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Abstract. Unbalanced Oil and Vinegar is a multivariate signature scheme
that was introduced in 1999. Most multivariate candidates for signature
schemes at the NIST standardization competition are either based on
UOV or closely related to it. The philosophy of the scheme is that the
signer has to solve only a linear system to sign a message, while produc-
ing a forgery should be as hard as solving a random quadratic system.
To achieve this, the signer uses the UOV trapdoor, which is a secret
subspace, the “oil subspace”.
We show how to recover an equivalent secret key from the knowledge
of a single vector in the oil subspace in any characteristic. From this
vector, we obtain linear equations that contain enough information to
dismiss the public quadratic equations and retrieve the secret subspace
with linear algebra for practical parametrizations of UOV, in at most 13
seconds for modern instantiations of UOV. This proves that the security
of the UOV scheme lies in the complexity of finding exactly one vector
in the oil space.
We show how to extend this result to schemes related to UOV, such as
MAYO and VOX.

1 Introduction

In order to replace number-theoretic problems used in cryptography that are
threatened by quantum computing, such as factorization or the discrete loga-
rithm problem, several families of problems have been extensively studied. One
of them is related to multivariate polynomial system solving, and is referred to
as “multivariate cryptography”. The underlying problem, Polynomial System
Solving “PoSSo”, is NP-hard, and this gives confidence in the hardness of this
problem for quantum computers. The history of this field shows that one must
be very careful in order to construct secure schemes with these tools, as in the
past many cryptosystems that seemed secure turned out to be broken by a wide
variety of methods. Lately, the attacks on the Rainbow signature scheme have
motivated a return to the roots, in particular to the parent scheme “Unbalanced



Oil and Vinegar” of Kipnis, Patarin and Goubin [15]. Recently, NIST has is-
sued a call for alternate post-quantum signatures not relying on standard lattice
assumptions. Among the submitted schemes, 10 out of 40 are based on multivari-
ate polynomial systems, and 7 of them are closely related to UOV ([3], [7], [14],
[21], [10], [5], [8]). The main features of these schemes are the short signatures
and quick signing time, which are competitive with classical cryptography, and
suggest applications with constrained bandwidth, such as embedded systems.

1.1 Related work in cryptanalysis

Many contributions to the cryptanalysis of UOV stem from the study of Rainbow
[11], a more structured scheme built upon the foundations of UOV. In particu-
lar, the reconciliation attack [12] targeted Rainbow but is easily applied to UOV.
This attack finds vectors in the secret subspace of the UOV trapdoor by exploit-
ing their relationship with one another. More recently, Beullens introduced the
intersection attack [2] which improves the first step of the reconciliation attack
(finding the first (two) vector(s)). Beullens describes this reconciliation process
in more detail in [3]. In that paper, he mentions that once enough vectors of O
are found, one can dismiss the quadratic equations and solve a linear system.
Using his bound, this process requires finding α vectors in O before being able
to conclude, where α = 2 for modern UOV instantiations, and more generally
α is the ceiling of the ratio between the number of variables and the number
of equations. Another key recovery attack against UOV is the Kipnis-Shamir
attack, which targets invariant subspaces of some linear functions related to the
public key. This attack is the one that motivated the “unbalanced” property of
UOV. The state of the art for forgery attacks against UOV (direct attacks) con-
sists of exploiting the underdeterminedness of the system to eliminate equations
with the Thomae-Wolf algorithm [20]. The attacker then has to solve a system
in m− 1 variables and equations for modern UOV parameters.

1.2 Previous work in side-channel attacks

In the context of side-channel attacks, more precisely fault-injection attacks,
Aulbach, Campos, Krämer, Samardjiska and Stöttinger recently published a
paper with a similar result [1]. Their result can be stated in the same manner,
namely that one vector yields a fast key recovery, which is expected to run
in polynomial time but the complexity is not given. There is a fundamental
difference in the reasoning and in the complexity achieved however, as they follow
the intuition of Beullens’ reconciliation attack as described in [3]: he observes
that one needs only two vectors of the secret subspace to conclude because
they induce an overdetermined linear system whose solution space is exactly
O. They use an adapted Kipnis-Shamir attack to obtain a second vector from
the first one to conclude with this observation. In our case, we focus on the
geometric point of view instead of the algebraic one. We show that a single
vector is enough to characterize O, without using the reconciliation modelling.
Therefore we skip directly from one vector to the full key, without using a second
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vector as a stepping stone. We obtain very efficient algorithms both in theory
and in practice for practical parameters of UOV, while their attack suffers from
the cost of the reconciliation attack. The largest instance they attack using their
tools (targeting NIST security level 5) takes a total of 12 hours including the
Kipnis-Shamir and the reconciliation step, while our attack takes only 13 seconds
on the same instance.

