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Abstract. Existing threshold signature schemes come in two flavors: (i) fully private, where the
signature reveals nothing about the set of signers that generated the signature, and (ii) accountable,
where the signature completely identifies the set of signers. In this paper we propose a new type of
threshold signature, called TAPS, that is a hybrid of privacy and accountability. A TAPS signature
is fully private from the public’s point of view. However, an entity that has a secret tracing key
can trace a signature to the threshold of signers that generated it. A TAPS makes it possible for
an organization to keep its inner workings private, while ensuring that signers are accountable for
their actions. We construct a number of TAPS schemes. First, we present a generic construction
that builds a TAPS from any accountable threshold signature. This generic construction is not
efficient, and we next focus on efficient schemes based on standard assumptions. We build two
efficient TAPS schemes (in the random oracle model) based on the Schnorr signature scheme. We
conclude with a number of open problems relating to efficient TAPS.

1 Introduction

A threshold signature scheme [32] enables a group of n parties to sign a message only if t or more of the
parties participate in the signing process. There are two types of threshold signature schemes:

- A private threshold signature (PTS) scheme: A signature σ on a message m reveals nothing about
the threshold t, and reveals nothing about the quorum of t parties that generated the signature. The
same holds even if the adversary sees a sequence of signatures on messages of its choice. Examples
of PTS schemes include [59,36,28,41,16,60,48] and many others.

- An accountable threshold signature (ATS) scheme: A signature σ on a message m reveals the identity
of all t parties who participated in generating the signature (and hence also reveals t). Moreover, it
is not feasible for a quorum of t parties to frame another quorum. An ATS scheme is closely related
to the notion of an accountable subgroup multisignature (ASM) [53,47,10,18,16,6,56]. However, we
prefer the term ATS to contrast the two flavors of threshold signatures: ATS vs. PTS. An ATS has
also been described as Traceable Secret Sharing (TSS) [45].

We will define these concepts more precisely in the next section.

A private threshold signature (PTS) scheme is used when there is a need to hide the inner-workings
of an organization. For example, an organization that runs a web server may choose to split the server’s
secret TLS key among n machines so that at least t are needed to generate a signature and complete
a TLS handshake. By using a PTS, the organization can hide the threshold t from the public, to avoid
leaking the number of machines that an attacker needs to compromise in order to forge a signature.
Similarly, a signature should reveal nothing about the set of t machines that participated in generating
the signature so that nothing is revealed about which machines are currently online.

In contrast, an accountable threshold signature (ATS) scheme is often used in financial applications
where there is a need for accountability. For example, if three of five bank executives are needed to
authorize a banking transfer, then one wants full accountability in case a fraudulent transfer is approved.
When using an ATS scheme, the signature on a fraudulent transaction will identify the three bank
executives who authorized it.

The trivial t-out-of-n ATS scheme is one where every signing party locally generates a public-private
key pair. The complete public key is defined as the concatenation of all n local public keys. When t parties
need to sign a message m, they each sign the message using their local secret key, and the final signature
is the concatenation of all t signatures. The verifier accepts such an ATS signature if it contains t valid
signatures. This trivial ATS is used widely in practice, for example in Bitcoin multisig transactions [1].



While the scheme has many benefits, its downside is that signature size and verification time are at least
linear in tλ, where λ is the security parameter. Several ATS constructions achieve much smaller signature
size and verification time [53,10,18,56].

In summary, existing threshold signatures offer either complete privacy or complete accountability
for the signing quorum, but cannot do both.

A new type of threshold signature. In this work we introduce a new type of threshold signature
scheme, called TAPS, that provides full accountability while maintaining privacy for the signing quorum.

A Threshold, Accountable, and Private Signature scheme, or simply a TAPS, works as follows:
(i) a key generation procedure takes n and t as input, and generates the public key pk and the n private
keys sk1, . . . , skn for the signers, (ii) a signing protocol among some t signers is used to generate a
signature σ on a message m, and (iii) a signature verification algorithm takes as input pk , m, and σ and
outputs accept or reject. Signatures generated by the signing protocol reveal nothing to the public about
the threshold t or the quorum that generated the signature. In addition, the key generation procedure
outputs a tracing key sk t. Anyone in possession of sk t can reliably trace a signature to the quorum
that generated it. For security we require that a set of signers should be unable to frame some other set
of signers by fooling the tracing procedure. We define the precise syntax for a TAPS scheme, and the
security requirements, in Section 3.

If the tracing key sk t is made public to all, then a TAPS is no different than an ATS scheme. Similarly,
if sk t is destroyed, then a TAPS is no different than a PTS scheme. However, if sk t is known to a trusted
tracing party (or secret shared among several parties), then the tracing party can provide accountability
in case of a fraudulent transaction, while keeping all other information about the inner-workings of the
organization private.

Applications. Consider an organization that holds digital assets that are managed on a public ledger
(e.g., a blockchain). A digital signature must be recorded on the ledger in order to transfer an asset. The
organization can protect the assets by requiring t-out-of-n trustees to sign a transfer request. It can use
an ATS scheme, but then the threshold t and the set of signers will be public for the world to see. Or
it can use a PTS scheme to secret share a single signing key among the n trustees, but then there is no
accountability for the trustees.

A TAPS provides a much better solution: the organization can hold on to the tracing key sk t so
that the threshold and the set of signers remain private, but the trustees are accountable in case of a
fraudulent transfer. The value of n and t are typically relatively small, say less than twenty.

The same applies in the web server setting. The web server’s TLS secret signing key could be shared
among t-out-of-n machines so that t machines are needed to complete a TLS handshake. The tracing
key would be kept in offline storage. If at some point it is discovered that the web server’s secret key has
been compromised, and is being used by a rogue web server, then the tracing key could be applied to
the rogue server’s signatures to identify the set of machines that were compromised by the attacker.

Constructing TAPS. We provide a number of constructions for TAPS schemes. In Section 4 we present
a generic construction that shows how to construct a TAPS from any ATS scheme. The construction is
quite inefficient since it makes use of general zero knowledge. While there are several important details
that are needed to obtain a secure construction, the high level approach for generating a TAPS signature
is as follows: (i) the signing parties generate an ATS signature σ on a message m, (ii) they encrypt σ
using a public key encryption scheme to obtain a ciphertext ct , and (iii) the final TAPS signature is
σ′ = (ct , π), where π is a non-interactive zero knowledge proof that the decryption of ct is a valid ATS
signature on m. To verify a signature, one verifies that π is valid. The tracing key sk t is the decryption
key that lets one decrypt ct . Then, using sk t one can decrypt ct , and run the ATS tracing algorithm on
the resulting ATS signature σ. The description here is only meant as an outline, and is not secure as is.
The complete construction is provided in Section 4.

Next, we turn to constructing a practical TAPS scheme. In Section 5 we build two efficient TAPS
schemes from Schnorr signatures [58]. To do so, we modify the generic construction so that the statement
that needs to be proved in zero knowledge is as simple as possible. We then use either a Sigma proto-
col [29] or Bulletproofs [22,24] to prove the statement. The resulting public key and signature sizes are
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Public Key Size Signature Size Verify Time
(group ops)

Trace Time
(group ops)G Zq G Zq

Sigma 2n+ 4 0 n+ 4 2n+ 5 O(n) O(n)

Bulletproofs n+ n
e

+O(1) 0 n
e

+O(logn) 4 O(n) O(n · 2e/2)

Table 1. An n-party TAPS based on the Schnorr signature scheme in a group G of order q. The construction
uses either a Sigma protocol or Bulletproofs. The Bulletproofs TAPS signature is shorter by a factor of about e,
but tracing time is higher. Taking e := 40 is a reasonable choice.

summarized in Table 1. For small n, both schemes have reasonable performance. As n grows, signatures
produced by the Bulletproofs scheme are about 40 times shorter.

We note that due to the traceability and privacy requirements, a TAPS signature must encode the
signing quorum while hiding the threshold t, and therefore must be at least n bits long. In Section 6 we
discuss relaxing the full tracing requirement with a weaker tracing property we call quorum confirmation.
Here the tracing algorithm takes as input sk t and a suspect quorum set C ⊆ [n], and confirms if C is
indeed the quorum set that generated a given signature. If this weaker confirmation property is sufficient,
then our Bulletproofs approach can lead to a logarithmic size TAPS signature. Note that when n is small,
confirmation can lead to full tracing by testing all possible quorum sets until one is confirmed.

A different perspective. A TAPS system can be described as a group signature scheme where t signers
are needed to sign on behalf of the group. Recall that in a group signature scheme [27] a group manager
provisions every member in the group with a secret signing key. Any group member can sign on behalf
of the group without revealing the identity of the signer. In addition, there is a tracing key that lets an
entity that holds that key trace a given group signature to the single member that issued that signature.
A TAPS can be viewed as a generalization of this mechanism. In a TAPS scheme, at least t members of
the group are needed to generate a group signature. The signature reveals nothing to the public about
the identity of the signers or t. However, the tracing key enables one to trace the signature back to some t
members that participated in generating the signature.

In the literature, the term threshold group signature refers to a scheme where the role of the group
manager is distributed among a set of authorities with a threshold access structure [15,26]. A TAPS
is quite different. Here the threshold refers to the number of parties needed to generate a signature on
behalf of the group. See also our discussion of related work below.

1.1 Additional related work

Ring Signatures. Ring signatures [57,55,12,12] allow a signer to sign a message on behalf of an ad-hoc
ring of signers. The signature reveals nothing about which ring member generated the signature. As
such, anyone can gather a set of public keys, and produce a ring signature over some message without
interacting with the owners of those keys. Our notion of TAPS signatures requires a threshold of t signers
to generate a signature, where t is hidden from the public. In the basic group or ring setting the threshold
t is not secret, it is always set to t = 1.

While accountable (traceable) ring signatures with a tracing authority have been defined in the litera-
ture [63,38,37,21], these schemes are limited to a single signer, as opposed to a threshold of signers within
the ring. Dodis et al. [33] defined a multi-party ring signature that builds upon one-way cryptographic
accumulators and supports an identity escrow extension. However, the scheme does not enforce a thresh-
old number of signers to anyone other than the designated tracing authority (by recovering the identities
of the signers). In contrast, TAPS requires that anyone be able to verify that a threshold number of
signers participated in generating a signature.

Threshold ring signatures, called thring signatures, were studied in a number of works [23,50,61,54,46].
Here the ring signature represents some t-out-of-n set of signers. However, these schemes provide no
tracing, and therefore do not fulfill the notions of accountability required by TAPS. Similarly, linkable
threshold ring signatures [5,34] only require that any two ring signatures produced by the same signers
can be linked, but not traced.
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A ring signature by Bootle et al. [21] combines Camenisch’s group signature scheme [25] with a
one-out-of-many proof of knowledge. This construction uses similar techniques as our Schnorr TAPS
construction, but supports only a single signer, rather than a threshold, so provides quite a different
functionality.

Group Signatures. First introduced by Chaum and van Heyst [27], group signatures [17,39,49,51,31,20,13]
enable a group member to sign a message such that the verifier can determine that a member generated
the signature, but not which member. If needed, a tracing authority can trace a signature to its signer.
A group manager is trusted to manage the group’s membership. The security notions for a group sig-
natures were defined by Bellare et al. [9], but focus on a single signer who is signing on behalf of the
group. Traditionally threshold group signatures refers to the ability to distribute the roles of the group
manager [15,26], as opposed to requiring a threshold number of participants to issue a signature.

2 Preliminaries

Notation: We use λ ∈ Z to denote the security parameter in unary. We use x ← y to denote the
assignment of the value of y to x. We write x ←$ S to denote sampling an element from the set S
independently and uniformly at random. For a randomized algorithm A we write y ←$ A(x) to denote
the random variable that is the output of A(x). We use [n] for the set {1, . . . , n}. Throughout the
paper G is a cyclic group of prime order q, and Zq is the ring Z/qZ. We let g be a generator of G. We
denote vectors in bold font: u ∈ Zmq is a vector of length m whose elements are each in Zq. For vectors
g = (g1, . . . , gn) ∈ Gn and a = (a1, . . . , an) ∈ Znq we let ga denote the product

∏n
i=1 gi

ai ∈ G.

Our constructions make use of a few standard primitives. We define these briefly here.

Definition 1. A public key encryption scheme PKE for a message spaceM = {Mλ}λ∈N is a triple
of PPT algorithms (KeyGen,Encrypt,Decrypt) invoked as

(pk , sk)←$ KeyGen(1λ), ct ←$ Encrypt(pk ,m), m← Decrypt(sk , ct).

The only security requirement is that PKE be semantically secure, namely, for every PPT adversary
A the following function is negligible

Advindcpa
A,PKE(λ) :=

∣∣∣Pr
[
Aenc(0,·,·)(pk) = 1

]
− Pr

[
Aenc(1,·,·)(pk) = 1

]∣∣∣,
where (pk , sk) ←$ KeyGen(1λ), and for b ∈ {0, 1} and m0,m1 ∈ Mλ, the oracle enc(b,m0,m1) returns
ct ←$ Encrypt(pk ,mb).

When Mλ ⊆ {0, 1}≤`λ , for some `λ, our definition of semantic security requires that the encryption
scheme be length hiding : an adversary cannot distinguish the encryption of m0 ∈ Mλ from m1 ∈ Mλ

even if m0 and m1 are different lengths. This can be achieved by having the encryption algorithm pad the
plaintext to a fixed maximum length using an injective pad (e.g., 100 . . . 00), and having the decryption
algorithm remove the pad.

Definition 2. Let R := {Rλ}λ∈N. A commitment scheme COM is a pair of PPT algorithms (Commit,Verify)
invoked with r ∈ Rλ as

com← Commit(x, r) and Verify(x, r, com) ∈ {0, 1}.

The scheme is secure if it is unconditionally hiding and computationally binding. In particular, for
all x, x′ the distributions {COM(x, r)} and {COM(x′, r′)} have negligible statistical distance ε(λ) when
r, r′ ←$ Rλ. In addition, for every PPT adversary A the following function is negligible

Advbind
A,COM(λ) := Pr

x 6= x′, r, r′ ∈ Rλ,
Verify(x, r, com) = 1

Verify(x′, r′, com) = 1

: (com, x, r, x′, r′)←$ A(λ)

 .
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Definition 3. A signature scheme SIG is a triple of PPT algorithms (KeyGen,Sign,Verify) invoked
as

(pk , sk)←$ KeyGen(1λ), σ ←$ Sign(sk ,m), Verify(pk ,m, σ) ∈ {0, 1}.

