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Abstract. The learning with errors (LWE) assumption is a powerful
tool for building encryption schemes with useful properties, such as plau-
sible resistance to quantum computers, or support for homomorphic com-
putations. Despite this, essentially the only method of achieving thresh-
old decryption in schemes based on LWE requires a modulus that is
superpolynomial in the security parameter, leading to a large overhead
in ciphertext sizes and computation time.
In this work, we propose a (fully homomorphic) encryption scheme that
supports a simple t-out-of-n threshold decryption protocol while allowing
for a polynomial modulus. The main idea is to use the Rényi divergence
(as opposed to the statistical distance as in previous works) as a mea-
sure of distribution closeness. This comes with some technical obstacles,
due to the di�culty of using the Rényi divergence in decisional security
notions such as standard semantic security. We overcome this by con-
structing a threshold scheme with a weaker notion of one-way security
and then showing how to transform any one-way (fully homomorphic)
threshold scheme into one guaranteeing indistinguishability-based secu-
rity.

1 Introduction

In a public key encryption (PKE) scheme, one needs the secret key sk to decrypt
an encrypted message. Giving one single party control of the whole secret key can
be seen as a single point of failure. The study of PKE with threshold decryption
aims to mitigate this by splitting the secret key into n key shares sk1, . . . , skn,
such that several key shares are needed to be able to decrypt ciphertexts. This
is known as threshold public key encryption (ThPKE). In the common t-out-of-n
setting, any set of t parties or fewer learns no information about encrypted mes-
sages, while any set of t+ 1 parties can jointly decrypt ciphertexts. To decrypt,
the parties �rst compute their own partial decryption shares and then combine
them together to recover the encrypted message. When t = n − 1, we call it
full-threshold decryption.

Recently, NIST announced the standardization of the �rst cryptosystems to
provide security even in the presence of quantum computers.1 Among the �nalists

1 https://csrc.nist.gov/projects/post-quantum-cryptography
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to be standardized, a majority base their security on the presumed hardness of
(structured) lattice problems, such as Dilithium [Lyu+20] and Kyber [Sch+20]
based on the (module) learning with errors problem (M-LWE) [LS15]. NIST
also just began a project on threshold cryptography,2which aims to produce
guidelines and recommendations for implementing threshold cryptosystems.

It is thus a very important research question to study the possibility of
thresholdizing lattice-based PKE schemes. This line of research has been ini-
tiated by [BD10], where they proposed a threshold key generation and decryp-
tion starting from Regev's encryption scheme [Reg05]. To split the secret key
they use replicated secret sharing, which has a complexity that scales with

(
n
t

)
.

Later, it has been shown that we can even build full-threshold decryption for
fully homomorphic encryption (FHE) schemes [Ash+12]. A threshold fully homo-
morphic encryption scheme (ThFHE) allows to perform arbitrary computations
on encrypted data and afterwards to partially decrypt the outcome of the com-
putations. Their results have then been extended to t-out-of-n threshold and
other access structures [Bon+18].

All works above have in common that they use a technique called noise �ood-
ing to guarantee that partial decryption shares do not leak any information on
the underlying secret key. More precisely, each party �rst computes a �noiseless�
partial decryption of a ciphertext using their secret key share. The noiseless
partial decryptions allow recovering the message, but also reveal a small noise
term ect that depends on the given ciphertext and the secret key. To prevent this
leakage, every party locally adds some fresh noise on their decryption share be-
fore they jointly combine the necessary number of shares to recover the message.
After decryption, the revealed noise term becomes ect + e′, where e′ ← Dflood

is a noise term that is hidden to the adversary. When proving security, the real
partial decryption shares are replaced by simulated ones which do not depend on
the secret key, and instead reveal noise terms of the form e′ ← Dflood. By argu-
ing that the statistical distance between both ways of deriving partial decryption
shares is negligible, one can argue security. While this approach has the advan-
tage of being rather simple, it has the drawback of requiring the ratio between
the �ooding noise and the size of the ciphertext noise ect to be superpolyno-
mial in the security parameter. This in turn requires the LWE problem to be
secure with a superpolynomial modulus-to-noise ratio, which weakens security
and requires larger LWE parameters to compensate.

Recently, multi-party reusable non-interactive secure computation (MrNISC)
was constructed from LWE with a polynomial modulus [Ben+21; Shi22]. This
leads to a construction of full-threshold (multi-key) FHE with a polynomial mod-
ulus. It seems plausible that their construction can also be extended to build t-
out-of-n threshold FHE with polynomial modulus; however, their techniques are
very complex, due to a non-black-box �round-collapsing� technique based on gar-
bled circuits, so unlikely to be practical. We thus started our work asking the
following research question:

2 https://csrc.nist.gov/Projects/threshold-cryptography
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Is it possible to construct a fully homomorphic encryption scheme that
supports a simple t-out-of-n threshold decryption while allowing for a
polynomial modulus?

Our Results. We give a positive answer to this question. On a high level, we
show that the simple threshold decryption technique from previous works [BD10;
Bon+18] can be signi�cantly improved by replacing the noise �ooding analysis
with respect to the statistical distance by one with respect to the Rényi diver-
gence (RD). Doing so comes with the bene�t of only requiring a polynomial
ratio between ciphertext noise and �ooding noise, hence allowing for the desired
polynomial modulus. However, it comes with several additional challenges. First,
the Rényi divergence �ts well in search-based security notions, such as OW-CPA
security3, but does not work well with decision-based security notions, such as
the standard IND-CPA security.4 Furthermore, it is especially di�cult to apply
the Rényi divergence to obtain simulation-based security, as required for typical
notions of threshold decryption, since a small RD between two distributions does
not imply a small statistical distance.

To overcome these challenges, we de�ne new game-based notions of OW-CPA
and IND-CPA security for threshold homomorphic cryptosystems, which are com-
patible with Rényi divergence-based proofs, whilst also giving desirable security
guarantees for applications. Then, we give general transformations from OW-CPA
to IND-CPA security for ThPKE and ThFHE schemes. Whereas the �rst trans-
formation only applies to standard PKE and is in the random oracle model, it
comes with the advantage of guaranteeing a form of robustness against up to t
malicious parties, with no extra cost. The second transformation is in the stan-
dard model and also applies to the fully homomorphic setting, but does not give
robustness. For this transformation to go through, we also need the OW-CPA
ThFHE scheme to be circuit private; while this property is often achieved us-
ing noise �ooding techniques that require a large modulus, it is also possible to
use bootstrapping [DS16] or GSW-style FHE [Bou+16] to obtain circuit privacy
with a polynomial modulus. Finally, we also show how to construct OW-CPA
schemes based on the (module) LWE assumption with a polynomial modulus.

Put together, these techniques lead to our main result of ThFHE from (mod-
ule) LWE with a polynomial modulus. More precisely, in our construction the
modulus q scales as O(

√
ℓ), where ℓ is the number of partial decryption queries

made by an adversary within the security game, so q is polynomial as long as ℓ
is polynomially-bounded in advance.

What about IND-CCA security? We could likely upgrade our construction (for PKE)
to be IND-CCA secure using non-interactive zero-knowledge proofs, similarly
to [Dev+21a]. However, note that (adaptive) IND-CCA security is not possi-
ble for homomorphic encryption, and IND-CPA is still useful for standard PKE;

3 OW-CPA security for PKE roughly says that given the public key and an encryption
of a random message m, it is hard to guess m.

4 Unless a property called public sampleability is ful�lled [Bai+18].
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indeed, [HV22] showed that an IND-CPA secure KEM su�ces to prove security
of TLS-1.3. Furthermore, when running TLS with ephemeral keys and no key
re-use, the adversary only ever sees a single ciphertext under any public key �
this is an ideal use-case for using our ThPKE construction in a threshold post-
quantum TLS setting (e.g. for hardening security of a TLS server), since we only
need to choose the parameters to be secure against a single decryption query.

1.1 Overview of Techniques

De�ning IND-CPA security for ThFHE (Section 3). Most of the previous IND-CPA
security de�nitions of ThFHE required the underlying FHE scheme to be IND-CPA
secure and the partial decryptions to be statistically simulatable, e.g. [Bon+18].
When replacing the statistical distance by the Rényi divergence, however, we
cannot prove the statistical simulation anymore and instead have to move to a
game-based notion that combines the IND-CPA game and the partial decryption
queries together into one single game. Here, to support homomorphic compu-
tations, we consider a game where in each partial decryption query, �rst some
homomorphic evaluation is performed on a set of ciphertexts, before giving de-
cryptions of the result to the adversary.When and how the adversary gets access
to the partial decryption oracle within the IND-CPA game crucially impacts the
strength of the achieved security. For example, one can allow the adversary to
only query partial decryptions before seeing the challenge ciphertext. This was
done in a previous version of ThFHE [Cho+22a], which also uses a Rényi di-
vergence based analysis. Or, one can allow the adversary to only query partial
decryptions on ciphertexts that do not contain the challenge ciphertext. This is
what we voted for in an earlier version of this paper [BS23]. A more realistic
setting, which has �rst been de�ned in [JRS17] and is now used in the updated
version of [Cho+22b], is to allow the adversary to query partial decryptions even
after having seen the challenge ciphertext and to allow queries that involve the
challenge ciphertext. Note that [JRS17] split the IND-CPA game into sequential
phases, where the adversary �rst sends all messages to be encrypted at once and
in a second phase sends all circuits to be evaluated and then partially decrypted,
again at once. We strengthen the security notion by giving the adversary adaptive
access to both the encryption and the partial decryption oracles simultaneously.
Of course, to prohibit trivial attacks, the partial decryption oracle refuses to
answer to queries which would directly leak which message has been encrypted
when computing the challenge ciphertext. This �avour of security notion, while
lacking simulation-based security, still o�ers a strong guarantee in the form of
input indistinguishability : given partial decryptions for an evaluation f(x1, x2),
where x1 is known to the adversary and x2 is hidden, our security game implies
that the adversary cannot distinguish whether the input x2 was used, or some
other input x′

2 such that f(x1, x2) = f(x1, x
′
2). Similar notions have been used

in secure multi-party computation [MPR06; CPP16].
To further motivate our de�nition, we highlight that allowing partial de-

cryption queries that involve the challenge ciphertext is critical to achieving a
meaningful notion of security. In a typical use-case, the goal of using ThFHE
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is to compute some function f(x1, . . . , xn), the result of which only reveals a
small amount of information compared to the inputs xi. However, in a security
game it is always the challenge ciphertext that contains the hidden information,
so disallowing this in partial decryption queries does not capture the desired
goals. Indeed, consider the following ThFHE scheme that is obviously insecure
in this setting: �rstly, modify the evaluation algorithm to output not only an
encryption of f(x1, . . . , xn), but also the encryption of x1; secondly, modify the
partial decryption algorithm to also output partial decryptions for x1. Given a
set of partial decryptions for f(x1, . . . , xn), the parties will also learn x1 which is
exactly what we want to avoid. Going back to the de�nition of IND-CPA security
for ThFHE, as the security game of [Cho+22b] only allows for partial decryp-
tion queries before seeing the challenge ciphertext, the above obviously insecure
construction could actually be shown secure using their de�nition.

De�ning OW-CPA security for ThFHE (Section 3). As mentioned above, the
Rényi divergence is hard to use in the context of decision-based security notions,
such as IND-CPA. We give some intuition on why this is the case in the follow-
ing. The probability preservation property of RD allows us to reason about the
probability of a bad event happening in two di�erent games. Roughly speak-
ing, this says that if D1, D2 are distributions such that the Rényi divergence
of D1 from D2 is at most δ, then for any event E, it holds that Pr[D1(E)] ≤
(Pr[D2(E)] · δ)c, for some constant c close to 1. If the event E occurs with neg-
ligible probability in game D2, then we can get by with a polynomial-sized δ
to argue the same holds in D1. However, this is inherently hard to make use of
in distinguishing games like IND-CPA, where probabilities of winning are close
to 1/2.

Instead of IND-CPA security, therefore we �rst aim for OW-CPA security,
which is easier to prove with the Rényi divergence. When de�ning OW-CPA in the
(fully homomorphic) threshold setting, the main changes are that the adversary
also obtains t shares of the secret key and has access to a bounded number of
partial decryption queries. In order to avoid trivial attacks, the partial decryption
oracle refuses to answer to queries which would leak too much information on the
challenge messages which the adversary tries to recover. As a measurement of
too much information we use conditional min-entropy [Dod+08]. In other words,
the oracle only answers to queries if the min-entropy of the challenge message
conditioned on all the previously queried circuits and circuit evaluations is not
much smaller then the original min-entropy of the challenge message.

Constructing full-threshold OW-CPA-secure ThFHE (Section 5). To simplify the
presentation in the introduction, we �rst describe our construction in the full-
threshold setting and then explain how to get t-out-of-n threshold. As a starting
point, we take any encryption scheme whose decryption function is nearly linear,
as is the case for most LWE-based encryption schemes (including FHE). That is,
for a given ciphertext ct on a message m with respect to a key pair (sk, pk), it



6 K. Boudgoust and P. Scholl

holds that ⟨sk, ct⟩ = m+ ect, where ect is what we earlier called decryption noise
and depends on the ciphertext and the secret key.5

To achieve threshold decryption, we use standard additive secret sharing to
split the secret key into sk1, . . . , skn in a setup phase. By linearity, we could
simply set the partial decryption shares as d̃i = ⟨ct, ski⟩. However, after sum-
ming all shares together, the parties recover ect, which leaks information on sk.
As in previous threshold solutions for lattice-based schemes, to compute their
decryption share di every party now locally adds to d̃i a noise term ei which is
sampled from the noise �ooding distribution Dflood. When summing those partial
decryption shares together, the parties learn m+ ect +

∑n
i=1 ei.

To prove the OW-CPA security of our construction, we modify the security
experiment such that in a �rst step, the answers to the partial decryption queries
no longer depend on the underlying secret key sk (re�ected by ect), and in a sec-
ond step the secret key shares are also independent of sk. In this case, OW-CPA
security of the threshold scheme is implied by the OW-CPA security of the un-
derlying standard encryption scheme. We simulate the partial decryption noise
term ect+

∑n
i=1 ei by sampling some independent noise e′ ← Dsim. As long as the

Rényi divergence between the two noise distributions is bounded by a constant,
we can appeal to the probability preservation property, and the negligible prob-
ability of some PPT adversary guessing the message is preserved in both games.
Note that previous works always chose Dsim = Dflood, but we later exploit in
Section 6 that choosing a di�erent Dsim can lead to better parameters.

From full-threshold to t-out-of-n threshold (Section 5). When moving to the t-
out-of-n setting, a natural choice is to use Shamir secret sharing. However, this
leads to the problem that reconstruction is no longer addition, and instead re-
quires multiplying the partial decryptions with Lagrange interpolation coe�-
cients. These coe�cients may be large, which in turn blows up the noise, breaking
correctness. We o�er two di�erent solutions to this issue.

First, as in [Bon+18], we can use a special type of linear secret sharing scheme
with binary coe�cients, so that reconstruction is always a simple sum. E�cient
threshold schemes with this property exist, for any n, t. We also consider a sec-
ond method based on pseudorandom secret sharing [CDI05], which allows the
parties to generate sharings of bounded, pseudorandom values without interac-
tion. This uses replicated secret sharing, which is more expensive, but on the
other hand, allows the partial decryptions to be converted into Shamir sharings
before reconstruction. This leads to smaller partial decryptions, slightly better
parameters and gives a form of robustness via Shamir error correction.

From OW-CPA to IND-CPA security, Transform 1 (Section 4). Our �rst trans-
formation (Section 4.1) can be seen as the generalization of an existing OW-CPA
to IND-CPA transformation in the random oracle model [HHK17] to the threshold
setting. The main idea is to use the OW-CPA-secure scheme to encrypt random

5 Actually, it only reveals an encoding of m, which is easy to decode as long as pa-
rameters are set accordingly.
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messages. The vector x composed of those random messages then serves as in-
put to a random oracle F, whose output hides the message m we are about to
encrypt. By appending the output of a second and independent random ora-
cle G queried on the same vector x, we make sure that no adversary can provide
incorrect decryption shares without getting caught. To this end, we de�ne in
Section 3.2 two new notions of robustness for (passively secure) threshold pub-
lic key encryption, which might be of independent interest. The length of the
vector x provides a trade-o� between the security loss of the reduction and the
compactness of ciphertexts.

From OW-CPA to IND-CPA security, Transform 2 (Section 4). Whereas the re-
duction from above is simple and tight, it has the disadvantage of needing a
random oracle to mask the message m. When we consider threshold decryption
in the fully homomorphic setting, we need to make sure that we can homomor-
phically evaluate ciphertexts. However, the use of the random oracle makes such
an evaluation impossible, as there is no e�cient circuit description of random
oracles. We thus propose in Section 4.2 a second transformation which now is in
the standard model (but does not give robustness).

