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Abstract. Side channel evaluations benefit from sound characterisa-
tions of adversarial leakage models, which are the determining factor for
attack success. Two questions are of interest: can we estimate a quantity
that captures the ideal adversary (who knows the distributions that are
involved in an attack), and can we judge how good one (or several) given
leakage models are in relation to the ideal adversary?

Existing work has lead to a proliferation of custom quantities (the hy-
pothetical information HI, perceived informatino PI, training informa-
tion TI, and learnable information LI). These quantities all provide only
(loose) bounds for the ideal adversary, they are slow to estimate, con-
vergence guarantees are only for discrete distributions, and they have
bias.

Our work shows that none of these quantities is necessary: it is possible to
characterise the ideal adversary precisely via the mutual information be-
tween the device inputs and the observed side channel traces. We achieve
this result by a careful characterisation of the distributions in play. We
also put forward a mutual information based approach to leakage certifi-
cation, with a consistent estimator, and demonstrate via a range of case
studies that our approach is simpler, faster, and correct.
Keywords: Side channels, Evaluation, Leakage Certification, Mutual
Information Estimation

1 Introduction

The mutual information enables to quantify the amount of information that
we obtain about one random variable by observing another random variable.
This is a useful concept in the context of side channels, because it enables us
to quantify how much information we get about a secret (key-dependent) device
state by observing e.g. the device power consumpion. As a consequence, the
mutual information appears across various areas in side channel research, such
as in proofs about the security of masking (e.g. [1]), in the context of side channel
distinguishers (e.g. [2]), and in the context of reasoning about the quality of so
called device leakage models (e.g. [3]) — the latter application is the focus of
our work.
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1.1 Evaluating device security via leakage certification

Device leakage models are important ingredients in side channel attacks. Side
channel attacks are highly configurable, but they always require the extraction of
information of small portions of the secret key from some observed side channel
traces (they follow a divide-and-conquer principle). The extraction of key infor-
mation from the observable side channel traces can be achieved with a wide range
of statistical and machine learning tools, which use as inputs a (key-dependent)
leakage model and the observed side channel traces. It is well known that the use
of an accurate leakage model is necessary for optimal information extraction [4].

The best leakage model (from an adversary’s point of view) would evidently
be equal to the distribution of the side channel that the device emits. We call an
adversary ideal if they know this distribution and therefore have the best model.
In order to understand the worst case security of a device, an evaluator wishes
to assess the strength of this ideal adversary.

In the context of physical side channels such as the power consumption, the
EM emanation, or device timing characteristics, the exact distribution of the
observable side channel is unknown—both adversaries and evaluators can only
work with estimations.

State of the art. An evaluator thus seeks to understand how good their leakage
model is, which is a task that was described by Durvaux et al. [3] as leakage
certification, drawing on the earlier work of Renauld et al [5]. In a series of
follow on works [6,7,8] the initial approach was further refined. To be more
precise, Durvaux et al [6] consider both aspects of leakage certication: reasoning
about the ideal adversary and comparing leakage models. The latest two papers
[7,8] only focus on reasoning about the ideal adversary. The main challenge,
as perceived in these works is to provide information bounds, because the true
distributions are unknown. Their idea works as follows.

1. The evaluator estimates a quantity called the perceived information (via
the ePI or gPI, or LI), which measures a relationship between the device
leakage model and the actual device leakage. The quantity can be estimated
by sampling from the model and from the real device. It is supposed to lower
bound the ideal adversary.

2. The evaluator estimates a quantity called the hypothetical information (via
the eHI, or TI), which is defined as the mutual information between the de-
vice leakage model and the key-dependent state. If the model is defined to be
the empirical distribution, then, assuming enough samples are available, this
quantity will converge to the mutual information between the key-dependent
state and the observed leakage (under a range of assumptions). It is supposed
to upper bound the ideal adversary

3. The evaluator uses the resp. estimated quantities to get a lower and an upper
bound for the ideal adversary. To test the quality of one leakage model, or
compare leakage models, the resp. quantities are estimated using the given
model(s).
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In [7,8] proofs are provided for convergence bounds, assuming univariate discrete
side channel observations.

Problem 1. Physical side channels are typically neither discrete nor univariate.
The argument that side channels such as power and EM are measured by digital
oscilloscopes (i.e. devices that use an analogue to digital converter) misses two
points. Firstly, modern digital oscilloscopes offer sophisticated signal amplifica-
tion and de-noising settings which produce real-valued outputs: assuming that
devices are only used in their most basic setting underestimates real-world adver-
aries. Secondly, implementations that implement masking countermeasures are
often analysed after further software processing, including filtering, and mean-
free product-combining [9], which again create real-valued outputs.

Under the assumption of discrete and uniform side channel traces, there is
in fact a consistent MI estimator availabe in the literature, see e.g. [10]. No
workaround for the estimation problem is necessary. Only if one variable is as-
sumed to be continous, or a mixture distribution, the estimation of MI becomes
an interesting problem. This problem was however also solved in a series of works
culminating in a consistent estimator for MI that can work on any type of input
data (discrete, continuous, and mixtures), by Gao et al. [11].

Last the disconnect between the experiments presented in these works (based
on continuous side channel traces, clearly visible in the code that the authors
helpfully supply) and the theory (assuming discrete side channel traces) is not
analysed. Both [7,8] acknowledge that there is an issue because of discretisation
via referencing the paper by Paninski [12], but they don’t discuss what the
impact concretely is.

Problem 2. The core idea of the existing work is to estimate the HI and the PI
and to use them as bounds to reason about the ideal adversary . However, already
Durvaux et al. [6] noticed that the PI is undefined if models are bad approxima-
tions. Recently Masure et al. [8] show that the gHI (which is one particular way
of estimating the HI) is not guaranteed to be an upper bound for the PI (when
estimated via the gPI), and that the eHI suffers from serious bias especially in
multivariate settings. We remark at this point, that the non-parametric estima-
tors that were put forward by the authors become computationally infeasible as
the number of dimension increases.

New quantities (TI and LI) were introduced to remedy efficiency problems,
but they come with a number of assumptions as well, in particular we still
need discrete data and they require parametric estimation. Summarising, the
literature shows that the HI, PI, LI, TI are limited, biased, slow to estimate,
and they offer loose bounds for the quantity of interest.

1.2 Gaps which our Contributions Seek to Close

The existing work in the side channel community in the context of leakage cer-
tification has failed to account for the fact that in many situations evaluators
are confronted with real valued side channel traces, it has misunderstood some
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of the results about mutual information estimation, and it has missed some
of the progress that has been made regarding mutual information estimation.
Our work corrects some misunderstandings, and puts leakage certification on a
modern basis.

Contributions. After a brief introduction of some notation and a review of
the side channel setting in Sect. 2, we review the state of the art of estimating
mutual information in Sect. 3. Our review recaps on the salient characteristics of
estimators, it introduces the HI and eHI from previous work, and the relatively
recent estimator by Gao et al. [11] that we will use in the context of our approach
to leakage certification.

In Sect. 4 we explain the PI and recap on the notion of regret that was
recently put forward by Masure et al. [8] and which formalises the idea in the
previous works [6,7]. We use this to formalise how to compare two given leakage
models, and then we show that the PI can be understood as quantifying an
average information loss (via the Kullback-Leibler divergence). We interprete
this result as evidence that leakage certification can be made much simpler by
directly quantifying model information via the mutual information. We then
turn our attentention to the HI and show that discretisation implies that it is
not necessarily an upper bound for the ideal adversary.

In Sect. 5 we introduce our new simple method of leakage certification, which
is based on the idea that we can estimate the mutual information that charac-
terises the ideal adversary via estimating the mutual information between the
device inputs and the side channel traces. We show in Sect. 6 when this is possi-
ble: we can do this for all leakage functions, models and noise distributions that
have been used in the side channel literature.

We move towards the practical aspects of our proposal in Sect. 7 where we
discuss our fast implementation of the estimator by Gao, and confirm experi-
mentally our theoretical result on discretisation. Finally we look at a range of
case studies in which we challenge the bounds provided by estimating the HI
and PI vs. directly esimating the ideal adversary. We find that in multivariate
settings the results from the HI/PI estimators are poor, and when comparing
leakage models, they can even be misleading. Our method remains efficient and
correct in multivariate scenarios and it is able to correctly assess different leakage
models.