The scheme is strongly unforgeable if the following function is negligible

Adveufcma
A,SIG(λ) := Pr

Verify(pk ,m, σ) = 1

(m,σ) 6∈
{

(mi, σi)
}q
i=1

:
(pk , sk)←$ KeyGen(1λ)

(m,σ)←$ Asign(·)(pk)


where sign(mi) returns σi ←$ Sign(sk ,mi) for i = 1, . . . , q.

Definition 4. A proof system for a relation R :=
{
Rλ ⊆ Xλ × Wλ

}
λ∈N is a pair of interactive

machines (P,V), where for x ∈ Xλ and w ∈ Wλ, the prover is invoked as P(x,w) and the verifier is
invoked as V(x). We let

〈
P(x,w);V(x)

〉
be a random variable that is the verifier’s output at the end

of the interaction. We let trans
(
P(x,w);V(x)

)
denote a random variable that is the transcript of the

interaction.

- The proof system (P,V) has perfect completeness if for all (x,w) ∈ Rλ

Pr
[〈
P(x,w);V(x)

〉
= 1
]

= 1.

- The proof system (P,V) is honest verifier zero knowledge, or HVZK, if there is a PPT Sim such
that for all (x,w) ∈ Rλ the two distributions{

Sim(x)
}

and
{
trans

(
P(x,w);V(x)

)}
are computational indistinguishable. In particular, let Advhvzk

A,(P,V)(λ) be the distinguishing advantage
for an adversary A. This function is negligible for all PPT adversaries A.

- The proof system (P,V) is an argument of knowledge if it is perfectly complete, and for every
PPT P = (P1,P2) there is an expected polynomial time extractor Ext so that the functions

ε1(λ) := Pr
[〈
P2(state);V(x)

〉
= 1 : (x, state)←$ P1(1λ)

]
ε2(λ) := Pr

[
(x,w) ∈ Rλ : (x, state)←$ P1(1λ), w ←$ ExtP2(state)(x)

]
satisfy

ε2(λ) ≥
(
ε1(λ)− κ(λ)

)
/q(λ), (1)

for some negligible function κ called the knowledge error, and a polynomial function q called the
extraction tightness. Here state is state data output by P1, and ExtP2(state) denotes that Ext has
oracle access to P2(state) which is modeled as an “interactive function” [8]. We refer to P1 as an
instance generator.

- We say that a proof system (P,V) is non-interactive if the only interaction is a single message π
from the prover P to the verifier V.

- We say that the proof system (P,V) is a non-interactive HVZK argument of knowledge in the random
oracle model if (PH ,VH) is a proof system that is non-interactive, HVZK, and an argument of
knowledge, where H is a random oracle.

A public coin proof system can be made non-interactive using the Fiat-Shamir transform [35]. For some
proof systems, this transformation retains the argument of knowledge and HVZK properties in the
random oracle model [4]. Implementing the Fiat-Shamir transform in practice is error-prone and it is
recommended to use an established implementation to do it (e.g., [30]).

3 Threshold, Accountable, and Private Signatures

In this section, we formalize the notion of threshold, accountable, and private signatures (TAPS). We
use n for the total number of signers, and t for the threshold number of required signers. We let M
denote the message space.
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The Combiner. When t parties wish to generate a signature on some message m, they send their
signature shares to a Combiner who uses the t shares to generate a complete signature. Notice that the
Combiner will learn the threshold t, which is secret information in our settings. Since the Combiner must
be trusted with this private information, we also allow the Combiner to hold a secret key denoted sk c.
Secrecy of the Combiner’s key is only needed for privacy of the signing quorum. It is not needed for
security: if sk c becomes public, an adversary cannot use it to defeat the unforgeability or accountability
properties of the scheme. Looking ahead, we will model this by giving sk c to the adversary in the
unforgeability and accountability security games, but we keep this key hidden in the privacy game.

The Tracer. A tracing entity is trusted to hold a secret tracing key sk t that allows one to trace a valid
signature to the quorum of signers who generated it. Without knowledge of sk t, recovering the quorum
should be difficult.

With these parties in mind, let us define the syntax for a TAPS.

Definition 5. A private and accountable threshold signature scheme, or TAPS, is a tuple of
five polynomial time algorithms

S = (KeyGen,Sign,Combine,Verify,Trace)

where:

- KeyGen(1λ, n, t) →
(
pk , (sk1, . . . , skn), sk c, sk t

)
: a probabilistic algorithm that takes as input a se-

curity parameter λ, the number of parties n and threshold t. It outputs a public key pk, signer keys
(sk1, . . . , skn), a combiner secret key sk c, and a tracing secret key sk t.

- Sign(sk i,m,C) → δi: a probabilistic algorithm performed by one signer who uses its secret key sk i
to generate a signature “share” δi on a message m in M. In some constructions it is convenient to
allow the signer to know the identity of the members of the signing quorum C ⊆ [n]. We provide it
as an optional input to Sign.

- Combine(sk c,m,C, {δi}i∈C)→ σ: a probabilistic algorithm that takes as input the Combiner’s secret
key, a message m, a description of the signing quorum C ⊆ [n] where |C| = t, and t valid signature
shares by members of C. If the input is valid, the algorithm outputs a TAPS signature σ.

- Verify(pk ,m, σ)→ 0/1: a deterministic algorithm that verifies the signature σ on a message m with
respect to the public key pk.

- Trace(sk t,m, σ) → C/fail: a deterministic algorithm that takes as input the tracer’s secret key sk t,
along with a message and a signature. The algorithm outputs a set C ⊆ [n], where |C| ≥ t, or a
special message fail. If the algorithm outputs a set C, then the set is intended to be a set of signers
whose keys must have been used to generate σ. We refer to the entity performing Trace as the Tracer.

- For correctness we require that for all allowable 1 ≤ t ≤ n, for all t-size sets C ⊆ [n], all m ∈ M,
and for

(
pk , (sk1, . . . , skn), sk c, sk t

)
←$ KeyGen(1λ, n, t) the following two conditions hold:

Pr
[
Verify

(
pk ,m,Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C)

)
= 1
]

= 1

Pr
[
Trace

(
sk t,m,Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C)

)
= C

]
= 1. (2)

Remark 1 (signing algorithm vs. signing protocol). In this paper we treat Sign() as an algorithm that
is run locally by each of the signing parties. However, in some schemes, Sign is an interactive protocol
between each signing party and the Combiner. Either way, the end result is that the Combiner obtains
a list of signature shares {δi}i∈C , one share from each signer in C. The distinction between a local non-
interactive signing algorithm vs. an interactive signing protocol is not relevant to the constructions in
this paper.

Remark 2 (distributed key generation). Our syntax assumes a centralized setup algorithm KeyGen to
generate the signing key shares. However, all our schemes can be adapted to use a decentralized key
generation protocol among the signers, the Combiner, and the Tracer. At the end of the protocol every
signer knows its secret key, the Combiner knows sk c, the Tracer knows sk t, and pk is public. No other
information is known to any party.
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Remark 3 (Why use a Tracer?). The Combiner knows which parties contributed signature shares to
create a particular signature. A badly designed tracing system could operate as follows: whenever the
Combiner constructs a signature, it records the quorum that was used to generate that signature in
its database. Later, when a signature needs to be traced, the Combiner could look up the signature in
its database and reveal the quorum that generated that signature. If the signature scheme is strongly
unforgeable, then one could hope that the only valid signatures in existence are ones generated by an
honest Combiner, so that every valid signature can be easily traced with the help of the Combiner. The
problem, of course, is that a malicious quorum of signers could collude with the Combiner to generate a
valid signature that cannot be traced because the data is not recorded in the database. Or a malicious
quorum might delete the relevant entry from the Combiner’s database and prevent tracing.

Instead, we require that every valid signature can be traced to the quorum that generated it using
the secret tracing key sk t. The tracing key sk t can be kept in a “safety deposit box” and only accessed
when tracing is required. The Combiner in a TAPS is stateless.

In the next two subsections we define security, privacy, and accountability for a TAPS. The scheme
has to satisfy the standard notion of existential unforgeability under a chosen messages attack (EUF-
CMA) [44]. In addition, the scheme has to be private and accountable. It is convenient to define unforge-
ability and accountability in a single game. We define privacy as an additional requirement.

3.1 Unforgeability and Accountability

Like any signature scheme, a TAPS must satisfy the standard notion of unforgeability against a chosen
message attack (EUF-CMA). Further, a TAPS scheme should be accountable. Informally, this means
that a tracer that has the tracing key sk t should output the correct quorum set C ⊆ [n] of signers for a
given message-signature pair.

We refer to these simultaneous notions of unforgeability and accountability as Existential Unforge-
ability under a Chosen Message Attack with Traceability. Informally, this notion captures the following
unforgeability and accountability properties, subject to restrictions of the chosen message attack:

- Unforgeability: an adversary that controls fewer than t participants cannot construct a valid message-
signature pair; and

- Accountability: an adversary that controls t or more corrupt participants cannot construct a valid
message-signature pair that traces to at least one honest participant.

We formalize this in the attack game in Figure 1. Let Advforg
A,S(λ) be the probability that adversary A

wins the game of Figure 1 against the TAPS scheme S.

Definition 6 (accountable TAPS). A TAPS scheme S is unforgeable and accountable if for all

probabilistic polynomial time adversaries A = (A0,A1), the function Advforg
A,S(λ) is a negligible function

of λ.

Our game in Figure 1 captures both unforgeability (EUF-CMA) for a threshold signature scheme as
well as accountability. During the game the adversary obtains the secret keys of parties in C and obtains
signature shares for m′ from parties in C ′. The adversary should be unable to produce a valid signature σ′

that causes the tracing algorithm to fail, or causes the tracing algorithm to blame a signing party outside
of C ∪C ′. This captures the accountability property. To see why this implies unforgeability, suppose the
adversary A obtains fewer than threshold t signature shares for m′, meaning that |C ∪ C ′| < t. Yet,
the adversary is able to produce a valid signature σ′ that causes the tracing algorithm to blame some
quorum Ct. By definition of Trace we know that |Ct| ≥ t and therefore Ct cannot be contained in C∪C ′.
Therefore the adversary succeeds in blaming an honest party, and consequently A wins the game. Hence,
if the adversary cannot win the game in Figure 1, the scheme must be unforgeable.

Remark 4. Definition 6 captures unforgeability, but not strong unforgeability, where the adversary should
be unable to generate a new signature on a previously signed message. However, our definition of privacy
(Definition 7) in combination with Definition 6, imply strong unforgeability.
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Unforgeability and accountability attack game:

(n, t, C, state)←$ A0(1λ); where t ∈ [n] and C ⊆ [n] // A0 outputs n, t and C (no size bound on C)

(pk , {sk1, . . . , skn}, skc, sk t)←$ KeyGen(1λ, n, t) // generate keys using n and t

(m′, σ′)←$ AO(·,·)
1 (pk , {sk i}i∈C , skc, sk t, state) // A1 receives secret keys for all of C,

// as well as the tracing and combiner’s secret keys

where O(Cj ,mj) returns the sig. shares {Sign(sk i,mj , Cj)}i∈Cj // A1 can request signature shares for mj

winning condition:
let (C1,m1), (C2,m2), . . . be A1’s queries to O
let C′ ←

⋃
Cj , union over all queries to O(Cj ,m

′), // collect all signers that signed m′

if no such queries, set C′ ← ∅ // if no O-queries for m′, then C′ = ∅
let Ct ← Trace(sk t,m

′, σ′) // trace the forgery (m′, σ′)

output 1 if Verify(pk ,m′, σ′) = 1 and either // A wins if someone outside of (C ∪ C′) is blamed,

Ct 6⊆ (C ∪ C′) or Ct = fail // or if tracing fails

Fig. 1. Game defining the advantage of an adversary A = (A0,A1) to produce a valid forgery against a TAPS
scheme S = (KeyGen,Sign,Combine,Verify,Trace) with respect to a security parameter λ.

3.2 Privacy

Next, we define privacy for a TAPS. Privacy for a threshold signature scheme is often defined by requiring
that a threshold signature on a message m be indistinguishable from a signature on m generated by some
standard (non-threshold) signature scheme [42]. This property ensures that a threshold signature reveals
nothing about the threshold and the quorum that produced the signature.

A TAPS may not be derived from a non-threshold signature scheme, so this definitional approach
does not work well in our setting. Instead, we define privacy as an intrinsic property of the TAPS. Our
definition of privacy applies equally well to a private threshold signature (PTS) scheme.

We impose two privacy requirements:

- Privacy against the public: A party who only has pk and sees a sequence of message-signature
pairs, learns nothing about the threshold t or the set of signers that contributed to the creation of
those signatures.

- Privacy against signers: The set of all signers working together, who also have pk (but not sk c

or sk t), and see a sequence of message-signature pairs, cannot determine which signers contributed
to the creation of those signatures. Note that t is not hidden in this case since the set of all signers
knows the threshold.

These properties are captured by the games in Figure 2 and Figure 3 respectively.
Let W be the event that the game in Figure 2 outputs 1. Similarly, let W ′ be the event that the game

in Figure 3 outputs 1. We define the two advantage functions for an adversary A against the scheme S,
as a function of the security parameter λ:

Advpriv1
A,S (λ) :=

∣∣2 Pr[W ]− 1
∣∣ and Advpriv2

A,S (λ) :=
∣∣2 Pr[W ′]− 1

∣∣.
Definition 7 (Privacy for a TAPS scheme). A TAPS scheme is private if for all probabilistic poly-

nomial time public adversaries A = (A0,A1), the functions Advpriv1
A,S (λ) and Advpriv2

A,S (λ) are negligible
functions of λ.

Let us examine the definition in more detail. Privacy against the public for a TAPS is defined using
the game in Figure 2. The adversary chooses two thresholds t0 and t1 in [n] and is given a public key pk
for one of these thresholds. The adversary then issues a sequence of signature queries to a signing oracle
O1, where each signature query includes a message m and two quorums C0 and C1. The adversary gets
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The game defining privacy against the public:

b←$ {0, 1}
(n, t0, t1, state)←$ A0(1λ) where t0, t1 ∈ [n] // A0 outputs n and two thresholds t0, t1

(pk , {sk1, . . . , skn}, skc, sk t)←$ KeyGen(1λ, n, tb) // generate keys using n and tb

b′ ← AO1(·,·,·), O2(·,·)
1 (pk , state)

output (b = b′)

where O1(C0, C1,m) returns σ ←$ Combine(skc,m,Cb, {Sign(sk i,m,Cb)}i∈Cb) // sign using Cb

for C0, C1 ⊆ [n] with |C0| = t0 and |C1| = t1,

and where O2(m,σ) returns Trace(sk t,m, σ). // trace (m,σ)

Restriction: if σ is obtained from a query O1(·, ·,m), then O2 is never queried at (m,σ).

