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ABSTRACT. In recent works of Li the noisy subset product problem (also known as subset
product with errors) was invented and applied to cryptography. To better understand its
hardness, we give a quantum annealing algorithm for it. Our algorithm is the first algorithm
for the problem. We also give the first quantum annealing algorithm for the subset product
problem. The efficiencies of both algorithms rely on the fundamental efficiency of quantum
annealing. At the end we give two lattice algorithms for both problems via solving the closest
vector problem. The complexities of the lattice algorithms depend on the complexities of
solving the closest vector problem in two special lattices. They are efficient when the special
closest vector problems fall into the regime of bounded distance decoding problems that can
be efficiently solved using existing methods based on the LLL algorithm or Babai’s nearest
plane algorithm.

1. INTRODUCTION

The subset product problem is a classical NP-complete problem [GJ79, p. 224]. It has not
gained much attention for several decades, probably due to the lack of applications. In the
recent works [Li22a; Li22d; Li22e; Li22f; Li22g; Li22h; Li22i] Li created the noisy subset
product problem and gave applications to cryptography.

To understand the hardness of noisy subset product, Li studied subset product and pro-
posed two algorithms for it, they are the Jacobi symbol parity checking algorithm [Li22b]
and the power residue symbol order detecting algorithm [Li22c]. However these algorithms
are only reasonable for special cases of the problem. Also, these algorithms cannot be used
to solve noisy subset product. In fact, no algorithm for noisy subset product has been discov-
ered. In this paper we give quantum annealing algorithms for the general cases of subset
product and noisy subset product.

Quantum annealing was originated from [RCC89] where quantum fluctuations were found
to be helpful for finding the lowest energy state of Ising spin glasses; and it is formulated in
[KN98] where quantum fluctuations were introduced into simulated annealing.

Before our work, quantum annealing has been used to solve the traveling salesman prob-
lem [MST04], the graph coloring problem [TC11a; TC11b; TC12; Kud18; TESKHKGZ20;
SALD20; Kud20; KP20], the graph partitioning problem [UMNM17], systems of polyno-
mial equations [CGHS19; CLT19; RCBPLBMAL22], the prime factorization problem [DA17;
JBMHK18; PWHWFCW19; SHIY22], the shortest vector problem [JCLM21; UINKM22;
YSFOSMMRT22], and the closest vector problem [YSFOSMMRT22], etc. Also, in [Luc14]
many NP problems including Karp’s 21 NP-complete problems [Kar72] are reduced to the
Ising problem.
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The two steps of using quantum annealing to solve an optimization problem are: (1)
reduce the optimization problem to the Ising problem; and (2) use a quantum annealer to
solve the Ising problem.

1.1. Ising Problem. The Ising problem is about finding the lowest energy state of an Ising
spin glass. An Ising spin glass is a spin glass modeled by the Ising model. A spin glass is a
magnetic state that has random spins, in contrast to a ferromagnetic solid whose spins are
aligned in the same direction. The Ising model [Isi25] is a simplified mathematical model
of ferromagnetism. Consider an Ising spin glass as a grid Λ of n sites where each site has
spin σk whose value is either −1 or +1. The Ising model only considers interactions between
adjacent cites and interactions between each cite and an external magnetic field associating
with it. The interaction between two adjacent sites is represented by a real number Ji, j ∈R;
the interaction between each site and its external magnetic field is represented by a real
number hi ∈ R. The energy of the system is then given by the Hamiltonian (i.e. energy
function)

H(σ)= ∑
i< j

Ji, jσiσ j +
∑

i
hiσi.(1)

A configuration is an assignment of the spin sequence σ = (σ1, . . . ,σn) ∈ {−1,+1}n. The
Ising problem asks to find a configuration σ ∈ {−1,+1}n that minimizes the Hamiltonian
H(σ). In the language of physics it means to find the ground state (i.e. lowest energy state)
of the Ising model.

1.2. QUBO Problem. Note that the Ising problem deals with −1 and +1, which is not very
natural. We usually work with the quadratic unconstrained binary optimization problem
(QUBO). QUBO is equivalent to Ising except that it deals with 0 and 1 instead of −1 and
+1. Its cost function is

H(x)= ∑
i< j

wi, jxix j +
∑

i
vixi,(2)

where wi, j,vi ∈ R and xi ∈ {0,1}n. The problem asks to find x ∈ {0,1}n that minimizes H(x).
The equivalence between Equations (1) and (2) can be easily seen by writing σi = 2xi −1.

