
SNARKBlock: Federated Anonymous Blocklisting
from Hidden Common Input Aggregate Proofs

(extended version)

Michael Rosenberg*1, Mary Maller2, and Ian Miers1

1University of Maryland, College Park
2Ethereum Foundation

1{micro,imiers}@umd.edu
2mary.maller@ethereum.org

Abstract

Zero-knowledge blocklists allow cross-platform blocking of users but, counter-intuitively,
do not link users identities inter- or intra-platform, or to the fact they were blocked. Unfor-
tunately, existing approaches (Tsang et al. ’10) require that servers do work linear in the
size of the blocklist for each verification of a non-membership proof.

We design and implement SNARKBLOCK, a new protocol for zero-knowledge block-
listing with server-side verification that is logarithmic in the size of the blocklist. SNARK-
BLOCK is also the first approach to support ad-hoc, federated blocklisting: websites can
mix and match their own blocklists from other blocklists and dynamically choose which
identity providers they trust.

Our core technical advance, of separate interest, is the HICIAP zero-knowledge proof
system, which addresses a common problem in privacy-preserving protocols: using zero-
knowledge proofs for repeated but unlinakble interactions. Rerandomzing a Groth16 proof
achieves unlinkability without the need to recompute the proof for every interaction. But
this technique does not apply to applications where each interaction includes multiple
Groth16 proofs over a common hidden input (e.g., the user’s identity). Here, the best
known approach is to commit to the hidden input and feed it to each proof, but this creates a
persistent identifier, forcing recomputation. HICIAP resolves this problem by aggregating
n Groth16 proofs into one O(logn)-sized, O(logn)-verification time proof which also
shows that the input proofs share a hidden input. Because HICIAP is zero-knowledge,
repeated shows of the same aggregate or an updated aggregate are unlinkable even though
the underlying Groth16 proofs are never recomputed.

1 Introduction
Moderation is a powerful tool for combating online harassment, trolling and spam messages.
But banning an account on one platform has an obvious problem: it leaves the user free to post
under other accounts and on other platforms. As a result, moderation tends towards stronger
centralized identity providers (e.g., Facebook’s real-name policy [Fac]) and the linking of

*Work supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship.

1

disparate pseudonymous identities within and across platforms. Tying users’ online speech
to a centralized identity provider poses major problems for the decentralized web and user
privacy, and can have a chilling effect on free speech.

Providing both privacy and moderation is a challenge: a user posting anonymously on a
forum presents two problems to the forum operator, termed service provider: access control
and revocation. First, because the user’s identity is unknown at post submission, the service
provider cannot verify that the user is authorized to post (i.e., isn’t blocked). Second, because
the user’s identity is not linked to the post, and posts are not linked together, the service
provider cannot revoke the user’s posting permissions (i.e., block the user) if their current
post violates forum policies. Linking posts together raises privacy concerns that may be
undesirable on a single forum and are intolerable if applied across the web.

1.1 Zero-knowledge proofs of blocklist non-membership
BLAC [TAKS10] introduces the first solution to anonymous blocklisting without a trusted
third party. It provides users with long-term identities and allows them to prove, in zero-
knowledge, that they are not on a blocklist.

The approach introduced by BLAC, which we formalize as a zero-knowledge blocklist
(ZKBL), is conceptually simple. A user’s identity is a random PRF key k signed by an identity
provider to ensure Sybil resistance. Anonymous comments and posts are associated with a
tag tag := Prfk(nonce). A blocklist L consists of tuples (tag,nonce) from offending posts.
A user attests that they are not blocked by presenting a fresh (tag,nonce) pair and a zero-
knowledge proof that 1) tag is computed correctly; 2) k is signed by a valid party; and 3) none
of the blocklisted tags were generated by k, i.e., ∀(tag′,nonce′) ∈L : Prfk(nonce

′) 6= tag′.
A user is blocked by placing an offending (tag,nonce) pair on L .

At its core, a ZKBL is a specialized zero-knowledge proof on the PRF evaluation, tag
inequalities, and identity signature. Both security and privacy depend, mainly, on the zero-
knowledge proof. This gives ZKBLs their main advantage: because the proofs are over
arbitrary ban lists, the system is ad-hoc. We do not need a central party to coordinate bans
as in [BCD+17, CL02, LLX07, VB20], or worse, a trusted third party who can deanonymize
users [Cha85, Cv91, BMW03]. If ZKBLs also support private federated identity, this is a
major advantage for deployment.

1.2 Existing ZKBLs are impractical for both clients and servers
Unfortunately, the current approach for ZKBLs [TAKS10] requires the server to do linear
work in the size of the blocklist when verifying a non-membership attestation. If the size of
the blocklist and the number of attestations per second is proportional to the number of total
users, then the service-provider’s workload grows quadratically as their site scales. This is
costly under normal circumstances and can be a major denial of service vector if an attacker
can make concurrent posts or obtain Sybil accounts that are later banned.

Almost as problematically, proof sizes are also linear in the size of the blocklist. At 144B
per list entry, a single non-membership proof for a 4M-entry blocklist would require a client
to upload 549MiB of data over a residential or mobile connection.

1.3 Our contribution
We design, implement, and benchmark SNARKBLOCK, a protocol for zero-knowledge block-
lists which improves on the state of the art by offering log-sized proofs and log-time verifica-
tion.

2

Beyond improved performance for ZKBLs, SNARKBLOCK makes ZKBLs fully ad-hoc
and resolves a privacy and organization problem with deployment. While ban lists can be
operated by anyone, ZKBLs—like any ban system, anonymous or not—require Sybil-resistant
identities. Existing ZKBLs assume a single trusted issuer for credentials. In reality, the
existence of different issuers will lead to fragmentation of user’s identities and also ban lists,
reducing anonymity sets and hindering adoption.

SNARKBLOCK removes the need for a single centralized identity provider by allowing
service providers to dynamically pick the identity providers that they support. This avoids co-
ordination concerns and allows different providers to adopt different levels of Sybil resistance
ranging from CAPTCHAs, to cryptocurrency payment, to real-world identity verification.
Crucially, during attestation, the service provider learns only that the user’s identity was issued
by some party in their accepted identity provider set.

The core of SNARKBLOCK is a new type of zero-knowledge proof, called HIdden Common
Input Aggregate Proofs, or HICIAP (pronounced “high-chop”). HICIAP is a zero-knowledge
proof that aggregates n Groth16 [Gro16] proofs (of the same underlying circuit) into a single
O(logn)-sized proof, and shows that the aggregated proofs all verify and all share a common
input which is not revealed to the verifier. It is also possible to link multiple HICIAP proofs,
showing in zero-knowledge that their hidden common inputs are all equal. SNARKBLOCK
uses HICIAP to aggregate chunk proofs—Groth16 proofs of non-membership in equally sized
non-overlapping portions of the blocklist.

HICIAP addresses a common problem when using zkSNARKs in privacy-preserving pro-
tocols like SNARKBLOCK: repeated interactions can require costly proof recomputations to
ensure unlinkability. When presenting a single Groth16 proof, the proof can be rerandomized
between interactions, achieving anonymity without recomputaton. Unfortunately, when pre-
senting multiple proofs about a common hidden input—e.g., adding proofs about subsequent
state changes—we must recompute all proofs since the state-of-the-art approach is to commit
to the hidden input and have all proofs be made with respect to that public commitment. Since
the commitment is a persistent identifier, it and all proofs relying on it must be recomputed
to achieve anonymity. HICIAP resolves this by supporting zero-knowledge aggregation of
proofs with a common hidden input.

2 Intuition for a ZKBL Construction
Zero-knowledge Succinct Non-interactive Arguments of Knowledge (zkSNARKs), appear
to offer a path to ZKBLs with fast verification, but limitations on prover performance—a
common problem for nearly all zkSNARKs—make this challenging. This is clear when one
examines the costs of using Groth16, a zkSNARK scheme with notably fast verification times.
Existing zkSNARKs can only handle pieces of a blocklist. Producing a zero-knowledge
proof of knowledge is, fundamentally, at least linear in the size of the input, i.e., the blocklist.
But for Groth16 and other zkSNARKs, the concrete constants are high. Looking ahead, for a
blocklist of 256 entries, a single proof of non-membership is 63k constraints and takes 2.84s.
A blocklist of 221 entries would yield a proof with 229 constraints. But for Groth16, prover
memory usage scales poorly in the size of the circuit: a 229-constraint proof requires 4TB of
memory and takes 3 hours to compute, due to the implementation overhead of distributing
proving over a 256-core cluster [WZC+18]. To use zkSNARKs for a ZKBL, we cannot have
the prover do work linear in the size of the blocklist for each attestation.
Decomposing blocklists by chunk. We observe that a blocklist, mostly, does not change.
While total prover workload is inevitably linear in the size of the blocklist, this work does not

3

need to be recomputed from scratch every time. By breaking the list up into non-overlapping
chunks we can both reuse work and limit the amount of recomputation required when the list
changes.
A zero-knowledge proof for consistency between chunks. A sequence of chunk non-
membership proofs for a blocklist L poses three problems:

1. The server would need to verify O(|L |) chunks.

2. Reusing a chunk proof across blocklist non-membership attestations would identify the
client.

3. A malicious client could use a different identity when proving non-membership in a
specific chunk, avoiding a block in that segment of the blocklist.

To address the above problems, we need a compact proof that a sequence of chunk non-
membership proofs verifies with respect to a single hidden identity. Further, that proof must
be zero-knowledge to ensure that the chunk proofs can be safely reused across blocklist
non-membership proofs.
Recursive Groth16 proofs are impractical. Each chunk proof could recursively check
consistency of the previous chunk proof. The challenge for recursion is latency: assuming the
blocklist changes frequently, each attestation would need to compute an updated chunk proof
and a recursive step. On our benchmark system, a single recursive step for Grooth16 takes
16.5s to prove.1 With recursion, the cost of computing a chunk proof would also increase
by 5–7× because of overhead imposed by the elliptic curves that are required to support
recursion. [CCDW20].2 Looking ahead, the buffered approach we take adds 1s of latency to
attestation and supports a buffer of 14 16-element chunk proofs.
Beyond generic IVC and aggregate proofs. We observe that IVC is not necessary to
verify a sequence of chunk non-membership proofs. There is no intermediate state in our
computation, rather we only require that all proofs must share the same input private input.
Recent advances in inner product proofs [BMM+20] give a succinct proof that n Groth16
zkSNARK proofs verify in aggregate. However, this aggregate approach has two critical
shortcomings: it is not zero-knowledge and it does not ensure consistency.

A natural approach for consistency would be to commit to the hidden value and use it as
a public input to each Groth16 proof. But if the same commitment is used across multiple
anonymous attestations, it forms a persistent identifier. On the other hand, when a fresh
commitment is used for each attestation, we must regenerate every chunk proof.

We use [BMM+20] as a starting point and have a single public input to each chunk proof,
then blind it in the aggregate proof so it is not revealed to the verifier. The resulting scheme
reuses the same blinders in multiple parts of the zero-knowledge protocol. This unusual
property made proving the honest-verifier zero-knowledge property challenging.

3 Preliminaries
We write x := z to denote variable assignment, and y← S to denote sampling uniformly from
a set S. For an arbitrary, efficiently computable predicate P, we say that a proof of knowledge
of a relation R = {(x;w) : P(x,w)} with respect to an instance x is a proof of knowledge of

1This is the cost to verify a proof with no inputs using MNT6-753 over MNT4-753.
2Depth-1 recursion using, e.g., BW6-761 over BLS12-377, would avoid some of these costs compared to the

MNT4/6 cycle. However, any addition to the blocklist would necessitate recomputing the top-level proof that checks
all n chunk proofs. At 3.9s per check on our benchmark system, this is not feasible.

4

the witness w such that P(x,w) is satisfied. We will often refer to x as a public input and w as
a private input, and we will use zero-knowledge proofs of knowledge for various relations in
order to hide w from the verifier. The security parameter of our system is denoted by λ .

