
EPID with Malicious Revocation

Olivier Sanders1 and Jacques Traoré2

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
2 Orange Labs, Applied Crypto Group, Caen, France

Abstract. EPID systems are anonymous authentication protocols where
a device can be revoked by including one of its signatures in a revocation
list. Such protocols are today included in the ISO/IEC 20008-2 standard
and are embedded in billions of chips, which make them a flagship of
advanced cryptographic tools. Yet, their security analysis is based on
a model that suffers from several important limitations, which either
questions the security assurances EPID can provide in the real world
or prevents such systems from achieving their full impact. The most
prominent example is the one of revocation lists. Although they could
be managed locally by verifiers, which would be natural in most use-
cases, the security model assumes that they are managed by a trusted
entity, a requirement that is not easily met in practice and that is thus
tempting to ignore, as illustrated in the corresponding standard.
In this paper, we propose to revisit the security model of EPID, by
removing some limitations of previous works but mostly by answering
the following question: what can we achieve when revocation lists are
generated by a malicious entity?
Surprisingly, even in this disadvantageous context, we show that it is
possible to retain strong properties that we believe to better capture
the spirit of EPID systems. Moreover, we show that we can construct
very efficient schemes resisting such powerful adversaries by essentially
tweaking previous approaches. In particular, our constructions do not
require to perform any significant test on the revocation lists during the
signature generation process. These constructions constitute the second
contribution of this paper.

1 Introduction

1.1 Related Works

Direct Anonymous Attestation (DAA) was introduced by Brickell, Camenisch
and Chen [10] as an anonymous authentication mechanism with some controlled
linkability features. In such systems, platforms can issue anonymous signatures
after being enrolled by an issuer, in a way akin to group signatures [16]. A few
years later, Brickell and Li [11] proposed a variant with enhanced revocation
features under the name of Enhanced Privacy ID (EPID). Indeed, EPID addi-
tionally allows to revoke a platform P by adding one of its signature to a so-called
signature revocation list SRL. In such a case, P will not be able to produce new

(valid) signatures on input SRL but we stress, to avoid confusion, that signatures
issued by P with different revocation lists remain anonymous and unrevoked.

Both DAA and EPID systems are among the few advanced3 cryptographic
mechanisms that are widely deployed today. They are indeed embedded in billion
of devices [23,30] and have been included in standards, such as ISO/IEC 20008-
2 [25].

Surprisingly, the real-world popularity of these mechanisms did not extend
to cryptographic literature as only a few papers have been published on these
topics. This stands in sharp contrast with a sibling primitive, group signature,
that has been extensively studied by the cryptographic community.

Actually, this relatedness with group signature probably explains the lack of
academic interest for DAA and EPID schemes. It is indeed tempting to see a
DAA or an EPID system as a simple variant of group signature, which lessens
the appeal for any contribution in this area. More concretely, a DAA can be seen
as a group signature where the opening feature is discarded and replaced by a
linking feature that is rather easy to implement. EPID replaces the latter feature
by a more intricate revocation mechanism that is nevertheless rather simple to
add modularly.

From the algorithmic standpoint, constructing a DAA or an EPID system
from a group signature might therefore look trivial. However, from the secu-
rity model standpoint, removing the opening feature has huge consequences and
makes the formalization of security properties much more difficult. In the par-
ticular case of EPID, the revocation feature creates additional problems as it
is more complex to control in this context. This explains in part the somewhat
chaotic history of DAA and EPID security models that we briefly recall here.

The original security model [11] for EPID was based on simulation. Back
then, it was a natural choice as DAA [10] also considered simulation-based mod-
els. Unfortunately, the security model of [10] was not correct and several at-
tempts [17–19] to fix it failed (see [5] for a discussion on these issues). This
probably explains the shift to game-based models for DAA that was followed
by EPID in [12]. The latter paper, enhanced with some remarks from [5], is a
good starting point to study the security of EPID but unfortunately the result-
ing model still suffers from several problems that limit the practical assurances
it provides in the real world. More recently, a new simulation-based model was
proposed by Camenisch et al [13] for DAA and later extended to EPID in [26].
Although it implies a cleaner definition of unforgeability, it imposes in prac-
tice the same kind of restrictions to the constructions as in [12]. Moreover, [26]
suffers from the same limitations regarding anonymity as previous models of
EPID, which has important consequences in the real world. All these issues are
discussed in details below.

Concretely this means that, as of today, the security assurances provided by
mechanisms deployed in billion of devices are not well understood and sometimes
rely on some assumptions that seem questionable. This is particularly true in the

3 By “advanced” we here mean asymmetric mechanisms that go beyond standard
signature, encryption and key exchange.

2

context of EPID as the revocation mechanism imposes very strong constraints
on the whole system, which has been underestimated in previous works. In this
paper, we will then focus on the case of EPID as it is the most complex one but
we note that many of our remarks also apply to standard DAA schemes.

1.2 Our Contributions

The contribution of our paper is actually twofold. First, we propose a security
model for EPID with new unforgeability and anonymity definitions that we be-
lieve to better capture what we expect from such systems. In particular, we are
the first (to our knowledge) to consider the case where revocation lists are not
generated by a trusted entity. Such a trusted entity is indeed very convenient
from the theoretical standpoint but its existence is not obvious and the way
it will proceed to decide in practice which signature should be added to revo-
cation lists is far from clear. To deal with malicious revocation lists is a very
challenging task but we argue it is a realistic scenario and it is thus important
to understand what we can retain in this case and how to construct schemes
that still resist such powerful adversaries. We extensively discuss the issues of
previous models in the following paragraphs as it is necessary to understand the
rationale behind our new definitions. We choose a game-based approach as we
believe it is better suited for complex primitives such as EPID. In particular,
we hope that separate experiments will lead to a better understanding of what
an EPID system can achieve in our model. Our second contribution consists of
two efficient constructions that achieve our new security properties. They share
many similarities with existing constructions but also present some differences
that we comment at the end of this section.

Issues with previous unforgeability notions. The problems regarding un-
forgeability (called traceability in [5]) concern both DAA and EPID models and
we believe they all find root in the difficulty to properly define what is a valid
forgery in this context. Indeed, any model must provide to the adversary A
the ability to own some signing keys (that are called corrupt), which inevitably
allows A to issue signatures. We can’t therefore rely on something akin to un-
forgeability for standard digital signature. The idea that seems to be behind
previous models is then to mimic security notions of group signatures, but this
does not work well in this setting. Indeed, group signature provides an opening
algorithm that allows to trace back any group signature to its issuer. Dealing
with corrupt keys is then simple, as we have a way to detect if the adversary’s
forgery is trivial (that is, it has been generated using corrupt keys) or not (the
signature cannot be linked to a corrupt key). In a DAA or an EPID scheme there
is no counterpart of the opening algorithm but one can test if a signature has
been generated by a given platform if one knows its secret key. This has led to
the following two cases.

In game-based models [5, 12], the experiment assumes that the adversary
provides all its signing keys, which enables “opening” of signatures issued with

3

corrupt keys and so to rule out trivial wins by the adversary. In the context
of EPID, this constraint can be partially relaxed by alternatively requiring a
signature from each malicious platform that has not yet revealed its secret key
(see [12]). More concretely, existing game-based EPID models consider a set U
of malicious platforms and requires, for each i ∈ U , either the signing key ski
or a signature issued by i. If we set aside the problem of identifying in the real
world the set U of malicious platforms without an opening procedure, it remains
to explain why the adversary would ever agree to 1) reveal some of its secret
keys and/or 2) return a signature generated with ski for every unrevealed key
ski. The assumption 1) is clearly questionable. The plausibility of the second
assumption is not much more obvious because the challenger is not able to
determine if the signatures returned by the adversary fulfil the corresponding
requirement (the adversary could have generated all the returned signatures
using the same key) unless it knows the corresponding secret keys, which brings
us back to the first problem. Put differently, this defines a success condition for
the adversary that the challenger is not able to verify. To sum up, current game-
based security models define an unforgeability experiment that either makes an
unrealistic assumption on the adversary behaviour or whose output (success or
failure) cannot be computed.

The problem 1) was actually already pointed out in [13] who addressed it
by introducing a new simulation-based model taken up in [26]. The authors of
these works indeed assume that their ideal functionality knows the secret keys
of all corrupt platforms, which solves the problems mentioned above. This is
theoretically cleaner as the model no longer expects the adversary to hand over
its keys willingly. However, this implies that every construction realising their
ideal functionality must provide a way to recover all platforms keys in the security
proof (including corrupt ones), which in practice does not seem that different
from what happens in game-based models. In particular this suggests the use
of zero-knowledge proofs of the platform secret key during Join, which either
limits the number of concurrent Join sessions (if one uses rewinding techniques)
or requires additional features such as online-extractability [20], which negatively
impacts performance.