Fig. 2. The game used to define privacy against the public for an adversary A = (A0,A1) against a TAPS scheme
S = (KeyGen,Sign,Combine,Verify,Trace) with respect to a security parameter λ.

The game defining privacy against signers:

b←$ {0, 1}
(n, t, state)←$ A0(1λ) where t ∈ [n] // A0 outputs n and t

(pk , {sk1, . . . , skn}, skc, sk t)←$ KeyGen(1λ, n, t) // generate keys using n and t

b′ ← AO1(·,·,·), O2(·,·)
1 (pk , {sk1, . . . , skn}, state) // A1 issues signature and trace queries

output (b = b′)

where O1(C0, C1,m) returns σ ←$ Combine(skc,m,Cb, {Sign(sk i,m,Cb)}i∈Cb) // sign using Cb

for C0, C1 ⊆ [n] with |C0| = |C1| = t,

and where O2(m,σ) returns Trace(sk t,m, σ). // trace (m,σ)

Restriction: if σ is obtained from a query O1(·, ·,m), then O2 is never queried at (m,σ).

Fig. 3. The game used to define privacy against signers for an adversary A = (A0,A1) against a TAPS scheme
S = (KeyGen,Sign,Combine,Verify,Trace) with respect to a security parameter λ. Here, A1 is granted knowledge
of all signing keys sk1, . . . , skn.

back a signature generated using either the left or the right quorum. We also give the adversary access
to a restricted tracing oracle O2 that will trace a valid message-signature pair. The adversary should be
unable to determine whether the sequence of signatures it saw were with respect to the left or the right
sequence of quorums.

Our definition of privacy ensures that the threshold t is hidden, but we do not try to hide the number
of signers n because there is no need to: one can covertly inflate n to some upper bound by generating
superfluous signing keys.

Privacy against signers is defined using the game in Figure 3. This game is the same as in Figure 2,
however here the adversary chooses the threshold t, and is given all the signing keys. Again, the adversary
should be unable to determine if a signing oracle O1 that takes two quorums C0 and C1, responds using
the left or the right quorum. As before, the adversary has access to a restricted tracing oracle O2. Note
that we do not aim to prevent signers from recognizing a signature that was generated with their help,
as discussed in Section 6.

Remark 5 (Randomized signing). The privacy games in Figures 2 and 3 require that signature generation
be a randomized process: calling Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C) with the same arguments m
and C twice must result in different signatures, with high probability. Otherwise, the adversary could
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trivially win these games: it would query O1 twice, once as O1(C0, C1,m) and again as O1(C0, C
′
1,m),

for suitable quorums C0, C1, C
′
1 where C1 6= C ′1. It would then check if the resulting signatures are the

same. If so, it learns that b = 0, and if not it learns that b = 1. For this reason, if a scheme satisfies
Definition 7, then the output of Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C) must be sampled from some
high entropy distribution.

3.3 Accountable Threshold Schemes (ATS)

For completeness, we note that the standard notions of private threshold signatures (PTS) and account-
able threshold signatures (ATS) are special cases of a TAPS. We review these concepts in the next two
definitions.
To obtain an ATS we impose two syntactic requirements on a TAPS scheme:

- In an ATS, the tracing key is publicly known, meaning that anyone can trace a valid message-
signature pair to the quorum that participated in generating it. We capture this by requiring that
the TAPS tracing key sk t is equal to the public key pk .

- In an ATS, the Combiner is not a trusted party and cannot hold secrets. We capture this by requiring
that the Combiner’s secret key sk c is also equal to the public key pk .

For clarity, whenever we make use of an ATS, we will drop sk t and sk c as explicit outputs of the TAPS
key generation algorithm.

Definition 8. An accountable threshold signature scheme, or an ATS, is a special case of a
TAPS, where the tracing key sk t and the Combiner key sk c are both equal to the public key pk. The
scheme is said to be secure if it is accountable and unforgeable as in Definition 6.

Notice that there is no privacy requirement in Definition 8.

Remark 6. As mentioned in the introduction, an ATS scheme is closely related to the concept of an
accountable multi-signature scheme (ASM) [53,10,18,16,6,56]. One can construct an ATS from an ASM
by including a threshold t in the ASM public key. The ASM verification algorithm is modified to ensure
that at least t signers represented in pk signed the message.

Next, we define a private threshold signature scheme, or a PTS. In the literature, a private threshold
signature scheme is simply called a threshold signature scheme. However, ATS and PTS are equally
important concepts, and we therefore add an explicit adjective to clarify which threshold signature
concept we are using.

Definition 9. A private threshold signature scheme, or a PTS, is a special case of a TAPS, where
the Trace algorithm always returns fail, and the correctness requirement for a TAPS in Definition 5 is
modified to remove the requirement on Trace in Eq. (2). The scheme is said to be secure if it is private
as in Definition 7, and unforgeable as in Definition 6 with one modification: the adversary wins if the
forgery is valid and |C ∪ C ′| < t.

The modification of Definition 6 reduces the accountability and unforgeability game in Definition 6 to
a pure unforgeability game under a chosen message attack, ignoring accountability. Interestingly, this
game captures a security notion related to dual-parameter threshold security [59]. If one puts a further
bound requiring |C| < t′ < t in Figure 1, for some parameter t′, then one obtains the usual definition
of dual-parameter threshold security from [59]. Other notions of unforgeability for threshold signatures
were considered in [11].

4 A Generic Construction via an Encrypted ATS

We next turn to constructing a TAPS scheme. In this section we present a generic construction from a
secure ATS scheme. The generic TAPS construction makes use of five building blocks:

- a secure accountable threshold signature (ATS) scheme as in Definition 8, namely
AT S = (KeyGen,Sign,Combine,Verify,Trace);
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- a semantically secure public-key encryption scheme PKE = (KeyGen,Encrypt,Decrypt) as in Defi-
nition 1 whose message space is the space of signatures output by the ATS signing algorithm;

- a binding and hiding commitment scheme COM = (Commit,Verify), where algorithm Commit(m, r)
outputs a commitment to a message m using a random nonce r ←$ R, as in Definition 2;

- a strongly unforgeable signature scheme SIG = (KeyGen,Sign,Verify) as in Definition 3;

- a non-interactive zero knowledge argument of knowledge (P, V ), possibly constructed in the random
oracle model using the Fiat-Shamir transform.

Recall that our definition of semantic security in Section 2 ensures that the encryption scheme PKE is
length-hiding: the encryption of messages m0 and m1 of different lengths are indistinguishable.

The generic TAPS scheme. The generic TAPS scheme S is shown in Figure 4. In our construction, a
TAPS signature on a message m is a triple σ = (ct , π, tg), where (i) ct is a public key encryption of an
ATS signature σm on m, encrypted using the tracing public key pk t, (ii) π is a zero-knowledge proof that
the decryption of ct is a valid ATS signature on m, and (iii) tg is the Combiner’s signature on (m, ct , π).
The reason for the Combiner’s signature is explained in Remark 7.

Recall that an ATS public key can reveal the threshold t in the clear, which would violate the TAPS
privacy requirements. As such, the TAPS public key cannot include the ATS public key in the clear.
Instead, the TAPS public key only contains a hiding commitment to the ATS public key.

Correctness. The scheme is correct if the underlying ATS scheme, commitment scheme, encryption
scheme, signature scheme, and proof system are correct.

Efficiency. When using a succinct commitment scheme, the public key is quite short; its length depends
only on the security parameter. When using a zk-SNARK [14] for the proof system, the signature overhead
over the underlying ATS signature is quite short; its length depends only on the security parameter.
Moreover, signature verification time is dominated by the SNARK proof verification, which is at most
logarithmic in the total number of signing parties n.

However, the Combiner’s work in this scheme is substantial because it needs to generate a zk-SNARK
proof for a fairly complex statement. In addition, zk-SNARK proof systems rely on strong complexity
assumptions for security [43]. To address these issues, we construct in the next section more efficient
TAPS schemes whose security relies on DDH in the random oracle model, a much simpler assumption.

Security, privacy, and accountability. We next turn to proving that the generic scheme is secure, private,
and accountable.

Theorem 1. The generic TAPS scheme S in Figure 4 is unforgeable, accountable, and private, as-
suming that the underlying accountable threshold scheme AT S is secure, the encryption scheme PKE is
semantically secure, the non-interactive proof system (P, V ) is an argument of knowledge and HVZK, the
commitment scheme COM is hiding and binding, and the signature scheme SIG is strongly unforgeable.

We provide concrete security bounds in the lemmas below. First, let us explain the need for the Com-
biner’s signature in Step 4 of S.Combine.

Remark 7. Observe that the privacy games in Figures 2 and 3 give the adversary a tracing oracle for
any message-signature pair of its choice. In the context of our construction this enables the adversary
to mount a chosen ciphertext attack on the encryption scheme PKE . Yet, Theorem 1 only requires that
PKE be semantically secure, not chosen ciphertext secure. The need for a weak security requirement on
PKE will become important in the next section where we construct more efficient TAPS schemes. To
secure against the chosen ciphertext attack, we rely on the Combiner’s signature included in every TAPS
signature. It ensures that the adversary cannot call the tracing oracle with anything other than a TAPS
signature output by the Combiner.

We now prove Theorem 1. The proof is captured in the following three lemmas.
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- S.KeyGen(1λ, n, t):

1:
(
pk ′, (sk1, . . . , skn)

)
←$ AT S.KeyGen(1λ, n, t)

2: rpk ←$ Rλ and compk ← COM.Commit(pk ′, rpk )

3: (pk t, sk
′
t)←$ PKE .KeyGen(1λ)

4: (pkcs, skcs)←$ SIG.KeyGen(1λ) // Combiner’s signing key

5: sk t ← (pk ′, sk ′t, pkcs) // the secret tracing key

6: skc ← (pk ′, pk t, skcs, t, compk , rpk ) // Combiner’s secret key

7: pk ← (compk , pk t, pkcs)

8: output
(
pk , (sk1, . . . , skn), skc, sk t)

)
- S.Sign(sk i,m,C)→ δi: output δi ←$ AT S.Sign(sk i,m,C).

Here C ⊆ [n] is a set of size t of participating signers. Recall that in some schemes AT S.Sign is
an algorithm run by the signing parties, while in other schemes AT S.Sign is an interactive protocol
between the Combiner and the signing parties. Either way, the end result is that the Combiner obtains
signature shares {δi}i∈C .

- S.Combine(skc,m,C, {δi}i∈C)→ σ: with skc = (pk ′, pk t, skcs, t, compk , rpk ), the Combiner does

1: σm ←$ AT S.Combine(pk ′,m,C, {δi}i∈C), if fail then output fail and stop

2: ct ← PKE .Encrypt(pk t, σm; r), where r is a fresh nonce

3: use the prover P to generate a proof π for the relation:

R
(

(compk , pk t,m, ct) ; (σm, r, rpk , pk
′)
)

= true iff
ct = PKE .Encrypt(pk t, σm; r),

AT S.Verify(pk ′,m, σm) = 1,

COM.Verify(pk ′, rpk , compk ) = 1


(3)

4: tg←$ SIG.Sign
(
skcs, (m, ct , π)

)
// sign with Combiner’s signing key

5: output the TAPS signature σ ← (ct , π, tg)

- S.Verify
(
pk = (compk , pk t, pkcs), m, σ = (ct , π, tg)

)
→ {0, 1}: accept if

• SIG.Verify
(
pkcs, (m, ct , π), tg

)
= 1, and

• π is a valid proof for the relation R in (3) with respect to the statement (compk , pk t,m, ct).

- S.Trace
(
sk t = (pk ′, sk ′t, pkcs), m, σ = (ct , π, tg)

)
→ C:

1: if SIG.Verify
(
pkcs, (m, ct , π), tg

)
6= 1, output fail and stop

2: set σm ← PKE .Decrypt(sk ′t, ct), if fail then output fail and stop

3: otherwise, output AT S.Trace(pk ′,m, σm)

Fig. 4. The generic TAPS scheme S
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Lemma 1. The generic TAPS scheme S is unforgeable and accountable, as in Definition 6, assuming
the accountable threshold scheme AT S is secure, the non-interactive proof system (P, V ) is an argument
of knowledge, and the commitment scheme is binding. Concretely, for every adversary A that attacks S
there exists adversaries B1,B2, that run in about the same time as A, such that

Advforg
A,S(λ) ≤

(
Advforg

B1,AT S(λ) + Advbind
B2,COM(λ)

)
· q(λ) + κ(λ) (4)

where κ and q are the knowledge error and tightness of the proof system from Definition 4.

We provide the proof of Lemma 1 in Appendix A.

Lemma 2. The generic TAPS scheme S is private against the public assuming the non-interactive proof
system (P, V ) is HVZK, the public-key encryption scheme PKE is semantically secure, the commitment
scheme COM is hiding, and the signature scheme SIG is strongly unforgeable. Concretely, for every
adversary A that attacks S there exist adversaries B1,B2,B3, that run in about the same time as A, such
that

Advpriv1
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) + Advindcpa
B2,PKE(λ) +Q ·Advhvzk

B3,(P,V )(λ) + ε(λ)
)

(5)

where ε(λ) is the hiding statistical distance of the commitment scheme COM and Q is the number of
signature queries from A.

We provide the proof of Lemma 2 in Appendix B.

Lemma 3. The generic TAPS scheme S is private against signers assuming the non-interactive proof
system (P, V ) is HVZK, the public-key encryption scheme PKE is semantically secure, and the signa-
ture scheme SIG is strongly unforgeable. Concretely, for every adversary A that attacks S there exist
adversaries B1,B2,B3, that run in about the same time as A, such that

Advpriv2
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) + Advindcpa
B2,PKE(λ) +Q ·Advhvzk

B3,(P,V )(λ)
)
. (6)

The proof of Lemma 3 is almost identical to the proof of Lemma 2 and is omitted.

5 An Efficient TAPS from Schnorr Signatures

In this section we construct a secure TAPS in the random oracle model, based on the Schnorr signature
scheme. The construction is far more efficient than applying the generic construction from the previous
section to a Schnorr ATS. We obtain this improvement by taking advantage of the algebraic properties of
the Schnorr signature scheme to vastly simplify the zero knowledge statement that the Combiner needs
to prove when making a signature.

The construction makes use of a group G of prime order q in which the Decision Diffie-Hellman
problem is hard. Let g and h be independent generators of G, so that the discrete log of h base g is
unknown. We also require a hash function H : PK × G ×M → Zq that will be modeled as a random
oracle, where PK is a space of public keys.