1.3 Contribution

In this paper, we prove that the difficulty of retrieving the UOV secret key
is not only dominated by the complexity of finding the first vector in O, but
that, in fact, the problem becomes polynomial given a single vector in the secret
subspace. Therefore, retrieving the UOV secret key is not harder than finding
a single vector in the secret subspace. In addition, we show how this yields a
polynomial-time answer to the question “x ∈ O?” without the secret key, which
may be of independent interest, and is not possible with the tools introduced
by [1] without going through the entire attack. We stated our result in a form
as general as possible, enabling us to apply them to schemes based on or close
to UOV. In particular, we also analyze the impact of our attack on MAYO and
VOX.

We provide an implementation of our algorithms in SageMath [19] on a
GitHub repository.

2 Preliminaries

2.1 Notations

Let q be a power of a prime and let Fq denote the finite field with q elements. If
q = pm for p prime, we write p the characteristic of Fq. Vectors are assumed to be
column vectors and are denoted by bold letters: x,y,o, . . .. Matrices are denoted
by capital letters, and transposition is written AT . The right kernel of a matrix
A is denoted by ker(A) unless mentionned otherwise: x ∈ ker(A) ⇐⇒ Ax = 0.
Given a field F and an integer n, we denote F[x1, . . . , xn] or F[x] the polynomial
ring of F in the n indeterminates x1, . . . , xn. The restriction of a function f to a
set E is denoted f|E . The cost of multiplying two square matrices of dimension
n is O(nω), with 2 ≤ ω < 3.

2.2 Quadratic forms

Let f be a quadratic form over a vector space Fn
q .

A function F : x 7→ (f1(x), . . . , fm(x)) such that each fi is a quadratic
form is called a quadratic map. In fields of odd characteristic, a quadratic form
f is characterized by its polar form f∗ := (x,y) 7→ f(x + y) − f(x) − f(y)
which is a symmetric bilinear form. As such, it admits a symmetric matrix
representation in Fn×n

q that we identify with it, and with the original quadratic
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form. In other words, given a quadratic form f , there exists M ∈ Fn×n
q such that

for all x ∈ Fn
q , f(x) = f∗(x,x) = xTMx. In fields of even characteristic, there is

no longer an equivalence with symmetric bilinear forms, as symmetric forms are
also antisymmetric. Instead, we can represent quadratic forms using triangular
matrices. Note that this is also true in fields of odd characteristic, but the set of
triangular matrices is not stable by congruence, therefore changes of variables
are more delicate in this setting. If q is odd, we say that f has rank r if the matrix
associated to f has rank r. In particular, the rank is preserved by changes of
variables in odd characteristic, which is not the case in even characteristic. A
subspace V ⊂ Fn is isotropic for f if there exists x ∈ V such that f(x) = 0,
totally isotropic if for all x ∈ V, f(x) = 0, and anisotropic if for all x ∈ V \
{0}, f(x) ̸= 0. For an introduction to quadratic forms, we refer the reader to
[18].

We recall here a characterisation of totally isotropic subspaces that describes
the secret key of UOV:

Lemma 1. The subspace O is a totally isotropic subspace of a quadratic form
f if and only if for all (x,y) ∈ O2, f∗(x,y) = f∗(y,x) = 0.

Proof. Assume O is a totally isotropic subspace of the quadratic form f . Then
for all x in O, f(x) = 0 by definition. Let y ∈ O. Then f(y) = 0 and since O is
a linear subspace, x+ y ∈ O, therefore f(x+ y) = 0. Therefore,

f∗(x,y) = f(x+ y)− f(x)− f(y) = f(x+ y) = 0

Conversely, assume for all (x,y) ∈ O2, f∗(x,y) = 0. Notice in particular
that (x,x) ∈ O2 therefore for all x in O, f(x) = 0. Therefore O is a totally
isotropic subspace of f . ⊓⊔

Observe that the dimension of a totally isotropic subspace of a quadratic
form of a certain rank is bounded:

Lemma 2. Let f be a quadratic form of rank n defined over a field K. Let O
be a totally isotropic subspace of f . Then O has dimension less than or equal to
⌊n2 ⌋.

Proof. By contradiction, assume that dim(O) = r > ⌊n2 ⌋. Let B be a basis of

O, let B̂ be a completion of B into a basis of Kn. Then the matrix representing
f∗ in basis B̂ has a block of zeros of size r × r in the top left corner. Therefore
its rank is less than n, which is a contradiction.