Our main results contribute a novel approach for leakage certification which:

– uses a strongly consistent (thus unbiased) efficient estimator for all types of
side channel traces that can be observed in practice (discrete, continuous,
mixtures, and even probabilistic functions),

– naturally extends to the multivariate setting,

– enables to characterise the ideal adversary, and

– enables to compare arbitrary device leakage models.
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2 Preliminaries

We aim to keep this section as brief as possible, and offer deeper explanations
only for those concepts that our results are based on.

2.1 Notation

Following convention, we represent random variables with upper case letters,
and their realisations with the corresponding lower case letters and sets are
denoted with calligraphic typefaces. For two functions g and h, g ◦h denotes the
composition of the functions.

We denote the probability density function (pdf) and cumulative distribution
function (cdf) of a continuous random variable with f and F respectively. For
a discrete random variable, p will denote its probability mass function (pmf).
Whenever necessary, in a pdf, cdf or pmf we will make the corresponding random
variable explicit in the subscript (e.g. fX or FX). In particular p(X,Y ) refers to
the joint distribution (pmf in this case) of the variables X and Y .

For any random variable X, E(X) and resp. EX denote the expectation. For
simplicity we denote the conditional expectation of random variable X|Y = y
by EX|y.

We refer to an estimated quantity by using the sample size n in the subscript,
e.g. In refers to a mutual information estimate obtained from a sample with size
n, fX,n or pX,n denote the estimated pdf or pmf corresponding to a random
variable X using n samples.

The indicator function for a realisation x of X, is denoted as IX=x. We use
N (µ, σ) to denote the Gaussian/normal distribution with mean µ and stan-
dard deviation σ. We use L(0, σ) to denote a Laplacian distribution. We use
R to denote the random variable corresponding to the device noise. For any d-
dimensional vector (x1, . . . , xd) ∈ Rd the `∞ or max norm is defined as max{|xi| :
i = 1, . . . , d}. Discretised distributions are denoted by putting brackets around
them, e.g. [X]. For a real valued variable x, [x] denotes the discretised value.

When working with functions we overload notation, and use the same variable
for both the function, as well as the result of the function, and we may adapt
the inputs to the context, e.g. L(X,K) is a function, we also understood L as a
random variable, i.e. l is the realisation of L with some concrete inputs x, k.

2.2 The side channel setting

In the side channel setting we work with random variables that represent input-
s/intermediates/outputs of cryptographic processes and leakage observations:
we use x ∈ X for the input, which is mapped according to the cryptographic
process via the application of some (cryptographic) target function(s) C and
an (unknown) key k∗ ∈ K to an intermediate y ∈ Y. Implementations process
cryptographic keys in “chunks”, thus K and X have small support. The inter-
mediate value is then mapped via a (noisy) device leakage function (we discuss
properties of them subsequently) to the observable side channel trace t.
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Fig. 1: Relationships between variables

A side channel trace t is a vector of leakage points. Each point corresponds
to the physical processes that happen inside the device. Some of the physical
processes depend on the input and key and we capture their contribution to the
observable traces with the leakage function L. Other processes are independent
of the input and the key and we capture them via the independent noise variable
R.

An evaluator is assumed to be able to observe (and even control) inputs/out-
puts x ∈ X and the key k∗ of the device. The also know the function(s) C,
and they can observe the side channel leakage traces t ∈ T . An adversary can
typically either observe or control x, they know C and they observe t. Like an
evaluator, the adversary does not know L and thus uses a so-called leakage model
M for extracting key information.

Leakage models. A leakage model is a function M that maps x, k under a
target function C to Rd. A model can be assumed based on device knowledge, or
it can be estimated from real trace data. For example, a very popular standard
leakage model is the Hamming Weight function, i.e. M(x, k, C) = HW (C(x, k)).
Non-parametric estimated models are often derived by building histograms for
either pairs (x, k), or by building histograms for the target function, i.e. C(x, k).
Models can be univariate, i.e. d = 1, but they can also be multivariate. In either
case, the evaluator isolates some “points of interest” in each trace and uses these
points for model building.

A hidden, but important, point for the quantities HI and PI (and all their
estimators, we will introduce them in the coming sections) is that the model
M and the leakage L should be defined over the same space. This is because
instead of working with the unknown joint distribution (Y, T ), these quantities
work with the known distribution (Y,M) but using observed traces. Intuitively,
this point should hold for a good model, but clearly it might not hold for a model
that is a poor approximation.

Leakage functions. An important detail is that the leakage function L may
be either a deterministic or a probabilistic function of multiple variables. A
deterministic function is fully determined by its’ inputs. A probabilistic function
includes an element of chance.

The leakage function L for a specific step in the execution of an algorithm
can be simple. For instance, it can be determined by the number of bits changing
within a register, or on a bus, in the case of a memory instruction, in which case
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it can be understood as a deterministic function. In other words, for a given
input x and a fixed key k∗, it will alway produce the same value L(x, k∗), and
the distribution of L(x, k∗) is completely determined by the current state (x, k∗).

But the leakage function for a specific step in the execution of an algorithm
can also be complex. For instance, in a dedicated hardware implementation of
a non-linear function, the power consumption depends on a complex interaction
between many gates, which can result in data dependent glitches, cross-talk,
etc. In this case, for a given input x and a fixed key k∗, it can produce different
values upon repeat execution. The distribution of L thus depends on x, k∗, and
some unknown randomness S(x, k∗) that depends on x, k∗. We provide Fig. 1 as
a visual aid to understand the relationship between the variables, based on the
functions that act on them (the dashed lines indicate the random processes and
variables, the dotted line visualises that L might depend on some input and key
dependent randomness S).

We wish to emphasise the need to capture all types of leakage functions
in the context of leakage certification because an evaluator does not know the
leakage function(s) that a device exhibits and thus needs a methodology that
always returns correct results.

In the rest of this paper, T should always be understood as continuous vari-
able (or a mixture with a continuous component). Whenever estimators require
discrete inputs, we make this explicit by writing [T ] to indicate that discreti-
sation of T must take place. Whenever the probabilistic nature of the leakage
is not relevant, i.e. a statement holds irrespective of S and thus irrespective of
whether L is deterministic or probabilistic, we drop S in the text for readability.

3 Estimating Mutual Information—State of the Art

The mutual information (MI) quantifies what we can learn about a variable X
upon observing another variable Y . In the context of evaluating side channel
security, it is clear that we can use the MI to quantify how much we can learn
about a secret (key-dependent) device state upon observing the device’s side
channel.

In the context of leakage certification, we will (in the next section) also use
it to reason about the quality of a device leakage model. Intuitively, a device
leakage model is “better” if it is “closer” to the real device leakage.

In the following, we first recap how the mutual informatino can be defined,
and then how the mutual information can be estimated.

3.1 Defining Mutual Information

For general random variables X,Y (with marginal distributions PX , PY and
joint distribution PXY ), the mutual information (MI) is defined via the Radon-
Nikodym derivative [13]:

I(X;Y ) =

∫
X×Y

log
dPXY

dPXPY
dPXY .
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The definition via the Radon-Nikodym derivative links the mutual informa-
tion also with the Kullback-Leibler divergence DKL as it can be expressed as
I(X;Y ) = DKL(dPXY ||dPXdPY ) (see [13]).

If either both variables are discrete, or both variables are continuous, then the
MI can be expressed via the marginal and joint or conditional entropies4, leading
to the well known “2H” and “3H” expressions (owing to how many entropies are
in the formulae) for MI, see Equ. (1).

I(X;Y ) = H(X)−H(X|Y ) (1)

= H(X) +H(Y )−H(X,Y ) (2)

If one variable is discrete and one is continuous, or if one variable is a mixture,
then the conditional density in the 2H formula, and the joint density in the
3H formula, may not be well defined unless the involved distributions satisfy
specific conditions, see [14]5. Consequently, in situations where the distributions
are unkown, and thus one cannot verify that the conditional/joint entropies are
well defined, the conservative choice is to utilise an estimator that estimates the
mutual information via the Radon-Nikodym derivative.

3.2 MI Estimation

The crucial property of any MI estimator is how well it “approximates” the true
MI. This property is called the convergence of the estimator, and it describes the
behaviour of the estimator when we supply it with increasing amounts of data.
There exist different notions of convergence. The weakest notion is convergence
in probability, and estimators that have this property can be biased. A stronger
notion is convergence in mean, which implies asymptotic unbiasedness. Bias in
an estimator refers to the possibility that the estimator’s expected value remains
different from the true quantity being estimated. Bias is an undesireable prop-
erty, although if the bias can be described, it can typically also be corrected for.
The rate at which an unbiased estimator convergences is of practical interest as
well.

