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Abstract

There has been a large body of work characterizing the round complexity of general-purpose mali-
ciously secure two-party computation (2PC) against probabilistic polynomial time adversaries. This is
particularly true for zero-knowledge, which is a special case of 2PC. In fact, in the special case of zero
knowledge, optimal protocols with unconditional security against one of the two players have also been
meticulously studied and constructed.

On the other hand, general-purpose maliciously secure 2PC with statistical or unconditional security
against one of the two participants has remained largely unexplored so far. In this work, we initiate the
study of such protocols, which we refer to as 2PC with one-sided statistical security. We settle the round
complexity of 2PC with one-sided statistical security with respect to black-box simulation by obtaining the
following tight results:

• In a setting where only one party obtains an output, we design 2PC in 4 rounds with statistical
security against receivers and computational security against senders.

• In a setting where both parties obtain outputs, we design 2PC in 5 rounds with computational secu-
rity against the party that obtains output first and statistical security against the party that obtains
output last.

Katz and Ostrovsky (CRYPTO 2004) showed that 2PC with black-box simulation requires at least 4 rounds
when one party obtains an output and 5 rounds when both parties obtain outputs, even when only com-
putational security is desired against both parties. Thus in these settings, not only are our results tight, but
they also show that statistical security is achievable at no extra cost to round complexity. This still leaves
open the question of whether 2PC can be achieved with black-box simulation in 4 rounds with statistical
security against senders and computational security against receivers. Based on a lower bound on compu-
tational zero-knowledge proofs due to Katz (TCC 2008), we observe that the answer is negative unless the
polynomial hierarchy collapses.

1 Introduction

Secure two-party computation allows two mutually distrustful participants to compute jointly on their
private data without revealing anything beyond the output of their computation. Protocols that securely
compute general functionalities have been constructed under a variety of assumptions, and with a variety
of efficiency guarantees.

A fundamental question in the study of secure computation is round complexity. This question has been
researched extensively, and even more so for the special case of zero-knowledge.

Zero-Knowledge. Computational zero-knowledge arguments with negligible soundness error can be achieved
in 4 messages [FS90], under the minimal assumption that one-way functions exist [BJY97]. This is tight: for
languages outside BPP, with black-box simulation and without any trusted setup, zero-knowledge argu-
ments require at least four messages [GK96].
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For zero-knowledge with black-box simulation, different flavors have been studied depending on the
level of soundness and zero knowledge achieved. Either property can be statistical or computational, mean-
ing that it holds against unbounded or computationally bounded adversaries, respectively. Protocols that
satisfy both properties statistically, known as statistical zero knowledge proofs, are only known for lan-
guages in AM ∩ coAM [For87, AH91]; however, once either property is relaxed to be computational, proto-
cols for all of NP can be constructed assuming the existence of one way functions [GMW91, Nao91, BCC88,
NOVY98, HNO+09]. Specifically,

• Statistical Zero-knowledge Arguments for NP, where soundness is computational and zero-knowledge is
statistical, are known to be achievable in 4 rounds with black-box simulation, assuming the existence
of collision resistant hash functions [BJY97].

• Computational Zero-knowledge Proofs for NP, that satisfy statistical soundness and computational zero-
knowledge, are known to be achievable in 5 rounds with black-box simulation, assuming the existence
of collision resistant hash functions [GK96].

Protocols that satisfy statistical security, either against a malicious prover or a malicious verifier, are
more secure and therefore can be more desirable than protocols that are only computationally secure on
both sides. For instance, statistical zero-knowledge arguments provide an unconditional privacy guarantee
– even a verifier that runs an arbitrary amount of post-processing on the proof transcript, does not obtain
any information that cannot be simulated efficiently.

Secure Computation of General Functionalities. While tight results for zero-knowledge with black-box
simulation with statistical security against one party are known, the state of affairs is significantly lacking
in the case of two-party secure computation of general functionalities. Specifically, in the two-party setting,
it is natural to ask whether statistical or unconditional security can be achieved, against at least one of the
parties.

