
PLONKUP SCHEME WITH MULTIPLE QUERIES

ALEXANDR BULKIN AND TIM DOKCHITSER

Abstract. There is a line of ‘lookup’ protocols to show that all elements of a
sequence f ∈ Fn are contained in a table t ∈ Fd, for some field F. Lookup has
become an important primitive in Zero Knowledge Virtual Machines, and is used
for range checks and other parts of the proofs of a correct program execution. In
this note we give several variants of the protocol. We adapt it to the situation when
there are multiple lookups with the same table (as is usually the case with range
checks), and handle also ‘bounded lookup’ that caps the number of repetitions.

1. Introduction

A zero-knowledge proof allows a prover to convince a verifier that a statement
is true without revealing any additional information [GMR85]. We are interested
in ‘general purpose Zero Knowledge Virtual Machines (ZKVMs)’ that handle the
statements of the form ‘the following program terminates correctly after ≤N steps’.
In [B+18] (see also [Cer19]), Bootle et al. describe in detail how to build such
a ZKVM, for programs in the TinyRAM assembly language [BS+13]. Essentially,
execution trace of the program is stored in columns of size N , so that one column
keeps the value of the program counter after every time step, one keeps the flag,
one keeps register #1, etc. Then correct program execution is rephrased in terms
of arithmetic constraints on the columns.

To handle range checks and memory, they introduced two primitives, called
lookup and bounded lookup. For two columns f = (fi) (‘query’) and t = (ti)
(‘table’), they provide a proof that f ⊂ t as a set, and, for the bounded version, a
cap on the number of repetitions of one element in f ; in fact, they only need the
case when the cap is one. Gabizon et al. [G+20] have improved the lookup scheme
(‘plookup’) and Pearson et al. [P+22] improved it even further (‘plonkup’); see also
[A+22]. All these schemes readily generalize to the ‘multiple input single output’
setting when one proves that f(x1, .., xm) = y with a lookup in the table of valid
tuples (x1, .., xm, y). With this in mind, these primitives have proved extremely use-
ful since, especially in implementing functions f that are ‘unfriendly’ for arithmetic
operations (bitwise operations, hash functions such as SHA-256, etc.), by breaking
them into a combination of quadratic constraints and manageable lookups.

In this note, we offer several modifications of the plonkup scheme. One handles
efficiently multiple queries to the same table (§3). This is relevant in the ZKVM
setting and applies, for instance, to multiple range checks in the same word range

Date: January 4, 2023.
1

(as in [B+18]). Another handles general ‘bounded lookup’ (§4) and a special case
of ‘injective lookup’ (§5) in the same context.

2. Plonkup protocol

Consider vectors f = (fi)
n
i=1 (‘query’) and t = (ti)

d
i=1 (‘table’) with values in some

field F. The problem is to provide a proof that f ⊂ t as sets. Let s be a vector of
length n+ d. Gabizon et al. [G+20] prove that the three conditions

(1) f ⊂ t as a set (unordered, ignoring repetitions)
(2) s = f ∪ t as a multiset (unordered, with correct multiplicities)
(3) s is sorted by t (if si = ti′ , sj = tj′ with si ̸= sj, then i<j ⇔ i′<j′)

are satisfied if and only if the following polynomials in F[β, γ] are equal:

(1 + β)n
n∏

i=1

(γ + fi)
d−1∏
i=1

(γ(1 + β) + ti + βti+1) =
n+d−1∏
i=1

(γ(1 + β) + si + βsi+1).

When d = n + 1, this takes the form
∏n

i=1 · · ·
∏n

i=1 · · · /
∏2n

i=1 · · · = 1. Splitting
the last product into pairs, we get a condition of the form

∏n
i=1 qi = 1, which can

be verified by building a column with partial products zi =
∏i−1

j=1 qj, and imposing
the conditions that z1 = zn+1 = 1 and a recursive formula zi+1 = qizi. In practice,
β and γ are taken to be ‘random’ constants in F that come from the verifier, after
f , t and s have been committed.
In

∏2n
i=1 · · · above, the ith and (i+ n)th term are paired together in [G+20], and

[P+22] observe that it is more efficient to pair ith and (i+1)st, saving one boundary
condition. The ‘cost’ of the resulting lookup (‘plonkup’) is

• 4 columns (in addition to f , t): z, q, and two halves h1, h2 of s,
• 2 quadratic constraints: zi+1 = qizi and the expression for qi,
• boundary conditions: z1 = zn+1 = 1.