Our unforgeability notion. At the heart of the problems we discuss in both
cases, there are thus the attempts to identify the signing key that was used to
generate the “forgery”. In our security model, we therefore try to avoid these
identification issues and favour a different reasoning that seems more pragmatic.
Concretely, if an adversary owns n signing keys ski, then we should not focus
on whether its forgeries has been generated using sk0, sk1, etc since it necessary
leads to the issues we discuss above. What we can do is to successively revoke
each of the adversary signing keys by adding every signature it generates to SRL,
thus ensuring that it will not be able to produce n+ 1 successive signatures. In
practice, it means that if a user with sk is revoked via the inclusion of one of
his signatures σ in the revocation list, then he cannot produce a new signature
σ′ unless he gets a new signing key sk′. In the latter case, contrarily to previous

4

models, we do not care if σ′ is produced using sk or sk′ because this is uncheckable
without the knowledge of these keys. All we ensure is that this user will not be
able to produce a third signature, regardless of the key it used to produce σ′. We
believe this captures what is expected from EPID without making assumptions
on the ability to recover adversary’s keys.

Issues with previous anonymity notions. The last problem regarding exist-
ing models is related to anonymity and is very specific to EPID (not DAA) sys-
tems. It concerns the signature revocation list that every model (game-based [12]
or simulation-based [26]) assumes to be honestly generated without discussing
the plausibility and the concrete consequences of this assumption. More con-
cretely, they all assume that these revocation lists only contain valid signatures,
which is enforced in [12,26] by appointing a trusted entity, called the revocation
manager that will perform these verifications. We see several problems with this
solution.

Firstly, we note that the existence of such trusted entity is far from insignif-
icant as all anonymity assurances would be lost if the revocation manager did
not correctly carry out its task. In some way, the revocation manager can be
compared to the opening authority of a group signature as anonymity of the
whole system relies on his honesty. There is indeed a link between revocation
and the ability to trace users as noted in [8] although the case of EPID is more
subtle.

Secondly, it implies a very centralized system where each service manager
would not be able to directly revoke a platform which misbehaved based on its
signature but would have to first contact the central revocation manager. As
central revocation must not be treated lightly, this is likely to imply a regulated
procedure and the grounds on which the revocation manager will decide the
legitimacy of the demand are not clear.

Thirdly, it means that any platform must be aware of the current (and au-
thentic) version of the revocation list SRL at the time of signing, which may be
problematic in some use-cases. In particular, privacy can no longer be ensured if
the verifier sends its own revocation list SRL. An alternative solution could be to
shift the burden of verifying the elements of SRL to the platform when generating
the signature but this would clearly result in an inefficient signing protocol.

Finally, this requirement is somewhat inconsistent with the ISO/IEC 20008-
2 [25] standard. Indeed, the specifications of the EPID system called “Mechanism
3” in [25] clearly states that signature revocation can be local, which, according to
ISO/IEC 20008-1 [24], means that the signature revocation list may be managed
by the verifier itself. However, the same specifications contain the following note:

“To preserve anonymity, it is recommended to have a trusted entity for up-
dating the signature revocation list. If a malicious entity controls the signature
revocation list, the anonymity of the signer can be reduced.”

The wording is surprising for a standard as it does not sound like a require-
ment but it yet threatens unspecified problems regarding anonymity if one does
not comply with this informal instruction. This results in a blurry situation that

5

is indicative of an EPID paradox. On the one hand, there is a revocation mecha-
nism that is inherently decentralized as any verifier is able to revoke a signature
by placing it in its own revocation list. This is clearly the most natural and
convenient solution for most use-cases. On the other hand, there are security
models that all require a central and trusted entity to manage revocation lists,
with the consequences discussed above. In this context, it is extremely tempting
to ignore this requirement in practice and, to say the least, even the ISO/IEC
recommendation above does not deter us very forcefully from doing so.

We therefore believe it would be better to remove all restrictions on SRL and
to rather consider a model where the adversary A has a total control on the
elements of the revocation lists and where the platform does not have to check
any property of SRL beyond the one that it can correctly be parsed. This will
offer much more flexibility to EPID systems by removing the need for a central
trusted revocation entity and thus allow decentralized services managing their
own revocation lists.

Our first remark is that current proofs strategies no longer work in this new
setting. Indeed let us consider the quite standard approach of EPID systems
(e.g. [11, 12]) where each signature µ contains a pair (h, hx) where h ∈ G is
random and x is the platform secret key, leading to an anonymity proof under
the DDH assumption. If µ is added to SRL, then any platform generating a
signature with this revocation list will have to include a proof that they did not
generate (h, hx). In security proofs of existing models, the challenger does not
know x (otherwise DDH is trivial) but it can recognize (h, hx) from its previous
signatures and so correctly simulate the proof. Now, in our model where we
allow the adversary to generate SRL, it could replace (h, hx) by (hr, (hx)r) for
any r ∈ Zp. In this case, the challenger will be unable to recognize if this pair
was generated using x (unless it can itself solve DDH) and so will not be able to
correctly answer a signature query, leading to an incorrect simulation.

This example highlights the fact that removing restrictions on SRL is not just
a formalization issue and that it has important consequences on EPID systems.
In particular, it gives to any verifier (and so to the adversary) the power of
a revocation authority, which is very unusual in privacy-preserving protocols.
This leads to a new anonymity experiment that we believe to better capture the
security assurances we can retain in the real world.

Our anonymity notion. In our security experiment, we give the adversary a
total control on the elements of this list. In return, we need to completely redefine
the notion of anonymity we can really achieve without these restrictions. Indeed,
we note that nothing now prevents the adversary from testing if a signature σ
was issued by a given platform i. It can simply add σ (or some part of it in
practice) in SRL and then query a signature from i with SRL: if a valid signature
is returned then σ was not produced by i; else, i will return a failure message or
will abort. The main consequence is that our model cannot provide the adversary
with an access to a signing oracle that takes as input an identifier i and returns
a signature on behalf of this platform. This is not a restriction of our model as

6

it only reflects the real-world situation of EPID where any verifier suspecting a
signer to be the issuer of a previous signature can proceed as we have explained
to identify it. This is actually the very goal of EPID.

We then need to be much more careful when defining the signing oracle
and the success conditions of the adversary in our new experiment. The first
novelty is the absence of a user identifier in the inputs of the signing oracle as
it prevents any meaningful definition as we explained. Our oracle will instead
return a signature using one of the honest keys that are not implicitly revoked
by SRL. As the adversary is now oblivious of the users’ identifiers we can’t expect
it to return the identifier of the issuer of some signature. We will instead ask it
to link two signatures in a game where it will select two signatures µ0 and µ1

and then ask for a new signature µ∗ from the issuer of µb. It will succeed if it
can guess the value of b with probability different from 1

2 , that is, if it can link
two signatures with non-trivial probability.

Our constructions. Our new security model has two important consequences
in practice. Firstly, we no longer need to extract all platforms secret keys thanks
to our new unforgeability experiment. This allows us to define simple Join pro-
tocols where a platform simply receives a certificate without needing to prove
knowledge of its secret key or to use alternative solutions that would enable ex-
traction of this key. Secondly, we now need to deal with malicious revocation lists
SRL without performing any test on them. As we explain above, this invalidates
the strategy of previous constructions as the adversary is now able to place in
SRL elements that were not part of valid signatures. Surprisingly, we can deal
with this problem very efficiently by defining a signature algorithm where the
platform generates a proof of non-revocation with respect to the hash of (some
of) the elements in SRL, instead of the elements themselves. Intuitively, the use
of a hash function will prevent the re-randomization strategy of the adversary
described above and leads to one of the following two situations. Either the el-
ements of SRL were indeed included in a valid signature or they were generated
by the adversary. In the former case, it is easy to know which platforms are
revoked, which allows to correctly answer signing queries in the security proof.
In the latter case, we show that the forged elements are unlikely to revoke an
honest user under the computational Diffie-Hellman assumption. Our first con-
struction reflects these changes and proves that our new security properties can
be efficiently achieved. Our second construction is a simple variant of the first
one where we further reduce the size of the EPID signatures by using a differ-
ent building block, at the cost of reintroducing proofs of knowledge in the Join

protocol.