⊓⊔

2.3 Cryptanalysis

Given a signature scheme instance Σ = (S,P) where S is the secret key and P
is the public key, we define two goals of cryptanalysis:

– Forgery, which is achieved if an attacker can find a signature for one message
in the message space of Σ.
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– Key recovery, which is achieved if the attacker obtains an equivalent secret
key S ′ enabling them to sign any message.

These notions can be refined to specify the tools and goals of the attacker, but
this high-level description is enough for us.

2.4 Unbalanced Oil and Vinegar signatures

One of the oldest multivariate signature schemes was introduced in [17], and
later generalised by [15], and remains standing after more than two decades. We
formulate it in a more abstract manner than in the seminal paper, following the
formalism of Beullens [2].

Definition 1 (Kipnis, Patarin, Goubin [15]). A UOV instance is parametrized
by the following parameters:

– m, the number of equations
– n, the number of variables
– q, the size of the finite field Fq.

The UOV public key is a set of m quadratic forms G = (G1, ..., Gm) of rank n
over Fq. The secret key is a totally isotropic subspace O of dimension m of the
homogeneous component of degree two of each Gi.

This property is not generic for a family of quadratic forms, and the key
generation will use a trick to introduce this structure. This trick was the original
formulation of UOV in [15], and corresponds to a block of zeros of size m in
the top left corner of the symmetric matrices representing the key in a secret
basis. In particular, the secret key is a pair (A,F ) where A is a linear change of
variables (that characterizes O) and F is a quadratic map where the variables
xi, 1 ≤ i ≤ m appear linearly. We deduce the public key as G = F ◦ A by
composing the secret quadratic map with the secret change of variables. Write
A−1 = [o1, ...,om,v1, ...,vn−m] and observe that O = span(o1, ...,om). For 1 ≤
i ≤ m, we call xi an “oil” variable, and the remaining ones “vinegar” variables.
We write v = n−m, the number of vinegar variables.

To sign a message µ ∈ {0, 1}∗ the signer solves the system: F (x) = H(µ) ∈
Fm
q where H is a cryptographic hash function. This is a linear system in the oil

variables, with m unknowns and equations after choosing random values for the
vinegar variables. The verifier, given y = A−1x and µ, checks that G(y) = H(µ).

We introduce the forgery variety which is the set of signatures accepted for
a given vector z ∈ Fm

q . In practice, we always sign z = H(µ).

Definition 2 (Forgery variety). Let G be a UOV public key and z ∈ Fm
q . We

define the forgery variety associated to z as the set of signatures of the vector
z:

V(z) = {x ∈ Fq
n
, 1 ≤ i ≤ m,Gi(x) = zi}

This variety has dimension n−m, but we only care for solutions in Fq.
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Notice that O ⊂ V(0). It is interesting to note that the distribution of UOV
signatures is not uniform in this forgery variety.

We include as a reference the parameters chosen for UOV in recent submis-
sions to the NIST competition.

Fig. 1: UOV parameters in [6]

3 Retrieving the UOV private key from one secret vector

In this section, we assume that n ≤ 3m. This is the case for all recent instan-
tiations of UOV, in particular the ones referred to in Figure 1. At the end of
the section, we explain how we proceed for very unbalanced cases (n > 3m),
and give some reasons why very unbalanced instances of UOV are unlikely to be
used in practice.

We assume that we have acquired a single vector x in the secret subspace
O either via a side-channel attack or from computations, and leverage this in-
formation to complete a key recovery attack in polynomial time. To summarize,
the secret subspace is included in the kernel of each dual linear form xTGi by
definition. The intersection of the m hyperplanes defined by these kernels is of
dimension n −m, and still contains O. Therefore, this intersection is a smaller
subspace than the ambiant space Fn

q that still contains the secret subspace, and
even small enough to entirely retrieve the secret subspace by considering the
restriction of the public key quadratic forms to this subspace.

Before we start, we recall the Kipnis-Shamir attack that justifies why the
cases n ≤ 2m are called “easy instances of UOV”.

