
Powers-of-Tau to the People:
Decentralizing Setup Ceremonies

Valeria Nikolaenko1, Sam Ragsdale1, Joseph Bonneau1,3, and Dan Boneh2

1 A16Z Crypto Research Lab
2 Stanford University
3 New York University

Abstract. We propose several decentralized ceremonies for constructing
a powers-of-tau structured reference string (SRS). Our protocols make
use of a blockchain platform to run in a permissionless manner, where
anyone can contribute randomness in exchange for paying the requisite
transaction fees. The resulting SRS is secure as long as any single party
participates honestly. We introduce several protocols optimized for dif-
ferent sized powers-of-tau setups and using an on-chain or off-chain data
availability model to store the resulting string. We implement our most
efficient protocol on top of Ethereum, demonstrating practical concrete
performance.

1 Introduction

Many cryptographic protocols assume a trusted setup ceremony, a one-time pro-
cedure to generate public parameters which also generates an unwanted trapdoor
as a byproduct. Perhaps the earliest example is the accumulator scheme of Be-
naloh and de Mare [12] which requires a public modulus N such that nobody
knows its factorization N = p · q, a trapdoor which allows forging a proof that
any element is included in the accumulator.

In general, a setup ceremony consists of a randomized algorithm Setup() $→
(pp, τ). The public parameters (pp), also called a structured reference string
(SRS), must be known to all users of the system, whereas the trapdoor (τ) must
be discarded for the scheme to be secure. Such trapdoors have been called “toxic
waste” due to the importance of destroying them after the setup is complete.

In the simplest case of a fully trusted setup, a single entity computes Setup()
and is trusted to discard τ . Setup ceremonies have been conducted by several
prominent cryptocurrency applications, which have pioneered the use of secure
multiparty computation (MPC) ceremonies to avoid having any single party
ever know the final trapdoor. These ceremonies have differed in the number of
participants involved, the number of rounds, and the exact trust model, but
so far all have been facilitated by a centralized coordinator. In particular, the
coordinator has the ability to choose which parties are able to participate, mak-
ing these protocols permissioned. We review setup ceremonies run in practice in
Section 2.2.

2 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

In this work, we endeavor to remove the coordinator and build the first truly
decentralized and permissionless setup ceremony. This approach is appropri-
ate given a multiparty computation which requires only one honest participant
(sometimes called an “anytrust” or “dishonest majority” model). In this model,
there is no downside (beyond computational overhead) of allowing additional
participants to contribute to the protocol. We call this the more-the-merrier
property. A more-the-merrier protocol can safely be opened to the general pub-
lic, enabling an interesting new security property: any individual can participate
and therefore they can trust the final result (at least to the extent that they
trust themselves to have participated correctly), even if they make no assump-
tions about any of the other participants.

Powers-of-tau. We focus on a common type of ceremony which constructs a
powers-of-tau SRS. Working in elliptic curve groups G1,G2 of prime order p
with generators B1 and B2 respectively and an efficiently computable pairing,
the goal of the setup is to produce a public parameter string:

pp :=
(
τB1, τ

2B1, . . . , τ
nB1 ; τB2, τ

2B2, . . . , τ
kB2

)
∈ Gn

1 ×Gk
2 .

The value τ ∈ Zp is the trapdoor: it should be randomly generated and un-
known to anybody. The structure of this string enables efficient re-randomization.
Without knowing τ , it is possible to take an existing string pp and produce a
new randomized string pp′ by choosing a new random value τ ′ and multiplying
each component of pp by an appropriate power of τ ′. The new trapdoor will be
τ · τ ′, which is secure as long as either τ or τ ′ are unknown and neither of them
is zero.

This re-randomizability leads to a simple serial MPC protocol in which each
participant in turn re-randomizes the string. Note that this can be done on an
ongoing (or “perpetual”) basis, as new participants can continue to join and re-
randomize the string for future use. As long as each participant re-randomizes
correctly and at least one participant destroys their local randomness, the cu-
mulatively constructed string will be secure.

Applications. Powers-of-tau setup is required for many protocols:

– The KZG polynomial commitment scheme [45] requires a setup of n powers
of tau in any one of the groups (e.g., G1), plus one power of tau in the other
group (e.g., G2).

– SNARKs built from the KZG univariate polynomial commitment scheme,
such as Sonic [56], Plonk [36], and Marlin [27], require a powers-of-tau string
proportional in length to the size of the statement being proved.

– KZG commitments are also used in Verkle trees [49,52], a bandwidth-efficient
alternative to Merkle trees. Unlike a binary Merkle tree, a Verkle tree is a b-
ary tree, where each node is a vector commitment to up to b children. While
Merkle trees have O(log2 n) inclusion proof size, where n is the number of
nodes, Verkle trees have O(logb n) inclusion proof size. The most efficient
Verkle trees, e.g. BalanceProofs [64], are based on KZG polynomial commit-
ments requiring a powers-of-tau setup.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 3

– Fast proofs of multi-scalar multiplication (MSM) over arbitrary groups of size
O(log d) are possible using a powers-of-tau setup of length O(

√
d), where d

is the number of scalars and group elements [17].
– The recent Danksharding proposal [21] for sharding Ethereum relies on a

powers-of-tau string with 4096 elements in G1 and 64 in G2.

Challenges to decentralization Historically, ceremonies have been administered
by a centralized coordinator which ensures several important properties, all of
which we seek to achieve in a decentralized fashion:

– Consensus: All participants should agree on the final value of pp.
– Validity: Each participant should only be able to re-randomize the current

string (and not simply replace it with one for which the trapdoor is known).
– Data Availability: The final string must be available for all to download,

as well as the history of prior versions and participants for auditability.
– Censorship Resistance: Any willing participant should be able to con-

tribute.

In this work we demonstrate how to replace the centralized coordinator with
a smart contract, observing that blockchain platforms are designed to provide
most or all of our desired properties. In particular, blockchains inherently provide
consensus, previously done by fiat of the central coordinator, as well as censor-
ship resistance, which has not been an explicit goal of centrally coordinated
ceremonies. Validity and data availability are more interesting and provide sev-
eral design options. For validity, we can rely on on-chain (Layer-1) verification
of zero-knowledge proofs that each update is valid, or (to reduce costs) use a
Layer-2 approach. We also show that it is possible (and even cheaper) to defer
this task to users, who will verify the string before using it, which may be prefer-
able in some settings. Similarly, for data availability we might post the full string
pp on chain or, for efficiency, post only a commitment and rely on an external
data-availability layer.

Contributions. We design ceremonies with two data-availability models: one with
the entire string pp posted on-chain, and one with only a commitment to pp,
namely c = H(pp), posted on-chain and the full string stored in an external data-
availability system. See Table 1 highlighting the properties of the two models
that we develop. The latter can offer significant cost savings for large strings as
on-chain data storage is expensive.

With data available on-chain, we present an efficient pairing-based proof
construction for verifying each participant’s contribution (Section 4). We im-
plemented this protocol for the Ethereum blockchain, coding in Solidity and
using the BN254 curve. We describe our implemention in Section 6; we have also
released our open-source implementation (link). Participating in the ceremony
costs 190,000 to 11,500,000 gas (about $5 to $315 at current Ethereum prices),
depending on the size of the desired resulting parameters (in this case between
8 and 1024 powers-of-tau). The size of the setup is limited but can still be used

https://github.com/a16z/evm-powers-of-tau

4 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

to power Verkle trees, data-availability sampling, and zero-knowledge SNARKs
for small statements.

For larger strings, we develop methods that have on-chain verification, yet
only store a short commitment to the full setup on-chain (see Section 5). We
discuss how to make the data-availability solutions that can facilitate such setups
light-weight. The data-availability service only needs to be able to produce a
commitment over the data of an appropriate form and store at most two latest
contributions.

Paper organization. We discuss related work and some historical notes on setup
ceremonies in Section 2. In Section 4, we present our fully on-chain protocol
for powers-of-tau setup. In Section 5, we discuss several protocols for powers-of-
tau setup with off-chain data availability, supporting larger structured reference
strings. In Section 6, we describe our practical implementation and performance
evaluation of the fully on-chain protocol on top of Ethereum. Finally we conclude
in Section 7 by discussing various practical concerns and possible extensions,
including censorship resistance, incentives and methods to lower on-chain cost
through roll-ups, optimistic verification, batching, IVC and other techniques.

Data availability Commitment scheme Section Proof size Verifier time
On-chain none 4 Oλ(1) Oλ(n)

Off-chain
Any commitment 5.1 Oλ(logn) Oλ(logn)
AFGHO unstructured
commitment 5.2 Oλ(logn) Oλ(logn)

Fig. 1. Comparing on-chain powers-of-tau of length n to off-chain powers-of-tau with
an on-chain commitment. On-chain storage requires linear on-chain work to verify an
update. With off-chain storage we require only logarithmic on-chain work to verify an
update. The AFGHO-based proof in the third row performs better in practice than the
generic proof in the second row.

2 Related work

2.1 Multiparty setup ceremonies

Generically, any trusted setup algorithm can be implemented via secure multi-
party computation (MPC) to prevent any single entitity from learning the trap-
door. Ben-Sasson et al. [11] proposed the first multi-party protocol to sample
public parameters for a zero-knowledge proof scheme which was instantiated for
Zcash Sprout. Although this ceremony was not instantiating the powers-of-tau,
it paved the way for crowd-sourcing subsequent ceremonies.