2 Preliminaries

Bilinear groups. Our constructions require bilinear groups which are consti-
tuted of a set of three groups G1, G2, and GT of order p along with a map, called
pairing, e : G1 ×G2 → GT that is

7

1. bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab;
2. non-degenerate: for any g ∈ G∗1 and g̃ ∈ G∗2, e(g, g̃) 6= 1GT

;
3. efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

As most recent cryptographic papers, we only consider bilinear groups of
prime order with type 3 pairings [22], meaning that no efficiently computable
homomorphism is known between G1 and G2.

Computational assumptions. The security analysis of our protocols will
make use of the following assumptions.

– DL assumption: Given (g, gx) ∈ G2, this assumption states that it is hard to
recover x.

– DDH assumption: Given (g, gx, gy, gz) ∈ G4, the DDH assumption in the
group G states that it is hard to decide whether z = x · y or z is random.

– CDH assumption: Given (g, gx, gy, g̃, g̃x, g̃y), the CDH assumption (extended
to type 3 bilinear groups) states that it is hard to compute gx·y.

3 Specification of EPID

3.1 Syntax

Our EPID system considers three types of entities, an issuer I, platforms P and
verifiers V. When comparing our model with the one of group signature, we will
sometimes use the term user instead of platform to match the terminology of
this primitive.

– Setup(1k): on input a security parameter 1k, this algorithm returns the
public parameters pp of the system.

– GKeygen(pp): on input the public parameters pp, this algorithm generates
the issuer’s key pair (isk, ipk). We assume that ipk contains pp and so we
remove pp from the inputs of all following algorithms.

– Join: this is an interactive protocol between a platform P, taking as inputs
ipk, and the issuer I owning isk. At the end of the protocol, the platform
returns either ⊥ or a signing key sk whereas the issuer does not return
anything.

– KeyRevoke({ski}mi=1): this algorithm takes as input a set of m platform secret
keys ski and returns a corresponding key revocation list KRL containing m
elements that will be denoted as KRL[i], for i ∈ [1,m].

– SigRevoke({(µi)}ni=1): this algorithm takes as input a set of n EPID sig-
natures {(µi)}ni=1 and returns a corresponding signature revocation list SRL
containing n elements that will be denoted as SRL[i], for i ∈ [1, n].

– Sign(ipk, sk,m, SRL): this algorithm takes as input the issuer’s public key ipk,
a platform secret key sk a message m and a signature revocation list SRL and
returns an EPID signature µ.

8

– Identify(sk, t): given a platform secret key and an element t from a revo-
cation list SRL (i.e. there exists some i such that t = SRL[i]), this algorithm
returns either 1 (t was generated using sk) or 0.

– Verify(ipk, KRL, SRL, µ,m): given an issuer public key ipk, a key revocation
list KRL, a signature revocation list SRL, a signature µ and a message m,
this algorithms returns 1 (the signature is valid on m for the corresponding
revocation lists) or 0.

Remark 1. We note that our definition of SigRevoke implicitly assumes that
no verification is performed on the purported signatures µi since this algorithm
does not take as input the elements that would be necessary to run Verify

(such as the issuer’s public key, the message m and the corresponding revocation
list). We indeed do not see which security assurances could be provided by such
verifications in our context where we do not assume the existence of a trusted
entity managing the lists SRL and therefore choose this simpler definition. In
practice, it will then be up to each verifier (even a malicious one) to decide how
to construct the revocation lists. This will be captured by our security model
and our constructions will be secure even in this very strong model.

3.2 Security Model

As in [12], we expect an EPID system to be correct, unforgeable and anony-
mous. However, the comparison stops here as our definitions of unforgeability
and anonymity strongly differ from the ones of previous works. We refer to Sec-
tion 1.2 for a discussion on this matter and here only formalize the intuition
provided in our introduction.

Correctness. Here, we essentially follow [12] and require that a signature gen-
erated with a platform signing key sk will be considered as valid by the Verify

algorithm as long as sk was not revoked, either explicitly using KRL or implic-
itly using SRL. However, we note a minor problem in the correctness definition
of [12] because the latter assumes that SRL contains signatures whereas it only
contains parts of signatures in their concrete constructions. To match reality, we
do not assume anything regarding the elements placed in SRL but instead use in
our formal definition of correctness the Identify algorithm that tests whether
an element SRL[i] was generated using a given signing key or not. Additional
requirements on this Identify algorithm will be specified by our other security
properties. This leads to the following formal requirement: for all signing key ski
generated using Join, KRL generated using KeyRevoke and SRL generated using
SigRevoke:

Verify(ipk, KRL, SRL, Sign(ipk, ski,m, SRL),m) = 1

⇔ ski /∈ KRL ∧ ∀j : Identify(ski, SRL[j]) = 0

9

Unforgeability. Our unforgeability experiment is defined in Figure 1, where c
(resp. d) is a counter indicating the number of corrupt users created by A (resp.
of signatures issued by the adversary A) at the current time and where A may
query the following oracles:

– OAdd(k) is an oracle that is used by the adversary to add a new honest
platform k. A signing key skk is then generated for this platform using the
Join protocol but nothing is returned to A.

– OJoincor() is an oracle playing the issuer’s side of the Join protocol. It is
used by A to add a new corrupt platform. Each call to this oracle increases
by 1 the current value of c (c = c+ 1).

– OCor(k) is an oracle that returns the signing key skk of an honest platform
k and also adds it to a list K that is initially set as empty.

– OSign(k, SRL,m) is an oracle that is used by A to query a signature from
the platform k on a message m with a signature revocation list SRL. We
define S as the set of all signatures returned by this oracle.

Exp
unf
A (1k) – Unforgeability Security Game

1. c, d← 0
2. SA ← ∅
3. pp← Setup(1k)
4. (isk, ipk)← GKeygen(pp)
5. while d ≤ c:

– SRL← SigRevoke(SA)
– (µ,m)← AOAdd,OJoincor,OCor,OSign(SRL, ipk)
– KRL← KeyRevoke(K)
– if 1 = Verify(ipk, KRL, SRL, µ,m) ∧ µ /∈ SA ∪ S

then d = d+ 1 ∧ SA ← SA ∪ {µ}
6. Return 1

Fig. 1. Unforgeability Game for EPID Signature

An EPID system is unforgeable if Advunf (A) = Pr[ExpunfA (1k) = 1] is negligi-
ble for any A. Concretely, an adversary owning d− 1 corrupt keys succeeds if it
has generated d valid (and distinct) signatures despite systematic revocation of
the signatures it has previously issued. For sake of simplicity, we chose to place
each key corrupted through a OCor query on a key revocation list KRL. We could
proceed differently by offering to the adversary the ability to decide which one
should be revoked with KRL but we believe that it would only introduce unnec-
essary complexity to our model. We also implicitly assume that our while loop
aborts after some polynomial number of iterations, in which case the experiment
returns 0.

Anonymity. Our formal anonymity experiment described in Figure 2 makes
use of the following oracles. An EPID system is anonymous if Advan(A) =
|Pr[Expan−1A (1k) = 1]− Pr[Expan−0A (1k) = 1]| is negligible for any A.

10

– OJoinhon() is an oracle playing the user’s side of the Join protocol and is
then used by A, playing the issuer, to add a new honest platform. Each call
generates a platform secret key sk that is kept secret by the challenger.

– OSign∗(SRL,m) is an oracle used by A to query a signature on m from an
honest platform that is not implicitly revoked by SRL. The challenger of the
experiment randomly selects a signing key sk among those that are not re-
voked by SRL (that is, the secret keys ski such that Identify(ski, SRL[j]) = 0
for every element SRL[j] of SRL) and then return the output of Sign(ipk, sk,m,
SRL). We define S as the set of all signatures returned by this oracle con-
catenated with the key sk used to generate them.

– OCor∗(µ) is an oracle that returns the signing key skk used to generate the
signature µ if there is some pair (µ||skk) in S. Else, it returns ⊥. Once the
adversary has returned the two challenge signatures µ0 and µ1 (step 3 of
the anonymity game), we slightly modify the behaviour of this oracle to
prevent unintentional failure of the adversary. Indeed, the adversary could
inadvertently query OCor∗ on a signature µ generated using the same key as
µ0 or µ1, making it lose the game at step 8. After step 3, this oracle therefore
returns ⊥ if queried on a signature µ generated using ski, for i ∈ {0, 1}. We
note that we nevertheless still need the success condition of step 8 as the
adversary could have queried OCor∗ on such a signature µ before outputting
µ0 and µ1. However, in such a case, the adversary knows that µ0 and µ1 are
illicit choices before returning them and its failure will then no longer be
unintended.