The high level idea is to encrypt a message m of δ bits, is to sample a
random message x and to encrypt it using the OW-CPA-secure scheme. Then,
the message bits are hidden by δ hard-core bits coming from a concatenation of δ
Goldreich-Levin extractors. We use the notion of unpredictable entropy [HLR07]
to give a bound on how many pseudorandom bits can be extracted from this
construction. We say that a message x has unpredictability entropy k if for
any PPT adversary A the probability of �nding x given Enc(pk, x) is at most 2−k.
We can then use existing results that show that a concatenation of δ Goldreich-
Levin extractors can be used to extract k − O(log(1/ε)) pseudorandom bits,
where ε is the desired distinguishing advantage. Those pseudorandom bits then
allow us to encrypt a message such that the ciphertexts of two given messages
are computationally indistinguishable.

To prove this construction IND-CPA secure, we additionally need to assume
circuit privacy of the underlying OW-CPA secure FHE scheme. Intuitively, this
is necessary because the IND-CPA security de�nition says that an adversary
should not be able to distinguish between the partial decryptions of a ciphertext
encrypting f(x1, x2) and those for a ciphertext encrypting f(x1, x

′
2) for some

x′
2 ̸= x2 where f(x1, x2) = f(x1, x

′
2). If, for instance, x

′
2 = x2⊕ 1, this is equiva-

lent to distinguishing between ciphertexts for f(x1, x2) and g(x1, x2), where the
function g is de�ned as g(x, y) = f(x, y⊕1). This can be seen as a circuit privacy
problem, thus, intuitively, it seems that some form of circuit privacy is necessary
to build IND-CPA-secure FHE.

Sample Parameters and Security Analysis (Section 6). We conclude our work
by discussing how to choose concrete sample parameters for our threshold PKE
scheme, when instantiating it with the lattice-based scheme Kyber [Sch+20].

As an example, to obtain 1-out-of-2 threshold decryption with a single query
(e.g. for ephemeral key exchange), we can use the same parameters as Kyber1024
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with a modulus increased only by a factor of 5, while supporting > 100 bits of
classical hardness from our reduction. In a setting with up to 232 queries, we
need to use a 39-bit modulus and slightly larger module rank; this increases the
ciphertext size by around 5x.

Finally, we show in Section 6.2 that using the Rényi divergence noise �ooding
leads to almost optimal parameters by providing an attack if the adversary
gets access to slightly more partial decryptions (while �xing the �ooding noise).
Equivalently, the attack succeeds if slightly lower �ooding noise would be used
while �xing the number of partial decryption queries.

1.2 Related work

Similarly to our work, [Cho+22b] used the Rényi divergence to obtain thresh-
old FHE from LWE with a polynomial modulus-to-noise ratio. By arguing that
the public sampleability property applies in their setting, they directly used the
Rényi divergence to prove IND-CPA security. However, their de�nition of IND-CPA
security is weaker than ours with respect to several aspects: First, they only al-
low for static access to the di�erent queries, e.g., the adversary has to send the
full list of circuits to the partial decryption oracle at once. In our case, those
queries are adaptive, i.e., the adversary can adapt their next query to the par-
tial decryption oracle based on the outcome of the previous query. Second, their
adversary has to query challenge encryptions before querying partial decryp-
tions. Moreover, their work focuses on a speci�c construction of ThFHE based
on Torus-FHE, whereas our results are phrased generically for all encryption
schemes with nearly linear decryption. Lastly, they focus on linear integer secret
sharing schemes, whereas we additionally propose pseudorandom secret sharing
and di�erent ways of achieving robustness.

The Rényi divergence has seen widespread use in security proofs in lattice-
based cryptography, since [Bai+18]. Replacing statistical noise �ooding by Rényi
noise �ooding has led to a signi�cant improvement in parameters for security
reductions, for instance when proving the hardness of (structured) LWE with
a binary secret [Bou+20], when designing multi-key FHE [DWF22], or more
recently, in the context of lattice-based threshold signatures [ASY22]. The lat-
ter work of [ASY22] is quite similar to ours, since they also apply Rényi noise
�ooding to threshold FHE; however, they do not directly prove security of the
threshold FHE scheme, and instead analyze the resulting threshold signature
scheme directly (which is based on a search problem, so amenable to a Rényi
divergence analysis). They additionally show the optimality of their noise �ood-
ing by providing an attack when a smaller noise �ooding ratio is used. As the
attack uses that their signature scheme is deterministic, it does not directly ap-
ply to our randomized encryption scheme. Previous works [Dev+21b; Nae+20]
have already observed that OW-CPA allows to bypass the issues caused by the
Rényi divergence. However, both are in the PKE setting, whereas our work fo-
cused on the FHE setting. This required some care: it is not straightforward
to de�ne a OW-CPA notion in the fully-homomorphic setting and the standard
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transformation used in [Dev+21b; Nae+20] to lift one-way security to indistin-
guishability is not suited for the fully-homomorphic setting neither.

In an independent line of work, another noise �ooding technique, called gen-
tle noise �ooding, has been studied in order to avoid the superpolynomial pa-
rameter blow-up [BD20a]. It was �rst used in theoretical hardness results on
entropic (structured) LWE [BD20a; BD20b]. Later, a similar technique was used
in [Cas+22] for improving parameters in additively homomorphic encryption
with circuit privacy. The setting of [Cas+22] is quite di�erent to ours, however,
since with circuit privacy, the challenge is to deal with leakage on a plaintext
rather than the secret key. This is handled via gentle noise �ooding by applying
a randomized encoding to the plaintext, so that leaking a constant fraction of its
coordinates does not reveal anything about the plaintext. A similar technique
does not seem to work in the threshold setting, with leakage on the secret key.

From a high level perspective, our notion of IND-CPA security has some
similarities to the notion of IND-CPAD security introduced in [LM21] in the
context of approximate FHE. For instance, partial decryption queries in our
setting correspond to decryption queries in their setting. Our security notion
further matches with the game-based input-indistinguishability notion in the
context of secure multi-party computation from [MPR06; CPP16], when realizing
the latter with the help of ThFHE.

Another approach to build threshold key generation and decryption protocols
is to use general multi-party computation tools like garbled circuits. This was
done in [Kra+19] for a Ring-LWE based scheme. Their solution does not need
any noise �ooding or increased parameters of the underlying scheme, however,
it relies on generic multi-party computation techniques like garbled circuits,
and the partial decryption shares are generated using an expensive, interactive
protocol rather than non-interactively as in our setting.

2 Preliminaries

For any positive integer q, we denote by Zq the integers modulo q and for any
positive integer n, we denote by [n] the set {1, . . . , n}. Vectors are denoted in
bold lowercase and matrices in bold capital letters. The identity matrix of or-
der m is denoted by Im. The concatenation of two matrices A and B with the
same number of rows is denoted by [A|B]. The abbreviation PPT stands for
probabilistic polynomial-time. When we split a PPT adversary A in several sub
algorithms (Ai)i, we implicitly assume that Ai outputs a state that is passed to
the next Ai+1. We call a function negl(·) negligible in λ if negl(λ) = λ−ω(1), i.e.,
it decreases faster towards 0 than the inverse of any polynomial.

Throughout the paper we make use of the random oracle model (ROM), where
we assume the existence of perfectly random functions, realized by oracles. For
a random oracle F : {0, 1}n → {0, 1}m it holds that Pr[F(x) = y] = 2−m and
that Pr[F(x) = F(x′) = y : x ̸= x′] = Pr[F(x) = y] ·Pr[F(x′) = y] = 2−2m. Hence,
random oracles are per de�nition collision resistant. For x, y ∈ {0, 1}n we denote
by x⊕ y the bit-wise XOR operator.
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2.1 Probability and Entropy

For a �nite set S, we denote its cardinality by |S| and the uniform distribution
over S by U(S). The operation of sampling an element x ∈ S according to a
distribution D over S is denoted by x← D, where the set S is implicit.

For standard deviation σ > 0 and mean c ∈ R, we de�ne the continuous
Gaussian distribution Dσ,c : R → (0, 1] by Dσ,c(x) = 1/(σ

√
2π) · exp(−(x −

c)2/(2σ2)). We also de�ne the rounded Gaussian distribution over Z, by rounding
the result to the nearest integer, and denote this by ⌊Dσ,c⌉.

A random variable X over R is called τ -subgaussian for some τ > 0 if for
all s it holds E[exp(sX)] ≤ exp(τ2s2/2). A τ -subgaussian random variable sat-
is�es E[X] = 0 and E[X2] ≤ τ2. We associate to X the width σ =

√
E[X2].

The continuous Gaussian distribution Dσ and its rounded version ⌊Dσ⌉ are σ-
subgaussian. Further, the uniform distribution over [−a, a]∩Z is a-subgaussian.

The statistical distance between two probability distributions X and Y , de-
noted by sdist(X,Y ), is de�ned as maxT |Pr[T (X) = 1]− Pr[T (Y ) = 1]|, where T
is any test function. The computational distance with respect to size s circuits,
denoted by cdists(X,Y ), limits T to be any circuit of size s. For any event E,
the probability preservation property of sdist (resp. cdists) states that X(E) ≤
Y (E) + sdist(X,Y ) (resp. X(E) ≤ Y (E) + cdists(X,Y )).

The notion of unpredictable entropy has been introduced and studied in [HLR07]
in the context of conditional computational entropy.

De�nition 1 (Unpredictable Entropy). For a distribution (X,Z), we say
that X has unpredictable entropy at least k conditioned on Z, if there exists
a collection of distributions YZ (giving rise to a joint distribution (Y,Z)) such
that cdists((X,Z), (Y,Z)) ≤ ε, and for all circuits C of size s,

Pr[C(Z) = Y ] ≤ 2−k.

We write Hunp
ε,s (X|Z) ≥ k.

De�nition 2 (Concatenated Goldreich-Levin Extractor). Fix n, δ ∈ N.
We de�ne the concatenated Goldreich-Levin extractor E : {0, 1}n× ({0, 1}n)δ →
{0, 1}δ × ({0, 1}n)δ as

E(x, s1, . . . , sδ) := (⟨x, s1⟩ mod 2, . . . , ⟨x, sδ⟩ mod 2, s1, . . . , sδ).

De�nition 3 (Reconstruction procedure [HLR07, Def. 6]). Let E : {0, 1}n×
{0, 1}d → {0, 1}m×{0, 1}d be a function whose last d outputs equal the last d in-
put bits. E has (ℓ, ε)-reconstruction if there is a pair of oracle algorithms (C,D),
where C(·) : {0, 1}n → {0, 1}ℓ is compressing, while D(·) : {0, 1}ℓ → {0, 1}n is
a �decompressor� that runs in time polynomial in n. Furthermore, for every x
and distinguisher T , if |Pr[T (E(x, Ud)) = 1]− Pr[T (Um × Ud) = 1]| > ε then
Pr[DT (CT (x)) = x] > 1/2.

Lemma 1. The concatenated Goldreich-Levin extractor E has (δ+ ℓ, δε)-recon-
struction for any ε ∈ (0, 1] and ℓ = log2 2n+ 2 log2(1/ε).
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Proof. This is a consequence of the proof of the Goldreich-Levin theorem [GL89].
First, let T be a distinguisher for the Goldreich-Levin extractor with δ = 1.
Suppose that the advantage of T is larger than ε, that is, for any x, it holds that
|Pr[T (E(x, Un)) = 1]− Pr[T (U1 × Un) = 1]| > ε. From the GL theorem (see, for
instance, the presentation by Bellare [Bel99, Thm. 3]), there exists an algorithm
A that, given oracle access to T , runs in time O(n3ε−4) and outputs a list L of
M = 2n/ε2 strings, such that Pr[x ∈ L] > 1/2. De�ne the algorithm C to simply
run A and output the index of x in L, which is log2 M bits, and de�ne D to
iteratively compute L and output the corresponding element. This shows that the
GL extractor with δ = 1 has (ℓ, ε)-reconstruction for ℓ = log2(M) = log2(2n/ε

2).
For δ > 1, from [HLR07, Prop. 1] we obtain that the concatenation of δ extractors
with (ℓ, ε)-reconstruction has (δ + ℓ, δε)-reconstruction.

Using the reconstruction property of Goldreich-Levin, we get the following
bound on the number of pseudorandom bits that can be extracted.

Lemma 2 ([HLR07, Lemma 6]). Let X be a distribution with unpredictable
entropy Hunp

ε,s (X|Z) ≥ k and let E be the concatenated Goldreich-Levin extractor
for some n, δ ∈ N. If k = δ+log2 2n+3 log2 1/ε, then E extracts δ pseudorandom
bits, i.e.,

cdists′
(
(Z, E(X,U({0, 1}nδ))), (Z,U({0, 1}δ × {0, 1}nδ))

)
≤ 5δε,

where s′ = O(sn−3ε4).

Let x follow a distribution on a set X, and z follow a possibly correlated
distribution on a set Z. The average conditional min-entropy [Dod+08] of x
given z is de�ned by

H̃∞(x|z) = − log2

(
Ez′

[
max
x′∈X

Pr[x = x′|z = z′]

])
.

Lemma 3 ([Dod+08, Lem. 2.2]). Let x,y, z be three random variables, where z
takes at most 2λ values. Then

H̃∞(x|y, z) ≥ H̃∞(x|y)− λ.

The Rényi divergence (RD) de�nes an alternative measure of distribution
closeness. We follow [Bai+18] and use a de�nition of the RD which is the expo-
nential of the classical de�nition. We restrict the order a to be in (1,∞).

De�nition 4 (Rényi Divergence). Let P and Q be two discrete probability
distributions such that Supp(P ) ⊆ Supp(Q). For a ∈ (1,∞) the Rényi divergence
of order a is de�ned by

RDa(P,Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.
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The de�nitions are extended in the natural way to continuous distributions.
We recall some useful properties of the RD. The �rst two were proven in [EH14]
and the last one was proven in [Ros20, Prop. 2].

Lemma 4. Let P,Q be two discrete probability distributions with Supp(P ) ⊆
Supp(Q). For a ∈ (1,∞), it yields:

Data Processing Inequality: RDa(g(P )∥g(Q)) ≤ RDa(P∥Q) for any func-
tion g, where g(P ) (resp. g(Q)) denotes the distribution of g(y) induced by
sampling y ← P (resp. y ← Q).

Probability Preservation: Let E ⊂ Supp(Q) be an event, then for a ∈ (1,∞)

Q(E) · RDa(P∥Q) ≥ P (E)
a

a−1 .

Multiplicativity: Let P,Q be two probability distributions of a pair of random
variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal dis-
tribution of Yi under P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote
the conditional distribution of Y2 given that Y1 = y1. Then for a ∈ (1,∞)

RDa(P∥Q) ≤ RDa(P1∥Q1) · max
y1∈Y1

RDa(P2|1(·|y1)∥Q2|1(·|y1)).

The Rényi divergence of two shifted Gaussians is given below. This also allows
us to bound the RD of rounded Gaussians by the data processing inequality.

Lemma 5 ([GAL13]). Let σ be a positive real number and c ∈ Z. Then for a ∈
(1,∞) it yields

RDa(Dσ,c∥Dσ) = exp

(
ac2

2σ2

)
.

Lemma 6. Let D1, D2 be two probability distributions over Z and e1, . . . , eN be
(possibly dependent) random variables over Z ∩ [−B,B] for some B ∈ Z, for
which there exist a ∈ (1,∞) and ρ ≥ 1 such that for all β with |β| ≤ B, it holds
that Supp(D1 + β) ⊆ Supp(D2), and furthermore, RDa(D1 + β∥D2) ≤ ρ. Then,

RDa((D1 + eN , . . . , D1 + e1)∥DN
2 ) ≤ ρN .

Proof. We apply N times the multiplicativity property of the Rényi divergence
as follows. Let P = (D1 + eN , . . . , D1 + e1) and Q = DN

2 . Our goal is to
bound RDa(P∥Q). We start with setting their marginal distributions as P1 =
(D1+eN−1, . . . , D1+e1), Q1 = DN−1

2 , P2 = D1+eN and Q2 = D2. For j ∈ [N ],
let Ej denote the random variable given by the distributionD1+ej . By Lemma 4,
it yields

RDa(P∥Q) ≤ RDa(P1∥Q1) · max
y1∈Y1

RDa(D1 + eN |Y1 = y1∥D2|Y1 = y1)

≤ RDa(P1∥Q1) · max
y1∈Y1

RDa(D1 + β|Y1 = y1∥D2|Y1 = y1)

≤ RDa(P1∥Q1) · RDa(D1 + β∥D2)

≤ ρ · RDa(P1∥Q1),

where β is such that |β| ≤ B and Y1 = (EN−1, . . . , E1). From line 2 to line 3
we used the fact that neither D1 + β nor D2 depend on Y1 anymore. Finally, we
obtain RDa(P∥Q) ≤ ρN by induction.
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2.2 Linear Secret Sharing

We use linear secret sharing schemes (LSSS) for monotone access structures with
a special {0, 1}-reconstruction property, as follows.

De�nition 5 (Monotone Access Structure). Let P = {P1, . . . , Pn} be a set
of parties and 2P its power set. A monotone access structure is a collection of
sets A ⊂ 2P , such that for any S ∈ A, if T ⊃ S then T ∈ A. We say that A is
e�cient if membership of A can be veri�ed in time poly(λ), where A is viewed
as a function of λ.