Lemma 3 (Kipnis-Shamir cryptanalysis of Oil and Vinegar [16], [15]).
Let G be a UOV public key with parameters n,m, q. Then the following holds:

i. If n = 2m, there exists a probabilistic algorithm performing a key recovery
attack against G in time O(nω).

ii. If n > 2m, there exists a probabilistic algorithm performing a key recovery
attack against G in time O(qn−2mnω).

iii. If n < 2m, there exists a deterministic algorithm performing a key recovery
attack against G in time O(nω).
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Proof. The first two cases are exactly the Kipnis-Shamir attack against OV [16]
and the extension to the unbalanced case found in [15]. The last case comes
from the observation that if n < 2m, then the existence of an m-dimensional
totally isotropic subspace for a quadratic form implies by Lemma 2 that it is
not full rank. Therefore we retrieve the subspace O by computing the kernels of
the matrices representing the quadratic forms of the public key. Each kernel is a
subspace included in O of positive dimension. Since generically a collection of m
subspaces of positive dimension in O span a subspace of dimension at least m, we
obtain a basis of O from the bases of these kernels. In the unlikely event where
this process fails, we can repeat the procedure with the first vectors obtained.

⊓⊔

We note here that the Kipnis-Shamir attack described in the original pa-
per [16] can be improved from a practical point of view. The essence of the
attack resides in the fact that invariant subspaces of the public key matrices are
eigenspaces of some closely related matrices in the set T defined as the closure
of the G−1

i Gj under addition, mutliplication, and multiplication by an element
of Fq.

Therefore, the strategy of the attack is to find such eigenspaces by computing
and factoring the characteristic polynomials of random elements of T . The attack
looks for irreducible factors of degree m which yield eigenspaces of dimension
m, one of which is guaranteed to be the secret subspace O. If the polynomial
factors further than degree m, they consider that the attack has failed and move
on to the next random element of T .

This decision to dismiss such factors is coherent with the result proven in [16,
Theorem 9], but experiments show that even smaller factors of the characteristic
polynomial still yield part of the private key. We observe the following facts:

Fact 1 Let t ∈ T , let χ be the characteristic polynomial of t. Then χ is always
a square

Proof. This comes from the shape of the secret key in the balanced Oil and
Vinegar scheme:

F1 = ATP1A =

(
0 D
DT B

)
where D is invertible if and only if F1 is and D,B are square blocks of size m.
In this case,

F−1
1 =

(
∗ D−1

(D−1)T 0

)
The same structure holds for all Fi, 1 ≤ i ≤ m.
Therefore, P−1

1 P2 = (AF−1
1 AT )(A−1TP2A

−1) = AF−1
1 F2A

−1. From the above,
F−1
1 F2 has diagonal blocks that are transpose of each other. Therefore the char-

acteristic polynomial of F−1
1 F2 is square, and P−1

1 P2 is similar to F−1
1 F2, there-

fore its characteristic polynomial differs only by a constant factor. This applies
immediatly to linear combinations of the Pi and therefore to all t ∈ T . ⊓⊔
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Fact 2 If χ = r2, then O = ker(r(M)).

We insist on the fact that χ is always a square, because this is the main difference
with the work presented in [16]: In [16, section 4.2], the authors remark that once
a factorisation of χ(x) = P1(x)P2(x), with P1, P2 irreducible has been obtained,
then O is either ker(P1(M)) or ker(P2(M)).

Since P1 and P2 are irreducible and χ is a square, it holds that P1 = P2.
This was not exploited by [16] but it is a significant improvement from a prac-
tical point of view, as one only needs to consider one element of T obtained
easily from the public key and never has to draw again (the original attack had
a chance of failure, these observations show that the attack actually succeeds
on every attempt). Technically, this observation also improves the complexity
result because this turns the attack into a deterministic algorithm instead of a
probabilistic one.

Lemma 4. Let G = (G1, . . . , Gm) be a homogeneous quadratic map of rank
n represented by m matrices. Let O be a common totally isotropic subspace of
G1, . . . , Gm. Let x ∈ O \ {0} and let J(x) = (xTG1, . . . ,x

TGm). Then O ⊂
ker(J(x)), and ker(J(x)) is generically an (n−m)-dimensional linear subspace
of Fn

q .

Remark 1. 2J(x) is the Jacobian of G if the characteristic is not 2, hence the
notation J .

Proof. Let x ∈ O \ {0}. By Lemma 1, for all z ∈ O and for all g ∈ G, we have:
g(x) = g(z) = 0 and g∗(z,x) = 0. In particular, this implies that the kernel of
the linear form gx = g∗(x, .) contains O. By hypothesis, all the quadratic forms
are of rank n, therefore this linear form is non-zero. Since it is a non-zero linear
form, its kernel is a hyperplane.

We have shown that for all 1 ≤ i ≤ m,O ⊂ ker(xTGi). Therefore,

O ⊂
⋂

1≤i≤m

ker(xTGi) = ker(J(x))

We assume that these hyperplanes are generic among hyperplanes that contain
O. The intersection of m hyperplanes in general position has dimension n−m,
which yields the conclusion. The probability that these hyperplanes are not in
general position can be bounded by a constant by the Schwartz-Zippel lemma.
Therefore, if it is not the case, we try again with a new vector and must retry
at most a constant number of times.