3.1 Notation for Groups and Pairings
We will work exclusively with prime-order groups and their associated scalar fields. Group
elements are denoted with capital letters G ∈ G, while field elements are lowercase r ∈ F.
Vectors are bolded: A∈Gn, and r∈ Fn. We write A[:k] to denote the first k elements of A∈Gn,
and A[k:] to denote the last n− k elements. We say that a bilinear function e : G1×G2→GT
is a type-3 bilinear pairing if there is no efficiently computable group homomorphism from
G2 to G1. We say e is degenerate if there is a non-identity G ∈G1 such that e(G,H) = 1 for
all H ∈G2. Following convention, we use additive notation for G1 and G2, and multiplicative
notation for GT .

For vectors A ∈ Gn
1 and B ∈ Gn

2 and a bilinear pairing e, we write A ∗B to denote the
inner pairing product ∏

n
i=1 e(Ai,Bi). For vectors A ∈Gn and r ∈ Fn we write Ar to denote

the multiscalar multiplication (MSM) ∑
n
i=1 riAi, and write r�A to denote the element-wise

multiplication (r1A1, . . . ,rnAn). For a field element x∈F, we denote [x]1 := xG and [x]2 := xH,
where G and H are the canonical generators of G1 and G2, respectively.

3.2 Groth16
We briefly describe the trusted-setup zkSNARK scheme defined in [Gro16]. At a high level,
given a description of an arithmetic circuit (over the scalar field of a pairing-friendly elliptic
curve), a Groth16 proof proves that a circuit is satisfied by a set of public wires (values known
to the verifier) and private wires (values which are not known to the verifier, also called witness
elements).

Let e : G1×G2 → GT be an efficiently-computable, non-degenerate, type-3 bilinear
pairing, where |G1|= |G2|= |GT | is a prime p and p > 2λ . Let G be a generator of G1 and H
be a generator of G2. We use F to denote the finite field Z/pZ. The Groth16 scheme defines
four procedures:

Setup(desc)→ crs Generates a common reference string for the given arithmetic circuit
description. crs contains the group elements necessary to compute the expressions in
Groth16.Prove below.

Prove(crs,{ai}`i=0,{ai}m
i=`+1)→ π Proves the circuit described by crs is satisfied, where

a0, . . . ,a` ∈ F represent the circuit’s public input wires and a`+1, . . . ,am ∈ F represent
the private wires. π is of the form ([η]1 , [θ]2 , [ι]1), where

η = α +
m

∑
i=0

aiui(X)+ rδ θ = β +
m

∑
i=0

aivi(X)+ sδ

ι =
m

∑
i=`+1

ai (βui(X)+αvi(X)+wi(X))+h(X)t(X)

δ
+ηs+θr− rsδ

and all otherwise unspecified constants and polynomials come from crs.

Prepare(crs,{ai j}t
j=1)→ Ŝ Aggregates any subset of public inputs into a single group ele-

ment called a prepared input: Ŝ = ∑
t
j=1 ai jWi j , where Wi are the CRS values whose

coefficient represents the value of the i-th wire of the circuit.

5

RTIPP :=




ck1,∈Gn
2,ck2 ∈Gn

1,

comA,comB,aggAB ∈GT ,r ∈ Fn ;

A ∈Gn
1,B ∈Gn

2

 :
comA = A∗ ck1∧
comB = ck2 ∗B∧
aggAB = Ar ∗B



RMIPP−k :=




ck1 ∈Gn
2,comC,∈GT ,

aggC ∈G1,r ∈ Fn ;

C ∈Gn
1

 :
aggC = Cr∧
comC = C∗ ck1



RHMIPP :=




ck1 ∈Gn

2,ck3 ∈G2,

comC,∈GT ,aggC ∈G1,

r ∈ Fn ;

C ∈Gn
1,z ∈ F

 :
aggC = Cr∧
comC = e([z]1 ,ck3) · (C∗ ck1)


Figure 1: We directly use Bünz et al.’s definition of RTIPP and RMIPP-k, and we use RHMIPP to refer
to the “hiding commitment” version of RMIPP-k. While RHMIPP admits a zero-knowledge proof of
knowledge, RTIPP does not, as it fails to hide the witnesses A and B. Patching this is one of the primary
focuses of HICIAP.

Vfy(crs,π,{a0}`i=0)→{0,1} Verifies the proof π = (A,B,C) by checking the relation,

e(A,B) ?
= e([α]1 , [β]2) · e(C, [δ]2) ·

`

∏
i=0

e(aiWi, [γ]2) ,

where [α]1, [β]2, [γ]2, and [δ]2 come from crs. Vfy permits any subset of the public
inputs to be prepared as above. The common case will be where all but the first input is
prepared, i.e., calls of the form Vfy(crs,π,(a0, Ŝ)).

Rerand(π)→ π ′ Rerandomizes the proof π = (A,B,C) by sampling ζ ,ω←F and computing

π
′ := (ζ−1A,ζ B+ζ ω [δ]2 ,C+ωA).

By Theorem 3 in [BKSV20], the output of Rerand is statistically indistinguishable from
a fresh proof of the same underlying statement.

3.3 Inner product proofs
Bünz et al. [BMM+20] introduce a proof system for various inner product relations. We will
make use of the TIPP, MIPPk, and HMIPP proof systems, whose relations are defined in
Figure 1.

In short, RTIPP is satisfied when Ar ∗B = aggAB, RMIPP−k is satisfied when Cr = aggC,
and RHMIPP is the same as RMIPP−k except its commitment to C is hiding.

3.4 HICIAP
Since HICIAP is used extensively in the construction of SNARKBLOCK, we provide a brief
overview of its functionality here. We defer discussion of these algorithms including their
construction and security claims until Section 6.

6

HICIAP is a zkSNARK which aggregates multiple Groth16 proofs of the same relation.
Of its aggregated proofs, it proves that 1) they verify with respect to verifier-supplied public
inputs, and 2) they share a common public input element (which is hidden by the aggregate
proof). In addition, HICIAP can link aggregate proofs: it can prove in zero-knowledge that
the proofs in a set of HICIAP proofs all share the same common input element.

Formally, HICIAP consists of six procedures:

GenCk(n)→ (ck,srs) Generates a commitment key (ck1,ck2,ck3) ∈ Gn
2×Gn

1×G2 and a
(short) structured verification key srs which can be used, respectively, to prove and
verify HICIAP aggregates of up to n−2 Groth16 proofs, where n is a power of 2.

Com(ck, Ŝ)→ comin Constructs a commitment to the prepared Groth16 public inputs Ŝ ∈
Gn−2

1 as comin := Ŝ∗ ck1,[:n−2].

Prove((ck,crs), Ŝ,(a0,{πi}n−2
i=1))→ (π̂,o) Produces a succinct proof that each Groth16 proof

πi verifies w.r.t. the common witness element a0 ∈ F, the prepared input Ŝi ∈G1, and
the given Groth16 CRS. Also produces an opening o to a commitment to a0 contained
inside π̂ . The opening is used in LinkProve.

Vfy(srs, π̂,comin)→{0,1} Verifies the given aggregate proof w.r.t. the committed public
input. Alternatively, a set of prepared Groth16 inputs can be passed instead of comin.

LinkProve({π̂i}t
i=1,(a0,{oi}t

i=1))→ πlink Using the openings oi, produces a proof that the
given aggregate proofs share the witness element a0 ∈ F.

LinkVfy(πlink,{π̂i}t
i=1)→{0,1} Verifies the link proof w.r.t. the given aggregate proofs.

4 Zero-knowledge blocklists
We now give our framework for zero-knowledge blocklists, taken directly from BLAC
[TAKS10], but with modifications to support multiple identity providers and allow for addi-
tional precomputation.

4.1 Setting
A zero-knowledge blocklist allows users to attest that an identity issued by one of a set of
identity providers is not in a blocklist. We now detail these concepts:
Identity. We use k to denote a user’s private identity. A single user in the real world can hold
arbitrarily many identities. In all cases, k will be a field element selected uniformly at random
by the user. Other similar schemes refer to k as a user’s “nym,” “pseudonym,” or “credential.”
Identity providers. Blocking users fundamentally depends on identities being Sybil-resistant.
Most approaches to blocklisting, including BLAC’s approach to ZKBLs, assume a single
issuer.

Here we formalize a more general version of ZKBLs that supports federated identity with
privacy: each service provider is allowed to maintain its own list I of accepted identity
providers, which we call the AIP set. Identity providers are responsible for ensuring Sybil
resistance. The service provider is allowed to update this set over time, and should distribute
it via the same channels it uses to distribute its blocklist. Federated identity also comes with a
privacy guarantee: when a user proves that their identity was issued by an issuer in I , they
do not reveal which issuer it was.

7

Blocklists and session tuples. A ZKBL blocklist consists of pairs containing a session nonce
nonce and session tag tag, where tag is bound to the user’s identity by tag := Prfk(nonce)
for some fixed pseudorandom function Prf. Blocklist entries can support context binding via
structured auxiliary data. By computing nonce as nonce := H(aux,r) for some hash H, aux is
bound to the attestation. This data can be used to, for example, bind attestation to an action
(e.g., to prove that the blocked user is the action’s author) or to a particular blocklist or policy
(e.g., to enforce which lists a banned tuple can be transferred to).

Finally, in a departure from BLAC, we allow blocklists to be split into chunks—equally
sized non-overlapping segments—whose sizes are decided by the service provider. Blocklists
are chunked so that users can precompute non-membership proofs over individual chunks
rather than the entire blocklist at once.
Formalizing non-membership proofs. A non-membership proof πzkbl is a zero-knowledge
proof of three distinct properties:

1. Issuance. That the user’s identity k is signed by an identity provider.

2. Tag well-formedness. That tag and nonce are honestly computed, i.e., tag=Prfk(nonce).

3. Blocklist non-membership. That the user’s identity k did not generate any tuples already
on a blocklist, i.e., ∀(tag′,nonce′) ∈L : tag′ 6= Prfk(nonce

′).

4.2 ZKBL functionality
A zero-knowledge blocklist consists of five algorithms.

CRS-Setup Generates system-wide parameters.

IdP-Keygen Generates a signing keypair (sk,pk) to be used by an identity provider for
issuance.

Register Executes a protocol between a user and an identity provider. On success, the user
obtains a signature of (a function of) their identity.

Sync Fetches the latest additions to a service provider’s blocklist and then precomputes
cryptographic material for them. Users periodically run this routine offline, i.e., when
not attesting.

Attest Executes a non-interactive protocol in which a user authenticates to a service provider.
First, the user constructs a session-specific tuple (tag,nonce) as tag := Prfk(nonce),
where nonce is pseudorandom and optionally bound a context aux. This tuple can
be used by the service provider to block the user at any point in the future by simply
including it in the blocklist. The user then produces a zero-knowledge proof πzkbl that
proves well-formedness of the tuple and that their (signed) identity did not generate any
tuples already on a blocklist. The session tuple and zero-knowledge proof are then sent
to the service provider as (πzkbl, tag,nonce).

Verify Checks the validity of a user’s attestation. A service provider accepts if and only if
πzkbl verifies with respect to the supplied session tuple (tag,nonce) and the service
provider’s blocklist L , chunk size schedule, AIP set I , and optional context-binding
string aux.

Separately, we assume two non-cryptographic operations for blocklist management:

Blocklist-Add Adds a token to a blocklist.

8

Blocklist-Remove Removes a token from a blocklist.

We stress that the Add and Remove routines are distinct from the cryptographic scheme, and
can be run by anyone. How parties decide to manage their blocklists is wholly orthogonal to
the ZKBL construction.
BLAC as a ZKBL. The authors of BLAC construct their scheme using BBS+ signatures
[BBS04] and a Camenisch-Shoup Σ-protocol [CS03]. Although not described as such, this is
the same PRF approach we formalize here. BLAC’s tag function is nonce 7→ H(nonce)k, and
it is done in two steps, with the hash evaluation outside the zero-knowledge proof, and the
exponentiation witnessed inside. Conceptually, the entire question for designing a practical
ZKBL is how to co-design a PRF and zero-knowledge proof protocol to make an efficient
non-membership proof.