In this work, we only consider e�cient access structures. To ease notation,
we identify a party Pi with its index i, viewing each set S ∈ A as a subset of [n].
For any S ⊂ [n] and vector v = (v1, . . . ,vn), we let v|S denote the vector of
shares restricted to vi for indices i ∈ S.

De�nition 6 (Linear Secret Sharing Scheme). Let q, L, n be positive in-
tegers and A a monotone access structure. A linear secret sharing scheme LSSS
for A is de�ned by a randomized algorithm Share : Zq → (ZL

q )
n and a family of

deterministic algorithms RecS : (ZL
q )

|S| → Zq, for S ⊆ [n], which satisfy:

Privacy: For any set S /∈ A, any x, x′ ∈ Zq and v ∈ ZL|S|
q , it holds that Pr[Share(x)|S =

v] = Pr[Share(x′)|S = v].
Reconstruction: For any set S ∈ A, any x ∈ Zq and v = Share(x), the recon-

struction algorithm outputs RecS(v|S) = x.
Linearity: For any α, β ∈ Zq, any set S with |S| > t and any share vectors u,v,

it holds that RecS(αu|S + βv|S) = αRecS(u|S) + βRec(v|S).

When the set of shares is S = [n], we write Rec instead of Rec[n].

We need the following notion of valid and invalid share sets [Bon+18].

De�nition 7. Let x ∈ Zq, (v1, . . . ,vn) = Share(x), and write vi = (vi,1, . . . ,vi,L).
A set of pairs of indices T ⊆ [n] × [L] is an invalid set of share elements if the
corresponding shares (vi,j)(i,j)∈T reveal no information about x. Otherwise, we
say that T is a valid set of share elements. We additionally say:

� T ⊆ [n] × [L] is a maximal invalid set of share elements if it is invalid,
but for any (i, j) ∈ [n] × [L] \ T , the set T ∪ {(i, j)} is a valid set of share
elements.

� T ⊆ [n]× [L] is a minimal valid set of share elements if it is valid, but for
any T ′ ⊊ T , the set T ′ is an invalid set of share elements.

Note that in any LSSS, a valid set as de�ned above always allows reconstruc-
tion of the secret x. This is because an LSSS can equivalently be de�ned by a
matrix M , such that each share element vi,j is computed as the inner product of
some row of M and (x, r1, . . . , rn−1), where r is the randomness used in Share.
Reconstruction is possible for a given set of share elements i� the corresponding
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set of rows of M span the target vector (1, 0, . . . , 0). This de�nition implies that
any set of rows is either invalid � and reveals nothing about x � or valid, and
allows full reconstruction. For further details, see e.g. [Bei96, Chapter 4].

Our main construction requires that the reconstruction function RecS takes
a 0/1 combination of its inputs. In the following, we require this to hold not
only for any set of shares corresponding to a valid set of parties in A, but for
any valid set of share elements. This property is equivalent to the notion of a
derived {0, 1}-LSSS, used in [JRS17].6

De�nition 8 (Strong {0, 1}-Reconstruction).We say that a LSSS has strong
{0,1}-reconstruction if for any secret x and (v1, . . . ,vn) = Share(x), for any
valid set of share elements T ⊆ [n]× [L], there exists a subset T ′ ⊆ T such that∑

(i,j)∈T ′ vi,j = x, where vi = (vi,1, . . . ,vi,L).

Sharing Values in Rq. In our constructions, we share x ∈ Rr
q , where Rq =

Zq[X]/f(X), instead of just in Zq. We do this coe�cient-wise, by separately
sharing each coe�cient of the r polynomials in x. Each party's share then lies
in (Rr

q)
L, and the parties can perform Rq-linear operations on these shares.

Example Linear Secret Sharing Schemes. In Table 1, we detail a few example
secret sharing schemes we consider. The schemes are for t-out-of-n access struc-
tures, where any t + 1 parties can reconstruct, and they all have strong {0, 1}-
reconstruction. In the table, we show two quantities τmax, τmin, which are relevant
for choosing parameters in our constructions of Section 5 and we will refer to
later. By τmax we denote the size of the smallest maximal invalid set of share
elements, while τmin is the size of the largest minimal valid set of share elements.

Table 1. Example t-out-of-n linear secret sharing schemes with strong {0, 1}-
reconstruction. Details for the last row are omitted, due to their complexity.

Scheme Sharing method Pi's share L τmax τmin

Additive x =

n∑
i=1

xi xi 1 n− 1 n

Replicated x =
∑

A,|A|=t

xA {xA}i/∈A

(
n−1
t

)
(n− t)(

(
n
t

)
− 1)

(
n
t

)
Naive x =

∑
i∈A

xA,i, |A| = t+ 1 {xA,i}i∈A

(
n−1
t

)
t
(

n
t+1

)
t+ 1

Monotone Boolean formula
O(n4.3) O(n5.3) O(n5.3)

for threshold fn. [Val84]

6 [Bon+18] only assumed a weaker property for their threshold FHE construc-
tion. However, this is a mistake introduced when merging the two works [JRS17]
and [Bon+17] (and has been con�rmed by the authors of [JRS17]).
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Additive Secret Sharing. In the (n−1)-out-of-n case, we use simple additive
secret sharing, where x is split into random shares x1, . . . , xn ∈ Zq such that x =∑n

i=1 xi. Every party receives exactly one share, hence L = 1, τmax = n − 1
and τmin = n.

Replicated Secret Sharing [ISN89]. To share x using replicated secret shar-
ing (also called CNF sharing), �rst sample a set of additive shares {sA}A, over
all size-t subsets A ⊂ [n], such that

∑
A sA = x. Then, party Pi's share consists

of every sA where i /∈ A. The share size is L =
(
n−1
t

)
.

A maximal invalid set contains all the copies of sA for A ̸= A′, for some A′.
Since n− t parties get A′, this gives τmax = nL− (n− t) = (n− t)(

(
n
t

)
− 1). On

the other hand, a minimal valid set of share elements contains every share sA,
so τmin =

(
n
t

)
.

Naive Threshold Secret Sharing. In the simplest form of threshold secret
sharing, which can be seen as the dual of replicated secret sharing, the dealer
distributes a fresh sharing of x to each set S of size t+ 1. There are

(
n

t+1

)
such

sets, but only
(
n−1
t

)
of these contain party Pi, so L =

(
n−1
t

)
. It's easy to see

that τmax = t
(

n
t+1

)
and τmin = t+ 1.

Threshold LSS From Monotone Boolean Formulae. An asymptotically
more e�cient approach is the construction of Benaloh and Leichter [BL90], which
builds a linear secret scheme for A using any monotone Boolean formula for veri-
fying membership of A. A monotone Boolean formula is a circuit with AND/OR
gates of fan-in 2 and fan-out 1, where the input wires may have multiple fan-out.
The share size of party Pi equals the fan-out of the i-th input wire in the circuit.

Valiant [Val84] described a randomized construction of a monotone Boolean
formula for threshold functions with size O(n5.3). This leads to an average share

size of O(n4.3). In [HMP06], an improved circuit of size O(n1+
√
2) was given,

however, their circuit is not a formula, so cannot be used to build threshold
LSS.

2.3 Learning With Errors

In the following, we recall the de�nitions of the decision (module) LWE prob-
lem [Reg05; LS15], formulated with a bounded uniform secret and noise. LetRq =
Zq[X]/f(X) for some irreducible f(X) of degree d. Further, we de�ne Sβ = {a ∈
R : ∥a∥∞ ≤ β} with β ∈ N.

De�nition 9 (M-LWE). Let m, r, β, q ∈ N. The Module Learning With Errors
problem M-LWEq,m,r,β is de�ned as follows. Given A← U(Rm×r

q ) and t ∈ Rm
q .

Decide whether t← U(Rm
q ) or if t = [A|Im] · s, where s← U(Sm+r

β ).
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The special case of d = 1, where the ring R is isomorphic to Z, is simply
denoted LWE (and is historically the one that has been introduced �rst).

We also de�ne a computational variant of LWE, where no reduction modulo q
is performed [Boo+18], which will be relevant in Section 6.

De�nition 10 (I-LWE). Let m, r ∈ N and let χw, χe be two probability distri-
butions over Z. The Integer Learning With Errors problem I-LWEm,r,χw,χe

is de-
�ned as follows. Given W← χm×r

w and t = Wz+e, where z ∈ Zr and e← χm
e .

Find z. We call (W, t = Wz+ e) an instance of the I-LWE distribution.

Theorem 1 ([Boo+18, Thm. 4.5]). Suppose that χw is τw-subgaussian and χe

is τe-subgaussian. Let (W, t = Wz + e) be an instance of the I-LWEm,r,χw,χe

distribution for some z ∈ Zr. There exist constants C1, C2 > 0 such that for
all ν ≥ 1 the least square method recovers z with probability 1− 1

2r − 2−ν if

m ≥ 4
τ4w
σ4
w

(C1r + C2ν) and m ≥ 32
τ2e
σ2
w

log2(2r).

3 Threshold Fully Homomorphic Encryption

In this section, we recall the de�nition of threshold fully homomorphic encryption
schemes (ThFHE) and give di�erent notions of robustness for threshold public
key encryption, which model an adversary who may send incorrect or missing
partial decryptions. We then de�ne our notions of OW-CPA and IND-CPA secu-
rity for ThFHE schemes.

3.1 Syntax and Basic Properties of Threshold FHE/PKE

We �rst recall the syntax of a fully homomorphic threshold public key encryption
scheme. We implicitly assume that after Setup, all algorithms are given the
public parameters as input. We omit the partial veri�cation algorithm used in
previous works (e.g., [BBH06]), which was only used to model stronger notions
of robustness that also capture CCA attacks.

De�nition 11 (ThFHE). A fully homomorphic threshold public key encryption
scheme (ThFHE) for a message spaceM and circuits of depth κ is a tuple of PPT
algorithms ThFHE = (Setup,Enc,Eval,PartDec,Combine) de�ned as follows:

Setup(1λ, 1κ, n, t)→ (pp, pk, sk1, . . . , skn): On input the security parameter λ,
a bound on the circuit depth κ, the number of parties n and a threshold
value t ∈ {1, . . . , n−1}, the setup algorithm outputs the public parameters pp,
a public key pk and a set of secret key shares sk1, . . . , skn.

Enc(pk,m)→ ct: On input the public key pk and a message m ∈ M, the en-
cryption algorithm outputs a ciphertext ct.

Eval(pk, C, ct1, . . . , ctk)→ ct: On input the public key pk, a circuit C : Mk →
M of depth at most κ and a set of ciphertexts ct1, . . . , ctk, the evaluation
algorithm outputs a ciphertext ct.
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PartDec(ski, ct)→ di: On input a key share ski for some i ∈ [n] and a cipher-
text ct, the partial decryption algorithm outputs a partial decryption share di.

Combine({di}i∈S , ct)→ m′: On input a set of decryption shares {di}i∈S and a
ciphertext ct, where S ⊂ [n] is of size at least t+1, the combining algorithm
outputs a message m′ ∈M∪ {⊥}.

The above can be seen as a generalization encompassing non-threshold and
threshold PKE and FHE.

De�nition 12 (ThPKE). A threshold public key encryption scheme (ThPKE)
for a message space M is a ThFHE scheme, where k = 1 and the only allowed
circuit C :M →M is the identity. In this case, we drop the trivial evaluation
algorithm Eval and the parameter κ in the scheme's speci�cations.

De�nition 13 (FHE). A fully homomorphic public key encryption scheme (FHE)
for a message space M is a ThFHE scheme, where n = 1. In this case, we drop
the parameters n and t in the scheme's speci�cations. To simplify notations,
we merge PartDec and Combine into one single algorithm that we denote Dec.
Hence, the algorithm Dec takes sk and ct as input and outputs m′ ∈ {M∪{⊥}}.

We require compactness and correctness, whose de�nitions we recall in App. A.
In Section 4, we also need FHE schemes which are circuit private, de�ned

below. To achieve this, we will rely on the construction of [DS16], which allows
for LWE with polynomial modulus, since it can upgrade essentially any LWE-
based FHE scheme to achieve circuit privacy without substantially increasing the
parameters.7

De�nition 14 (Circuit Privacy). Let s, ε > 0. A ThFHE scheme with mes-
sage space M and maximal circuit depth κ ful�lls (s, ε)-circuit privacy if for
every circuit C of depth at most κ it yields

cdists
(
((ski)i∈n,Eval(pk, C, ct1, . . . , ctk)), ((ski)i∈[n],Enc(pk, C(m1, . . . ,mk))

)
≤ ε,

where mi ∈ M and cti ← Enc(pk,mi) for all i ∈ [k] and for honestly generated
keys (pk, sk1, . . . , skn).

3.2 Robustness

We now introduce two de�nitions of robustness for threshold public key encryp-
tion. We do not de�ne these in the fully homomorphic case, where our construc-
tion assumes a passive adversary. We call the �rst one weak chosen-ciphertext
robustness and the second strong chosen-plaintext robustness.

In the �rst case, it should be hard for an adversary, having access to all secret
key shares, to provide one single ciphertext and two di�erent set of decryption
shares such that they combine to two di�erent messages. Our de�nition is closely

7 We could also use the construction of [Bou+16], however, it is restricted to evaluating
log-depth circuits.
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related to the notion of consistency, as for instance de�ned by [BBH06], with the
di�erence that we do not allow the adversary to win by making the decryption
output ⊥. (This is unavoidable in our setting, since we do not have a separate
PartVerify algorithm to verify validity of decryption shares.)

De�nition 15 (Weak Chosen-Ciphertext Robustness). We call a ThPKE
scheme weakly chosen-ciphertext robust if for all λ, n, t and for all PPT adver-
saries A it yields

Advw-cc-robust
ThPKE (A) := Pr[Exptw-cc-robust

A,ThPKE (1λ, n, t) = 1] = negl(λ),

where Exptw-cc-robust
A,ThPKE is the experiment speci�ed in Figure 1.

Exptw-cc-robustA,ThPKE (1λ, n, t)

1 : (pp, pk, sk1, . . . , skn)← Setup(1λ, n, t)

2 : (ct, S, S′, {di}i∈S , {d′i}i∈S′)← A(pp, pk, {ski}i∈[n])

3 : m← Combine({di}i∈S , ct)

4 : m′ ← Combine({d′i}i∈S′ , ct)

5 : return m′ ̸= m ∧ ⊥ /∈ {m,m′}

Fig. 1. Experiment for the weak chosen-ciphertext robustness of ThPKE schemes.

In the second case, the adversary is given the secret key shares of the cor-
rupted parties together with an honestly formed ciphertext. In order to win the
experiment, they have to come up with partial decryption shares such that the
combine algorithm, together with honestly generated partial decryption shares,
outputs a di�erent message (including the abort message ⊥).

We note that for t < n/2, it's possible to transform any weakly chosen-
ciphertext robust ThPKE scheme into one that guarantees strong chosen-plaintext
robustness. To do so, one simply lets Combine try all possible subsets of size t+1.
As t < n/2, there exists a set of size t + 1 composed of only honest partial de-
cryption shares and hence, it successfully combines to a message.

De�nition 16 (Strong Chosen-Plaintext Robustness). A ThPKE scheme
provides strong chosen-plaintext robustness if for all λ, n, t and for all PPT
adversaries A = (A1,A2) it yields

Advs-cp-robustThPKE (A) := Pr[Expts-cp-robustA,ThPKE (1λ, n, t) = 1] = negl(λ),

where Expts-cp-robustA,ThPKE is the experiment speci�ed in Figure 2.
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Expts-cp-robustA,ThPKE (1λ, n, t)

1 : (pp, pk, sk1, . . . , skn)← Setup(1λ, n, t)

2 : (S,m)← A1(pp, pk) : S ⊂ [n] ∧ |S| ≤ t

3 : ct← Enc(pk,m)

4 : dj ← PartDec(skj , ct), ∀j ∈ [n] \ S
5 : {di}i∈S ← A2(pk, {ski}i∈S , {dj}j /∈S , ct)

6 : m′ ← Combine({di}i∈[n], ct)

7 : return m′ ̸= m

Fig. 2. Experiment for strong chosen-plaintext robustness of ThPKE schemes.

3.3 One-Wayness

We now present our de�nition of OW-CPA security for ThFHE schemes.
The high level idea of the security game is the following. At the beginning,

the adversary decides on the parties they want to corrupt and receives the corre-
sponding secret key shares. We call this the static corruption setting. Then the
adversary has access to three di�erent oracles. The �rst, OEnc, allows them to ob-
tain honestly generated, fresh ciphertexts on messages of their choice. Through
the second oracle, OChallEnc, the adversary obtains encryptions of unknown,
randomly chosen messages, which we call the challenge messages and challenge
ciphertexts. Finally, they can query up to ℓ times the last oracle, OPartDec,
by inputting a circuit and a list of indices referring to previous encryption and
challenge encryption queries, and receiving the corresponding partial decryption
shares of all parties (after the evaluation algorithm has been applied). However,
the partial decryption oracle aborts if for one of the challenge messages the con-
ditional min-entropy has decreased more than an allowed amount ν, after having
learned the circuit evaluation. Note that we do not condition the information-
theoretical min-entropy on ChallCT as it uniquely de�nes ChallM. Implicitly, we
assume that the entropy condition can be e�ciently veri�ed for the circuits in-
put to OPartDec. One way to practically implement this, is to ask the adversary
to input an algorithm which veri�es the entropy condition when querying the
oracle. We stress that in the transformation of Section 4 we only query circuits
for which the entropy condition can be checked e�ciently. To highlight the query
bound ℓ and the entropy loss bound ν, we write (ℓ, ν)-OW-CPA.

