarly,
we write (Prove™ Vert') instead of (11.Prove™ 1 IT.Ver"). We also give a protocol diagram of BS3 in Figure 15.
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Algorithm BS3.Ver(pk, m, o) :
((Pk;, @i)ic[k]> S, d, €, Z0, 21, crndg, crnd ) «— o
For i € [K]:
hi o H(Hu(m, 00))
R; < gzo’ipk;d
R 57¢ I, hizO’i
A—gltw—e
comgz «— Com(S;crndgz)
comp < Com(R;crndg)
¢ H'(m, (hi, pk;)ic[x], coms, R, comp, A)

Algorithm Check(open):
(J, ((ri,j)]#fwcomi“fi, hi,ji)iE[K]) < open
For i € [K] and j € [N|\{J;}:
com; ; < Heom(ri ;)
(Wi,j,€i,5) < tij 5 Bij < Hp(ei,z)
hi ;< H(pi, ;)g"d
com <« (com; j)ie[k],je[N] 3 P — (P j)ie[K],je[N]
If J # Hee(com, h) then return 0.
Return 1

Algorithm ReRa((pk;, hi)ie[x],comg):

If pk # Hie[K] pk; or d + e # c then =
return 0 Let 7 € Z,,

Return 1 By TRy 8Dy T — —
For i € [K]: pk} « pk;g™
com’s « comg - Com([ [, h;%;0)

K—1 =
i=1 Ti

i=1""%

Return ((pk;)ie[x], com’, 7)

Fig. 12. The verification algorithm BSs.Ver and the algorithms Check and ReRa used in the signing protocol of BSs.
The public parameters par are implicit input to BSs.Ver.

BLINDNESS. The blindness of BS3 can be guaranteed by the following steps:

« We apply the blinding procedure from Rai-Choo (as described in U;,Us and ReRa) to make the distri-
bution of ((pk;)ie[x],S’) in the signature independent of the transcript.

. We then blind the OR proof (as described in Uz and Us) to make the the distribution of (d, €/, 2}, 21) in
the signature independent of the transcript.

. To blind S and R according to the above points, we use the homomorphic property of HECom and
blind comg and comp instead. We also rerandomize the commitments as the commitment randomness
is included in the final signature.

. Finally, we need to ensure that the signer cannot send ((pk;)ie[x], S) such that S # Hfil hio? Pk where

hi7 7 for i € [K] are group elements contained in the user’s first message. Otherwise, a malicious signer
can link the signatures back to the signing sessions by checking whether one of the signatures contains
the values ((pkj, ¢;)ie[x], S') with S # Hfil H(H,.(m, ;)" PKi. To avoid this, we include a proof 7
in the signer’s second response attesting that ((pk;)e[x1,S) is honestly generated. For this, we use the
non-interactive proof system II = (H.ProveH”, IT.Vertn), described in Figure 9, with access to the
hash function Hy : {0,1}* — Z, modeled as a random oracle in the security proofs. As established in

Section 5.2, IT satisfies completeness, soundness, and zero-knowledge in the random oracle model.

Similar to BS; and BSs, one could also not include IT in the protocol, and show computational blindness based
on the DL assumption. Still, this proof would depend on the random oracle model since the original blindness
proof of Rai-Choo also required random oracles. Thus, we only consider the variant with I7 included, and
prove the following theorem in Section 5.5.

Theorem 5.3 (Blindness of BS3). Assume that GGen outputs the description of a group of prime order
p = p(A\), and let BS3 = BS3[GGen] and K = K()\), N = N(X) be positive integer inputs to BS3.Setup. For
any adversary A for the game BLIND making at most Qu, = Qu, () queries to H, € {H,,Hg, Heom, Hr7},
modeled as random oracles, we have

in 2Qu,  2KNQu, 2KQu, = 2KQu,,
Advger(A,N) < T e e

ONE-MORE UNFORGEABILITY. The following theorem, proved in Section 5.6, establishes the OMUF-2 security
of BS3 in the random oracle model under the CDH assumption.
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Theorem 5.4 (OMUF-2 of BS3). Assume that GGen outputs the description of a group of prime order
p = p(A), and let BS3 = BS3[GGen] and K = K()\), N = N(X) be positive integer inputs to BS3.Setup. For
any adversary A for the game OMUF-2 with running time t4 = to(\), making at most Qs, = Qs, (A) and
¢ = L(X\) queries to S1 and Sa, respectively, and Qu, = Qu, (\) queries to H, € {H,H,H,,, Hcom, Hee, Hir },
modeled as random oracles, there exist adversaries B for the game Binding of HECom, B’ for the game DLOG,
and B" for the game CDH, such that

. / 12
AdvgE 2 (A, \) <(£+ 1) <\/QH, (Advglgg;;g(s, A) + AdveE (B, )\)) - Q;) + W+Q;j+)

2 2
Qs, 4 FHeom + @, + QHeon @H. + QHQH, wdh

+ NK 2/\ + 4/ - AdVGGen (B”, A) .

Furthermore, B, B’ and B” run in time tg,tg ~ 2t4, and tgr ~ t4 respectively.

The proof in Section 5.6 consists of the game sequence Gy — G13 which is split into the following parts,
with Gq corresponding to the OMUF-2 game:

. Game G forbids the adversary from returning a message-signature pair that contains ((pk;, ©:)ie[x7, S)

with S # Hfil H(H,.(m, ¢;))'°8s Pk, If such event occurs, we rewind A to either break the binding of
HECom or extract the discrete logarithm of W in the public parameters.

. Games Gy — G4 change the simulation of the interactive proof in the protocol to now use w = log, W
instead of {sk;}ic[x]

. Games G5 — G follow the security proof of Rai-Choo [40] and program the random oracles such that,
in any signing session where the signer’s second response is requested, log, hi*) T for some i* € [K]
is known, and that there is still a message-signature pair output by the adversarj;f from which one can
extract a CDH solution. Essentially, the proof does the following;:

1. First, the proof argues that for each of the user’s first message, there exists some i* € [K] where
hi*’fi* is computed honestly, i.e. hi*»fi* = H(H,(m,¢)) for some (m,p) (extractable from the
random oracle transcript). This then binds each signing session with some message.