Statistical estimators often benefit from assumptions about the distribution
of the quantity that they are estimating. If such assumptions can be justified
and they are incorporated in the estimator design, then we call such estimators
“parametric”. In the case of leakage certification we do not wish to make any
assumptions and thus we are interested in non-parametric estimators.

4 We remind the reader that H(X) = EX [− log f(X)] if X continuous, and H(X) =
EX [− log p(X)], if X is discrete; the definitions are extended in the natural way for
conditional and joint distributions

5 Observe that in such cases, we have a term that corresponds to a discrete entropy
which is always positive, and a term that corresponds to a differential entropy which
can be negative. Furthermore the conditional distribution in the 2H formulae might
not exist.
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3.3 Non-parametric MI estimation

We first provide a conceptual overview of the existing estimation techiques, start-
ing from the oldest techniques and leading up to the most recent advancements.

There are different approaches to estimating the MI (non-parametrically).
One can either estimate the entropies in the 2H/3H formulas, or one can estimate
the Radon-Nikodym derivative.

Entropy based MI estimation. In the context of MI estimation based on
the 2H/3H formulae, there exist two fundamentally different families of (non-
parametric) entropy estimators: one family is based on direct density estimators
and the other family is based on k-Nearest Neighbour (k-NN) estimators. Density
based estimators directly estimate the densities in the 2H/3H formulae, whereas
the k-NN based estimators estimate the distribution of the k-nn distance as
a proxy for the density itself [15]. The before mentioned limitations of 2H/3H
estimators (i.e. both variables must either be discrete or continuous) initially
applied to both approaches. However k-NN estimators were further developed
and, in a series of works starting with [16], approaches were developed that aim
to estimate the MI directly via estimating the Radon-Nidoym derivative (thus
without estimating entropies, but still requiring that the variables have a global
joint density).

A complementary approach based on using deep learning was published by
[17] in 2018. It was suggested to be used for side channel tasks in [18]. However,
it was shown later in [19] that the claimed convergence results were erroneous.

In the side channel literature, based on the simplifying assumption of hav-
ing discrete traces, the study in [20] use an integral estimate [21]. Györfi and
van Meulen [22] showed that the integral estimator of entropy (with histogram
density estimate) is strongly consistent only if the (conditional) distribution sat-
isfies specific conditions. Hall and Morton [23] (again under certain conditions
regarding the distribution) showed that a histogram-based estimator provides
mean-square convergence when the dimension of X is 1 or 2. The family of
integral estimators does not generalise to the multivariate setting (either their
efficiency drops significantly or the convergence guarantee does not extend to
the multivariate setting). In the purely discrete setting, the plug-in estimator
produces the best results in terms of convergence as proven in [10]. This conver-
gence result was not known in the side channel literature, and instead the eHI
was developed as a means to bound the MI. Bronchain et al. [7] put forward the
notions of the HI and eHI, see equations (3) and (4), where we make the use of
a model M that approxmites T explicit for the sake of clarity.

HI(X; [T ]; [M ]) = H(X) +
∑
x∈X

pX(x)
∑
t∈[T ]

p(X,[M ])(t|x) log2 p(X,[M ])(x|t) (3)

eHIn(X; [T ]) = H(X) +
∑
x∈X

pX(x)
∑
t∈[T ]

ẽn(t|[x]) log2 ẽn(x|[t]) (4)
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The HI defines a quantity that measures the relationship between a variable
X (which in [7] is set to be either the key variable, K or the intermediate
Y = C(X,K)), and the observed (discrete or discretised) traces [T ] under a
given model density [M ]. It is easy to see that HI(X; [T ]; [M ]) = I(X; [M ]). And
if [M ] = [T ] the HI can be used to derive the MI. The empirical HI (eHI) uses the
empirical distribution ẽn(x, [t]), which can be estimated from the observed traces
[T ]. Bronchain et al. [7] show that with some assumptions the eHI converges
in probability to the MI, which is a result that was already proven for the
comparable plug-in estimator by Antos and Kontoyiannis [10] in 2001.

Nearest Neighbour Estimator for MI. Motivated by the need for a non-
parametric MI estimator that applies even to high-dimensional/multivariate
problems, Krasov et al. [16] introduced the idea of using a k nearest neigh-
bour (short k-NN) based estimator (also known as KSG estimator in the wider
statistical literature).

A recent contribution by Gao et al. [11] made a further significant step by
estimating the Radon-Nikodym derivative6 whilst requiring only local joint den-
sities: in other words, their estimator does no longer require the existance of a
joint density for the entire probability space. Their estimator essentially deals
with two cases that can occur for the joint distribution: either the sample (x, y)
is discrete (this can be detected by checking the k-nn distance), then one can use
the plug-in estimator for the Radon-Nikodym derivative; or the sample (x, y) is
locally continuous, in which case they estimate the Radon-Nikodym derivative
based on (5). They furthermore show that if either x or y are mixed, then the
continuous case applies. Consequently, their estimator can deal with any form
of mixtures. The GKOV estimator is defined as given in Equation (5).

In(X;Y ) =
1

n

n∑
i=1

Îi = log n+
1

n

n∑
i=1

(ψ(t̃i)− log(nx,i + 1)− log(ny,i + 1)) (5)

Here, ψ(u) is the digamma function ψ(u) = d
du logΓ (u) ≈ log u− 1

2u . The details
of how to compute the quantities nx,i, ny,i and t̃i can be found in Algorithm 1.

With a suitable choice of the function kn the GKOV estimator has the same
convergence rate as existing pmf/pdf based mutual information estimators, it
provides strong convergence (covergence in mean, asymptotic unbiasedness) in
all settings, and it can be generalised to multivariate variables.

4 Leakage Certification using HI and MI

We now return to the task of leakage certification. The idea of leakage certifi-
cation is to assess the quality of a leakage model or multiple models without
needing to conduct a full key recovery attack. Not needing to perform a full

6 This estimator thus is not based on estimating the joint or conditional density.
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Algorithm 1 Non-parametric I(X;Y ) estimation for mixed r.v.s (X,Y )[11]

Require: {xi, yi}ni=1 and tn = t
1: for i = 1, . . . , n do
2: di,xy = tth smallest distance from{dij = max{‖xj − xi‖, ‖yj − yi‖} : i 6= j}
3: if di,xy = 0 then
4: t̃i = |{j : tij = 0}|
5: else
6: t̃i = t
7: end if
8: nx,i = |{j : ‖xj − xi‖ ≤ di,xy}|
9: ny,i = |{j : ‖yj − yi‖ ≤ di,xy}|

10: αi = ψ(t̃i)− log(nx,i + 1)− log(ny,i + 1)
11: end for
12: return 1

n

∑
i αi + log(n)

key recovery is advantageous, because a full attack takes time (and is therefore
costly), or it may even be infeasible in the time that evaluators have.

In this section we first explain the state of the art, which is based on (es-
timating) quantities such as the HI, PI, (most recently TI, and LI), and the
problems that arise when working with these quantities.

4.1 Assessing Model Quality using the HI and PI

In a series of works starting with Renauld et al. [5] the perceived information PI
(6) was put forward as a measure for the quality of a leakage model. In [7] they
propose two types of estimators of PI, PIn and ePIn (we denote it later as ePI),
which we provide in the equations (7) and(8), respectively.

PI(Y ; [T ]; [M ]) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y) log2 p(Y,[M ])(y|t) (6)

PIn(Y ; [T ]) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y) log2 ẽn(y|[t]) (7)

ePIn(Y ; [T ]) = H(Y ) +
∑
y∈Y

pY (y) ·
nt(y)∑
i=1

1

nt(y)
log2 ẽn(y|[t] = i) (8)

In the definition of the ePI, the variable nt(y) is the cardinality of the set
{t ∈ [T ] : Y = y}, and ẽ refers to an estimated empirical model.

The idea in [6] is to compare the (estimated) PI with the MI, which gets
approximated by the HI. Durvaux et al. then state that if HI and PI are close
(for a given leakage distribution, intermediate, and model), then the model may
be a good representation of the unknown device leakage. They point out prob-
lems with just basing an analysis on the difference between the MI and the PI,
and develop a moment-based characterisation. It was explained in [24] that this
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moment based analysis is not always a suitable workaround, and in the follow on
work [7] the focus was on comparing the MI (via the eHI) and ePI. However, we
found a significant gap between the theroetical and experimental properties that
was addressed in [7]. In [7, Theorem 6] it was proven that PIn is a lower bound
of the MI, but this does not imply that the ePI is a lower bound too (or that
it even converges to the PI). In their experimental results on multidimensional
traces the lower bound is indeed not attained by the ePI, and the assumption
is introduced that T |Y = y follows a Gaussian distribution; hence a parametric
estimator is now assumed. Hence the bounds provided by the HI and PI, which
are used to bound the ideal adversary, are not reliable or require parametric
assumptions.