⊓⊔

This lemma is the key to our attack. We apply it to the formalism of UOV
in the following theorem:

Theorem 1 (Key recovery from one vector). Let G = (G1, . . . , Gm) be a
UOV public key, let O be the secret subspace of G, and let x ∈ O \ {0}.

There exists an algorithm taking as input (G,x) that outputs a basis of O
in polynomial time. More precisely, Algorithm 2a performs this task and has
complexity O(mnω), where 2 ≤ ω ≤ 3 is the exponent of matrix multiplication.
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Proof. Recall that n ≤ 3m. To keep notations simple, denoteK(x) := ker(J(x)).

By Lemma 4, it holds that O ⊂ K(x). Let B ∈ Fn×(n−m)
q be a basis of K(x),

which we can compute in time O(nω). We restrict the public key to K(x):

∀1 ≤ i ≤ m, Gi|K(x) = BTGiB (1)

Computing these restrictions requires two matrix multiplications per element
of the public key, which takes time O(mnω) in total.
DefineG|K(x) = (G1|K(x), . . . , Gm|K(x)). By definition,G|K(x) is a UOV instance
for parameters (n −m,m). By hypothesis, n ≤ 3m therefore n −m ≤ 2m. By
Lemma 3, such an instance is broken in time O(nω), yielding a basis of the
subspace Ô, the secret subspace of G|K(x). More precisely, in practice n < 3m
therefore we use the kernel approach (Lemma 3, iii.) instead of the Kipnis-Shamir
attack. Once we obtain Ô, we take it back to the initial space Fn

q using B:

Let C ∈ F(n−m)×m
q be a basis of Ô. Then, for all g ∈ G:

(B · C)T g(B · C) = CT (BT gB)C = CT g|K(x)C = 0 ∈ Fm×m
q

This proves that B · C is a basis of O since it is a free family of maximal
cardinality included in O. This matrix product costs O(nω), which yields a total
complexity O(mnω). ⊓⊔

one vector to key(G,x)

1 : m = |G|

2 : K(x) = [xTGi for 1 ≤ i ≤ m]

3 : B = ker(K(x))

4 : Ĝ = [BTGiB for 1 ≤ i ≤ m]

5 : C = []

6 : for 1 ≤ i ≤ m :

7 : for z ∈ ker(Ĝi) :

8 : if z ̸∈ span(C) :

9 : C = C ∪ {z}
10 : if |C| = m :

11 : break

12 : return BC

(a) Key recovery from one vector

in secret subspace(G,x)

1 : n = |x|
2 : m = |G|

3 : K(x) = [xTGi for 1 ≤ i ≤ m]

4 : B = ker(K(x))

5 : Ĝ = [BTGiB for 1 ≤ i ≤ m]

6 : for 1 ≤ i ≤ m :

7 : if rank(Ĝi) > 2(n− 2m) :

8 : return false

9 : return true

(b) Fast test of x ∈ O?

Fig. 2: Algorithms
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Remark 2. The previous result is true regardless of the characteristic of the field.
In characteristic two, to ensure we are considering full rank matrices, we use the
symmetric bilinear form defined by Gi+GT

i instead of Gi, which shares the same
properties as Gi when considered as a linear map (namely a large block of zeroes
in some basis). This observation is credited to Coppersmith in [16, Remark after
Lemma 4.].

Remark 3. Notice that Lemma 4 relies on a genericity assumption. This assump-
tion describes the usual case encountered in practice, but the non-generic cases
are not signficantly harder:

1. If x is not “generic in O”, x may be a singular point of the variety, in which
case dim(K(x)) = n−m+1, which does not prevent the success of Algorithm
2a unless n ≥ 3m.

2. If the Gi are not chosen uniformly at random as required by the KeyGen
algorithm, the dimension of K(x) may be arbitrarily large (up to n). For
example if some equation is a linear combination of the others, the variety
is no longer a complete intersection and K(x) has a larger dimension. But
in this case, the public key system becomes easier to solve and therefore the
key does not reach the claimed security level.

3. The algorithm will succeed in polynomial time as long as dim(K(x)) ≤ 2m
(in case of equality, we use the Kipnis-Shamir attack).

Notice that in Algorithm 2a, we include a break statement because with
overwhelming probability, a subset of the kernels are enough to retrieve the
secret key. We also obtain the following result as a corollary of this theorem,
which was the initial motivation for this work.