2. Then, it programs the random oracles such that, still with non-negligible probability, the discrete
logarithm of H(H,,(m, ¢)) is known for the sessions where the adversary requested the signer’s second
response. Since there is at most ¢ such sessions, it is still possible to program the oracles to extract
CDH solution from one of the ¢ + 1 forgeries. Note that for the sessions where only the user’s first
message is received, it does not matter whether such discrete logarithm is known.

. Games G11; — Gq3 generate the commitment key ck with the base X = pk and simulate the rest of each
signing session (i.e., (pk;)ierx],comg, and S) without the secret key. More specifically, one can sample
sk; «<s Z, for i # i*, set pk; < g% and compute pk;s such that pk = ]_[zK:l pk,. Then, observe that S as
computed in the protocol can be written as

g hski _ Sk 21#7* ski n h _ IOgy b J* n hski h*Ski

i,J; z* - L 7 ik Ty
i£LF A

L

s
Il
—

Since we know log, h, T s only for sessions where the signer’s second response is requested, we cannot
[

compute S without sk for every first signer’s response. However, using the special equivocatlion };l)roperty,
SkL h Sk Ogg ik, o % !
iJ; ik, J S

. Finally, we construct a reduction to CDH using an adversary playing the game Gg.

we can send comg as a commitment to S" = [, _;« h and open it later to S = pk

5.4 Correctness of BS3

Theorem 5.5. BS3 satisfies correctness.
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Proof. To show correctness, we show that the signing protocol does not abort and that the final signature
is valid via the verification algorithm BSj3.Ver. Hence, we consider each step in the signing protocol and the
signature verification as follows:

« The first user algorithm BS3.U;: For i € [K],j € [N], we have the following values defined

= tij = Hu(m, @i ;)

= Bij = Hp(eiy)

— ri; = (i j,€i;) and com; ; = Heom(ri 5)

— W = Hlpiy) by = B g
Also, J = Hcc(com, h) where com = (com; ;)ic[x1,je[N]: P = (hij)ic[k],je[N]-

. The first signer algorithm BS3.S;: The algorithm runs Check, retracing the same computation in BS3.Uq
for i € [K] and j € [N]\{J;}, and getting the same com and h which pass the check J = He.(com, h).
Then, the signer first message consists of ((pki)ie[K,l],comg, R, comp, A, B) each defined as follows:

— pk; = g™ for i € [K] and skx = sk — 3.7 " sk,.
— comg = Com(S;crndg) with S = ]_[Z 1 hSk

— R=(g™,...,g7K), comp = Com(R,crndR) with R = %, hjof for 7y «s ZfS

— A=g""W¢ for z1,e s Zp.
« The second user algorithm BSg Ug Then, the blinded values of pk;,comg, R;,comp, A are as follows:
— By the definition of ReRa pk = pk,g™ for i € [K], ]_[ ~, pk; = pk and

com’; —Com(SH 1pk h;f?i;crndg+5s).
— R, = Ripk, g% for i € [K] and
com’s = Com(RS"™ ™ Hfil F_{Tﬁfl W o CYO’i;crndR — 70 - crndg + 0R)
— A = AgmWn o
. The third user algorithm BS3.Us: On the signer message (S, R, d, e, Zy, 21, crndg, crnd 5, ), the following

checks pass:
— ¢ =d + e because d i Is defined as ¢ — e by the second signer algorithm.
— For all i € [K], R, pk = gro,itdsk; _gzoL

S aod K 7ol+dsk 201
— Also, RS Hzlh’ —Hzl N

— The checks on A and com 3,comp terlally pass because of how the values are defined.
— The algorithm checks that the I1. Ver on 7 returns 1 which is always true by the completeness of
II.
. Signature verification: The final signature is o = ((pki,wi’i)ie[K],S’,d',e', Zy, 21, crnd’s, ernd’z), and
following from the checks in the third user algorithm, we have
—d+ed=dt+etywt+n=ctyp+n=c.

— For i e [K],
gPopk] T = gt G0t AT (e T ~dpld T = Figfoipk T = R
— Also,
I S “Tor B o.i+d-,
ST 57 = (S ok Th ™) ~18 th e
-1 =1
K a
_ a—d 1 Tipr Zo,i &0
=5 H i s H hl Ji
i=1
_ dB, ;. B, - \Fos G
= S [ pk; i (h, g ) WHhZ,JzaO
i=1 =1
K 5 K -
c—d Zo,i —d _Zo,i\—B;. 5 Q1 0,4
o B O G A R D
i=1 =1



— A = AgmW N = gatay e = gz/IW_e/.
— crndy = crndg + 4, crnd’sz = crnd — Yo -cr_nd/g + 6g, which gives
com’z = Com(S’; crnd’gg and com’, = Com(R’; crnd;) with
R = RSTOTIE, B
Thus, the verification algorithm returns 1, because H,K:1 pk; = pk and

d+¢e = =H(m, (h;j, Pk} )ie[x]> COM’5, R, com’s, A)

= H'(m. (. pK))egc], Com(S"; cnd), (g%-4pk! ™ )ieqaey, Com(R'; crndly), g W) .

5.5 Proof of Theorem 5.3 (Blindness of BS3)

To show blindness of BS3, we consider the following sequence of games.

Game Gg': This game is identical to the game BLIND of BS3 where A makes at most Qn, queries to the
random oracles H, € {H,,, Hz, Heom, Hrr }. For k € {0, 1}, we denote the superscript (-)*) as the corresponding
value in the user oracles U;(k,-),j = 1,2, 3. (The superscript notation is chosen for readability of the proof
as the scheme BSj3 contains many values with subscripts, in contrast to BS; and BSs.)

