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Abstract—In post-quantum cryptography (PQC), Learning
With Errors (LWE) is one of the dominant underlying math-
ematical problems. For example, in NIST’s PQC standardization
process, the Key Encapsulation Mechanism (KEM) protocol
chosen for standardization was Kyber, an LWE-based scheme.
Recently the dual attack surpassed the primal attack in terms
of concrete complexity for solving the underlying LWE problem
for multiple cryptographic schemes, including Kyber. The dual
attack consists of a reduction part and a distinguishing part.
When estimating the cost of the distinguishing part, one has
to estimate the expected cost of enumerating over a certain
number of positions of the secret key. Our contribution consists of
giving a polynomial-time approach for calculating the expected
complexity of such an enumeration procedure. This allows us
to revise the complexity of the dual attack on the LWE-based
protocols Kyber, Saber and TFHE. For all these schemes we
improve upon the total bit-complexity in both the classical and
the quantum setting.

As our method of calculating the expected cost of enumeration
is fairly general, it might be of independent interest in other areas
of cryptography or even in other research areas.

I. INTRODUCTION

Introduced by Regev in 2005 [1], the Learning With Errors
Problem (LWE) is a computational problem that has been used
as a building block for several quantum-resistant cryptographic
primitives. A consistent number of schemes in each round of
NIST’s Post-Quantum Standardization Process [2] base their
security on the hardness of LWE. One of them is Kyber, which
was chosen as the standard algorithm for encryption. Saber is
another LWE-based scheme, which is very similar to Kyber
and made it to the third round of the competition. It is also
possible to build Fully Homomorphic Encryption (FHE) on
LWE. TFHE is such an encryption scheme, based on [3].

Cryptanalysis of LWE is an active area of research that en-
compasses various techniques, including combinatorial meth-
ods like the Blum-Kalai-Wasserman (BKW) algorithm [4],
algebraic methods [5], and lattice-reduction-based approaches,
such as the primal attack [6] and the (recently) most successful
dual attack [7]-[10]. Both BKW and the dual attack, in
their most recent variants, include a subroutine consisting of
enumerating a vector with entries from a non-uniform distri-
bution. Previous works dealt with this problem either using
unexplained models for estimating the cost of enumeration or
using unnecessarily pessimistic upper limit formulas [9], [10].

The contribution of this manuscript is to provide a new
and more accurate method to estimate the cost of such an
enumeration procedure. Our key realization is that the frequen-
cies of the different possible secret coefficient values follow a
multinomial distribution, meaning that the number of unique
probabilities for different possible keys is only polynomial in
the number of positions we enumerate over. This allows us
to precisely calculate the expected cost of key enumeration in
polynomial time.

We integrate this new method into the complexity estimation
of the dual attack and obtain new security estimates for the
widely studied lattice-based schemes Kyber, Saber and TFHE,
both for the classic and quantum case scenario. Furthermore,
our contribution is general enough that it easily can be applied
to any situation where enumeration over a vector sampled from
a non-uniform distribution is needed.

The remaining part of the paper is organized as follows. In
Section II, we present notations and necessary background. In
Section III we introduce our new key enumeration approach,
while in Section IV we apply it to some lattice-based proto-
cols. Finally, in Section V we give the conclusions.

II. PRELIMINARIES

A. Notation

We denote the set of the integer, rational and real numbers
with Z,Q, R respectively. For a positive integer p, we write
Ly = Z/pZ. Upper case letters, e.g. M, denote matrices, and
bold lower case letters, e.g. v, represent column vectors. We
represent with v; the j-th component of v. We let log(-) denote
the 2-logarithm. The notation ||v|| denotes the Euclidean norm
of v € R™ defined as

loll = y/of + - 403

For a discrete distribution X, its entropy is defined as

H(X):= —E(log(X)) = =Y _ p(a) -log(p(zx)). (1)
k

B. Quantum Search Algorithms

Grover’s algorithm is a way of efficiently searching for
elements in an unstructured set. Let S be a finite set of NV



objects of which ¢ < N are targets. An oracle O identifies
the targets if, for every s € S, O(s) = 1 if s is a target,
O(s) = 0 otherwise. Classically, one needs O(N/t) queries
to the oracle to identify a target. Grover provided a quantum
algorithm that identifies a target with only O(1/N/t) queries
to the oracle [11]. Amplitude amplification is a subsequent
work that generalizes Grover’s search algorithm [12].