Expan−b
A (1k) – Anonymity Security Game

1. pp← Setup(1k)
2. (isk, ipk)← GKeygen(pp)
3. (µ0, µ1,m, SRL)← AOJoinhon,OCor∗,OSign∗(isk)
4. if no entry (µi, ski) in S for i ∈ {0, 1}, then return 0
5. if ∃j and i ∈ {0, 1}: Identify(ski, SRL[j]) = 1, then return 0
6. µ∗ ← Sign(ipk, skb,m, SRL)
7. b′ ← AOJoinhon,OCor∗,OSign∗(isk, µ∗)
8. if ∃i ∈ {0, 1}: ski leaked during a OCor∗ query, then return 0
9. Return (b = b′)

Fig. 2. Anonymity Game for EPID Signature

4 Our First Construction

4.1 Description

Intuition. The goal of our first construction is to highlight the fact that se-
curity in our strong model can be achieved quite efficiently with a few tweaks

11

to previous approaches. Indeed, a platform producing an EPID signature essen-
tially does two things. Firstly, it proves that it is a legitimate platform that has
been correctly enrolled by the issuer during a Join protocol. Secondly, it proves
that it has not generated any of the signatures in the revocation list SRL.

The first part is common to many privacy-preserving signatures such as group
signature [3], DAA [10], EPID [11], multi-show anonymous credentials [21], etc.
It essentially consists in proving knowledge of a signature issued by I on a secret
value s generated by the platform. In bilinear groups, there are many signature
schemes [6, 14, 27] that have been specifically designed for this purpose but we
will not use them in our first construction for a purely technical reason. Indeed,
a benefit of our new model over previous works is that we do not inherently
need a way to extract all platform secrets. In particular, we do not need zero-
knowledge proofs of s during Join and thus to limit the number of concurrent
Join sessions. Using one of the signature schemes cited above would however
force us to reintroduce zero-knowledge proofs as we would need, in the security
proof, knowledge of the secret scalars to query the signing oracle of the corre-
sponding EUF-CMA experiment. To avoid this problem, we will instead use a
signature scheme able of signing group elements (in G1), and more specifically
the one from [21] which is particularly well suited for anonymous constructions.
We nevertheless stress that this choice is only driven by our will to highlight the
differences between our model and the previous ones. In particular, the scheme
from [21] can be replaced by one from [6,14,27] in the following construction as
we will show in Section 5.

For the second part, we will here follow an approach very similar to the one
from [12] but with some adjustments that are made necessary by the absence of
a trusted entity to construct revocation lists SRL. As in [12], we indeed implic-
itly include a pair (h, hs) to each signature generated with a secret s to enable
efficient proof of non-revocation. The latter will be implemented with the pro-
tocol from [15]. However, as we explain in Section 1, we cannot just add the
pair (h, hs) to the revocation list as it will prevent us in the security proof from
correctly simulating the answers from honest platforms. For the latter, we need
a way to detect such elements without knowing s or g̃s ∈ G2. In our scheme, this
will be done by constructing h ∈ G1 as a hash output H(str) for some random
string str and so by replacing (h, hs) by (str, hs).This way, our security reduc-
tion faces two cases for each element (str, hs) in SRL. Either str was used in a
previous signing query or the reduction never used it before. In the first case, the
reduction knows that the key s is revoked if and only if the corresponding entry
in SRL is exactly the pair (str, hs) used in a previous signature. In the second
case, the reduction knows that the key s is not revoked unless the adversary
managed to forge a BLS signature [7] and thus to break the CDH assumption.
In all cases, this means that we can prove anonymity under DDH without per-
forming any verification on SRL nor making any assumption on the way SRL is
constructed.

We provide the formal description of our scheme below but first recall some
elements on the signature on equivalence classes from [21].

12

FHS Signature. In [21], Fuchsbauer, Hanser and Slamanig introduce a sig-
nature on equivalence classes for the following equivalence relation on tuples in
Gn1 : (M1, . . . ,Mn) is in the same equivalence class as (N1, . . . , Nn) if there exists
a scalar a such that Ni = Ma

i for all i ∈ [1, n]. The point of their signature is
that anyone, given a signature τ on some (M1, . . . ,Mn), can derive a signature
τ ′ on a new representative (N1, . . . , Nn) of this class. By correctly computing
the latter values, one can ensure that (τ, (M1, . . . ,Mn)) and (τ ′, (N1, . . . , Nn))
are unlinkable under the DDH assumption. In this paper, we will only need the
case n = 2.

– Setup(1λ): outputs parameters pp containing the description of type-3 bilin-
ear groups (G1,G2,GT , e), with generators (g, g̃) ∈ G1 ×G2.

– Keygen(pp): generates two random scalars x1 and x2 and sets sk as (x1, x2)

and pk as (Ã1, Ã2) = (g̃x1 , g̃x2).
– Sign(sk, (M1,M2)): selects a random scalar t and computes the signature

(τ1, τ2, τ̃)← ((Mx1
1 Mx2

2)t, g1/t, g̃1/t) on the representative (M1,M2) ∈ G2
1.

– Verify(pk, (M1,M2), (τ1, τ2, τ̃)): accepts (τ1, τ2, τ̃) ∈ G2
1×G2, a signature on

(M1,M2) 6= (1, 1), if e(τ1, τ̃) = e(M1, Ã1) · e(M2, Ã2) and e(τ2, g̃) = e(g, τ̃)
hold.

One can note that if (τ1, τ2, τ̃) is valid on (M1,M2), then (τ r·t
′

1 , τ
1/t′

2 , τ̃1/t
′
) is

valid on (Mr
1 ,M

r
2) for all pairs (r, t′) ∈ Z2

p.

Construction.

– Setup(1k): this algorithm returns the public parameters pp containing the
description of a bilinear group (e,G1,G2,GT) along with two generators g ∈
G1 and g̃ ∈ G2 and two hash functionsH : {0, 1} → Zp andH ′ : {0, 1} → G1.

– GKeygen(pp): this algorithm generates a key pair isk ← (x1, x2) and ipk ←
(Ã1, Ã2) for the FHS signature.

– Join: this protocol starts when a platform sends gs to the issuer for some
random secret s. I then generates a FHS signature τ ← (τ1, τ2, τ̃) on the
pair (g, gs) and returns τ to the platform. The latter can then verify τ using
ipk and store sk← (s, τ) (if τ is valid) or return ⊥.

– KeyRevoke({ski}mi=1): this algorithm takes as input a set of m platform secret
keys ski = (s(i), τ (i)) and returns a corresponding key revocation list KRL with
KRL[i] = ski, for i ∈ [1,m].

– SigRevoke({(µi)}ni=1): this algorithm takes as input a set of n EPID signa-

tures {(µi)}ni=1 and parses each of them as ((τ
(i)
1 , τ

(i)
2 , τ̃ (i)), (M

(i)
1 ,M

(i)
2), h

(i)
2 ,

π(i)). It then returns a signature revocation list SRL such that SRL[i] =

(M
(i)
1 , h

(i)
2), for i ∈ [1, n].

– Sign(ipk, sk,m, SRL): to issue a signature on a message m with a revocation
list SRL, a platform owning a secret key (s, (τ1, τ2, τ̃)) proceeds as follows:
1. it first re-randomizes its FHS signature by selecting two random scalars

(r, t) and computing (τ ′1, τ
′
2, τ̃
′)← (τ r·t1 , τ

1/t
2 , τ̃1/t) along with a new rep-

resentative (M1,M2) = (gr, gr·s) of (g, gs);

13

2. it computes (h1, h2)← (H ′(gr), hs1);

3. for all i ∈ [1, n], it parses SRL[i] as (M
(i)
1 , h

(i)
2) and computes h

(i)
1 ←

H ′(M
(i)
1);

4. it generates a proof π of knowledge of s such that M2 = Ms
1 and h2 =

hs1 and that (h
(i)
1)s 6= h

(i)
2 for all i ∈ [1, n] using the protocol from

[15]. More specifically, it selects random scalars ri and computes Ci =

((h
(i)
1)s/h

(i)
2)ri . If ∃i ∈ [1, n] such that Ci = 1, then it returns ⊥. Else, it

selects k, {ki,1, ki,2}ni=1
$← Z2n+1

p and computes (K0,1,K0,2)← (Mk
1 , h

k
1)

along with (Ki,1,Ki,2) ← ((h
(i)
1)ki,1 · (1/(h(i)2)ki,2 , h

ki,1
1 · (1/h2)ki,2). It

then computes

c = H(τ ′1, τ
′
2, τ̃
′,M1,M2, h1, h2, {Ci}ni=1, {Ki,1,Ki,2}ni=0,m).

along with z = k+ c · s and (zi,1, zi,2) = (ki,1 + c · s · ri, ki,2 + c · ri). The
proof π is then set as ({Ci}ni=1, c, z, {zi,1, zi,2}ni=1);

5. it returns the signature µ = ((τ1, τ2, τ̃), (M1,M2), h2, π).