Game G+': In this game, we introduce an abort in the oracle Us(k, ) (for both k& = 0,1) such that on input
log, pk;
iJ

where h; 7, pk; for i € [K] are the corresponding values from the user’s and signer’s first messages in that

(d,e, 2y, 21,5, R,crndg, crnd g, ) < smsg,: the oracle aborts if the proof 7 verifies, but S # Hfil h

particular signing session k € {0, 1} (omitting the superscripts).

Notice that the view of A only changes when the abort occurs, i.e., the event where A queries Uz for
k € {0,1} with a valid proof = for a statement (g, (hi@,pki)ie[K],S) with S # Hf;(hi,jl)logg Pk; . This
corresponds to breaking the soundness property of II. By Lemma 5.2, any adversary with Qn,,-query access
to Hyy breaks the soundness of IT only with probability Qu,/p. Thus, bounding over both signing sessions
k € {0, 1}, we have
< 2nn

p

Game G3': This game adds another abort such that for all k¥ € {0,1},i € [K], and j € [N]\{J_}k)}, if
HH(~,¢Z(-Z-)) has been queried by A at any point throughout the game, the game aborts. Since ‘Pz(,kj) for

Pr[Gg' =1] - Pr[Gi' =1]|

j# j}k) is uniformly random in {0, 1}* and hidden from the view of A throughout the game,

2KNQn,

IPr[G3! = 1] — Pr[G3' = 1]| < o

Game G#': This game adds another abort such that for all k € {0, 1},i € [K], if Hﬁ(sik%k)) or Heom (-, eik%k))
has been queried by A at any point throughout the game, the game aborts. Since s(k%k) is uniformly random
in {0,1}* and hidden from the view of A throughout the game, Z
2KQu, | 2KQn

22 - 22

com

IPr[G3! = 1] — Pr[G3' = 1]] <

Game G7': In this game, the game samples J*) —s [N]¥ for both k € {0,1} at the start of the game and

aborts if J®) = J*) later in the game. The view of A does not change unless the game aborts, so conditioning
on the event that the game does not abort, we have

1

Pr(Gft =1] = L

Pr[G3' = 1] .
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Game G¢': This game changes how /%(‘,? is computed for k € {0,1},i € [K],j € [N]\{J_fk)} Previously, it

was defined as Hu(mbk,%(»?), however, now it is only sampled uniformly at random from {0,1}*. By the

changes in games G3' and Gy, j}k) = J;(k) and H,(-, gog j)) is never queried by A. Therefore, since u( ) |

distributed identically as before,
Pr[Gg‘ =1]=Pr[Gi =1].

Game G¢': This game changes how B LT and com( }(k) are computed for k € {0,1},i € [K]. Previously, it

was defined as H 5(55?}@) and Hcom(l’ifc}@), however, now it is only sampled uniformly at random from Z,

and {0, 1}* respectively. By the changes in games G' and G', J_(k) j(k) and Hg(e( )q(k)) nor Heom (-, 6§k}(k))
has been queried by A. Since ﬂ;lsz(k) and comik}(k) are distributed identically as before7

PrGgl = 1] = Pr[Gg' =1] .

Lastly, we claim (in the following lemma) that when Gg' does not abort, the view of A is identical for
both cases b = 0 and b = 1. This results in Pr[Gg = 1] = 1/(2N?K) (as there is only 1/N?X chance of the
game not aborting from the change in Gg'). By combining the advantage changes

2Qu, | 2KNQu,  2KQu,  2KQu
|Pr[BLINDBS3(>\)=1]—§|\ R S T o

com

concluding the proof.

Lemma 5.6. In G{\, if the game does not abort, the view of A is identical between both cases of b= 0 and
b=1.

Proof. To show this, first, assume w.l.0.g. that the randomness of A is fixed and that A only outputs messages
in the transcript where neither the game nor the user oracles abort which makes A receives valid signatures
(00,01). Also, let View 4 denote the set of all possible views of A that can occur in the game Gg'. A view
A € View 4 is of the form

A = (W, pk,mg, m1,To, T1, 00,01) ,

where for k € {0,1}: T} denotes the transcript of the interaction between A and the user oracle in signing
session k and oy, denotes the valid signature for message my. They are of the form:

T, = ((hik}(k), pkgk))ie[K],com(gk),comg—f),§(k),ﬁ(k),R(k),A(k),c(k),d(k),e(k),Zf)k),z§k),crnd%k),crndg)) ;

o = (kP 1)y, B, B o ® 5P a0 ngr ) e By

Note that we omitted the (j(k) ((r (k)) ij(k),com(k)ﬁm)ze[ 1) portion of umsg; *) because they are now inde-

pendent of the messages (mg, m1) by the changes 1ntroduced to the games G3' — Gg'. Also, we rename some
variables from the signing protocol as follows,
k k k k k k
B ="M, @ so( )k, i —uf}m = Hy(ma,., 0")

(11)
hgk) - h’i,j;.(k) ) h;( = h;,j_(k)(k) = H(Hz(‘k)) .

We need to show that the distribution of the actual adversarial view, which we denote as v 4, is the same
between b = 0 and b = 1. Since we fix the randomness of A, v4 only depends on the user randomness,
denoted

n= ((ﬂfk),sﬁgk)) [K],F(k),&ék)7a§k)7wé 771 5(k) st ))ke{o,l} ,

38



and we write v.4(n) to make this explicit.
Before continuing, we note that because of the change in G any non-aborting view should contain

3

_ skgk)
Sk —T1K, (h(,k)) which induces

- (k)

g™ = S®TTIE, (k™) = 1y )7 (12)
_ HK 1(h(k) 7ﬁ§k))sk§k)(h/.(k))ﬂ(k)
I

X2

ZK l(h/(k))sk(k)wt"(k) )
for skgk) = log, pkz(-k).

To show that the distribution of v4 is identical between b = 0 and b = 1, consider a view A € View 4.
We now show that there exists a unique n such that v4(n) = A, regardless of whether b =0 or b = 1. More
specifically, we claim that for both b =0 and b = 1, v4(n) = A if and only if for i € {0, 1}, n satisfies

(k) _  _s(bk)

®; =¥;

B§k) = log, h(k) - logg h;(k) for i € [K],

a®) = ;,é k) aém _ k)RR R k) )

7(()k ' (0x) d(k)’ 7yc) — o/(08) _ (k)

55;) cr dS(b') — crnd(gk), 5%” = crnd’R(b’“) — crndg;) + Wék) -crnd/g(bk),

For the “only if” direction, i.e., if v4(n) = A, then n satisfies Equation (13), this is true by how the user
algorithm of BSg3 is defined.