In a setting where both parties are computationally bounded, Katz and Ostrovsky [KO04] showed how
to securely compute general functionalities with black-box simulation, with only 4 messages of interac-
tion, when one party receives the output, and 5 messages when both parties receive the output. They
also demonstrate that this result is tight with respect to black-box simulation. There has been significant
progress in the last few years, extending the results of Katz and Ostrovsky to obtain better round optimal
secure protocols both in [ORS15, COSV17b] and beyond the two-party setting [GMPP16, ACJ17, BHP17,
COSV17a, BGJ+18, CCG+19].

Despite all this progress, there are significant gaps in our understanding of the round complexity of
2PC with one-sided statistical security, i.e. statistical security against one of the participants. While there
are known techniques to achieve weaker notions such as super-polynomial simulation with statistical se-
curity [OPP14, CO17, KKS18], the (standard) setting of polynomial simulation is not well understood at
all.

1.1 Our Results

In this paper, we settle the round complexity of two-party secure computation with black-box simulation
and one-sided statistical security. This is the best possible security that can be achieved by any non-trivial
two-party protocol in the plain model.

We now describe our results in some detail. First, we consider a setting where only one party receives
the output of the computation. Without loss of generality, we call the party that receives the output, the
receiver R, and the other party the sender S. We obtain a tight characterization with respect to black-box
simulation, as follows.

Informal Theorem 1. Assuming polynomial hardness of either DDH or QR or LWE, there exists a 4 round two-
party secure computation protocol for general functionalities with black-box simulation, with statistical security
against an adversarial receiver and computational security against an adversarial sender.

Next, we recall a result due to Katz [Kat08a] who proved that 4 round computational zero-knowledge
proofs for NP with black-box simulation cannot exist unless the polynomial hierarchy collapses. This helps
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rule out the existence of a 4 round two-party protocol for secure computation of general functionalities with
black-box simulation, with statistical security against an adversarial sender and computational security
against an adversarial receiver, unless the polynomial hierarchy collapses. A formal proof of this statement
appears in Appendix A. We also match this lower bound with the following result.

Informal Theorem 2. Assuming polynomial hardness of either DDH or QR or LWE, there exists a 5 round two-
party secure computation protocol for general functionalities with black-box simulation, with statistical security
against an adversarial sender and computational security against an adversarial receiver.

We formalize and prove Informal Theorem 1 and Informal Theorem 2 by demonstrating a single 5 round
protocol for symmetric functionalities (i.e. functionalities that generate identical output for both parties),
where the receiver R obtains the output at the end of the 4th round, and the sender S obtains the out-
put at the end of the 5th round. This protocol is unconditionally secure against malicious receivers, and
computationally secure against malicious senders. Such a protocol can be unconditionally compiled, in a
round-preserving way, to work for asymmetric functionalities using the following folklore technique: each
participant additionally inputs a uniformly random key to the functionality, and the symmetric functional-
ity masks each participant’s output with their respective key.

We prove that our protocol provides statistical security against a malicious receiver R and computational
security against a malicious sender S. We observe that Informal Theorem 1 follows from this protocol by
simply eliminating the last message from the receiver R to the sender S. Informal Theorem 2 also follows
from this protocol by simply renaming the players: that is, we will now call the party S in our original protocol, R;
and we will call R, S. The resulting protocol, after renaming parties, is statistically secure against a malicious
sender S and computationally secure against a malicious receiver R. Because both parties obtain the output
by the end of the 5th round, the (re-named) receiver R is guaranteed to obtain the output at the end of round
5.

Together, these results characterize the round complexity of secure two-party computation with black-
box simulation and statistical security against one participant. Along the way, we develop a toolkit for
establishing statistical security that may be useful in other settings.

In the rest of this paper, in protocols where a single party gets the output – we will call the party that
obtains an output the receiver, and the other party the sender. In protocols both parties get the output, we
call the party that obtains its output first, the receiver and the party that obtains output second, the sender.