4.3 Security requirements
Our desired security properties are taken from BLAC. For the complete definitions see [TAKS10].
Note the following aesthetic changes in our description: blocklistability encompasses mis-
authentication resistance; and anonymity is described as a distinguishability notion as opposed
to a simulatability notion, which we believe better captures the actual security properties
achieved by BLAC’s game-based definition.

Blocklistability A coalition of dishonest service providers and users can only successfully
authenticate to an honest service provider if that user holds a valid credential issued by
an identity provider that is not included in the blocklist.

Non-Frameability A coalition of dishonest identity providers, service providers, and users
cannot prevent an honest, non-blocklisted user from successfully authenticating with an
honest service provider.

Anonymity A coalition of dishonest identity providers, service providers, and users cannot
distinguish attestation transcripts associated with any two honest users. Further, no such
coalition can link any given authentication transcript with the registration in which an
identity provider issued the associated credential.

5 SNARKBLOCK design and overview
The full design of SNARKBLOCK is detailed in Figure 3. The core relations are defined in
Figure 2. In words, Risu is satisfied when a user’s committed identity is signed by an issuer in
the AIP set, Rtag is satisfied when tag is computed correctly, and Rchunk is satisfied when a
user did not produce any of the tags in a chunk.

We omit textual descriptions of the full set of algorithms and detail the two key ones: Sync
and Attest.
Sync. Sync is the offline phase of attestation. During Sync a client fetches the most recent
versions of the service provider’s blocklist, chunk schedule, and AIP set. The client then
precomputes Groth16 chunk proofs πchunki of the relation Rchunk(k,chunki) for every new
chunki received from the service provider. The client also precomputes πisu, by computing
a Groth16 proof πisu of Risu((k,I),(i∗,σ ,r)) where i∗ is the chosen identity provider in the
AIP set I = {pk1, . . . ,pk`}, σ is the identity provider’s signature of the identity commitment,
and r is the randomness used to commit to k.

9

Rtag := {(k, tag,nonce) : Prfk(nonce) = tag}

Rchunk :=

(k,chunk) :
∧

(tag,nonce)∈chunk
Prfk(nonce) 6= tag


Risu :=

{(
k,(pki)

`
i=1 ;

i∗,σ ,r

)
:

1≤ i∗ ≤ `∧
Schnorr.Verpki∗ (Com(k,r),σ)

}

Rzkbl :=


(

L ,I , tag,nonce;

k, i∗,σ ,r

)
:

c∧
i=1

Rchunk(k,chunki)∧
Risu(k,I ; i∗,σ ,r)∧
Rtag(k, tag,nonce)


Figure 2: Rzkbl is the relation which the attestation procedure in SNARKBLOCK attests to. I is the
AIP set {pk1, . . . ,pk`}, and L is the set of chunks {chunk1, . . . ,chunkc}. Note that k is a public (rather
than private) input to the three sub-relations Risu, Rtag, and Rchunk. This is because the implementation
of HICIAP requires that the hidden common input be a public input in the underlying Groth16 proof.

Attest. To attest to blocklist non-membership, the client must combine a series of proofs about
the user’s identity k. First the client computes fresh session tuple (tag,nonce) and proves it is
well-formed with respect to k using a Groth16 proof πtag for the relation Rtag(k, tag,nonce).

Ideally, the client would combine πtag with the precomputed πisu and πchunki proofs from
Sync. But a single HICIAP instance only works for proofs over the same relation. Thus,
πtag and πisu are wrapped in HICIAP proofs π̂tag and π̂isu respectively, the πchunki proofs
are aggregated into a HICIAP proof π̂chunk, and a linking proof πlink is used to show each
aggregate is made with respect to the same identity k.

The client’s output is thus (πzkbl, tag,nonce), where πzkbl := (π̂isu, π̂tag, π̂chunk,πlink).
Buffering recent blocklist additions and deletions. When a ban is added or removed from
the blocklist, the user must redo the corresponding chunk proof. It is inevitable between
Sync operations that some number of additions and deletions will occur, thus requiring
recomputation during Attest and adding the corresponding amount of latency. The larger the
chunk size, the higher the latency. While we can avoid this for deletions by having bans expire
in batches, this is undesirable for additions—we want bans to take effect as soon as possible.

To avoid a tradeoff between chunk size and attestation latency, we have the tail of the
list be a buffer of smaller chunks and have a separate instance of HICIAP aggregate them.
Because the circuit is different from the circuit used for larger chunks, this optimization
increases the number of distinct HICIAP proofs passed to the verifier, while decreasing the
overall attestation time.

5.1 Security argument
Security of SNARKBLOCK depends on it correctly instantiating the PRF+Sig+ZKP paradigm
using HICIAP. We state the theorem of security for SNARKBLOCK here and give a proof
sketch in Appendix B.2. This proof depends on the security of HICIAP as a building block, and
so HICIAP is the main focus of our security analysis over subsequent sections and appendices.

10

IdPKeyGen()

(sk,pk) := Schnorr.KeyGen()

return (sk,pk)

RegU(k)

r← F
com := Com(k,r)

return (com,r)

RegS(sk,com)

σ := Schnorr.Signsk(com)

return σ

CrsSetup(n)

crsisu := Groth16.Setup(Risu)

crstag := Groth16.Setup(Rtag)

crschunk := Groth16.Setup(Rchunk)

(ck,srs) := HICIAP.GenCk(n)

return (ck,srs)

Sync({chunki}c
i=c′ ,I , i∗,k,σ ,r)

for c′ ≤ j ≤ c :

πchunk j := Groth16.Prove(crschunk,(k,chunk j), ·)
πisu := Groth16.Prove(crsisu,(k,I),(i∗,σ ,r))

return {πchunk1 , . . . ,πchunkc}

Attest(k,πisu,{πchunki}c
i=1)

nonce←{0,1}λ

tag := Prfk(nonce)

πtag := Groth16.Prove(crstag,(k, tag,nonce), ·)
π̂isu := HICIAP.Prove((ck,crsisu),I ,(k,{πisu}))
π̂tag := HICIAP.Prove((ck,crstag),(tag,nonce),(k,{πtag})))

π̂chunk := HICIAP.Prove

(
(ck,crschunk),L ,
(k,{πchunki}c

i=1)

)
πlink := HICIAP.LinkProve(k,(πisu,πchunk,πtag),k)

πzkbl := (πlink, π̂isu, π̂tag, π̂chunk)

return (πzkbl, tag,nonce)

PrepBlocklist({chunki}c
i=1)

for 1≤ i≤ c

Ŝchunki := Groth16.Prepare(crschunk,chunki)

comL := HICIAP.Com(ck,{Ŝchunki}c
i=1)

return comL

Vfy(πzkbl,(tag,nonce),I ,comL)

Ŝtag = Groth16.Prepare(crstag,(tag,nonce))

Ŝisu = Groth16.Prepare(crsisu,I)

return HICIAP.LinkVfy(πlink,(π̂isu, π̂tag, π̂chunk))∧
HICIAP.Vfy(srs, π̂isu,{Ŝisu})∧
HICIAP.Vfy(srs, π̂tag,{Ŝtag})∧
HICIAP.Vfy(srs, π̂chunk,comL)

Figure 3: A pseudocode definition of the SNARKBLOCK system. We omit buffering and nonce binding.

11

Theorem 1 (SNARKBLOCK Security). SNARKBLOCK described in Figure 3 is blocklistable,
anonymous and non-frameable provided that Groth16 and HICIAP proofs are knowledge-
sound and subversion zero-knowledge; Schnorr signatures are unforgeable; Prf is pseudoran-
dom; and Com is binding and hiding.

Looking ahead, in the concrete instantiation, this in turn assumes the key-prefixed Posei-
don hash function is a PRF and, for Groth16, that the q-SDH [BB04] and q-DDH [BB04]
assumptions hold in the Algebraic Group Model [FKL18]. For HICIAP we also depend on
the Auxiliary Structured Double Pairing assumption [BMM+20].

5.2 Trusted setup
Our protocol and security proof assumes that a trusted party generates a CRS for each
Groth16 circuit as well as for each HICIAP instance. The CRSs are similar, being of the form
sG,s2G, . . . for several bases. In most cases, service providers should be able to run the setup:
assuming subversion resistance [Fuc17], a malicious CRS only undermines soundness, not
privacy. If necessary, protocols [BGM17, BCG+15] for multiparty setup have been used for
commercial cryptocurrencies such as Zcash [Rad21] and Filecoin, where failure would allow
the forgery of billions of dollars. These also ensure subversion resistance.

6 HICIAP
We now introduce the core of SNARKBLOCK: HIdden Common-Input Aggregate Proofs
(HICIAP), a novel zkSNARK scheme which we use to generate the zero-knowledge proof of
blocklist non-membership πzkbl.

Recall the purpose of HICIAP is to aggregate multiple Groth16 proofs of the same relation.
Of its aggregated proofs, it proves that 1) they verify with respect to verifier-supplied public
inputs, and 2) they share a common public input element (which is hidden by the aggregate
proof). In the case of SNARKBLOCK, the relation is chunk non-membership, the verifier-
supplied public inputs are the (prepared) blocklist chunks, and the common input element is
the user’s identity.

In addition, HICIAP can link aggregate proofs: it can prove in zero-knowledge that the
proofs in a set of HICIAP proofs all share the same common input element. In the case
of (unbuffered) SNARKBLOCK, there are three aggregate proofs that are linked: chunk
non-membership, issuance, and tag well-formedness.

In this section, we provide intuition for the design of HICIAP and then describe each of
its components in detail.

6.1 Intution
To explain HICIAP, we start with a naı̈ve verifier who takes a full (non-succinct and non-
hiding) set of Groth16 proofs πi = (Ai,Bi,Ci) and checks that they verify with respect to a
common public input. We transform this into a succinct zero-knowledge proof that vector
commitments to A, B and C contain proofs that verify with respect to a hidden input. For
simplicity, we omit the blinding factors from discussion, and leave their detailed accounting
to the proof of honest verifier zero-knowledge in Appendix B.2.

The HICIAP verifier must be convinced that there is some hidden wire value a0 ∈ F for
which a set Groth16 proofs {(Ai,Bi,Ci)}n−2

i=1 verify given a set of prepared public inputs Ŝ,

12

HICIAP.Prove

(
(ck,crs), Ŝ,

(a0,A′,B′,C′)

)
HICIAP.Vfy((srs,crs),comin)

(A′,B′,C′)← Groth16.RerandM
′
(A′,B′,C′)

z1,z2,z3,z4← F

A := A′ ‖ [z1]1 ‖ [z2]1 ∈Gn
1

B := B′ ‖ [γ]2 ‖ [δ]2 ∈Gn
2

C := C′ ‖ [1]1 ‖ [z2]1 ∈Gn
1

coma0 := a0P1 + z1P2 + z3P3

comA := A∗ ck1

comB := ck2 ∗B

comC := e([z4]1 ,ck3) · (C∗ ck1)
coma0 ,comA,comB,comC−−−−−−−−−−−−−−→

r←−− r← F

r := (r,r2, . . . ,rn)

r′ := r[:n−2]

aggin := Ŝr′

aggC := Cr

W :=
[
z1rn−1

]
1 +∑

n−2
i=1 ria0W0

aggin,aggC ,W−−−−−−−−→
MIPPk(ck,(comin,aggin,r′),Ŝ)←−−−−−−−−−−−−−−−→ J := e(aggin, [γ]2)

HMIPP(ck,(comC ,aggC ,r),(C,z4))←−−−−−−−−−−−−−−−−−→

G1 := ∑
n−2
i=1 riW0, G2 :=

[
rn−1

]
1

HWW

(
(coma0 ,W,P1,P2,P3,G1,G2),

(a0,z1,z3)

)
←−−−−−−−−−−−−−−−−−−−→ G1 := ∑

n−2
i=1 riW0, G2 :=

[
rn−1

]
1

aggAB := Ar ∗B
TIPP(ck,(comA,comB,aggAB,r),(A,B))←−−−−−−−−−−−−−−−−−−−−→ aggAB := ∏

n
i=1 e([α]1 , [β]2)

ri · J

return o := (z1,z3) ·e(W, [γ]2) · e(aggC, [δ]2)

Figure 4: The (interactive) HICIAP protocol. Vfy accepts iff all subprotocols MIPP, HMIPP, HWW, and TIPP accept. The group
elements W0, [α]1 , [β]2 , [δ]2 , [γ]2 are supplied by crs. The values P1,P2,P3 used to compute coma0 is a Pedersen commitment basis. The
Rerand procedure is only executed on the indices in the (log-sized) masking set M′ =M∪{n−2}, where M is defined in the proof of
Lemma 4. It is the identity function everywhere else.