To show the “if” direction, suppose 7 satisfies Equation (13), we need to show that v4(n) = A. Partic-
ularly, we have to show that the user messages from oracles U, Uy and the signatures from oracle Ug are

(nierrers (1 ieprc)), (), eM), and (o0, 01) respectively.

7
Again, since we only consider non-aborting view A, we have the following guarantees for k € {0,1}:

(k

B = (pkP) 4% g for i e [K],

R = (3091 11 h0%

‘ (14)
A®) = —e® g2tV k) = gk) 4 (k)
com— = Com(ck, S(* crnd(sk)) com(-k) Com(ck, R(k);crndg)),
Then, by defining the intermediate values com%(b’“) and com’; ) ysed in the verification of Op, as
com’g( ) = Com(ck, Grbr), scrnd’z (b'”))
=)
com'R(b" = Com(ck, (5’(k))*d/(k) Hh;(k) “" crnd’ (bk))
i=1
we have
) ) _ S8 (o) I O ) k) g™ O
d te = H'(my,,, (7, pk; " )ie[x]> comyg 7, (g0 pk; )ie[k],comp W g ),

(15)

where Equation (14) follows from the checks in BS3.Us, and Equation (15) follows from the validity of the
signatures.
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First, we argue that the user’s first message hgk) of both signing sessions corresponds to the values in A.

This is due to
n = PR = (g™ = HiH G o)™

The first equality is from the value of Bi(k) in Equation (13). The other equalities follow from how we renamed
the values in Equation (11). The right-hand side of the equation is exactly the value in umsggk) Thus, the
next message from A will be ((pkl(-k))ie[K] com( ) R®), com(k) A®) BK)) from the view A (we included
pkg;) as well just for simplicity, as it can be recomputed from pk and (pkl(- ))ZE[K_l].).

Next, we argue that the user’s second message from Uq(k, -) will be ¢®) . To do this, we consider the blinded
values of (p k(k) R(k)) e[K]> A com( ) com(fc) which will be the inputs to H when computing ¢(*). Note that
(k) (k)

below we also consider the blinded values of S*) R(*) which are the values committed by comg”, com

respectively.

pk(,k) i pk’-(bk) for i € [K], By 7% in Equation (13)

K
bk) H Pk(k) —g® h/(k))~<k> By Equation (12)
i=1
R”(-k) = R(k)pk/(bk)_yék)g&ék7?
g i i Vi
(k)
- N "
- (pkl('k))_d(k)gzé?pk/gb KT aék) By Equation (14)
=(p k/(bk)) d(k)g—‘(k)Jra(k)er(k)_‘(k) k/(b") e
/(b ) —d (bg)
= g0 k pk;(bk) , By O‘g(k) in Equation (13)
1(k) &) =y o) . o
AN = ARWT g = (W )W 1.g i , By Equation (14)
=W By aﬁ’“) in Equation (13)

K
R/(’“) _ R(k)(g/(bk))fvék) n(ﬁ(k))*ﬁgk)(h;(k))&o i

1=1
( _q® ﬁ K (k) 0k1)> S/(bk))_7<k> ﬁ(ﬁ(k))_,@“) (h/(k))a"”
0 N 7 . 0,7
i=1 i=1
—d® K
i
K
(s*'“’“ﬁé“ [T~ e
i=1
—d®)
G ()= [ &, (bx) g (k)\BF) (4 1 (k) —7F)
= ()T S H(Pki )7 ()T
i=1
< SN —BF) o (R)\alF) (k) g\ k)
H(Ri )7 (h )0 (R gl ) o
=1

K
A R n(é(“( KUY =200 )= (g () 7%

/(bk) —d' ) n

H

(bk)
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For the value of R’ *). the first equality follows from how the value is defined; the second equality follows from
Equation (14); the third equality follows from Equation (12); the fourth equality follows from rearranging

the terms and hz(-k) R (k) gﬂ( . the fifth equality follows from rearranging the terms and the values of 'y(k)

and &’ék) in Equation (13); and the last equality follows from the value of R( )
1 (k) 1 (k) ’ ( k)

argue that the blinded commitments com’s™ and com’,*™ are exactly com’y

in Equation (14). Then, we

1 (bk)

and com’z"™* respectively.

K 0) K
— B4 "
coms® = coms® - Com(ck, ] [pki® ™" 1687 - Com(ck, [ T(n:™)7*";0)

i=1 i=1

- Com(ck,g/(bk);crnd(fk) 6§ ) Com(ck, 5/ crndig(b"’)) = com’g(b’“)

com’R(k) = comg) com's(k) - Com(ck, H Ry -8 GADEE ,(5%“))

= Com(ck,R’(k);crnd%) — 'yék) . crndlg( ) + 5; ) = com/R(b’“)

With these equalities, we have

H (e (B ki)Y ey, coms ™ B com !, 48y — 48 )

= q/O%) 4 o (Br) _%gkr) _,ﬁk) —d® 4+ e(k) O

where the first equality follows from Equation (15), the second to last equality follows from the values of

(k),'yi ) in Equation (13), and the last equality follows from Equation (14). Thus, the next message from

A will be S®) RK) q(k) (k) _’ék)7z§k),crnd( ) crndR from the transcript A. Lastly, the final signatures
output by the oracle Us Wlll be 00,01 by how the randomness 7 is defined in Equation (13). m]

5.6 Proof of Theorem 5.4 (OMUF-2 of BS3)

Let A be an adversary playing the OMUF-2 game of BS3. We consider the following sequence of games (with
the pseudocode description given in Figures 16 to 18).