In the latest work, the process of comparing MI and PI, has been formalised
via the concept of the Regret for a model M in [8, Definition 4]:

R(M) = I(Y ;T )− PI(Y ;T ;M). (9)

With the regret, we provide a natural extension to compare two leakage
models in the subsequent definition.

Definition 1. MI/PI-based model quality. Given two (discrete) leakage models
[M ]1 and [M ]2, we say that [M ]1 is a better leakage model than [M ]2 for a
(discrete) trace distribution [T ] if

R(M1) < R(M2).

Definition 1 must be implemented using estimators for the MI and the PI in
practice when the distributions of traces and models are unknown.

Definition 2. eHI/PI-based model quality. Given two (discrete) leakage models
[M ]1 and [M ]2, a suitably large discrete trace set [T ], and the estimators eHI
and ePI, then we say that [M ]1 is a better leakage model than [M ]2 if

eHIn(Y ; [T ])− ePIn([M ]1; [T ]) < eHIn(Y ; [T ])− ePIn([M ]2; [T ]).

4.2 The PI judges model strength via the KL divergence

The PI defines a quantity that is supposed to capture the information about the
device state when utilising side channel observations and interpreting them via
some leakage model. In the definition of the PI, the joint distributions of (Y, [T ])
and (Y, [M ]) are being used in such a way that one cannot deal with arbitrary
models. Already Durvaux et al. [6] and then also Bronchain et al.[7] give examples
where the PI leads to problematic results. Clearly a better understanding of the
PI quantity is needed and we now develop an alternative representation of the
PI.

Remark 1. The PI between the three variables Y, [M ], [T ], and all distributions
defined for all y ∈ Y, can be written as:

PI(Y ; [T ]; [M ]) = I(Y ; [T ])− E[DKL((Y |t, T )||(Y |t,M))].
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Proof. We will use the simple substitution pY,[M ](y|t) = pY,[M ](y|t)
pY,[T ](y|t)
pY,[T ](y|t)

,

and find that

PI(Y ; [T ]; [M ]) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y) log2 pY,[M ](y|t)
pY,[T ](y|t)
pY,[T ](y|t)

= H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y)

(
log2 p(Y,[T ])(y|t) + log2

pY,[M ](y|t)
pY,[T ](y|t)

)
= H(Y ) +

∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y) log2 p(Y,[T ])(y|t)

+
∑
t∈[T ]

p[T ](t) ·
∑
y∈Y

p(Y,[T ])(y|t) log2

pY,[M ](y|t)
pY,[T ](y|t)

= I(Y ; [T ])− E[DKL((Y |t, [T ])||(Y |t, [M ]))].

This representation makes it perhaps clearer that in order for the PI to be well
defined, we need that if p(Y,[M ])(y|t) = 0 then also p(Y,[T ])(y|t) = 0 otherwise we
have p(Y,[T ])(y|t) log2 0, which is not well defined. But this may occur for models
that are bad representations of the unknown leakage, implying that the PI is not
ideally suited to deal with models that are a poor approximation.

The remark makes apparent that the PI is indeed a quantity that is smaller
or equal to I(Y ; [T ]), because the expected value of the KL divergence is positive.
If M = L then the expected value of the KL divergence is 0, and thus the PI
equals to I(Y ; [T ]). If M 6= L then the KL divergence is larger than zero and
thus the PI measures (intuitively speaking) the amount of information that is
lost on average if a specific model M is used.

Let us consider this alternative definition jointly with the MI-PI based Defi-
nition 1. This means the evaluator judges the model quality via the regret, i.e.
they compute (with suitable estimators)

R([M ]) = I(Y ; [T ])− PI(Y ; [T ]; [M ])

= I(Y ; [T ])− I(Y ; [T ]) + E[DKL((Y |t, T )||(Y |t,M))]

= E[DKL((Y |t, T )||(Y |t,M))].

This shows clearly that the model quality only depends on the average KL
divergence between the joint distributions (Y |t, [M ]) and (Y |t, [T ]). But why
would we then not simply aim to quantify the dependence between the joint
distribution of the model M and the observable traces T with the KL divergence
in the first place?

4.3 The Curse of Discretisation in the context of the eHI

The convergence guarantee for the eHI towards the MI requires the assumption
that the traces are discrete. However, as we argued before, this assumption
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cannot be applied in general to side channel observations and it becomes invalid
as soon as de-noising and other trace processing methods are used. Existing work
so far has only been able to say that “this is potentially problematic”. We now
study the effect of discretisation on the MI.

Discretisation divides the range of a continuous random variable X into pos-
sibly an infinite number of intervals. Drawing on [25, cf. Proposition 1] we now
provide a concrete mathematical characterisation for the MI between the a dis-
crete and a discretised continous random variable.

The paper [25] considers two (continuous) random variables X,Y and the
use of a simple partitioning of the space X × Y into rectangles. Typically, such
a partitioning P is a product partitioning i.e. P = I × J where I and J
are partitioning of X and Y respectively 7. We denote the discretised random
variables obtained from such partitioning as XI , Y J .

We can now show that the MI which is based on the discretised leakage is
smaller or equal to the MI based on the non-discretised leakage. This implies that
an evaluator who discretises traces for the estimation of mutual information will
underestimate the strength of an adversary who works with the non-discretised
traces.

Proposition 1. Let X,Y be two random variables with pmf pX and pdf fY
respectively. Let P = I×J be the product partitioning of X×Y as described above
(the partitioning I is defined by the discrete X). Then I(X;Y ) ≥ I(XI ;Y J ).

Proof. We assume that the joint distribution exists. As explained in [25, Section
II], for the product partition P we can write that

I(X;Y ) = I(XI ;Y J ) +DP(X;Y )

where DP(X;Y ) is the residual divergence, see [25, cf. Proposition 1] for the
definition.

It is shown in [25] that the residual divergence DP(X;Y ) ≥ 0 for any par-
tition (including the specific partition that is given by a discrete X). Thus the
result follows. ut

Proposition 2 in [25, Section II] goes on to the develop that the residual diver-
gence converges to zero asymptotically for increasingly finer product partitions.
Consequently, in practice when we set the number of partitions to finite, the
residual divergence is strictly larger than zero, and thus we always loose infor-
mation upon discretisation:

I(X;T ) > I(X; [T ]) = lim
n→∞

E[eHI(X; [T ])]. (10)

In Sect. 7.4 we provide practical experiments that show the effect of Prop. in
action. Proposition 4.3 also implies that the eHI is not necessarily an upper
bound to the MI in the context of any arbitrary continuous traces (it also depends
on the bias that it has, which is different in different settings).

7 In the side channel community, a similar method is often implemented by partitioning
the leakage into intervals, which then define the bins for histogram based estimation
techniques—this is also the method used in Bronchain et al.[7] for the eHI.
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4.4 Beyond HI and PI

The most recent work by Masure et al. [8] acknowledges that there are issues with
both the HI and PI and clarifies mistakes in previous work. They also propose
another MI estimator called the Training Information (TI) which is similar to
the eHI. Instead of plugging in the so-called empirical distribution, they suggest
to use both model distribution and the empirical distribution. The TI is therefore
more akin to the PI and they show that the TI is an upper bound to the PI.
Next they define the Learnable Information (LI) which is the supremum of the
PI over all models of a given class of models. We mentioned before in this section
that they define the Regret(R) which is the difference between the MI and the
PI.

Thus also in the latest work, the idea of HI/PI based leakage certification
prevails, and the new quantities TI and LI are mainly introduced for efficiency.
But do we really need all these quantities to quantify the strength of a leakage
model if in any case the regret only depends on the KL divergence between the
joint distributions (Y, [M ]) and (Y, [T ]) ?

In this work we show that a much simpler, mathematically sound approach
is possible for assessing the model quality by directly using MI. The results from
statistics literature provides us a method to practically and efficiently estimate
the MI (in a non-parametric way) for leakage certification. Furthermore, the
method guarantees mathematically that the estimated MI is arbitrarily close to
the actual MI which in practice is not known due to the unknown device leakage
function or its output distribution.

5 Assessing Model Quality directly with the MI

In the previous section we have established that in the existing work, the re-
gret of a model is in fact determined by the KL divergence between the joint
distributions (Y, T ) and (Y,M). We now develop a more intuitive approach to
leakage certification, that also comes with better convergence guarantees for the
required practical estimations.