13

i.e., for all i = 1 . . . ,n−2,

e(Ai,Bi)
?
= e([α]1 , [β]2) · e(Ci, [δ]2) · e

(
a0W0 + Ŝi, [γ]2

)
.

Our first step is to combine the above n−2 equations into a single polynomial equation.
Verifying this would still require the verifier to do linearly many equality checks, so the verifier
picks a random r← F and evaluates the polynomial “in the exponent” at the random point.
Combining these two steps, the new verifier equation is

∏e(Ai,Bi)
ri ?
= ∏e([α]1 , [β]2)

ri
·∏e(Ci, [δ]2)

ri
·∏e

(
a0W0 + Ŝi, [γ]2

)ri
.

By the Schwartz-Zippel lemma, equality here implies the equality of the initial n−2 equations
with overwhelming probability. We now have one equality check.

The next step is to make the verifier oblivious to the hidden wire value a0. To do that, we
split the e(a0W0 + Ŝi, [γ]2)

ri
term in two. The prover sends W , a blinded version of ∑ria0W0,

to the verifier. It proves that W is computed correctly using an instance of the Σ-protocol
HWW (described in Section 6.2). The verifier equation is now

∏e(Ai,Bi)
ri ?
= ∏e([α]1 , [β]2)

ri
·∏e(Ci, [δ]2)

ri
· e(W, [γ]2) ·∏e

(
Ŝi, [γ]2

)ri
.

For both succinctness and privacy, the prover cannot give the verifier every Groth16
proof. Instead, the prover gives only succinct commitments, comA,comB,comC to the proof
vectors A, B, C, respectively. This requires the prover to calculate aggAB := ∏e(Ai,Bi)

ri
and

aggC := ∏e(Ci, [δ]2)
ri

itself and send them to the verifier. Since these calculations can be
expressed as inner product operations, the prover shows they are correct using instances of
TIPP and HMIPP, respectively. The verifier equation is now

aggAB
?
= ∏e([α]1 , [β]2)

ri
·aggC · e(W, [γ]2) ·∏e

(
Ŝi, [γ]2

)ri
.

This equation is now verifiable by the HICIAP verifier, but it is not fully succinct—
the verifier must still do linear work in order to compute the products containing the ri

exponents. The verifier can avoid this for the term ∏e([α]1 , [β]2)
ri

by simply using the
geometric sum formula: ∑

n
i=0 ri = (rn+1−1)/(r−1). The second optimization, due to Bünz

et al. [BMM+20], moves the aggregation of the prepared inputs aggin := ∑riŜi to the prover.
The prover sends aggin and proves it was constructed correctly using an instance of MIPP.
The verifier checks this with respect to comin, which it can compute from public inputs
independently of the proof-specific r values. With these two optimizations, the final verifier
equation is

aggAB
?
= e([α]1 , [β]2)

rn+1−1
r−1 ·aggC · e(W, [γ]2) · e(aggin, [γ]2) .

It is important to reiterate that, while this resembles HICIAP’s verification equation,3 the
protocol outlined above is not zero-knowledge. W leaks a0; aggAB, comA, and comB leak
parts of A and B; and aggC and comC leak parts of C. In order to achieve zero-knowledge, we
blind all of these values using the explicit blinders z1, . . . ,z4 ∈ F and the implicit blinders in
the Groth16.Rerand sub-procedure.

3For clarity’s sake, however, the Vfy algorithm in Figure 4 does not include the geometric sum formula, or any
other arithmetic optimizations.

14

6.2 HICIAP details
We now give the formal definitions of the HICIAP relations and procedures. The HICIAP
relation for a fixed n, where n is a power of two, is defined to be

RHICIAP =


(

ck,crs,comin,{Ŝ}n−2
i=1 ;

a0,{πi}n−2
i=1

)
:

n−2∧
i=1

Groth16.Vfy(crs,πi,(a0, Ŝi))∧
comin = Ŝ∗ ck1

 .

The associated protocol is given in Figure 4, and is made non-interactive by applying the
Fiat-Shamir transform [FS87].

Note that Prove outputs an opening o = (z1,z3) of coma0 . This opening is used for linkage
proofs, which show that multiple HICIAP proofs share the same a0. Formally, this relation is

Rlink =

{(
{π̂i}t

i=1;a0,{oi}t
i=1
)

:
t∧

i=1

com
(i)
a0 = a0P1 + z(i)1 P2 + z(i)3 P3

}
,

where com
(i)
a0 comes from π̂i, (z

(i)
1 ,z(i)3) come from oi, and P1,P2,P3 ∈G1 is a Pedersen basis

shared by all HICIAP instances. The LinkProve and LinkVfy algorithms are constructed using
the generic Σ-protocol framework defined by Camenisch and Stadler [CS97]. The protocol is
described and proven secure in Appendix B.1.

For the last relation, recall from the intuition that the value W in HICIAP proofs must be
proven to represent the value a0 on the wire W0 and no more (i.e., it must not allow the prover
to cancel other wire values). We call this the hidden wire well-formedness (HWW) relation:

RHWW :=

{(
(U,V,{Gi}5

i=1 ∈G1 ;

w,x,y ∈ F

)
:

U = wG1 + xG2 + yG3∧
V = wG4 + xG5

}
Like Link, the HWW proof system is a Σ-protocol constructed using the Camenisch-Stadler
framework. The protocol is also described and proven secure in Appendix B.1.

We claim that HICIAP is a zkSNARK for the RHICIAP relation. The proofs of the below
theorems can be found in Appendix B.2. Lastly, we note that the requirement that n is a power
of 2 greater than or equal to 16 is not a barrier to usage, since proofs (and their prepared public
inputs) can be duplicated arbitrarily many times to pad the input of the HICIAP algorithms.

Theorem 2 (HICIAP Soundness). HICIAP on n− 2 proofs is knowledge-sound against
algebraic adversaries under the G1-DL, n-ASDBP, and 2n-SDH assumptions.

Theorem 3 (HICIAP Perfect Honest Verifier Zero Knowldege). The HICIAP protocol is
perfect HVZK, provided that n≥ 16.

7 Implementation and evaluation
We now detail the design and evaluation of SNARKBLOCK.

7.1 Implementation and setup

Hardware. All benchmarks were performed on a desktop computer with a 2021 Intel
i9-11900KB CPU with 8 physical cores and 64GiB RAM running Ubuntu 20.04 with kernel
5.11.0-40-generic.

15

213 215 217 219 221 223 225 227 229

Blocklist size

0.5

1

2

4

8

16

32

64

128
At

te
st

at
io

n
tim

e
(s

)

Snarkblock attestation time vs. blocklist size

nobuf, cs=1024
buf, cs=1024
nobuf, cs=8192
buf, cs=8192

(a) Online costs for proving non-membership vs. block-
list size

1 32 64 96 128 160 192 224
0.00

0.25

0.50

0.75

1.00

1.25

Of
fli

ne
 p

re
co

m
pu

ta
tio

n
tim

e
(s

)

buf

224 4096 8192 12288
Num. additions/removals to blocklist tail

0

50

100

150

200

Of
fli

ne
 p

re
co

m
pu

ta
tio

n
tim

e
(s

)

buf, cs=8192
buf, cs=1024

Sync time vs. blocklist changes

(b) Precomputation cost vs. additions/removals to the
blocklist

Figure 5: Client-side performance for SNARKBLOCK

215 217 219 221 223 225 227

Blocklist size

0

10

20

30

40

50

60

Ve
rif

ica
tio

ns
 /

s

Snarkblock verification throughput vs. Blocklist size

buf, cs=1024
buf, cs=8192

(a) SNARKBLOCK attestation verifications per second
vs. blocklist size.

217 219 221 223 225 227

Blocklist size

0

20

40

60

80

100

120

140

160
Pr

oo
f s

ize
 (K

iB
)

Snarkblock proof size vs. Blocklist size

buf, cs=8192
nobuf, cs=8192
Fit to log growth

(b) SNARKBLOCK attestation proof size vs. blocklist
size. Varying chunk size only shifts the x-axis.

Figure 6: Server-side performance for SNARKBLOCK

Code. SNARKBLOCK consists of 4.3k lines of Rust code4 using the Arkworks [Ar21]
zkSNARK crates and Rayon for parallelization where possible. The Criterion-rs crate was
used for all benchmarks and statistics.
Statistics. Performance measurements are for medians and include error bars indicating the
95% confidence interval. These are not visible: over all benchmarks, the maximum relative
standard error of the median is 1.6%.
Instantiating cryptographic primitives. We set λ = 128. We use BLS12-381 [Bow17]
for our Groth16 and HICIAP proofs, and Jubjub [ZCa19] for Schnorr signatures. We use
hash functions H1,H2,H3 for identity registration, tag computation, and Schnorr signatures,
respectively. Specifically, the commitment scheme used for Risu is Com(m,r) := H1(r‖m)
and the PRF scheme used for Rchunk is Prfk(m) := H2(k‖m). Each Hi is a domain-separated
instantiation of the Poseidon family [GKK+19], configured to be compatible with BLS12-381

4The HICIAP crate source code can be found at https://github.com/rozbb/hiciap and the
SNARKBLOCK crate source code can be found at https://github.com/rozbb/snarkblock.

16

https://github.com/rozbb/hiciap
https://github.com/rozbb/snarkblock

Client Attestation Server Verification Proof Size

BLAC [TAKS10] 2nMG1 (2n+4)MG1 +2P
Abs. (3n+12)|F|+(n+3)|G1|
Real 528B+n ·144B

SNARKBLOCK

(197+10c)MG1

+(160+10c)MG2 +2MGT

+(244+15c)P

25MG1 +38P

+(46+10log2(c))MGT

Abs. 8|F|+29|G1|+14|G2|
+(48+10log2 c)|GT |

Real 29.3KiB+ log2(c) ·5.6KiB
Legend: n = Blocklist length, c = Num. chunks, MG = Var. base MSM in G, P = Pairing op., |G|= Size of group elem., |F|= Size of scalar field elem.

Table 1: BLAC and SNARKBLOCK operation counts and proof sizes. SNARKBLOCK operation counts
assume a fully synchronized client and an unbuffered blocklist. The top subcell in the Proof Size column
represents abstract element counts. The bottom subcell represents the byte count when instantiated with
BLS12-381.

and a 128-bit security level (i.e., α = 5 and capacity = 1).

7.2 Evaluation
Benchmarks are given in Figures 5 and 6. Lines marked buf were benchmarked using a
size-14 buffer of 16-element chunks. Lines marked nobuf used no buffer. The cs parameter
refers to chunk size.

Figure 5a gives the time clients take to attest to non-membership on a blocklist that has
recently changed. Specifically, this is the time it takes for a user to recompute the last Groth16
chunk proof; compute HICIAP proofs over the blocklist, buffer (if the buffer exists), issuance,
and tag well-formedness proofs;5 and compute the link proof over those. Separately, Figure 5b
gives the offline computation a client must do as a function of the number of additions/removals
to the blocklist (e.g. per day). This includes syncing chunks and precomputing its Groth16
issuance and tag well-formedness proofs for the next attestation.