Game Gé“: The game first generates the public parameters par <—s BS3.Setup(1*, N, K) and the secret and
public keys (sk, pk) «s BS3.KG(par). Then, the game interacts with an adversary A(par, pk) with access to
the signing oracles Si, Sy and the hash functions H,H’,H,, Hcom, Hee, Hiz, modeled as random oracles and
simulated via lazy sampling. The adversary A queries the signing oracles S; and Ss for g, and ¢ times
respectively, and the random oracles H, for Qu, times for H, € {H,H’,H,, Hcom,Hee, Hr}. At the end of
the game, A outputs £ + 1 message-signature pairs (mj,o})refe4+1]- The adversary A succeeds if for all
ki # ko,mi # mi and for all k € [¢ + 1],BS3.Ver(pk,m, o)) = 1. We also assume w.l.o.g. that A does
not make the same random oracle query twice and already makes the random oracle queries that would
otherwise be made in BS3.Ver when the game checks the validity of the signatures. The success probability
of A in the game G is exactly its advantage in OMUF-2 i.e.

veRi2 (4, \) = Pr[Gg = 1] .

Game Gi': In this game, in addition to the adversary A outputting ¢ + 1 valid message-signature pairs
(mf,of), the game requires that for each k € [¢ + 1], after parsing ((pky, ¥ )ieix] Sp> df s €5y 28 1 25 1
crnd , , erdy ) < of, the game checks that

where p¥, = H,(mi, ¢¥,),ski'), = log, pkj. If this check fails, the game aborts. We note that if the game

log, H(u¥,) .
ki, 57 W) nstead.

knows log, H(} ) ), the game can efficiently check if S = Hfil
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Let Bad denote the event that A succeeds in game Gg' but not G1', which gives Pr[G{* = 1] = Pr[Gg' =
1] — Pr[Bad]. Then, by Lemma 5.7, there exist adversaries B and B’ for the games Binding of HECom and
DLOG, respectively, both running in time tz,tp =~ 2t 4, such that

PrGf' = 1] = Pr[G§' = 1] - (£ +1) <\/QH/ (Advgiggg;g(s, ) + Advees (B, )\)) - Qp”’) :

Game G3': In this game, the game generates W in par as W « g% for w «s Z,. Then, the signing oracles
S; and S; now generate (ﬁ, R, A, d,e, Zy, 21) as follows:

« Sample r1,d «s Zy, Zy <3 Z{f.

. Set A — g™, R (g7 pkfd7 ... ,gZ‘Jvak;(d)7 R 5¢ nfil hjof.

. After receiving ¢, set e — ¢ —d and z; < 1 + - w. o
Since the joint distributions of (ﬁ, R, A,d,e, %y, 7) in this game and the game G{l are identical, we have

Pr[Gs' = 1] = Pr[G{* = 1] .

Game G3': In this game, com is generated as comgd -Com(ck, Hfil hjof;(SR) with 0 «s Z2, and the game
now sets crndp < 6z — d - crndg. Here, crndy is still uniformly random over Z2 and comy still commits to
the same R. Thus,

Pr[G3' = 1] = Pr[Gs' =1] .

Note that in Gé“, we only need S and crndg when opening comp in Sy, while computing comp in S; only
requires comg.
Game Gi': In this game, the signing oracle Sy now generates the proof 7 by using a simulator Sim (of

which existence is implied by Lemma 5.2) on the input (g, (b, Iz pK;)ic[x], S). Following Lemma 5.2, by the
zero-knowledge property of 11, and the fact that A makes ¢ and Qu, queries to So and Hpr respectively, we

have -
PUGA = 1] > PrGA — 1] — A+ Q)
p

Game Gz': In this game, the game aborts if one of the following occurs.

(a) For each H, € {Heom,H,,}, there exist two queries « # 2’ to H, such that H,(z) = H.(z2').

(b) The game additionally keeps track of a mapping #[-] : {0,1}* — {0,1}?*. Then, for each query (com,h)
to Hee where com = (com; ;)icix],je[n] and h = (hq j)ic[k],je[n] the game does the following: For each
i € [K] and j € [N], check if there exists a query r’ to Heom such that Heom(r') = com; ;, then if there is
one, set flcom; ;| « r’; otherwise, set flcom; ;] « L and abort if later there is a query r’ to Hcom where
Hcom(r/) = com; ;.

The view of A in this game only differs from its view in G£' if the game aborts. The abort probability
for (a) corresponds to the probability of collisions in the outputs of Heom and H, which is bounded by
(Qacom + Qa“)/?‘. Also, since the output of Heom is uniformly random in {0,1}*, the abort probability for

(b) is bounded by Q.. Qn../2*, considering all pairs of queries to Heom and H,.. Thus,

Qb T Q1 + Ot Q..
22 '

com

Pr(Gg' = 1] > Pr[G#l = 1] —

Before proceeding to the next game, we consider an event where A queries S; with the input umsg; =
(J, ((rij)jez>com; 7. h; 7 )ierr))- We consider the case where Check(umsg;) = 1 which would define values
com = (com; ;)icik],je[n] and h = (hij)ie[x],je[n] Such that H..(com,h) = J. Also, consider the values
F[com; ;] related to the query H..(com, h) defined in Gg'. For each instance i € [K], we have the following
observations:
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. If for some j € [N], f[com; ;] = L, then j = J;. For other j # J;, since r;,; is revealed in umsg, and
Check(umsg;) = 1, com; j» = Heom(ri /), by the abort (b) introduced in G£, #[com; /] # L.

. If for some j € [N], f[com, ;] = (u,€) # L, but hy; # H(u)g® where 8 «— Hg(e;;), then j = J;. This
is because of the no collision condition (abort (a)) in Heom introduced in G, meaning for j/ # J;,
#lcom; ] = r;jo = (i, €i ). Then, with Check(umsg,) = 1, we have h; j = H(u; j)g™e i),

We say the adversary A successfully cheats in instance i € [K] if one of the two cases above occurs while
Check(umsg;) = 1. Since the values f[com; ;] are fixed when J := Hee(com, h) is queried and J is uniformly
random, the probability which A successfully cheats in instance i € [K] is at most 1/N. Then, the probability
in which A successfully cheats in all instance is at most 1/N¥.