The QUBO function H(x) can be represented by an upper triangular matrix Q as

H(x)= x⊤Qx,

where Q is called the QUBO matrix.
The following example shows how to find an Ising/QUBO formulation for an optimization

problem.
Example 1. Let f (x0, x1) = x0 ⊕ x1, where ⊕ is the XOR operation. The optimization prob-

lem asks to find a pair (x0, x1) ∈ {0,1}2 such that f (x0, x1) = 1. Note that f (x0, x1) = 1 if and
only if precisely one of x0 and x1 is 1. Hence we can define the cost function to be

H(x0, x1)= (x0 + x1 −1)2.
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Whenever H reaches its minimal value 0, the pair (x0, x1) is a solution to the optimization
problem. Now since x0, x1 ∈ {0,1}, we have x0 = x0x0 and x1 = x1x1. Therefore

H(x0, x1)= (x0 + x1 −1)2

= x2
0 + x2

1 +2x0x1 −2x0 −2x1 +1
= x0x0 + x1x1 +2x0x1 −2x0x0 −2x1x1 +1
=−x0x0 − x1x1 +2x0x1 +1.

Observe that the constant term is useless since minimizing H(x0, x1) is equivalent to mini-
mizing

H̃(x0, x1)=−x0x0 − x1x1 +2x0x1.

Write the coefficients of H̃ into a matrix

Q =
(−1 2

0 −1

)
,

where Q i, j is the coefficient of xix j, we have the desired QUBO function to be

H̃(x0, x1)= x⊤Qx

=
1∑

i=0

1∑
j=0

Q i, jxix j.

1.3. Quantum Annealing. The basic idea behind simulated/quantum annealing is the
fundamental rule of nature that energy tends to transfer from a less random system to
a more random system. This means that things in a higher energy state have the tendency
to go to the lowest energy state. So if we could translate the cost function of an optimization
problem into the energy function of a physical system, then nature will automatically seek
an optimal solution to the optimization problem as it seeks the lowest energy state of the
physical system.

Quantum annealing is similar to simulated annealing but with thermal activation re-
placed by quantum tunneling [KN98]. To go from a high energy state to the lowest energy
state, simulated annealing uses temperature to drive the process, while quantum anneal-
ing uses a magnetic field; simulated annealing climbs up and down hills to find the lowest
“valley”, while quantum annealing “digs” a tunnel through the hill and go directly from one
valley to another (so-called quantum tunneling); simulated annealing stops when the sys-
tem is in the lowest temperature, while quantum annealing stops when the system is in the
lowest magnetic field.

Specifically, let H0 be a Hamiltonian that is easy to prepare; and let HP be the prob-
lem Hamiltonian. We prepare a system that is in the ground state of H0 and let the time
dependent Hamiltonian

H(t)=
(
1− t

T

)
H0 + t

T
HP

adiabatically (i.e. very slowly) evolve according to the Schrödinger equation

i
d
dt

|ψ(t)〉 = H(t)|ψ(t)〉
3



until reaching the ground state of the problem Hamiltonian HP = H(t = T). In the end,
the adiabatic theorem [BF28] guarantees that the ground state after time t = T carries an
optimal solution to P and we can extract it by measuring the quantum state.

Here H0 is chosen to be consist of transverse magnetic fields [BASCL13]:

H0 =−h0

n∑
i=1

σx
i ,

where σx
i =

(
0 1
1 0

)
is a Pauli matrix; and HP is the quantum version of the Hamiltonian (1):

HP = H(σz
1, . . . ,σz

n)

= ∑
i< j

Ji, jσ
z
iσ

z
j +

∑
i

hiσ
z
i ,

where σz
i =

(
1 0
0 −1

)
is a Pauli matrix acting on the i-th qubit of n qubits {|+〉, |−〉}⊗n.