5.1 A review of the Schnorr ATS schemes

Let us first review the (uncompressed) Schnorr signature scheme [58]:

- KeyGen(λ): sk ←$ Zq, pk ← gsk , output (sk , pk).
- Sign(sk ,m): r ←$ Zq, R← gr, c← H(pk , R,m) ∈ Zq, z ← r + sk · c ∈ Zq,

output σ ← (R, z).
- Verify(pk ,m, σ): compute c← H(pk , R,m) ∈ Zq and accept if gz = pk c ·R.

Our Schnorr TAPS builds upon an existing Schnorr accountable threshold signature (ATS), such as [53,52,56]3.
Using our terminology, these ATS schemes operate as follows:

3 Technically, these are multisignature schemes, but as noted in Remark 6, they can easily be made into an ATS.
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- KeyGen(λ, n, t): Choose sk1, . . . , skn ←$ Zq and set pk i ← gski for i ∈ [n].
Set pk ← (t, pk1, . . . , pkn) and sk ← (sk1, . . . , skn). Output (pk , sk).
In an ATS, the Combiner key sk c and the tracing key sk t are equal to pk .

- Sign(sk i,m,C): An interactive protocol between the Combiner and signer i. At the end of the protocol
the Combiner has δi = (Ri, zi) ∈ G×Zq, where (Ri, zi) satisfies gzi = pk ci ·Ri for c← H(pk , R,m) ∈
Zq. Here R ∈ G is defined4 as R :=

∏
i∈C Ri. This R is obtained from the Combiner’s interaction

with all the signers participating in the current signature process.

- Combine(pk ,m,C, {δi}i∈C): Abort if |C| 6= t. Parse δi as δi = (Ri, zi),
set z ←

∑
i∈C zi ∈ Zq and R←

∏
i∈C Ri ∈ G. Output σ ←

(
R, z, C

)
.

Then (R, z) is a valid Schnorr signature on m with respect to the public key pkC :=
∏
i∈C pk i.

- Verify(pk ,m, σ): parse pk = (t, pk1, . . . , pkn) and σ = (R, z, C). Accept if |C| = t and the Schnorr
verification algorithm accepts the triple (pkC ,m, σ

′) where σ′ ← (R, z) and pkC ←
∏
i∈C pk i. Here

the challenge c is computed as c ← H(pk , R,m) ∈ Zq and the algorithm accepts if |C| = t and
gz = pk cC ·R.

- Trace(pk ,m, σ): parse σ = (R, z, C), run Verify(pk ,m, σ), the verification algorithm from the previous
bullet, and if valid, output C; else output fail.

The Schnorr ATS papers [53,52,56] describe different ways to instantiate the Sign protocol. They prove
security of the resulting Schnorr ATS scheme using differing security models. Here we treat the Sign
protocol as a black box, and rely on the following assumption.

Assumption 1 The Schnorr ATS outlined above is a secure ATS scheme, as in Definition 8.

5.2 An efficient Schnorr TAPS

We next construct our Schnorr-based TAPS scheme. If we were to follow the generic construction from
Section 4, the combiner would encrypt the entire Schnorr signature (R, z), and would need to produce a
zero knowledge proof for a complicated relation. In particular, it would need to prove that an encrypted
Schnorr signature is valid, which is difficult to prove in zero knowledge efficiently. However, observe that
in the public’s view, R is a product of random elements in G, and as such, is independent of the quorum
set C. Therefore, R can be revealed in the TAPS signature in the clear without compromising the privacy
of C in the public’s view. Even an adversary who has all the signing keys learns nothing about C from
R. We only need to encrypt the quantity z ∈ Zq. The challenge then is to develop an efficient zero
knowledge proof that the cleartext R and an encrypted z are a valid Schnorr signature with respect to
an encrypted quorum set C.

The scheme. Our Schnorr TAPS is built from any Schnorr ATS that operates as described in Section 5.1
and satisfies Assumption 1. In addition, we use a single-party (non-threshold) signature scheme SIG =
(KeyGen,Sign,Verify). The complete TAPS scheme is presented in Figure 5. The combine algorithm in
Step 4 generates a zero-knowledge proof for the relation RS in Figure 6. We present two efficient proof
systems for this relation in Sections 5.3 and 5.4.

In Step 4 of the tracing algorithm there is a need to find a set C ⊆ [n] of size t that satisfies a certain
property. If n is logarithmic in the security parameter, then this set C can be found by exhaustive search
over all t-size subsets of [n]. For larger n, we explain how to find C efficiently in Sections 5.3 and 5.4.

Correctness. The scheme is correct assuming the Schnorr ATS scheme, the signature scheme SIG, and
proof system for RS are correct.

Security. We next prove security, privacy, and accountability.

Theorem 2. The Schnorr TAPS scheme is unforgeable, accountable, and private, assuming that the
underlying Schnorr ATS is secure (Assumption 1), the signature scheme SIG is strongly unforgeable,
DDH holds in G, and the non-interactive proof system (P, V ) for RS is an argument of knowledge and
HVZK.
4 In some Schnorr ATS schemes (e.g., [56]) this R is defined as R :=

∏
i∈C R

γi
i , for public scalars {γi ∈ Zq}i∈C .

We assume that all these scalars are set to 1, but our constructions can easily accommodate any scalars.
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- S.KeyGen(λ, n, t): using the independent generators g and h of G do:

1: Run the Schnorr ATS KeyGen procedure from Section 5.1.
That is, choose sk1, . . . , skn ←$ Zq and set pk i ← gski for i ∈ [n]. Set pk ′ ← (pk1, . . . , pkn).

2: Encrypt t with ElGamal: ψ ←$ Zq and (T0, T1)← (gψ, gthψ)

3: Generate (skcs, pkcs)←
$ SIG.KeyGen(λ)

4: Sample ske ←$ Zq and set pk t ← gske ∈ G
5: pk ← (pk ′, pk t, pkcs, T0, T1) // the verifier’s public key

6: skc ← (pk , skcs, t, ψ) // the combiner’s secret key

7: sk t ← (pk , ske, t) // the tracing secret key

8: Output
(
pk , (sk1, . . . , skn), skc, sk t)

)
- S.Sign(sk i,m,C): Run the Schnorr ATS Sign procedure from Section 5.1 so that the Combiner obtains

a signature share δi ←$ (Ri, zi) ∈ G× Zq.

- S.Combine(skc,m,C, {δi}i∈C): With
∣∣C∣∣ = t and δi = (Ri, zi), the coordinator does:

1: R←
∏
i∈C Ri, z ←

∑
i∈C zi ∈ Zq, c← H(pk , R,m) ∈ Zq // then gz =

[∏
i∈C pk i

]c ·R
2: Encrypt z with ElGamal: ρ←$ Zq, ct := (c0, c1)← (gρ, gzpkρt ).

3: Set (b1, . . . , bn) ∈ {0, 1}n, such that bi = 1 iff i ∈ C // then gz =
[∏n

i=1(pk i)
bi
]c
·R

4: Generate a zero knowledge proof π for the relation RS listed in Figure 6. We present two efficient
non-interactive proof systems for this relation in Sections 5.3 and 5.4.

5: tg←$ SIG.Sign
(
skcs, (m,R, ct , π)

)
// sign with Combiner’s key

6: Output the TAPS signature σ ← (R, ct , π, tg).

- S.Verify(pk , m, σ): Let σ = (R, ct , π, tg) where ct = (c0, c1).

Parse pk = (pk ′, pk t, pkcs, T0, T1) and set c← H(pk , R,m). Accept if:

• SIG.Verify
(
pkcs, (m,R, ct , π), tg

)
= 1, and

• π is a valid proof for the relation RS in Figure 6
with respect to the statement (g, h, pk ′, pk t, T0, T1, R, c, ct = (c0, c1)).

- S.Trace(sk t,m, σ): Parse sk t =
(
pk , ske, t

)
where pk = (pk ′, pk t, pkcs, T0, T1) and pk ′ = (pk1, . . . , pkn).

1: Abort if S.Verify(pk ,m, σ) rejects. // ensure that (m,σ) is a valid signature

2: Parse σ as (R, ct , π, tg) and ct = (c0, c1). Set c← H(pk , R,m).

3: ElGamal decrypt ct = (c0, c1) as g(z
′) ← c1/c0

ske ∈ G.

4: Find a set C ⊆ [n], where |C| = t and g(z
′) = R · (

∏
i∈C pk i)

c. This equality implies that (R, z′)
is a valid Schnorr signature on m with respect to the public key pkC ←

∏
i∈C pk i.

5: If such a set C ⊆ [n] is found, output C. Otherwise, output fail.

Fig. 5. The Schnorr TAPS scheme
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RS =
{

(g, h, pk ′ = (pk1, . . . , pkn), pk t, T0, T1, R, c, ct = (c0, c1)) ; (z, ρ, ψ, b1, . . . , bn)
}

iff

(1) gz =
[ n∏
i=1

(pk i)
bi
]c
·R,

(2) c0 = gρ and c1 = gz · pkρt ,

(3) T0 = gψ and T1 = g
∑n
i=1 bi · hψ,

(4) bi(1− bi) = 0 for i = 1, . . . , n (i.e. bi ∈ {0, 1}).

Fig. 6. The relation RS used in the Combine algorithm of the Schnorr TAPS. Condition (1) verifies that (R, z)
is a valid signature for m assuming c = H(pk , R,m); (2) verifies that (c0, c1) is an ElGamal encryption of z using
the tracing public key pk t; (3) verifies that the quorum C contains t signers; and (4) verifies that each bi is in
{0, 1}. Here g and h are public random generators of G.

The proof of Theorem 2 is presented in the following three lemmas, where we also provide concrete
security bounds.

Lemma 4. The Schnorr TAPS scheme is unforgeable and accountable, as in Definition 6, assuming the
underlying Schnorr ATS is secure, as in Definition 8, and the non-interactive proof system (P, V ) for
RS is an argument of knowledge. Concretely, for every adversary A that attacks TAPS, there exists an
adversary B that runs in about the same time as A such that

Advforg
A,S(λ) ≤

(
Advforg

B,AT S(λ)
)
· q(λ) + κ(λ) (7)

where κ and q are the knowledge error and tightness of the proof system.

We provide the proof of Lemma 4 in Appendix C.

Lemma 5. The Schnorr TAPS scheme is private against the public, as in Definition 7, assuming DDH
holds in G, the non-interactive proof system (P, V ) for RS is HVZK, and the signature scheme SIG is
strongly unforgeable. Concretely, for every adversary A that attacks S there exist adversaries B1,B2,B3
that run in about the same time as A such that

Advpriv1
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) +Q ·Advhvzk
B2,(P,V )(λ) + (Q+ 1) ·Advddh

B3,G(λ)
)

(8)

where Q is the number of signature queries from A.

We provide the proof of Lemma 5 in Appendix D.

Lemma 6. The Schnorr scheme is private against signers, as in Definition 7, assuming DDH holds in
G, the non-interactive proof system (P, V ) for RS is HVZK, and the signature scheme SIG is strongly
unforgeable.

The proof of Lemma 6 is mostly the same as the proof of Lemma 5 and is omitted.

5.3 A sigma protocol proof for RS

It remains to construct an efficient non-interactive zero knowledge argument of knowledge for the relation
RS from Figure 6. In this section we construct a Sigma protocol, and in the next section we construct
a protocol using Bulletproofs. We describe these as interactive protocols, but they can be made non-
interactive using the Fiat-Shamir transform [35,4].

Let g, h, h1, . . . , hn ∈ G be independent random generators of G. To prove knowledge of a witness for
the relation RS from Figure 6 we use the following approach:
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RS1 :=
{

(g, h, h1, . . . , hn, pk1, . . . , pkn, pk t, T0, T1, R, c, ct = (c0, c1), v0, v1, . . . , vn, α) ;

(z, ρ, ψ, γ, b1, . . . , bn, φ1, . . . , φn)
}

where

(1) gz = R ·
n∏
i=1

(pk i)
c·bi

(2) c0 = gρ and c1 = pkρt · g
z

(3) T0 = gψ and T1 = g
∑n
i=1 bi · hψ

(4) v0 = gγ and vi = gbihγi for i ∈ [n] and

n∏
i=1

v
αi(1−bi)
i =

n∏
i=1

hφii

Fig. 7. The relation RS1. Equations (1), (2), and (3) are the same as in the relation RS in Figure 6. Equation
(4) proves that bi(1− bi) = 0 for i ∈ [n]. As usual, both the prover and verifier have c← H(pk , R,m). The prover
computes the witness element φ1, . . . , φn ∈ Zq on its own as φi ← αiγ(1− bi).

Protocol S1:

1: The prover chooses γ ←$ Zq and commits to its bits (b1, . . . , bn) ∈ {0, 1}n as(
v0 ← gγ , v1 ← gb1hγ1 , . . . , vn ← gbnhγn

)
∈ Gn+1

It sends (v0, v1, . . . , vn) to the verifier. Observe that for i ∈ [n] the pair (v0, vi) is an ElGamal
encryption of bi with respect to the public key hi. The term v0 will be used for efficient tracing.

2: The verifier samples a challenge α←$ Zq and sends α to the prover.

3: The prover computes φi ← αiγ(1− bi) ∈ Zq for i ∈ [n].

4: Finally, the prover uses a Sigma protocol to prove knowledge of a witness
(z, ρ, ψ, γ, b1, . . . , bn, φ1, . . . , φn) for the relation RS1 in Figure 7.

We present the concrete steps for the 3-round Sigma protocol for the relation RS1 used in Step 4 in
Appendix E, where we also show the TAPS signature obtained from this protocol. After applying the
Fiat-Shamir transform to Protocol S1, the resulting proof π for the relation RS from Figure 6 contains
n+ 1 group elements and 2n+ 5 elements in Zq.

Theorem 3. Let G be a group of prime order q. If the Decision Diffie-Hellman (DDH) assumption holds
in G, and n/q is negligible, then Protocol S1 is an HVZK argument of knowledge for the relation RS
from Figure 6.

We provide the proof for Theorem 3 in Appendix F.