Bowe et al. [15] designed a protocol for Groth16 [41], where constructing a
powers-of-tau public string was part of one of two phases. The protocol however

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 5

required a random beacon, an auxiliary process that produces publicly verifiable
unpredictable and unbiasable randomness. Kohlweiss, Maller, Siim, and Volkhov
[48] removed the need for a random beacon in the setup by proving that the setup
remains secure for use with zero-knowledge proofs even if the public parameters
have some degree of bias. Cohen et al. [29] demonstrated that the KZG commit-
ments also remain secure in case the public parameters have bounded bias, thus
similarly eliminating the need to use the random beacons for setups to be used
for KZG commitments. Ganesh et al. [37] gave a UC secure protocol for Groth16
setup. Kerber et al. [46] builds a UC secure protocol for updatable SRS into a
Nakamoto consensus protocol itself: a block proposer updates the SRS, security
relies on chain quality. In contrast, our protocol is chain agnostic, is open to wide
participation from users (not just from miners or validators), and has optimized
on-chain verification cost. The work of Groth, Kohlweiss, Maller, Meiklejohn,
and Miers [42] introduced an updatable SRS model, they construct a SNARK
where the SRS can be updated by anybody. The security is guaranteed as long
as at least one of the contributors is honest. The generated setup string is differ-
ent from the powers-of-tau, and the paper is not focusing on on-chain/off-chain
deployments or optimizing the verification.

All of these protocols fall in a category of the more-the-merrier protocols, as
they each require only a single one honest participant to be secure. However, all
were built with the assumption of a central coordinator. Buterin [18] suggested
a simple way to verify the update to the setup that, as we observe in this work,
opens the possibility for a gas-efficient on-chain deployment which we base our
on-chain protocol on.

Multiparty setup ceremonies have also been demonstrated for RSA-style pa-
rameter setup [14,55,38,35,43]. Chen et al. [26] demonstrated a multiparty pro-
tocol for sampling a 2,048 bit RSA modulus which can scale to thousands of
participants and only requires a single honest participant for security.

2.2 Setup ceremonies in practice

Some of the most prominent ceremonies have been run by Zcash, a privacy-
oriented blockchain project. Six participants carried out the first Zcash ceremony,
Sprout, in 2016, and 90 participants built parameters for a Sapling upgrade in
2018.

The perpetual “powers-of-tau” ceremony was first run in a continuous mode,
where contributions are still being accepted, by the team of the Semaphore
project, a privacy preserving technology for anonymous signaling on Ethereum.
The setup uses a BN254 elliptic curve and has had 71 participants so far. Other
prominent projects later used this setup to run their own ceremonies on top,
including Tornado.Cash [24] , Hermez network [44], and Loopring [32]. Similar
ceremonies on other curves were run by Aztec [6] for zkSync, a “layer two”
Ethereum scaling solution that uses zero knowledge rollups; by Filecoin [33], a
decentralized data storage protocol; by Celo [25], a layer-1 blockchain, for their
light-client Plumo; Aleo [3], a blockchain for private applications.

6 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Ethereum is currently running [34] a smaller trusted setup ceremony for its
upcoming ProtoDankSharding and DankSharding upgrades: the targeted sizes
are 212, 213, 214, 215 powers in G1 and 64 powers in G2, over the BLS12 -381
curve. Those two upgrades will increase the amount of data that the Ethereum
chain provides to clients for storage. This data will have a suggested expiry 30–
60 days, it will not be accessible for the smart contracts in full, except for short
KZG-commitments to the data. With around 95,000 contributions since its start
in Jan 13th, 2023, it is the largest trusted setup ceremony to date in terms of
participation.

2.3 Proof systems with transparent setup

It is important to note that there has been considerable research effort aimed
at building cryptographic systems with fully transparent setup; that is, setup in
which there is no trapdoor at all and therefore no trust assumption is required
for the setup ceremony. A notable effort in that direction comes from a partner-
ship of Electric Coin Company, Protocol Labs, the Filecoin Foundation, and the
Ethereum Foundation, who collaboratively work on the Halo2 proof-system [30]
that does not require a trusted setup. Halo2 powers the ZCash cryptocurrency
since Zcash Network Upgrade 5 (NU5) activated on mainnet on May 31, 2022.

Similarly, transparent setup is possible to replace RSA-style trusted setup,
using class groups of imaginary quadratic order instead of the group Z∗

N for a
large composite modulus N [54]. The Chia blockchain [28] utilizes class groups
and randomly re-samples the group parameters periodically, avoiding the need
for trusted setup.

However, known trustless systems don’t match the efficiency of the ones
based on a trusted setup: the zk-snarks have poly-logarithmic-time verification
(e.g. Halo2 and STARKs) compared to constant-time (e.g. Groth16, Plonk, Mar-
lin), and polynomial commitments have poly-logarithmic-size evaluation-opening
proofs (e.g. FRI, Dory) compared to constant-size proofs (e.g. KZG). It remains
to be an open problem and an impactful research direction to come up with a
system for the aforementioned applications that does not require a trusted setup
while providing constant-time verification, or alternatively prove an impossibility
result in this regard. In the meanwhile, a unified framework for running setup
ceremonies in a transparent, verifiable and censorship-resistant manner would
help bootstrap more efficient cryptosystems.

3 A Powers-of-Tau System: definitions

Our goal is to construct a “powers of τ ” SRS of the following form:

pp = (τB1, τ
2B1, τ

3B1, . . . , τ
nB1; τB2, τ

2B2, . . . , τ
kB2) ∈ Gn

1 ×Gk
2 , (3.1)

where τ is unknown. We will show below that a computationally-limited verifier
(e.g. a smart contract) can use the pairing to efficiently verify that pp is well
formed, namely there exists a τ ∈ Z∗

p such that pp satisfies (3.1).

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 7

Note that some applications require powers-of-τ strings in slightly different
forms. Our techniques can generally be adapted and we focus on this simplest
form. A notable case is “punctured” powers-of-τ strings which are missing a
specific element. We discuss this case in Appendix D.

Our goal is to construct pp using a sequential multi-party computation be-
tween m contributors in m rounds, such that contributor number j contributes
only in round number j, and does nothing in all other rounds. Each contributor
can efficiently prove that their participation was correct. The main challenge is
to ensure that the value of τ is unknown even if all but one of the contributors
are malicious. In this way it is possible to conduct a permissionless setup in
which any contributor is free to contribute, mediated by a smart contract which
verifies each participant’s contribution. Using a smart contract as the mediator
ensures that anyone who wants to contribute can.

Notation. We use λ ∈ Z+ to denote the security parameter. We use x ← y
to denote the assignment of the value of y to x, and write x ←$ S to denote
sampling an element from the set S independently and uniformly at random.
For a positive integer p we use Zp to denote the ring Z/pZ. We write Z∗

p for the
set of non-zero elements in Zp. For a positive integer m we use [m] to denote
the set {1, . . . ,m}. We use poly(λ) and negl(λ) to denote a polynomial function
and a negiligible function in the security parameter λ, respectively.

Definition 1. A Powers-of-Tau system is a triple of poly-time algorithms:

– GlobalSetup(1λ, n, k) → par. The algorithm generates global parameters par
that describe the three bilinear groups G1,G2,GT , each of prime order p, with
generators B1, B2, BT respectively, equipped with an efficiently computable
non-degenerate bilinear pairing e : G1×G2 → GT . These parameters are an
implicit input to the remaining algorithms.

– Update(pp, r) → (pp′, π). The algorithm uses the provided randomness r ∈
Z∗
p to update the powers-of-tau pp to pp′ along with a proof π that the update

was done correctly.
– Verify(pp, pp′, π) → {0, 1}. The algorithm checks the proof π and outputs 1

to accept the update.

We require that for all supported (n, k), all par output by GlobalSetup(1λ, n, k),
all pp ∈ Gn

1 ×Gk
2 of the form (3.1), and all r ∈ Z∗

p, we have

if (pp′, π)← Update(pp, r) then Verify(pp, pp′, π) = 1.

The GlobalSetup algorithm need only be run once and can be reused for mul-
tiple powers-of-tau setups. It is not a trusted setup in that no secret randomness
is required. GlobalSetup utilizes an algorithm GroupGen(1λ) to generate the three
additive pairing groups G1,G2,GT and their generators.

The Verify algorithm runs on chain and must therefore be as efficient as
possible to reduce transaction costs. We next define the initial state of the system
and the security requirements.

8 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Initialization. The Powers-of-Tau system begins with an initial state defined as:

pp0 := (B1,B1,B1,. . . ,B1; B2,B2,. . . ,B2) ∈ Gn
1 ×Gk

2 . (3.2)

This is equivalent to an SRS with τ = 1.

Security. We define security of a Powers-of-Tau system (Setup,Update,Verify)
using a game that captures a setting where the adversary controls all the con-
tributors except for one honest contributor. The game is stated with respect to
some predicate

Π : Zp ×W → {0, 1} .

At the end of the game the adversary outputs some w ∈ W and wins the game
if Π(τ, w) = 1, where τ is the secret exponent used to define the final powers-of-
tau. This w represents some information that A was able to learn about τ . We
give examples of some important predicates Π after the definition.

Since the prime p is determined by the security parameter, we define security
with respect to a family of predicates Π =

{
Πp : Zp ×W → {0, 1}

}
p∈P where

P is the set of all integer primes. We say that Π is poly-time if there is an
algorithm that for all p, τ, w evaluates Πp(τ, w) in polynomial time in the security
parameter λ.

Formally, Π-security is defined using a game between an adversary A and a
challenger. The game is parameterized by (n, k) and proceeds as follows:

– The challenger runs GlobalSetup(1λ, n, k) and sends the resulting global pa-
rameters par to A. This defines pp0.

– A outputs a sequence of pairs (pp1, π1), . . . , (ppℓ, πℓ).
– The challenger samples r ←$ Z∗

p, runs Update(ppℓ, r) to get (ppℓ+1, πℓ+1),
and sends (ppℓ+1, πℓ+1) to A. This emulates an honest contributor.

– Adversary A outputs a further sequence of pairs (ppℓ+2, πℓ+2), . . . , (ppm, πm)
along with a guess w ∈ W.

The adversary wins if Verify(ppi−1, ppi, πi) = 1 for all i ∈ [m], and either (i)
Πp(τm, w) = 1, where τm is the secret exponent that defines ppm, or (ii) ppm is
a malformed powers-of-tau.