Game Gg': In this game, if A successfully cheats in all instance i € [K] in some signing query to S, the
game aborts. By the above discussion and applying the union-bound over all queries to Sy,

Qs,

NE -

Pr(Gg' = 1] = Pr[Gg = 1] —

Game G#': In this game, the game aborts if A queries H with g such that there is no x where H,(z) = u
at the time, but later on there is a query « to H,, where H,,(z) = p. The view of A only changes if the game
aborts. Then, since the outputs to H,(-) is uniformly random, we can bound the probability of the abort by
considering all pairs of queries to H and H,. Thus,

QnQn,

PriGz' = 1] = Pr[Ggl = 1] — o

Game G3': In this game, the game introduces two mappings b[-], b[-] such that when A queries H,,(m, ¢) and
no query of the form (m,-) has been made before, b[m] is set to 1 with probability 1/(¢+ 1) and 0 otherwise.
Moreover, when there is a query H(u) of which the value is not defined, the game searches for a previous
query (m, @) such that H,(m, ) = p and set b[u] < b[m]. If such query does not exist, set b[u] < 0. Since
both b and b are hidden from the view of A, the view of A remains the same. Thus,

PrGgl = 1] = Pr[G2t =1] .

Note that by the change in G2, it cannot be the case that b[m] = 1 but b[x] = 0 for some m and p = H.(m,-),
since this means that the query H(y) is made before H,(m,-).
Game G{;\: In this game, we made the following changes to Gé4 as follows:
. The game introduce a list L.
« Recall that by the change in Gg‘, for each signing session, there exists an instance i* € [K] where A
does not successfully cheat. Thus, the game can extract r = (u,¢) such that Heom(r) = CoMyx 7, and
H(p)gMs©) = hx - Then, for each query to S, the game aborts if b[u] = 1. Otherwise, the game
tries to find a previous query (m,-) such that p = H,(m,-) and sets £ — L u {(u, m)}, if such m exists.
« When A returns £+ 1 forgeries for distinct messages, since A queries So for £ times, there exists m* from
one of the message-signature pairs such that (-, m*) ¢ £. The game aborts if b[m*] = 0.

Consider the success probability of A.
Pr[Gg! = 1] = Pr[A succeeds|G3' does not abort]Pr[Gy' does not abort] .

Notice that the view of A, if the game does not abort, is exactly as in Gé“. Thus, we consider the probability
that Gg' does not abort, which corresponds to the event that for all (u,m) € £,b[u] = 0 and b[m*] = 1.
Hence, we can bound

Pr[b[m*] =1 AV(u,m) € L: b[u] = 0]
= Pr[b[m*] = 1]Pr[V(u, m) € L : b[m] = 0]
1

1\ 1 1\
> (1-—) =-(1-— > .
0+ 1 0+ 1 I 0+ 1 40
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The first equality follows from the independence of sampling each b and that b[x] = b[m]. The next inequality
follows from |£] < ¢ (since the game appends to £ only in Ss) and b[m] for distinct m being independently
sampled. The last inequality follows from (1 — 1/z)* > 1/4 for x > 2. Therefore, we have

1
PriGg = 1] = @Pr[Gg“ =1].

Game G7}: In this game, the game keeps track of a mapping ¢[-] : {0,1}* — Z, and initialize a Y <G at
the start of the game. Then, for each new query H(u), the game returns H(u) « Y gtul where t[u] «s Z,
and b[y] is as defined in Gg'. The view of A is the same as in Gg' since H(p) is still uniformly random over
G. Thus,

Pr[Gfy, = 1] = Pr[Gg' = 1] .

Game G7i: In this game, the game generates {ski}ie[x] in each signing session as follows: recall the non-

cheating instance i* from Gé“, the game now generates sk; «s Z,, for ¢ # i* and sets sk;x <« sk — ZH&L* sk;,
along with pk;s+ <« pk H#i* pki_l. This is only a syntactical change and the view of A stays the same.

Pr [Gﬁ =1] = Pr[Glo =1].

Game G1}: In this game, the game now aborts if sk = 0, and if this abort does not occur, the commitment key
ck is now generated along with a trapdoor td with a base pk embedded i.e., (ck, td) «—s HECom.TGen((G, p, g),
pk). The probability of the abort occurring is at most 1/p. Also, by the uniform key property of HECom, ck
generated with pk # 1¢ is distributed identically to ck «<—s HECom.Gen((G, p, g)). Thus,

1

Pr[Gs, = 1] = Pr[GfA =1] — = .
p

Game Gﬁ: In this game, the game does not compute sk;+ in each signing session anymore and changes the
way comg is computed and opened as follows:

. First, observe that we can write S as

Sk i _ Sk itk Ski sky logg i* J sk; 7. —sk;
ey Hh hw 7 Hh = i Hth*J*
i£e* e
Then, in Sy, the game now computes (comg, steom) <= HECom.TCom(td, S’) for S" = [ [, .« hjkj h;:k} .
sJi sk
« When S, of the same session is queried, by the change in G§4, we know that T = H(u)g? for some
(1, ) with 8 = Hg(e) and that b[u] = 0 (otherwise, the game aborts). Then, by the change in GHY, the
game knows log, h, T = B + t[u]. Thus, the game opens comg as (S, crndg) «<—s HECom.TOpen(stcom,

B+ t[u]).
By the special equivocation property of HECom, the view of A stays the same, unless the matrix D €

contained in td is not invertible, which occurs with probability at most 2/p by the Schwartz-Zippel lemma.
Thus,

2X2
ZP

2
Pr(GAA =1] = Pr[Gfy = 1] — = .
p

Lastly, we give a reduction B” playing the CDH game as follows:

. The reduction B” takes input (G, p, g, X,Y). If X = 1g, B” returns 1g. Otherwise, the game sets pk «— X,
par < (G, p, g, W,ck, K, N), with W and ck generated as in G13, and runs .A(par, pk).