Corollary 1. Given G a UOV public key and x ∈ Fn
q , there exists a polynomial-

time algorithm deciding whether x ∈ O.

Note that this question is interesting only if x is in the forgery variety of the
vector 0 ∈ Fm

q , as any vector that does not vanish the public key has no chance
of being part of the secret subspace.

Intuitively, to prove the corollary, it suffices to apply the algorithm of Theo-
rem 1 and conclude from a success or a failure. We do not need to apply all of
the algorithm, as we distinguish the case x ∈ O using the rank of the restric-
tions of the public key to J(x). More precisely, any vector in the forgery variety
induces a restriction of the public key by Lemma 4 where all the matrices have
kernel of dimension at least 1. These kernels coincide on a dimension 1 subspace
corresponding to the span of the original vector written in the new basis. But, if
the vector belongs to a common totally isotropic subspace of dimension at least
two, these kernels are larger and their intersection has a dimension that matches
that of the totally isotropic subspace. This is the distinguisher we use.

We use the following lemma to specialize the algorithm of Theorem 1 for this
task.
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Lemma 5. Let G be a collection of quadratic forms, x ∈ V(0)\{0} and J(x) =
(xTG1, . . . ,x

TGm). Let B be a basis of ker(J(x)). Then for all g ∈ G, BT gB
has rank at most n−m− 1.

Proof. Let 1 ≤ i ≤ m. Let us show that BTGiB ∈ Fn−m×n−m
q has rank at most

n −m − 1. For this, we exhibit a non-zero element of the kernel of Gi. Notice
that J(x)x = (xTG1x, . . . ,x

TGmx) = 0 therefore x ∈ ker(J(x)). Consequently
there exist (λ1, ..., λn−m) ∈ Fn−m

q not all zero such that x =
∑n−m

i=1 λiBi. Let

x′ = (λ1, . . . , λn−m)T . Then x′TBTGiB = xT (GiB) = (xTGi)B and by defini-
tion B is a basis of ∩j≤m ker(xTGj) which implies that span(B) ⊂ ker(xTGi)
and therefore x′ ∈ ker(BTGiB) (this is a left kernel!), which yields the upper
bound on the rank of Gi. ⊓⊔

Proof (of Corollary 1).

For all i, the rank of BTGiB is upper bounded by Lemma 5 since O ⊂ V(0).
Assume that ∩mi=1 ker(B

TGiB) has dimension at least 2. We show that this
implies that x belongs to a linear subspace included in V(0) of dimension at
least 2.

Let x′,y′ be a basis of ∩mi=1 ker(B
TGiB). Then define x′′ := Bx′ and y′′ :=

By′. Observe that for all i, x′′TGiy
′′ = x′TBTGiBy′ = 0 = y′′TGix

′′. x′′,y′′

must be linearly independent since x′,y′ were and B is a free family by definition.
By Lemma 1, this implies there is a dimension two totally isotropic subspace
span(x,y) shared by the Gi.

We obtain a more precise result if x ∈ O: the kernel of the Gi must be of
a large dimension and included in O. To prove this, assume that B = B1 ⊕ B2

where B1 is a basis of O which is possible since O ⊂ span(B). In this case, for
all i,

BTGiB =

(
0 C

(i)
1

C
(i)T
1 C

(i)
2

)

where C
(i)
1 ∈ Fm×(n−2m)

q , C
(i)
2 ∈ F(n−2m)×(n−2m)

q and C2 is symmetric. Since
the block of zeros have size m, such a matrix has rank at most n−2m+n−2m =
2(n− 2m).

The variety V(0) generically contains no linear subspaces of dimension m by
the Debarre-Manivel bounds [9, Théorème 2.1]. Therefore, we expect O to be
the only such subspace.

By Lemma 5, we distinguish a vector of O from a generic vector of V(0) if
2(n−2m) < n−m−1 ⇐⇒ n < 3m−1. If the parameters are such that n = 3m
or 3m − 1, we can apply the algorithm from Theorem 1 which succeeds only if
x ∈ O, and is polynomial in any case. In practical instances of UOV, n = 5

2m.
Therefore the rank is at most 2(n− 2m) = m, which allows us to use this more
specific result.

This yields Algorithm 2b.

⊓⊔
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3.1 Very unbalanced instances of UOV

The key recovery attack described in the previous section only works if n ≤ 3m
or if n ≤ 4m and q is even. We show here what happens in the n > 3m case.
The algorithm of Theorem 1 does not yield an easy UOV instance, but instead
a smaller UOV instance that has a small rank deficiency.