Remark 8 (Efficient tracing). Recall that the tracing algorithm in Figure 5 requires the tracer to
find a set C ⊆ [n] of size t such that g(z

′) = (
∏
i∈C pk i)

c · R. When using Protocol S1, the tracing
algorithm can efficiently find this set C ⊆ [n] by decrypting the Combiner’s ElGamal commitment
(v0, v1, . . . , vn) ∈ Gn+1 to the bits b1, . . . , bn ∈ {0, 1} that define C. To see how, let us extend algorithm
KeyGen in Figure 5 by adding the following steps:

- choose τi ←$ Zq and set hi ← gτi for i ∈ [n]
- aug-sk t ← (sk t, τ1, . . . , τn) // augmented tracing key
- aug-sk c ← (sk c, h1, . . . , hn) // augmented Combiner’s key
- aug-pk ← (pk , h1, . . . , hn) // augmented public key

The Combiner and verifier use h1, . . . , hn in their augmented keys to produce and verify the proof
for the relation RS using Protocol S1. The proof contains an ElGamal commitment (v0, v1, . . . , vn) to
the bits b1, . . . , bn. The tracing algorithm can obtain b1, . . . , bn ∈ {0, 1} by decrypting the ElGamal
ciphertexts (v0, vi) for i ∈ [n] using the secret keys τ1, . . . , τn ∈ Zq. Soundness of Protocol S1 ensures
that the resulting bits define the correct quorum set C. Note that aug-pk contains a total of 2n+4 group
elements.

17



5.4 A bulletproofs protocol proof for RS

The Sigma protocol for the relation RS from Figure 6 may be adequate for many real-world settings
where the number of allowed signers is small. However, if a large number of parties n is used, then the
resulting proof size may be too large. We can shrink the proof using an argument system that produces
shorter proofs (e.g., using a zk-SNARK). This approach raises two difficulties. First, computing the
proof will be slow because the exponentiations in Figure 6 would need to be implemented explicitly in
the zk-SNARK relation. Second, we would lose the efficient tracing algorithm from Remark 8.

We can avoid both issues using the Bulletproofs proof system [22,24] or its treatment as a compressed
Sigma protocol in [3]. First, the exponentiations in Figure 6 are handled efficiently. Second, we can retain
efficient tracing with a much shorter TAPS signature compared to the Sigma protocol in Section 5.3.

Let G be a group of prime order q, let a1, . . . , an be generators of G, and a := (a1, . . . , an) ∈ Gn. For
w ∈ Znq we write aw :=

∏n
i=1 a

wi
i ∈ G. Recall that bulletproofs is an HVZK proof system that can prove

knowledge of a satisfying witness w ∈ Znq for the relation

RBP :=
{

(P, a ∈ Gn, u ∈ G) ; w ∈ Znq
}

iff P (w) = 1 and aw = u,

where P is a rank one constraint system (R1CS), meaning that P is a triple of matrices A,B,C ∈ Z`×nq

and P (w) = 1 iff (Aw) ◦ (Bw) = Cw. The ◦ operator denotes the Hadamard product (component-wise
product) of two vectors in Znq . The program P is said to have ` constraints over n variables. We represent
the program P in RBP using R1CS instead of an arithmetic circuit because R1CS is more convenient in
our settings: it more directly captures the relations we need to prove.

The Bulletproofs proof is succinct, containing only 2dlog2(n + `)e group elements and two elements
in Zq. For a convincing prover P ∗, the Bulletproofs extractor outputs some w ∈ Znq such that either (i)
w is a valid witness for RBP, or (ii) w is a non-trivial relation among the generators5 a ∈ Gn, namely
aw = 1. If the discrete log problem in G is difficult, and a are random generators of G, then an efficient
prover cannot cause (ii) to happen. Then bulletproofs is an argument of knowledge for RBP.

To capture this notion formally, it is convenient to define a restricted argument of knowledge where
the extractor is only guaranteed to work against a certain class of instance generators.

Definition 10. A proof system (P,V) is a restricted argument of knowledge for a relation R with
respect to a class of instance generators IG if it is perfectly complete and there is an extractor Ext that
satisfies the requirements of Definition 4 against all PPT provers (P1,P2) where the instance generator
P1 is in IG.

Theorem 4 ([22,24]). Suppose that the discrete log assumption holds in the group G. Then the bul-
letproofs proof system is a restricted argument of knowledge for RBP with respect to the class of
instance generators P1 ∈ IGBP that operate in two steps: first a vector a ←$ Gn is sampled, then P1(a)
outputs a program P and u ∈ G to form the RBP statement (P,a, u).

An expanded bulletproofs relation. For our application we need to generalize the bulletproofs
relation. Let V = (vi,j) ∈ G`′×n be a matrix of arbitrary group elements in G (not necessarily random

generators of G). Let w ∈ Znq and u′ := Vw ∈ G`′ . We claim that bulletproofs can be used to efficiently
prove knowledge of a valid witness w ∈ Znq for the following expanded relation:

ReBP :=
{

(P,a, u,V,u′) ; w ∈ Znq
}

iff P (w) = 1, aw = u, and Vw = u′.

In other words, a valid witness w for an ReBP instance (P,a, u,V,u′) must be a valid witness for the
RBP instance (P,a, u), and furthermore it must satisfy Vw = u′ where V is a matrix of arbitrary group
elements. In particular, the prover may know a non-trivial relation among the group elements in V.

We need this expanded BP relation because the relation RS from Figure 6 involves group elements for
which the adversary knows their discrete log base g. In particular, the adversary knows the discrete log
of public keys that belong to corrupt parties. The basic bulletproofs system for RBP is not an argument
of knowledge in this setting, because the bulletproofs extractor may fail to extract a valid witness.

The following theorem shows that a proof system for ReBP is no harder than bulletproofs for RBP,
as long as V ∈ G`′×n is fixed before the random generators a ∈ Gn are sampled. The proof can be found
in Appendix G.

5 This relation might include additional random generators of G, as explained in Appendix G.
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RS2 :=
{

(P,a, u,V,u′) ; w := (z, ρ, ψ, b1, . . . , bn, α) ∈ Zn+4
q

}
iff

P (w) = 1, aw = u, Vw = u′, where

V :=



g, 1, 1, pk−c1 , . . . , pk−cn , 1

1, g, 1,

1

1

g, pk t, 1, 1

1, 1, g, 1

1, 1, h, g, . . . , g, 1


∈ G5×(n+4) and u′ :=



R

c0

c1

T0

T1


∈ G5

and P (w) = 1 ⇐⇒ bi(1− bi) = 0 for i = 1, . . . , n.

Fig. 8. Recasting the relation RS from Figure 6 as an instance of ReBP. Here a ∈ Gn+4 is a vector of random
generators and u ∈ G. The vector equation Vw = u′ captures lines (1), (2), (3) in Figure 6, one row for each of
the five equalities in those lines. The program P captures line (4). The new random α appended to the witness
w ∈ Zn+4

q is there to ensure that u := aw leaks nothing about the first n+ 3 elements in the witness.

Theorem 5. Suppose that the discrete log assumption holds in the group G. Then there is an HVZK
restricted argument of knowledge for ReBP where the proof size is the same as in bulletproofs for RBP, and
proof generation and verification times differ by at most the time to compute (n + 1)`′ exponentiations
in G. The argument of knowledge property holds with respect to instance generators P1 ∈ IGeBP that
operate as follows: P1 outputs V = (vi,j) ∈ G`′×n and u′ ∈ G`′ , then a ←$ Gn is sampled, and finally
P1(a) outputs P, u to form the ReBP statement (P,a, u,V,u′).

Figure 8 shows how to recast the relation RS from Figure 6 as an instance of ReBP. We call this
relation RS2. It should be clear that if w := (w′, α) ∈ Zn+4

q is a valid witness for RS2 then w′ ∈ Zn+3
q

is a valid witness for RS .

Now, the HVZK argument of knowledge for the relation RS from Figure 6 follows directly from
Theorem 5. To see how, consider an RS statement, and let w′ := (z, ρ, ψ, b1, . . . , bn) ∈ Zn+3

q be a valid
witness.

Protocol S2:

1: The verifier sends a vector of random generators a ∈ Gn+4 to the prover.

2: The prover chooses a random α ←$ Zq, sets w := (w′, α) ∈ Zn+4
q , and computes u ← aw ∈ G. It

sends u to the verifier.

3: The prover and verifier run the proof system from Theorem 5 to prove that w is valid witness for
RS2 in Figure 8. As required, V is chosen before a is sampled.

Note that the vector a ∈ Gn+4 is chosen after the matrix V is fixed. Hence, if the discrete log problem in
G is difficult, then by Theorem 5, this protocol is an HVZK argument of knowledge for RS2 and hence
also for RS .

The program P in RS2 is an R1CS program over n + 4 variables (the length of the witness w) and
has n constraints. Therefore, the Fiat-Shamir transform applied to Protocol S2 results in a proof for RS
from Figure 6 of size

2dlog2(2n+ 4)e+ 1 group elements and two elements in Zq.

The analysis of the Fiat-Shamir transform in such settings can be found in [2,4,40,62].

Efficient tracing. The proof for RS using Protocol S2 and the resulting TAPS signature now have size
logarithmic in n. However, we lost the ability to efficiently trace a signature using the tracing key. The
tracing algorithm in Figure 5 needs to find a set C ⊆ [n] of size t such that g(z

′) = (
∏
i∈C pk i)

c ·R. This
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can be done, in principal, by trying all sets C ⊆ [n] of size t, assuming
(
n
t

)
is polynomial in the security

parameter λ. However, we want a more efficient tracing algorithm.

We can restore efficient tracing for larger n and t in a way similar to Remark 8. Let (b1, . . . , bn) ∈
{0, 1}n be the characteristic vector of the quorum of signers C ⊆ [n]. In Section 5.3 we encrypted every bit
bi on its own, and added the n + 1 group elements (v0, . . . , vn) to the signature. The tracing algorithm
could then decrypt each of the n ElGamal ciphertexts (v0, vi), for i ∈ [n], and efficiently recover the
quorum set C.

Using Bulletproofs we can compress the commitment to the bits (b1, . . . , bn) by committing to a batch
of bits at a time using a single ElGamal ciphertext. We will then need to extend the relation RS2 to
verify that every batch commitment is well formed.

To see how, let us fix a batch size e, say e := 40. For simplicity suppose that e divides n. We extend
algorithm KeyGen in Figure 5 by adding the following steps:

- for i ∈ [n/e]: choose τi ←$ Zq and set hi ← gτi ∈ G
- aug-pk ← (pk , h1, . . . , hn/e) // augmented public key
- aug-sk c ← (sk c, h1, . . . , hn/e) // augmented Combiner’s key
- aug-sk t ← (sk t, τ1, . . . , τn/e) // augmented tracing key

Next, we augment the prover in Protocol S2 by adding a step 0 where the prover does:

- step (i): Divide the n bits into (n/e) buckets 0 ≤ B1, . . . , Bn/e < 2e as:



B1 ← b1 + 2b2 + 4b3 + . . .+ 2ebe ∈ Zq,

B2 ← be+1 + 2be+2 + . . .+ 2eb2e ∈ Zq,
...

Bn/e ← bn−e+1 + 2bn−e+2 + . . .+ 2ebn ∈ Zq.

- step (ii): Choose a random γ ←$ Zq and compute(
v0 ← gγ , v1 ← gB1hγ1 , . . . , vn/e ← gBn/ehγn/e

)
∈ G(n/e)+1.

Send (v0, v1, . . . , vn/e) to the verifier. Observe that for i ∈ [n/e] the pair (v0, vi) is an ElGamal
encryption of gBi with respect to the public key hi.

Finally, we augment the relation RS2 to verify that (v0, v1, . . . , vn/e) were constructed correctly. This
adds one column to the matrix V in Figure 8 to account for the new witness element γ, and adds (n/e)+1
rows to the matrix V and to the vector u′ to ensure that vi = gBihγi for i ∈ [n/e] and that v0 = gγ .
Now, after applying Fiat-Shamir, the resulting proof for RS (generated by the Combiner) has size

(n/e) + 2dlog2(2n+ (n/e) + 6)e+ 2 group elements and two elements in Zq.

The dominant term is the (n/e) group elements. The final TAPS signature is expanded by (n/e) + 1
group elements (v0, v1, . . . , vn/e).

When the tracing algorithm is given a signature to trace, it can obtain gB1 , . . . , gBn/e ∈ G by decrypt-
ing the ElGamal ciphertexts (v0, vi) for i ∈ [n/e] using the secret keys τ1, . . . , τn/e ∈ Zq in the tracing
key aug-sk t. Next, the tracing algorithm computes the discrete log base g of these group elements to
obtain B1, . . . , Bn/e ∈ Zq. Since each Bi is in {0, 1, . . . , 2e − 1}, each discrete log computation can be

done with about 2e/2 group operations.

Taking e := 40 gives a reasonable amount of time for computing all of B1, . . . , Bn/e ∈ Zq from

gB1 , . . . , gBn/e . The tracing algorithm then computes b1, . . . , bn ∈ {0, 1} from B1, . . . , Bn/e, and this
reveals the required quorum set C. Soundness of the augmented Protocol S2 ensures that the resulting
bits b1, . . . , bn define the correct quorum set C ⊆ [n].
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6 Extensions

Shorter public keys. While the size of the public key in our Schnorr construction grows linearly in
n, there are several ways to shrink the public key. First, the public key can be replaced by a short
binding commitment to the linear-size public key, and the full public key could be included in every
signature. This shrinks the public key at the cost of expanding the signature. Alternatively, both the
public key and signature can be kept short by making the public key a witness in the zero-knowledge
proof statement, as is done in the generic construction (Figure 4). However, doing so comes at the cost
of increased complexity of the statement that the Combiner needs to prove.

Shorter signatures using tracing confirmation. The need to trace a TAPS signature to the signing
quorum implies that a TAPS signature must encode the signing set, and therefore must be at least
log2

(
n
t

)
bits long. We can design shorter TAPS signatures by relaxing this requirement: replace the

tracing algorithm by a quorum confirmation algorithm. The confirmation algorithm takes the signing
quorum set C as input, along with the secret tracing key sk t, and a pair (m,σ). It outputs 1 if the set
C is the set that generated σ. The security definitions in Section 3 can be adapted to support quorum
confirmation instead of tracing. Since a signature no longer needs to encode the quorum set, this lets us
construct TAPS where signature size in independent of the number of parties, for example by using a
constant-size zk-SNARK for the relation RS in Figure 6. Our bulletproofs construction can be made to
directly achieve a TAPS with quorum confirmation and logarithmic size signatures.

Stronger privacy against signers. Our privacy against signers game in Figure 3 ensures that the
signer’s private keys cannot be used to link a TAPS signature to the quorum that created it. However,
it is possible that the quorum of signers that helped create a TAPS signature σ, can later recognize
σ, using its knowledge of the random bits used during the signing process. The same is true for many
Schnorr private threshold signature (PTS) schemes: the quorum that creates a signature can recognize
that signature. If needed, our Schnorr TAPS construction can be strengthened so that the Combiner can
ensure that a TAPS signature cannot be recognized by the quorum of signers that helped create it. The
Combiner need only blind the quantity R ∈ G in the signature by a random group element, and adjust
the relation in Figure 6 accordingly. We leave this variation for future work.