De�nition 17 ((ℓ, ν)-OW-CPA for ThFHE).We call a ThFHE scheme (ℓ, ν)-OW-CPA
secure for the security parameter λ, the circuit depth bound κ, the threshold pa-
rameters n, t, the query bound ℓ and the entropy bound ν, if for all PPT adver-
saries A = (A1,A2)

Adv
(ℓ,ν)-OW-CPA
ThFHE (A) := Pr[Expt

(ℓ,ν)-OW-CPA
A,ThFHE (1λ, 1κ, n, t) = 1] = negl(λ),

where Expt
(ℓ,ν)-OW-CPA
A,ThFHE is the experiment in Fig. 3 with ctr = 0, idx = 0 and L = ∅

at the beginning.
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Expt
(ℓ,ν)-OW-CPA
A,ThFHE (1λ, 1κ, n, t)

1 : (pp, pk, sk1, ..., skn)← Setup(1λ, 1κ, n, t)

2 : S ← A1(pp, pk) : S ⊂ [n] ∧ |S| ≤ t

3 : (m′, j)← AOEnc,OChallEnc,OPartDec
2 (pk, {ski}i∈S)

4 : (bj ,mj , ctj) := L[j]

5 : return mj = m′ ∧ bj = 1

OEnc(m)

1 : if m /∈M then return ⊥
2 : idx = idx+ 1

3 : ct← Enc(pk,m)

4 : CT = CT ∪ {ct}
5 : L[idx] := {(0,m, ct)}
6 : return ct

OChallEnc()

1 : idx = idx+ 1

2 : m←M
3 : ChallM = ChallM ∪ {m}
4 : ct← Enc(pk,m)

5 : ChallCT = ChallCT ∪ {ct}
6 : L[idx] := {(1,m, ct)}
7 : return ct

OPartDec(C, ι1, . . . , ιk)

1 : ctr = ctr + 1

2 : if ctr > ℓ then return ⊥
3 : if ∃j ∈ [k] : ιj > |L| then return ⊥
4 : if depth(C) > κ then return ⊥
5 : (bj ,mj , ctj) := L[ιj ], j ∈ [k]

6 : ct← Eval(pk, C, ct1, . . . , ctk)

7 : di ← PartDec(ski, ct), i ∈ [n]

8 : d = (di)i∈[n]

9 : for m ∈ ChallM

10 : if H̃∞(m|E ∪ {(C,C(m1, . . . ,mk))}) < H̃∞(m)− ν then

11 : return ⊥
12 : E = E ∪ {(C,C(m1, . . . ,mk))}
13 : PartD = PartD ∪ {d}
14 : return d

Fig. 3. Experiments for (ℓ, ν)-OW-CPA security of ThFHE schemes.
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De�nition 18 (ℓ-OW-CPA for ThPKE). We call a ThPKE scheme ℓ-OW-CPA
secure for the security parameter λ, the threshold parameters n, t and the query
bound ℓ, if it is (ℓ, 0)-OW-CPA secure as ThFHE scheme, where k = 1 and the
only allowed circuit C is the identity. In this case, the OPartDec oracle from
Figure 3 only replies to ciphertexts that have been output by OEnc and aborts
if the ciphertext has been output by OChallEnc, as the entropy is zero for ev-
ery challenge ciphertext and hence never passes the entropy check. For a PPT
adversary A, we denote their advantage by Advℓ-OW-CPA

ThPKE (A).

3.4 Indistinguishability

In the following, we present our de�nition of IND-CPA security for ThFHE.
As for the OW-CPA security, we allow for static corruptions and access to

three di�erent oracles. The �rst, OEnc, is the same as in the OW-CPA game. To
the second oracle, OChallEnc, the adversary inputs two messages and obtains the
encryption of one of it. Finally, they can again query up to ℓ times OPartDec, by
inputting a circuit and a list of indices and receiving the corresponding partial
decryption shares of all parties. This time, the partial decryption oracle aborts
if the circuit evaluates to di�erent values on the corresponding input messages
to the OChallEnc oracle. To highlight the query bound ℓ, we write ℓ-IND-CPA.
By allowing adaptive access to all three oracles, our de�nition can be seen as a
strengthening of De�nition 14 in [JRS17].

De�nition 19 (ℓ-IND-CPA for ThFHE). We call a ThFHE scheme ℓ-IND-CPA
secure for the security parameter λ, the circuit depth bound κ, the threshold
parameters n, t and the query bound ℓ, if for all PPT adversaries A = (A1,A2)

Advℓ-IND-CPA
ThFHE (A) :=

∣∣∣∣Pr[Exptℓ-IND-CPA
A,ThFHE (1λ, 1κ, n, t) = 1]− 1

2

∣∣∣∣ = negl(λ),

where Exptℓ-IND-CPA
A,ThFHE is the experiment in Fig. 4 with ctr = 0 and L = ∅ at the

beginning.

De�nition 20 (ℓ-IND-CPA for ThPKE). We call a ThPKE scheme ℓ-IND-CPA
secure for the security parameter λ, the threshold parameters n, t and the query
bound ℓ, if it is ℓ-IND-CPA secure as ThFHE scheme, where k = 1 and the
only allowed circuit C is the identity. In this case, the OPartDec oracle from
Figure 4 only replies to ciphertexts that have been output by OEnc and aborts if
the ciphertext has been output by OChallEnc. For a PPT adversary A, we denote
their advantage by Advℓ-IND-CPA

ThPKE (A).

4 From One-Wayness to Indistinguishability

4.1 Transformation for Weakly Robust Threshold Decryption

A tight reduction from OW-CPA security to IND-CPA security for standard PKE
schemes in the random oracle model (ROM) was provided in [HHK17, Sec. 3.4].
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Exptℓ-IND-CPAA,ThFHE (1λ, 1κ, n, t)

1 : (pp, pk, sk1, ..., skn)← Setup(1λ, 1κ, n, t)

2 : S ← A1(pp, pk) : S ⊂ [n] ∧ |S| ≤ t

3 : b← {0, 1}

4 : b′ ← AOEnc,OChallEnc,OPartDec
2 (pk, {ski}i∈S)

5 : return b = b′

OEnc(m)

1 : if m /∈M then return ⊥
2 : idx = idx+ 1

3 : ct← Enc(pk,m)

4 : L[idx] := {(m,m, ct)}
5 : return ct

OChallEnc(m(0),m(1))

1 : if (m(0),m(1)) /∈M×M then return ⊥
2 : idx = idx+ 1

3 : ctb ← Enc(pk,m(b))

4 : L[idx] := {(m(0),m(1), ctb)}
5 : return ctb

OPartDec(C, ι1, . . . , ιk)

1 : ctr = ctr + 1

2 : if ctr > ℓ then return ⊥
3 : if ∃j ∈ [k] : ιj > |L| then return ⊥
4 : if depth(C) > κ then return ⊥

5 : (m
(0)
j ,m

(1)
j , ctj) := L[ιj ], j ∈ [k]

6 : if C(m
(0)
1 , . . . ,m

(0)
k ) ̸= C(m

(1)
1 , . . . ,m

(1)
k ) then return ⊥

7 : ct← Eval(pk, C, ct1, . . . , ctk)

8 : di ← PartDec(ski, ct), i ∈ [n]

9 : return (di)i∈[n]

Fig. 4. Experiments for ℓ-IND-CPA security of ThFHE schemes.
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In the following, we adapt the transformation to the threshold setting and show
how a small modi�cation allows to obtain a weakly chosen-ciphertext robust
threshold scheme as in De�nition 15.

The construction. The transformation is parameterized by δ ∈ N which allows
for a trade-o� between the security loss of the reduction and the compactness of
ciphertexts. Given ThPKE = (Setup,Enc,PartDec,Combine) with message space
M being OW-CPA secure, we de�ne ThPKE′ = (Setup′,Enc′,PartDec′,Combine′)
with message space an abelian group (M′,+), which ful�lls IND-CPA security,
as follows. Let F :Mδ →M′ and G :Mδ → {0, 1}2λ be two random oracles.

Setup′: On input (1λ, n, t), it outputs (pp, pk, sk1, . . . , skn)← Setup(1λ, n, t).
Enc′: On input (pk,m) with m ∈ M′, it samples x := (x1, . . . , xδ) ← U(Mδ)

and sets c0 = m+F(x) and cδ+1 = G(x). Then, it computes cj ← Enc(pk, xj)
for j ∈ [δ] and outputs ct := (c0, . . . , cδ+1).

PartDec′: On input (ski, ct) for some i ∈ [n], it computes dij ← PartDec(ski, cj)
for all j ∈ [δ] and outputs di := (dij)j∈[δ].

Combine′: On input ((di)i∈S , ct) with ct = (cj)0≤j≤δ+1 and di = (dij)j∈[δ], it
computes x′

j ← Combine({dij}i∈S , cj) for j ∈ [δ], sets x′ = (x′
1, . . . , x

′
δ) and

computes m′ := c0−F(x′). If cδ+1 = G(x′) it outputs m′. Else, it outputs ⊥.

Ciphertext expansion. The ratio between the bit size of the plaintext and the
ciphertext is give by

|ct|
|m|

=
|m|+ δ · |c|+ 2λ

|m|
,

where c is a ciphertext coming from ThPKE. We can see that with larger δ the
ciphertext expansion gets worse.

We prove the decryption correctness of the resulting scheme in Appendix B.1.

Lemma 7 (Weak Chosen-Ciphertext Robustness). The scheme ThPKE′

is weakly chosen-ciphertext robust. More precisely, if there is a PPT adversary A
such that Advw-cc-robust

ThPKE′ (A) ≥ ε for some ε > 0, then there exists a PPT adver-
sary B breaking collision resistance of the random oracle G with probability ≥ ε.

Proof. Fix λ, n and t. We show that if there exists a PPT adversary A that
has advantage ε in the experiment de�ned in Figure 1, then there exists a PPT
adversary B that �nds a collision for the random oracle G with the same proba-
bility ε. Let B play the role of the challenger in the weak robustness game, run-
ning the Setup′ algorithm on (1λ, n, t) and forwarding (pp, pk, {ski}i∈[n]) to A.
Assume that A wins the weak robustness game by outputting two sets of decryp-
tion shares {di}i∈S and {d′

i}i∈S′ such that Combine′({di}i∈S , ct)→ m ̸= m′ ←
Combine′({d′

i}i∈S′ , ct) for the same ciphertext ct = (ci)0≤i≤δ+1, and neither m
nor m′ equals ⊥. Let x,x′ denote the vectors recovered during the combining
procedure. As c0 = m+F(x) = m′+F(x′),m ̸= m′ and F is deterministic, we can
deduce that x ̸= x′. This implies that G(x) = cδ+1 = G(x′) for distinct x ̸= x′

and hence B has found a collision in G.
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Theorem 2 (Security). Let δ, ℓ ∈ N. If ThPKE is (ℓδ)-OW-CPA secure, then
is ThPKE′ ℓ-IND-CPA secure in the ROM. More precisely, for any ℓ-IND-CPA
adversary A that does at most qF queries to the random oracle F and qc queries
to the oracle OChallEnc′, there exists an (ℓδ)-OW-CPA adversary B with

Advℓ-IND-CPA
ThPKE′ (A) ≤ qc · q1/δF · Adv(ℓδ)-OW-CPA

ThPKE (B).

Note that the number of queries to G doesn't impact the tightness of the
reduction as the output G(x) is completely independent of F(x) for any x ∈Mδ.
Moreover, there is no entropy bound involved as we are in the standard ThPKE
setting (Def. 18).

Proof. The proof closely follows the original proof in [HHK17, Thm. 3.7]. The
main modi�cations compared to the original proof are that A can make multiple
queries to OChallEnc (leading to a security loss of qc), can further query up to ℓ
partial decryption outputs to some oracle OPartDec during the game and that
we added a second random oracle G to obtain weak robustness.

LetA = (A1,A2) be a PPT adversary against the ℓ-IND-CPA security of ThPKE′.
We consider two games G0 and G1 as described in Figure 5, where we specify
the security game, the queries to the random oracles F and G and to the ora-
cle OChallEnc′ from Def. 20. We omit the speci�cation of OEnc′ and OPartDec′

as they follow directly from the construction of the scheme and the security def-
inition. The lists LF and LG are initialized as empty sets and the counters ctr
and idx are set to 0 at the beginning. Both games only di�er in the way how
queries to F are handled.

Game G0. Note that Game G0 is exactly the original ℓ-IND-CPA game (as in
Def. 20) and hence Advℓ-IND-CPA

ThPKE′ (A) = |Pr[G0(A) = 1]− 1/2|.

Game G1. The only modi�cation between game G0 and G1 is that we added
line 3−5 in the speci�cation of F. More precisely, F raises a �ag and aborts if it is
queried by one of the vectors in ChallX that are used for the challenge ciphertexts
issued from OChallEnc′. Hence, |Pr[G0(A) = 1]− Pr[G1(A) = 1]| ≤ Pr[flag].
Now, as F aborts when queried on x ∈ ChallX, the view of A is indepen-
dent of the bit b chosen in the experiment and de�ning OChallEnc′. This im-
plies that Pr[G1(A) = 1] = 1/2, leading to Advℓ-IND-CPA

ThPKE′ (A) ≤ Pr[flag]. The
only thing left to do is to bound the latter probability. A direct adaptation of
Lemma 3.8 in [HHK17], together with the union bound, bounds this probability

above by qc · q1/δF ·Adv(ℓδ)-OW-CPA
ThPKE (A). Here, the adversary A is embedded in B's

own (ℓδ)-OW-CPA security game and hence B takes care of simulating the ran-
dom oracles F and G as well as the oracles OEnc′,OChallEnc′ and OPartDec′. The
latter is done by querying their own partial decryption oracle OPartDec. Note
that the increase from ℓ to ℓδ comes from the fact that B must do δ queries
to OPartDec for every query to OPartDec′ by A.



Simple Threshold FHE From LWE With Polynomial Modulus 25

Games G0 and G1

1 : (pp, pk, sk1, ..., skn)← Setup(1λ, n, t)

2 : S ← A1(pp, pk) : S ⊂ [n] ∧ |S| ≤ t

3 : ChallX← U((Mδ)qc)

4 : b′ ← AOEnc,OChallEnc,OPartDec,F,G
2 (pk, {ski}i∈S)

5 : return b′

OChallEnc′(m(0),m(1))

1 : idx = idx+ 1

2 : choose next unused x ∈ ChallX

3 : c0 = mb + F(x)

4 : cj ← Enc(pk, xj) : j ∈ [δ]

5 : cδ+1 = G(x)

6 : ctb = (c0, . . . , cδ+1)

7 : L[idx] := {(m(0),m(1), ctb}
8 : return ctb

F(x)

1 : if ∃r : (x, r) ∈ LF

2 : then return r

3 : if x ∈ ChallX � G1

4 : flag = true � G1

5 : then return ⊥ � G1

6 : r ← U({0, 1}λ)
7 : LF := LF ∪ {(x, r)}
8 : return r

G(x)

1 : if ∃r : (x, r) ∈ LG

2 : then return r

3 : r ← U({0, 1}2λ)
4 : LG := LG ∪ {(x, r)}
5 : return r

Fig. 5. Games G0 and G1 for the proof of Theorem 2.
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4.2 For Fully Homomorphic Threshold Decryption

Whereas the reduction from above is simple and tight, it has the disadvantage of
needing the random oracle F to mask the message m. When considering not only
threshold PKE, but more generally threshold FHE, we need to make sure that
we can homomorphically evaluate ciphertexts. The use of the random oracle F
when computing c0 = m + F(x) makes such an evaluation impossible, as there
is no e�cient circuit description of the random oracle F. We thus need another
transformation which allows for homomorphic evaluation of ciphertexts.

In the following, we describe a generic way of transforming a OW-CPA se-
cure ThFHE scheme into an IND-CPA secure one in the standard model, via
hardcore bits.

The construction. The transformation is parameterized by δ, γ ∈ N. Given
ThFHE = (Setup,Enc,Eval,PartDec,Combine) with message space M = {0, 1}γ
being OW-CPA secure, we de�ne ThFHE′ = (Setup′,Enc′,Eval′,PartDec′,Combine′)
with message spaceM′ = {0, 1}δ, which ful�lls IND-CPA security, as follows.