Keeping the formalism of Theorem 1, let Ĝ = G|K(x) using the basis B
of K(x). This restriction can be defined regardless of the ratio n

m , and always
corresponds to a UOV instance in dimension n − m. Next, recall that x ∈

span(B) and therefore we can define x̂ = (λ1, . . . , λn−m) where v =
n−m∑
i=1

λiBi.

By construction, this vector x̂ is in the secret subspace of Ĝ.
Notice that both instances are equivalent since a solution of either can be

translated to the other with the restriction basis B, and the restricted one is in
dimension n−m instead of n.

(G,x,O) B←→ (Ĝ, x̂, Ô)

Further, by Lemma 5, this new UOV instance is composed of quadratic forms
that are not full rank, and in particular which share a kernel contained in O.
This information is redundant with the secret vector we had for the original
instance, as this kernel corresponds to span(x̂). We are tempted to use this new
vector x̂ that belongs to Ô to repeat the attack inductively, but this fails because
this vector is in the kernel of each matrix of the public key, which means that
the matrix J(x) is the zero matrix. Therefore, we need to solve a new UOV
instance (which has some more structure in the form of the kernel we observed
in this paragraph) that is strictly weaker against key recovery attacks. For very
unbalanced instances of UOV, we will need a constant number of vectors in the
secret key to conclude, in a similar fashion as observed by Beullens in [3]. More
precisely, each independent vector in O allows to reduce the search space by m
dimensions. We can conclude with β vectors if n− βm ≤ 2m ⇐⇒ β ≥ ⌈α− 2⌉
since β is an integer. Naturally this yields β = 1 for practical instances of UOV,
which is the result presented in Section 3.

It could thus seem to be a good idea to aim for very unbalanced parame-
ters, but there are two reasons why these parameters are unlikely to be used in
practice:

1. Random polynomial systems are easier to solve when they are heavily un-
balanced. An argument that justifies this statement is the generic algorithm
of Thomae and Wolf [20] (especially in characteristic two), and more gener-
ally the observation that any new variable is a degree of liberty that can be
exploited for free.

2. UOV already has large keys. Linear increases in n yield quadratic increases
in the key sizes.

This highlights an interesting tradeoff in the security of UOV: the larger the
parameter α = n

m , the stronger UOV is against key recovery attacks, and the
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weaker it is against forgery attacks. Reciprocally, the smaller α is, the weaker
UOV is against key recovery attacks, and the stronger it is against forgery at-
tacks.

3.2 Experimental results

The algorithms we obtain have polynomial complexities. We show that they are
also fast in practice by providing an implementation in SageMath [19], using
native linear algebra functions. We test them against the parameter sets of [6].
The strategy is as follows: the oracle providing a vector in O is obtained by a
function that chooses a random element in span(o1, . . . ,om), which are the first
m columns of A−1.

The code can be found at :

https://github.com/pi-r2/OneVector

We test the attack against the parameters of [6], which are representative of
the state-of-the-art instantiations of UOV. We include a key size with twice as
many variables as the target for NIST level 5 to demonstrate that the attack
scales beyond NIST parameters. The hardware used is a laptop with an Intel
CPU i7-1165G7 running at 2.80GHz with 8GB of RAM. All experiments were
ran on a single thread.

Parameters uov-Ip uov-Is uov-III uov-V “uov-X”
n,m,q 112, 44, 256 160, 64, 16 184, 72, 256 244, 96, 256 (480, 192, 256)

Time 1.7s 4.4s 5.7s 13.3s 145.1s

Fig. 3: Key recovery from one vector with our attack in F256

To obtain a complete key recovery, one must first find a vector of the se-
cret subspace O. Then, the attacker uses the attack described in this paper to
complete his basis of the secret subspace, in a matter of seconds on a laptop.

Parameters uov-Ip uov-Is uov-III uov-V “uov-X”
n,m,q 112, 44, 256 160, 64, 16 184, 72, 256 244, 96, 256 (480, 192, 256)

Time 0.2s 0.5s 0.7s 1.5s 9.1s

Fig. 4: “x ∈ O?” with our algorithm in F256

4 Applications to UOV variants

4.1 MAYO

The MAYO signature scheme [3] was introduced by Beullens as a generalization
of UOV in which we allow the subspace O to have a smaller dimension than
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https://github.com/pi-r2/OneVector


m. We switch to the notations of Beullens for clarity. The size of the secret
subspace of a MAYO key is denoted o, m remains the number of quadratic
forms in the public key, n remains the dimension of the vector space Fn

q , and q
is a small power of two. In the UOV formalism used so far, m = o. In MAYO,
o is significantly smaller than m. This transformation makes the scheme much
more compact, but increases signature size. Beullens introduces some additional
structure in the form of a “Whipping” transformation that maps Fn

q → Fko
q ,

instead of UOV which maps Fn
q → Fm

q . This is required to allow the signer to
sign. We obtain the UOV scheme for k = 1. The following parameters of MAYO
have been submitted to NIST, taken from [4].