2 Our Techniques

We now provide an informal overview of our techniques. Our starting point is the simple case of secu-
rity against semi-honest adversaries, with statistical security against one party and computational security
against the other. A simple way to obtain round-optimal secure computation for general functionalities, in
the semi-honest setting, is to rely on Yao’s garbling technique. Here one party, referred to as the garbler,
computes a garbled circuit and labels for the evaluation of a circuit. The garbler sends the resulting circuit
to the other party, the evaluator, and both parties rely on 2-choose-1 oblivious transfer (OT) to transfer the
“right” labels corresponding to the input of the evaluator. The evaluator then executes a public algorithm
on the garbled circuit and labels to recover the output of the circuit.

Limitations in the Semi-Honest Setting. Even in the semi-honest setting, garbled circuits that provide
security against unbounded evaluators are only known for circuits in NC1. In fact, whether constant round
two-party semi-honest protocols secure against unbounded senders and unbounded receivers exist, even in
the OT hybrid model, is an important unresolved open problem in information-theoretic cryptography. In
the absence of such protocols, the best security we can hope to achieve even in the semi-honest setting, is
when at least one party is computationally bounded. As a result, in the malicious setting also, the best we
can hope for is security against unbounded senders and bounded receivers, or unbounded receivers and
bounded senders.

As discussed in the previous section, we construct a single 5 round protocol for symmetric functionalities
(i.e. functionalities that generate identical output for both parties), where the receiver R obtains the output
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at the end of the 4th round, and the sender S obtains the output at the end of the 5th round1. We prove that
this protocol provides statistical security against an unbounded malicious receiver R∗ and security against a
computationally bounded malicious sender S∗. For simplicity, we discuss the first 4 rounds of this protocol
in more detail: specifically, we discuss a 4 round protocol where R obtains the output (and S does not), that
we prove is secure against an unbounded malicious R∗ and computationally bounded malicious S∗.

R must generate the garbled circuit, and S must evaluate it. Garbled circuits form an important compo-
nent of our protocol. Because garbled circuits for functions outside of NC1 are insecure against unbounded
evaluators, when looking at all efficiently computable functions (which is the focus of this work), our de-
facto strategy will be to have a malicious evaluator that is computationally bounded (i.e. PPT) whereas a
malicious garbler may be computationally unbounded.

Because we desire statistical security against R∗, the receiver R must be the entity that generates the
garbled circuit, and S will evaluate this circuit on labels obtained via a 2-choose-1 oblivious transfer (OT)
protocol. Recall that we also require the receiver R to obtain the output by the end of round 4. Since S is the
one evaluating the garbled circuit, this enforces that the garbled circuit must be evaluated by the sender by
the end of round 3. In other words, R must output the garbled circuit and transfer labels to the sender by
round 3.

This requires that labels for the garbled circuit be transferred from R to S via a 3 round OT protocol,
in which R is the OT sender and S is the OT receiver. Naturally, this oblivious transfer protocol is also
required to be statistically secure against malicious R∗ (who is the OT sender) and computationally secure
against malicious S∗ (who is the OT receiver). Unfortunately, no OT protocols achieving malicious security
are known in 3 rounds (in fact, the existence of such protocols with black-box simulation would contradict
the lower bound of [KO04]). The fact that the OT must also be statistically secure against malicious senders
complicates matters further. This brings us to our first technical barrier: identifying and using weaker forms of
OT to obtain full-fledged malicious security.

Three Round Oblivious Transfer. Here, it is appropriate to discuss known notions of oblivious transfer
that are achievable in three rounds and provide some semblance of malicious security. A popular notion
has been game-based security: roughly, this requires that the receiver choice bit be hidden from a malicious
sender, and one of the sender messages remain hidden from the receiver. A further strengthening of this
notion is security with superpolynomial simulation, commonly called SPS-security. Very roughly, this re-
quires the existence of a superpolynomial simulator that simulates the view of a malicious sender/receiver
only given access to the ideal functionality. There are known constructions of SPS-secure OT: in 2 rounds,
SPS-secure OT was first constructed by [BGI+17] based on two-round game-based OT, which can itself be
realized based on a variety of assumptions, including DDH, LWE, QR, and N th-residuosity [NP01, AIR01,
Kal05, HK12, BD18].