We will show in Theorem 2 below how to use the pairing to efficiently test
that ppm is a well formed powers-of-tau. Hence, as long as Verify includes this
test, the only way for A to win the game is to output some w ∈ W such that
Πp(τm, w) = 1.

Definition 2. Let Π =
{
Πp : Zp × W → {0, 1}

}
p∈P be a family of poly-time

predicates. A Powers-of-Tau system is Π-secure if for all n, k that are poly(λ),
and for all PPT adversaries A, the probability that A wins the Π-security game
is a negligible function of the security parameter λ.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 9

Remark 1. Definition 2 requires that the adversary cannot compute some infor-
mation about the final τm. It does not require τm to be close to uniform in Z∗

p

because that is not possible to achieve in our settings. If the last contributor is
malicious, it could cause τm to become non-uniform in Z∗

p by repeatedly running
the update procedure until the resulting pp satisfies some property (for example,
the first ten bits of the first element in pp are zero).

Despite Remark 1, our definitional framework is sufficient for many appli-
cations. For example, suppose that the powers-of-tau is to be used in a KZG
polynomial commitment scheme [45], and we need to ensure evaluation binding,
meaning that a committed polynomial cannot be convincingly opened to two
different values at one input. To do so, let us define the family of predicates Πsdh

p

where

Πsdh
p

(
τ ∈ Zp, (c, T) ∈ Zp ×G1

)
= 1 ⇐⇒ T =

(
1

τ+c

)
B1 . (3.3)

Suppose that no PPT algorithm that takes a powers-of-tau string as input, can
find a pair (c, T) that satisfies this predicate. Then it is not difficult to show that
this implies evaluation binding for KZG. Hence, a powers-of-tau string that is
generated by a Πsdh-secure powers-of-tau system can be safely used to provide
evaluation binding in KZG.

Note that the predicate Πsdh
p can be checked in polynomial time using the

element Q1 := τB2 from the powers-of-tau string because

Πsdh
p

(
τ, (c, T)

)
= 1 ⇐⇒ e(T, Q1 + cB2) = e(B1, B2) .

We will come back to this predicate when we analyze security of our powers-of-
tau system. Other applications that require a powers-of-tau string can choose to
use other predicates to argue security.

4 Powers-of-tau setup with full data on-chain

We now describe the Update and Verify algorithms for our powers-of-tau system,
when the entire string pp is stored on chain. This is the simplest construction,
though may carry high costs for large powers-of-τ strings as it requires the verifier
to do linear work (in n and k) for each update.

Let pp be the current SRS string which is assumed to be:

pp = (P1, P2, . . . , Pn; Q1, . . . , Qk)

= (τB1, τ
2B1, . . . , τ

nB1; τB2, . . . , τ
kB2) (4.1)

for some (unknown) τ in Z∗
p.

Let r be a random element in Z∗
p. The Update(pp, r) algorithm begins by

computing the updated SRS string pp′ as

pp′ := (P ′
1, P ′

2, . . . , P ′
n; Q′

1, . . . , Q′
k)

= (rP1, r
2P2, . . . , r

nPn; rQ1, . . . , r
kQk) (4.2)

10 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Observe that

pp′ = (rτB1, r
2τ2B1, . . . , rnτnB1; rτB2, . . . , rkτkB2)

= (τ ′B1, (τ ′)2B1, . . . , (τ
′)nB1; τ ′B2, . . . , (τ ′)kB2)

where τ ′ := r · τ is the secret exponent4 for pp′. If an attacker knows τ but not
r, and r was chosen uniformly at random from Z∗

p (meaning in particular that
r ̸= 0), then the attacker will have no information about τ . Consequently, if
at least one of the contributors samples their update r randomly, and properly
destroys it, then the final secret τm = r1 ·r2 · . . . ·rm ∈ Z∗

p is randomly distributed
and unknown to anyone. This is assuming that none of the contributors set
ri = 0, which is easy to check for.

Update proofs. Next, the Update(pp, r) algorithm needs to output a proof that
the update was done correctly. In particular, the verify algorithm will need to
convince itself of the following three claims:

Check #1 - the contributor knows r: this is needed to ensure that the lat-
est update builds on the work of the preceding participants.

Check #2 - the new parameters pp′ are well-formed: there is some τ ′ ∈
Zp such that pp′ satisfies (3.1).

Check #3 - pp′ is not degenerate, namely r ̸= 0: defends against an up-
date trying to erase the setup thus undermining the contributions of previous
participants.

We will show that the verifier can efficiently check claims #2 and #3 on its own.
We first explain how to efficiently prove claim #1. To provide a zero-knowledge

proof of knowledge of r, the Update(pp, r) algorithm has two options: it can use
a Fiat-Shamir version of Schnorr’s Σ-protocol [58,59] or it can use a BLS-style
proof of possession [57] for r. The latter is more expensive to verify on-chain as
it requires the verifier to compute pairings. We therefore focus on the former
approach which works as follows:

Update(pp, r) samples a random z ←$ Z∗
p, computes

h← HASH(P ′
1 || P1 || z · P1) and π ← (z · P1, z + h · r) ∈ G1 × Zp,

and outputs the proof π ∈ G1 × Zp. Here HASH is a hash function that
outputs elements in Zp. In the security proof we will model HASH as a
random oracle.

The Verify(pp, pp′, π) algorithm (an on-chain smart contract) verifies the proof
π = (π1, π2) ∈ G1 × Zp by checking that:

4 Note that it is also possible to compute an additive update to the tau (τ ′ ← r+ τ),
however it would require the contributor to compute many multi-scalar multiplica-
tions making it less efficient.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 11

Check # 1: π2 · P1 = π1 + HASH(P ′
1 || P1 || π1) · P1

We next show how to verify claims #2 and #3.

Definition 3. We say that the string pp = (P1, P2, P3, . . . , Pn;Q1, Q2, . . . , Qk)
is well-formed if there exists τ ∈ Zp such that Pi = τ iB1 and Qℓ = τ ℓB2 for all
i = 1 . . . n and ℓ = 1 . . . k.

To verify that pp is well-formed, the verifier samples two random scalars ρ1, ρ2 ←$

Z∗
p and checks that:

Check # 2: (4.3)

e
(∑n

i=1 ρ
i-1
1 Pi, B2 +

∑k−1
ℓ=1 ρℓ2Qℓ

)
= e
(
B1 +

∑n−1
i=1 ρi1Pi,

∑k
ℓ=1 ρ

ℓ-1
2 Qℓ

)
For a well-formed string pp the check will always pass successfully, since:

e

(
τB1 +

n−1∑
i=1

(
ρi1 · τ i+1B1

)
, B2 +

k−1∑
ℓ=1

(
ρℓ2τ

ℓB2)
))

=

e

(
B1 +

n−1∑
i=1

(
ρi1 · τ iB1

)
, τ ·

(
B2 +

k−1∑
ℓ=1

(
ρℓ2τ

ℓB2)
)))

We prove that this check is sound in Theorem 2 below.
One complication is that an on-chain verifier does not have access to secure

randomness. Instead, it will generate the scalars ρ1, ρ2 ∈ Zp by hashing the string
submitted by the contributor as ρ1 ← HASH(pp′||1) and ρ2 ← HASH(pp′||2).

Finally to ensure that the updated setup is non-degenerative, the verifier
simply checks that the first element in pp′ non-zero:

Check #3: P ′
1 ̸= 0 (4.4)

Correctness: it is easy to check that the Update and Verify algorithms satisfy
our correctness requirement.

4.1 Security

We now argue that the powers-of-tau system in the previous section satisfies the
security definition (Definition 2). Recall that security is defined with respect to
a poly-time predicate family Π =

{
Πp : Zp×W → {0, 1}

}
p∈P . Let us first define

the (n, k)-Π-DH assumption. The assumption says that no PPT adversary that
takes a powers-of-tau string with secret exponent τ ∈ Zp as input, can find a
w ∈ W such that Πp(τ, w) = 1.

12 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Definition 4. Let Π =
{
Πp : Zp × W → {0, 1}

}
p∈P be a poly-time predicate

family. We say that the (n, k)-Π-DH assumption holds for the bilinear group
generator GroupGen if for all PPT algorithms A,

Pr
[
Πp

(
τ, A

(
par, τB1, τ

2B1, . . . , τ
nB1, τB2, τ

2B2, . . . , τ
kB2

)
= 1
)]
≤ negl(λ),

where par←$ GroupGen(1λ) and τ ←$ Z∗
p.

The (n, k)-Π-DH assumption encompasses a large class of standard crypto-
graphic assumptions. For example, taking Π to be the predicate family Πsdh from
(3.3) gives the so called (n, k)-Strong Diffie-Hellman (SDH) assumption [13].

Definition 5. We say that the predicate family Π =
{
Πp : Zp×W → {0, 1}

}
p∈P

is self reducible if there is a PPT algorithm Reduce such that for all p ∈ P,
all τ, r ∈ Z∗

p, and all w ∈ W we have

Πp(τ, w) = 1 =⇒ Πp

(
τ · r, Reduce(r, w)

)
= 1 .

In other words, given a valid w for τ , algorithm Reduce outputs a valid w′

for τ · r. For example, the predicate family Πsdh from (3.3) is self reducible. To
see why, observe that for all p ∈ P and r ∈ Z∗

p we have

Πsdh
p

(
τ, (c, T)

)
= 1 =⇒ Πsdh

p

(
τr, (cr, (1/r) · T)

)
= 1

because
T = 1

τ+c ·B1 =⇒ 1
r · T = 1

τr+cr ·B1 .

With these definitions in place, we can now state the security theorem.

Theorem 1. Let Π =
{
Πp : Zp ×W → {0, 1}

}
p∈P be a poly-time self reducible

predicate family. Then the powers-of-tau system in Section 4 is Π-secure, as in
Definition 2, assuming the (n, k)-Π-DH assumption holds for GroupGen and the
hash function HASH is modeled as a random oracle.