A construction from the BLS signature scheme. In this paper we focused on a TAPS from the
Schnorr signature scheme. A TAPS can also be constructed from the BLS signature scheme [18] as the
underlying ATS. We leave this for future work.

Beyond threshold: supporting monotone access structures. While threshold access structures are
widely used in practice, our constructions generalize to support more general monotone access structures.
For example, one can require that a quorum of signers contain t1 parties from one set of signers and
t2 from another set of signers. More generally, standard techniques [7] can be used to generalize our
construction to support any access structure derived from a polynomial size monotone formula.

7 Conclusion and Future Work

In this work, we present TAPS, a new threshold signature primitive that ensures both accountability
and privacy. While notions of accountable threshold schemes and private threshold schemes exist in the
literature, our work takes a step towards defining a primitive with both properties simultaneously.

We hope that future work can lead to TAPS schemes with shorter signatures and public keys. Our
generic construction has a short public key: the public key is simply a commitment to an ATS public
key, and so its size is independent of the number of parties n. However, our Schnorr-based systems with
efficient tracing require a linear size public key. An important research direction is to design an efficient
TAPS that relies on standard assumptions where the size of the public key is independent of n. One
possible avenue for a more efficient TAPS is for pk to be the root of a Merkle tree whose leaves are
the n signers’ public keys. The zero-knowledge proof output by the Combiner will then be a succinct
non-interactive zero-knowledge argument of knowledge (a zk-SNARK) demonstrating that t of the n
signers participated in signing. A related direction is to employ the approach of Dodis et al. [33], by
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defining the public key via an accumulator scheme. The signature is then a proof that the t signers know
the corresponding secret keys to t public keys in the accumulator. However, it remains an open problem
to design such a scheme that fulfills our notion of accountability.

Another direction for future work is to improve the efficiency of verification in our Schnorr TAPS. In
settings where n is small, such as financial transactions, the linear-time cost of verification of the Schnorr
construction is acceptable. For large n the cost may be prohibitive. Future work could consider other
constructions that support full tracing, but with a faster verifier.
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A Proof of Lemma 1

Proof. We prove Lemma 1 using a sequence of three games.

Game 0. This is the unforgeability and accountability game in Figure 1 applied to the generic scheme S.
If W0 is the event that A wins in Game 0, then

Advforg
A,S(λ) = Pr[W0]. (9)

Game 1. Let pk = (compk , pk t, pk cs) be the public key given to the adversary, and let sk t = (pk ′, sk ′t, sk cs)
be the tracing key given to the adversary.

Game 1 is identical to Game 0 except that we strengthen the winning condition over Game 0: to win
the game, the adversary must also output a valid forgery (m′, σ′) where σ′ = (ct ′, π′, tg′), along with a
witness (σ′′m, r

′′, r′′pk , pk ′′) such that

R
(

(compk , pk t,m
′, ct ′) ; (σ′′m, r

′′, r′′pk , pk ′′)
)

= true, (10)

where R is defined in (3).
We build a Game 1 adversary A′ from a Game 0 adversary A. This A′ is given (compk , pk t) along

with other quantities listed in Figure 1. It then runs A, answering all its queries, until it obtains from
A the quantities m′ and ct ′ to form an R statement (compk , pk t,m

′, ct ′). Next, A′ runs the extractor
Ext for the proof system (P, V ) on the remaining execution of A. The extractor outputs a witness
w := (σ′′m, r

′′, r′′pk , pk ′′) for R. Finally, A′ uses w and sk cs to generate π′ and tg′ so that σ′ := (ct ′, π′, tg′)
is a valid signature on m′. It outputs (m′, σ′) and w.

By definition of the extractor, if W1 is the event that A′ wins in Game 1, then

Pr[W1] ≥
(
Pr[W0]− κ(λ)

)
/q(λ). (11)

Game 2. Let sk t = (pk ′, sk ′t, sk cs) and pk = (compk , pk t, pk cs) be the tracing key and public key given
to the adversary, where compk = COM.Commit(pk ′, rpk ). Hence, the adversary has pk ′, compk , and it
also has rpk from the combiner’s secret key sk c. The Game 1 adversary A′ outputs a forgery (m′, σ′) and
a witness (σ′′m, r

′′, r′′pk , pk ′′). In Game 2 we further strengthen the winning condition by requiring that

pk ′ = pk ′′.
Let us show that because the commitment scheme is binding, the difference in advantage between

Games 1 and 2 is at most negligible. We know that

COM.Verify(pk ′, rpk , compk ) = COM.Verify(pk ′′, r′′pk , compk ) = 1

where the second equality follows from (10). Therefore, if pk ′ 6= pk ′′ we obtain an attack on the binding
property of COM. In particular, let W2 be the event that A′ wins in Game 2, and let E be the event
that pk ′ 6= pk ′′. Then we know that Pr[W2] = Pr[W1 ∧ ¬E ] ≥ Pr[W1]− Pr[E ]. Moreover, we just argued
that there is an adversary B2 such that Pr[E ] = Advbind

B2,COM(λ). It follows that

Pr[W2] ≥ Pr[W1]−Advbind
B2,COM(λ). (12)
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Finishing the proof. We show that for every Game 2 adversary A = (A0,A1), there is an ATS adversary
B1 that wins the security game in Figure 1 against the underlying ATS scheme, with about the same
advantage as A’s advantage in Game 2. In particular, we show that

Advforg
B1,AT S(λ) ≥ Pr[W2]. (13)

Adversary B1 works as follows:

- run A0 and receive from A0 the tuple (n, t, C, state0) where C ⊆ [n].
- send (n, t, C) to its own ATS challenger and receives back

(
pk ′, {sk i}i∈C).

- commit to pk ′ as: rpk ←$ Rλ and compk ← COM.Commit(pk ′, rpk ).
- generate the tracing key pair (pk t, sk ′t)←

$ PKE .KeyGen(1λ).
- generate the combiner’s signing key pair (pk cs, sk cs)←$ SIG.KeyGen(1λ).
- set sk t ← (pk ′, sk ′t, pk cs), pk ← (compk , pk t, pk cs),

and sk c ← (pk ′, pk t, sk cs, t, compk , rpk ).
- run A1(pk , {sk i}i∈C , sk c, sk t, state0).
- A1 issues signing queries: to respond to a signing query for mj , our B issues a signing query for mj

to its own ATS challenger and gets back σj . It then runs steps (2)-(4) of the S.Combine algorithm
to obtain a TAPS signature (ctj , πj , tgj), and forwards it to A1.

- Eventually A1 outputs a forgery (m′, σ′) =
(
m′, (ct ′, π′, tg′)

)
and a witness (σ′′m, r

′′, r′′pk , pk ′′) that
satisfy the winning condition of Games 1 and 2.

- B outputs (m′, σ′′m).

Suppose A wins in Game 2, so that in particular, S.Verify(pk ,m′, σ′) = 1. Then

SIG.Verify
(
pk cs, (m

′, ct ′, π′), tg′
)

= 1 and PKE .Decrypt(sk ′t, ct ′) = σ′′m

where the equality on the right follows from the fact that the relation (10) holds. Therefore, if Ct ←
S.Trace(sk t,m

′, σ′), then Ct = AT S.Trace(m′, σ′′m). Since A won in Game 2 we know that either Ct = fail
or Ct 6⊆ (C ∪ C ′), as defined in Figure 1.

It remains to argue that σ′′m is a valid ATS signature on m′ with respect to pk ′. Indeed, by (10) we
know that AT S.Verify(pk ′′,m′, σ′′m) = 1. Moreover, by the condition in Game 2 we know that pk ′ = pk ′′.
Therefore, σ′′m is a valid ATS signature on m′ with respect to pk ′. We conclude that if A wins in Game 2,
then (m′, σ′′m) output by B1 is a valid forgery for the underlying ATS.

In conclusion, since the ATS is secure, the adversary’s advantage in winning Game 2 is at most
negligible. It follows that the adversary has at most negligible advantage in Game 0, which completes
the proof of the lemma. Concretely, combining (9), (11), (12), (13) proves (4), as required. ut

B Proof of Lemma 2

Proof. We prove the lemma using a sequence of four games.

Game 0. This is the privacy against the public game in Figure 2 and applied to the generic scheme S. If
W0 is the event that the output of the game is 1 then

Advpriv1
A,S (λ) =

∣∣2 Pr[W0]− 1
∣∣. (14)

Game 1. Game 1 is the same as Game 0 except that the response to O2(·, ·) tracing queries is always fail.
Recall that the game in Figure 2 allows the adversary to query O2 with any (mi, σi) pair, but requires
that (mi, σi) have not been obtained by querying the signing oracle O1. As such, if the signature scheme
SIG is strongly unforgeable, then the adversary’s advantage in Game 1 is at most negligibly different
from its advantage in Game 0. In particular, if W1 is the event that the output of the game is 1 then
there is an adversary B1 such that∣∣Pr[W1]− Pr[W0]

∣∣ ≤ Adveufcma
B1,SIG(λ) (15)

Game 2. Game 2 is the same as Game 1 except that the signing oracle O1(C0, C1,m) is modified to
behave as follows: when outputting the response σ = (ct , π, tg), the proof π in Step 3 of Combine is
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generated using the simulator Sim which is given the statement (compk , pk t,m, ct) as input. Because the
simulator generates proofs that are computationally indistinguishable from real proofs, the adversary’s
advantage in Game 2 is at most negligibly different from its advantage in Game 1. In particular, if W2

is the event that the output of the game is 1 then there is an adversary B3 such that∣∣Pr[W2]− Pr[W1]
∣∣ ≤ Q ·Advhvzk

B3,(P,V )(λ) (16)

where the factor of Q is due to a hybrid argument across A’s signing queries.

Game 3. Game 3 is the same as Game 2 except that Step 2 of S.KeyGen is modified so that B computes
compk = COM.Commit(0, rpk ). That is, com is a commitment to 0 instead of a commitment to pk ′.
Note that this step of KeyGen is the only place in Game 2 where pk ′ is used. Therefore, because the
commitment is hiding, the adversary’s advantage in Game 3 is at most negligibly different from its
advantage in Game 2. In particular, if W3 is the event that the output of the game is 1 then∣∣Pr[W3]− Pr[W2]

∣∣ ≤ ε(λ) (17)

where ε(λ) is the hiding statistical distance of the commitment scheme.

Game 4. Game 4 is the same as Game 3 except that the signing oracle O1(C0, C1,m) is modified so
that Step 2 of Combine now computes ct ← PKE .Encrypt(pk t, 0; r). That is, the encrypted plaintext is
0 instead of an ATS signature. Note that this step is the only place in Game 3 where the plaintext ATS
signature is used. Therefore, because PKE is semantically secure, the adversary’s advantage in Game 4
is at most negligibly different from its advantage in Game 3. In particular, if W4 is the event that the
output of the game is 1 then there is an adversary B2 such that∣∣Pr[W4]− Pr[W3]

∣∣ ≤ Advindcpa
B2,PKE(λ) (18)

Finishing the proof. Finally, in Game 4, the adversary’s view is independent of the bit b. Therefore, the
adversary has advantage zero in Game 4. In particular,

Pr[W4] = 1/2. (19)

It follows that the adversary has at most negligible advantage in Game 0. Concretely, combining (14)–
(19) proves (5). This completes the proof of the lemma. ut

C Proof of Lemma 4

Proof. We prove the lemma using a sequence of games.

Game 0. This is the unforgeability and accountability game in Figure 1, applied to our Schnorr TAPS.
If W0 is the event that A wins in Game 0, then

Advforg
A,S(λ) = Pr[W0] (20)

Game 1. Let pk = (pk1, . . . , pkn, pk t, pk cs, T0, T1) be the public key given to the adversary. In addition,
the adversary is given the combiner’s secret key sk c = (pk ′, pk t, sk cs, t, ψ). Game 1 is identical to Game 0
except that we strengthen the winning condition in that the adversary must output a valid forgery
(m′, σ′) where σ′ = (R′, ct ′, π′, tg′), along with a witness (z, ρ, ψ, b1, . . . , bn) such that

RS
(

(pk1, . . . , pkn, pk t, T0, T1, R
′, c′, ct ′) ; (z, ρ, ψ, b1, . . . , bn)

)
= true. (21)

where RS is defined in (6) and c′ ← H(R′,m′).
We build a Game 1 adversary A′ from a Game 0 adversary A. A′ runs A, answering all of its queries,

until it obtains fromA a messagem′ and (R′, ct ′) to form a validRS statement (pk1, . . . , pkn, pk t, T0, T1, R
′, c′, ct ′).

Next, A′ runs the extractor Ext for the proof system (P, V ) on the remaining execution of A. Ext outputs
a witness w := (z′′, ρ′′, ψ′′, b′′1 , . . . , b

′′
n). If w is a valid witness, then using w and sk c, A′ generates π′ and
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tg′ so that σ′ := (R′, ct ′, π′, tg′) is a valid signature for m′ with respect to the public key pk . It outputs
(m′, σ′) and w.

By definition of the extractor, if W1 is the event that A′ wins in Game 1, then

Pr[W1] ≥ (Pr[W0]− κ(λ))/q(λ) (22)

Finishing the Proof. Next, we show that an adversary A′ = (A0,A1) that can win in Game 1 can be
used to construct an ATS adversary B to break security of the underlying Schnorr ATS with the same
advantage as A′. In particular, we show that

Advforg
B,AT S(λ) ≥ Pr[W1] (23)

Adversary B works as follows:

- run A0 and receive from A0 the tuple (n, t, C, state0) where C ⊆ [n].
- send (n, t, C) to its own Schnorr ATS challenger and receives back pk ′ = (pk1, . . . , pkn) and (sk1, . . . , skn).
- Generate (pk cs, sk cs)←$ SIG.KeyGen(λ) and sk e ←$ Zq.
- Encrypt t with ElGamal: ψ ←$ Zq and (T0, T1)← (gψ, gthψ).
- Construct pk , sk c, sk t as in the KeyGen procedure.
- run A1(pk , {sk i}i∈C , sk c, sk t, state0).
- A1 issues signing queries, which B answers by querying its own signing oracle. B receives σmi =

(Ri, zi) in response, constructs a TAPS signature, and sends the result to A1.
- EventuallyA1 outputs a forgery (m′, σ′) = (m′, (R′, ct ′, π′, tg′)) along with a witness (z, ρ, ψ, b1, . . . , bn)

such that (21) holds. In particular, thanks to condition (4) in Figure 6 we know that bi ∈ {0, 1} for
i ∈ [n].