Figure 6 gives proof sizes and throughput for server verification. These graphs, which are
semi-log scale, show that, unlike previous work, SNARKBLOCK proofs scale logarithmically
with the number of elements in the blocklist.

8 Discussion
We now discuss real-world performance and possible extensions.

8.1 Is SNARKBLOCK practical?

Attestation latency. How long can attestation take in practice? A client that computes an
attestation in the background while a user drafts their post or comment adds no latency to the
user’s workflow. When the expected time to write a comment is lower than attestation time
(e.g., writing a tweet), then the comment must be queued and posted by the client software
when attestation is complete. While this is acceptable in many cases, it renders SNARKBLOCK
impractical for real-time chat when blocklists are large.

5For speed, we combine Risu and Rtag into a single circuit in our implementation. Thus there are only 2 proofs to
link in an unbuffered SNARKBLOCK attestation.

17

Operating Costs. SNARKBLOCK can be used when 1) logging in to a pseudonymous
session, or 2) posting or commenting anonymously. The latter puts more load on a server. We
use it as an estimate for worst-case performance costs.

English language Wikipedia had 2 edits per second in 2021 [Wik] and Reddit had 64
comments per second in 2020 [Red20]. Estimating from event logs for June through October
2020, English language Wikipedia has about 2k bans per day, of which 250 (12.5%) were
permanent. Assuming a similar ban rate, Reddit has at least 8k permanent bans per day and
perhaps 32k temporary.

An Amazon EC2 c5.4xLarge costs about $10 USD per day if reserved for a year.6 For a
blocklist of 224 entries, SNARKBLOCK handles at least 35 attestations per second. At Reddit’s
scale, deployed in the more resource-intensive attestation-per-comment mode, SNARKBLOCK
costs on the order of $20 per day when pessimistically assuming full EC2 retail pricing at scale.
With generous allowances for CPU differences and virtualization overhead, SNARKBLOCK is
at most $200 per day in the worst case. For reference, Facebook pays moderators in the US
$120 a day [Sal19].

A final consideration is increased bandwidth usage by the server. A SNARKBLOCK
attestation for a 4M-entry blocklist is 130KiB, at least two orders of magnitude larger than an
average text comment it would accompany in the fully anonymous setting. 130KiB, however,
is dwarfed by the size of image and video files uploaded to many service providers. Moreover,
inbound traffic is typically a small fraction of total traffic for web services. So much so that
on EC2, for example, it’s free.

8.2 Client side performance vs BLAC
SNARKBLOCK’s main advantage over BLAC is logarithmic server-side scaling. Nonetheless,
we briefly discuss client-side performance. The biggest problem for BLAC, surprisingly, is
proof size. A blocklist with 4M bans yields proofs of 549MiB. In contrast, a SNARKBLOCK
attestation is less than 200KiB for a 134 million entry list. On a 50Mbps connection, which
is 5× the upstream bandwidth of the median US household [FCC20],7 uploading a BLAC
attestation would take 90s. Even if both have a 100Mbps fiber connection, SNARKBLOCK
can compute and upload the attestation before a BLAC proof would upload.

What if we ignore proof size? Although Tsang et al. give benchmarks for BLAC, they
are on 10+ year old hardware using the very dated PBC library [Lyn] for pairings. Luckily,
Tsang et al. also characterize their system’s performance in terms of group operations. In
lieu of a reimplementation, we report these measurements and give the equivalent values for
SNARKBLOCK in Table 1.

SNARKBLOCK pays an initial overhead in terms of upfront costs (e.g., the 244 pairings).
The major advantage for SNARKBLOCK is that its operations are per chunk as opposed to
per element. Ignoring constants, SNARKBLOCK is faster for proving whenever 2nMG1 >
10nMG1

s +
10nMG2

s + 15nP
s , where s = n/c is the chunk size. Thus, as the blocklist size grows,

SNARKBLOCK will outperform as long as s > 5+12.5o where o = P/MG1 is the overhead
for pairings relative to G1 multiplications.8 On our benchmark system, G2 multiplications are
about 3 times G1, and pairings twice that. i.e., o≈ 6.

6With 16 virtual Xeon CPUs and 30GB of memory, this is a decent analogue to our test system since in testing,
SNARKBLOCK never exceeded 20 GB of memory for verification.

7FCC measurements are a trailing indicator. The latest report, released in Sep. 2020 [FCC20], is for data as of
Dec. 2018. For Oct. 2021, Speedtest.net reports its US users have upstream averages of 19.18Mbps for wired
connections and 8.81Mbps for mobile.

8Since MG2 < P, we can approximate them as the same.

18

Speedtest.net

Unfortunately, giving a precise estimate for the transition point is impossible with only
group operations: we need to compare runtimes to a full reimplementation of BLAC. Real-
world performance will differ significantly from group operation counts due to parallelization
and other optimizations. Indeed, SNARKBLOCK outperforms estimates based on group
operations and benchmarked operation times.

SNARKBLOCK has one substantial cost that BLAC does not: SNARKBLOCK requires
periodic sync computations for blocklist additions and removals. Per Figure 5, this is less
than 200s for every 12k additions, with appropriate batching or buffering. For much faster
churning lists, e.g., 64k additions per day, BLAC would have a large initial advantage by
avoiding these recomputation costs. But at even 8k additions per day, the service provider will
exceed 222 bans within two years. At this point, under reasonable bandwidth assumptions,
SNARKBLOCK will outperform BLAC.

8.3 Cold Start
One significant caveat for SNARKBLOCK is that a new user of a system with a pre-existing
blocklist must do significant work to sync the entire blocklist and compute the chunk proofs.

One option is to leverage the issuance date for a user’s identity and allow them to skip
proving membership in blocklist chunks whose last entry is before they joined. This can
be done directly now, albeit at the cost of leaking the user’s approximate join time for, e.g.,
a particular forum. Specifically, a given service provider can use a custom CRS for their
Groth16 chunk proofs. They can then, using the CRS trapdoor, give each new user non-
membership chunk proofs for earlier portions of the blocklist. Crucially, proving with a
trapdoor is constant-time, so this process is efficient.

We leave to future work the question of how to build a general trapdoor for cold start. In
particular, it should be possible skip chunk proofs whose last entry was inserted before the
issuance data of the user’s identity.

9 Related work
For a full formalization of privacy preserving blocklists, we refer the reader to excellent SoK
of Henry and Goldberg [HG11]. This also describes a number of interesting hybrid systems
that can be constructed in a black-box way from either SNARKBLOCK or BLAC and allow for
pruning of blocklists.

9.1 Blocklists
The work closest to ours is the ZKBL approach introduced in BLAC [TAKS10]. As discussed
in prior sections, by replacing the zero-knowledge proofs in BLAC with our novel proving
system HICIAP, we get a system that offers logarithmic verification time and proof size, rather
than linear. Further, we extend the system to support federated identities.

Also close to our work is the windowed approach from PEREA [TAKS08], also by the
authors of BLAC. In PEREA, users are issued a finite number of one-time-use identity tickets
for use during a revocation window, e.g., one month. To complete an action, a user must prove
none of those tickets are in the blocklist. A user computes the same proof to get the next set
of tickets. Verification time is proportional to size of the revocation window, not the total size
of the blocklist. It has a number of drawbacks for broad deployment on the web:

1. Issuing users a small number of tickets is feasible for individual low-volume sites, but
the limit would apply to all sites in a federated system.

19

2. The approach is inherently centralized. All blocklists must be registered with the single
identity provider to ensure non-membership before reissuing identities.

3. Service providers must react quickly to ban users, since bans expire once the user gets
new identities. The exact time depends on configuration; PEREA gives the example of
a 1-hour window for a site like Wikipedia.

Finally, a number of systems provide weaker anonymity. One line of work relies on a
trusted third party to revoke anonymity, e.g, [Cha85, Cv91, BMW03]. Another approach
is to leverage blind signatures to remove the linkage between, e.g., an IP address, and the
pseudonym, e.g., [JKTS07, TKCS11, LH10]. These schemes only provide pseudonymity,
allowing the linking of pseudonymous posts across different platforms. In contrast, SNARK-
BLOCK provides anonymity and does not trust a third party to safeguard user identities.

9.2 Zero-knowledge proofs
Our HICIAP protocol consists of a non-membership proof and a proof that a revocation tag
has been computed correctly. Bayer and Groth design a non-membership proof [BG13]
with logarithmic proof size and no trusted setup, but they have (quasi-)linear prover and
verifier costs. Non-membership proofs can also be constructed in groups of unknown order
[CL02, BCFK19], and have constant verifier time and prover time. However, it is not obvious
how to apply these techniques to a blocklist without requiring a finite number of tickets per
user as in PEREA.

An alternative and thus far unexplored direction for proving blocklist non-membership
is recent advances in recursive zero-knowledge proofs using techniques first introduced by
Bowe et al. for Halo [BGH19]. Halo-like schemes, formalized in [BCMS20] as accumulator
schemes, have been extended to a wider variety of polynomial commitment schemes in
[BDFG21]. These use Bulletproofs [BBB+18] as a building block, which introduces a linear
verification time component to the constructions. This cost is typically small if the individual
computation step is small, but leads to a different set of design tradeoffs than recursive proofs
with fully succinct verifiers. Bünz et al. [BCL+21] and Kothapalli et al. [KST21] improve
upon these results.

One key challenge to using Halo-like techniques is the concrete cost of recursion. With
SNARKBLOCK, aggregation costs are less than 8× the cost of native verification, keeping
online costs low. For Halo-like systems, these costs depend heavily on the exact approach
taken.

References
[Ar21] Arkworks-rs. Arkworks Ecosystem Homepage, 2021. https://arkworks

.rs/.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027
of LNCS, pages 56–73. Springer, Heidelberg, May 2004.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE
Computer Society Press, May 2018.

20

https://arkworks.rs/
https://arkworks.rs/

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55.
Springer, Heidelberg, August 2004.

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya,
Leonid Reyzin, Kai Samelin, and Sophia Yakoubov. Accumulators with applica-
tions to anonymity-preserving revocation. Cryptology ePrint Archive, Report
2017/043, 2017. https://eprint.iacr.org/2017/043.

[BCFK19] Daniel Benarroch, Matteo Campanelli, Dario Fiore, and Dimitris Kolonelos.
Zero-knowledge proofs for set membership: Efficient, succinct, modular. Cryp-
tology ePrint Archive, Report 2019/1255, 2019. https://eprint.iacr.
org/2019/1255.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars
Virza. Secure sampling of public parameters for succinct zero knowledge proofs.
In 2015 IEEE Symposium on Security and Privacy, pages 287–304. IEEE Com-
puter Society Press, May 2015.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Malkin and Peikert
[MP21], pages 681–710.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
Proof-carrying data from accumulation schemes. Cryptology ePrint Archive,
Report 2020/499, 2020. https://eprint.iacr.org/2020/499.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-
carrying data from additive polynomial commitments. In Malkin and Peikert
[MP21], pages 649–680.

[BG13] Stephanie Bayer and Jens Groth. Zero-knowledge argument for polynomial
evaluation with application to blacklists. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 646–663.
Springer, Heidelberg, May 2013.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition
without a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.
https://eprint.iacr.org/2019/1021.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for
zk-SNARK parameters in the random beacon model. Cryptology ePrint Archive,
Report 2017/1050, 2017. https://eprint.iacr.org/2017/1050.

[BKSV20] Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. Another
look at extraction and randomization of groth’s zk-SNARK. Cryptology ePrint
Archive, Report 2020/811, 2020. https://eprint.iacr.org/2020/8
11.