3. Multiple Queries Lookup

Our first observation is that for multiple queries f (1),...,f (k) with the same table t,
we can use essentially the same scheme to decrease the cost of 4k extra columns to
2k + 2. The algorithm is as follows:

Algorithm 1 (Multiple Queries Lookup). Let (f
(1)
i)ni=1,...,(f

(k)
i)ni=1 and t = (ti)

n+1
i=1

be vectors in a field F. The algorithm provides a proof that all f
(j)
i ∈ t.

Prover:

(1) Set s = t ∪ f (1) ∪ . . . ∪ f (k) as a multiset, sorted by t.
(2) Set h(j) = (sj, sj+k+1, sj+2(k+1), ...,) for j = 1, ..., k + 1.

Thus, |s| = kn+ n+ 1, |h(1)| = n+ 1 and |h(2)| = ... = |h(k+1)| = n.
(3) Commit h(1), ..., h(k+1).

2

(4) Get random constants β, γ ∈ F from the verifier1.
(5) Compute vectors z, q(1), ..., q(k) recursively, as follows.

1: z1 ← 1
2: for i← 1 to n do

3: v ← γ(1+β)+h
(k+1)
i +βh

(1)
i+1

4: for j ← k to 1 by − 1 do

5: v ∗ := (γ(1 + β)+h
(j)
i +βh

(j+1)
i)/(γ+f

(j)
i)

6: q
(j)
i := v

7: end for
8: zi+1 := zi(γ(1+β)+ti+βti+1)(1+β)k/v
9: end for

(6) Commit z, q(1), ..., q(k).

Verifier: Check that z1 = zn+1 = 1, and that the following k+1 quadratic constraints
hold. For all i = 1, ..., n,

(1) zi+1q
(1)
i = zi(1 + β)k(γ(1+β)+ti+βti+1),

(2) (γ(1+β)+h
(j)
i +βh

(j+1)
i)q

(j+1)
i = (γ+f

(j)
i)q

(j)
i for j = 1 . . . k − 1,

(3) (γ(1+β)+h
(k)
i +βh

(k+1)
i)(γ(1 + β)+h

(k+1)
i +βh

(1)
i+1) = (γ+f

(k)
i)q

(k)
i .

4. Bounded lookup

We now turn to ‘bounded lookup’, a version of the above scheme that puts a cap
m on how many times an entry in t can occur in the f (j) in total. In practice, the
f (j) and t can have different sizes (≤ n), and we pad them with a ‘dummy’ value
µ ∈ t. Observe that in the scheme of §3, assuming the table t has no repetitions
except for µ and has > m distinct values,

every ti ̸= µ occurs ≤ m times in
⋃

j f
(j) ⇐⇒ all multiplicities in s are ≤ m+1

⇐⇒ si−m−1 ̸= si for all i.

We let all indices in t, f , h, and I cycle modulo the column size N = n+ 1. For
i = 1 for example, ti−1 refers to tn+1, ti−2 to tn etc. (In practice, all the column
entries are elements of some finite cyclic group of order N .) From Algorithm 1(2) we

see that h
(j)
i = sp with p = j+(k+1)(i−1), and it follows easily that sp−m−1 = h

(jm)
im

where 1 ≤ jm ≤ k + 1 is the unique integer congruent to j −m− 1 mod k + 1, and
im = i+ (j − jm −m− 1)/(k + 1).

With the above observation, the ‘lookup’ algorithm upgrades to ‘bounded lookup’
as follows, at a cost of one additional column and one constraint per query.

Algorithm 2 (Multiple Queries Bounded Lookup). Let (f
(1)
i)ni=1,...,(f

(k)
i)ni=1 and

t = (ti)
n+1
i=1 be vectors in a field F, µ ∈ t and m ≥ 1. The algorithm provides a proof

that f
(j)
i ∈ t, and all ti ̸= µ occur ≤ m times as an entry.

Prover:

1in practice, via the Fiat-Shamir heuristic, through the hash of (f, h(1), ..., h(k+1)) from (3)
3

(1) Apply Algorithm 1 to show that all f
(j)
i ∈ t. Let h(j) be as in the algorithm,

except we view them as all having length n+ 1 with h
(j)
n+1 = µ for j > 1.

(2) Construct and commit k + 1 vectors I(j) = (I
(j)
i)n+1

i=1 , with I
(j)
i = (h

(j)
i −

h
(jm)
im

)−1 when h
(j)
i ̸= h

(jm)
im

and I
(j)
i = 0 otherwise.

Verifier: In addition to the constraints in Algorithm 1, check that(
(h

(j)
i − h

(jm)
im

)I
(j)
i − 1

)(
h
(j)
i − µ

)
= 0, 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ k + 1.