C. Lattices and Reduction Algorithms

A lattice is a discrete additive subgroup of R™. Let B =
{b1,...,b,,} € R™ be a set of linearly independent vectors.
We define the lattice generated by B as

L(B) = L(by,....,by,) = {v ER":v=>) ab;, a; € Z}.
i=1

Unless differently specified, we will consider full-rank lattices,

Le.n=m.

Typically, lattice reduction algorithms such as LLL or
BKZ [13]-[15], take as input a basis B of the lattice and
return another basis with short and nearly orthogonal vectors.
Lattice sieving consists of a class of algorithms, initiated with
the work of Ajtai et al. [16], to solve the Shortest Vector
Problem (SVP). These are usually used internally by BKZ
as an SVP oracle . They allow us to compute a large number
of short vectors and they have an estimated complexity of
2Cﬁ+°(ﬁ), where 3 is the dimension of the lattice and ¢ is
a constant equal to 0.292 for classical computers [17]. This
constant can be improved quantumly to 0.2653 using Grover’s
algorithm [18]. It was recently further improved to 0.2570 by
using more sophisticated quantum methods [19]".

D. Learning With Errors and Gaussian Distributions

Definition 1: Let n be a positive integer, ¢ a prime and
Xs, Xe tWo probability distributions over Z. Fix a secret vector
s € Z™ whose entries are sampled according to xs. Denote
by As ., the probability distribution on Z7 x Z, obtained by
sampling @ € Zg uniformly at random, sampling an error
e € Z from x. and returning

(a,2) = (a,{a-s)+e modq) € Zi xZ,.

o The search Learning With Errors (LWE) problem is to
find the secret vector s given a fixed number of samples
from As ..

o The decision Learning With Errors (LWE) problem is
to distinguish between samples drawn from A, and
samples drawn uniformly from Zg x Zg.

Consider m LWE samples
(a1, 21), (a2, 22)s - .., (Am, 2m) < As -

Then, one can represent such an LWE instance in a matrix-
vector form as

(A,z) = (A, As +e mod q) € Z7" " x L'

Tor even 0.2563 according to a recent preprint [20].

where A is an m x n matrix with rows al al ... al z=

) m?

(21,22, ..., 2m), and e is the vector of errors (eq, ea, ..., epm).
In theory, one usually instantiates x5 and x. as the discrete
Gaussian distribution Dz , defined as the probability distri-

bution that to each a € Z assigns the probability

poola) _ exp(=ma?/2?)
Yaez Po.o(d) D geq exp(—md?/207)

where pg ,(z) is the probability distribution function of the
Gaussian distribution N (0, ) with mean 0 and variance o
In practice, it is more common to use a centered Binomial
distribution B,,, which takes values in [—7,7] or a uniform
distribution /{a, b}, which takes values in [a, b].

Given an LWE problem instance, there exists a polynomial-
time transformation [21], [22] that makes the secret vector
follow the same distribution as the error’s distribution ye.

E. Distinguishing Attacks to LWE

a) Dual Attack: The first attack on LWE performed on
the so-called dual lattice was introduced in [7]. While the
earlier versions of this attack were efficient only for instances
with very small coefficients (e.g. s € {—1,0,1}"), thanks to
some recent contributions [8]—-[10], the attack now also applies
to secrets with not-so-small coefficients.

Let (A,b = As+ e mod g) be an m x n LWE instance,
for m > n where the secret s and the error e have been
sampled from a discrete normal distribution with mean zero
and standard deviations o, and o, respectively. Partition the
matrix A as (A; || A2) and, in correspondence, the secret s
as (sp || s2). Consider the following pair

(A2,b— A8, mod q). 2
For s; = s; we have that
b— Ais; = Asso +e mod ¢

and therefore (2) is a new LWE instance with reduced dimen-
sion. If 81 # s1, then (2) is uniform.