2. QUANTUM ANNEALING FOR SUBSET PRODUCT

The subset product problem (SP) [GJ79, p. 224] asks to solve the exponential equation
n∏

i=1
axi

i = a

for a binary vector x = (x1, . . . , xn) ∈ {0,1}n, where a1, . . . ,an,a ∈Z.
In [Li22b] and [Li22c] Li gave classical algorithms for the problem. However those algo-

rithms only make sense when the number of bases a1, . . . ,an is not much greater than the
number of prime factors p1, . . . , pm of the bases a1, . . . ,an. I.e. n < m or n ⪆ m. For the
regime n ≫ m, the algorithms can be less efficient than exhaustive search.1

Now we give a quantum algorithm for all parameter regimes n ⪋ m. We reduce subset
product to the Ising problem and apply quantum annealing to search for a solution. The
main idea is the following reduction chain:

SP≤E M-MSS≤LLS≤B-LLS≤ Ising/QUBO,

where M-MSS is the multiple modular subset sum problem, LLS is the linear least solutions
problem, B-LLS is the binary linear least solutions problem, ≤ denotes “Karp reduces to”,
and ≤E means that the reduction is empirical.

2.1. SP ≤E M-MSS. The multiple modular subset sum problem (M-MSS) asks to solve a
system of modular linear equations{

n∑
j=1

αi, jx j =βi (mod ℓi)

}
i∈[k]

for a binary solution x = (x1, . . . , xn) ∈ {0,1}n.
We show how to reduce an SP instance (a1, . . . ,an,a) ∈Zn+1 to an M-MSS instance.

1This is because at the end of the algorithms we need to search for a binary solution by brute forcing the
solution set of a matrix equation Ax = b (mod ℓ), where ℓ is a prime. Note that there are ≥ ℓn−m integral
solutions in the solution set. Hence if ℓ > 2 and n ≫ m, the size ℓn−m of the solution set can be greater than
the number 2n of all possible binary strings x ∈ {0,1}n.

4



Choose k ≥ n distinct random small primes ℓ1, . . . ,ℓk that are polynomial in n. Find k
prime moduli qi = siℓi +1 that do not divide a1, . . . ,an.

Find a generator g i of the order ℓi subgroup G i =
{

g0
i , . . . , gℓi−1

i

}
of Z×

qi
, for i = 1, . . . ,k.

This can be done efficiently since any element a(qi−1)/ℓi not equals 1 is coprime to qi and
thus is a generator of G i, for a ∈Z×

qi
.

Find αi, j ∈Zℓi such that

gαi, j
i = a(qi−1)/ℓi

j (mod qi),

for i = 1, . . . ,k, j = 1, . . . ,n. Find βi such that

gβi
i = a(qi−1)/ℓi (mod qi),

for i = 1, . . . ,k. These can be done efficiently since αi, j and βi are elements of the small
subgroup Zℓi of Zqi−1; we can find them by simply brute forcing the small subgroups.

We then have a system of modular equations{
n∑

j=1
αi, jx j =βi (mod ℓi)

}
i∈[k]

.

We claim that there exists a polynomial size number k ∈N such that all solutions to the
M-MSS are solutions to the SP. This is based on the natural intuition that n random linear
equations has high probability to be independent and can constraint the solution set of the
M-MSS to be exactly the solution set of the SP.

Experiments. We give experimental results to support our claim. The program is written
in Sage and run on a laptop. The laptop details are: MacBook Air 13-inch, early 2015;
Processor 1.6 GHz Intel core i5; Memory 8 GB 1600 MHz DDR3; System OS XEI Capitan
version 10.11.5.

A difference between the experiments and the real reduction is the choice of the subgroup
orders ℓ1, . . . ,ℓk. In the experiments ℓi are not “random” primes but the next k primes after
the greatest prime factor pm of the bases a1, . . . ,an of the SP instance (a1, . . . ,an, X ).2 It
turns out that this setting is enough for the claim to hold.

The experimental results are shown in the following table, where the column “n” means
that each SP has n bases a1, . . . ,an; the column “m” means that all a1, . . . ,an (hence each
ai) has at most m prime factors p1, . . . , pm; the column “e” means that the exponents of the
prime factorizations of a1, . . . ,an are upper bounded by e, i.e. in {0, . . . , e}; the column “k”
means that we use k MSS instances to represent the SP instance; the column “#Trials” is
the numbers of random SP instances we tested for each combination (n,m,d,k); the column
“#Successes” is the numbers of trials where the M-MSS instance successfully represents the
SP instance, i.e., the solution set of the M-MSS instance is exactly the solution set of the SP
instance.