Setup′: On input (1λ, 1κ, n, t), it outputs (pp, pk, sk1, . . . , skn)← Setup(1λ, 1κ, n, t).
Enc′: On input (pk,m) with m = (mj)j∈[δ] ∈ M′, it samples x ← U(M) and

computes c0 ← Enc(pk, x). For j ∈ [δ], it samples sj ← U(M) and com-
putes cj = ⟨x, sj⟩+mj mod 2. It outputs ct = (c0, s1, . . . , sδ, c1, . . . , cδ).

Eval′: On input I := (pk, C, ct1, . . . , ctk), where cti = (ci0, si1, . . . , siδ, ci1, . . . , ciδ)
such that ci0 ← Enc(pk, xi) for i ∈ [k] and C : (M′)k →M′, it �rst de�nes

a circuit C̃ : (M)k →M as follows:

� C̃ takes as input (x1, . . . , xk) and has the information I hard-coded
� It computes mij = cij + ⟨xi, sij⟩ mod 2, for j ∈ [δ] and i ∈ [k]
� It outputs C(m1, . . . ,mk), where mi = (mij)j∈[δ]

It then outputs ct′ = Eval(pk, C̃, c10, . . . , ck0).
PartDec′: On input (ski, ct

′), it outputs di = PartDec(ski, ct
′).

Combine′: On input ({di}i∈S , ct
′), it outputs m = Combine({di}i∈S , ct

′).

Ciphertext expansion. The ratio between the bit size of the plaintext and the
ciphertext is give by

|ct|
|m|

=
|c0|+ δ(γ + 1)

δ
,

where c0 is the OW-CPA ciphertext encrypting γ bits coming from ThFHE. We
can see that with larger δ the ciphertext expansion gets better.

We prove compactness and decryption correctness in Appendix B.2.

Remark 1. One way to reduce the size of the ciphertext to |c0|+γ+δ (and hence
to improve the ciphertext expansion) is to replace the δ random seeds s1, . . . , sδ
by one single seed and a random oracle F. More precisely, one could de�ne sj :=
F(r, j) for a random seed r ← U(M) and j ∈ [δ]. As a result, the transformation
wouldn't be in the standard, but in the random oracle model. As the random
oracle is only used to derive the seeds, not when masking the message, this
transformation still applies to the threshold FHE setting.



Simple Threshold FHE From LWE With Polynomial Modulus 27

Remark 2. Note that the reduction in the standard model restricted to ThPKE,
in contrast to the one from Section 4.1, doesn't satisfy weak robustness (Def. 15).

Theorem 3 (Security). Fix ℓ, δ, γ, λ, s ∈ N and ε > 0. Let qc denote the num-
ber of provided challenge ciphertexts, i.e., the number of queries to OChallEnc.
Let ThFHE be an (ℓ+qc, δ)-OW-CPA secure scheme withM = {0, 1}γ , such that

any adversary B of circuit size s has advantage Adv
(ℓ+qc,δ)-OW-CPA
ThFHE (B) ≤ 2−λ,

where λ ≥ 3 log2(1/ε) + log2(2γ) + δ. Further, we assume that ThFHE ful-
�lls (s′, ε′)-circuit privacy, where s′ = O(sγ3ε−4)8 and ε′ = 5qcδε/ℓ and ε′ =
5qcδε/ℓ. Then, ThFHE

′ is ℓ-IND-CPA secure with M′ = {0, 1}δ; concretely, for
any adversary A of circuit size s′ it yields

Advℓ-IND-CPA
ThFHE′ (A) ≤ 25qcδε+ 1

2
.

Choosing the Parameters. To ensure a small enough advantage, since qc, δ are
relatively small, it su�ces to choose a small enough ε, which we denote ε = 2−λ′

.
We then require λ = δ + 3λ′ + log2(2γ), which determines the required security
level of the original OW-CPA scheme. There's therefore a tradeo� between the
increased security requirement and the value δ, which improves ciphertext ex-
pansion. For instance, if λ′ = 128 then by choosing δ = 118, γ = 512, we can
pack 118 message bits into each FHE ciphertext, which must encrypt 512 actual
bits using the OW-CPA scheme. In this case, to achieve security according to
the reduction, the parameters of the OW-CPA scheme would need to be chosen
for λ = 512-bit security. We note that this way of setting parameters may be
overly conservative, since our reduction is not tight � unlike with the number
of queries ℓ and the matching attack (Section 6.2), we are not aware of any
weaknesses from choosing smaller values of λ.

Proof. Recall that we are given an OW-CPA secure threshold decryption scheme
ThFHE = (Setup,Enc,Eval,PartDec,Combine) with message space M = {0, 1}γ
and we want to construct a new threshold scheme ThFHE′ = (Setup′,Enc′,Eval′,
PartDec′,Combine′) with message spaceM′ = {0, 1}δ, which ful�lls IND-CPA se-
curity. In the IND-CPA security game (Def. 19), the adversary has access to three
di�erent oracles, OEnc′,OChallEnc′ and OPartDec′. In the following, we de�ne a
sequence of games which modify how the di�erent oracles are implemented. The
�rst game consists of the IND-CPA security game, where b = 1. The last game
consists of the IND-CPA security game, where b = 0.

Game0 :

Queries to OEnc′: On input the message m = (mi)i∈[δ] ∈ {0, 1}δ = M′,
sample x, s1, . . . , sδ ← U(M), compute c0 ← Enc(pk, x), and set ci =

8 The hidden constant in the O(·) notation is the same as that in the proof of Lemma 1,
which can be derived from the Goldreich-Levin theorem.
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⟨x, si⟩ +mi mod 2 for all i ∈ [δ]. Set m(0) = m(1) = m. Output the cipher-
text ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m(0),m(1), ct) in the list L.

Queries to OChallEnc′: On input messages m(0),m(1) ∈ {0, 1}δ =M′, sample

x, s1, . . . , sδ ← U(M), compute c0 ← Enc(pk, x), and set ci = ⟨x, si⟩+m
(1)
i

for all i ∈ [δ]. Output ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m
(0),m(1), ct)

in the list L.

Queries to OPartDec′: On input a circuit C and indices ι1, . . . , ιk, �nd the
corresponding ciphertexts ct1, . . . , ctk in the list L. First compute ct ←
Eval′(pk, C, ct1, . . . , ctk) (by internally calling Eval on associated circuit C̃)
and then di ← PartDec′(ski, ct) (by internally calling PartDec) for all i ∈ [n].
Output d = (di)i∈[n].

Game1 :

Queries to OEnc′ and to OChallEnc′: as in Game0
Queries to OPartDec′: On input a circuit C and indices ι1, . . . , ιk, �nd the

corresponding messages m
(1)
1 , . . . ,m

(1)
k in the list L. De�ne the constant cir-

cuit C̃ which, on any input simply outputs C(m
(1)
1 , . . . ,m

(1)
k ). First com-

pute ct← Enc(pk, C̃(x
(1)
1 , . . . , x

(1)
k )) (on arbitrary input x

(1)
i ) and then di ←

PartDec(ski, ct) for all i ∈ [n]. Output d = (di)i∈[n].

Game2 :

Queries to OEnc′ and to OPartDec′: as in Game1
Queries to OChallEnc′: On input messages m(0),m(1) ∈ {0, 1}δ = M′, sam-

ple x, s1, . . . , sδ ← U(M) and compute c0 ← Enc(pk, x). Further, sam-

ple r1, . . . , rδ ← U({0, 1}) and set ci = ri + m
(1)
i mod 2 for all i ∈ [δ].

Output ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m(0),m(1), ct) in L.

Game3 :

Queries to OEnc′ and to OPartDec′: as in Game2
Queries to OChallEnc′: On input messages m(0),m(1) ∈ {0, 1}δ = M′, sam-

ple x, s1, . . . , sδ ← U(M) and compute c0 ← Enc(pk, x). Further, sam-

ple r1, . . . , rδ ← U({0, 1}) and set ci = ri + m
(0)
i mod 2 for all i ∈ [δ].

Output ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m(0),m(1), ct) in L.

Game4 :

Queries to OEnc′ and to OPartDec′: as in Game3
Queries to OChallEnc′: On input messages m(0),m(1) ∈ {0, 1}δ = M′, sam-

ple x, s1, . . . , sδ ← U(M), compute c0 ← Enc(pk, x) and set ci = ⟨x, si⟩ +
m

(0)
i mod 2 for all i ∈ [δ]. Output ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store

(m(0),m(1), ct) in L.
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Game5 :

Queries to OEnc′ and to OChallEnc′: as in Game4
Queries to OPartDec′: On input a circuit C and indices ι1, . . . , ιk, �nd the

corresponding ciphertexts ct1, . . . , ctk in the list L. First compute ct ←
Eval′(pk, C, ct1, . . . , ctk) and then di ← PartDec′(ski, ct) for all i ∈ [n]. Out-
put d = (di)i∈[n].

Claim. Assume there is an adversary A of circuit size s′ who wins the ℓ-IND-CPA
game against ThFHE′ with probability at least p. Then, there exists an i ∈
{0, . . . , 4} such that cdists′(Gamei,Gamei+1) > (2p− 1)/5 := ε̃.

Proof. By assumption, it yields

p < Pr[Exptℓ-IND-CPA
A,ThFHE (1λ, 1κ, n, t) = 1]

= Pr[Exptℓ-IND-CPA
A,ThFHE (1λ, 1κ, n, t) = 1 | b = 1] · Pr[b = 1]

+ Pr[Exptℓ-IND-CPA
A,ThFHE (1λ, 1κ, n, t) = 1 | b = 0] · Pr[b = 0]

= Pr[Exptℓ-IND-CPA
A,ThFHE (1λ, 1κ, n, t) = 1 | b = 1] · 1

2

+
(
1− Pr[Exptℓ-IND-CPA

A,ThFHE (1λ, 1κ, n, t) = 0 | b = 0]
)
· 1
2
.

Now, we observe that Pr[Exptℓ-IND-CPA
A,ThFHE (1λ, 1κ, n, t) = 1 | b = 1] corresponds

to Pr[A outputs 1 in Game0] and Pr[Exptℓ-IND-CPA
A,ThFHE (1λ, 1κ, n, t) = 0 | b = 0] cor-

responds to Pr[A outputs 1 in Game5]. By the de�nition of cdist this implies
cdists′(Game0,Game5) > (p − 1

2 )2 = 2p − 1. Using the triangle inequality, there
exists i ∈ {0, . . . , 4} such that cdists′(Gamei,Gamei+1) > (2p− 1)/5 = ε̃. ■

Next, we argue for all i ∈ {0, . . . , 4}, if cdists′(Gamei,Gamei+1) > ε̃, it either
breaks one-way security of ThFHE or circuit privacy of ThFHE′. Note that the
modi�cations from Game0 to Game1 are the same (in reverse order) as from
Game4 to Game5. Similarly, the modi�cations from Game1 to Game2 are the
same as from Game3 to Game4. Moreover, Game2 and Game3 are information-
theoretically close to each other, because the challenge messagesm(0) orm(1) are
hidden by truly random bits. We thus focus on the step from Game0 to Game1
and the step from Game1 to Game2 in the following. The step from Game0 to
Game1 is necessary to correctly apply the Goldreich-Levin extractor argument in
the next step. By replacing the evaluation algorithm with the direct encryption
of the evaluated circuit, we make sure that partial decryptions do not leak any
information on the challenge bit b = 1.9

Claim (Game0 to Game1). Assuming that cdists′(Game0,Game1) > ε̃ contradicts
the (s′, ε̃/ℓ)-circuit privacy of ThFHE′.

9 We have overseen this subtlety in an earlier version of this paper and thank the
Asiacrypt reviewers for pointing it out to us.
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Proof. Recall that ℓ denotes the maximal number of allowed queries to OPartDec′.
As Game0 and Game1 only di�er on how queries to OPartDec′ are answered, it
yields

ε̃ < cdists′(Game0,Game1) ≤ ℓ · cdists′(d, d̃),

where d is a vector of partial decryptions output by the oracle in Game0 and d̃ a
vector of partial decryptions output by the oracle in Game1. Using that applying
the randomized function PartDec′(ski, ·) does not increase the computational
distance and using the de�nitions of PartDec′ and Eval′ (through PartDec and
Eval, respectively), we observe that ε̃/ℓ is bounded above by

cdists′
(
((ski)i,Eval(pk, C̃, ct1, . . . , ctk)), ((ski)i,Enc(pk, C̃(x

(1)
1 , . . . , x

(1)
k )))

)
,

contradicting the (s′, ε̃/ℓ)-circuit privacy of ThFHE (cf. Def. 14). We later link ε̃
to ε′ as in the theorem statement. ■

Claim (Game1 to Game2). Assuming that cdists′(Game1,Game2) > ε̃ contradicts
the (ℓ+ qc, δ)-OW-CPA security assumption of ThFHE.

Proof. Let qc denote the number of allowed queries to OChallEnc′. As Game1
and Game2 only di�er on how queries to OChallEnc′ are answered, it yields

ε̃ < cdists′(Game1,Game2) ≤ qc · cdists′(ct, c̃t),

where ct is an encryption output by the oracle in Game1 and c̃t is an encryp-
tion output by the oracle in Game2. We can rewrite ct using the concatenated
Goldreich-Levin extractor E from De�nition 2. We de�ne m := (0, . . . , 0,m(1)) ∈
Mδ×M′,X := U(M) and Z := (Enc(pk, X), (ski)i∈S , E, PartD), the latter being
the random variable de�ned by the randomized encryption algorithm for uniform
random messages, the corrupted secret key shares, the circuit evaluations and the
partial decryptions given by the partial decryption queries in the security game.
Furthermore, we set Y = X, such that cdists′((X,Z), (Y, Z)) ≤ ε for all s′, ε > 0.
We observe that ct = (Z, E(X,U(Mδ) +m) and c̃t = (Z,U(Mδ ×M′) +m). It
holds that

ε̃/qc < cdists′(ct, c̃t) ≤ cdists′
(
(Z, E(X,U(M δ)), (Z,U(Mδ ×M′))

)
.

Applying Lemma 2 implies an upper bound on the unpredictability entropy, i.e.,
Hunp

ε,s (X|Z) < λ, where ε = ε̃
5qcδ

, s = O(s′γ−3ε4) and λ = δ+log2 2γ+3 log2 1/ε.
To conclude the proof of the claim, we link the unpredictability entropy of X
given Z to the OW-CPA security of ThFHE via a reduction. In the following,
we explain how the corresponding oracle queries for ThFHE′ (which de�ne X
and Z) can be answered by having access to the three analogue oracles (de-
noted OEnc,OChallEnc and OPartDec) from the OW-CPA security game, cf. Def-
inition 17.
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Reduction to OW-CPA Game.

Queries to OEnc′: On input the message m = (mi)i∈[δ] ∈ {0, 1}δ = M′,
sample x, s1, . . . , sδ ← U(M) and query OEnc on input x. Take the re-
ceived c0 = Enc(pk, x) and compute ci = ⟨x, si⟩ + mi mod 2 for all i ∈ [δ].
Set m(0) = m(1) = m. Output the ciphertext ct = (c0, s1, . . . , sδ, c1, . . . , cδ)
and store (m(0),m(1), ct) in the list L.

Queries to OChallEnc′: On input m(0),m(1) ∈ {0, 1}δ =M′, query OChallEnc
(on no input) and get back an encryption c0 = Enc(pk, x) for an unknown x.
For i ∈ [δ], sample si ← U(M). De�ne the circuit C̃ which takes as input x

and computes ⟨x, si⟩ + m
(1)
i mod 2 for every i ∈ [δ]. Then query OPartDec

on c0 and the circuit C̃. For every i ∈ [δ], the partial decryption ora-
cle outputs all partial decryption shares that can be combined to ci =

⟨x, si⟩ + m
(1)
i . Output the ciphertext ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and

store (m(0),m(1), ct) in L.
Queries to OPartDec′: On input a circuit C and indices ι1, . . . , ιk, �nd the cor-

responding messages m
(1)
1 , . . . ,m

(1)
k in the list L. De�ne the constant circuit

C̃ which, on any input, simply outputs C(m
(1)
1 , . . . ,m

(1)
k ). Query OPartDec

on the circuit C̃ and the indices ι1, . . . , ιk as input. On output d = (di)i∈[n]

of the oracle OPartDec, output d.

Queries to OPartDec done within OChallEnc′ and within OPartDec′ do pass the
entropy-check with the entropy bound δ (cf. line 10 of Figure 3). Regarding
the �rst case, by Lemma 3, every inner product ⟨x, si⟩ mod 2 leaks at most one
bit of x. Hence, at most δ bits are leaked in total when querying OPartDec
on circuit C̃. A similar argument holds for OPartDec′: The circuit C ′ leaks at
most δ bits for every xi with i ∈ [k]. Note that every query to OChallEnc′ leads
to one query to OPartDec. Similarly, every query to OPartDec′ leads to one query
to OPartDec. Thus, the OW-CPA scheme has to allow for ℓ+qc partial decryption
queries in total. To conclude the proof, we observe that Hunp

ε,s (X|Z) < λ implies
that for any adversary B of circuit size s

2−λ < Pr[B(Z) = X] ≤ Adv
(ℓ+qc,δ)-OW-CPA
ThFHE (B).