We know that the best model (from an adversarial point of view) is the
model that coincides with the device leakage function, i.e. M = L. If M = L
then we have that I(M ;T ) = I(L;T ). In contrast if L 6= M (in the sense
that L and M are independent), the the mutual information between them is
zero I(M ;T ) = 0. If a model M is an approximation of L, then the mutual
information should be somewhere between 0 and I(L;T ). This motivates the
use of the mutual information to assess model quality.

Mutual information as a proxy for a distance metric. Informally speak-
ing, we would like to use the mutual information as a metric by which we can
judge how “close” a given model is to the “best model”, or to compare two mod-
els. Although the mutual information does not satisfy the definition of a metric
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(the triangle inequality does not hold), we now explain why it is still a useful
measure to compare models.

Notice that the variation of information does satisfy the definition of a metric.
Given two distributions X and Y it is defined as d(X,Y ) = H(X) + H(Y ) −
2I(X;Y ) (we may understand the entropies here as either discrete or differential,
depending on the nature of the X and Y ). It is easy to see that if I(X1;Y ) <
I(X2;Y ), then d(X1, Y ) > d(X2, Y ). Translating this to the scenario of leakage
certification, we find that if the mutual information between model M1 and the
traces T is smaller than the mutual information between model M2 and the
traces, the the model M1 is a better model than M2.

Definition 3 (MI-based model quality). Given two leakage models M1 and
M2, we say that M1 is a better leakage model than M2 for a trace distribution T
if I(M1;T ) > I(M2;T ).

Definition 4 (Estimating MI-based model quality). Given two leakage
models M1 and M2, and a consistent estimator In we say that M1 is a better
leakage model than M2 for a trace distribution T if In(M1;T ) > In(M2;T ).

5.1 Reasoning about the Ideal Adversary

As a special case of comparing leakage models, an evaluator wishes to compare
their model to the “best possible leakage model” which is evidently when M = L,
which leads to the best MI, which we call Ib, see (11).

Ib = I(L(Y );T ). (11)

The challenge is that the evaluator does not know L, and that for different
C, there will be different L. Hence this quantity needs to be efficiently estimated
for each point in a given side channel trace.

An evaluator can however estimate the mutual information between the input
and key and the observable traces, and we call this quantity Ik:

Ik = I((X,K);T ). (12)

The connection between Ib and Ik is via the unknown leakage function L
and the cryptographic target function C, which maps the key and input value to
an intermediate value Y = C(X,K). Using the data processing inequality, see
[13], we know that Ik ≤ Ib (observe that the variables in Fig. 1 follow a Markov
chain).

From the data processing inequality we can also infer that equality holds
if L ◦ C is one-to-one, which we cannot expect to hold in practice. However,
the data processing inequality is a very crude tool to reason about these two
quantities, and we show using a different proof technique in Sect.6 that equality
holds under much more realistic conditions.

The fact that Ib = Ik under realistic conditions is essential for judging model
quality in practice: given two (or more) leakage models Mi, we can estimate
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I(Mi;T ), and compare this to Ik. In this way we cannot only compare the
quality of leakage models relative to each other, we can also assess how “far”
they are from the best model.

6 Proof that Ib = Ik in many Realistic Scenarios

In this section we show that Ib = Ik under some mild conditions, which we can
expect to hold in many practical settings. This equality implies that in many
practical cases Ib can be obtained via estimating Ik and thus without the need to
know or even estimate L. With the help of this theoretical result, we implement a
practical estimator [11] in the side channel setting, described in details in Sect. 7.

Based on the characteristics of the leakage functions (explained in Sect. 2.2),
we select three possible cases for the subsequent proofs:

– L is discrete and deterministically depends on the realisations of X and K.
which means, T = L ◦ C(X,K) +R.

– L is discrete and probabilistically depends on the values of X and K. i.e.,
T = L(S,C(X,K)) +R, where, S follows a discrete distribution.

– Lastly, L is continuous and probabilistically depends on the realisations of
X and K. i.e., T = L(S,C(X,K)) + R, where, S follows a continuous dis-
tribution.

Now, consider Z = L◦C(X,K), when L is deterministic and Z = L(C(X,K), S),
when L is probabilistic, then the MI for the ideal adversary, Ib, can be repre-
sented as I(T ;Z) = H(T )−H(T |Z), while the MI between the random inputs
and the observable trace can be written as:

– Ik = I(T ; (X,K)) = H(T )−H(T |(X,K))
– Ik = I(T ; (X,K, S)) = H(T )−H(T |(X,K, S))

Clearly, Ib and Ik only differ from each other in the conditional entropy term.
Consequently, our argument is be based on establishing the conditions under
which these two conditional distributions are equal. A basic assumption in this
section is thus that the conditional entropy exists.

6.1 Equality of Ib and Ik when L is discrete

Characterising the Conditional Distributions We first study the condi-
tional distribution of T |Z. It is easy to see that this conditional distribution is
completely defined by the distribution of R:

FT |Z(t|z) = P (T ≤ t|Z = z)

= P (Z +R ≤ t|Z = z)

= P (z +R ≤ t) (as, Z is independent of R)

= FR(t− z) ∀t ∈ R (13)
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Consequently, the pdf fT |Z of the conditional variable T |Z is given by the
pdf of R.

We now consider the conditional distribution of T |(X,K) when L is deter-
ministic.

FT |(X,K)(t|(x, k)) = P (T ≤ t|(X,K) = (x, k))

= P (L ◦ C(X,K) +R ≤ t|(X,K) = (x, k))

= FR(t− L ◦ C(x, k)) ∀t ∈ R (14)

It follows again that the pdf of T |(X,K) is given by the pdf ofR. This observation
has been formalised before in [26, Corollary 3.]. Note that, by using the same
technique as above it is also obvious that when L is discrete and probabilistic,

FT |(X,K,S)(t|(x, k, s)) = FR(t− L(s, C(x, k))) ∀t ∈ R (15)

Now, with these properties of conditional distributions, we show that Ib is equal
to Ik for both cases when L is deterministic and probabilistic, respectively.

Proposition 2. If L is discrete and T = L ◦ C(X,K) + R, then for any well-
defined8 function C(·), the following equality will hold

Ib = I(T ;Z) = I(T ; (X,K)) = Ik

Proof. We recall that Z = L ◦ C(X,K), and suppose it has m realisations. It is
clear that the probability of Z = zi is given by the number of pairs (x, k) that
map to zi. Thus, we have

pZ(zi) = P (Z = zi) = P{(X,K) = (x, k) : L(C(x, k)) = zi}

=
∑

(x,k): L(C(x,k))=zi

pX,K(x, k) for i = 1, 2, ..,m (16)

(Here, every pair (x, k) maps to exactly one zi, because C is well defined). We
use this observation to rewrite Ib :

8 An assignment of values y to elements x ∈ X is said to be a well-defined function
f : X → Y if it satisfies the following three properties:

– Totality: For every x ∈ X , ∃ y such that f(x) = y.

– Existence: For every x ∈ X , f(x) ∈ Y.

– Uniqueness: For every x ∈ X , there is only y ∈ Y such that f(x) = y.
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Ik = I(T ; (X,K))

= H(T )−
∑

(x,k)∈(X×K)

p(X,K)(x, k)ET |(x,k)
[
− log2(fT |(X,K)(t|(x, k)))

]
= H(T )−

m∑
i=1

∑
(x,k): L(C(x,k))=zi

p(X,K)(x, k)ER [− log2(fR(t− L ◦ C(x, k)))] (by Eq.(14))

= H(T )−
m∑
i=1

pZ(zi)ER [− log2(fR(t− zi))] (by Eq. (16))

= H(T )−
m∑
i=1

pZ(zi)ET |zi
[
− log2(fT |Z(t|zi))

]
= Ib (by Eq.(13))

Proposition 3. Suppose, R follows a distribution with the location and scaling
parameters µ and σ (> 0) respectively. Let X,K denote the plaintext and key
(both independently drawn and distributed uniformly), and the leakage function
L is discrete and T = L(S,C(X,K)) + R. If, the differential entropy of R is
independent of location shift9 (i.e., H(R) = φ(σ), where φ depends only on the
pdf fR), then the following equality holds:

Ib = I(T ;Z) = I(T ; (X,K, S)) = Ik

Proof. First, we compute Ib:

Ib = I(T ;Z) = H(T )−H(T |Z)

= H(T )−
∑
z∈Z

pZ(z)ET |z
[
− log2(fT |Z(t|z))

]
= H(T )−

∑
z∈Z

pZ(z)ER [− log2(fR(t− z))] (by (13))

Second, we derive Ik:

Ik = I(T ; (X,K, S))

= H(T )−
∑
x,k,s

p(X,K,S)(x, k, s)H(T |(x, k, s))

= H(T )−
∑
x,k,s

p(X,K,S)(x, k, s)ET |(x,k,s)
[
− log2(fT |(X,K,S)(t|(x, k, s)))

]
= H(T )−

∑
x,k,s

p(X,K,S)(x, k, s)ER [− log2(fR(t− L(s, C(x, k)))] (by (15))

9 An illustration of location independent entropy:
Suppose, X1 and X2 follow normal distribution with different means µ1 and µ2,
respectively but have same variance σ2. Then, H(X1) = H(X2) = 1

2
log2(2πeσ2)
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Clearly, we already know from the entropy condition that H(R) = φ(σ), when
R ∼ fR(t − z) or when R ∼ fR(t − L(s, C(x, k))). Hence, we can say that
ER [− log2(fR(t− z))] is equal to ER [− log2(fR(t− L(s, C(x, k))))], which im-
plies Ib = Ik.