2This is to ensure that the moduli qi := siℓi + 1 are not factors of a1, . . . ,an so that the useless relation∏n
i=1 axi

i = 0 (mod qi) will not be created. Also, in the experiments the prime factors of the bases are known to
us, but the experiments are just for testing the correctness of the reduction, it does not mean that the reduction
requires to find these prime factors.
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n m e k #Successes #Trials

1 6 3 1 1,2,3,4,5,6 3,17,12,. . . . . . . . . . . . .100,100,100 100

2 7 3 1 1,2,3,4,5,6,7 0,5,8,. . . . . . . . . . . . . . . . . .100,100,100,100 100

3 8 3 1 1,2,3,4,5,6,7,8 0,4,5,. . . . . . . . . . . . . . . . . . . . . . .100,100,100,100,100 100

4 9 3 1 1,2,3,4,5,6,7,8,9 0,1,3, . . . . . . . . . . . . . . . . . . . . . . . . . . .100,100,100,100,100,100 100

5 6 4 1 1,2,3,4,5,6 5,10,. . . . . . . . . . . . . . . . . .100,100,100,100 100

6 7 4 1 1,2,3,4,5,6,7 0,3,. . . . . . . . . . . . . . . . . . . . . . .100,100,100,100,100 100

7 8 4 1 1,2,3,4,5,6,7,8 0,4, . . . . . . . . . . . . . . . . . . . . . . . . . . .100,100,100,100,100,100 100

8 9 4 1 1,2,3,4,5,6,7,8,9 0,3,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100,100,100,100,100,100,100 100

9 6 2,3,4,5,6,12 1,2,3,6,12 6 . . . .100 100

10 7 2,3,4,5,6,7,12 1,2,3,6,12 7 . . . .100 100

11 8 2,3,4,5,6,7,8,12 1,2,3,6,12 8 . . . .100 100

12 9 2,3,4,5,6,7,8,9,12 1,2,3,6,12 9 . . . .100 100

TABLE 1. Test whether M-MSS represents SP.

From Line 1-8 we see that when the number k of MSS instances exceeds some number
that is smaller than n, M-MSS starts to represent SP well. This is reasonable because an SP
can have multiple solutions and that there probably does not exist n many “independent”
linear equations (over the ring Z∏k

i=1ℓi
)3 corresponding to a solution set of size > 1. Hence

we mostly do not need n equations to fix the solution set.
From 9-12 we see that when the number k of MSS instances arrives n, M-MSS always

represents SP perfectly, for all tested parameters. This is a consistent result because even
in the worst case where the SP has only one solution, it is reasonable to expect that n
“random” linear equations is enough to provide sufficiently many “independent” relations to
fix the solution.

Note that solving for an integral solution to a modular linear system is easy using the
multivariable Chinese remainder theorem [Kni12]. But finding a binary solution is nontriv-
ial. We handle this issue by reducing the M-MSS to the binary linear least squares problem.

2.2. M-MSS ≤ LLS. We first reduce the M-MSS to the linear least squares problem. The
linear least squares problem (LLS) is given a matrix A ∈Rm×n and a vector b ∈Rm and asks
to find a vector z ∈Rn that minimizes the Euclidean norm ||Az−b||.

From the M-MSS we create an LLS asA =

α1,1 . . . α1,n ℓ1
...

... . . .
αk,1 . . . αk,n ℓk

 ,b =

β1
...
βk


 ,(3)

which asks to find a vector z = (x, y) ∈Zn ×Zk that minimizes ||Az−b|| to 0.

3Note that a system of modular equations with different moduli ℓ1, . . . ,ℓk can be converted into a system of
modular equations with the same modulus

∏k
i=1ℓi. For example, the system {2x+3y = 3 (mod 5); 3x+4y = 4

(mod 7)} with different moduli 5 and 7 can be converted into the system {14x+21= 21 (mod 35); 15x+20y= 20
(mod 35)} with the same modulus 35 in the following way: {(2·7)x+(3·7)y= (3·7) (mod 5·7); (3·5)x+(4·5)y= (4·5)
(mod 4 ·5)}. Also notice that Z∏k

i=1 ℓi
is a ring and not a field. Hence the word “independent” is in the sense of

over a ring and not a field.
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2.3. LLS ≤ B-LLS. The binary linear least squares problem (B-LLS) is given a matrix
A ∈ Rm×n and a vector b ∈ Rm and asks to find a binary vector z ∈ {0,1}n that minimizes
||Az−b||.