Recall that we also desire statistical security against an adversarial sender. Achieving this property re-
quires at least three rounds [KKS18], and [KKS18] obtained 3 round OT with SPS security based on su-
perpolynomial hardness of DDH, LWE, QR, and N th-residuosity. Even more recently, [JJGM20] improved
this result to rely only on polynomial hardness of any of the same assumptions. In fact, [JJGM20] achieve
a notion in between SPS-security and standard security against malicious receivers: their protocol obtains
distinguisher-dependent security [DNRS99, JKKR17] against malicious receivers. This relaxes the standard
notion of malicious security by reversing the order of quantifiers, namely, by allowing the simulator to de-
pend upon the distinguisher that is attempting to distinguish the real and ideal experiments. Importantly,
unlike standard security, a distinguisher-dependent OT simulator is not guaranteed to efficiently extract
the adversary’s actual input, unless it has access to the distinguisher. On the other hand, we would like to
achieve full-fledged malicious security in our 2PC protocol. This means that our 2PC simulator must nev-
ertheless find a way to extract the adversary’s input and cannot rely on the OT simulator for this purpose.
Looking ahead, we will only rely on the OT protocol to obtain an indistinguishability-based guarantee, and
our 2PC simulator will not use the OT simulator at all. Next, we describe additional components that we
add to this protocol to enable full-fledged malicious security.

1We note that this is without loss of generality, since any asymmetric functionality can be unconditionally computed from a sym-
metric one by having each party input a random value, and using it to mask the output.
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Immediate Pitfalls of the Current Template. Now as discussed previously, garbled circuits and an ap-
propriate OT protocol do not by themselves guarantee meaningful security against malicious adversaries.
A malicious garbler could generate the garbled circuit or labels so as to completely alter the output of
an honest evaluator. As such, the sender must be convinced that the garbled circuit and labels that she
obtained from the receiver were generated “correctly”, before she evaluates the garbled circuit. In other
words, R should convince S, within three rounds, that the garbled circuit and oblivious transfer messages
were correctly generated, so that it is “safe” for the sender to evaluate the garbled circuit.

A naı̈ve approach would entail the use of a computational zero-knowledge proof, where R proves to S
that the garbled circuit, labels and OT messages sent by R were correctly generated. Unfortunately, com-
putational zero-knowledge proofs are not known to exist in less than 4 rounds of interaction from standard
assumptions, even assuming non-black-box simulation. This brings us to our second technical barrier.

We overcome this barrier with the help of a special conditional disclosure of secrets (CDS) protocol, that
we will detail towards the end of this overview. This CDS protocol will help us compile protocols that are
secure against adversaries that “promise to behave well” (that we will denote as explainable adversaries in
line with [BKP19]) into protocols secure against arbitrarily malicious adversaries, while retaining one-sided
statistical security. An “explainable” adversary generates messages in the support of the distribution of all
honestly generated messages.2

In fact, we take a modular approach to building 2PC with one-sided statistical security against fully
malicious adversaries: first, we obtain a protocol secure against explainable adversaries alone, and next,
we compile this protocol to one that is secure against arbitrary malicious adversaries. For now, we focus
our attention towards achieving simulation-based security against explainable adversaries alone, instead
of arbitrary malicious ones. Later, we discuss our CDS-based approach to achieve security against arbitrary
malicious adversaries.

Extracting inputs of Explainable Adversaries. Recall that by definition of explainability, for every garbled
circuit GC and OT message that an explainable R∗ sends, there exists randomness r and input inp such
that GC is generated as an output of the garbling algorithm for the circuit corresponding to the two-party
function f , on input inp and with randomness r.

As already discussed, proving security requires establishing the existence of a simulator that interacts
with an ideal functionality and with the adversary to output a view that is indistinguishable from the
adversary’s view in its interaction with the honest party. Importantly, this simulator must extract the input
of a malicious R∗ or S∗, and cannot use the 3-round OT for this purpose.