We give the proof intuition and defer the proof to the full version of the paper.

Proof idea. For now, let us assume that the proof system used in the powers-of-
tau system is zero knowledge and simulation extractable [39] even for a prover
that proves multiple statements one after the other. We will justify these two
assumptions later on.

We are given an adversary A that wins the attack game in Definition 2 with
non-negligible probability. By Theorem 2 below, the only way for A to win the
game is to output some wm ∈ W such that Πp(τm, wm) = 1. We use A to
construct an adversary B that breaks the (n, k)-Π-DH assumption. Algorithm B
is given as input an (n, k)-Π-DH challenge

ppchal := (P1, . . . , Pn;Q1, . . . , Qk) ∈ Gn
1 ×Gk

2 .

It needs to find some w ∈ W such that Πp(τ, w) = 1, where τ ∈ Z∗
p is the secret

exponent used define this challenge. Algorithm B begins by running adversary A
and the following happens:

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 13

– B receives from A a sequence of ℓ pairs (pp1, π1), . . . , (ppℓ, πℓ).
– B sends to A the pair (ppchal, π) where π is a simulated proof that ppchal is

a valid update. Here we are using the zero knowledge property of the proof
system.

– B receives fromA an additional sequence of pairs (ppℓ+2, πℓ+2), . . . , (ppm, πm)
along with a guess wm ∈ W.

Now B will use the extractor to extract from A all the randomizers rℓ+2, . . . , rm
in Z∗

p that the adversary used to update the SRS in the second set of pairs that
it output. To do so we are using the simulation extractability property of the
proof system. Now, if all the extracted randomizers are correct, then

τm = τ · (rℓ+2 · · · rm) ,

where τm is the exponent used to define ppm. Moreover, if wm output by A
indeed satisfies Πp(τm, wm) = 1, then by the self reducibility of Π, our B can
efficiently find a w such that Πp(τ, w) = 1, as required. ⊓⊔

It remains to argue that the proof system used in our powers-of-tau system
is zero knowledge and simulation extractable. We first show that the verifier’s
Check #2 is sound, namely, a malformed string pp will fail the check with over-
whelming probability.

Theorem 2. Check #2 ensures the well-formedness of pp. In particular, let p
be the size of the groups ouptut by GroupGen(1λ), and let n and k be polynomial
in the security parameter λ. Then a malformed pp will pass Check #2 with
probability at most (n−1)(k−1)

p , which is negligible in λ.

The proof of this theorem can be found in Appendix A.

We next briefly argue that the proof system used in our powers-of-tau sys-
tem is zero knowledge and simulation extractable. The proof output by algo-
rithm Update(pp, r) is a standard Schnorr proof of knowledge of discrete log
that is made non-interactive using the Fiat-Shamir transform. This proof sys-
tem is known to be zero-knowledge in the random oracle model, and simulation
extractable in the random oracle model even for a prover that proves multiple
such statements one after the other [37]. Moreover, Theorem 2 shows that a
witness extracted from a convincing prover will correspond to a valid witness
with overwhelming probability.

5 Powers-of-tau setup protocol with data off-chain

The required number of powers of tau for some applications can be as high as 224–
228, resulting in public parameters of size in the range 0.5GB–9GB. This rules out
the possibility of storing the full parameters on chain, given limitations of today’s
Layer-1 smart contract platforms. However, it is still possible to take advantage
of the anti-censorship properties of an L1 chain by posting a commitment to the

14 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

parameters on chain, while storing the parameters off chain. Each contributor
who updates the on-chain commitment proves that the update to the current off-
chain parameters is well-formed by submitting a ZK proof to the smart contract.
The contract accepts the contribution if the proof is valid.

In more detail, let Alice be the i-th contributor to the powers-of-tau. Let ppi
be the powers-of-tau before Alice’s contribution and let ppi+1 be the powers-of-
tau after. Prior to Alice’s contribution, the smart contract holds a short binding
commitment to ppi, namely ci := H(ppi), for some collision resistant hash func-
tion H. Alice will send to the contract ci+1 := H(ppi+1) along with a succinct
ZK proof π that the transition from ci to ci+1 is well formed, as discussed in
more detail in the next subsection. If the proof is valid, the contract updates
the stored hash to ci+1 and erases ci. Note that the contract places ci+1 in its
storage array; however the proof π need only be sent to the contract as call data
and does not need to be written to the contract’s storage.

We describe three ways to produce the proof π: in Section 5.1 using a generic
transparent SNARK; in Section 5.2 using the Dory polynomial commitment
scheme; and in Appendix C using an inferior method of inner-pairing product
argument.

Data availability. If the L1 chain only holds a hash of the powers-of-tau,
then the actual data must be kept elsewhere. One can use a centralized data-
availability (DA) service, such as a cloud storage provider, or a decentralized one,
such as EigenDA, Celestia, Polygon Avail, or Arweave. These data availability
services vary in many respects, including the precise guarantees and pricing
model, but they all commit to storing a large blob of data and making it publicly
available, in exchange for fees. In the DA service the data is typically addressable
by its hash-digest or a deterministic commitment. Updates can write a new copy
of the data to the DA service and old versions will still exist. Regardless, of how
the DA service is run, we only require it to attest to the availability of the data
behind the on-chain commitment, we assume that the DA service is censorship-
resistant and append-only. The DA service does not need to run any verification
on the underlying data.

Note that the DA service can safely discard an old parameter set after the
chain verifies a new parameter set, meaning that the DA service only needs to
store at most two parameter sets at any given time, meaning it scales well to
protocols with many participants.

5.1 Off-chain setup using a transparent succinct proof

Let pp be the current state of the powers-of-tau stored at some data availability
service, and let c := H(pp) be the commitment to pp stored in the smart contract
on chain. Recall that

pp =
(
P1, P2, P3, . . . , Pn; Q1, Q2, . . . , Qk) =

=
(
τB1, τ

2B1, τ
3B1, . . . , τ

nB1; τB2, τ
2B2, . . . , τ

kB2

)
∈ Gn

1 ×Gk
2

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 15

for some secret τ ∈ Zp and public B1 ∈ G1, B2 ∈ G2.
Alice wants to re-randomize pp to obtain pp′. She chooses a random r ∈ Zp,

computes

pp′ ←
(
rP1, r

2P2, r
3P3, . . . , r

nPn; rQ1, r
2Q2, . . . , r

kQk

)
=

=
(
P ′
1, P

′
2, P

′
3, . . . , P

′
n; Q′

1, Q
′
2, . . . , Q

′
k

)
∈ Gn

1 ×Gk
2

and sends pp′ to the data availability service. Next, she computes the commit-
ment c′ = H(pp′) and needs to convince the on-chain smart contract that the
transition from c to c′ is a valid transition. As explained in Section 4, Alice must
produce a succinct zero-knowledge argument of knowledge (zk-SNARK) that the
following relation holds, for random ρ1, ρ2 in Zp chosen by the verifier:

public statement: c, c′ and ρ1, ρ2 ∈ Zp , witness: pp, pp′, and r ∈ Zp ,

and the relation is satisfied if and only if

c = H(pp), c′ = H(pp′), P ′
1 = rP1, P ′

1 ̸= 0, and

e
(n∑
i=1

ρi1P
′
i , ρ2B2 +

k−1∑
j=1

ρj+1
2 Q′

j

)
= e
(
ρ1B1 +

n−1∑
i=1

ρi+1
1 P ′

i ,

k∑
j=1

ρj2Q
′
j

)
.

Note that the zero-knowledge property is needed to keep r secret.
The simplest, though not the most efficient, way to produce a succinct proof

for this relation is to use a generic zk-SNARK system (we describe better ap-
proaches in the next subsection). To use a generic zk-SNARK, we need a proof
system with the following properties: (i) transparent, namely the zk-SNARK re-
quires no trusted setup, since we cannot assume the existence of a trusted setup
in our settings; (ii) short, to reduce the cost of posting the proof on-chain; and
(iii) fast to verify, to reduce the on-chain gas costs for verification. The STARK
system [10] meets these requirements. In practice, the resulting proof is about
100KB which may be too expensive to post on chain for every update. In Sec-
tion 7 we discuss batching proofs, namely supporting multiple updates using a
single proof. This may make STARKs a viable option.

Once Alice constructs the proof π, she sends (c, c′, π) to the on-chain contract.
The contract verifies the proof, and if valid, it replaces c by c′.

5.2 Off-chain setup using AFGHO commitments on-chain

In this section we describe a more efficient approach than the one in the previous
section. We use the unstructured AFGHO commitments of Abe et al. [1] in
combination with the Dory [51] inner-pairing product arguments. This leads to
short and efficiently verifiable proofs on chain.

We again assume groups G1,G2,GT of a prime order p and a bilinear oper-
ation e : G1 ×G2 → GT . We adopt the product notation for pairing operations:
for vectors A ∈ Gn

1 and B ∈ Gn
2 we write ⟨A,B⟩ =

∑n
i=1 e(Ai, Bi). Let Γ2 ∈ Gn

2

16 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

be generators of G2 and Γ1 ∈ Gk
1 be generators of G1, all randomly chosen in a

transparent way.
Instead of the full parameters pp = (P;Q) = ((P1, P2, . . . , Pn); (Q1, Q2, . . . , Qk)),

the chain only stores P1 and AFGHO commitments (C1, C2) ∈ GT×GT on chain,
where C1 = ⟨P,Γ2⟩ ∈ GT and C2 = ⟨Γ1,Q⟩ ∈ GT .