– Identify(sk, t): this algorithm parses sk as (s, (τ1, τ2, τ̃)) and t as (M1, h2),
and returns 1 if h2 = H ′(M1)s and 0 otherwise.

– Verify(ipk, KRL, SRL, µ,m): This algorithm parses µ as ((τ1, τ2, τ̃), (M1,M2),

h2, π), each KRL[i] as (s(i), (τ
(i)
1 , τ

(i)
2 , τ̃ (i))) for i ∈ [1,m] and each SRL[i] as

(M
(i)
1 , h

(i)
2) for i ∈ [1, n]. It then returns 1 if all the following conditions hold

and 0 otherwise.

1. e(τ1, τ̃) = e(M1, Ã1) · e(M2, Ã2) ∧ e(τ2, g̃) = e(g, τ̃);
2. ∀i ∈ [1,m], Identify(KRL[i], (M1, h2)) = 0;
3. ∀i ∈ [1, n], Ci 6= 1;
4. c = H(τ1, τ2, τ̃ ,M1,M2, h1, h2, {Ci}ni=1, {Ki,1,Ki,2}ni=0,m), where h1 ←
H ′(M1), (K0,1,K0,2) ← (Mz

1 ·M−c2 , hz1 · h−c2) and (Ki,1,Ki,2) ← (C−ci ·
[(h

(i)
1)zi,1/(h

(i)
2)zi,2], h

zi,1
1 /(h

zi,2
2)) with h

(i)
1 = H ′(M

(i)
1).

Correctness. The first step of the verification protocol checks that (τ1, τ2, τ̃) is
a valid FHS signature on the representative (M1,M2). The second step checks
that the issuer of µ is not revoked by KRL. It is easy to verify that this step fails
if µ was generated using a secret s in KRL. The third step checks that s has not
been used to generate one of the elements in SRL. By construction, we would
necessarily have Ci = 1 in this case. The last step checks the validity of π. The
proof is a simple combination of the Schnorr’s protocol [29] and the Camenisch’s
and Shoup’s one [15]. For a valid signature µ, one can indeed see that

– Mz
1 ·M−c2 = Mk+c·s

1 ·M−c2 = Mk
1 ,

– hz1 · h−c2 = hk+c·s1 · h−c2 = hk1 ,

– Ki,1 =
(h

(i)
1)zi,1

(h
(i)
2)zi,2

· C−ci =
(h

(i)
1)ki,1+c·s·ri

(h
(i)
2)ki,2+c·ri

· (h
(i)
1)−c·s·ri

(h
(i)
2)−c·ri

=
(h

(i)
1)ki,1

(h
(i)
2)ki,2

,

– Ki,2 =
h
zi,1
1

h
zi,2
2

=
h
ki,1+c·s·ri
1

h
ki,2+c·ri
2

=
h
ki,1
1

h
ki,2
2

,

14

which ensures that the last condition is satisfied.

Remark 2. As we explain at the beginning of this section, we need to generate h1
as some hash output. We could use any random string str but the latter would
then have to be added to µ. As several elements of µ are already random, we
arbitrarily choose to derive h1 from one of them. We selected M1 that is simply
considered as a bitstring by the hash function H ′ but most other elements of µ
(or combinations of them) would work.

Theorem 3. In the random oracle model, our EPID system is

– unforgeable under the DL assumption, the CDH assumption and the EUF-
CMA security of the FHS signature if π is a sound zero-knowledge proof
system.

– anonymous under the CDH and DDH assumptions if π is a zero-knowledge
proof system.

4.2 Security Proofs

Unforgeability. Let A be an adversary succeeding against the unforgeability
of our scheme with probability ε. We recall that A succeeds if it can issue c+ 1
valid signatures {µi}c+1

i=1 despite systematic revocation of its previous signatures,
where c is the number of corrupted keys it has created. In this proof, an honest
key refers to a key that was generated during a OAdd query and that has never
been involved in a OCor query. We distinguish the following three types of
forgeries:

– (type 1) A has queried OSign with a revocation list SRL such that ∃i :
Identify(sk, SRL[i]) = 1 for some honest key sk and yet none of the previous
signatures returned by OSign contains the pair in SRL[i];

– (type 2) the previous case does not occur and ∃i ∈ [1, c + 1] such that µi
can be parsed as ((τ

(i)
1 , τ

(i)
2 , τ̃ (i)), (M

(i)
1 ,M

(i)
2), h

(i)
2 , π(i)) with Identify(sk,

(M
(i)
1 , h

(i)
2)) = 1 for some honest key sk;

– (type 3) none of the previous cases occur.

The first case intuitively deals with malicious verifiers that would introduce
illicit elements in SRL, that is, elements that were not part of a previous EPID
signature and that can yet be associated with some honest user. We show that
this case implies an attack against the CDH assumption.

The second case is an attack against what would be called non-frameability
in a group signature [4] paper, that is, A has managed to produce a signature
that can be “traced back” to some honest user. We show in lemma 5 that A can
be used against the DL assumption in such case.

Else, we will show that A has necessarily produced a signature on a new class
of equivalences and has thus broken the security of FHS signatures.

15

Lemma 4. Let qH′ (resp. qa) be a bound on the number of oracle queries to H ′

(resp. OAdd) made by the adversary A. Then any type 1 adversary succeeding
with probability ε can be converted into an adversary against the CDH assumption
succeeding with probability at least ε

qH′ ·qa
.

Proof. Let (g, gx, gy, g̃, g̃x, g̃y) be a CDH challenge, we construct a reduction R
using A to compute gxy. In our proof, A will submit a set of n < qH′ different
strings {stri}ni=1 to the hash oracle H ′. R then selects a random index i∗ ∈
[1, qH′] and proceeds as follows to answer such queries. First it checks if stri
has already been queried in which case it returns the same answer as previously.
Else, it selects and stores a random r

$← Zp and returns gr if i 6= i∗ and gy if
i = i∗. In the experiment, R makes a guess on the identifier k∗ ∈ [1, qa] of the
platform illicitly revoked by the adversary’s revocation list SRL and generates
the issuer’s key pair as usual. Upon receiving a query on k to OAdd, it proceeds
as usual except if k = k∗, in which case it implicitly sets the platform secret
value as x. Thanks to isk, it can then handle any OAdd and OJoincor query. R
can also handle any OCor query except the one on k∗ in which case it aborts.

To answer a signing query with revocation list SRL, R first uses its knowledge
of g̃x to test whether SRL contains a pair (h0, h2) with e(H ′(h0), g̃x) = e(h2, g̃).
If no such pair is found, then R answers a signing query for k∗ as follows (the
case k 6= k∗ is trivial). R re-randomizes the FHS certificate and the repre-
sentative (M1,M2) as usual. In the very unlikely event where M1 = stri∗ ,
it simply chooses a different representative of (M1,M2). This means that it
knows in all cases the scalar r such that H ′(M1) = gr and can thus compute
h2 = (gx)r. It then simulates the zero-knowledge proof π and returns the result-
ing EPID signature µ. Now let us assume that SRL contains a pair (h0, h2) with
e(H ′(h0), g̃x) = e(h2, g̃). This event occurs if the guess on k∗ was right as we
assume type 1 adversary. Moreover, we also know that this pair has never been
used by R to answer a OSign query. This means that h0 has never been used
by R as h2 is deterministically computed from it. The value h0 has then been
queried by A to H ′ and there are two cases. Either R returned gy, which means
that h2 = gx·y, or R returned some element gr for a random r and it aborts.

In the former case, R has thus broken the CDH assumption. This occurs if
both the guess on k∗ and the one on i∗ are correct and so with probability at
least ε

qH′ ·qa
.

Lemma 5. Let qa be a bound on the number of OAdd queries made by A. Then,
any type 2 adversary succeeding with probability ε can be converted into an ad-
versary against the DL assumption succeeding with probability at least ε

qa·(c+1) .

Proof. Let (g, gx) be a DL instance, we construct a reduction R using A to
recover x. First, R makes a guess on the identifier k∗ of the honest platform
that will be associated with the adversary’s forgery and on the index i∗ of the
forgery. It then generates the issuer’s key pair (isk, ipk) and is thus able to answer
any Join query. It answers any oracle query on a string str to the hash function
H ′ by generating (and storing) a random scalar r and returning gr, unless str

16

has already been queried in which case it returns the original answer. Upon
receiving a OAdd query on k, it proceeds as usual except when k = k∗. In this
case, it acts as if the platform secret were x. Note that this is not a problem
as the issuer generates a signature τ directly on (g, gx) instead of x. Regarding
OCor queries, it simply forwards the secret key except if k = k∗, in which case
R aborts. However, the latter case does not occur if R guess on k∗ is valid.