Therefore, to enable extraction from R∗, we modify the protocol to require the receiver to send a statis-
tically binding extractable commitment (constructed, eg, in [PRS02]) to its input, in parallel with the rest of
the protocol. By definition, an explainable R∗ is guaranteed to send an extractable commitment to the “right”
input that is consistent with the garbled circuit, and a simulator SimR∗ will be able to extract R∗’s input from
the extractable commitment. Such extractable commitments are known to exist in 3 rounds by the work of
Prabhakaran et al [PRS02].

Similarly, in order to enable the extraction of S∗’s input, we will modify the protocol to require the
sender to send an extractable commitment to its input, in parallel with the rest of the protocol. The simu-
lator SimS∗ will be able to extract the sender’s input from this extractable commitment. Since we require
statistical security against R, the extractable commitment used by S should be statistically hiding. A simple
modification to the extractable commitments of Prabhakaran et. al. [PRS02], replacing statistically bind-
ing computationally hiding commitments with statistically hiding computationally binding commitments
yields the required extractable commitment in 4 rounds. Unfortunately, this also means that SimS∗ can only
send the input of S∗ and obtain an output from the ideal functionality at the end of the 4th round. However,
S∗ evaluates the garbled circuit and may obtain an output before round 4 even begins, which would allow
S∗ to distinguish the real and ideal executions. Said differently, this would leave SimS∗ with no opportunity
to program the output of the ideal functionality in the view of S∗.

2Importantly, this is different from semi-malicious security [LTV13, MW16] where the adversary in addition to generating messages
in the support of the distribution of all honestly generated messages, outputs the input and randomness that it used, on a special tape.
On the other hand, simulating an explainable adversary is much more challenging: since in this case the adversary does not output
any such special tape, and therefore the input and randomness must still be extracted from an explainable adversary by the simulator.
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To provide SimS∗ with such an opportunity and overcome this technical barrier, we modify the protocol
as follows: instead of garbling the circuit corresponding to the function f , R samples the keys (pk, sk) for
a public key encryption scheme, and garbles a circuit that computes (Encpk ◦ f). Here Encpk denotes the
encryption algorithm of an IND-CPA secure encryption scheme, and the randomness used for encryption
is hardwired by R into the circuit. As a result, S on evaluating the garbled circuit, obtains a ciphertext that
encrypts the output of the function under R’s public jey. It must then forward this ciphertext to R, who
uses the corresponding secret key to decrypt the ciphertext and recover the output of the function3. This
concludes the bare-bones description of our 5-round protocol with security against explainable adversaries.

In addition to proving that this protocol is secure against explainable PPT adversaries, we also establish
an additional property, that will come in handy later. We prove that the protocol is robust in the first two
rounds: meaning that even an adversary that behaves arbitrarily maliciously (and not necessarily explain-
ably) in the first two rounds can only influence the function output, but not obtain any information about
the private input of the other participant.

Simulating Explainable Adversaries. This completes a simplified overview of our protocol with security
against explainable adversaries. But there are several subtleties that arise when formalizing the proof of
security. We describe our simulators and discuss a few of these subtleties below.

First, we discuss how to build a simulator SimS∗ that simulates the view of a malicious sender S∗. Recall
that SimS∗ must extract the input of a malicious S∗, query the ideal functionality, and program the resulting
output in the view of S∗. The use of statistically hiding extractable commitments allows SimS∗ to extract S∗’s
input by the end of the fourth round. Therefore, SimS∗ only obtains an output from the ideal functionality
by the end of the fourth round. But SimS∗ must send to S∗ a garbled circuit in the third round, on behalf of
R, even before learning the output. How should SimS∗ construct this circuit? SimS∗ cannot even invoke the
simulator of the garbled circuit because it has not extracted S∗’s input at this time. Instead, we have the
simulator simply garble a circuit that outputs an encryption of the all zeroes string. Finally, the simulator
extracts the input of S∗ from the fourth round message, and queries the ideal functionality to obtain an
output. In the fifth round, it sends this output S∗ in the clear.