We reduce the LLS instance to a B-LLS instance since there is a simple transformation
from B-LLS into QUBO [OV16] and B-LLS helps to restrict the solution x to be binary.

A generic method to convert LLS to B-LLS is in [OV16], also explained in [BL19]; and a
similar trick is used in [YSFOSMMRT22]. We show how to apply it “compactly” (i.e. saving
bits as many as possible) to our specific problem.

We will convert the LLS (A,b) ∈Zk×(n+k)×Zk with solutions z = (x, y) ∈Zn×Zk to a B-LLS
(Ā, t) ∈Zk×(n+d) ×Zk with solutions z̄ = (x̄, ȳ) ∈ {0,1}n × {0,1}d, for some d > k.

Let di =
⌈

log2
n(ℓi−1)

ℓi

⌉
and d =∑k

i=1 di.4 We let x̄ ∈ {0,1}n and extend y= (y1, . . . , yk) ∈Zk to

ȳ= (y1,1, . . . , y1,d1 , y2,1, . . . , y2,d2 , . . . , yk,1, . . . , yk,dk ) ∈ {0,1}d

by replacing each yi =∑di
s=1 yi,s2di−s by its binary representation (yi,1, . . . , yi,di ) ∈ {0,1}di .

We then extend A ∈ Zk×(n+k) into Ā ∈ Zk×(n+d) as follows. For i = 1, . . . ,k, we duplicate
the (n+ i)-th column of A to di columns and then multiply these di columns by 2di−1, · · · ,20

respectively.
Then (Ā,b) is a B-LLS instance with solution(s) z̄ = (x̄, ȳ) ∈ {0,1}n × {0,1}d.
We call Ā the extending matrix of A, z̄ the binary vector of z, and di the extending ratio of

the column An+i of A being extended.

2.4. B-LLS ≤ Ising/QUBO. Now we can use the simple conversion in [OV16, Section IV]
to reduce the B-LLS instance (Ā,b) to the QUBO function as

H(z̄)= ∑
r<s

wr,s z̄r z̄s +
∑
r

vr z̄r,(4)

where

wr,s = 2
∑

i
Ā i,r Ā i,s,

vr =
∑

i
Ā i,r(Ā i,r −2br),

and r, s ∈ [n+d].
Having this formulation, one can then run a quantum annealer (such as the D-Wave

series) to find an optimal solution z̄ = (x̄, ȳ) to the QUBO, where x̄ is the solution to our SP.

2.5. Subset Product Algorithm. In sum of the above reductions, the algorithm for subset
product is the following.

4Here we set di =
⌈

log2
n(ℓi−1)

ℓi

⌉
because yi satisfies

∑n
j=1αi, j x j =βi + yiℓi and we must have yi ≤ n(ℓi−1)

ℓi
.
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Algorithm 1 Quantum Annealing for Subset Product

Input: A subset product instance (a1, . . . ,an,a) ∈Zn+1.
Output: A vector x = (x1, . . . , xn) ∈ {0,1}n such that

∏n
j=1 ax j

j = a.
1: Sample k ≥ n distinct random primes ℓ1, . . . ,ℓk of size polynomial in n and choose k

prime moduli q1, . . . , qk of the form qi = siℓi +1 such that qi ∤ a j for all i ∈ [k], j ∈ [n];
2: Find a generator g i of the order ℓi subgroup G i of Z×

qi
and find αi, j such that gαi, j

i = asi
j

(mod qi) as well as βi such that gβi
i = asi (mod qi), by enumerating elements in Zℓi , for

all i ∈ [k], j ∈ [n];
3: Define an LLS instance (A,b) as Equation (3);
4: Compute the extending matrix Ā of A;
5: Define a QUBO function H(z̄) as Equation (4);
6: Use a quantum annealer to solve the QUBO H(z̄) for a vector z̄ = (x̄, ȳ) ∈ {0,1}n ×

{0,1}
∑k

i=1

⌈
log2

n(ℓi−1)
ℓi

⌉
;

7: Return x̄.

The complexity of Step 1-5 is polynomial in n. The efficiency of the algorithm mainly
depends on the efficiency of the quantum annealer.

3. QUANTUM ANNEALING FOR NOISY SUBSET PRODUCT

Note that there are many abstract versions of the noisy subset product problem [Li22d;
Li22h]. The concrete versions used in building key exchange scheme [Li22d], public-key
cryptosystem [Li22e] and digital signature [Li22f] are over integers and with concrete noise
distributions. We consider a general version of the concrete versions, i.e., the noisy subset
product problem over integers but with arbitrary distributions of the bases and the errors,
and possibly with different moduli.