By enumerating over all possible vectors s; of s;, one can
distinguish the right guess as follows. Let R be an algorithm
(e.g. BKZ, lattice sieving) that returns pairs (x,y) € Z™*"
such that y©' = (y; || y2)7 = xTA mod ¢, and x and y»
are short. Then, for s; = s;, we have that

xT(b—Aysy) =xT(Agsy +e) =yisy +x'e.  (3)

This quantity is distributed approximately according to a
discrete normal distribution with mean zero and variance
[Ix|I202 + |ly2||?c2. The choice for reduction algorithm R
determines the expected length of the vectors x and ys, and
therefore, the ability to distinguish (3) from uniform random.

b) BKW algorithm: 1In its original development, the
Blum-Kalai-Wasserman (BKW) algorithm was proposed as
a subexponential algorithm for solving the Learning Parity
with Noise (LPN) problem [23]. Later, it has been applied to
LWE [4], and further developed with new ideas such as Lazy-
Modulus-Switching, Coded-BKW and smooth-Lazy-Modulus-
Switching [24]-[28].



The BKW algorithm can be seen as a variant of the dual
attack where the reduction is performed using combinato-
rial methods instead of lattice reduction. For this reason,
techniques and improvements developed for BKW on the
distinguishing stage have been successfully applied to the
dual attack too. More generally, the BKW algorithm has the
disadvantage of requiring an exponential number of samples
(m > n) to perform reduction. On the other hand, one
typically has more control over the outcome (i.e. reduced
samples).

III. IMPROVED ESTIMATION OF KEY ENUMERATION

Consider the problem of guessing the random value X
sampled from a discrete probability distribution with mass
function pp := P(X = x). Without loss of generality, we
assume it to be non-increasing (i.e. pg > p1 > p2 > ...). The
optimal strategy is obviously to guess that X = z, followed
by guessing that X = x;, and so on. The expected number of
guesses until the right value is found with this strategy is

Zz‘ yos )

Massey showed in [29] that

G(X) =

G(X) > %2H<X>.

He also showed why there is no such formula for upper
limiting G(X) in terms of H(X).

Now consider a sample of n values, each one drawn
independently from the same distribution with mass function
(po,p1,- -, Pr—1). When enumerating all the possible samples
of s on these n positions, we want to do so in decreasing order
of probability until we find the solution. Since the total number
of outcomes is equal to 7", we cannot simply compute the
probability of every single outcome, sort all the probabilities
and then compute the expectation that way. However, we
can use the fact that the frequencies of each possible secret
value follow the multinomial distribution [30]. The number of
outcomes where kg values are equal to zq, k; values are equal
to 1 and so on until k,._; values are equal to x,_;, where

r—1 .
Yoioki=n,is

n n!
= 5
(ko,...,krl) kolkq! - ky_q! ©)

Notice that all these outcomes have exactly the same prob-
ability of

r—1
1T 6)
=0

The total number of unique probabilities is only

_(n+r—=1\ (m+r—1)---(n+1) (n+r—1)
"< n ) (r—1)! (r_i)!n(!7)'

For a fixed number r this expression is O(n"~1). Thus,
for a sparse distribution the number of unique probabilities
is low enough to be computed and sorted efficiently (i.e. in
polynomial time w.r.t. ).

Denote the unique probabilities by ph, Dy - -
that py > pjy > -+ > pj, 4. Let f;
times p; occurs. Also let F; = ZZ B fj- Now we can express
the expected number of guesses to make until we find the right
one from (4), as

;Pj—1, such
denote the number of

p—1 n—1

ZplF+ZJ Zpl(F+ fgﬂ)) ®)

Since (8) has O(n"~!) terms and each term can be com-
puted efficiently, the whole expression can be computed effi-
ciently for small values of 7.

A. Quantum setting

Consider again random values sampled from a discrete
probability with mass function (po, p1, p2, -..). With a quantum
computer, as shown in [31] using amplitude amplification as
a tool, the expected number of guesses to find the right value

is
X)=> Vi-pi. 9)

Using the Cauchy-Schwartz inequality we have that
=Y Vi Vi<
> iopi=+/G(X).