[BMM+20] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely.
Proofs for inner pairing products and applications. Cryptology ePrint Archive,
Report 2019/1177, 2020. https://eprint.iacr.org/2019/1177.

21

https://eprint.iacr.org/2017/043
https://eprint.iacr.org/2019/1255
https://eprint.iacr.org/2019/1255
https://eprint.iacr.org/2020/499
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2020/811
https://eprint.iacr.org/2020/811
https://eprint.iacr.org/2019/1177

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 614–629. Springer, Heidelberg, May 2003.

[Bow17] Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction, 2017.
https://electriccoin.co/blog/new-snark-curve/.

[CCDW20] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and Nicholas P. Ward.
Reducing participation costs via incremental verification for ledger systems.
Cryptology ePrint Archive, Report 2020/1522, 2020. https://ia.cr/20
20/1522.

[Cha85] David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM, 28(10):1030–1044, 1985.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and applica-
tion to efficient revocation of anonymous credentials. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 61–76. Springer, Heidelberg,
August 2002.

[CS97] Jan Camenisch and Markus Stadler. Proof systems for general statements about
discrete logarithms. Technical report, 1997.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 126–144. Springer, Heidelberg, August 2003.

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies,
editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Hei-
delberg, April 1991.

[Fac] Facebook. Help Center - What names are allowed on Facebook? https:
//www.facebook.com/help/112146705538576. Accessed on Nov.
26, 2021.

[FCC20] FCC. Internet access services: Status as of december 31, 2018. https:
//docs.fcc.gov/public/attachments/DOC-366980A1.pdf,
2020.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidel-
berg, August 2018.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[Fuc17] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. Cryptology ePrint
Archive, Report 2017/587, 2017. https://eprint.iacr.org/2017/5
87.

22

https://electriccoin.co/blog/new-snark-curve/
https://ia.cr/2020/1522
https://ia.cr/2020/1522
https://www.facebook.com/help/112146705538576
https://www.facebook.com/help/112146705538576
https://docs.fcc.gov/public/attachments/DOC-366980A1.pdf
https://docs.fcc.gov/public/attachments/DOC-366980A1.pdf
https://eprint.iacr.org/2017/587
https://eprint.iacr.org/2017/587

[GKK+19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian Rech-
berger, and Markus Schofnegger. Starkad and Poseidon: New hash functions for
zero knowledge proof systems. Cryptology ePrint Archive, Report 2019/458,
2019. https://eprint.iacr.org/2019/458.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[HG11] Ryan Henry and Ian Goldberg. Formalizing anonymous blacklisting systems. In
2011 IEEE Symposium on Security and Privacy, pages 81–95. IEEE Computer
Society Press, May 2011.

[HKR19] Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge
arguments in the discrete log setting, revisited. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
2093–2110. ACM Press, November 2019.

[JKTS07] Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and Sean W. Smith. Nymble:
Anonymous IP-address blocking. In Nikita Borisov and Philippe Golle, editors,
PET 2007, volume 4776 of LNCS, pages 113–133. Springer, Heidelberg, June
2007.

[KST21] Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. Nova: Recursive
zero-knowledge arguments from folding schemes. Cryptology ePrint Archive,
Report 2021/370, 2021. https://eprint.iacr.org/2021/370.

[LH10] Zi Lin and Nicholas Hopper. Jack: Scalable accumulator-based nymble system.
pages 53–62, 01 2010.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient
nonmembership proofs. In Jonathan Katz and Moti Yung, editors, ACNS 07,
volume 4521 of LNCS, pages 253–269. Springer, Heidelberg, June 2007.

[Lyn] Ben Lynn. PBC Library - Pairing-Based Cryptography - About.

[MP21] Tal Malkin and Chris Peikert, editors. CRYPTO 2021, Part I, volume 12825 of
LNCS, Virtual Event, August 2021. Springer, Heidelberg.

[Rad21] Radiolab. The Ceremony, 2021. https://www.wnycstudios.org/po
dcasts/radiolab/articles/ceremony.

[Red20] Reddit Staff. Reddit in 2020. (https://old.reddit.com/r/blog/co
mments/k967mm/reddit in 2020/, 2020.

[Sal19] Sara Salinas. Facebook pays the reviewers filtering porn and murder a tiny
fraction of its median salary, explosive report says. https://www.cnbc.c
om/2019/02/25/facebook-pays-content-moderators-a-fra
ction-of-median-salary-report.html, Feb 2019.

[TAKS08] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. PEREA:
towards practical TTP-free revocation in anonymous authentication. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 333–
344. ACM Press, October 2008.

23

https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2021/370
https://www.wnycstudios.org/podcasts/radiolab/articles/ceremony
https://www.wnycstudios.org/podcasts/radiolab/articles/ceremony
https://old.reddit.com/r/blog/comments/k967mm/reddit_in_2020/
https://old.reddit.com/r/blog/comments/k967mm/reddit_in_2020/
https://www.cnbc.com/2019/02/25/facebook-pays-content-moderators-a-fraction-of-median-salary-report.html
https://www.cnbc.com/2019/02/25/facebook-pays-content-moderators-a-fraction-of-median-salary-report.html
https://www.cnbc.com/2019/02/25/facebook-pays-content-moderators-a-fraction-of-median-salary-report.html

[TAKS10] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. BLAC:
Revoking Repeatedly Misbehaving Anonymous Users without Relying on TTPs.
ACM Transactions on Information and System Security, 13(4):1–33, December
2010.

[TKCS11] P. P. Tsang, A. Kapadia, C. Cornelius, and S. W. Smith. Nymble: Blocking
misbehaving users in anonymizing networks. IEEE Transactions on Dependable
and Secure Computing, 8(2):256–269, 2011.

[VB20] Giuseppe Vitto and Alex Biryukov. Dynamic universal accumulator with batch
update over bilinear groups. Cryptology ePrint Archive, Report 2020/777, 2020.
https://eprint.iacr.org/2020/777.

[Wik] https://stats.wikimedia.org/#/en.wikipedia.org/contr
ibuting/edits/normal|bar|2020-11-04˜2021-11-24|˜total
|monthly.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion
Stoica. DIZK: A distributed zero knowledge proof system. In William Enck and
Adrienne Porter Felt, editors, USENIX Security 2018, pages 675–692. USENIX
Association, August 2018.

[ZCa19] ZCash. What is Jubjub?, 2019. https://z.cash/technology/jubj
ub/.

A Deferred definitions
We will use the definition of the Discrete Log (DL) assumption from [FKL18] and the
definitions of the q-ASDBP and q-SDH assumptions from [BMM+20]. We also use the
definitions of honest-verifier zero-knowledge and knowledge soundness from [BMM+20]. In
the definitions, 〈A,B〉 denotes the transcript of a protocol run between algorithms A and B.

Assumption (DL). Let GGen(1λ) be a nondeterministic function which outputs a group G of
prime order p > 2λ and a generator G.

The Discrete Logarithm assumption holds relative to GGen iff for any PPT algorithm A,

Pr
[
xG = H | (G,G)← GGen(1λ), H←G, x← A(G,G,H)

]
= negl(λ).

Assumption (q-ASDBP). Let GGen(1λ) be a nondeterministic function which outputs 3
groups G1,G2,GT of prime order p > 2λ ; a bilinear pairing e : G1×G2→GT ; and genera-
tors G,H for G1 and G2, respectively. Let pp denote (G1,G2,GT ,G,H,e).

The q-Auxiliary Structured Double Pairing assumption holds relative to GGen iff for any
PPT algorithm A,

Pr

 (A0, . . . ,Aq−1) 6= 1G1∧
∏e
(
Ai,
[
β 2i
]

2

)
= 1

∣∣∣∣∣
pp← GGen(1λ)

β ← F

(A0, . . . ,Aq−1)← A(pp, [β]1 ,{
[
β

2i]
2}

q−1
i=1)

= negl(λ).

Assumption (q-SDH). Let GGen(1λ) be a nondeterministic function which outputs 3 groups
G1,G2,GT of prime order p > 2λ ; a bilinear pairing e : G1×G2 → GT ; and generators
G,H for G1 and G2, respectively. Let pp denote (G1,G2,GT ,G,H,e).

24

https://eprint.iacr.org/2020/777
https://stats.wikimedia.org/#/en.wikipedia.org/contributing/edits/normal|bar|2020-11-04~2021-11-24|~total|monthly
https://stats.wikimedia.org/#/en.wikipedia.org/contributing/edits/normal|bar|2020-11-04~2021-11-24|~total|monthly
https://stats.wikimedia.org/#/en.wikipedia.org/contributing/edits/normal|bar|2020-11-04~2021-11-24|~total|monthly
https://z.cash/technology/jubjub/
https://z.cash/technology/jubjub/

The q-Strong Diffie Hellman assumption holds relative to GGen iff for any PPT algorithm
A,

Pr

A =
[
(β −a)−1]

2

∣∣∣∣∣
pp← GGen(1λ)

β ← F
(a,A)← A(pp, [β]1 , [β]2 , . . . , [β

q]1 , [β
q]2)

= negl(λ).

Definition (Knowledge-sound argument). A public-coin argument Π = (Setup,Prove,Vfy)
on a relation R is knowledge-sound with error κ(λ) iff for all deterministic efficient (possibly
dishonest) provers P∗, there exists an efficient extractor E such that for all PPT adversaries A,

Pr

 tr accepts∧
(x,w) 6∈ R

∣∣∣∣∣
crs← Setup(1λ)

(x, tr)← 〈P∗,Vfy〉(crs)

w← EP∗(crs,x, tr)

≤ κ(λ).

We say Π is knowledge-sound iff it is knowledge-sound with negligible error.

Definition (Perfect honest-verifier zero-knowledge). Let Π = (Setup,Prove,Vfy) be an inter-
active argument of knowledge on a relation R. Let an adversary be a pair of PPT algorithms
A= (A0,A1) such that A0(crs) picks an instance, witness, and random coins (x,w,ρ); and
A1(tr) decides whether a transcript is the result of a simulation or not.

Π is perfect honest-verifier zero-knowledge (perfect HVZK) iff there exists an efficient
simulator Sim such that for all adversaries A= (A0,A1),

Pr

(x,w) ∈ R ∧ A1(tr)
∣∣∣ crs← Setup(1λ)

(x,w,ρ)← A0(crs)

tr← Sim(crs,x ; ρ)



= Pr

(x,w) ∈ R ∧ A1(tr)
∣∣∣ crs← Setup(1λ)

(x,w,ρ)← A0(crs)

tr← 〈Prove(crs,x,w),Vfy(crs,x ; ρ)〉

 .
B Deferred proofs

B.1 Subprotocols
In this section we state and prove theorems of security of the subprotocols used in HICIAP
and SNARKBLOCK, namely HMIPP, HWW, and HICIAP.Link.

Recall RHMIPP is a zero-knowledge (“hiding”) version of the RMIPP−k relation. Both
relations are detailed in Figure 1, and their proof systems are given in [BMM+20]. In Figure 7
we restate the RHMIPP proof system, and we prove its knowledge-soundness below.

Lemma 4. The HMIPP protocol is perfect HVZK. (Lemma 5 in [BMM+20])

Lemma 5. HMIPP on n elements is knowledge-sound against algebraic adversaries under
the n-ASDBP and 2n-SDH assumptions.

Proof. By Theorem 6 of [BMM+20], under the n-ASDBP and 2n-SDH assumptions, there is
a polynomial-time extractor EMIPP−k for MIPPk(ck,comC,aggC,r,C) which extracts C̃ such
that C̃∗ ck1 = com′ and C̃r = agg′.