Let SRL be the revocation list associated with some OSign query on k∗. Since
we here consider type 2 adversary we know that, ∀i ∈ [1, n], either SRL[i] is a part
of a signature previously issued by R or that it does not revoke one of the honest
platforms. In the former case, R checks if SRL[i] was used to issue a signature
on behalf of k∗ in which case it returns ⊥. Else, it knows that k∗ can produce
a signature. To generate µ, it re-randomizes the certificate τ into τ ′ along with
the representative (g, gx) into (M1,M2). It then defines H ′(M1) = gr for some
random r unless in the very unlikely event where H ′ has already been queried
on M1, in which case R simply recovers the corresponding scalar r. In all cases,
R is able to compute a valid h2 = (gx)r. It then only remains to simulate the
proof π and to return the resulting signature µ.

Now R extracts from the proof of knowledge contained in µi∗ the secret key
s∗ used by the adversary to generate this signature (recall that µi∗ must differ
from the signatures issued by R). If the guesses on both k∗ and i∗ are correct,
then s∗ = x thanks to the soundness of the proof. R can thus solve the DL
problem with probability at least 1

qa·(c+1) .

Lemma 6. Any type 3 adversary succeeding with probability ε can be converted
into an adversary against the EUF-CMA security of FHS signatures succeeding
with probability at least ε

c+1 .

Proof. Our reduction R receives a FHS public key from the challenger of the
EUF-CMA security and sets it as the issuer’s public key ipk.R generates as usual
the secret values for honest platforms and is thus able to handle any OSign or
OCor query. It can also use its FHS signing oracle to address any OAdd and
OJoin query. The simulation is then perfect and A eventually outputs, with
probability ε, c+1 EPID signatures µi fulfilling the type 3 requirements. Each of

them contains a FHS signature τ (i) on some representative (M
(i)
1 ,M

(i)
2). The fact

that all keys returned by OCor are revoked and that none of the EPID signature

satisfies the condition Identify(sk, (M
(i)
1 , h

(i)
2)) = 1 for honest keys sk means

that (M
(i)
1 ,M

(i)
2) is not in the equivalence class of (g, gsj) for all i ∈ [1, c+1] and

(g, gsj) generated during a OAdd query. Moreover, as µi is produced while taking
as input a revocation list SRL containing µ1, . . . , µi−1, we know, thanks to the

soundness of π, that (M
(i)
1 ,M

(i)
2) is not in the equivalence class of (M

(j)
1 ,M

(j)
2)

∀i 6= j ∈ [1, c+ 1]. Therefore, the c+ 1 signatures τ (i) are valid on c+ 1 different
equivalence classes. As the adversary only received c FHS signatures and as it
did not use one associated with a honest platform (otherwise A would be a type
2 adversary), ∃i∗ ∈ [1, c+ 1] such that τ (i

∗) is valid on an equivalence class that
was never submitted to the FHS signing oracle. R then makes a guess on i∗

17

and returns τ (i
∗) along with (M

(i∗)
1 ,M

(i∗)
2) to the challenger of the EUF-CMA

security experiment. It then succeeds with probability at least ε
c+1 .

Anonymity. We here proceed through a sequence of games where Game 1, b is
exactly the experiment Expan−bA defined in Section 3.2. For each i, we define Advi
as the advantage of A playing Game i, 0 and Game i, 1. As Game i, 0 and Game
i, 1 are virtually identical (the only difference is the parameter b), we will abuse
notation and omit b in what follows. We set ε as the advantage of A playing
Game 1 and define AdvCDH (resp. AdvDDH) as the advantage against the CDH
(resp. DDH) assumption.

Game 1. Here, the reduction generates normally all the platform secrets and is
thus able to answer any oracle query by the adversary. By definition, Adv1 = ε.

Game 2. In this second game, R randomly selects k0, k1 ∈ [1, qa] where qa is a
bound on the number of OJoinhon queries. If the signatures µ0 and µ1 returned
by the adversary in the experiment were not issued by the platforms k0 and k1,
then R aborts. We then have Adv2 = ε

q2a
. The conditions we define in Figure

2 then ensure that no successful adversary can receive skk0 and skk1 through
OCor∗ oracle queries.

Game 3. In this third game, R proceeds as in Game 2 but parses each signature
revocation list SRL used by A in OSign queries. If one of these lists contains
a pair (h0, h2) that can be linked back to an honest secret key (that is, a key
that has not leaked through a OCor∗ query) and yet R never used this pair to
answer a previous OSign query, then R aborts. We show below that Adv3 ≥
Adv2 − AdvCDH.

Game 4. In this fourth game, R proceeds as in Game 3 except that it now
simulates the proof of knowledge π included in signatures it generates. We then
have Adv4 ≥ Adv3 − AdvZK , where AdvZK is the advantage of an adversary
against the zero-knowledge property of the proof system used to generate π.

Game (5,i). In this game, defined for i ∈ [1, qS] with qS a bound on the number
of OSign queries, R proceeds as in Game 4 but answers the i first OSign queries
as follows. For j ∈ [1, i], let SRLj be the signature revocation list involved in the
j-th query to OSign and Hj the set of honest keys that are not revoked by SRLj .
Since Game 3, R is indeed perfectly able to identify the set Hj corresponding to
SRLj . R selects a random key sk ∈ Hj and proceeds as usual if sk /∈ {skk0 , skk1}.
Else, it replaces in the generated signature the elements (M1,M2) and h2 by
ones generated using a fresh random secret key and the FHS signature τ by one
valid on (M1,M2). We show below that Adv(5,i) ≥ Adv(5,i−1) − AdvDDH if we
define Adv(5,0) = Adv4.

18

Game 6. In this sixth game, R replaces in µ∗ the elements (M1,M2) and h2 by
ones generated using a fresh random secret key and the FHS signature τ by one
valid on (M1,M2). We show below that Adv6 ≥ Adv5 − AdvDDH.

In the end we then get

Adv6 ≥
ε

q2a
− AdvCDH − AdvZK − (qS + 1)AdvDDH.

As all the signatures in Game 6 (including µ∗) are generated with keys inde-
pendent of skk0 and skk1 , the adversary can only succeed with negligible proba-
bility, which concludes our proof.

It then remains to prove the inequalities (1) Adv3 ≥ Adv2 − AdvCDH, (2)
Adv(5,i) ≥ Adv(5,i−1)−AdvDDH and (3) Adv6 ≥ Adv5−AdvDDH. Regarding (1), we
note that this is exactly what we prove in Lemma 4. We now focus on (2).

Let (g, gx, gy, gz) be a DDH instance, we show that if A can distinguish Game
(5, i) from Game (5, i− 1), then it can be used to decide whether z = x · y.
R implicitly sets the signing keys of k0 and k1 as x ·u0 and x ·u1, respectively,

for random u0, u1 ∈ Zp, when it receives the corresponding OJoinhon queries.
Using gx, it can indeed receive, for d ∈ {0, 1}, a FHS signature τ on (g, gx·ud)
that it stores for further uses.

Upon receiving the j-th OSign∗ query, R proceeds as follows. If j < i, then
it proceeds as defined in Game (5, i− 1). If j > i, it randomly selects a platform
k that is not revoked by SRL. If k /∈ {k0, k1}, then it generates the signature
as usual. Else, k = kd for some d ∈ {0, 1} and R re-rerandomizes τ together
with (g, gx·ud) and thus gets a FHS signature τ ′ valid on a new representative
(M1,M2). It then sets h1 = H ′(M1) = gr for some random r and is then able
to compute h2 = (gx·ud)r. As π is simulated since Game 4, it can then return a
valid EPID signature µ.

If j = i, we distinguish two cases depending on the value of sk ∈ Hj , the
key selected by R to answer this query. If sk /∈ {skk0 , skk1}, then R generates
normally the signature and we clearly have Adv(5,i) = Adv(5,i−1). Else, let d
be such that sk = skkd . R selects a random r ∈ Zp, defines M1 = gy·r and
M2 = gz·r·ud , programs h1 = H ′(M1) = gy (in the unlikely event where M1

has already been queried, then R starts over with a new random value r) and
then sets h2 = (gz)ud . Using its knowledge of isk, it can then generate a valid
FHS signature on (M1,M2) and returns the resulting signature µ (the proof π
is simulated since Game 4). In the case where z = x · y, this is a valid signature
issued by kd and we are playing Game (5, i−1). Else, this is exactly Game (5, i).
Any adversary able to distinguish these two games in this case can thus be used
to solve the DDH problem. In all cases, we have Adv(5,i) ≥ Adv(5,i−1) − AdvDDH.