. The random oracles H,,Hcc, Heom, H', Hy are simulated as in G“fg; however, for H, the game uses the
CDH input Y in place of the Y used in Gt}.

. The signing oracles are simulated without sk as in G“fg.
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« When the adversary returns £+1 message-signature pairs, the reduction checks if all the pairs are valid and
the messages are distinct. If not, B” aborts. Then, the reduction identifies m* as in Gg,“ and let o* be the
corresponding signature for m*. The reduction parses ((pk;, ¥} )ie[x]. S*, d*,€*, 2, 21, crnd, crndf) «
o*, computes p; = H,(m*, ¢7), and returns

First, we can see that the running time of B” is about that of A. Next, we will show the correctness of the
reduction. We can see that if X = 1g, the game is trivial for B”; otherwise, B” simulates the game Gy
perfectly. Then, suppose A succeeds in Giy. By the change in Gf!, this means that for (m*,o*), we have

S* = Hfil pk 18 HD | Thus,

K K K
g* — H pkzlogg H(pi) _ H pk;b[.u'i]'logg Y+t[ui] _ pklogg Y H pk:t[ui] 7
i=1

i=1 i=1

where the third equality follows from b[u}] = b[m*] = 1 for any i € [K] (due to the changes in games

G# — Gg' and that H,(m*,¢?) = uf). Hence, B” succeeds in the CDH game as Z = pk'°8s Y = Xogs Y

implying Pr[G7y = 1] < AdvEL: (B”, \). Finally, combining all the advantage changes,

- indi / 140 12
AdVRE" (A, A) <(€ + 1) <\/QH, (Advhding (5, 3) + AdVEEE (B, ) ) + Qp“) T %
Qs, . Qi + Qf, + QHeen Qn.. + QnQn,,

+NK 22

+ 40 AdveR (B",)) .o

Lemma 5.7. Let Bad be the event where A succeeds in game G(;‘ but not G{*. Then, there exist adversaries
B for the game Binding of HECom and B’ for the game DLOG both with running time tg,tg ~ 2t 4 such that

Pr[Bad] < (£ + 1) <\/QH, (Advﬁigg;;g(& A) + AdvEeE (B, )\)) + Q”’) .
p
Proof. First, observe that Bad corresponds to the following event: A outputs £ + 1 message-signature pairs
(M}, 0 )kee+1) such that (1) for all k1 # ko, mf # mj , (2) for all k € [+ 1], BS;.Ver(pk, o, m) = 1, and
(3) there exists k € [(+1] such that after parsing the signature ((pkj’, OF 1 )ie K15 Sk dE e, 25 0 21 crndf

crnd%wk) — of, and setting pf, < H.(mf, ¢f, ), we have S+ Hfil H(ﬂz‘tk)logg PR Also, define the event
Bady, for k € [£ + 1] which is event Bad with the condition (3) specified only for the k-th message-signature
pair (mj,o}). We can see that Bad = 2111 Bady.

To bound Bady, define the following wrapper Ay, over A, which takes inputs: the instance (G, p, g, W, ck, K,
N), the outputs (ci,...,cq,, ) of H, and a random tape p.

1. Extract from the random tape p, the following
(sk, ((skj,i)ie(r 11> 70,45 €5 21,55 P15, €d g j, cnd g ) jef@s, 1+ (Bi)ie[u]s His Heoms Hiry Hee, 0)

where sk € Z,, and for i € [K],j € [@s,], skij, €;, 21,5 € Zyp, o ; € ZK, while prr ; denotes the randomness
used to generate 7 in the j-th signing session, crndg ;,crndg ; € ZIQJ denote the randomness for the
commitments in the j-th signing session, (t;);c[q,] denotes a list of values from Z, which will be used
to program H, H. € {H,, Hcom, Hee} denote a lists of Qu, values in the codomain of H,, and Hy denotes
a list of Qu, + ¢ values in Z,. Additionally, we denote H.[¢] as the i-th entry in the list for H, €
{Huv Hcoma Hcca HH}

2. Set par < (G, p, g, W,ck) and pk « g**.
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3. Run (mf, 07 ) kefe+1] < AS1:82,H,H Hr Hy Heom H e (par, pk; p’) where each oracle is answered as follows:

. For the signing query with session ID j (j € [Qs,]) to S1 and Sy, use (sk, (skj:)ic[x 1], 70,55 €5, 21,5
pm.j,crndg ;,crndp ;) to answer the query as in BS3.S; and BS3.S respectively.
. For the i-th query to H (i € [Qu]), return g' and set ¢[-] « ¢; accordingly.
. For the i-th query to H' (i € [Qw]), return ¢;.
. For the i-th query to H, € {H,, Heom, Hee} (7 € [@n,]), return H,[i].
. For the i-th query to Hyy (i € [Qu,; + ¢]), (In these queries, we accounted for the queries that the
wrapper made to generate m in each query to Ss.)
4. If the event Bady does not occur, return (L, L1).
Otherwise, return (I, (m},o;)) where I is the index of the query to H' from A corresponding to the
verification of (mj}, o}¥). More specifically, I is the index of a query of the form (m, (hs, pk;)e[x], comg, R,
compg, A), where each value is defined as:
.« m=mj.
. For each i € [K], pk; = pk;‘jk,hi = H(Hu(mz,wik)), and R; = gZ:Jk,k»ipl(?lz<
. comg = Com(
%
. comp = Com(ck, R;crndf ) where R = (SE) = T, o

*

. A= erfgzlwk.
Note that I and all the values above are well-defined as we assume that all RO queries done in forgery
verification are made by A beforehand. Also, the way we program H in A allows us to check for event

_ %
Bady, efficiently, i.e., by checking S} # Hfil pk;kt[”i’k], which means that the running time of Ay is
roughly that of A.

ck, S:;crndgk)

Now, consider another wrapper Fork”* taking the input (G, p, g, W, ck) defined as follows:

1. First, Fork™* samples c1, ..., cq,, <sZ, along with the random tape p.
Run (Iv (ma O')) % Ak((G p7g7 Ck K N) (Cla RS CQH/); p)
3. If I =0, abort. If not, sample ¢/, ..., cQ;4 s Z,, and

run (', (m’,0")) <s Ax((G, p, g, W, ck, K, N), (c1, ... cr-1,¢), .., g, )i p).-
4. If I # I’ or ¢} = ¢y, abort. Otherwise, parse

N

((pkw SD’L)ZE[K]ﬂ S? d7 €, 207 21, Crnd§7 Cl’ndR) 0,

/

((pk;7 @;)ZG[K] ) g/a d/a 6/, Z‘(,)7 lea Crnd%a Cl’nd;?) — 0o .
Then, compute R = S~ d]_[l L hi™" and R’ = 5 HZK=1 .70 and return
(5,5, R, R ,crndg, crnd 3, crnds, crnd’s, 21 — 27, e — ') .