■

Regarding the parameters from the theorem statement, we observe from the
above two sub proofs that ε′ = ε̃/ℓ = ε5qcδ/ℓ and s′ = O(sγ3ε−4) as stated.

5 Threshold Fully Homomorphic Encryption From LWE

With Polynomial Modulus

We now present our construction of a t-out-of-n ThFHE scheme with OW-CPA
security. First, we describe and analyze our main construction based on any LSSS
with strong {0, 1}-reconstruction. Then, in Section 5.5, we give an alternative
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construction that combines pseudorandom secret sharing with Shamir sharing
to improve e�ciency when

(
n
t

)
is small.

By applying the OW-CPA to IND-CPA transformation for ThFHE from Sec-
tion 4.2, we hence obtain an IND-CPA secure scheme. When we restrict our-
selves to standard PKE, our construction gives us a standard ThPKE scheme
(cf. Def. 12). We can then also apply the alternative transformation from Sec-
tion 4.1, which additionally achieves some form of robustness.

5.1 Nearly Linear Decryption of FHE

We use the following abstraction of LWE-based encryption schemes, where de-
cryption is viewed as a linear function of the secret key that outputs a �noisy�
version of the correct message. Similar notions were used in [BKS19; Bra+19].

De�nition 21 (FHE with (β, ε)-linear decryption). Let FHE := (Setup,
Enc,Dec,Eval) be a fully homomorphic encryption scheme (as in Def 13) with
message space M ⊆ Rp and ciphertext space Rr

q. Suppose that Setup outputs a
secret key sk ∈ Rr

q which has the form (1, s) for some s ∈ Rr−1
q .

Let β = β(λ) ∈ N, ε = ε(λ) ∈ [0, 1]. We say that FHE has (β, ε)-linear
decryption if for any λ, κ ∈ N, (pp, pk, sk) ← Setup(1λ, 1κ), depth-κ circuit
C :Mk → M, messages m1, . . . ,mk ∈ Rp, ciphertexts ci ← Enc(pk,mi) ∈ Rr

q

and ct← Eval(pk, c1, . . . , ck), it holds that

⟨sk, ct⟩ = ⌊q/p · C(m1, . . . ,mk)⌉+ e mod q,

for some e ∈ Rq such that Pr[∥e∥∞ ≤ β] ≥ 1− ε (where the probability is taken
over the randomness of Setup,Enc and Eval).

In standard (Module)-LWE based constructions, it's possible to securely set
the parameters such that the ratio β/q can be made arbitrarily small, and as
long as we have β/q = 1/poly(λ), then q is poly(λ).

For security, we require that FHE is IND-CPA secure.10 This can be instan-
tiated under the Module-LWE assumption to obtain (leveled) FHE using, for
instance, the BGV scheme [BGV12] (with superpolynomial q). For p = 2, d = 1
and R = Z, we also get (leveled) FHE under the standard LWE assumption with
a polynomial modulus q [BV14].

5.2 Construction from LSSS with Strong {0, 1}-Reconstruction

Our construction works over the ring R = Z[X]/f(X) for some degree-d irre-
ducible polynomial f , and uses the following main ingredients:

� Dflood: a noise distribution over Zq with magnitude bounded by βflood,
� Dsim: a noise distribution over Zq, where RDa(Dsim∥Dflood + B) ≤ εRDa

, for
some a ∈ (1,∞), εRDa

> 1 and for all B with |B| ≤ βfhe,

10 In our main construction, we assumeM is large and only rely on OW-CPA security
of FHE. When extending to smallerM in Sec. 5.3, we instead need IND-CPA security.
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� LSS: a t-out-of-n linear secret sharing scheme LSS = (Share, (RecS)S⊂[n])
with strong {0, 1}-reconstruction, associated parameters L, τmax, τmin and
shares in ZL

q (cf. Def. 7),

� FHE: a OW-CPA secure FHE = (Setup′,Enc,Eval,Dec) scheme with message
spaceM⊆ Rp, ciphertext space R

r
q , and (βfhe, ε)-linear decryption for some

βfhe < q/(2p)− τminβflood and some negligible ε.

We now de�ne the scheme ThFHE := (Setup,Enc,Eval,PartDec,Combine) by
using Enc and Eval from the underlying FHE scheme and setting Setup,PartDec
and Combine as speci�ed in Figure 6. We prove its correctness in Appendix C.

Setup(1λ, 1κ, n, t)

1 : (pp, pk, sk)← Setup′(1λ, 1κ)

2 : // sk ∈ Rr
q , ski ∈ (Rr

q)
L

3 : (sk1, . . . , skn)← LSS.Share(sk)

4 : return (pp, pk, sk1, . . . , skn)

PartDec(ski, ct)

1 : ei,j ← Dflood,Rq for j ∈ [L]

2 : // ski = (ski,1, . . . , ski,L) ∈ (Rr
q)

L

3 : di,j ← ⟨ct, ski,j⟩+ ei,j

4 : return di ← (di,1, . . . ,di,L)

Combine({di}i∈S , ct)

1 : y ← RecS((di)i∈S)

2 : return ⌊(p/q) · y⌉

Fig. 6. Setup, partial decrypt and combine algorithms for OW-CPA secure ThFHE. The
Enc and Eval algorithms are the same as for FHE.

For now, we assume the plaintext spaceM ⊆ Rp is superpolynomial in the
security parameter, so that FHE is OW-CPA secure. In Section 5.3, we show how
to extend this to use FHE with any plaintext space, which allows instantiating
from LWE with polynomial modulus.

We write Dflood,Rr
q
(resp. Dsim,Rr

q
) to refer to the distribution consisting of rd

independent Dflood (resp. Dsim) random variables, used to sample the coe�cients
of r elements of Rq.

We show security in the following.

Theorem 4 (Security). For any adversary A against the (ℓ, ν)-OW-CPA prop-
erty of the ThFHE scheme in Fig. 6 with message space M, there exists an
adversary B against the IND-CPA property of FHE, such that

Adv
(ℓ,ν)-OW-CPA
ThFHE (A) ≤

[
|ChallM|

(
AdvIND-CPA

FHE (B) + 2− log2(|M|)+ν
)
· εℓd(nL−τmax)

RDa

](a−1)/a

+ℓε,

where L and τmax are parameters from the LSS and |ChallM| is the number of
challenge ciphertexts the adversary queried.
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Proof. The high-level idea is to modify the (ℓ, ν)-OW-CPA game (Figure 3) such
that the t secret shares and the answers to the ℓ partial decryption queries pro-
vided to the adversary no longer depend on the underlying secret key sk. This
is re�ected by the sequence of games from G0 to G4. In the new game G4, the
adversary still learns the circuit evaluations, stored in the set E, which might
leak some information on the challenge messages, stored in ChallM. In a �-
nal step, when going to G5, we make those circuit evaluations independent of
the challenge ciphertexts, by tweaking the oracle OChallEnc to output random
ciphertexts (independent of the challenge messages). Here we need to assume
the IND-CPA security of the underlying non-threshold FHE scheme. By argu-
ing that the circuit evaluations coming from the partial decryption queries do
not leak too much information on the challenge messages, we can bound the
advantage of the resulting adversary in the last game G5 to be negligible.

Game G0: This is the real threshold (ℓ, ν)-OW-CPA experiment as in Fig-
ure 3. The view of A is given by

V = (pp, pk, {ski}i∈S , CT, ChallCT, E, PartD),

where pp are the public parameters, pk is the public key, {ski}i∈S are the se-
cret key shares given to the adversary, CT and ChallCT contain the (challenge)
ciphertexts the adversary has queried, E and PartD store the results of up to ℓ
adaptive circuit evaluations and partial decryption queries. In each partial de-
cryption query, A inputs a circuit C and list of indices (i1, . . . , ik), and receives
(di)i∈[n], where di is the partial decryption of ct← Eval(pk, C, cti1 , . . . , ctik) un-
der ski. Once the adversary knows all the partial decryption shares, they can re-

construct the circuit evaluation C(mi1 , . . . ,mik). It yields, Adv
(ℓ,ν)-OW-CPA
ThFHE (A) =

AdvG0

ThFHE(A).
Game G1: In this game, we rede�ne how the partial decryptions are com-

puted. After the adversary chooses the set S ⊂ [n] of corrupt parties, let
SL = {(i, j)}i∈S,j∈[L] be the corresponding set of share elements. Fix T ⊇ SL to
be a maximal invalid set of share elements. Then, compute the partial decryp-
tions di for a ciphertext ct as follows:

1. For (i, j) ∈ T , let d̃i,j = ⟨ct, ski,j⟩;
2. For (i, j) ∈ ([n] × [L]) \ T , let Ti,j ⊆ T ∪ {(i, j)} be a minimal valid set of

share elements, and compute d̃i,j = ⟨ct, sk⟩ −
∑

(k,l)∈Ti,j\{(i,j)} d̃k,l;

3. Sample ei ← Dflood,RL
q
and compute di = d̃i + ei, for i ∈ [n].

Game G2: In this game, before outputting the partial decryptions for a
ciphertext ct, we �rst check that ⟨ct, sk⟩ = ⌊q/p⌉ ·C(m1, . . . ,mk) + e for some e
with ∥e∥∞ ≤ βfhe. If not, the game aborts.

Game G3: We replace the partial decryptions corresponding to shares out-
side of T with simulated ones. Firstly, in step (2) above, for (i, j) ∈ ([n]× [L])\T ,
we now compute d̃i,j as d̃i,j = ⌊q/p · C(m1, . . . ,mk)⌉ −

∑
(k,l)∈Ti,j\{(i,j)} d̃k,l.

Secondly, in step (3), instead of always sampling ei,j ← Dflood,Rq
, we only sam-

ple ei,j ← Dflood,Rq
if (i, j) ∈ T , and ei,j ← Dsim,Rq

otherwise.
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Game G4. In the next game, we change how the secret key shares are sam-
pled: pick (sk′1, . . . , sk

′
n)← LSS.Share(0) and give to A the shares {sk′i}i∈S .

Game G5. In the last game, we replace the oracle OChallEnc by OChallEnc′,
as de�ned in Figure 7. In the new oracle, two independentm andm′ are sampled.
Whereas m is added to the challenge message list ChallM, the encryption of m′

is added to the challenge ciphertext list ChallCT.

OChallEnc′()

1 : idx = idx+ 1

2 : m,m′ ←M
3 : ChallM = ChallM ∪ {m}
4 : ct← Enc(pk,m′)

5 : ChallCT = ChallCT ∪ {ct}
6 : L[idx] := {(1,m, ct)}
7 : return ct

Fig. 7. Modi�ed OChallEnc′ oracle.

The theorem then follows from the following lemmata relating the advantages
between the di�erent games and showing that the �nal advantage in the last
game is negligibly small.

Lemma 8. For any PPT adversary A in Games G0 and G1, it holds that

AdvG0

ThFHE(A) = AdvG1

ThFHE(A).

Proof. Note that the view of A in G1 is identical to that in G0, due to the strong
{0, 1}-reconstruction property of LSS. This is because every share belonging to
the maximally invalid set T is computed the same way as in G0, using the
shares ski, while each share outside this set is deterministically �xed to be a
sharing of the correct secret ⟨ct, sk⟩, plus noise sampled from Dflood, as in G0.
Hence, AdvG0

ThFHE(A) = AdvG1

ThFHE(A). ■

Lemma 9. For any PPT adversary A in Games G1 and G2, it holds that

AdvG1

ThFHE(A) ≤ AdvG2

ThFHE(A) + ℓε.

Proof. Due to the (βfhe, ε)-linear decryption property of FHE, and applying a
union bound over the ℓ queries, we have that AdvG1

ThFHE(A) ≤ AdvG2

ThFHE(A) +
ℓε. ■

Lemma 10. For any PPT adversary A in Games G2 and G3, it holds that

AdvG2

ThFHE(A) ≤ (AdvG3

ThFHE(A) · ε
ℓd(nL−τmax)
RDa

)(a−1)/a,

where τmax is the size of the smallest maximal invalid share set in LSS.



36 K. Boudgoust and P. Scholl

Proof. We compute the Rényi divergence between the views of the adversary in
each game. Each view consists of the adversary's random tape and

V = (pp, pk, {ski}i∈S , CT, ChallCT, E, PartD) ,

where CT and ChallCT store the (challenge) ciphertexts and E and PartD the
circuit evaluations and partial decryption shares after the ℓ partial decryption
queries. For simpler notation, we set iη := (iη1 , . . . , i

η
k) and mη := (mη

i1
, . . . ,mη

ik
)

for the index list and corresponding message vector of the η-th query. Let D2 and
D3 denote the distributions of V in games G2 and G3, respectively. Since the par-
tial decryption queries are adaptive, note that the circuit Cη and the index list iη

input during the η-th query depend on the previous queries to OEnc,OChallEnc
and OPartDec and the corresponding responses. However, since each (Cη, iη) is
a deterministic function of the other values in the view (including the random
tape), by the data processing inequality (Lem. 4), RDa(D2∥D3) ≤ RDa(D

′
2∥D′

3),
where D′

2, D
′
3 are the distributions with the C

η, iη values removed. D′
2 are D

′
3 are

now de�ned identically, except in the way the partial decryption components dη
i,j

are computed for indices (i, j) /∈ T . In G2, d
η
i,j is computed using (amongst other

values) ⟨ctη, sk⟩ + Dflood,Rq
, whereas G3 instead uses ⌊q/p · C(mη)⌉ + Dsim,Rq

.
Since ⟨ctη, sk⟩ = ⌊q/p · C(mη)⌉ + eη for some eη with ∥eη∥∞ ≤ βfhe, and the
view contains nL− |T | pairs (i, j) /∈ T where the sampling of dη

i,j changes from
G2 to G3, to compute RDa(D

′
2∥D′

3), it su�ces to compute

RDa

(
((e1 +Dflood,Rq

)nL−|T |, . . . , (eℓ +Dflood,Rq
)nL−|T |)∥Dℓ(nL−|T |)

sim,Rq

)
.

Applying Lem. 6 with N = dℓ(nL− |T |), D1 = Dflood, D2 = Dsim, we get

RDa(D
′
2∥D′

3) ≤ ε
dℓ(nL−|T |)
RDa

.

Applying the probability preservation property of Rényi divergence, we bound
the success probability of the adversary as required. ■

Lemma 11. For any PPT adversary A in Games G3 and G4, it holds that

AdvG3

ThFHE(A) = AdvG4

ThFHE(A).

Proof. Note that the view of A in G4 is perfectly indistinguishable from the one
inG3 by the perfect privacy property of LSS. Hence, Adv

G3

ThFHE(A) = AdvG4

ThFHE(A).
■

Lemma 12. For any PPT adversary A in Games G4 and G5, it holds that

AdvG4

ThFHE(A) ≤ AdvG5

ThFHE(A) + |ChallM| · Adv
IND-CPA
FHE (A).

Proof. The view of A in G5 and G4 are computationally indistinguishable as-
suming the IND-CPA security of the non-threshold FHE scheme for every query
to OChallEnc′. In total, there are |ChallM| many such queries. Hence, we ob-
tain AdvG4

ThFHE(A) ≤ AdvG5

ThFHE(A) + |ChallM| · Adv
IND-CPA
FHE (A). ■
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Lemma 13. For any PPT adversary A in Game G5, it yields that

AdvG5

ThFHE(A) ≤ qc · 2− log2(|M|) · 2ν ,

where M is the message space, ν the bound on the entropy leakage guaranteed
in the (ℓ, ν)-OW-CPA game and qc := |ChallM| the number of queried ciphertext
challenges. If ν is logarithmic, |M| exponential and qc polynomial in λ, the
advantage is negligible in λ.

Proof. Let V denote the views of A in Game G5. It is given by

V = (pp, pk, {ski}i∈S , CT, ChallCT, E, PartD) .

Note that in Game G5, all challenge messages in ChallM are independent of the
challenge ciphertexts in ChallCT. Furthermore, the secret key shares {ski}i∈S

are independent of the secret key sk and hence also independent of the challenge
messages in ChallM. The same is true for the simulated partial decryption shares
stored in PartD. The public parameters pp, public key pk and normal ciphertexts
stored in CT, are trivially independent of ChallM. Thus, H̃∞(m|V) = H̃∞(m|E).
Overall, it yields

AdvG5

ThFHE(A) ≤
∑

m∈ChallM
2−H̃∞(m|V) =

∑
m∈ChallM

2−H̃∞(m|E)

≤
∑

m∈ChallM
2−H̃∞(m)+ν ,

where we used that the leakage is guaranteed to be bounded above by ν. Fi-
nally, we use that every m ∈ ChallM is sampled uniformly at random over M,
thus H̃∞(m) = log2(|M|), leading to AdvG5

ThFHE(A) ≤ |ChallM| · 2− log2(|M|) ·
2ν . ■

5.3 Supporting a Larger Plaintext Space

The above construction works for a plaintext space M ⊆ Rp. Since we only
obtain one-way security, this requires |Rp| to be superpolynomial in λ to give a
meaningful security guarantee. If Rp is small, we can easily modify our threshold
scheme to still be secure by using several ciphertexts to encrypt larger messages
with the underlying FHE scheme. Note that this change is necessary to obtain an
instantiation from LWE with polynomial modulus, since thereM = Rp = Z2.