The contributor submits a proof-of-knowledge of the discrete log of the up-
date to P1 as explained in Check #1 of Section 4 and a logarithmic-size proof
for the following inner-pairing product (IPP) relations:

C1 = ⟨P,Γ2⟩ ∧ C2 = ⟨Γ1,Q⟩ ∧
ρn1PnQ1 −B1Q1 = ⟨P, (1, ρ1, ρ

2
1, . . . , ρ

n−1
1) · (ρ1Q1 −B2)⟩ ∧

ρk2P1Qk − P1B2 = ⟨(1, ρ2, ρ22, . . . , ρk−1
2) · (ρ2P1 −B1),Q⟩ ∧ (5.1)

Pn = ⟨P, (0, 0, . . . , 0, 1)⟩ ∧ P1 = ⟨P, (1, 0, . . . , 0, 0)⟩
Qk = ⟨Q, (0, 0, . . . , 0, 1)⟩ ∧ Q1 = ⟨Q, (1, 0, . . . , 0, 0)⟩

We give further details on this construction in Appendix B.

6 Implementation and Evaluation on Ethereum

In this section, we analyse the practicality of our fully on-chain setup ceremony,
presented in Section 4. We implemented our protocol on top of Ethereum [20],
the most popular smart contract platform. Currently (as of May 2023), Ethereum
natively supports only one group with bilinear pairing, BN254 (the initial EIP-
197 [62] describes the curve equations). This group is foundational to multiple
projects (e.g. Aztec, zkSync) although unfortunately its security has been low-
ered with recent attacks [7], and now estimated [47] to be at 100-bits level.
Ethereum consensus layer uses BLS12-381, which is another pairing-friendly
group, and also a popular choice for other projects (e.g. Aztec and Filecoin),
has stronger security guarantees, however the precompiles for this curve are not
available on Ethereum yet, though have been suggested (EIP-2537 [4]) alongside
precompiles for other pairing-friendly curves BLS12-377 (EIP-2539 [63]) and
BW6-761 (EIP-3026 [66]). The supported operations are scalar-multiplication
and addition in G1 and a pairing precompile, which are priced as follows accord-
ing to EIP-1108 [23]:

Name Operation Gas cost
ECADD A+B for A,B ∈ G1 150
ECMULT αA for α ∈ Zp, A ∈ G1 6,000
ECPAIR

∑k
i=1 e(Ai, Bi) = 0 34, 000 · k + 45, 000

for Ai ∈ G1, Bi ∈ G2

Each contribution is sent as calldata, which is a read-only byte array, cur-
rently priced at 16 gas per byte according to EIP-2028 [2].

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 17

n 8 16 32 64 128 256 512 1024
compute in
gas units 179,000 227,000 323,000 515,000 899,000 1,667,000 3,203,000 6,275,000

compute
cost $5 $6 $9 $14 $25 $46 $89 $174

storage in
gas units 8,192 16,384 32,768 65,536 131,072 262,144 524,288 1,048,576

storage
cost $0 $0 $1 $2 $4 $7 $15 $29

Total
(estimates)

187,192 243,384 355,768 580,536 1,030,072 1,929,144 3,727,288 7,323,576
$5 $7 $10 $16 $29 $54 $103 $203

Total
(actual)

192,162 272,217 432,702 755,340 1,406,185 2,731,526 5,474,920 11,341,136
$5 $8 $12 $21 $39 $76 $152 $315

Table 1. Estimates according to the Eq. 6.2 and actual costs. The pricing in USD is
calculated based on rough numbers on 05/01/2023: 15 gwei per gas unit and 1 ETH =
$1,850 (1 gwei = 10−9 ETH).

Fully on-chain setup for k = 1. We first consider a setup with a single element
in G2. The following pre-computation will reduce the cost of the Check #2 to
n + 3 scalar multiplications and one ECPAIR, though the check will remain to
dominate the verification cost:

Check # 2 (more efficient): for R :=

n−1∑
i=1

ρi-11 · Pi,

verify that e(B1 + ρ1R, Q1) = e(R+ ρn−1
1 Pn, B2) (6.1)

The contributor submits 64 · n+ 224 bytes of calldata: n elements of G1 (64
bytes, uncompressed5), 1 element in G2 (128 bytes, uncompressed), and a proof
which consists of one element in Zp and one element in G1. The cost of the
contribution is therefore comprised of compute and calldata storage:

compute cost: (n+ 3) · 6, 000 + 113, 000 gas (6.2)
storage cost: n · 1, 024 + 3, 584 gas

It is instructive to notice that the cost of compute is roughly 6x the cost of
storage. The compute is dominated by the multi-scalar multiplication. Most
likely it is inevitable for each element of the setup to have to be multiplied by a
scalar or be directly inserted into a pairing, it is therefore unlikely to be able to
reduce the compute cost for the fully on-chain setup. However, using techniques
of Bellare et al. [8] the scalar-multiplications might be substituted by λ-random
5 Our evaluations showed that recovering element from a compressed form would cost

significantly more than sending them in an uncompressed form directly.

18 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

subset sums for λ-security, however for Ethereum this trick does not bring any
savings. Table 1 shows estimated and concrete pricing per contribution with a
check from Eq. 6.1 based on our open-sourced implementation6.

Fully on-chain setup for k > 1. Since Ethereum does not support addition
and scalar multiplication in G2 the following alternative method for Check #2
targeting Ethereum can be used, it does one additional pairing per each power
in G2:
Check #2 (alternative):

For R =

n−2∑
i=0

ρi · Pi+1,j : e(B1 + ρR, Q1,j) = e(R+ ρn−1Pn,j , B2) (6.3)

For t = 2..k-1 : e(Pk-t,j , Qt) = e(Pk,j , B2) ∧ e(B1, Qk) = e(Pk,j , B2) (6.4)

Note that the right-hand part of the equations 6.4 can be computed once.
Note also that equations 6.3 and 6.4 are each checking the equalities of pairings,
these checks can be batched using pseudorandom scalars α0, α1, . . . , αD ∈

(
Z∗
p

)n
sampled as αi = HASH(ppj , i) to transform into a check of the sum of pairings
which is cheaper to do on Ethereum (Ethereum has an opcode that allows to
verify e(A1, B1) + ...+ e(Am, Bm) = 0):

e(A1, B1) = e(C1, D1)
e(A2, B2) = e(C2, D2)
· · ·

e(Am, Bm) = e(Cm, Dm)

⇔


e(α1A1, B1)− e(α1C1, D1)+
e(α2A2, B2)− e(α2C2, D2)+
· · ·
e(αmAm, Bm)− e(αmCm, Dm) = 0

(6.5)

Note on the use of hash functions for generation of scalars. For a 256-bits order
groups, the hash function HASH needs to output 512-bits, should be given as
inputs strings generated with invertible serialization method, and be domain-
separated (i.e. the input should be prefixed with a fixed-length string indicating
the step of the protocol and the purpose of hashing).

7 Concluding discussion and open problems

In conclusion, we note that our work shows the practicality of decentralized setup
ceremonies for the first time. These protocols can scale to support an unlimited
number of participants as blockchain performance continues to improve. Our
protocols inherit (and rely on) the ability of the underlying blockchain to support
open participation while managing potential spam and denial-of-service.

Given the more-the-merrier property of our protocols, these represent a qual-
itative security advance over the state of the art. While practical trusted setup
ceremonies have attempted to recruit a diverse and trustworthy group of par-
ticipants to convince the public that the results of the ceremony can be trusted,
6 github.com/a16z/evm-powers-of-tau

https://github.com/a16z/evm-powers-of-tau

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 19

decentralized setup ceremonies offer a stronger promise: if a participant doesn’t
trust the ceremony, they are free to contribute themselves. We hope that this
model will inspire future setup ceremonies; it may also extend to other applica-
tions such as distributed randomness beacons which can be made decentralized
and open to participation for all using blockchains.

We conclude with several open problems and directions for future work.

7.1 Incentives for participation

Several options are available to subsidize gas costs to encourage additional par-
ticipation. The simplest solution is to load funds into the setup contract and
reward each user who successfully updates the structured reference string pp,
although users will still need to first pay the requisite gas fees. Alternately,
transaction relay services, such as the nascent Gas Station Network (GSN), can
pay transaction fees for users sending data to the setup contract. The upcoming
account abstraction, EIP 4337 [19], should also help build an ecosystem of pay-
masters that would sponsor transactions for other users. This makes it possible
for an end user to participate in setup even if that user owns no crypto to pay
for gas. Finally, we note that a setup ceremony might give users a non-monetary
reward such as an NFT as a badge of participation. A challenge in all cases is
that users might pseudonymously participate many times via Sybil accounts;
while this doesn’t undermine security of the setup (assuming there was at least
one honest contributor) it may enable them to claim rewards multiple times or
drain the available budget for covering transaction fees, preventing other users
from participating cheaply.

7.2 Verifying participation

Users may wish to see an authentic list of everyone who has contributed to
the SRS. A lazy participant might see that enough participants that it trusts
contributed, and choose to use the SRS without participating themselves. Fortu-
nately, since every Ethereum transaction is signed by the party that initiates that
transaction, any user can inspect the chain and construct a list of authenticated
addresses that contributed to the ceremony since its inception.

7.3 Sequential participation and denial-of-service

Our ceremonies are designed to run without any centralized coordination, but
they do require contributions in a serial manner. The jth contributor must prove
correctness of their update relative to the previous value ppj−1. If two contrib-
utors independently submit transactions building on the same parameter set
ppj−1, only the one sequenced first will be executed successfully. The second
will fail for referencing a stale parameter set. This means that, without off-chain
coordination, at most one contribution per block is possible as contributors must
first observe ppj−1. For Ethereum this limits the ceremony to one contribution
every 12 seconds or 219,000 contributions per month.

20 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Worse, this also provides an avenue for denial-of-service and censorship:
whenever an honest contribution arrives, an attacker can create an alternative
contribution paying higher transaction fees, preempting the honest one. Such an
attack could be detected off-chain via timing analysis. A stronger defense strat-
egy against censorship could be to select one contribution among the conflicting
ones in a random but publicly-verifiable way. To lower the transaction fees, a
contributor could first register an intent to make a contribution, and only sub-
mit the actual data if it is selected. Alternatively, the setup contract can order
the registered future contributors using a public randomness beacon, giving each
user a random pre-assigned slot to contribute.