The proof regarding the point (3) is essentially the same, which proves
anonymity of our construction.

Remark 7. A reader familiar with security proofs of group signature schemes
might be surprised by our Games 5, i for i ∈ [1, qS]. Indeed, with group signa-
tures, the game 6 would be enough as it ensures that the elements constituting
the challenge signature µ∗ are independent of the bit b. This reasoning does

19

not seem to apply for EPID schemes because even a fully random µ∗ remains
implicitly associated with skkb , which has consequences on subsequent OSign∗
queries. Indeed, we recall that OSign∗ normally uses an honest key that is not
implicitly revoked by SRL to generate a signature. An adversary querying the
genuine OSign∗ oracle with empty revocation lists SRL could then expect to
receive from time to time signatures generated with either skk0 or skk1 . Con-
versely, among these two keys, only skkb (with b + b = 1) has a chance to be
used to answer OSign∗ queries with a revocation list containing elements from
the random µ∗. With standard OSign∗ answers, it therefore seems unreasonable
to claim that a random µ∗ will necessarily lead to a negligible advantage for
A as the distribution of elements returned by R still depends on skkb (and so
on b). Fortunately, this problem can easily be solved by tweaking the behaviour
of OSign∗, as we do in Games 5, i for i ∈ [1, qS]. Once all signatures involving
k0 or k1 are generated with fresh random keys, we can indeed assure that our
reduction in Game 6 is perfectly independent of the bit b that A must guess.

5 An Efficient Variant with Limited Concurrent
Enrolments

5.1 Description

In the previous scheme, an EPID signature issued on an empty revocation list
SRL contains 2 scalars, 5 elements of G1 and 1 of G2. We can do even better
and construct EPID signatures with only 2 scalars and 4 elements of G1 (non-
revocation proof excluded) using Pointcheval-Sanders (PS) signatures [27]. Using
the BLS12 curve from [9] to provide a common metric, this means a reduction
of 36 % of the bit size of the signature. Moreover, this avoids to implement the
complex arithmetic of G2 (that is usually defined over a non-prime field) on the
signer’s side, which is particularly important when the signer is a constrained
device. Apart from this, this new variant is very similar to the previous one
and is mostly presented here for completeness. But first, we need to recall some
elements on PS signatures.

PS Signature. In [27], Pointcheval and Sanders constructed re-randomizable
signatures σ consisting of only 2 elements of G1, no matter the size n of the signed
vector (m1, . . . ,mn). Here, re-randomizability means that one can publicly derive
a new signature σ′ from σ by simply raising each element to the same random
power. The point is that σ and σ′ are unlinkable (under the DDH assumption in
G1) for anyone that does not know the full signed vector.

We will here focus on the case where n = 1 as it is sufficient for our con-
struction. The scheme described below is actually a slight variant of the original
scheme that uses some folklore techniques (see e.g. [1, 2, 5]) to reduce the verifi-
cation complexity at the cost of an additional element in the signature.

– Setup(1λ): Outputs the parameters pp containing the description of type-3
bilinear groups (G1,G2,GT , e) along with a set of generators (g, g̃) ∈ G1×G2.

20

– Keygen(pp): Generates two random scalars x and y and sets sk as (x, y) and

pk as (X̃ = g̃x, Ỹ = g̃y).
– Sign(sk,m): On messagem, generates a signature (σ1, σ2, σ3)← (gr, gr(x+y·m),
gr·m) for some random scalar r.

– Verify(pk,m, (σ1, σ2, σ3)): Accepts the signature on m if σ3 = σm
1 and if the

following equality holds: e(σ1, X̃) · e(σ3, Ỹ) = e(σ2, g̃).

With this variant, m is no longer involved in the pairing equation of Verify,
which will dramatically reduce the cost of related zero-knowledge proofs. The
price is the additional element σ3, which seems reasonable in our context. If one
needs instead to optimise the EPID size, then one can simply use the original PS
signature and adapt the following construction. One can note that the EUF-CMA
security of this variant is trivially implied by the one of the original scheme.

Construction.

– Setup(1k): this algorithm returns the public parameters pp containing the
description of a bilinear group (e,G1,G2,GT) along with two generators g ∈
G1 and g̃ ∈ G2 and two hash functionsH : {0, 1} → Zp andH ′ : {0, 1} → G1.

– GKeygen(pp): this algorithm generates a key pair (isk, ipk) for the PS signa-

ture scheme by setting isk = (x, y)
$← Z2

p and ipk = (pp, X̃, Ỹ)← (g̃x, g̃y).
– Join: this protocol starts when a platform P, taking as inputs ipk, contacts

the issuer I for enrolment. It first generates a random s
$← Zp and sends gs

to I who owns isk. P then engages in an interactive proof of knowledge of
s with I, using the Schnorr’s protocol [29]. Once the latter is complete, I
selects a random r

$← Zp and computes a PS signature σ = (σ1, σ2, σ3) ←
(gr, gr·x · (gs)r·y, (gs)r) on s that it returns to P. The platform then stores
(s, σ) as its secret key sk.

– KeyRevoke({ski}mi=1): this algorithm takes as input a set of m platform secret
keys ski = (s(i), σ(i)) and returns a corresponding key revocation list KRL

with KRL[i] = ski, for i ∈ [1,m].
– SigRevoke({(µi)}ni=1): this algorithm takes as input a set of n EPID sig-

natures {(µi)}ni=1 and parses each of them as ((σ
(i)
1 , σ

(i)
2 , σ

(i)
3), h

(i)
2 , π(i)). It

then returns a signature revocation list SRL such that SRL[i] = (σ
(i)
1 , h

(i)
2),

for i ∈ [1, n].
– Sign(ipk, SRL, sk,m): To sign a message m while proving that it has not

been implicitly revoked by SRL, a platform P owning sk = (s, (σ1, σ2, σ3))

generates a random r
$← Z∗p and

1. re-randomizes the PS signature (σ′1, σ
′
2, σ
′
3)← (σr1, σ

r
2, σ

r
3);

2. computes (h1, h2)← (H ′(σ′1), hs1);

3. for all i ∈ [1, n], it parses SRL[i] as (σ
(i)
1 , h

(i)
2) and computes h

(i)
1 ←

H ′(σ
(i)
1);

4. it generates a proof π of knowledge of s such that σ3 = σs1 and h2 =

hs1 and that (h
(i)
1)s 6= h

(i)
2 for all i ∈ [1, n] using the protocol from

[15]. More specifically, it selects random scalars ri and computes Ci =

21

((h
(i)
1)s/h

(i)
2)ri . If ∃i ∈ [1, n] such that Ci = 1, then it returns ⊥. Else, it

selects k, {ki,1, ki,2}ni=1
$← Z2n+1

p and computes (K0,1,K0,2) ← (σk1 , h
k
1)

along with (Ki,1,Ki,2) ← ((h
(i)
1)ki,1 · (1/(h(i)2))ki,2 , h

ki,1
1 · (1/h2)ki,2). It

then computes

c = H(σ′1, σ
′
2, σ
′
3, h1, h2, {Ci}ni=1, {Ki,1,Ki,2}ni=0,m).

along with z = k+ c · s and (zi,1, zi,2) = (ki,1 + c · s · ri, ki,2 + c · ri). The
proof π is then set as ({Ci}ni=1, c, z, {zi,1, zi,2}ni=1);

5. it returns the signature µ = ((σ′1, σ
′
2, σ
′
3), h2, π).

– Identify(sk, t): this algorithm parses sk as (s, (σ1, σ2, σ3))) and t as (σ1, h2),
and returns 1 if h2 = H ′(σ1)s and 0 otherwise.

– Verify(ipk, SRL, KRL, µ,m): to verify an EPID signature µ, the verifier parses

it as ((σ′1, σ
′
2, σ
′
3), h2, π), each KRL[i] as (s(i), (σ

(i)
1 , σ

(i)
2 , σ

(i)
3)) for i ∈ [1,m] and

each SRL[i] as (σ
(i)
1 , h

(i)
2) for i ∈ [1, n]. It then returns 1 if all the following

conditions hold and 0 otherwise.
1. σ1 6= 1G1 ∧ e(σ1, X̃) · e(σ3, Ỹ) = e(σ2, g̃);
2. ∀i ∈ [1,m], Identify(KRL[i], (σ1, h2)) = 0;
3. ∀i ∈ [1, n], Ci 6= 1;
4. c = H(σ1, σ2, σ3, h1, h2, {Ci}ni=1, {Ki,1,Ki,2}ni=0,m), where h1 ← H ′(σ1),

(K0,1,K0,2)← (σz1 ·σ−c3 , hz1·h−c2) and (Ki,1,Ki,2)← ([(h
(i)
1)zi,1/(h

(i)
2)zi,2]·

C−ci , h
zi,1
1 /(h

zi,2
2)) with h

(i)
1 = H ′(σ

(i)
1).