Concretely, suppose that FHE is IND-CPA secure and has small message space
M. De�ne FHE′ with message spaceMk, such that

∣∣M−k
∣∣ is negligible, by en-

crypting each of the k message components separately under FHE. We then
instantiate our threshold scheme using FHE′ instead of FHE, where during the
partial decrypt and combine steps, we run the algorithms for the previous con-
struction on each component separately. If FHE is IND-CPA secure, then so is
FHE′, and the proof carries over in the same way, except that the ℓ values in the
statement of Theorem 4 will be replaced with kℓ, to account for the fact that
each of the ℓ decryption queries involves k decryptions of ciphertexts from FHE.
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5.4 Bounding the Rényi Divergence

We now analyze parameters and instantiate the distributions Dflood and Dsim. For
now, we simply choose them both to be rounded Gaussian distributions ⌊Dσ⌉
with the same standard deviation σ. In Sec. 6.1, we obtain tighter parameters by
carefully optimizing the choice of distributions. If FHE has a maximum ciphertext
noise bound of βfhe, then using Lem. 5 with our choice of distributions, we get

εRDa = RDa(Dflood + βfhe∥Dsim) ≤ exp
(

aβ2
fhe

2σ2

)
. If FHE has λFHE bits of security,

then from Thm. 4, the resulting ThFHE scheme is λThFHE-bit secure, such that

λThFHE ≥ (λFHE − ℓd(nL− τmax) log2 εRDa
)
a− 1

a
(1)

Combining the above two equations, we obtain λThFHE ≥ a−1
a λFHE− ℓd(nL−

τmax)(a − 1)
β2
fhe

2σ2 log2 e. Setting for instance a = λThFHE, and choosing σ, q, βfhe

such that σ = O(βfhe

√
ℓd(nL− τmax)(a− 1)) while decryption is still correct,

the loss in security is only a constant factor. Smaller values of a give di�erent
tradeo�s between the size of σ and the security loss. Note that in any case, if ℓ
and nL are polynomially bounded then both σ and the modulus q can be also.

5.5 Alternative Construction Using Pseudorandom Secret Sharing

We also give a di�erent construction based on pseudorandom secret sharing
(PRSS), which improves upon the previous one in some aspects. Instead of having
each party perturb their share by an independent, random noise term, we will
use PRSS [GI99; CDI05]. This allows them to jointly sample replicated secret
sharings of small noise terms, without interaction, after a one-time setup that
distributes PRF keys. We also exploit the fact that replicated secret shares can
be locally converted to any other LSS, and convert the secret shared noise terms
into Shamir sharings before using them for partial decryption. This means that
the partial decryptions are Shamir shares, which are much smaller, consisting of
only 1 element over Rq each. Furthermore, this leads to improved parameters in
the security reduction (by avoiding the nL − τmax term in Equation 1), and we
can additionally take advantage of the error-correction capability of Shamir to
achieve strong robustness (Def. 16) when t < n/3. This o�ers a way of getting
robustness for ThFHE instead of only ThPKE with our previous transformations,
with the drawback that we require

(
n
t

)
to be not too large, due to using replicated

secret sharing.
To sum up, PRSS is a lightweight tool for achieving robustness with a small

number of parties. The details and security proof of this construction are in Ap-
pendix D.

6 Sample Parameters and Security Estimates

In this section, we discuss how to choose concrete parameters for our OW-CPA
secure threshold construction, where we take as a starting point the lattice-based
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scheme Kyber [Sch+20]. Hence, we are not in the fully homomorphic case, but in
the standard PKE case and thus obtain a standard ThPKE scheme. We denote
the thresholdized version of Kyber by TKyber.

After deriving sample parameter sets in Section 6.1, we give in Section 6.2 an
attack if the adversary has access to su�ciently many partial decryptions. We
will see that the bound is close to the one obtained in Section 5, showing that
using the Rényi divergence leads to almost optimal results.

We recall the high level description of Kyber in App. E. The relevant param-
eters for Kyber are the ring degree d, the rank r, the modulus q and the width η
of the secret key and encryption randomness distributions. Whereas the speci�-
cations of Kyber only consider three parameter sets, called Kyber512,Kyber768
and Kyber1024, we additionally consider three more parameter sets, that we
subsequently call Kyber1280,Kyber1536 and Kyber1792. As the name suggest,
they are obtained in a similar manner as the previous parameter sets, simply
by increasing the rank by +1. All parameter sets are summarized in Table 4 in
Appendix E.

6.1 Security From the Reduction

Let λPKE (resp. λThPKE) denote the security level of the starting PKE (resp.
the resulting ThPKE) from Theorem 4. Further, we set ∆λ := λPKE − λThPKE,
which describe the security loss in our reduction. Instantiating Equation 1 in the
standard PKE setting yields

λThPKE ≥
a− 1

a
· (λPKE − ℓd(nL− τmax) log2 εRDa) , (2)

where ℓ is the number of partial decryption queries, d the degree of the ring R, L
and τmax parameters of the underlying LSSS and εRDa an upper bound on the
Rényi divergence RDa(Dsim∥Dflood + βpke) of order a. Here, Dsim (resp. Dflood)
denotes the simulating (resp. �ooding) noise distribution and βpke is a bound
on the decryption noise that depends on the concrete parameters of Kyber, in
particular on the ring degree d, the module rank r and the parameter η, as
well as the maximal failure probability ε we want to achieve. For concreteness
we set λPKE as the core-SVP classical hardness, i.e., the resulting BKZ block
estimated from the Lattice Estimator [APS15] size multiplied by 0.292.

Table 2 and Table 3 present some sample parameters. We explain in Ap-
pendix E in more details how we concretely derived them. The relevant di�er-
ence between the two is that in the �rst table, we focus on larger numbers of
parties n and samples ℓ while accepting a modulus of up to 39 bits. For sim-
plicity, we assume that both Dflood and Dsim follow a Gaussian distribution of
width σ. In contrast, in the second table we �ne-tuned the �ooding and simu-
lation distributions so that we can allow for very small q (only multiplying the
original Kyber modulus by small constants up to 10).
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Table 2. Sample parameters and security estimates following the reduction from
Thm. 4 using a generic approach.

Set (βpke, ε) n t ℓ ⌈log2 σ⌉ ⌈log2 q⌉ λPKE λThPKE ∆λ

TKyber1024 (390, 2−60) 2 1 1 17 23 120 117 3
TKyber1024 (934, 2−300) 2 1 1 18 24 111 108 3
TKyber1024 (390, 2−60) 10 9 1 17 25 105 102 3
TKyber1280 (435, 2−60) 10 5 1 21 29 120 117 3
TKyber1536 (476, 2−60) 20 10 10 27 36 112 109 3
TKyber1792 (513, 2−60) 2 1 232 33 39 123 120 3

Table 3. Sample parameters and security estimates following the reduction from
Thm. 4 obtained from a hand-tuned Python program.

Set q n t ℓ Dflood Dsim λThPKE ∆λ

TKyber1024 5 · 3329 2 1 1 947 1087 100 111
TKyber1024 10 · 3329 2 1 2 1994 2034 104 91
TKyber1024 9 · 3329 3 2 1 1197 1297 106 92

6.2 Statistical Attack

In the following, we describe an attack against our proposed threshold decryption
scheme if the adversary obtains su�ciently many partial decryption queries. Note
that the obtained lower bound on the samples for this attack is only slightly
higher than the upper bound for security from Section 5. This shows that using
the Rényi divergence leads to quasi optimal parameters.

As in the previous section, we focus on Kyber and denote by TKyber the
thresholdized scheme as in Section 5. For simplicity, we consider the full-threshold
setting for n parties using additive secret sharing. We use as �ooding noise dis-
tribution a rounded Gaussian

⌊
Dflood,Rq

⌉
of width σflood.

Lemma 14. Let q, d, r, η be the Kyber parameters (as introduced in App. E).
Further, let ℓ denote the number of partial decryption queries to TKyber an
adversary A has access to. Further, let ν ∈ N. If

ℓd = Ω((2r + 1)d+ ν) and ℓd = Ω

(
σ2
flood

η2
log2(2d(2r + 1))

)
,

then A can recover the secret key of TKyber with probability 1−1/2d(2r+1)−2−ν .

Proof. As we use additive secret sharing, every party receives exactly one secret
key share ski, where sk =

∑n
i=1 ski.

Following the description of Kyber from App. E and the threshold function
from Figure 6, a partial decryption of TKyber is of the form d = (di)i∈[n], with

di = v · 1i − uT si + ei,

where 1i is a share of 1 (e.g. 1i = 1 if i = 1 and 0 otherwise) and ei ← Dflood,Rq
.
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Without loss of generality, we say that Party 1 is honest and all other parties
are controlled by the adversary A. After receiving all n decryption shares, the
adversary can sum them up to obtain

n∑
i=1

di = rTe− eT1 s+ e2 + ⌊q/2⌉m+
∑
i

ei,

where (r, e1, e2) is the encryption randomness used for this query.
We can re-write

∑
i di = ⟨w, z⟩+ ⌊q/2⌉m+

∑
i ei, where w = (r, e1, e2)

T ←
CBD(2r+1)d

η and z = (e,−s, 1)T .
After subtracting ⌊q/2⌉m, the adversary obtains d′ = ⟨w, z⟩+

∑n
i=1 ei. More-

over, the adversary knows the �ooding noise of the corrupted parties and can
further subtract it from d′, leading to d′′ = ⟨w, z⟩+ e1.

Interestingly, we observe that all elements appearing in the equation of d′′

are of small norm, thus no reduction modulo q is necessary. After applying the
coe�cient embedding, we can interpret d′′ as d samples of I-LWE as de�ned
in Section 2.3. Due to the concrete shape of Rq = Zq[X]/(Xd + 1) in Kyber,
the resulting public matrix W of the I-LWE instance is now the concatenation
of nega-cyclic matrices over Zq. Overall, after ℓ partial decryption queries, the
adversary has seen an instance of the I-LWE distribution of parameters R :=
(2r+1)d and M := ℓd with underlying secret z ∈ ZR. Recall that in TKyber, the
distribution of w is given by a centered binomial distribution of parameter η,
de�ning a η-subgaussian distribution with σw =

√
E[χ2

e] ≤
√

η2 = η. The
noise follows a rounded Gaussian distribution, is thus σflood-subgaussian. Thus,
Theorem 1 leads to an attacker with success probability 1− 1/2R− 2−ν if M =

Ω((2r+1)d+ν) and M = Ω
(

σ2
flood

η2 log2(2d(2r + 1))
)
. Here we use that the least

square method performs for W (with the nega-cyclic structure) as good as for
matrices where every entry is independent of all the others. That is the case, as
the nega-cyclic structure preserves the required properties to prove Theorem 1.

In comparison, in Section 5.4 we requireM = ℓd = O
(

σ2
flood

β2
fhe

)
. Recall that βfhe

is the bound on the ciphertext noise, which depends on the decryption failure
probability one wants to tolerate. Some concrete parameters for TKyber are given
in Table 2. In all cases, βfhe ≥ η/ log2(2d(2r + 1)) and hence our upper bound
from Section 5 is below the lower bound from the attack.

Note that [ASY22] showed that the Rényi divergence in their threshold signa-
ture leads to optimal bounds by providing an attack for larger bounds. As they
use a deterministic signature scheme, their analysis boils down to a straightfor-
ward averaging attack. In our case, we argue with the results on Integer LWE,
using the least square method, as our encryption scheme is randomized.
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Appendix A Missing De�nitions of Section 3

We de�ne the properties of compactness and decryption correctness in the fol-
lowing. Note that compactness is only relevant in the fully homomorphic setting.

De�nition 22 (Compactness). We say that a ThFHE scheme satis�es com-
pactness if there exists a polynomial poly such that for all λ, κ, n, t, C with C :Mk →
M a circuit of depth at most κ and for all (mj)j∈[k] ∈ Mk the following holds.

For (pp, pk, sk1, . . . , skn) ← Setup(1λ, 1κ, n, t), ctj ← Enc(pk,mj) for j ∈ [k]
and ct← Eval(pk, C, ct1, . . . , ctk), it yields

|ct| ≤ poly(λ, κ, n),

where |ct| denotes the bit size of ct.

De�nition 23 (Decryption Correctness).We say that a ThFHE scheme sat-
is�es decryption correctness if there exists a negligible function negl(λ) such that
for all λ, κ, n, t, S, C with S ⊂ [n] of size at least t+1 and C :Mk →M of depth
at most κ, and for all (mj)j∈[k] ∈Mk the following holds. For (pp, pk, sk1, . . . , skn)←
Setup(1λ, 1κ, n, t), ctj ← Enc(pk,mj) for j ∈ [k], ct ← Eval(pk, C, ct1, . . . , ctk)
and decryption shares di ← PartDec(ski, ct) for i ∈ S, it holds

Pr[Combine({di}i∈S , ct) = C(m1, . . . ,mk)] = 1− negl(λ).

Appendix B Missing Proofs of Section 4

B.1 Missing Proofs of Section 4.1

Lemma 15 (Decryption Correctness). The scheme ThPKE′ of Section 4.1
satis�es decryption correctness, if ThPKE satis�es decryption correctness and δ =
poly(λ).

Proof. Fix λ, n, t, S with S ⊂ [n] of size at least t + 1 and let m ∈ M′. Com-
pute (pp, pk, sk1, . . . , skn) ← Setup′(1λ, n, t) and ct ← Enc′(pk,m). For i ∈ S
we denote by (dij)j∈[δ] = di ← PartDec′(ski, ct) the decryption shares. The
inequality Combine′({di}i∈S , ct) ̸= m holds if for at least one j ∈ [δ] the inequal-
ity Combine({dij}i∈S , cj) ̸= xj is true. By the union bound we have

Pr
[
Combine′({di}i∈S , ct) = m

]
= 1− Pr

[
Combine′({di}i∈S , ct) ̸= m

]
= 1− Pr

 ⋃
j∈[δ]

Combine({dij}i∈S , cj) ̸= xj


≤ 1− δ · negl(λ) = 1− negl(λ),

when δ = poly(λ).
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B.2 Missing Proofs of Section 4.2

Lemma 16 (Compactness). The scheme ThFHE′ of Section 4.2 satis�es com-
pactness if ThFHE satis�es compactness and δ, γ = poly(λ, κ, n).

Proof. It yields |ct| = |c0| + (γ + 1)δ. From the compactness of ThFHE follows
that |c0| ≤ poly(λ, κ, n) and hence the claim follows.

Lemma 17 (Decryption Correctness). The scheme ThFHE′ of Section 4.2
satis�es decryption correctness if ThFHE satis�es decryption correctness.

Proof. Fix λ, κ, n, t, S, C ′ with S ⊂ [n] of size at least t+1 and C ′ : (M′)k →M′

of depth at most κ. Further, let (mj)j∈[k] ∈ (M′)k. Compute (pp, pk, sk1, . . . , skn)←
Setup′(1λ, 1κ, n, t), ctj ← Enc′(pk,mj) for j ∈ [k] and ct← Eval(pk, C ′, ct1, . . . , ctk).
Then,

Pr
[
Combine′({di}i∈S , ct) = C ′(m1, . . . ,mk)

]
=Pr [Combine({di}i∈S , c0) = C(x1, . . . , xk)]

=1− negl(λ),

where C is de�ned as in Eval′.

Appendix C Missing Proofs of Section 5

Theorem 5. The construction in Fig. 6 satis�es decryption correctness.

Proof. Let S ⊂ [n] be of size > t, and ct be a ciphertext output from Eval on
input a set of honestly generated ciphertexts and a circuit C of depth ≤ κ. Let
di ← PartDec(ski, ct) for i ∈ S, where (sk1, . . . , skn) = Share(sk).

By the strong {0, 1}-reconstruction property of LSS and the validity of S,
there exists a minimal valid set of share elements T ⊆ S × [L] such that

RecS((ski)i∈S) =
∑

(i,j)∈T

ski,j = sk.

It follows that

Combine({di}i∈S , ct) =

(p/q) · (⟨ct, sk⟩+ ∑
(i,j)∈T

ei,j)


=

(p/q) ·
⌊(q/p)m⌉+ ect +

∑
(i,j)∈T

ei,j


=

(p/q) ·
(q/p)m+ ernd + ect +

∑
(i,j)∈T

ei,j


= m+

(p/q)(ernd + ect +
∑

(i,j)∈T

ei,j)

 ,
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where ect is the ciphertext error and ernd is a rounding polynomial with coef-
�cients ≤ 1/2. Letting e = ernd + . . . be the sum of the 3 error terms, by the
(βfhe, ε)-linear decryption property of FHE, except with probability ε, we have
∥e∥∞ ≤ 1/2 + βfhe + |T | · βflood. Since βfhe ≤ q/(2p) − τminβflood − 1 and T is a
minimal valid set (so |T | ≤ τmin), we have ∥e∥∞ < q/(2p), so the resulting error
term rounds to zero, giving the correct message m.