Here, our method for computing the estimated cost of the
enumeration of (9) still applies, with a minor twist. In this
setting (8) changes to

(10)

Zpl Z\/F +7

=1

We can rewrite Z WVFE+7= ZF CARV/E Z] 1 VI

Now, to compute (11) efﬁmently we only need to have an
efficient and precise formula for computing f(n) = > ., Vi
For n < 30 we can pre-compute the expression. For n > 30
using the Euler-Maclaurin formula [32], we can derive the
function

Y

L2081y 1
2T o™ T T 990"

— ,2
2

21
"o G2

where ((-) is the Riemann zeta function, which approxi-
mates the sum with a relative error that is smaller than or
equal to machine epsilon.

f(n) = ((=0.5)+



B. Further optimizations

If for two outcomes x; and x5 we have P(z1) = P(x3),
then we can merge these terms to speed up the calculation of
the enumeration.

Also, more generally, if throughout the enumeration we have
two lists of values [x1,2,...,2] and [z}, 25,...,2}] and
P([x1,22,...,2,]) = P([z],x5,...,2.]), then we can also
merge these two terms.

IV. APPLICATION TO LATTICE-BASED SCHEMES

In the Matzov version of the dual attack on LWE, the n
positions of the secret s are divided up into three parts, ki,
kg and kenum. The attack first performs lattice reduction on kjy
positions. In the second phase it enumerates, in decreasing
order of probability, all possible secrets on keyym positions.
For each such secret it performs an FFT on kg positions
and checks if it has found the correct solution. Rewriting [9,
Theorem 5.1] asymptotically we get the following formula for
the cost of the distinguishing part of the dual attack.

O(G (") - (D + p'm)),

where D is the number of samples needed to distinguish
the secret and Xke""m refers to the distribution of keyum values
sampled independently from the distribution x. The fact that
the cost is additive in D and p*™ means that it is best to keep
these two terms of similar size. Quantumly however, the cost
is proportional to the square root of the number of samples
needed to distinguish the secret, the cost of enumeration and
the cost of performing the FFT quantumly [10, (4)]. More
concretely the cost is

13)

(’)(\/5 P2 G (e - poly(log(n))). (14)

The drastically reduced cost of distinguishing is the main
source of the quantum improvement that [10] achieves com-
pared to [9]. Notice the more than quadratic speed-up of
G (xFemm) over G(x*emm), as shown in (10). In practice this
speed-up means that it is optimal for the schemes studied in
this paper to do enumeration only and let kg = 0.

In Matzov [9], it was assumed that the expected cost
of enumerating over kenm positions is QFenum H (X), without
any explanation. In [10], this problem was addressed. They
developed an upper limit formula for the expected cost of
enumerating over kepym positions sampled from a Discrete
Gaussian distribution with a specified standard deviation o.
When estimating the expected cost of enumerating over the
secret of an actual scheme, they simply approximated the
secret distribution as a Discrete Gaussian with the same
standard deviation, see Table III. In the quantum setting they
developed a similar model.

Using the method detailed in Section III, in both the clas-
sical and quantum setting we can calculate the expected cost
of enumeration numerically with arbitrarily good precision, to
compare against the models of [9], [10]. Since all the schemes
use sparse (and symmetric) distributions for the secret, our
method is very efficient at computing the expectations.

A classical comparison is illustrated in Figure 1, for the
expected cost of enumeration for Kyber512/FireSaber. The
exhaustive cost is the obvious upper limit of guessing every
possible key. Notice that while the Matzov numbers are a bit
too optimistic, they are actually closer to the exact numbers
than the Albrecht/Shen model is. Notice that the gaps between
the different models increase with the dimension.

Figure 2 covers the quantum setting. Notice that there is
a consistent gap between the expected cost according to the
Albrecht/Shen model and the exact value, which increases very
slowly with the number of dimensions.

Table I shows the state-of-the-art of solving the underlying
LWE problem using the dual attack for the different schemes
and models considered in [10]. We briefly summarize the
models here. The models CC, CN and CO are increasingly
optimistic models for the cost of the dual attack on classical
computers. GE19 refers to the most pessimistic quantum
model from [33]. QN and QO correspond to CN and CO,
but with the classical lattice sieving of [17] replaced by the
quantum lattice sieving of [19]. Finally, QN [10] and QO [10]
refer to the works of [10], where quantum speed-ups of the
FFT and the enumeration are applied. All the numbers are
computed using the script from [10].