7.4 Verification with general-purpose roll-ups

Verification costs can be decreased using a general Layer-2 compute platform
such as a rollup server. ZK-Rollups (also called verifiable rollups) provide suc-
cinct proofs of execution (in our case, verifying a contribution) and hence pro-
vide equivalent security to execution on Layer-1. The two common construc-
tions today are zero-knowledge rollups and optimistic rollups, each of which
brings unique design challenges. Many (though not all) ZK-rollups themselves
rely on a (centralized) trusted setup. However, our protocol can be seen as a
way to perform new decentralized trusted setups given a single centralized one.
Or we might use a ZK-rollup which relies on a transparent setup. Alternately,
optimistic rollups require watchful observers to submit fraud proofs to detect
incorrect execution. Given the serial nature of our ceremony, general optimistic
rollups require caution as they naively require waiting for a challenge period
before accepting correct execution.

Rollups might offer significant cost savings, given that execution costs are
roughly 100× cheaper on Layer-2, and execution costs (as opposed to storage)
are over 75% of total transaction costs [50] in our evaluation. Combined with
off-chain data availability, total costs can be greatly reduced. The result of a
Layer-2 construction would be a 75% reduction in per transaction cost. The
remainder of the transaction cost is due to the storage of elliptic curve points
on Ethereum Layer-1. There are several proposals in process to decrease the
cost of Layer-2 storage on Ethereum, potentially further decreasing setup cost
(see EIP-4844 or EIP-4444). As of this writing, all production rollup servers rely
on a single centralized sequencing server, undermining the censorship resistance
benefits of an on-chain trusted setup. When these optimistic rollup Layer-2s have
decentralized their sequencing, we expect the costs outlined for a trusted setup
can be decreased 75–95%. In the interim, one could also implement a hybrid
design which allows updates via the rollup server (to save gas) but also directly
on-chain in the event of a censoring rollup sequencer.

7.5 Protocol-specific ZK rollups via proof batching

Rather than relying on a general-purpose rollup server, we can design a specific
one optimized for our application. In our ceremony, every contribution is ac-

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 21

companied by a proof of correctness, requiring a linear number of proofs in the
number of updates. We can improve things using a coordinator which compiles
a sequence of update proofs from multiple participants and aggregates them all
into a single proof that all the received updates are valid. This can be done using
proof recursion [61] or accumulation [16,9,22]. This coordinator will then post
the aggregate proof on chain along with the aggregate update to the parameters.
This coordinator can censor particular participants by refusing to accumulate
their proofs into the batch. However, since anyone can act as a coordinator, an
affected participant can find another coordinator. In the worst case, if all co-
ordinators are censoring, the participant can post their own update and proof
directly on chain, bypassing the censoring coordinators.

7.6 Protocol-specific optimistic verification and checkpointing

Another mode of operation which may offer improved performance would have
users post proofs (or even commitments to proofs with off-chain data availabil-
ity), but not rely on on-chain verification in the optimistic case. Instead, users
can post a fidelity bond which is forfeited (within a set challenge period) if an-
other user determines off-chain that their proof is incorrect and challenges it
on-chain. A caveat is that any invalidated update will also invalidate all subse-
quent updates due to the chained nature of the protocol. With this approach,
users should verify recent contributions themselves before participating to avoid
building on top of a contribution that is later invalidated.

To avoid requiring users to verify too many recent contributions before par-
ticipating, it is possible to checkpoint certain updates by including a proof that
all updates since the last checkpoint were valid. This checkpoint can be created
via proof batching as discussed above. We note that, in our protocol in Section 4,
only Check #1 needs to be repeated for each update since the last checkpoint;
the more expensive Check #2 only needs to be done once on the latest version
of the structured reference string.

7.7 Fully off-chain verification via IVC/PCD.

Another potential optimization is to conduct a ceremony with no on-chain proof
verification, but where each update includes a succinct proof that every update
since the start of the ceremony was well-formed. These proofs can be constructed
using any incrementally verifiable computation scheme (IVC). In this case the
parameters plus proof are an instantiation of proof-carrying data (PCD). With
such a protocol, it is possible to execute the ceremony using a blockchain which
only provides data availability and consensus (and no verification). Each user
can verify the succinct proof of the latest parameters before using or updating
them. The ceremony is only using the chain for its persistent storage and anti-
censorship properties.

22 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

7.8 Forking/re-starting

Throughout the paper we assumed that updates to the powers-of-tau are applied
sequentially and each update is applied to the latest state. It is also possible that
a project may build on an existing powers-of-tau string, but fork it for its own
use. A forking community can continue to re-randomize their own powers-of-tau
branch, while the rest of the world continues to re-randomize the main branch.
As such, the on-chain contract could be set up to handle forks in the update
process, where multiple powers-of-tau are continuously updated independently
of one another. Some powers-of-tau may even start afresh from scratch, perhaps
to support different tower lengths and possibly different groups.

Acknowledgments

We would like to thank Lúcás Meier, Yashvanth Kondi, Mary Maller, and Justin
Thaler for useful feedback on the early ideas underlying this work. The last
author is supported by the Simons Foundation and NTT Research.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Annual Cryptology
Conference. pp. 209–236. Springer (2010)

2. Akhunov, A., Sasson, E.B., Brand, T., Guthmann, L., Levy, A.: EIP-2028: Transac-
tion data gas cost reduction. https://eips.ethereum.org/EIPS/eip-2028 (2019)

3. Aleo: Announcing aleo setup. https://www.aleo.org/post/
announcing-aleo-setup (2021)

4. Alex Vlasov, K.O.: EIP-2537: Precompile for bls12-381 curve operations. https:
//eips.ethereum.org/EIPS/eip-2537 (2020)

5. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical application
to plug & play secure algorithmics. In: CRYPTO’20. Lecture Notes in Computer
Science, vol. 12172, pp. 513–543. Springer (2020)

6. Aztec: Universal crs setup. https://docs.zksync.io/userdocs/security/
#universal-crs-setup (2020)

7. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of cryptology 32(4), 1298–1336 (2019)

8. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular expo-
nentiation and digital signatures. In: International conference on the theory and
applications of cryptographic techniques. pp. 236–250. Springer (1998)

9. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponen-
tiation and Digital Signatures. In: Eurocrypt (1998)

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. p. 46
(2018)

11. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling
of public parameters for succinct zero knowledge proofs. In: IEEE Symposium on
Security and Privacy (2015)

https://eips.ethereum.org/EIPS/eip-2028
https://www.aleo.org/post/announcing-aleo-setup
https://www.aleo.org/post/announcing-aleo-setup
https://eips.ethereum.org/EIPS/eip-2537
https://eips.ethereum.org/EIPS/eip-2537
https://docs.zksync.io/userdocs/security/#universal-crs-setup
https://docs.zksync.io/userdocs/security/#universal-crs-setup

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 23

12. Benaloh, J., Mare, M.d.: One-way accumulators: A decentralized alternative to
digital signatures. In: Eurocrypt (1993)

13. Boneh, D., Boyen, X.: Short signatures without random oracles. In: EUROCRYPT
2004. Lecture Notes in Computer Science, vol. 3027, pp. 56–73. Springer (2004)

14. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: CRYPTO
’97. Lecture Notes in Computer Science, vol. 1294, pp. 425–439. Springer (1997)

15. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-snark
parameters in the random beacon model. Cryptology ePrint Archive (2017)

16. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: TCC (2020)

17. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing
products and applications. In: International Conference on the Theory and Appli-
cation of Cryptology and Information Security. pp. 65–97. Springer (2021)

18. Buterin, V.: How do trusted setups work? https://vitalik.ca/general/2022/
03/14/trustedsetup.html (2022)

19. Buterin, V., Weiss, Y., Tirosh, D., Nacson, S., Forshtat, A., Gazso, K., Hess, T.:
ERC-4337: Account abstraction using alt mempool. link (2021)

20. Buterin, V., et al.: Ethereum: A next-generation smart contract
and decentralized application platform. https://ethereum.org/
669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.
pdf (2014)

21. Buterin, V.: What is Danksharding (2020)
22. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short signa-

tures. J. Cryptol. 25(4), 723–747 (2012)
23. Cardozo, A.S., Williamson, Z.: EIP-1108: Reduce alt_bn128 precompile gas costs.

https://eips.ethereum.org/EIPS/eip-1108 (2018)
24. Cash, T.: Tornado.cash trusted setup ceremony. https://tornado-cash.medium.

com/tornado-cash-trusted-setup-ceremony-b846e1e00be1 (2020)
25. Celo: Plumo ceremony. https://celo.org/plumo (2020)
26. Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T., Shelat,

A., Venkitasubramaniam, M., Wang, R.: Diogenes: Lightweight scalable RSA mod-
ulus generation with a dishonest majority. In: IEEE Security and Privacy (2021)

27. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Eurocrypt (2020)

28. Cohen, B., Pietrzak, K.: The Chia Network Blockchain. https://www.chia.net/
wp-content/uploads/2022/07/ChiaGreenPaper.pdf (2019)

29. Cohen, R., Doerner, J., Kondi, Y., et al.: Guaranteed output in o(sqrt(n)) rounds
for round-robin sampling protocols. Cryptology ePrint Archive (2022)