If we try to attack the UOV map of MAYO, then we consider a collection of
m quadratic maps Pi, the public key maps, that share an o dimensional totally
isotropic subspace. The attack proceeds as follows: Given x ∈ O, we obtain
m linear forms P ′

i (x, .), therefore the intersection of their kernels generically
defines J(x) an n−m dimensional subspace that still contains O. In the context
of MAYO, n −m ≤ o. Therefore we recover O entirely from the kernels of the
restriction of the public key to J(x). Notice that this does not improve the
reconciliation attack on MAYO, as this was already achieved by Beullens in
[3] with an algebraic method. This shows that the work done in Section 3 is
consistent with the state of the art when transferred to MAYO.

4.2 VOX

To have a result as general as possible, we apply our attack to UOV+̂ [13].
This corresponds to a more general formulation of VOX known as FOX, which
is introduced in the same specification as VOX [8], based on [13]. Notably, it
relies on less assumptions than VOX and still has competitive signature sizes
with UOV, with a priori improved security. This signature scheme is a UOV-like
signature scheme where t quadratic forms of the secret key are random. These
random equations are called “vinegar forms” and the usual UOV quadratic forms
are called ’oil forms’ by analogy. This is the +̂ perturbation. The private key is
then composed with two changes of variables (S, T ) where S ∈ GLo(Fq), T ∈
GLn(Fq) In traditional UOV, S = In and T = A−1.

F = S ◦ P ◦ T

The tradeoff is that the signer now has to solve a small quadratic polynomial
system with t equations to sign a message.
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The transformation S adds “noise” to the equations: the oil quadratic forms
are mixed with the vinegar quadratic forms. This implies that the public system
does not have a high-dimensional totally isotropic subspace like the UOV one.
More precisely, we have the following shape of S chosen in [8]. Here S ◦ P ′ is a
left product: S ◦ P ′ = P ′ · S.

S =

(
It S′

0 Io−t

)
, S′ ∈ F(o−t)×t

q (2)

We have for 1 ≤ i ≤ o, fi =
∑o

j=1 si,jp
′
j , and more precisely using (2):{

1 ≤ i ≤ t : fi = p′i
t+ 1 ≤ i ≤ o : fi = p′i +

∑t
j=1 s

′
i,jp

′
j

(3)

The main takeaway is that S has t(o − t) unknown coefficients. For vectors
in O, the contribution of the oil forms to these mixed equations is zero, there-
fore we can retrieve this linear change of variables with linear algebra from the
evaluation of the public key on oil vectors. Each evaluation yields o− t equations
by expressing the last o − t coefficients of P(x) as linear combinations of the
first t coefficients. Therefore we need t vectors in the oil subspace to retrieve the
change of variables S.

Once this is done, we can apply the tools introduced earlier to recover T
from P ′ = S−1 ◦ P which is a UOV system with t random equations. If we are
given x ∈ O, we will observe that it only vanishes m− t of the quadratic forms
of P ′. Each of the remaining t vinegar forms have probability ≈ 1

q to vanish
coincidentally on this vector but the knowledge of S allows us to distinguish the
oil forms. In any case, the algorithm x ∈ O? would enable one to distinguish oil
forms from vinegar forms even if the equations were permuted.

Then, we are able to reduce the P ′ instance to a smaller subspace of dimension
n − (m − t), as we only consider (m − t) linear forms instead of m. FOX with
S = In, which is exactly what P ′ is, shares the weakness of UOV to the Kipnis-
Shamir attacks (Lemma 3), therefore we complete the attack if n − m + t ≤
2m ⇐⇒ n+ t ≤ 3m. The parameters of FOX from [8] are in figure 5.

Fig. 5: FOX parameters in [8].

We have n = o+v, where o = m in our formalism. In all cases n ≤ 2.55o, and
in particular we respectively have n+ t = 122, 182, 239 versus 3o = 144, 204, 273
for security levels 1,3,5. Therefore our attacks apply to these parameter sets of
FOX, but only with knowledge of S, which we obtain from t vectors of O.
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It is interesting to note that the signer has to solve a random system involving
t quadratic equations, therefore the scheme does not allow much flexibility in
the choice of t, as this task can only be done quickly for small values of t.
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