Table II shows the updated state-of-the-art. These are
achieved by replacing Albrecht’s and Shen’s upper limit
formulas for enumeration by the exact values, as described
in Section III>. For all schemes and all models we show
improvements, but the magnitude of the improvements vary.
Our largest improvements are for the TFHE schemes, where
the secret follows a uniform distribution, meaning that a
Discrete Gaussian is a particularly bad approximation.

Very recently, another preprint of an improved version of
the dual attack of Matzov was published [34]. There they
introduce a modified way of enumerating over the secret.
Compared to the results from [10] they achieve comparable
levels of improvements to us, in the classical setting. They
enumerate over the secret in a different way, meaning that our
improved estimate of the cost of enumeration does not apply in
their setting. However, they do not provide a quantum version
of their improved algorithm, the setting where our contribution
is the most impactful.

TABLE I
PREVIOUS STATE-OF-THE-ART.

Scheme CC CN CO

GE19 QN Q0 QO [10] QN [10]
i

Kyber512 139.2 134.4 1154 1395 124.4 102.7 1193 99
Kyber768 196.1 190.6 173.7 191.9 1753 1546 168.3 150.0
Kyber1024 262.4 256.1 241.8 252.0 2345 215.0 225.6 208.4
LightSaber 138.5 133.1 113.7 1384 122.7 101.1 118.9 98.9
Saber 2014 1959 179.2 196.2 1799 1594 173.8 155.0
FireSaber 263.5 258.2 243.8 253.1 2359 216.7 228.1 210.8
TFHE630 1182 113.3 93.0 120.2 1052 83.0 100.8 80.7
TFHE1024 122.0 117.2 954 1239 1085 84.8 105.6 83.2

2The code for computing these numbers will be made available.



TABLE II
UPDATED STATE-OF-THE-ART.

Scheme CC CN CO GEI9 QN Q0 QO[I0] QN [10]
Kyber 512 138.7 133.8 115.0 139.1 123.6 102.4 118.0 98.4
Kyber 768 194.8 190.0 172.9 190.6 174.5 154.5 166.3 148.0
Kyber 1024 260.6 254.5 240.6 251.0 233.4 2145 2232 206.2
LightSaber 137.5 132.6 113.3 138.0 1223 101.0 117.6 97.7
Saber 200.9 195.6 178.5 196.1 179.3 159.2 1724 153.8
FireSaber 262.9 256.9 242.6 252.8 2353 2164 226.2 208.8
TFHE630 1157 111.3 92.1 118.2 1039 82.8 95.6 76.8
TFHE1024 1204 1156 94.8 122.8 107.7 845 101.7 80.4
TABLE III
THE SECRET DISTRIBUTION AND ITS STANDARD DEVIATION, FOR EACH
SCHEME.
Scheme Distribution ~ Standard deviation
Kyber512 B3 V6/2
Kyber768 Bs 1
Kyber1024 Bo 1
LightSaber B; V10/2
Saber B4 V8/2
FireSaber Bs V6 /2
TFHE630 u{o,1} 1/2
TFHE1024 u{o,1} 1/2

A. Applications to BKW

As discussed in Section II-E, the techniques introduced in
Section III apply to the BKW algorithm too. In the setting
of [27], [28], the secret coefficients are discrete Gaussian
with a relatively large standard deviation, taken from the
distributions of the LWE Darmstadt Challenges [35]. The
authors perform enumeration over all possible secret values
within 3 standard deviations for each position. By instead
enumerating over the secret coefficients in decreasing order
of probability, one would see improvements similar to those
of the dual attack.

V. CONCLUSIONS

The method presented in this paper improves over previous
estimations for key-enumeration used in the literature. As
a direct application, we used it to revise the state-of-the-
art complexities for the dual attack against Kyber, Saber
and TFHE. Future research directions include the application
of this methods to other areas in cryptanalysis where an
enumeration of a non-uniform vector is required. Furthermore,
thanks to its generality, the method might find application also
in areas outside the context of cryptography.
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