Appendix D Details on PRSS-based Construction

D.1 Pseudorandom Secret Sharing

Pseudorandom secret sharing (PRSS) [GI99; CDI05] allows parties to non-interactively
obtain secret-sharings of pseudorandom values, after a one-time setup phase
which distributes PRF keys among the parties. We use a variant of PRSS over
the integers, where the parties do not get shares of uniform values, but instead
values bounded from a small range (similarly to [BD10]).

Using a PRF F : {0, 1}λ × {0, 1}∗ → [−B,B] ∩ Z, the t-out-of-n threshold
case works as follows:

� As setup, for each size-t subset A ⊂ [n], sample kA ← {0, 1}λ. Give kA to
each party Pi, for i ∈ [n] where i /∈ A.

� To sample a pseudorandom share on input a nonce v, party Pi computes the
shares sA = F (kA, v), for each size-t A where i /∈ A.

The resulting set of shares {sA}|A|=t form a replicated secret sharing of s =∑
A sA, and we have |s| ≤ B ·

(
n
t

)
. Furthermore, for any collusion of t parties,

there is always one share sA ∈ [−B,B] that remains unknown.

Converting to Another LSS. A useful property of replicated secret sharing is
that replicated shares can be locally converted into any linear secret sharing
scheme for the same access structure via a simple linear transformation [CDI05].
We write the procedure of converting a share si into a share s′i for a LSSS as:
s′i = Convertrep→LSS(si).

D.2 Construction

The construction is shown in Fig. 8. It uses a PRF F : {0, 1}λ × Rr
q → Z ∩

[−βflood, βflood], where we require that the outputs of F are indistinguishable
from samples from Dflood.

11

ThFHE.Setup is modi�ed to sample a set of
(
n
t

)
keys kA and distribute these

to the parties in a replicated secret sharing manner. Meanwhile, the secret key of
the PKE scheme is shared using standard Shamir sharing. Then, during partial
decryption, the parties use the PRF to obtain replicated secret shares of a noise
vector. Finally, the parties convert these to Shamir sharings of the same value,
exploiting the generality of replicated secret sharing. The Combine algorithm is
identical to the previous construction, but using Shamir reconstruction.

11 We can use any PRF, and use the resulting pseudorandom bits to sample from Dflood.
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ThFHE.Setup(1λ, n, t)

1 : (pp, pk, sk)← PKE.KGen(1λ)

2 : kA ← {0, 1}λ, for A ⊂ [n], |A| = t

3 : ki ← (kA)i/∈A

4 : (sk1, . . . , skn)← Shamir.Share(sk)

5 : return (pp, pk, (sk1,k1), . . . , (skn,kn))

ThFHE.PartDec((ski,ki), ct)

1 : // ki = (kA)i/∈A, for all |A| = t

2 : eA ← F (kA, ct), for i /∈ A

3 : ei ← Convertrep→Shamir((eA)i/∈A)

4 : // ei ∈ Rq

5 : return di ← ⟨ct, ski⟩+ ei

Fig. 8. Setup and partial decrypt algorithms for the variant of the OW-CPA threshold
PKE/FHE scheme using pseudorandom secret sharing.

Correctness. The proof of correctness follows similarly to the proof of Theorem 5.
Since the PRF outputs are bounded by βflood, the noise term sampled with
pseudorandom secret-sharing is bounded by

(
n
t

)
· βflood. After converting this to

Shamir shares, the parties obtain a sharing of the same noise term, so decryption
succeeds under the same conditions as in Theorem 5, with τmin =

(
n
t

)
.

Security. We show security in the following theorem. Note that we improve the
security loss compared with Theorem 4, since there is no longer an nL − τmax

term in the exponent of εRDa
.

Theorem 6. For any adversary A against the (ℓ, ν)-OW-CPA property of the
ThFHE scheme in Fig. 8, there exists an adversary B against the OW-CPA prop-
erty of PKE, such that

Adv
(ℓ,ν)-OW-CPA
ThFHE (A) ≤

[
qc

(
AdvIND-CPA

PKE (B) + 2− log2(|M|)+ν
)
· εℓdRDa

](a−1)/a

+ ℓε

Proof. The proof follows a similar structure to that of Theorem 4, so we only
highlight the main di�erences.

Recall that Game G0 is the construction. In Game G1, we changed the way
the partial decryptions were computed, for all shares outside of a maximally
invalid set of share elements. Since we now only need to simulate partial de-
cryptions of Shamir shares, we instead de�ne a maximally invalid set of parties,
T ⊃ S, where S is the set of corrupted parties and T has size t. We then simulate
the partial decryptions as follows:

1. For i ∈ T , honestly compute eA ← F (kA, ct), for each size-t set A ⊂ [n] with
i /∈ A, and let di = ⟨ct, ski⟩+ Convertrep→Shamir((ei,A)A)

2. Sample eT ← Dflood,Rq

3. Compute e =
∑

A,|A|=t eA
4. For i /∈ T , let T ′ = T ∪ {i} and compute

di = λ−1
T ′,i ·

⟨ct, sk⟩+ e−
∑
j∈T

λT ′,jdj
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where λT ′,j are the reconstruction coe�cients for Shamir secret sharing,
de�ned by the Lagrange basis for polynomial interpolation at points in T ′.

Note that the di shares for i /∈ T are computed such that the partial de-
cryptions form a valid Shamir sharing of ⟨ct, sk⟩ + e. This is exactly as in the
real protocol, except that here the one share eT that is not part of any shares
in the maximally invalid set T is sampled from Dflood (step 2) instead of with
the PRF. Since the PRF key kT is not given to the adversary, this hybrid is
indistinguishable from the real game G0, by the security of the PRF.

Game G2 then makes the same change as in Theorem 4, removing the pos-
sibility of decryption failure. This is indistinguishable from the previous game,
except with probability ℓε.

In Game G3, in the noise term e, the share eT sampled in step 2 is sampled
with simulated noise using Dsim,Rq

. At the same time, we remove the ciphertext
noise term in ⟨ct, sk⟩, so instead of the last step above, we will now compute

di = λ−1
T ′,i ·

⌊(q/p) ·m⌉+ e−
∑
j∈T

λT ′,jdj


Notice that the di�erence between games G2 and G3 is that G2 uses the real

ciphertext noise and eT ← Dflood,Rq to simulate the missing partial decryptions,
while G3 instead uses zero ciphertext noise and eT ← Dsim,Rq

. Let ect = ⟨ct, sk⟩−
⌊(q/p) ·m⌉ be the ciphertext noise. Using Lemma 6, we have

RDa(Dflood,Rq
+ ect∥Dsim,Rq

) ≤ εdRDa

Similarly to the proof of Theorem 4, for ℓ decryption queries we obtain

AdvG2

ThFHE(A) ≤
(
AdvG3

PKE(A) · ε
ℓd
RDa

)(a−1)/a

and the result follows.

Achieving Strong Robustness. An advantage of this construction is that if
t < n/3, we can exploit the error-correction properties of Shamir sharing to guar-
antee that Combine outputs the correct message, even in the presence of t mali-
ciously chosen partial decryptions. This is because a properly generated PartDec
output is a valid Shamir share, so the parties can always use Reed-Solomon error
correction to reconstruct the secret and decrypt, given at least n/3 valid shares.
This allows the construction to satisfy the strong chosen-plaintext robustness
property (Def. 16). While this is also possible to achieve using the OW-CPA
to IND-CPA transformation from Section 4 (and even with t < n/2), by using
Shamir we avoid the

(
n
t

)
cost of �nding the correct subset of partial decryptions,

signi�cantly improving the e�ciency of the Combine algorithm. Furthermore,
the Shamir approach is compatible with FHE and not just PKE.
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Appendix E More Details on Parameters of Section 6

We recall the high level design of Kyber with messages of the form m ∈ R2
∼=

{0, 1}d, where d denotes the degree of the ring R. The scheme uses the centered
binomial distribution with parameter η ∈ N, denoted by CBDη. We say that
a ring element is sampled from CBDη if all its d coe�cients are independently
sampled from CBDη. This generalizes to vectors in Rr, where r is the underlying
module rank. Let Kyber = (Setup,Enc,Dec) be as follows:

Setup(1λ): Sample short vectors s, e ∈ Rr
q from CBDη and a uniform matrixA ∈

Rr×r
q . Set sk = (s, e) and pk = (A, t), where t = As+ e.

Enc(pk,m): Sample a short vector r ∈ Rr
q from CBDη and e1 ∈ Rr

q and e2 ∈ Rq

from CBDη. Set u = AT r+e1 and v = rT t+e2+⌊q/2⌉·m. Output ct = (u, v).
Dec(sk, ct): Compute c′ = v−uT s = rTe−eT1 s+e2+⌊q/2⌉·m. Output ⌊c′ · 2/q⌉.

For simplicity, we omit the additional rounding usually applied to ciphertexts
to further reduce their size.

Table 4. Parameter sets for Kyber.

Set d r q η

Kyber768 256 3 3329 2
Kyber1024 256 4 3329 2
Kyber1280 256 5 3329 2
Kyber1536 256 6 3329 2
Kyber1792 256 7 3329 2

Generic Parameters for Large Numbers of Parties. We �rst describe a
simpli�ed way of deriving parameters, where we assume that Dsim and Dflood

both are uncut rounded Gaussian distributions of the same width σ.
Using Lemma 5 with our choice of distributions, Equation 2 simpli�es to

λThPKE ≥
a− 1

a
·

(
λPKE − ℓd(nL− τmax)

aβ2
pke

2σ2
log2 e

)
. (3)

When setting σ = βpke

√
ℓd(nL− τmax)(a− 1) log2 e, the above simpli�es to

λThPKE ≥
a− 1

a
· λPKE − 1, (4)

which promises a rather small security loss at the expense of a larger modu-
lus. Note that we have to set q > 4(βpke + τminβflood) in order to guarantee
correctness (Thm. 5). Let's for concreteness set βflood = 10σ and a = 100. Re-
call that Kyber is a PKE with (βpke, ε)-linear decryption, where βpke depends on
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the maximal failure probability ε we tolerate. If we take as a concrete exam-
ple Kyber1024, it o�ers (390, 2−60) as well as (934, 2−300)-linear decryption.

When considering full threshold, we use additive secret sharing and when
considering non-full threshold, we assume naive secret sharing, de�ning the pa-
rameters L, τmax, τmin as in Table 1. After having set σ and q, one can use the
Lattice Estimator [APS15] to derive λPKE. For simplicity we set λPKE as the core-
SVP classical hardness, i.e., the resulting BKZ block size multiplied by 0.292.
The resulting λThPKE and ∆λ then come from Equation 4. We give some sample
parameters for TKyber1024 in Table 2. Note that we mean by TKyber1024 that
we take all the original Kyber1024 parameters, but modify the modulus q.

Hand-Tuned Parameters for Small Number of Parties. We now describe
how we can obtain tighter concrete parameters (in particular a small modulus q)
by allowing for di�erent �ooding and simulating Gaussian distributions and op-
timizing their concrete width. Throughout this section, we set Dsim (resp. Dflood)
as the rounded Gaussian distribution of width σsim (resp. σflood), where we ad-
ditionally apply a tail cut after 2 · σsim (resp. 2 · σflood).

By extending the Python program for computing security estimates of Kyber12,
we design a Python program that proceeds in the following three steps:

Step 1: Finding Dflood. The high level idea is to �nd the largest σflood we can
use in our ThPKE such that we still guarantee correctness (Theorem 5). This
is how we optimally make use of our modulus q. For simplicity, we set p = 2
and hence correctness is ful�lled as long as the in�nity norm of the �nal noise is
at most q/4. This procedure depends on the Kyber parameters (that de�ne the
noise from the decryption algorithm) as well as the maximal decryption failure
probability we want to aim for. We �x this probability to be 2−60. At the end,
the procedure outputs σflood and the bound B.

Step 2: Finding Dsim. Once we have computed Dflood, we can �nd Dsim such that
the Rényi divergence RD2(Dflood+B∥Dsim) is smallest. We start by settingDsim =
Dflood and compute the Rényi divergence of order 2. We now (slightly) in-
crease Dsim step by step and expect the Rényi divergence to decrease up to
some optimal sweet spot. Once we observe that the Rényi divergence increases
again, we stop increasing Dsim and take this as the optimal choice. Note that for
�xed Dflood, B and Dsim, it yields RD2(Dflood+B∥Dsim) ≤ RDa(Dflood+B∥Dsim)
for all a > 1. Hence, it is reasonable to compute the sweet spot for the order 2.

Step 3: Finding εRDa
. As we now haveDflood,Dsim and B, we can �nd the optimal

order of the Rényi divergence. Note that, even though εRDa
doesn't decrease for

increasing a, the factor (a−1)/a in Equation 2 suggests that the optimal a might
not necessarily be a = 2. For concreteness, we search the minimum among the
orders a ∈ [2, . . . , 11]. We then output the optimal choice of a together with

12 https://github.com/pq-crystals/security-estimates

https://github.com/pq-crystals/security-estimates
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the resulting Rényi divergence εRDa . Finally, we have everything together to
compute the upper bound on λThPKE.

Table 3 summarizes our �ndings. We use as base security λPKE the core-
SVP classical hardness of the underlying LWE instance, which can be easily
computed using any LWE estimator. For convenience, we used the leaky LWE
estimator [Dac+20]. We give some estimates for the �nal security λThPKE for dif-
ferent choices of small numbers of parties n, threshold t and number of queries ℓ.
For all computations, we apply a (rather aggressive) Gaussian tail cut after 2
times the Gaussian width and assume a failure probability bound of 2−60.

Here, we consider variants of the Kyber1024 parameter set, where we multiply
the modulus q by some scaling factor. This scaling factor is intended to give an
idea of the order of magnitude of the modulus we need. We remark that multiples
of 3329 might not necessarily be the optimal choice when taking implementation
characteristics into account.

Comparing The Rényi Divergences. We would like to highlight that the
two strategies assume di�erent �ooding and simulating noise distributions Dflood

and Dsim. Whereas in the �rst we assume the same and (quasi) uncut rounded
Gaussian distributions, we computed the parameters in the second case with a
di�erent and tail cut rounded Gaussian distributions. When �xing a maximal
decryption failure probability, one can choose the modulus q much smaller in the
latter case. However, the sharper we cut o� the rounded Gaussian distribution,
the more the Rényi divergences from Lemma 5 and one computed by our Python
program diverge from each other.

E.1 Proof of Lemma 14

Proof. As we use additive secret sharing, every party receives exactly one secret
key share ski, where sk =

∑n
i=1 ski.

Following the description of Kyber from App. E and the threshold function
from Figure 6, a partial decryption of TKyber is of the form d = (di)i∈[n], with

di = v · 1i − uT si + ei,

where 1i is a share of 1 (e.g. 1i = 1 if i = 1 and 0 otherwise) and ei ← Dflood,Rq
.

Without loss of generality, we say that Party 1 is honest and all other parties
are controlled by the adversary A. After receiving all n decryption shares, the
adversary can sum them up to obtain

n∑
i=1

di = rTe− eT1 s+ e2 + ⌊q/2⌉m+
∑
i

ei,

where (r, e1, e2) is the encryption randomness used for this query.
We can re-write

∑
i di = ⟨w, z⟩+ ⌊q/2⌉m+

∑
i ei, where w = (r, e1, e2)

T ←
CBD(2r+1)d

η and z = (e,−s, 1)T .
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After subtracting ⌊q/2⌉m, the adversary obtains d′ = ⟨w, z⟩+
∑n

i=1 ei. More-
over, the adversary knows the �ooding noise of the corrupted parties and can
further subtract it from d′, leading to d′′ = ⟨w, z⟩+ e1.

Interestingly, we observe that all elements appearing in the equation of d′′

are of small norm, thus no reduction modulo q is necessary. After applying the
coe�cient embedding, we can interpret d′′ as d samples of I-LWE as de�ned
in Section 2.3. Due to the concrete shape of Rq = Zq[X]/(Xd + 1) in Kyber,
the resulting public matrix W of the I-LWE instance is now the concatenation
of nega-cyclic matrices over Zq. Overall, after ℓ partial decryption queries, the
adversary has seen an instance of the I-LWE distribution of parameters R :=
(2r+1)d and M := ℓd with underlying secret z ∈ ZR. Recall that in TKyber, the
distribution of w is given by a centered binomial distribution of parameter η,
de�ning a η-subgaussian distribution with σw =

√
E[χ2

e] ≤
√

η2 = η. The
noise follows a rounded Gaussian distribution, is thus σflood-subgaussian. Thus,
Theorem 1 leads to an attacker with success probability 1− 1/2R− 2−ν if M =

Ω((2r+1)d+ν) and M = Ω
(

σ2
flood

η2 log2(2d(2r + 1))
)
. Here we use that the least

square method performs for W (with the nega-cyclic structure) as good as for
matrices where every entry is independent of all the others. That is the case, as
the nega-cyclic structure preserves the required properties to prove Theorem 1.
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