30. Company, T.E.C.: Halo2. https://github.com/zcash/halo2
31. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.

Tech. rep., Georgia Tech (1977)
32. Devos, B.: Loopring starts zkSNARK trusted setup multi-party computation cer-

emony. link (2019)
33. FileCoin: Trusted setup complete! https://filecoin.io/blog/posts/

trusted-setup-complete/ (2020)
34. Foundation, E.: Ethereum: Powers of tau specification. https://github.com/

ethereum/kzg-ceremony-specs (2022)
35. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key

generation for semi-honest and malicious adversaries. In: CRYPTO 2018. Lecture
Notes in Computer Science, vol. 10992, pp. 331–361. Springer (2018)

https://vitalik.ca/general/2022/03/14/trustedsetup.html
https://vitalik.ca/general/2022/03/14/trustedsetup.html
https://eips.ethereum.org/EIPS/eip-4337
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://eips.ethereum.org/EIPS/eip-1108
https://tornado-cash.medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
https://tornado-cash.medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
https://celo.org/plumo
https://www.chia.net/wp-content/uploads/2022/07/ChiaGreenPaper.pdf
https://www.chia.net/wp-content/uploads/2022/07/ChiaGreenPaper.pdf
https://github.com/zcash/halo2
https://medium.loopring.io/loopring-starts-zksnark-trusted-setup-multi-party-computation-ceremony-6582874f7a5b
https://filecoin.io/blog/posts/trusted-setup-complete/
https://filecoin.io/blog/posts/trusted-setup-complete/
https://github.com/ethereum/kzg-ceremony-specs
https://github.com/ethereum/kzg-ceremony-specs

24 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

36. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Paper 2019/953 (2019)

37. Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zajac, M.: What
makes fiat–shamir zksnarks (updatable srs) simulation extractable? Cryptology
ePrint Archive, Paper 2021/511 (2021), https://eprint.iacr.org/2021/511,
https://eprint.iacr.org/2021/511

38. Gilboa, N.: Two party RSA key generation. In: CRYPTO ’99. Lecture Notes in
Computer Science, vol. 1666, pp. 116–129. Springer (1999)

39. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Advances in Cryptology - ASIACRYPT 2006, 12th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Shanghai, China, December 3-7, 2006, Proceedings. Lecture Notes in
Computer Science, vol. 4284, pp. 444–459. Springer (2006)

40. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: ASI-
ACRYPT’10. Lecture Notes in Computer Science, vol. 6477, pp. 321–340. Springer
(2010)

41. Groth, J.: On the size of pairing-based non-interactive arguments. In: Eurocrypt
(2016)

42. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-snarks. In: Annual In-
ternational Cryptology Conference. pp. 698–728. Springer (2018)

43. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA key
generation and threshold paillier in the two-party setting. J. Cryptol. 32(2), 265–
323 (2019)

44. Hermez, P.: Hermez zero-knowledge proofs. https://blog.hermez.io/
hermez-zero-knowledge-proofs/ (2020)

45. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: International conference on the theory and appli-
cation of cryptology and information security. pp. 177–194. Springer (2010)

46. Kerber, T., Kiayias, A., Kohlweiss, M.: Mining for privacy: How to bootstrap a
snarky blockchain. In: Financial Cryptography and Data Security: 25th Interna-
tional Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected
Papers, Part I 25. pp. 497–514. Springer (2021)

47. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity
for the medium prime case. In: Annual international cryptology conference. pp.
543–571. Springer (2016)

48. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: AsiaCrypt
(2021)

49. Kuszmaul, J.: V(ery short m)erkle trees. verkle trees. https://math.mit.edu/
research/highschool/primes/materials/2018/Kuszmaul.pdf (2018)

50. "l2 fees". https://l2fees.info/ (2022)
51. Lee, J.: Dory: Efficient, transparent arguments for generalised inner products

and polynomial commitments. In: Theory of Cryptography Conference. pp. 1–34.
Springer (2021)

52. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In: Theory of Cryptography Conference. pp.
499–517. Springer (2010)

53. Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: From univariate sumcheck to
updatable zk-snark. Cryptology ePrint Archive (2022)

https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/511
https://blog.hermez.io/hermez-zero-knowledge-proofs/
https://blog.hermez.io/hermez-zero-knowledge-proofs/
https://math.mit.edu/ research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/ research/highschool/primes/materials/2018/Kuszmaul.pdf
https://l2fees.info/

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 25

54. Long, L.: Binary Quadratic Forms. https://github.com/Chia-Network/
vdf-competition/blob/main/classgroups.pdf (2019)

55. Malkin, M., Wu, T.D., Boneh, D.: Experimenting with shared generation of RSA
keys. In: Proceedings of the Network and Distributed System Security Symposium,
NDSS 1999, San Diego, California, USA. The Internet Society (1999)

56. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2111–2128 (2019)

57. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 228–245. Springer
(2007)

58. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Conference
on the Theory and Application of Cryptology. pp. 239–252. Springer (1989)

59. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of cryptology
4(3), 161–174 (1991)

60. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM (JACM) 27(4), 701–717 (1980)

61. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: TCC (2008)

62. Vitalik Buterin, C.R.: EIP-197: Precompiled contracts for optimal ate pair-
ing check on the elliptic curve alt_bn128. https://eips.ethereum.org/EIPS/
eip-197 (2017)

63. Vlasov, A.: EIP-2539: Bls12-377 curve operations. https://eips.ethereum.org/
EIPS/eip-2539 (2020)

64. Wang, W., Ulichney, A., Papamanthou, C.: BalanceProofs: Maintainable Vector
Commitments with Fast Aggregation. Cryptology ePrint Archive, Paper 2022/864
(2022)

65. Waters, B., Wu, D.: Batch arguments for NP and more from standard bilinear
group assumptions. In: CRYPTO’22 (2022)

66. Youssef El Housni, Michael Connor, A.G.: EIP-3026: Bw6-761 curve operations.
https://eips.ethereum.org/EIPS/eip-3026 (2020)

67. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: International sym-
posium on symbolic and algebraic manipulation. pp. 216–226. Springer (1979)

A Proof of Theorem 2

In this section we prove Theorem 2 of Section 4 which guarantees that Check #2
guards the setup from malformed contributions.

Proof. Suppose the contributor generated a parameter set pp that passed Check #2.
We write

pp = (P1, P2, P3, . . . , Pn ; Q1, . . . , Qk) =

= (a1B1, a2B1, . . . , anB1 ; b1B2, b2B2, . . . , bkB2).

https://github.com/Chia-Network/vdf-competition/blob/main/classgroups.pdf
https://github.com/Chia-Network/vdf-competition/blob/main/classgroups.pdf
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-2539
https://eips.ethereum.org/EIPS/eip-2539
https://eips.ethereum.org/EIPS/eip-3026

26 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

If check # 2 passed, then for two random scalars x = ρ1 and y = ρ2 in Zp chosen
by the verifier the following equation holds:

(1 + a1x+ a2x
2 + . . .+ an−1x

n−1) · (b1 + b2y + . . .+ bky
k−1)−

(a1 + a2x+ . . .+ anx
n−1) · (1 + b1y + b2y

2 + . . .+ bk−1y
k−1) = 0 (A.1)

Let us define a 2-variate polynomial f(x, y) to match the left-hand side of
Eq. A.1. By the DeMillo-Lipton-Schwartz–Zippel (DLSZ) lemma [31,67,60], if f
is a non-zero polynomial, then the number of zeros of f is bounded by d ·p where
d = (n − 1)(k − 1) is the degree of f(x, y). Equivalently, the probability that
f(x, y) = 0 for x and y selected uniformly at random from Zp is bounded above
by d/p. Therefore, the probability that the polynomial f defined in Eq. A.1 is a
zero polynomial is overwhelming: it is at least 1 − (k − 1)(n − 1)/p. For a zero
polynomial f ≡ 0, its coefficients are all zero. In particular the constant term
b1 − a1 is 0 implying that a1 = b1, and we denote that by τ = a1. The rest of
the coefficients being zero implies that

coefficient of x : a1b1 − a2 = 0 ⇒ a2 = τ2

coefficient of x2 : a2b1 − a3 = 0 ⇒ a3 = τ3

. . .
coefficient of xn−1 : an−1b1 − an = 0 ⇒ an = τn

Applying the same argument to the coefficients of yi in Eq. A.1 we obtain:

coefficient of y : b2 − a1b1 = 0 ⇒ b2 = τ2

coefficient of y2 : b3 − a1b2 = 0 ⇒ b3 = τ3

. . .
coefficient of yk : bk − a1bk−1 = 0 ⇒ bk = τk

Therefore we obtain that a setup that successfully passes check #2 is well-formed
with probability at least 1− (k − 1)(n− 1)/p, as required.

Note on soundness for a punctured setup. At the end of Section 7 we explained
how to modify Check # 2 to be able to handle powers-of-tau setups with one
point missing. The soundness proof for this modified check is analogous: for
random scalars x = ρ1, y = ρ2 in Zp we define the polynomial f(x, y) to match
the left-hand side of Eq. D.3:

2N∑
i=1

i ̸=N+1
i ̸=N+2

aix
i−1

 ·
(
1 +

N−1∑
i=1

biy
i

)
−

1 +

2N−1∑
i=1
i ̸=N

i ̸=N+1

aix
i

 ·
(

N∑
i=1

biy
i−1

)
= 0

(A.2)

The probability that the polynomial f is zero is at least 1 − 2N2/p. For a zero
polynomial all of its coefficients are zero, hence the constant term b1 − a1 = 0
(denote τ = a1) and analogously we get bi = τ i for i = 1 . . . N and ai = τ i for
i = 1 . . . 2N where i ̸= N+1. The only difference in the argument, is that we use
the second pairing check (D.2) to get aN+2 = aNb2 which implies aN+2 = τN+2.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 27

B Inner-pairing product arguments for Section 5.2

We restate Eq. 5.1 of Section 5.2 again for convenience:

C1 = ⟨P,Γ2⟩ (B.1)
C2 = ⟨Γ1,Q⟩ (B.2)

ρn1PnQ1 −B1Q1 = ⟨P, (1, ρ1, ρ
2
1, . . . , ρ

n−1
1) · (ρ1Q1 −B2)⟩ (B.3)

ρk2P1Qk − P1B2 = ⟨(1, ρ2, ρ22, . . . , ρk−1
2) · (ρ2P1 −B1),Q⟩ (B.4)