6.2 Equality of Ib and Ik when L is continuous

Characterising the Conditional Distributions The continuity of L is due
to some randomness of the continuous variable S that depends on X,K and
the target function C but importantly we still have the independence between
Z = L(Y ) and R. To derive the distribution of T |Z (and then T |(x, k, s)) we
need a little bit more machinery than before because L is continuous (was not
covered by [26, Corollary 3.]).

The distribution of a function of two random variables (given their joint dis-
tribution) can be derived by a technique that is known as “change of variables”[27].
The trick works as follows, given two variables (X1, X2) and two functions
u1 and u2 such that Y1 = u1(X1, X2) and Y2 = u2(X1, X2), with inverses
X1 = v1(Y1, Y2) and X2 = v2(Y1, Y2); the joint pdf of (Y1, Y2) is given by
f(Y1,Y2)(y1, y2) = |J | · f(X1,X2)(x1, x2)

∣∣
{x1=v1(y1,y2),x2=v2(y1,y2)}

. The value |J |

is the absolute value of the Jacobian J =
∣∣∣∂(x1,x2)
∂(y1,y2)

∣∣∣ =

∣∣∣∣∣
∂(x1)
∂(y1)

∂(x1)
∂(y2)

∂(x2)
∂(y1)

∂(x2

∂(y2)

∣∣∣∣∣. Knowledge

of the joint distribution (Y1, Y2) enables to derive the distributions of Y1 (and
Y2 respectively) by marginalisation.

We first derive the distribution of T |Z. Hence we apply the change of variables
technique to derive the distribution of T = Z + R, Z, and choose Y1 = Z + R,
Y2 = Z. Hence |J | = 1, and this gives

fT,Z(t, z) = 1 · fR,Z(t− z, z) = 1 · fZ(z) · fR(t− z) = fZ(z) · fR(t− z)

⇒ fT |Z(t, z) =
fT,Z(t, z)

fZ(z)
=
fZ(z) · fR(t− z)

fZ(z)
= fR(t− z) (17)

Using the same trick, we can also derive the pdf of T |(x, k, s), which will
give us fR(t− L(s, C(x, k))). To achieve this, we have to consider the following
change of variables for each pair (x, k) ∈ (X,K):

(R,S)→ (T, S) : T = L(S,C(x, k)) +R

And the Jacobian of the transformation J = 1

| ∂(t,s)
∂(r,s) |

= 1 under the condition

that the mapping L : S → L(S,C(x, k)) is one-to-one, which is a criterion for

the existence of the partial derivative ∂(t)
∂(s) (for details see [27]).

Using this property of conditional distribution we now proof the equality
between Ib and Ik exactly as same as we did in Proposition 3.

Proposition 4. Suppose, R follows a distribution with the location and scaling
parameters µ and σ (> 0) respectively. Let X,K denote the plaintext and key
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(both independently drawn and distributed uniformly), and the leakage function
L is continuous and T = L(S,C(X,K)) +R. If, the differential entropy of R is
independent of location shift (i.e., H(R) = φ(σ), where φ depends only on the
pdf fR), then the following equality holds:

Ib = I(T ;Z) = I(T ; (X,K, S)) = Ik

Proof. We are going to use the same proof technique as in Proposition 3 only
by replacing the summation with the integration:

Ib = I(T ;Z) = H(T )−H(T |Z)

= H(T )−
∫
z

fZ(z)H(T |z)dz

= H(T )−
∫
z

fZ(z)ET |z
[
− log2(fT |Z(t|z))

]
dz

= H(T )−
∫
z

fZ(z)ER [− log2(fR(t− z))] dz

We now derive Ik as in the following:

Ik = I(T ; (X,K, S))

= H(T )−
∑
x,k

∫
s

f(X,K,S)(x, k, s)H(T |x, k, s)ds

= H(T )−
∑
x,k

∫
s

f(X,K,S)(x, k, s)ET |(x,k,s)
[
− log2(fT |(X,K,S)(t|x, k, s))

]
ds

= H(T )−
∑
x,k

∫
s

f(X,K,S)(x, k, s)ER [− log2(fR(t− L(s, C(x, k))))] ds

Based on the entropy criteria of R it is known that H(R) = φ(σ) irrespective of
whether R ∼ fR(t− z) or R ∼ fR(t− L(s, C(x, k))). Therefore, we have

ER [− log2(fR(t− z))] = φ(σ) = ER [− log2(fR(t− L(s, C(x, k))))]

⇒ Ib = H(T )− φ(σ) = Ik

Remark 2. From Proposition 2, we see when L is discrete and there is no internal
randomness S, the equality Ik = Ib holds for any arbitrary distribution of noise
R. However, Propositions 3,4 indicate that under the presence of the internal
randomness S to find the quality we need the distributional assumption(entropy
is independent of location shift) of the random noise R.

Must we check the condition of the distribution of R? We wish to point
out that the distributional assumption (entropy is location independent) about
the noise R holds for all the distributions that so far have been mentioned in
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the existing side channel literature (e.g., [2]). In particular, the entropy criteria
is applicable to distributions like Gaussian, Laplacian, Cauchy, Uniform, etc.

However, it is possible to check this assumption efficiently if this is desire-
able. For a given set of traces and intermediate values one can check the entropy
condition by performing for instance a The Kolmogorov-Smirnov test for good-
ness of fit [28] on samples of the leakage partition (T |Y = y) to determine which
distribution they come from.

7 Practical MI Estimation Using the GKOV Method

The recently proposed GKOV estimator [11] is convergent in mean and thus is
asymptotically unbiased for all combinations of random variables. In contrast to
previous nearest neighbour estimators, the number of nearest neighbours that
are considered in the estimator is now a function of the sample size n (thus
denoted as tn), rather than a constant. The estimator is also efficient for mul-
tivariate settings. Hence, depending on the scenario that is considered in an
evaluation, the GKOV estimator can be calculated for each point in a leak-
age trace independently of all other points (univariate setting), or over multiple
points (multivariate setting). We know provide some details about implement-
ing the estimator efficiently, and we investigate if there are criticial parameter
choices.

7.1 Fast implementation of Alg.1

The authors of [11] provide a nice Python implementation of their estimator10.
However, we developed a much more efficient and generic implementation that
works for high dimensional data, which is important for side-channel analysis.
For our C++ implementation, we used the popular machine learning library ml-
pack. The library offers several in-built distance metrics including the option
of providing a custom distance metric. From the available options of efficient
nearest neighbour search algorithms we used VPTree and BallTree. Note that
the search algorithm may depend on the choice of distance metric. For example,
the `∞ metric is not compatible with the KDTree search algorithm. This is not
a limitation of mlpack but a consequence of the mathematical requirements of a
specific search algorithm.

For calculating distances of each sample point from all other points which
is necessary beyond the NN search, we have used OpenMP to parallelize the
computation. Note that the OpenMP library can also be used by mlpack if it is
available on the system. A particular observation on this part of our experiment
is that for multidimensional leakage, computing the `∞ norm with an unrolled
loop is more efficient than using the looped version or the mlpack library function
for the same. For example, with the dimension m = 2, computing the `∞ norm
as

10 https://github.com/wgao9/mixed_KSG/blob/master/mixed.py
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(a) L linear, R ∼ L(0, 8)
.