Since Fork™* runs Ay twice and the running time of Ay is about that of A, we have tg 4, ~ 2t4. Next,
we consider the event where Fork™* does not abort (i.e., I = I’ # L and ¢; # ¢}). Notice that I = I’ # L,
so the message-signature pairs (m, o) and (m’,o0’): (a) are Vahd signatures correspondlng to the I-th query
of A to H’, and (b) for i € [K], let p; < H,(m, i), 1 < H,(m',¢}), we have S # HZ L H(ui)'o8s PR and
S H2 L H(p /)08 Pki Consider two events: (Ey) S # 5’ or R# R',and (Ey) S =5 and R = R'. We can
see that

Pr[l =I' # L A ¢c; # ¢;] = Pr[Fork™* does not abort] < Pr[E;] + Pr[E,] .

For the event Ei, by the observation (a), we have that Com(ck,S;crndg) = Com(ck,S’;crndy) and
Com(ck, R;crnd3) = Com(ck, R’;crnd’;). Thus, we can construct a reduction B playing the binding game of
HECom, using Fork™ as a subroutine, and running in time t5 ~ tggya, , such that PrlE;] < Advglé‘géﬂqg([)’, A).

For the event Ey (S = S" and R = R’), we have that

() ST ™ = R= R = 8" [T/,
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ii) For i € ,pk; = pki, and H(p;) = h; = b, = H(u).
K3 K3

(iii) cI=d—|—ecI—d’+e

(iv) Forze[ 1, pk; dz‘“—pk’ dg

(¥) A=gnW e 2 g

-
20,i

Next, we will argue that d = d'. As a result from (i, ii, iv), for all ¢ € [K], we have pkgd_dl)loghi =
(pkgpk;*d/)logg hi _ g(Zo,i—zﬂ{),i)logg hi _ h':ol 301 Then

K K K
Sd,d’ . S,dglfd' - h 50,7‘,h/_56.i . hgo,i—gf), k(d d’)logh;
S e | (O | U
" il

i=1

Since S # Hlel Ogg ‘, only d = d' satisfies the equation. Since d + e = ¢; # ¢; = d' + ¢, we have
e # ¢'. Therefore, We have that (2, —27)(e —¢')~! = log, W. Hence, we can construct a reduction B’ playing
the DLOG game, using Fork* as a subroutine, and running in time tg ~ trga,, such that Pr[Es] <
AdVESE (B, N).

Finally, by the forking lemma (Lemma 2.1) and that Ay only outputs I # 1 when Badj occurs,

Qn
p

Pr[Bady] < \/QH/Pr[I =I'#1Lnrne#d]+

indin o Q !
<\/Qw AdvECon (B, ) + Advggh (B ) ) + T

The lemma statement follows from the union bound over Bady, for k € [¢ + 1]. |
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A Deferred Figures
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Fig. 13. Protocol diagram for the signing protocol of BS;
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Fig. 14. Protocol diagram for the signing protocol of BS,
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Fig. 15. Protocol diagram for the signing protocol of BSs. The algorithms Check, ReRa, and Prove"'” are defined in
Figure 12, while the third user algorithm BS3.Us is as defined in Figure 11. For readability, we omitted the hash
function descriptions from the public parameters par in this figure.
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Fig. 16. The OMUF-2 = Gg' security game for BS3 and the subsequent games Gf' — G4'. The subsequent games
G¢' — G and Gg' — G} can be found in Figures 17 and 18 respectively. We remark that H,H',Hr, H,,, Heom, Hee are
modeled as random oracles to which A has access. Each box type indicates the changes made in the game contained
in the box. Also, to make things clearer, for each box, the comments indicate which game the changes in the boxes
correspond to. The signer state is omitted and we assume that each variable initialized in S; of the same sid can be
accessed in Sa.
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0 otherwise flcom; ;] =1+
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return Heom (str)
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Hee(com, h) <8 [N]F
Return Hc.(com, h)

Oracle H(p):

com «$ {0, 1}>\ If H(p) # L then return H(u)
If Istr’ # str, com = Heom (str’) If 3(m, -), H(m, A) =p
then abort game. then b[u] « b[m]
If ffcom] = L and / G& — G¢' Else, b[u] < 0 / Gg
3(com’, h'), (Hee(com’, h') # L Return H(p) <3G
and El(i,j),com'iyj = com)
then abort game.

Return Heom (str) « com

Fig. 17. The games G3' — G§' for the proof of Theorem 5.4 continued from Figure 16. We omitted the description of
the oracles S, H' and Hyr as they are unchanged in the games G4' — Gg'. Each box type indicates the changes made
in the game contained in the box. Also, to make things clearer, for each box, the comments indicate which game the
changes in the boxes correspond to. Note: the subroutine DetectCheat is introduced to S; in game Gg'.
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Fig. 18. The games Gg' — Gt} for the proof of Theorem 5.4 continued from Figure 17. We omitted the description
of the oracles H',H,,, Hcom, Hce and Hyr as they are unchanged in the games G¢' — G14. Each box type indicates the
changes made in the game contained in the box. Also, to make things clearer, for each box, the comments indicate
which game the changes in the boxes correspond to. Note: the subroutine DetectCheat is as described in Gg'.
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