Recall that S∗ can behave arbitrarily maliciously while generating its OT message, and only provides
a proof of correct behaviour in round 4. Therefore, we must use a careful argument to ensure that the
result appears indistinguishable to S∗. The indistinguishability argument heavily relies on the distinguisher-
dependent simulation property of the OT protocol. In particular, we build a careful sequence of hybrids where
we extract S∗’s (who is the OT receiver) input to the OT protocol in a distinguisher-dependent manner, and
use the extracted input to replace the actual garbled circuit with a simulated one. Next, we change the
output of the garbled circuit from an encryption of the right output to an encryption of the all zeroes string,
and finally we replace the simulated garbled circuit with a real circuit that always outputs an encryption
of the all zeroes string. All intermediate hybrids in this sequence are distinguisher-dependent. A similar
argument also helps prove robustness of our protocol against S∗ that behaves maliciously in the second
round.

Next, we discuss how we simulate the view of an unbounded malicious R∗. The simulator SimR∗ uses
the third round extractable commitment to obtain the input of R∗, queries the ideal functionality to obtain
an output, and in the fourth round message, sends an encryption under the receiver’s public key pk of this
output. Here, we carefully prove that for any explainable receiver R∗, the simulated message (encrypting
the output generated by the ideal functionality) is indistinguishable from the message generated by an
honest sender.

This concludes an overview of how we achieve a protocol with security against explainable adversaries.
Next, we discuss techniques to compile any explainable protocol with robustness in the first two rounds,
into one that is secure against malicious adversaries. We also discuss a few additional subtleties that come
up in this setting.

Security against Malicious Senders via Statistical ZK Arguments. In order to achieve security against ar-
bitrary malicious S∗, the protocol is further modified to require R and S to execute a statistical zero-knowledge

3Alternatively, R could withhold the garbled circuit decoding information, i.e. the correspondence between the output wire labels
and the output of the circuit, from S until the 5th round. This would achieve the same effect, but leads to a more complex analysis.
For simplicity of analysis, we choose to garble an encrypted circuit in our formal presentation.
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argument, where S proves to R that S generated its OT messages correctly, and perform the garbled circuit
evaluation correctly to obtain the result that it output to R. Because of a technical condition in the proof,
we actually require the SZK argument to be an argument of knowledge. Such arguments of knowledge with
delayed-input completeness and soundness, and requiring exactly 4 rounds can be obtained by instanti-
ating the FLS paradigm with statistically hiding extractable commitments. These are executed in parallel
with our 4 round explainable protocol described above. With these arguments in place, at the end of the
fourth round R will decrypt the ciphertext to recover the output only if the verification algorithm applied to
the zero-knowledge argument accepts. Otherwise R rejects. This helps argue security against malicious S∗,
but we point out one subtlety: the SZK argument can only be verified at the end of round 4, an unwitting
receiver could send its round 3 message in response to an arbitrarily maliciously generated round 2 sender
message. This is where we invoke the additional robustness property discussed earlier. Next, we discuss
the somewhat more complex case of malicious receivers.

Security against Malicious Receivers via Statistical Conditional Disclosure of Secrets. So far, an arbi-
trary malicious R∗ could recover additional information about the sender’s input based on the output of
evaluation of incorrectly garbled circuits. Ideally, we would like to ensure that R∗ can obtain the sender’s
fourth round message if and only if R∗ generated its first and third round messages in an “explainable”
manner.

As discussed at the beginning of this overview, using zero-knowledge proofs to enable this requires too
many rounds: therefore, our next idea is to rely on a two-round conditional disclosure of secrets (CDS)
protocol. This will allow R∗ to recover the message sent by S if and only if R∗ inputs a witness attesting
to the fact that its first and third messages were explainable. Notably, the witness input by R∗ is hidden
from S. Furthermore, when no such witness exists (i.e. when R∗ does not generate explainable messages),
the CDS protocol computationally hides the message of S 4. Clearly, such a protocol can be used to ensure
that R∗ recovers the output of evaluation of the garbled circuit iff it behaved in an explainable fashion, and
otherwise obtains no information.