Let D1,i(Zqi ) be a distribution over Zqi ; and let D2(L) be a distribution over a set L of
positive integers. The noisy subset product problem (NSP) asks to solve the exponential
equation system {(

n∏
j=1

ax j
i, j

)
· e i = ai (mod qi)

}
i∈[k]

for a pair (x, e)= (x1, . . . , xn, e1, . . . , , ek) ∈ {0,1}n×Lk, where qi are safe primes, ai, j ← D1,i(Zqi )
and ai =∏n

j=1 ax j
i, j · e i mod qi are given by the problem, but e i ← D2(L) are not given. If k is

large enough, the solution (x, e) is unique with overwhelming probability [Li22d].
We prove the following reduction chain:

NSP≤NSS≤LLS≤B-LLS≤ Ising/QUBO,

where NSS is the noisy subset sum problem.

3.1. NSP ≤ NSS. Let D1,i(ZNi ) be a distribution over ZNi ; and let D2(S) be a distribution
over a set S of positive integers. The noisy subset sum problem (NSS) [Li22d; Li22h] asks
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to solve the linear system {
n∑

j=1
αi, jx j +ϵi =βi (mod Ni)

}
i∈[k]

for a pair (x,ϵ) = (x1, . . . , xn,ϵ1, . . . ,ϵk) ∈ {0,1}n ×Sk, where Ni ≥ 2 are positive integers, αi, j ←
D1,i(ZNi ) and βi = ∑n

j=1αi, jx j · ϵi mod Ni are given by the problem, but ϵi ← D2(S) are not
given. If k is large enough, the solution (x,ϵ) is unique with overwhelming probability.

We reduce NSP to NSS with N1 = ·· · = Nk = 2. Simply take the Legendre symbols for the
exponential equations (

n∏
j=1

ax j
i, j

)
· e i = ai (mod qi)

to get the equations
n∏

j=1

(ai, j

qi

)x j

·
(

e i

qi

)
=

(
ai

qi

)
;

and then extract the parity-check linear equations
n∑

j=1
αi, jx j +ϵi =βi (mod 2),

where αi, j = (1− (ai, j/qi))/2, βi = (1− (ai/qi))/2, i = 1, . . . ,k. Write in the matrix form we have

Ax+ϵ= b (mod 2),

where A = {αi, j} ∈Zk×n
2 , ϵ ∈Zk

2 and b = (βi) ∈Zk
2 .

It is obvious that the NSS instance and the NSP instance share the same solution(s).

3.2. NSS ≤ LLS. Now we define an LLS as

(B = (A, Ik,2Ik),b)

which asks to find a vector z = (x,ϵ, c) ∈Zn
2 ×Zk

2×Zk
⌈(n+1)/2⌉ that minimizes ||Bz−b|| to 0. Note

that ||Bz− b|| = 0 only when Ax+ Ikϵ+2Ikc = b hence Ax+ ϵ = b (mod 2). Also when k is
large enough, the NSS has a unique solution with overwhelming probability. Hence the pair
(x,ϵ) extracted from the LLS solution v is THE NSS solution with overwhelming probability.

3.3. LLS ≤ B-LLS. Let B̄ = (A, Ik,2Ik) be the extending matrix of B. Then (B̄,b) is a B-
LLS that asks for a vector z̄ = (x,ϵ, c̄) ∈Zn

2 ×Zk
2 ×Z

k⌈log2((n+1)/2)⌉
2 that minimizes ||B̄z̄−b|| to 0.

Here the parameter ⌈log2((n+1)/2)⌉ is because each element ci of c satisfies −(n+1)/2≤ ci ≤
(n+1)/2 and that ⌈log2((n+1)/2)⌉ is the tight bit length for it.

3.4. B-LLS ≤ Ising/QUBO. The QUBO function of the B-LLS instance (B̄,b) is

H(z̄)= ∑
r<s

wr,s z̄r z̄s +
∑
r

vr z̄r,(5)

where

wr,s = 2
∑

i
B̄i,rB̄i,s,

vr =
∑

i
B̄i,r(B̄i,r −2br),

and r, s ∈ [n+k+k⌈log2((n+1)/2)⌉].
9



3.5. Noisy Subset Product Algorithm. In sum of the above reductions, the algorithm for
noisy subset product is the following.