- Let C ⊆ [n] be the set whose characteristic vector is (b1, . . . , bn) ∈ {0, 1}n.
- Output the Schnorr ATS forgery

(
m′, σ = (R′, z, C)

)
.

We argue that if A′ = (A0,A1) wins in Game 1, then
(
m′, σ = (R′, z, C)

)
output by B is a forgery

for the underlying Schnorr ATS. First, condition (1) in Figure 6 implies that
(
m′, σ = (R′, z, C)

)
is

a valid Schnorr ATS signature with respect to pk ′. Second, condition (3) implies that |C| = t. Third,
condition (2) implies that the Schnorr TAPS tracing algorithm will compute gz in its step 3 and then
output the set C. Since A′ won in Game 1, this C is such that

(
m′, (R′, z, C)

)
is a valid forgery for the

Schnorr ATS.
Now, combining (20), (22) and (23) proves (7), as required. ut

D Proof of Lemma 5

Proof. We prove the lemma using a sequence of games.

Game 0. This is the privacy against the public game in Figure 2 and applied to the Schnorr scheme S.
If W0 is the event that the output of the game is 1 then

Advpriv1
A,S (λ) =

∣∣2 Pr[W0]− 1
∣∣. (24)

Game 1. Game 1 is the same as Game 0 except that the response to O2(·, ·) tracing queries is always
fail. Recall that any query the adversary makes to O2 cannot be the output from the signing oracle O1.
Therefore, if the signature scheme SIG is strongly unforgeable, as in Definition 3, then the adversary’s
advantage in Game 1 is at most negligibly different from its advantage in Game 0. As such, if W1 is the
event that the output of the game is 1 then there is an adversary B1 such that∣∣Pr[W1]− Pr[W0]

∣∣ ≤ Adveufcma
B1,SIG(λ) (25)

Game 2. Game 2 is the same as Game 1 except that the signing oracle O1(C0, C1,m) is modified to behave
as follows: when outputting the response σ = (R, ct , π, tg), the proof π in Step 4 of Combine is generated
using the zero knowledge simulator Sim which is only given the statement (pk1, . . . , pkn, pk t, T0, T1, R, c, ct),
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where c← H(pk , R,m). Because the simulator generates proofs that are computationally indistinguish-
able from real proofs, the adversary’s advantage in Game 2 is at most negligibly different from its
advantage in Game 1. In particular, if W2 is the event that the output of the game is 1 then there is an
adversary B2 such that ∣∣Pr[W2]− Pr[W1]

∣∣ ≤ Q ·Advhvzk
B2,(P,V )(λ) (26)

where the factor of Q is due to a hybrid argument across A’s signing queries.

Game 3. Game 3 is the same as Game 2 except that Step 2 of KeyGen is modified so that B computes
the ElGamal ciphertext (T0, T1) as (T0, T1) ←$ G2, instead of computing an ElGamal encryption of gt.
Note that in Game 2, the threshold t is not used anywhere other than in Step 2 of KeyGen. Hence, since
DDH holds in G, the adversary’s advantage in Game 3 is at most negligibly different from its advantage
in Game 2. Concretely, if W3 is the event that the output of the game is 1 then there is a DDH adversary
B3 such that ∣∣Pr[W3]− Pr[W2]

∣∣ ≤ Advddh
B3,G(λ) (27)

Game 4. Game 4 is the same as Game 3 except that the signing oracle O1(C0, C1,m) is modified so
that Step 2 of Combine now computes the ElGamal ciphertext ct := (c0, c1) as ct ←$ G2. That is, the
ciphertext is chosen at random rather than as an ElGamal encryption of z. Note that z is never used
in Game 3 other than in this Step 2 of Combine. Therefore, because DDH holds in G, the adversary’s
advantage in Game 4 is at most negligibly different from its advantage in Game 3. Concretely, if W4 is
the event that the output of the game is 1 then there is a DDH adversary B′3 such that∣∣Pr[W4]− Pr[W3]

∣∣ ≤ Q ·Advddh
B′

3,G(λ) (28)

where the factor of Q is due to a hybrid argument across A’s signing queries.

Finishing the Proof. The adversary’s view in Game 4 is independent of the bit b, and therefore the
adversary has advantage zero in Game 4. It follows that the adversary has at most negligible advantage
in Game 0. Concretely, combining (25)–(28) proves (8). This completes the proof of the lemma. ut

E Sigma Protocol Proof for Schnorr-based TAPS

The last step of Protocol S1 from Section 5.3 uses a Sigma protocol for proving the relation RS1 from
Figure 7. We now describe how the prover performs this protocol, interacting with the verifier. We then
describe the result of making this protocol non-interactive via the Fiat-Shamir transform.

Recall that both the prover and verifier have the statement(
g, h, h1, . . . , hn, pk1, . . . , pkn, pk t, T0, T1, R, c, ct = (c0, c1), v0, v1, . . . , vn, α

)
and the prover has the witness (

z, ρ, ψ, γ, b1, . . . , bn, φ1, . . . , φn

)
.

The prover and verifier then jointly perform the protocol S1′.

Protocol S1′:

1: The prover chooses blinding factors:

kz, kρ, kγ , kψ, (kb1, . . . , kbn), (kφ1, . . . , kφn)←$ Zq

and computes the following commitments in G:
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S1 ← gkz ·
n∏
i=1

pk−c·kbii

S2a ← gkρ ; S2b ← pk
kρ
t · gkz

S3a ← gkψ ; S3b ← g
∑n
i=1 kbi · hkψ

S4a ← gkγ ; ∀ i ∈ {1, . . . , n} : S4bi ← gkbih
kγ
i

S4c ←
n∏
i=1

vi
αikbihi

kφi

(29)

2: The prover sends S1, S2a, S2b, S3a, S3b, S4a, S4b1, . . . , S4bn, S4c ∈ G to the verifier.

3: The verifier chooses a random challenge β ←$ Zq and sends β to the prover.

4: The prover computes:

ẑ ← z · β + kz

ρ̂← ρ · β + kρ

γ̂ ← γ · β + kγ

ψ̂ ← ψ · β + kψ

∀ i ∈ {1, . . . , n} : b̂i ← bi · β + kbi

∀ i ∈ {1, . . . , n} : φ̂i ← φi · β + kφi

(30)

and sends ẑ, ρ̂, γ̂, ψ̂, b̂i, φ̂i ∈ Zq for i = 1, . . . , n to the verifier.

5: The verifier outputs “accept” if

S1 ·Rβ ·
[ n∏
i=1

pk i
b̂i
]c ?

= gẑ Verify (1)

S2a · c0β
?
= gρ̂ and S2b · c1β

?
= pk ρ̂t · gẑ Verify (2)

S3a · T0β
?
= gψ̂ and S3b · T β1

?
=
( n∏
i=1

gb̂i
)
· hψ̂ Verify (3)

S4a · vβ0
?
= gγ̂ and ∀ i ∈ {1, . . . , n} : S4bi · viβ

?
= gb̂ihi

γ̂

and S4c ·
n∏
i=1

vβ·α
i

i
?
=

n∏
i=1

vα
ib̂i

i hi
φ̂i Verify (4)

This completes the description of the protocol. We next state its security theorem.

Theorem 6. The protocol is a zero-knowledge proof of knowledge for the relation RS1 from Figure 7.

The proof of Theorem 6 follows from the general theory of Sigma protocols (see, e.g. [19, example
19.5.3]).

Applying the Fiat-Shamir transform. The Fiat-Shamir transform [35] can be used to make this
protocol non-interactive. The resulting proof π for the relation RS1 contains the challenge β and the
prover’s responses, as follows:

π =
{

β, ẑ, ρ̂, γ̂, ψ̂, b̂1, . . . , b̂n, φ̂1, . . . , φ̂n ∈ Zq
}

(31)

The complete proof. The complete proof π generated by S.Combine from Figure 5 is a proof for the
relationRS from Figure 6. This proof is generated using Protocol S1 after it is made non-interactive using
Fiat-Shamir. This proof π includes all the elements in (31) above along with the elements (v0, v1, . . . , vn) ∈
Gn+1 generated in step 1 of Protocol S1. The quantity α ∈ Zq used in Step 2 of Protocol S1 is generated
via the Fiat-Shamir transform and is not included in the proof.

29



F Proof of Theorem 3

Proof. Completeness is immediate. The HVZK property follows directly from the DDH assumption and
from the HVZK property of the sigma protocol for the relation RS1 in Figure 7.

It remains to prove that the protocol is an argument of knowledge for RS . The sigma proto-
col extractor for the relation RS1 in Figure 7 will extract from a malicious prover a valid witness
(z, ρ, ψ, γ, b1, . . . , bn, φ1, . . . , φn) for RS1. As Equations (1), (2), (3) are the same in both RS and RS1,
we need only prove that equation (4) in RS1 implies that bi(1− bi) = 0 for all i ∈ [n] (and consequently,
bi ∈ {0, 1}).

Suppose A is able to produce a vector (v0, v1, . . . , vn) ∈ Gn+1 such that the extracted witness satisfies
Equation (4) in RS1, but bi(1 − bi) 6= 0 for some i ∈ [n]. We show that this A can be used to solve
discrete log in G.

By Equation (4), the extracted witness must satisfy

n∏
i=1

(gbihγi )α
i(1−bi) =

n∏
i=1

hφii .

This leads to

gκ =

n∏
i=1

h
φi−αiγ(1−bi)
i where κ :=

n∑
i=1

αibi(1− bi).

Since bi(1− bi) 6= 0 for some i ∈ [n], and α is chosen at random after the prover commits to b1, . . . , bn,
it follows that κ 6= 0 with probability at least 1 − n/q. Hence, with probability close to 1 we obtain a
non-trivial relation between the random independent generators g, h1, . . . , hn. If A can produce such a
relation, then A can be used to solve discrete log in G by a standard reduction (see, e.g., [19, ex. 10.19]).
Therefore, if discrete log in G is hard and the extracted witness satisfies Equation (4), then it must be
that bi(1− bi) = 0 for all i ∈ [n]. ut

G Proof of Theorem 5

We say that P1 is an eBP instance generator if P1 generates an ReBP statement as follows: P1 first
outputs some V = (vi,j) ∈ G`×n and u′ ∈ G`, then an honest party samples a random a ←$ Gn, and
finally P1(a) outputs an R1CS program P and u ∈ G. We say that P1 generated the ReBP statement
(P,a, u,V,u′). We write P1 ∈ IGeBP to indicate that P1 is an eBP instance generator.

Let us restate Theorem 5 and then prove it.

Theorem 5. Suppose that the discrete log assumption holds in the group G. Then there is an HVZK
restricted argument of knowledge as in Definition 10 for ReBP where the proof size is the same as in the
bulletproofs system for RBP, and proof generation and verification times differ by at most the time to
compute (n+ 1)` exponentiations in G. The restricted argument of knowledge property holds with respect
to an eBP instance generator P1 ∈ IGeBP.

To prove the theorem we note that bulletproofs [22,24] operates in two steps. In the first step, a
compiler is used to compile the relation

RBP :=
{

(P, a ∈ Gn, u ∈ G) ; w ∈ Znq
}

iff P (w) = 1 and aw = u,

into an inner-product relation

RIP :=
{(

b, c ∈ Gn
′
, g, h ∈ G

)
;
(
β,γ ∈ Zn

′

q , δ ∈ Zq
)}

where h = bβ · cγ · gδ and 〈β,γ〉 = δ

(32)

for some n′ ≥ n. Here 〈β,γ〉 is the inner product of the vectors β and γ, and b, c, g are random generators
of G. The compiler ensures that an HVZK argument of knowledge for this RIP instance implies an HVZK
argument of knowledge for the original RBP instance. We note that this compiler is itself a public coin
interactive protocol.
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The second step, is an HVZK argument of knowledge for RIP. To do so, bulletproofs uses a log2(n′)-
round protocol between the prover and the verifier called an inner-produce argument (IPA). There is
an extractor, called the IPA extractor Ext ipa with the following property. For every prover (P1,P2), if
(b, c, g, h) ←$ P1(λ) is an RIP statement for which P2 successfully convinces the verifier, then the IPA
extractor extracts (β,γ, δ) from P2 such that either

- (β,γ, δ) is a valid RIP witness for (b, c, g, h), or
- (β,γ, δ) is a relation among the generators b, c, g, namely bβcγgδ = 1.

Hence, if discrete log in G is hard and b, c, g are random independent generators in G, then the latter
case cannot happen, and the IPA extractor Ext ipa must extract a valid witness for the RIP statement
(b, c, g, h). Although the IPA protocol from [22,24] is not designed to be HVZK, it can be made HVZK
by adding a round of blinding.

The protocol for ReBP. We next describe the required HVZK argument of knowledge for the relation
ReBP defined in Section 5.4. Recall that

ReBP :=
{

(P,a, u,V,u′) ; w ∈ Znq
}

iff P (w) = 1, aw = u, and Vw = u′,

where V ∈ G`×n and u′ ∈ G`. We can treat (P,a, u) as a RBP instance and compile it to a RIP instance
(b, c, g, h) with witness (β,γ, δ). Recall from Eq. (32) that

bβ · cγ · gδ = h and 〈β,γ〉 = δ.

The compiler has an important property: it compiles a witness w ∈ Znq for RBP into a witness (β,γ, δ)
for RIP where w is a prefix of β. In particular, we can write

β = (w,β′) and b = (b1,b2)

where β′ ∈ Zn
′−n
q , b1 ∈ Gn, and b2 ∈ Gn

′−n.
(33)

Now, the protocol for anReBP instance (P,a, u,V,u′) is shown in Figure 9. The prover’s and verifier’s
running time beyond the inner product argument is dominated by step 2 which is about the time to
compute (n+ 1)` exponentiations in G, as required.

Security. It remains to show that Protocol eBP is an HVZK argument of knowledge for ReBP. Com-
pleteness and HVZK follow immediately from these properties of the inner product argument in step 3. It
remains to construct an extractor for a convincing prover P ∗. To construct the extractor, it is convenient
to first define the following game between an adversary A and a challenger:

The adaptive vector discrete log game in a group G of order q:

1: A begins by choosing parameters m, k ∈ N and a vector v ∈ Gm. A then sends (m, k,v) to the
challenger.

2: The challenger samples a←$ Gk and sends a to A,

3: A outputs α = (ν,ω) ∈ Zmq × Zkq .