Pn = ⟨P, (0, 0, . . . , 0, 1)⟩ (B.5)
P1 = ⟨P, (1, 0, . . . , 0, 0)⟩ (B.6)
Qk = ⟨Q, (0, 0, . . . , 0, 1)⟩ (B.7)
Q1 = ⟨Q, (1, 0, . . . , 0, 0)⟩ (B.8)

We first prove the soundness, namely we show that with an overwhelming
probability a setup pp = (P;Q) that satisfies the set of equations above for
random scalars ρ1 and ρ2 chosen by the verifier has to be well-formed according
to Definition 3. We denote by x = ρ1, and we write P = (a1B1, a2B1, . . . , anB1)
and Q = (b1B2, b2B2, . . . , bkB2) for some a1, . . . , an, b1, . . . , bk ∈ Zp and we
rewrite Eq. B.3 equivalently into the following equation:

xnanb1 − b1 − (a1 + xa2 + x2a3 + . . .+ xn−1an) · (xb1 − 1) = 0⇐⇒
(a1 − b1) + (a2 − a1b1)x+ (a3 − a2b1)x

2 + . . .+ (an − an−1b1)x
n−1 = 0

(B.9)

We denote the left-hand side of Eq. B.9 by f(x), where f is a polynomial of
degree n − 1 over Zp. We apply the DeMillo-Lipton-Schwartz–Zippel (DLSZ)
lemma [31,67,60], if f is a non-zero polynomial, then the number of zeros of f
is bounded by d · p where d = n − 1 is the degree of f(x). Equivalently, the
probability that f(x) = 0 for x selected uniformly at random from Zp is bounded
above by d/p. Therefore, the probability that the polynomial f defined in Eq. B.9
is a zero polynomial is overwhelming: it is at least 1 − (n − 1)/p. For a zero
polynomial f ≡ 0, its coefficients are all zero:

free term : a1 − b1 = 0⇒ a1 = b1we denote that by a1 = τ

coefficient of x : a2 − a1b1 = 0⇒ a2 = τ2

coefficient of x2 : a3 − a2b1 = 0⇒ a3 = τ3

. . .

coefficient of xn−1 : an − an−1b1 = 0⇒ an = τn

With analogous analysis of Eq. B.4 we get that bi = τ i for all i = 1..k with
probability at least 1− (k − 1)/p. This proves Theorem 3:

Theorem 3. A probabilistic polynomial-time contributor will satisfy Eq. B.3
and Eq. B.4 with a malformed setup string with probability at most (n−1)+(k−1)

p ,
which is negligible in the security parameter λ (where we assume p ≈ 22λ and
n, k being polynomial-size in λ).

28 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

The IPP protocol. We now explain the interactive version of the protocol that
can be made non-interactive with a Fiat-Shamir heuristic to be run with a verifier
as an on-chain smart-contract.

1. The prover submits C1, C2, P1, Pn, Q1, Qk ∈ G2
T ×G2

1 ×G2
2 to the verifier.

2. The prover shows that it knows the discrete log to the update of P1 (knowl-
edge of discrete log of P1 base the previous value of P1 that is currently
stored on-chain) as explained in Section 4, Eq. 4.

3. The verifier checks that the update is non-degenerative: P1 ̸= 0 and if so
replies with two random scalars ρ1, ρ2

$←− Zp.
4. The prover sends E1 ∈ G1 and E2 ∈ G2 to the verifier, where E1 =
⟨P, (1, ρ1, ρ

2
1, . . . , ρ

n−1
1)⟩ and E2 = ⟨Q, (1, ρ2, ρ

2
2, . . . , ρ

k−1
2)⟩.

5. The prover runs six Dory-IPP arguments in batch to produce a proof π that
it sends to the verifier. As we explain below.

6. The verifier checks that E1(ρ1Q1 −B2) = Pnρ
nQ1 −B1Q1, and E1(ρ2P1 −

B1)E2 = ρk2P1Qk − P1B2.
7. The verifier checks π and, if correct, updates the setup that it stores to

(C1, C2, P1) ∈ G2
T ×G1.

We now show how to construct a succinct (logarithmic-size) proof π for
Eq. B.1-B.8 using Dory inner product argument of Jonathan Lee [51]. Those
arguments allow to prove the following general relation (where the vectors of
scalars s⃗1 and s⃗2 are public and have multiplicative structure):

(D,C1, C2, E1, E2) ∈ Ln,Γ1,Γ2
(s⃗1, s⃗2) ∈ G3

T ×G1 ×G2 ⇐⇒
Exists witnesses v⃗1 ∈ G1 and v⃗2 ∈ G2 : C1 = ⟨v⃗1, Γ2⟩ C2 = ⟨Γ1, v⃗2⟩

E1 = ⟨v⃗1, s⃗1⟩ E2 = ⟨v⃗2, s⃗2⟩ D = ⟨v⃗1, v⃗2⟩

We invoke the argument six times (the arguments are batchable and allow to
squash six proofs into a single one) to prove the following less general statements,
we show two of those for Eq. B.3 and Eq. B.5 as the rest are analogous:

– For Eq. B.3: (0, C1, 0, E1, 0) ∈ Ln,Γ1,Γ2
(s⃗1, s⃗2) for scalars s⃗1 = (1, ρ1, ρ

2
1, . . . , ρ

n−1
1)

and s⃗2 = 0⃗ and witnesses v1 = P, v2 = 0⃗.
– For Eq. B.5: (0, C1, 0, Pn, 0) ∈ Ln,Γ1,Γ2

(s⃗1, s⃗2) for scalars s1 = (0, 0, 0, . . . , 0, 1),
s2 = 0⃗ and witnesses v1 = P, v2 = 0⃗.

The verifier in [51] is set up with 4 log(n) + 1 pre-computed elements of GT .
Those values are inner-products between subvectors of the vectors of generators
Γ1 and Γ2 and can be pre-computed in linear-time.

Note that in this type of setup, the secret is only used to update the setup
and prove knowledge of the discrete log of P1. The bulk of the computation,
namely proof generation, is independent of the secret chosen by the contributor.
Thus, the contributor may outsource this computation to an untrusted helper.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 29

C Off-chain setup from IPP arguments with a smaller
setup

For completeness, we briefly explain the inner-product pairing (IPP) method of
Bünz et al. [17]. It relies on a powers-of-tau SRS of a smaller size stored by the
verifier in full:

Γ1 = (αB1, α
2B1, . . . , α

2nB1), Γ2 = (βB2, β
2B2, . . . , β

2nB2)

The contributor can then commit to a larger setup of length N = η × n in G1

and G2 with structured AFGHO commitments of of Abe et al. [1] as follows:

For P = (P1, . . . ,Pη) ∈ (Gn
1 , . . . ,Gn

1) and
for Q = (Q1, . . . ,Qη) ∈ (Gn

2 , . . . ,Gn
2) :

C1 = (⟨P1,Γ1,even⟩, . . . , ⟨Pη,Γ1,even⟩) ∈ Gη
T

C2 = (⟨Γ2,even,Q1⟩, . . . , ⟨Γ1,even,Qη⟩) ∈ Gη
T

The contributor submits commitments C1,C2 to the verifier and creates TIPP-
proofs of a set of inner-pairing-product relations similar to the ones described
in Section 5.2. The resulting proofs add up to be of cumulative size O(η log(n))
and can be verified in O(η log(n)) time.

This method leads to worse practical efficiency compared to the method
described in Section 5.2, although it might yield better concrete costs if an on-
chain setup is extended by a small multiple making the resulting length N be
far from the power of two.

D Powers-of-tau with a punctured point

Some systems require a powers-of-tau string where one power in the sequence is
absent, namely

pp =
[
(Pi)

2N
i=1,i̸=N+1, (Qi)

N
i=1

]
=
[
(τ iB1)

2N
i=1,i̸=N+1, (τ iB2)

N
i=1

]
,

where the point PN+1 = τN+1B1 is absent from pp. Example systems that use
a punctured sequence include Groth’10 [40], Attema and Cramer [5], Lipmaa,
Siim, and Zajac’s Vampire scheme [53], and Waters and Wu [65]. The absence
of the point PN+1 from pp is necessary for security. Check #2 in (4) can be
modified to handle this case: the verifier will sample two random scalars ρ1, ρ2
in Z∗

p and carry out the following check that now consists of two equations:

30 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Check # 2 for punctured setup:

e
(2N∑

i=1
i ̸=N+1
i ̸=N+2

ρi-11 Pi, B2 +

N−1∑
ℓ=1

ρℓ2Qℓ

)
=

= e
(
B1 +

2N−1∑
i=1
i ̸=N

i̸=N+1

ρi1Pi,

N∑
ℓ=1

ρℓ-12 Qℓ

)
(D.1)

e
(
PN+2, B2

)
= e
(
PN , Q2

)
(D.2)

It is not difficult to see that a well-formed setup will pass the check suc-
cessfully. The soundness proof for this modified check is analogous: for random
scalars x = ρ1, y = ρ2 in Zp we define the polynomial f(x, y) to match the
left-hand side of Eq. D.3:

2N∑
i=1

i̸=N+1
i̸=N+2

aix
i−1

 ·
(
1 +

N−1∑
i=1

biy
i

)
−

1 +

2N−1∑
i=1
i ̸=N

i̸=N+1

aix
i

 ·
(

N∑
i=1

biy
i−1

)
= 0

(D.3)

The probability that the polynomial f is zero is at least 1 − 2N2/p. For a zero
polynomial all of its coefficients are zero, hence the constant term b1 − a1 = 0
(denote τ = a1) and analogously we get bi = τ i for i = 1 . . . N and ai = τ i for
i = 1 . . . 2N where i ̸= N+1. The only difference in the argument, is that we use
the second pairing check (D.2) to get aN+2 = aNb2 which implies aN+2 = τN+2.

	Powers-of-Tau to the People: Decentralizing Setup Ceremonies