Algorithm 2 Quantum Annealing for Noisy Subset Product

Input: A noisy subset product instance
{
ai,1, . . . ,ai,n,bi, qi,L,D1,i,D2

}
i∈[k].

Output: A pair (x, e) ∈ {0,1}n ×Lk such that
(∏n

j=1 ax j
i, j

)
· e i = bi (mod qi) for all i ∈ [k].

1: Compute αi, j =
(
1−a(qi−1)/2

i, j mod qi

)/
2 for all i ∈ [k], j ∈ [n], denote A := {αi, j}i∈[k], j∈[n];

2: Compute βi =
(
b(qi−1)/2

i mod qi

)/
2 for all i ∈ [k], denote b = (β1, . . . ,βk);

3: Create a B-LLS instance (B̄ = (A, Ik,2Ik),b);
4: Cover the B-LLS (B̄,b) into a QUBO function H(z̄) as Equation (5);
5: Use a quantum annealer to solve the QUBO H(z̄) for a vector z̄ = (x,ϵ, c̄) ∈ Zn

2 ×Zk
2 ×

Z
k⌈log2((n+1)/2)⌉
2 ;

6: Compute e i = gϵi
i mod qi for all i ∈ [k], denote e := (e1, . . . , ek);

7: Return (x, e).

The complexities of Steps 1, 2, 3, 4 and 6 are polynomial in n. The efficiency of the
algorithm mainly depends on the efficiency of the quantum annealer.

4. LATTICE ALGORITHMS

Note that in the quantum annealing algorithms we use B-LLS/Ising/QUBO (basically
using physics) to restrict the solution to be binary. Now we give another way to achieve
this, which is via the closest vector problem in a special lattice. This leads to another two
algorithms for SP and NSP via solving the closest vector problem. These algorithms are
generally inefficient since the closest vector problem is believed to be hard in the worst
case. The meaning of these algorithms is that they are efficient when the closest vector
problem falls into the easy regimes of bounded distance decoding problem that can be solved
efficiently by the LLL algorithm [LLL82] or Babai’s nearest plane algorithm [Bab86]. See
[ABCG22] for an overview of algorithms for the bounded distance decoding problem.

Let Rm be the m-dimensional Euclidean space. A lattice in Rm is the set Λ(B) = {Bz : z ∈
Zn}, where B = (b1, . . . ,bn) ∈ Rm×n is a matrix with linear independent columns b1, . . . ,bn.
We call {b1, . . . ,bn} the lattice basis. The positive integers m and n are called the dimension
and rank of the lattice. If m = n then the lattice is called a full rank lattice.

The closest vector problem (CVP) is given a (typically full rank) lattice basis B ∈Zm×n and
a target vector t ∈Rm, find a lattice vector Bz ∈Λ(B) closest to t.

4.1. Lattice Algorithm for Subset Product. We show the following reduction chain:

SP≤E M-MSS≤CVP.
10



The reduction from SP to M-MSS is done in Section 2.1. To reduce our M-MSS instance
to a CVP instance, simply create a lattice basis:

B = (b1, . . . ,bn+k)=



1
. . .

1
α1,1 . . . α1,n ℓ1

...
... . . .

αk,1 . . . αk,n ℓk


∈Z(n+k)×(n+k),(6)

and a target vector:

t =
(
1
2

, ...,
1
2

,β1, . . . ,βk

)⊤
∈Rn+k.(7)

Then (B, t) is a CVP instance.
We claim that any solution to this CVP instance implies a solution to the M-MSS instance.

Let Bz be any vector in Λ(B) with z = (x, y)= (x1, . . . , xn, y1, . . . , yk) ∈Zn+k. We have that

||Bz− t||2 =
n∑

j=1

∣∣∣∣x j − 1
2

∣∣∣∣2 + k∑
i=1

∣∣∣∣∣ n∑
j=1

αi, jx j +ℓi yi −βi

∣∣∣∣∣
2

.

It is not hard to see that ||Bz− t||2 achieves its minimal value n/4 if and only if

(x1, . . . , xn) ∈ {0,1}n

and at the same time
n∑

j=1
αi, jx j +ℓi yi −βi = 0

for all i ∈ [k]. In other words, if Bz is a closest vector to t, then x must be a (binary) solution
to the M-MSS.