Let h := (v‖a) ∈ Gm+k. The adversary wins the game if ω 6= 0 and hα = 1, where 1 is the identity
element of G. The condition ω 6= 0 is needed to ensure that A cannot trivially satisfy the relation hα = 1.

For a group family G = {Gλ}λ∈N, let Advavdl
A,G(λ) be the probability that A wins the game in the group

Gλ.

Definition 11. We say that the adaptive vector discrete log assumption (AVDL) holds in the
group family G = {Gλ}λ∈N if for every PPT adversary A the function Advavdl

A,G(λ) is negligible.

Lemma 7. Let G = {Gλ}λ∈N be a family of prime order cyclic groups where q(λ) is the order of Gλ.
If the discrete log assumption holds in G, then so does the adaptive vector discrete log assumption. In
particular, for every AVDL adversary A that outputs m in step 1 of the adaptive vector discrete log game,
there exists a discrete log adversary B such that

Advavdl
A,G(λ) ≤ Advdlog

B,G (λ) + 1/q(λ) (35)

where E[time(B)] ≤ (m+ 1) · time(A)/ε for ε := Advavdl
A,G(λ).
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Protocol eBP for an ReBP instance (P,a, u,V,u′):

1: The verifier choose a random ξ ←$ Zq and sends ξ to the prover.

2: For (P,a, u,V,u′), let v1, . . . ,v` ∈ Gn be the rows of the matrix V, and let u′ = (u1, . . . , u`) ∈ G`.
Suppose that (P,a, u) compiles to an RIP instance (b, c, g, h), where b = (b1,b2) ∈ Gn

′
as in (33). The

witness w ∈ Znq compiles to an RIP witness (β,γ, δ) where β = (w,β′) ∈ Zn
′
q .

The prover and verifier compute

b̂1 ← b1 ◦ vξ1 ◦ v
(ξ2)
2 ◦ · · · ◦ v(ξ`)

` ∈ Gn

ĥ← h · uξ1 · u
(ξ2)
2 · · ·u(ξ`)

` ∈ G

b̂← (b̂1,b2) ∈ Gn
′

(34)

where b◦v denotes the Hadamard product of the vectors b and v. Since bβ ·cγ ·gδ = h and β = (w,β′)
and vw

i = ui for i = 1, . . . , `, it follows that

(b̂)β · cγ · gδ = ĥ.

3: The prover and verifier now execute the HVZK inner-product argument to convince the verifier that the
prover has a valid witness for the RIP instance (b̂, c, g, ĥ). The prover’s witness is (β,γ, δ).

Fig. 9. A protocol for an ReBP instance (P,a, u,V,u′).

Proof. Let G be a group of of prime order q in the given group family. We use adversary A to build an
adversary B that can solve the discrete log problem in G. Algorithm B is given random g, h ∈ G and
needs to output κ ∈ Zq such that gκ = h.

Algorithm B is shown in Figure 10. The main part of the proof is to show that step (9) in the
algorithm is valid, namely that γ 6= 0 with high probability. Recall that (37) in Figure 10 defines γ ∈ Zq
as

γ ←
m+1∑
j=1

k∑
i=1

λjγj,i · ωj,i.

Then γ ∈ Zq is the direct product of two vectors ~γ and ~ω in Zk(m+1)
q , where

~γ :=
(
γ1,1, . . . , γm+1,k

)
; ~ω :=

(
λ1ω1,1, . . . , λm+1ωm+1,k

)
.

We make two observations about these vectors. First, the vector ~γ, whose elements are sampled as in

step (3) in Figure 10, is sampled uniformly in Zk(m+1)
q and is independent of the adversary’s view. Second,

the vector ~ω must be non-zero. To see why, choose some j ∈ [m+ 1] such that λj 6= 0. Then if ~ω = 0 it
must be that ωj = 0, which violates the requirements on A.

The first observation lets us treat ~γ as if it were sampled uniformly after the vector ~ω is chosen. The
second observation implies that the set of vectors orthogonal to ~ω is a linear space of co-dimension one.

Therefore the event that γ = 0 is the same as the event that a random vector in Zk(m+1)
q falls in a linear

space of co-dimension one, which happens with probability 1/q. Hence,

Pr
[
γ = 0

]
= 1/q.

Next, let E be the event that B does not abort in step (4). We know that Pr[E ] = Advavdl
A,G(λ) and

therefore
Advdlog

B,G (λ) = Pr
[
E and γ 6= 0

]
≥ Pr

[
E
]
− Pr

[
γ = 0

]
= Advavdl

A,G(λ)− (1/q)

from which (35) follows.
Finally, the running time of B is dominated by its time in steps (4) and (6). Since each iteration

in step (6) produces an output with probability ε = Advavdl
A,G(λ), the expected number of iterations in

32



Input: g, h ∈ G, Output: κ ∈ Zq such that gκ = h.

1: Run A to get m, k ∈ N and a vector v ∈ Gm.

2: Sample βi, γi ←$ Zq for i ∈ [k].

3: ai ← gβihγi ∈ G and a = (a1, . . . , ak) ∈ Gk.

4: Send a ∈ Gk to A. If A outputs fail then abort.

5: Otherwise, A outputs α = (ν,ω) ∈ Zmq × Zkq where ω 6= 0 and hα = 1 for h := (v‖a) ∈ Gm+k.

6: Repeat:

rerun steps (1)–(5) while giving A the same randomness as in the first
run, but choosing fresh βi, γi ←$ Zq for i ∈ [k] in step (2).

until we obtain m successful outputs from A.

7: From steps (4) and (6) we now have m+ 1 vectors: for j = 1, . . . ,m+ 1

αj = (νj ,ωj) ∈ Zmq × Zkq where ωj 6= 0 and (v‖aj)αj = vνja
ωj
j = 1 (36)

Here aj =
(
aj,1, . . . , aj,k

)
∈ Gk where aj,i = gβj,i · hγj,i ∈ G for i ∈ [k].

We write ωj =
(
ωj,1, . . . , ωj,k

)
for j ∈ [m+ 1].

8: Find a non-zero vector λ := (λ1, . . . , λm+1) ∈ Zm+1
q such that

m+1∑
j=1

λj · νj = 0.

Then by taking the weighted product of the (m+ 1) relations in (36) we obtain

(a1)λ1ω1 · (a2)λ2ω2 · · · (am+1)λm+1ωm+1 = 1.

By definition of a1, . . . ,am+1 ∈ Gk, this implies that gβhγ = 1 where β, γ ∈ Zq are defined as

β ←
m+1∑
j=1

k∑
i=1

λjβj,i · ωj,i and γ ←
m+1∑
j=1

k∑
i=1

λjγj,i · ωj,i (37)

9: Output κ← −β/γ ∈ Zq. We prove that γ 6= 0 w.h.p in the body of the proof.

Fig. 10. The discrete log algorithm B from an AVDL adversary A.
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On input (P,a, u,V,u′) do:

1: For i = 1, . . . , `+ 1 do:
a: Choose ξi ←$ Zq.
b: Restart P2(state) from the beginning sending it ξi in step 1 of Protocol eBP (Figure 9). Step 2 of the

protocol constructs an RIP instance (b̂i, c, g, ĥi) which is known to both P2 and Ext .

c: Run the IPA extractor Ext ipa on P2 for theRIP instance (b̂i, c, g, ĥi). Ext ipa outputs the extracted witness

0 6= (βi,γi, δi) ∈ Z2n′+1
q .

2: Now Ext has (`+ 1) extracted witnesses 0 6= (βi,γi, δi) ∈ Z2n′+1
q for i ∈ [`+ 1].

3: If there is an i ∈ [`+ 1] such that (βi,γi, δi) is not a valid witness for the RIP instance (b̂i, c, g, ĥi), then Ext
outputs fail and stops.

4: If there are i, j ∈ [`+ 1] such that (βi,γi, δi) 6= (βj ,γj , δj) then Ext outputs fail and stops.

5: Otherwise, (βi,γi, δi) = (β1,γ1, δ1) for all i ∈ [`+ 1]. Write (β,γ, δ) := (β1,γ1, δ1).

6: Write β as β = (w,β′) ∈ Znq × Zn
′−n
q ; Ext outputs w ∈ Znq and stops.

Fig. 11. The extractor Ext for Protocol eBP in Figure 9.

step (6) is m/ε. Therefore

E
[
time(B)

]
≤ time(A)︸ ︷︷ ︸

step (4)

+ (m/ε) · time(A)︸ ︷︷ ︸
step (6)

≤
(
(m+ 1)/ε

)
· time(A)

as claimed. ut

The extractor for Protocol eBP. We now build the extractor for Protocol in Figure 9. This is
captured in the following lemma that, in combination with Lemma 7, concludes the proof of Theorem 5.

Lemma 8. Suppose that the adaptive vector discrete log assumption (AVDL) holds in G. Let P∗ =
(P1,P2) be a prover in Protocol eBP, where the instance generator P1 is in IGeBP as defined in Theorem 5.
Then there is an extractor Ext such that the functions

ε1(λ) := Pr
[〈
P2(state);V(x)

〉
= 1 : (x, state)←$ P1(1λ)

]
ε2(λ) := Pr

[
(x,w) ∈ ReBP : (x, state)←$ P1(1λ), w←$ ExtP2(state)(x)

]
satisfy

ε2(λ) ≥
(
ε1(λ)− κ(λ)

)
/2q(λ), (38)

where κ and q are the knowledge error and tightness for the inner product argument (IPA) extractor
Ext ipa for RIP. Moreover, whenever P1 outputs a ReBP instance (P,a, u,V,u′) where V ∈ G`×n, the
expected running time of Ext is time(Ext) ≤ O

(
2(`+ 1)time(Ext ipa)

)
.

Proof. Let us describe how Ext works. Prover P1(1λ) runs and outputs a ReBP instance (P,a, u,V,u′).
This instance is given as input to the extractor Ext , which then interacts with the oracle P2(state), and
needs to produce a witness w ∈ Znq for the ReBP instance (P,a, u,V,u′).

The extractor Ext uses the IPA extractor Ext ipa and works as shown in Figure 11. For now let us
assume that the IPA extractor Ext ipa is perfect: whenever it is invoked on an RIP instance (b̂, c, g, ĥ) it

either returns a valid RIP witness or a valid relation among the generators b̂, c, g. We will address an
imperfect IPA extractor at the end of the proof.

We prove that the extractor Ext in Figure 11 satisfies the requirements of the lemma. There are three
cases.
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Case 1. Ext could fail in step 3. This means that for some i ∈ [`+1], the extracted witness (βi,γi, δi) ∈
Z2n′+1
q in step 3 is not a valid witness for (b̂i, c, g, ĥi). Instead, it must be a relation among the generators

b̂i, c, g, namely
(b̂i)

βi · cγi · gδi = 1

and βi,γi, δi are not all zero. Write βi = (w,β′) ∈ Znq × Zn′−n
q . Then expanding b̂i out using (34) gives[

vξiw1 · vξ
2
iw

2 · · ·vξ
`
iw
`

]
·
[
bβi · cγi · gδi

]
= 1.

This is a relation among the group elements in V and the randomly sampled group elements in b, c, g.
Now, because of the restriction on how P1 operates, the prover (P1,P2) along with the IPA extractor can
be used to break the AVDL assumption. Hence, this case can happen with at most negligible probability.

Case 2. Ext could fail in step 4. This means that two of the extracted witnesses, say numbers i and j,
are valid and satisfy

(b̂i)
βi · cγi · gδi = ĥi (b̂j)

βj · cγj · gδj = ĥj

and (βi,γi, δi) 6= (βj ,γj , δj). Write βi = (wi,β
′
i) ∈ Znq × Zn′−n

q . Then expanding out b̂i, b̂j and ĥi, ĥj
using (34), and dividing one relation by the other gives:[

v
ξiwi−ξjwj
1 · · ·v(ξ`jwi)−(ξ

`
jwj)

`

]
·
[
bβi−βj · cγi−γj · gδi−δj

]
= u

ξi−ξj
1 · · ·uξ

`
i−ξ

`
j

`

This is a non-zero relation among the group elements in V and u′ along with the randomly sampled
group elements in b, c, g. Then because of the restriction on how P1 operates, the prover (P1,P2) along
with the IPA extractor can be used to break the AVDL assumption. Hence, this case can happen with
at most negligible probability.

Case 3. Finally, we argue that the witness output in step 6 is a valid witness for the ReBP instance
(P,a, u,V,u′). At this point we know that the common extracted witness (β,γ, δ) is a valid witness for

all (`+ 1) RIP instances (b̂i, c, g, ĥi), namely

(b̂i)
β · cγ · gδ = ĥi for i ∈ [`+ 1].

Write β = (w,β′) ∈ Znq × Zn′−n
q . Then expanding one last time using (34) gives

vξiw1 · · ·vξ
`
iw
` · bβ · cγ · gδ = h · uξi1 · · ·u

ξ`i
` for i ∈ [`+ 1]. (39)

By taking appropriate linear combinations of these (`+ 1) relations, we can separate out the constituent
relations and show that (i) vw

i = ui for i ∈ [`] and (ii) bβ · cγ · gδ = h. For example, there are unique
scalars λ1, . . . , λ`+1 ∈ Zq such that

`+1∑
i=1

λiξ
`
i = 1 and

`+1∑
i=1

λiξ
j
i = 0 for j = 0, 1, . . . , `− 1.

By taking the product of all ` + 1 equations in (39), where equation i is raised to the power of λi for
i = 1, 2, . . . , `+1, we obtain that vw

` = u`. There are similar scalars for all the other constituent relations.
Since vw

i = ui for all i ∈ [`] we have that Vw = u′. Moreover, the fact that bβ · cγ · gδ = h, and the
soundness of the bulletproofs compiler, implies that aw = u and P (w) = 1. Hence w is a valid witness
for the ReBP instance (P,a, u,V,u′), as required.

An imperfect IPA extractor. It remains to argue how to apply the argument above when the IPA extractor
is not perfect. We use a standard approach of repeated trials. We repeat the body of the loop in step (1)
of Figure 11 until ` + 1 witnesses are extracted. Let ε′2(λ) :=

(
ε1(λ)− κ(λ)

)
/2q(λ). We know that with

probability at least ε′2(λ) over the choice of b, c, g, each iteration succeeds in extracting a witness with
probability at least ε′2(λ). Therefore, with probability at least ε′2(λ), the expected number of iterations
until ` + 1 witnesses are extracted is (` + 1)/ε′2(λ). It follows that the resulting extractor satisfies the
bounds in (38). ut
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