25

HMIPP.Prove(ck,(comC,aggC,r),(C,z)) HMIPP.Vfy (srs,(comC,aggC,r))
Q←Gn

1

ρ ← F
aggQ := Qr

comQ := e([ρ]1 ,ck3) · (Q∗ ck1)
comQ,aggQ−−−−−−−→

c←−− c← F

ρ ′ := cz+ρ
ρ ′−−→

C̃ := cC+Q com′ := comc
C · comQ · e(− [ρ ′]1 ,ck3)

MIPPk(com
′,agg′,r ; C̃)←−−−−−−−−−−−−→ agg′ := c ·aggC +aggQ

Figure 7: The HMIPP protocol

Our extractor EHMIPP is defined as follows: send a random c1 as the verifier in the protocol
would; receive ρ ′ and denote it ρ1; use EMIPP−k to extract C̃1 from MIPPk; rewind and
send a fresh c2; receive ρ2; use EMIPP−k to extract C̃2; output z := (c1− c2)

−1(ρ1−ρ2) and
C := (c1− c2)

−1(C̃1− C̃2).
We refer to the agg′ from the first execution by agg′1 and from the second execution

by agg′2. We notate com′1 and com′2 similarly. Since EMIPP−k guarantees C̃r
1 = agg′1 and

C̃r
2 = agg′2,

Cr = (c1− c2)
−1(C̃1− C̃2)

r = (c1− c2)
−1(agg′1−agg′2) = aggC.

Further, since EMIPP−k guarantees C̃1 ∗ ck1 = com′1 and C̃2 ∗ ck1 = com′2,

e([z]1 ,ck3) · (C∗ ck1)

= e([z]1 ,ck3) · ((C̃1− C̃2)∗ ck1)
(c1−c2)

−1

= e([z]1 ,ck3) · (com′1 · (com′2)−1)(c1−c2)
−1

= e([z]1 ,ck3) ·
(
(comc1

C · comQ · e(− [ρ1]1 ,ck3)) · (com−c2
C · com−1

Q · e([ρ2]1 ,ck3))
)(c1−c2)

−1

= e([z]1 ,ck3) · comC · e(
[
−(ρ1−ρ2)(c1− c2)

−1]
1 ,ck3)

= e([z]1 ,ck3) · comC · e(− [z]1 ,ck3)

= comC

as desired.

Recall the hidden wire well-formedness relation RHWW described in Section 6

RHWW :=

{(
(U,V,{Gi}5

i=1 ∈G1 ;

w,x,y ∈ F

)
:

U = wG1 + xG2 + yG3∧
V = wG4 + xG5

}

We write this relation’s proof system in Figure 8 and prove it knowledge-sound and honest-
verifier zero-knowledge below.

26

HWW.Prove
(
U,V,(Gi)

5
i=1;w,x,y

)
HWW.Vfy

(
U,V,(Gi)

5
i=1
)

α,β ,γ ← F
com := (αG1 +βG2 + γG3,αG4 +βG5)

com−−→
c←− c← F

(r1,r2,r3) = (α− cw,β − cx,γ− cy)
r1,r2,r3−−−−→

com
?
=

(
r1G1 + r2G2 + r3G3 + cU,

r1G4 + r2G5 + cV

)

Figure 8: The Hidden Wire Well-formedness sigma protocol

Lemma 6. HWW is perfect HVZK.

Proof. We define a simulator as follows: sample r1,r2,r3,c← F uniformly; compute com :=
(r1G1 + r2G2 + r3G3 + cU,r1G4 + r2G5 + cV); output (com,r1,r3,r3,c). This is perfectly
indistinguishable from a real transcript: in a real transcript, r1,r2,r3 are uniform and inde-
pendent because of the blinders α,β ,γ; c is uniform and independent by definition; and com
is uniquely determined by these values. In the simulator, r1,r2,r3 and c are uniform and
independent by construction and com is uniquely determined by these values.

Lemma 7. HWW is knowledge-sound.

Proof. We define an extractor EHWW as follows, aborting on verification error: send c← F to
the prover; receive r1,r2,r3; rewind and send a fresh c′← F; receive r′1,r

′
2,r
′
3. Finally, EHWW

outputs

w := (r1− r′1)(c
′− c)−1 x := (r2− r′2)(c

′− c)−1 y := (r3− r′3)(c
′− c)−1.

Since EHWW did not abort, i.e., both runs verified, it is the case that U = wG1 + xG2 + yG3
and V = wG4 + xG5.

Recall the HICIAP.Link relation Rlink

Rlink =

{(
{Pi}3

i=1,{com
(i)
a0 }

t
i=1;a0,{z(i)1 ,z(i)3 }

t
i=1

)
:

t∧
i=1

com
(i)
a0 = a0P1 + z(i)1 P2 + z(i)3 P3

}
.

We write this relation’s proof system in Figure 9 and prove it knowledge-sound and honest-
verifier zero-knowledge below. Like HWW, this is a Σ-protocol. Thus, its proofs of security
are nearly identical to those of HWW.

Lemma 8. HICIAP.Link is perfect HVZK.

Proof. We define a simulator as follows: sample r,si,ui,c← F uniformly for all i = 1, . . . , t;
for all i, compute comi := rP1 + siP2 + uiP+ c · com(i)

a0 ; output ({comi}t
i=1,c,r,{si,ui}t

i=1).
This is perfectly indistinguishable from a real transcript: in a real transcript, all r,si,ui,c are
uniform and independent because of the blinders α,βi,γi; c is uniform and independent by
definition; and each comi is uniquely determined by these values. In the simulator, all r,si,ui,c
are all uniform and independent by construction, and com is uniquely determined by these
values.

27

HICIAP.Link

(
{Pi}3

i=1,{com
(i)
a0 }t

i=1;

a0,{z(i)1 ,z(i)3 }t
i=1

)
HICIAP.LinkVfy

(
{Pi}3

i=1,{com
(i)
a0 }t

i=1

)
α,{βi,γi}t

i=1← F

∀i : comi := αP1 +βiP2 + γiP3
{comi}ti=1−−−−−−→

c←− c← F
r := α− ca0

∀i : si := βi− cz(i)1

∀i : ui := γi− cz(i)3
r,{si,ui}ti=1−−−−−−→

t∧
i=1

comi
?
= rP1 + siP2 +uiP3 + c · com(i)

a0

Figure 9: The HICIAP.Link sigma protocol

Lemma 9. HICIAP.Link is knowledge-sound.

Proof. We define an extractor Elink as follows, aborting on verification error: send c← F
to the prover; receive r,{si,ui}t

i=1; rewinds and send a fresh c′ ← F; receive r′,{s′i,u′i}t
i=1.

Finally, Elink outputs

a0 := (r− r′)(c′− c)−1 z(i)1 := (si− s′i)(c
′− c)−1 z(i)3 := (ui−u′i)(c

′− c)−1

for all i. Since Elink did not abort, i.e., both runs verified, it is the case that comi = a0P1 +

z(i)1 P2 + z(i)3 P3 for all i.

B.2 Main theorems
In this section we prove the main theorems of SNARKBLOCK and HICIAP.

Theorem 1 (SNARKBLOCK Security). SNARKBLOCK described in Figure 3 is blocklistable,
anonymous and non-frameable provided that Groth16 and HICIAP proofs are knowledge-
sound and subversion zero-knowledge; Schnorr signatures are unforgeable; Prf is pseudoran-
dom; and Com is binding and hiding.

Proof Sketch. Blocklistability. Let A be an adversary that breaks blocklistability. Then
A generates a verifying attestation (πzkbl, tag,nonce). Either an extractor can output k such
that tag= Prfk(n); or π̂tag is a forgery for HICIAP and we cannot extract a verifying Groth16
statement and proof k,πtag breaking knowledge soundness; or πtag is a forgery for Groth16
and tag 6= Prfk(nonce) breaking knowledge soundness.

Either an extractor can output a verifying signature σ under some identity providers public
key pki∗ on the message com= Com(k,r) the same k and some r; or π̂link is a forgery for Link
breaking knowledge soundness; or the adversary can find com= Com(k′,r′) for different k′,r′

breaking binding; or π̂isu is a forgery for HICIAP and we cannot extract a verifying Groth16
proof πisu for k breaking knowledge soundness; or ((k,I),πisu) is a forgery for Groth16
breaking knowledge soundness. If σ is a verifying signature then either pki∗ authenticated
com at some point, or we break unforgeability of the signature scheme.

28

If σ has been authenticated by pki∗ that gets blocked then (tag,nonce) gets added to L .
If A later generates a verifying attestation with respect to the same σ then either π̂link is a
forgery for Link breaking knowledge soundness; or the adversary can find com= Com(k′,r′)
for different k′,r′ breaking binding; or π̂chunk is a forgery for HICIAP and we cannot extract
verifying Groth16 proofs πchunk j for k breaking knowledge soundness; or πchunk j is a forgery
for Groth16 for some j and Prfk(nonce

∗) = tag∗ for some (nonce∗, tag∗) ∈ L breaking
knowledge soundness; or σ is never associated with a blocked session and A does not break
blocklistability.
Non-Frameability. If an adversarial identity provider prevents an honest user from authenti-
cating then they must get some (nonce, tag) added to L such that tag = Prfk(nonce) for an
honest user’s k. By the pseudorandomness of Prf and the anonymity of SNARKBLOCK, the
probability that they guess any such tag is negligible.
Anonymity. We claim that the transcript between an honest user and any number of identity
providers and service providers is uncorrelated. By the hiding of Com we have that com
reveals no information about k (and uses distinct r each registration). By the zero-knowledge
of HICIAP we have that πzkbl reveals no information (even to the identity providers). nonce is
chosen uniformly at random for each session associated with k. By the pseudorandomness
of Prf, tag is indistinguishable from random for users that don’t know k and thus reveals no
information about k. Thus the scheme is anonymous. �

Theorem 2 (HICIAP Soundness). HICIAP on n− 2 proofs is knowledge-sound against
algebraic adversaries under the G1-DL, n-ASDBP, and 2n-SDH assumptions.

Proof. We wish to show that, there exists an efficient HICIAP extractor EP∗
HICIAP(ck,crs, Ŝ)

which outputs a witness (a0,A′,B′,C′) such that for all i = 1, . . . ,n−2,

Groth16.Vfy
(
crs,(A′i,B

′
i,C
′
i),(a0, Ŝi)

)
.

By Theorem 3 of [BMM+20], there is an efficient extractor ETIPP for TIPP(comA,comB,aggAB,r)
which extracts (A,B) such that comA = A ∗ ck1, comB = ck2 ∗B, and aggAB = Ar ∗B. By
Theorem 6 of [BMM+20], there is an efficient extractor EMIPP−k for MIPPk(comin,aggin,r′)
which extracts Ŝ′ such that Ŝ′ ∗ ck1,[:n−2] = comin and (Ŝ′)r′ = aggin. By Lemma 5, there
is an efficient extractor EHMIPP for HMIPP(comC,aggC,r) which extracts (C,z4) such that
Cr = aggC and comC = e(z4G,ck3) + (C ∗ ck1). By Lemma 7, there is an efficient ex-
tractor EHWW(coma0 ,W,P1,P2,P3,G1,G2) for HWW which extracts (a0,z1,z3) such that
coma0 = a0P1 + z1P2 + z3P3 and W = a0G1 + z1G2.

Let P∗ be a probabilistic prover with fixed randomness and unknown probability ε of
producing an argument that accepts. We define an extractor EP∗

HICIAP(ck,crs, Ŝ), which extracts
the witness (a0,A,B,C), as follows.

First, run HICIAP with a random r← F, and run all the subprotocols honestly. Note that,
by the definition of knowledge soundness, if P∗ does not produce an accepting transcript
tr on the first run, the extractor is allowed to exit early with (tr,⊥). If tr is accepting,
rewind to the point after r is chosen and run EMIPP−k, EHMIPP, EHWW, and ETIPP to extract
(a0,z1,z3,z4,A,B,C, Ŝ′). Finally, output (a0,A[:n−2],B[:n−2],C[:n−2]).

Note that EHICIAP algorithm is efficient, since its runtime is at most the sum of the runtimes
of EHMIPP, EHWW, and ETIPP, which are assumed to be efficient.