5. Injective lookup

Finally, we discuss the important case of bounded lookup with m = 1. This is the
case used for memory accesses in [B+18, Cer19]. The algorithm then shows that
every value ti ̸= µ occurs at most once in

⋃
j f

(j). However, in this case the above

scheme can be improved from 4k + 2 auxiliary columns to 2k. View f (j) as having
length n+1, padding them with µ if necessary. What we want to show is that there
are pairwise disjoint sets of indices X(j) ⊂ {1, ..., n+ 1} such that

f (j) = permutation of
{
ti if i ∈ X(j) and µ if i /∈ X(j)

}n+1

i=1
.

Proving that two vectors v and w are permutations of one another is easy with one
extra vector z = (zi), zi =

∏i
j=1

β−vj
β−wj

that satisfies an obvious constraint from the

recursion relating zi and zi−1, and boundary conditions (z0 =)zn+1 = 1. We get:

Algorithm 3 (Multiple Queries Injective Lookup). Let (f
(1)
i)n+1

i=1 ,...,(f
(k)
i)n+1

i=1 and
t = (ti)

n+1
i=1 be vectors in a field F, and µ ∈ t. The algorithm provides a proof that

f
(j)
i ∈ t, and every ti ̸= µ occurs at most once as an entry.
Prover:

(1) Let X(j) ⊂ {1, ..., n + 1} be pairwise disjoint sets of indices for j = 1, ..., k
so that

f (j) = permutation of t(j), t(j) = {ti if i ∈ X(j) and µ if i /∈ X(j)}n+1
i=1 .

(2) Commit f (j), t and t(j) for j = 1, . . . , k.
(3) Get random constant β ∈ F from the verifier.

(4) Define vectors z(j) =
(∏i

l=1

β−f
(j)
l

β−t
(j)
l

)n+1

i=1
for j=1, ..., k, and commit them.

Verifier: Verify that

(1) z
(j)
i (β− t

(j)
i) = z

(j)
i−1(β− f

(j)
i) for i = 1, .., n+1 and z

(j)
n+1 = 1, for j = 1, ..., k.

(2) (t
(j)
i − ti)(t

(j)
i − µ) = 0 for i = 1, .., n+ 1, and j = 1, ..., k.

(3)
(
ti + (k − 1)µ−

∑k
j=1 t

(j)
i

)(
kµ−

∑k
j=1 t

(j)
i

)
= 0 for i = 1, .., n+ 1.

The first condition shows that f (j) and t(j) are permutations of one another. The
second shows that t(j) either agrees with t or equals µ at every place. The last
one guarantees that at every place t(j) can agree with t for at most one j, which is
equivalent to the X(j) being disjoint.

4

Finally, we refer the reader to [A+22] for the discussion of lookup in the context
when the f (j) and t have very different size, and optimizations for the prover in that
case.

References

[A+22] H. M. Ardevol, J. B. Melé, D. Lubarov, J. L. Muñoz-Tapia, RapidUp: Multi-Domain
Permutation Protocol for Lookup Tables, Cryptology ePrint Archive, Report 2022/1050, 2022,
https://eprint.iacr.org/2022/1050.

[BS+13] E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza, Succinct non-interactive arguments
for a von neumann architecture, Cryptology ePrint Archive, Report 2013/879, 2013,
https://eprint.iacr.org/2013/879.

[B+18] J. Bootle, A. Cerulli, J. Groth, S. Jakobsen, M. Maller, Arya: Nearly Linear-Time
Zero-Knowledge Proofs for Correct Program Execution, Cryptology ePrint Archive, Report
2018/380, 2018, https://eprint.iacr.org/2018/380.

[Cer19] Efficient Zero-Knowledge Proofs and their Applications, PhD thesis, UCL, 2019.
[G+20] A. Gabizon, Z. J. Williamson, plookup: A simplified polynomial protocol for lookup tables,

Cryptology ePrint Archive, Report 2020/315, 2020, https://eprint.iacr.org/2020/315.
[GMR85] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof-

systems (extended abstract), in: Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pp 291–304, 1985.

[P+22] L. Pearson, J. Fitzgerald, H. Masip, M. Bellés-Muñoz, J. L. Muñoz-Tapia, PlonKup:
Reconciling PlonK with plookup, Cryptology ePrint Archive, Report 2022/086, 2022,
https://eprint.iacr.org/2022/086.

Adapt Framework solutions
Email address: alex@adaptframework.solutions
Email address: timdok@gmail.com

5

	1. Introduction
	2. Plonkup protocol
	3. Multiple Queries Lookup
	4. Bounded lookup
	5. Injective lookup
	References