(b) L non-linear, R ∼ N (0, 10)

tn = log(n): , tn = log2
10(n): , I((X,K);T ):

Fig. 2: Convergence experiments for different choices of tn.

max( abs(data(i,0)-data(j,0)), abs(data(i,1)-data(j,1)) );

is more efficient than using the library function

arma::norm(data.row(i)-data.row(j), "inf");

For all experiments we have used an Intel(R) Core(TM) i7-8700 CPU 3.20GHz
system having 6 CPU cores and Ubuntu operating system.

7.2 GKOV in a Multivariate Setting

The estimator by Gao et al.[11] does elegantly generalise to multiple points
because its’ only configuration parameter is the function tn (based on the sample
size). This is a significant advantage over previous t–NN estimators. The only
remaining computational challenge is measuring the distance of all sample points
Lj from the sample point Li where j 6= i for each i. A number of efficient
algorithms for finding nearest neighbours are part of common machine learning
libraries in both C/C++ and Python, and our implementation, as explained
before, takes advantage of an existing machine learning library.

In contrast, the computational cost for estimating the mutual information
in a multivariate setting using a histogram method (pdf estimation method) re-
quires to adapt the choice of bins. For finding a “good” binning strategy one may
need to compute In for range of values of the tuple (b1, b2, . . . , bm) ∈ Zm, where
bi denotes the number of bins along each dimension. This naturally increases the
cost of estimating the mutual information using a histogram method.

We will include a range of multivariate experiments in the next section, where
we include estimators from previous work.

7.3 Establishing Practical Choices for tn

The parameter tn, which is a function of the number of side channel observa-
tions n, is chosen by observing the convergence of the sequences tn log n/n and
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(tn log n)2/n (the sequences can be found in the main theorem statement of [11]).
In our experiments we selected tn equal to log n and log2

10 n. Figure 2 shows some
representative experimental results for the GKOV estimator as implemented via
(Alg. 1) in different situations. To create these plots, we performed a number
of simulations where we varied both device leakage functions and noise distri-
butions. Each simulation is performed multiple times, and we show the average
over the outcomes. To provide a baseline for comparison, we also calculated the
MI in all scenarions, which was possible because in simulations we know all
distribution parameters.

The results in Fig. 2 illustrate that for both choices of function tn, the con-
vergence rate is similar, with a small advantage for tn = log n. In the remaining
practical experiments, we will thus show results for tn = log n.

It is important to bear in mind that unlike a plug-in (histogram) estimator
that requires data dependent parameter tuning, the choice of the parameter tn
can be pre-determined based only on the sample size n. Furthermore the choice
of tn only affects the rate of convergence, i.e. the efficiency of the estimation
unlike histogram based estimators, where a wrong choice can lead to bias.

An observation is that the GKOV estimator approaches the true MI from
below. There is no formal proof for this in [11], but in all our experiments we
observed this behaviour. This implies that if an MI quantity is close to zero,
then the GKOV estimator will take negative values, until enough samples are
available and it crosses the zero line and is positive. This behaviour is not a sign
of bias (note that [11] shows the asymptotic unbiasedness of their estimator).

7.4 Practical Demonstration of the Adverse Effect of Discretisation

Having established a suitable practical configuration for the GKOV estimator,
we now use it to demonstrate the information loss that is incurred by the dis-
cretisation of traces (see Sect. Sect. 4.3 for the theoretical discussion) with some
practical experiments.

Both experiments are based on simulated side channel observations. The first
experiment is based on assuming a non-linear device leakage function with Lapla-
cian noise. The second experiment is based on a linear device leakage function
and uses Gaussian noise. Because we know all distributions, we can compute
the mutual information theoretically, and we include this quantity in the traces
(the black line). For each experiment, we then estimate the mutual information
using GKOV for both the traces as they are generated, and for the traces after
discretisation. Figures 3a and 3b show the outcomes: in both cases the mutual
information estimate that is based on the discretised traces does not reach the
true (higher) mutual information value: I((X,K); [T ]) < I((X,K);T ). This is
exactly what our theoretical analysis showed would happen.

We have explained before that discretisation is inevitable if the eHI is used
to estimate mutual information. Figure 4a shows the eHI vs the GKOV estimate
when naturally discrete variables are in play (note that we add discrete noise in
this experiment). We see that eHI and GKOV both approach the true mutual
information, which we were able to calculate directly because all distributions
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(a) L nonlinear, R ∼ L(0, 10) (b) L linear, R ∼ N (0, 10)
I((X,K);T ): , I((X,K); [T ]): , I((X,K);T ):

Fig. 3: Discretisation lowers the mutual information

(a) L nonlinear, R ∼ discrete L(0, 5.64) (b) L nonlinear, R ∼ N (0, 4)
eHI: ,I((X,K);T ): , I((X,K);T ):

Fig. 4: Discretisation implies eHI does not coverge to the true mutual information

are know here to us. Figure 4b shows, for the same device leakage function, but
with continuous noise added, that the eHI is no longer able to reach the true
mutual information. We also include a further non-parametric discrete mutual
information estimator (the plug-in estimator which is comparable to eHI as it
comes with the same notion of convergence as discussed before in Sect. 3), which
has the same problem when discretisation occurs.

8 Case Studies in Evaluation Settings

So far we (mostly theoretically) argued that leakage certification using the HI-
PI method is unnecessarily complicated and prone to misleading results. We
made the theoretical case that it is possible to instead estimate salient mutual
information quantities, in particular Ik elegantly via the GKOV estimator. In
this section we show via a range of experiments, which are reflecting evaluation
scenarios, that theory indeed translates into practice.

Like in previous work, we use simulations to produce fully controlled exper-
iments, so that the mutual information can both be calculated as well as esti-
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mated (the black reference line is the true, theoretically calculated quantity).
Simulations also enable to make experiments scalable in terms of using different
device leakage functions, types of noise, noise parameters, etc. and to efficiently
examine multivariate settings. To complement simulations we also show some
results based on data that was sampled from a 32-bit device.

8.1 Simulation setup

In all experiments we consider a single bijective target function, which is the
AES SubBytes mapping, y = C(x, k) = SubBytes(x⊕k). In our simulations, we
vary the device leakage function as well as the type and magnitude of the noise
distribution, and we consider univariate and multivariate analyses.

In the univariate simulations we utilise as device leakage functions:

HW: L = HW(Y ) (Hamming weight of Y ),
HD: L = HD(Y,C(Y )) (Hamming distance between Y and C(Y )),
non-linear: L = DES-Sbox (6LSB(Y )) (The first DES Sbox applied to the 6

least significant bits of Y ), and

In the multivariate simulations the simulated trace points are either based
on either HW or HD leakage of some bits of Y (this is only to speed up experi-
ments). For instance, the bivariate simulations are based on the tuples
(HW(4LSB(Y )),HW(4MSB(Y )) or HW(4LSB(Y )),HD(4MSB(Y )) and the in-
dependent noise (R1, R2) is either bivariate N or bivariate L with σ = 4 .

The noise R follows either a Gaussian (N (0, σ)), a Laplacian (L(0, σ)) or a
discerete-Laplacian (discrete L(0, σ)) distribution. In our experiments we con-
sider σ ∈ [2.8, 10].

In order to compute the eHI, and the ePI, with use the scripts that were
provided by the authors of [7]. It is important to bear in mind that the ePI and
eHI are only defined for use with two discrete random variables, and the scripts
of [7] include a step where traces are discretised.

8.2 Leakage Certification: Assessing the Ideal Adversary with the
eHI-ePI vs Ik

We ran a large number of experiments and include a representative subset of
outcomes in Figures 5a-5d.

The experiments clearly demonstrate that the GKOV estimator (red line)
quickly converges to the true mutual information value (black line), irrespective
of the dimensionality of the leakage. In stark contrast, the eHI is biased and the
bias increases dramatically with the number of dimensions, which is in line with
[29].

In the context of leakage certification based on studying the difference eHI−
ePI, we can observe that this difference increases when we move towards multi-
variate side channel observations. It is obvious from the experiments that a
more trace efficient estimator for the eHI and ePI is needed, i.e. the result of
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(a) L = HD, R ∼ N (0, 4) (b) L = non-linear, R ∼ N (0, 10)

(c) L = (HW,HD), R ∼ N (0, 4) (d) L = (HW,HW,HD), R ∼ N (0, 2)

In
hist: , eHI: , I((X,K);T ) : , In

GKOV: , ePI:

Fig. 5: Ideal Adversary: eHI-ePI vs Ik

[29] but these more trace efficient estimators still require discrete data or they
are parametric.

In contrast, the direct estimation of Ib via Ik (we showed that this is mathe-
matically sound in the theoretical part before), provides consistent results with
fewer traces even in multivariate settings with only a mild assumption on the
noise distribution. In an evaluation, the GKOV estimator should be used to
estimate Ib via Ik = I((X,K);T ).