To prove the claimed relations hold, first note that the commitment comin = Ŝ∗ ck1,[:n−2]
is computationally binding under the (n−2)-ASDBP assumption, and so, with overwhelming
probability, Ŝ′ = Ŝ.

29

It remains to show that, with overwhelming probability, the extracted witness satisfies the
Groth16 verification condition. That is, for all i = 1, . . . ,n−2,

e(Ai,Bi) = e([α]1 , [β]2) · e(Ci, [δ]2) · e
(
Ŝi, [γ]2

)
.

The commitments comA,comB,comC are computationally binding under the n-ASDBP as-
sumptions. Further, since P1,P2,P3 are unrelated by assumption, the Pedersen commitment
coma0 is computationally binding by the DL hardness assumption on G1. Thus, with over-
whelming probability, the formal product being evaluated in TIPP is the one committed to by
comA,comB,comC, i.e.,

n

∏
i=1

e(Ai,Bi)
xi =

n−2

∏
i=1

e(a0W0, [γ]2)
xi ·

n

∏
i=1

e([α]1 , [β]2)
xi ·

n−2

∏
i=1

e
(
Ŝi, [γ]2

)xi ·
n

∏
i=1

e(Ci, [δ]2)
xi

· e([z1]1 , [γ]2)
xn−1

Then by the Schwartz-Zippel lemma, the above relation holds with probability at least 1−n/p.
Since the above equality directly implies the Groth16 verification condition, the theorem is
proved.

Theorem 3 (HICIAP Perfect Honest Verifier Zero Knowldege). The HICIAP protocol is
perfect HVZK, provided that n≥ 16.

Proof. A HICIAP proof consists of the values:

comin,coma0 ,comA,comB,comC,aggin,aggC,W, trMIPP-k, trHMIPP, trHWW, trTIPP.

We construct a simulator that knows a Groth16 simulation trapdoor τ to crs and which can
choose the verifier’s randomness in advance, such that the simulated transcript is indistinguish-
able from an honest prover’s transcript. The simulator will also use the simulators described
in Lemmas 4 and 6 which generate transcripts for subprotocols HMIPP and HWW,

SimHMIPP(ck,comC,aggc,r)→ trHMIPP

SimHWW(coma0 ,W,P1,P2,P3,G1,G2)→ trHWW.

The simulator is given the Groth16 prepared public inputs Ŝ and behaves as follows.

1. The simulator computes the first prover message coma0 ,comA,comB,comC. It chooses
randomness a0,z1,z2 ← F and coma0 ← G1 and comC ← GT . It runs (A′i,B

′
i,C
′
i) =

SimGroth16(crs,τ,(a0, Ŝi)) for 1≤ i≤ n−2. It sets

A := A′|| [z1]1 || [z2]1 comA := A∗ ck1

B := B′|| [γ]2 || [δ]2 comB := ck2 ∗B
C := C′|| [1]1 || [z2]1 .

2. The simulator computes the first verifier message honestly and chooses r← F randomly.

3. The simulator uses Ŝ to construct aggin and trMIPP-k honestly.

4. The simulator computes the second prover message (aggC,W) honestly as aggC := Cr

and W := [z1rn−1]1 +∑
n−2
i=1 ria0W0 for r = (r,r2, . . . ,rn).

5. The simulator generates a transcript trHMIPP for the HMIPP protocol by running
trHMIPP := SimHMIPP(crs,comC,aggc,r)

30

6. The simulator generates a transcript trHWW for the HWW protocol by running trHWW :=
SimHWW

(
coma0 ,W,P1,P2,P3,∑

n−2
i=1 riW0, [rn−1]1

)
7. The simulator computes aggAB honestly and generates a transcript trTIPP by running

trTIPP := TIPP(ck,(comA,comB,aggAB,r),A,B).

We will show that the simulator’s transcript is indistinguishable from an honest prover’s. We
look at the distribution of each of the proof components.
The MIPP optimization. We first note that this optimization is simulated perfectly, since it
involves no witness values. Specifically, comin, aggin, and trMIPP-k are simulated perfectly,
since both the prover and simulator have access to the Groth16 public prepared inputs Ŝ.
The first prover message. We look at coma0 , comA, comB, and comC. In the real prover
execution: coma0 is distributed uniformly at random because it is randomized by z3; comA is
distributed uniformly at random because it is randomized by z2; comB is distributed uniformly
at random because it is randomized by B′n−2; comC is distributed uniformly at random because
it is randomized by z4. In the simulated execution: coma0 is chosen uniformly at random;
comA is distributed uniformly at random because it is randomized by z2; comB is distributed
uniformly at random because it is randomized by B′n−2; comC is chosen uniformly at random.
Thus both the provers and the simulators first messages are distributed randomly and are
indistinguishable.
The second prover message. We second look at aggC, W . In the real prover execution:
aggC is distributed uniformly at random because it is randomized by C′n−2; W is distributed
uniformly at random because it is randomized by z1. In the simulated execution: coma0
is chosen uniformly at random; aggC is distributed uniformly at random because it is ran-
domized by C′n−2; comW is distributed uniformly at random because it is randomized by z1.
Thus both the provers and the simulators second messages are distributed randomly and are
indistinguishable.
The hidden MSM argument. We see that trHMIPP generated by the prover and simulator
are indistinguishable by the zero-knowledge of HMIPP (Lemma 4).
The HWW argument. We see that trHWW generated by the prover and simulator are
indistinguishable by the perfect zero-knowledge of HWW (Lemma 6).
The TIPP argument. In order to argue that trTIPP generated by the prover and simulator
are indistinguishable we must look at the rerandomizations of each (Ai,Bi,Ci). The bulk of
the following argument consists of demonstrating that enough values in the HICIAP protocol
are independent and uniformly distributed. To do this, we associate each iid uniform blinding
factor to at most one transcript variable. One thing to be careful about here is enforcing the
“at most one” requirement.

Following [HKR19] we define a masking set M of size O(log2 n) that defines a position
of randomized values that will ensure the transcripts appear random in the recursion. We track
the parts of the TIPP transcript which are functions of A,B,ck1,ck2 (where we let A represent
r�A and ck1 represent r−1� ck1 for simplicity). In each round of the TIPP protocol (of
which there are logn), the prover sends six values:

comLA := A[:h] ∗ ck1 comRA := A[h:] ∗ ck1

comLB := ck2 ∗B[:h] comRB := ck2 ∗B[h:]

aggLR := A[:h] ∗B[h:] aggRL := A[h:] ∗B[:h]

31

The verifier sends a challenge x, which defines the prover’s values for the next round:

A′ := A[:h]+ x ·A[h:] ck′1 := ck1,[:h]+ x−1 · ck1,[h:]

B′ := B[:h]+ x−1 ·B[h:] ck′2 := ck2,[:h]+ x · ck2,[h:]

Note that a randomized Ai value in round k will yield a uniform value of A j in round k+1,
where j ≡ i (mod 2k−1), and similarly for Bi.

With 6 proof elements in each round, we need to ensure there are at least 6 randomiz-
ers per round, and that one unique randomizer appears in each proof element. We divide
them as 3 randomizers in A (to randomize comLA,comRA,aggLR) and 3 in B (to randomize
comLB,comRB,aggRL). We define the masking set

M= {2k,2k +1}`−1
k=2∪{2

k−1}`−1
k=2,

where ` = log2(n). The two sets making up M are non-overlapping. Note that because
log2(n)≥ 4 we have that M also does not overlap with the blinders B′n−2 or C′n−2.

For the components aggLR and aggRL in the TIPP argument, we must use the fact that
with overwhelming probability, none of the components of a Groth16 proof (Ai,Bi,Ci) equals
0. This implies that the rerandomization is a uniform proof of the same statement, and also
contains no zeros.

With this in mind we argue that M is sufficient to randomize the distribution of the
comLA, comRA, aggLR components of TIPP. To see this, observe that in round k with verifier
challenges x0, . . . ,xk−1,

comLA = ∏
b∈{0,1}`−k−1

e

 ∑
s∈{0,1}k

A(s,0,b) fk,x(s), ∑
s∈{0,1}k

ckA,(s,1,b) fk,x−1(s)


comRA = ∑

b∈{0,1}`−k−1

e

 ∑
s∈{0,1}k

A(s,1,b) fk,x(s), ∑
s∈{0,1}k

ckA,(s,0,b) fk,x−1(s)


aggLR = ∏

b∈{0,1}`−k−1

e

 ∑
s∈{0,1}k

A(s,0,b) fk,x(s), ∑
s∈{0,1}k

B(s,1,b) fk,x−1(s)

 ,

where fk,x(s) := ∏
k−1
j=0

(
s jxk− j−1 +1− s j

)
for s ∈ {0,1}k and Ab represents Ai when b is the

binary representation of the integer i. Thus

• A0,0,1,0,1 is included in comLA in the kth round and corresponds to the blinder 2`−k−2+1

• A0,1,0 is included in comRA in the kth round and corresponds to the blinder 2`−k−1

• A0,0,1 is included in aggLR in the kth round and corresponds to the blinder 2`−k−1−1

Denote

RLA,k,bbb := ∑
s∈{0,1}k

ckA,(s,1,b) fk,x−1(s) RLR,k,bbb := ∑
s∈{0,1}k

Bs,1,b fk,x−1(s)

RRA,k,bbb := ∑
s∈{0,1}k

ckA,(s,0,b) fk,x−1(s).

Observe that with overwhelming probability, each of {RLR,k−1,(0,0,1)}`−1
k=1 are non-zero, depend

non-trivially on xk−1, and have no dependence on xk Thus the RLR,0,(0,000,1), . . . ,RLR,`−2,(0,000,1)

32

are pairwise independent and ensure that: the A0,0,1 term in aggLR,2 (denoting the second
round’s aggLR) is randomized by x1 and thus is independent from the A0,0,1 terms in aggLR,1;
the A0,0,0,1 term in aggLR,3 is randomized by x2 and thus is independent from the A0,0,0,1
terms in aggLR,1 and aggLR,2; etc. Thus A0,0,1 perfectly blinds aggLR except with negligible
probability.

By the same argument, the RLA,k,(000,0,1,000,1) terms are pairwise independent and the RLB,k,(000,1,000)
terms are pairwise independent ensuring independence between the A000,0,1,000,1 terms in comLA,k
and A000,1,000 terms in comLB,k respectively. Thus A0,0,1,0,1, A0,1,0 terms perfectly blind comLA,
comRA except with negligible probability.

By a symmetric argument we see that B0,0,1,0,1, B0,1,0, B0,0,1 perfectly blinds comLB,
comRB, aggRL except with negligible probability.

We now consider the penultimate round (round `−1). Here the proof elements comLA,
comLB, comRA and comRB of both the honest prover and simulator take the form

comLA = e(A`−1,1,H2) comRA = e(A`−1,2,H1),

comLB = e(G1,B`−1,2) comRB = e(G2,A`−1,1)

for ck1,`−1 = (H1,H2) and ck2,`−1 = (G1,G2). Thus the proof elements

aggLR = e(A`−1,1,B`−1,2) aggRL = e(A`−1,2,B`−1,1)

are uniquely determined given comLA, comLB, comRA and comRB. Hence they are sampled
from the same distribution.

33

	Introduction
	Zero-knowledge proofs of blocklist non-membership
	Existing ZKBLs are impractical for both clients and servers
	Our contribution

	Intuition for a ZKBL Construction
	Preliminaries
	Notation for Groups and Pairings
	Groth16
	Inner product proofs
	HICIAP

	Zero-knowledge blocklists
	Setting
	ZKBL functionality
	Security requirements

	SnarkBlock design and overview
	Security argument
	Trusted setup

	HICIAP
	Intution
	HICIAP details

	Implementation and evaluation
	Implementation and setup
	Evaluation

	Discussion
	Is SnarkBlock practical?
	Client side performance vs BLAC
	Cold Start

	Related work
	Blocklists
	Zero-knowledge proofs

	Deferred definitions
	Deferred proofs
	Subprotocols
	Main theorems