The algorithm is as the following.

Algorithm 3 Lattice Algorithm for Subset Product

Input: A subset product instance (a1, . . . ,an,a) ∈Zn+1.
Output: A vector x = (x1, . . . , xn) ∈ {0,1}n such that

∏n
j=1 ax j

j = a.
1: Sample k ≥ n distinct random primes ℓ1, . . . ,ℓk of size polynomial in n and choose k

prime moduli q1, . . . , qk of the form qi = siℓi +1 such that qi ∤ a j for all i ∈ [k], j ∈ [n];
2: Find a generator g i of the order ℓi subgroup G i of Z×

qi
and find αi, j such that gαi, j

i = asi
j

(mod qi) as well as βi such that gβi
i = asi (mod qi), by enumerating elements in Zℓi , for

all i ∈ [k], j ∈ [n];
3: Define a CVP basis B as Equation (6) and a CVP target vector t as Equation (7);
4: Solve the CVP (B, t) for a vector z = (x, y) ∈Zn+k;
5: Return x.

The complexity of Step 1-3 is polynomial in n. The efficiency of the algorithm mainly
depends on the efficiency of the CVP solver on the special CVP instance. In the worst case
the CVP is believed to be hard.
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4.2. Lattice Algorithm for Noisy Subset Product. We show the following reduction
chain:

NSP≤NSS≤CVP.

The reduction from NSP to NSS is done in Section 3.1. We reduce our NSS to the following
CVP: 

B =



1
. . .

1
α1,1 . . . α1,n 1 q−1

...
... . . . . . .

αk,1 . . . αk,n 1 q−1


, t =



1/2
...

1/2
β1
...
βk




,(8)

which asks to find a vector z = (x, e, c) ∈ Zn ×Zk ×Zk such that ||Bz− t|| = p
n/2. Note that

the solution (x, e) to the NSP and NSS is unique with overwhelming probability. Hence the
pair (x, e) extracted from the CVP solution z is THE solution to the NSP with overwhelming
probability. The algorithm is the following.

Algorithm 4 Lattice Algorithm for Noisy Subset Product

Input: A noisy subset product instance
{
ai,1, . . . ,ai,n,bi, qi,L,D1,i,D2

}
i∈[k].

Output: A pair (x, e) ∈ {0,1}n ×Lk such that
(∏n

j=1 ax j
i, j

)
· e i = bi (mod qi) for all i ∈ [k].

1: Compute αi, j =
(
1−a(qi−1)/2

i, j mod qi

)/
2 for all i ∈ [k], j ∈ [n];

2: Compute βi =
(
b(qi−1)/2

i mod qi

)/
2 for all i ∈ [k];

3: Define a CVP (B, t) as Equation (8);
4: Solve the CVP (B, t) for a vector z ∈ (x, e, c) ∈Zn ×Zk ×Zk;
5: Return (x, e).

The complexity of Step 1-3 is polynomial in n. The efficiency of the algorithm mainly
depends on the efficiency of the CVP solver on the special CVP instance. In the worst case
the CVP is believed to be hard.

5. FINAL REMARKS

If we are allowed to use a factorization algorithm, then subset product can be firstly
reduced to exact cover then reduced to Ising using the simple reduction from exact cover
to Ising in [Luc14]. However this is a quantum reduction since currently we only have
quantum algorithms for factorization [Sho94; Sho99].

If we are allowed to use a discrete logarithm algorithm, then noisy subset product can be
firstly reduced to noisy subset sum by taking discrete logarithms then reduced to Ising in
a similar way as ours. However this is a quantum reduction since at the moment we only
have quantum algorithms for discrete logarithms [Sho94; Sho99].

The efficiencies of our algorithms rely on the efficiencies of the quantum annealing pro-
cesses or the CVP algorithms. In fact, one of our motivations for finding algorithms for noisy
subset product is to understand its hardness as an underlying assumption in cryptography.

12



From Algorithm 2 and 4, which are currently the only existing algorithms for the problem,
it is unlikely that the problem can be solved in polynomial time. This is because solving it
is quite similar to solving the learning parity with noise problem (which is over Z2) or more
general noisy subset sum problems (which are over ZN with N > 2), where the problem over
Z2 is widely believed to be hard [Pie12], and the problems over ZN (N > 2) are plausibly
hard.
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