In the results we include up to three dimensional side channel observations.
This is only because we were unable to run ePI, eHI and the histogram based
estimator for four shares — they require to explicitely build a multivariate pmf,
which makes any higher order analysis computationally extremely expensive.
But our experiments for GKOV on four dimensions again demonstrated quick
convergence to the true MI value.

For completeness we also included the convergence of the histogram-based
plug-in estimator: which is proven to have a weaker form of convergence in [10].
We can see that its performance is particularly bad, and it also appears to show
bias (which is expected given Paninski [12]).
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(a) L = (HW,HW ), R ∼ N (0, 4) (b) L = (HW,HD), R ∼ N (0, 4)

Fig. 6: Comparing models via eHI− ePI

8.3 Leakage Certification: Comparing Leakage Models

We now revisit the question of comparing two or more leakage models, in a set
of controlled experiments. For this we define leakage models M in relation to
some “true device leakage” L, whereby the models incorporate progressively less
information of L. We achieve this by truncating Y and then we apply the device
leakage function. Precisely, we consider the following leakage models:

– the model M(Y ) = L(6LSB(Y )) is based on using just the six least signifi-
cant bits of Y ,

– the models M(Y ) = L(4LSB(Y ) and M(Y ) = L(4MSB(Y )) are based on
using the four least or most significant bits of Y .

Note that the intermediate Y is the output of the AES SubBytes operation,
thus L(Y ) has 8 bits. Consequently the 6LSB model should be a better predictor
than the 4LSB or the 4MSB model. We expect that any measure, i.e. eHI− ePI
and Ik − I(M ;T ), will correctly rate the 6LSB model as better than any of the
4LSB models.

With this in mind we examine the outcomes of our first bi-variate simulation
that are given in Fig. 6a. The idea of the regret function was that a smaller
regret indicates a better model. However, the ePI that is furthest away from the
eHI, and thus gives the largest regret is ePI(6LSB(Y );T ) which is not what we
should be seeing. The second bi-variate simulation is based on two points where
one leaks the HW and one leads the HD: this is given in Fig. 6b. We see once
more that the model that uses the most information is not closest to the eHI. We
also have the exact MI value plotted as a black line which demonstrates the bias
of eHI. These two experiments show that comparing models via the difference
eHI− ePI is not sound.

We now perform the same model comparisons using GKOV. Figure 7a shows
that the GKOV estimator approaches the exact MI as expected. Consequently
Ik = I((X,K);T ) and we expect that a better model is closer to Ik. We can
see in Fig. 7a that the models stack up as they should: the 6LSB model is
better than the 4LSB models. The experiment using two points that leak slightly

28



(a) L = (HW,HW ), R ∼ N (0, 4) (b) L = (HW,HD), R ∼ N (0, 4)

Fig. 7: Comparing models via Ik − I(M ;T )

differently confirm these observations: the GKOV estimator converges quickly to
the exact MI and the MI estimates for the different models appear in the order
that they should. In particular, when the we set the second component in the
bivariate experiment to HD (and thereby introduce a further discrepancy to the
the model prediction which is based on HW) we see that also the 4 bit models
can be further discriminated. Summarising, leakage certification with the GKOV
estimator delivers clear and correct results.

8.4 Leakage certification of a real device

Finally, we use a data set that was acquired from executing a two-share AES
SubBytes implementation. The implementation runs on an ARM Cortex M3
processor core from NXP. We use a custom measurement board, which provides
good measurements. We use our scope in a basic setting to avoid any trace
processing (de-noising) and extract discrete measurements, where each point
is represented by 8 bits. This means that eHI and ePI can work on naturally
discrete traces, which is what they were designed for. However, we apply them
to two trace points at a time, thus we do the analysis in a bivariate setting.

Figure 8 shows the result of this experiment. It is striking to see that there
are many trace points that are highlighted by the GKOV estimate for Ik =
I((X,K);T ) as showing dependency: these are all the points where the red
line is significantly higher than zero. However, the blue lines do not bound the
red line, which is what they are supposed to do. Although also the eHI − ePI
difference indicates that this trace shows data dependencies, the quanitites do
not highlight all the trace points correctly, which is a problem.

9 Conclusions

If the process of leakage certification is to show an actual advantage in an eval-
uation setting, this process would need to reliably and efficiently identify data
dependencies in observed side channel traces, it would need to be able to assess
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Fig. 8: Bi-variate discrete real device leakage

the ideal adversary, and it would need to be able to correctly assess leakage
models of varying quality.

In this paper we have examined the existing method based on the HI and PI
quantities which are meant to bound I(Y ;T ). We have found that the bias of the
eHI, which converges to I(Y ;T ) increases such that it becomes a useless upper
bound. We also found a different way to express the PI that shows that the
difference MI − PI could as well be directly expressed via the Kullback-Leibler
divergence applied to a given model and some traces.

With this we asserted that a much more natural approach to leakage certi-
fication is to directly estimate mutual information quantities of interest. These
quantities can only be understood in relation to the mutual information that
characterises the ideal adversary Ib = I(L(Y );T ). This quantity seems impos-
sible to estimate (because L is unkown) however, we show through a careful
characterisation of the distributions that in many realistic settings the equal-
ity Ib = Ik = I((X,K);T ) holds. Consequently we can characterise the ideal
adversary in practice by the estimation of Ik. With this we show in a range of
experiments that our proposal for leakage certication produces consistent and
efficient results, whereas the state of the art approach based on the PI fails.

Our results are good news for all those practitioneres who wish to assess an
implementation (with respect to the ideal adversary) or who wish to show that
their leakage models are sound: our approach is sound, simple to understand,
and efficient to implement.

References

1. Grosso, V., Standaert, F.: Masking proofs are tight and how to exploit it in
security evaluations. In Nielsen, J.B., Rijmen, V., eds.: Advances in Cryptology -
EUROCRYPT 2018. Volume 10821., Springer (2018) 385–412

30



2. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough - deriving optimal dis-
tinguishers from communication theory. In Batina, L., Robshaw, M., eds.: Cryp-
tographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings. Volume 8731
of Lecture Notes in Computer Science., Springer (2014) 55–74

3. Durvaux, F., Standaert, F., Veyrat-Charvillon, N.: How to certify the leakage of a
chip? In Nguyen, P.Q., Oswald, E., eds.: Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings.
Volume 8441 of Lecture Notes in Computer Science., Springer (2014) 459–476

4. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.: Best information is most
successful mutual information and success rate in side-channel analysis. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019(2) (2019) 49–79

5. Renauld, M., Standaert, F.X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale
Devices. In: EUROCRYPT. (2011) 109–128

6. Durvaux, F., Standaert, F.X., Del Pozo, S.M.: Towards Easy Leakage Certification.
In Gierlichs, B., Poschmann, A.Y., eds.: Cryptographic Hardware and Embedded
Systems – CHES 2016, Berlin, Heidelberg, Springer Berlin Heidelberg (2016) 40–60

7. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.: Leakage
certification revisited: Bounding model errors in side-channel security evaluations.
In Boldyreva, A., Micciancio, D., eds.: Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2019, Proceedings, Part I. Volume 11692 of Lecture Notes in Computer
Science., Springer (2019) 713–737

8. Masure, L., Cassiers, G., Hendrickx, J., Standaert, F.X.: Information bounds and
convergence rates for side-channel security evaluators. Cryptology ePrint Archive,
Paper 2022/490 (2022) https://eprint.iacr.org/2022/490.

9. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Computers 58(6) (2009) 799–811

10. Antos, A., Kontoyiannis, I.: Convergence properties of functional estimates for
discrete distributions. Random Structures & Algorithms 19 (10 2001) 163 – 193

11. Gao, W., Kannan, S., Oh, S., Viswanath, P.: Estimating mutual information for
discrete-continuous mixtures. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems. NIPS’17, Red Hook, NY, USA, Curran
Associates Inc. (2017) 5988–5999

12. Paninski, L.: Estimation of Entropy and Mutual Information. Neural Computation
15(6) (2003) 1191–1253

13. Thomas M. Cover, J.A.T.: Elements of Information Theory. Wiley (2005)
14. Nair, C., Prabhakar, B., Shah, D.: On entropy for mixtures of discrete and con-

tinuous variables. arXiv preprint cs/0607075 (2006)
15. L. F. Kozachenko, N.N.L.: Sample estimate of the entropy of a random vector.

Problems in Information Transmission 23 (1987)
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