The correctness of this variant essentially follows from the one of the previous
scheme, the main difference being located in Step 1 of the Verify algorithm
where the verification of a FHS signature is here replaced by a verification of a
PS signature.

Remark 8. Several constructions from the state-of-the-art (e.g. [2,12]) impose a
collaborative generation of the platform secret during the Join algorithm. That
is, once the platform has sent a commitment to some secret value s, the issuer
selects some scalar s′ and implicitly defines the platform secret as s+ s′ by issu-
ing a certificate on this sum. This approach allows to generate certificates using
signature schemes satisfying a weaker security notion (namely, weak chosen mes-
sage security [6]) than the standard EUF-CMA. In our case, this would have no
benefit on the efficiency of our signatures but only on the computational assump-
tions underlying PS signatures as their weak chosen message security is proven
under a q-type assumption whereas their EUF-CMA security is proven under
an interactive assumption (see [27,28]). We therefore choose to keep this simple,
non-collaborative Join protocol and refer to [2] for details on the collaborative
variant.

5.2 Security Proofs

The proofs of this variant are a mere adaptation of the ones from Section 4.2 so
we will mainly focus on the slight differences between them.

22

Unforgeability. The unforgeability proof of this variant only differs from the
one in Section 4.2 in the case of a type 3 forgery. Indeed, upon receiving a
OJoin query, R now extracts the adversary’s secret s from the interactive zero-
knowledge proof and then queries its signing oracle to get a valid certificate
(σ1, σ2, σ3). R then proceeds as for the previous construction and eventually
receives c+1 EPID signatures, each containing a PS signature σ(i). As in Section
4.2, we therefore know that one of them is valid on some value s(i

∗) that has never
been queried to the signing oracle. R makes then a guess on the corresponding
value i∗ and then extracts s(i

∗) from the proof of knowledge, which constitutes,
along with σ(i∗), a valid forgery against PS signatures.

Anonymity. Here, the first difference occurs in Game (5,i) where R now an-
swers the i first queries by generating a PS signature (σ1, σ2, σ3) on a random
scalar t and by returning h2 = H ′(σ1)t. R proceeds similarly in Game 6. Here
again, we prove indistinguishability between two games under DDH assumption.
More precisely, if (g, gα, gβ , gγ) is a DDH instance, then R implicitly uses α as
some platform secret key. To answer the i-th OSign query, R generates two
random scalars r1 and r2 and constructs σ1 = (gβ)r1 , σ2 = (gβ)r1·x(gγ)r1·y and
σ3 = (gγ)r1 . Moreover, it programs the random oracle to return H ′(σ1) = gβ·r2

and thus computes h2 = (gγ)r2 . In the case where γ = α ·β, this is a valid EPID
signature for this platform and we are thus playing Game (5,i−1). Else, we play
Game (5,i). Any adversary able to distinguish these two cases can then be used
to solve the DDH problem.

Conclusion

In this paper, we have introduced a new security model for EPID, a cryptographic
primitive embedded in billions of chips [23], which has important consequences in
practice. Firstly, our new unforgeability property addresses the problems of pre-
vious models and in particular removes the need to extract all platforms’ secret
keys. This makes enrolment of new platforms simpler while allowing concurrent
Join. Secondly, our new anonymity property allows decentralized management
of revocation lists, which better captures the spirit of EPID. We have in partic-
ular showed that we can retain a strong anonymity notion even in presence of
powerful adversaries with unlimited control of the revocation lists. All this leads
to a better understanding of what an EPID system can truly ensure in what we
believe to be the most realistic usage scenario.

Another result of our paper is that such strong properties can actually be
achieved by very efficient constructions that we describe. Perhaps the most sur-
prising feature of the latter is that they do not require to perform any significant
test on the malicious revocation lists. This is particularly important as it proves
that we are not simply shifting the burden of the revocation manager to each
platform. The latter can indeed issue signatures with essentially the same com-
plexity as in existing systems that require a trusted revocation manager.

23

Acknowledgements

The authors are grateful for the support of the ANR through project ANR-18-
CE-39-0019-02 MobiS5.

References

1. Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical group signatures without random oracles. IACR Cryptol. ePrint Arch.,
2005.

2. Amira Barki, Nicolas Desmoulins, Säıd Gharout, and Jacques Traoré. Anonymous
attestations made practical. ACM WISEC, 2017.

3. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 614–629. Springer, Heidelberg, May 2003.

4. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The
case of dynamic groups. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of
LNCS, pages 136–153. Springer, Heidelberg, February 2005.

5. David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P. Smart, and Bogdan
Warinschi. Anonymous attestation with user-controlled linkability. Int. J. Inf.
Sec., 2013.

6. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008.

7. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
514–532. Springer, Heidelberg, December 2001.

8. Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM
CCS 2004, pages 168–177. ACM Press, October 2004.

9. Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction. https:

//electriccoin.co/blog/new-snark-curve/, 2017.

10. Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM
CCS 2004, pages 132–145. ACM Press, October 2004.

11. Ernie Brickell and Jiangtao Li. Enhanced privacy id: a direct anonymous attesta-
tion scheme with enhanced revocation capabilities. In WPES 2007, 2007.

12. Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing for
hardware authentication and attestation. In Ahmed K. Elmagarmid and Divyakant
Agrawal, editors, IEEE Conference on Social Computing, SocialCom, 2010.

13. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally composable direct
anonymous attestation. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano,
and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 234–
264. Springer, Heidelberg, March 2016.

14. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 56–72. Springer, Heidelberg, August 2004.

24

https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/

15. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 126–144. Springer, Heidelberg, August 2003.

16. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, ed-
itor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg,
April 1991.

17. Liqun Chen, Paul Morrissey, and Nigel P. Smart. On proofs of security for DAA
schemes. In ProvSec 2008, 2008.

18. Liqun Chen, Paul Morrissey, and Nigel P. Smart. Pairings in trusted computing.
In Pairing 2008, 2008.

19. Liqun Chen, Paul Morrissey, and Nigel P. Smart. Daa: Fixing the pairing based
protocols. IACR Cryptol. ePrint Arch., page 198, 2009.

20. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 152–168. Springer, Heidelberg, August 2005.

21. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving
signatures on equivalence classes and constant-size anonymous credentials. Journal
of Cryptology, 32(2):498–546, April 2019.

22. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryp-
tographers. Discret. Appl. Math., 2008.

23. Intel. A cost-effective foundation for end-to-end iot security, white paper.
https://www.intel.in/content/www/in/en/internet-of-things/white-papers/iot-
identity-intel-epid-iot-security-white-paper.html, 2016.

24. ISO/IEC. ISO/IEC 20008-1:2013 information technology — security techniques
— anonymous digital signatures — part 1: General. https://www.iso.org/

standard/57018.html, 2013.
25. ISO/IEC. ISO/IEC 20008-2:2013 information technology — security techniques

— anonymous digital signatures — part 2: Mechanisms using a group public key.
https://www.iso.org/standard/56916.html, 2013.

26. Nada El Kassem, Lúıs Fiolhais, Paulo Martins, Liqun Chen, and Leonel Sousa. A
lattice-based enhanced privacy ID. In WISTP 2019, 2019.

27. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue
Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Hei-
delberg, February / March 2016.

28. David Pointcheval and Olivier Sanders. Reassessing security of randomizable sig-
natures. In Nigel P. Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages
319–338. Springer, Heidelberg, April 2018.

29. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, Heidelberg, August 1990.

30. TCG. https://trustedcomputinggroup.org/authentication/, 2015.

25

https://www.iso.org/standard/57018.html
https://www.iso.org/standard/57018.html
https://www.iso.org/standard/56916.html
https://trustedcomputinggroup.org/authentication/

	EPID with Malicious Revocation
	Introduction
	Related Works
	Our Contributions

	Preliminaries
	Specification of EPID
	Syntax
	Security Model

	Our First Construction
	Description
	Security Proofs

	An Efficient Variant with Limited Concurrent Enrolments
	Description
	Security Proofs