However, because we desire statistical security against R∗, we need the CDS protocol to provide sta-
tistical security against R∗. Fortunately, a CDS protocol with statistical security can be obtained for the
class of relations that are verifiable by NC1 circuits, by combining two round game-based OT (eg, Naor-
Pinkas [NP01]) with information-theoretic garbled circuits for NC1. Specifically, the receiver generates OT
receiver messages corresponding to each of the bits in his witness, and the sender garbles a circuit that out-
puts the original sender message if and only if the receiver’s input is a valid witness. We also note that there
exists a generic transform that allows verifying (given the randomness and inputs of R∗) that R∗ behaved
in an explainable way – in logarithmic depth, or by an NC1 circuit.

Next, we rely on robustness of the underlying protocol to argue security against a receiver that may have
behave arbitrarily maliciously in the first round of the protocol. Finally, to ensure that the receiver sends
the correct output to the sender in the fifth round, we require the receiver to send a zero-knowledge proof
asserting that it computed this final message explainably. This proof can be obtained in 5 rounds [GK96],
and is executed in parallel with the rest of the protocol.

Another hurdle, and its Resolution. While CDS helps keep round complexity low, it leads to another
technical barrier when simulating the view of a malicious sender. Specifically, the malicious simulator ob-
tains messages from the underlying simulator of the robust explainable protocol. Because it obtains these
messages externally, there is no way for the malicious simulator to recover the sender’s next message en-
coded within the CDS protocol. At the same time, simulator needs to necessarily recover this next message
in order to generate the final message of the protocol. To get around this issue, we require the statistical
ZK argument provided by the simulator to be an argument of knowledge (AoK). As a result, the malicious
simulator is able to use the AoK property of the sender’s SZK argument to extract a witness, and we care-
fully ensure that this witness helps the simulator reconstruct the next message of the sender, and proceed
as before.

Concluding Remarks. This completes an overview of our techniques. In summary, we obtain round
optimal two-party computation with one-sided statistical security assuming the existence of public key
encryption, collision resistant hash functions, and two round statistically sender-private OT. We also end

4Such protocols have been used previously in the literature, most recently in [BKP19].
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up requiring some of these primitives to allow for verification in NC1 because of the reasons discussed
above, however, we note that natural instantiations of these primitives based on the hardness of DDH or
QR or LWE already satisfy this additional constraint. This allows us to base our protocol on a range of
assumptions including DDH, QR or LWE.

We also note that we depart from existing work by using OT protocols with distinguisher-dependent
simulation to achieve an end goal of standard simulation security in a general-purpose two-party compu-
tation protocol. We believe that this application to statistically secure 2PC represents a meaningful new
application domain for distinguisher-dependent simulation. In addition, we rely on several other technical
tools such as deferred evaluation of garbled circuits, and combining robust protocols with delayed-input
proofs - that may be of independent interest.

Open Problems and Future Directions. Our work obtains feasibility results for round optimal two-party
secure computation with one-sided statistical security, which is the best possible security that one can hope
to achieve in two-party protocols in the plain model. A natural question is whether statistical security can be
obtained against at least one of the participants in more general multi-party settings. It is also interesting to
understand the minimal assumptions required to obtain 2PC with one-sided statistical security, in a round
optimal manner, following similar investigations on assumptions versus round complexity in ZK with one-
sided statistical security, perhaps via highly optimized cut-and-choose techniques. Another interesting
question is whether it is possible to achieve one-sided statistically secure protocols that make black-box
use of cryptography. Finally, it is also interesting to understand whether 4 rounds are necessary to obtain
specialized statistically secure protocols, such as statistical ZAPs, from polynomial hardness assumptions
(in light of the fact that recent constructions of statistical ZAPs in less that 4 rounds [BFJ+20, JJGM20,
LVW20] rely on superpolynomial hardness assumptions).

Roadmap. We refer the reader to Section 4 for a detailed description of our protocol against explainable
adversaries, and a proof of its security; and to Section 5 for a description of our protocol against malicious
adversaries, and a proof of its security. In Appendix A, for completeness, we discuss the impossibility
of two-party computation with statistical security against senders and computational security against re-
ceivers in four rounds, and with black-box simulation.

3 Preliminaries

In the rest of this paper, we will denote the security parameter by k, and we will use negl(·) to denote any
function that is aymtpotically smaller than the inverse of every polynomial.

3.1 Secure Two-Party Computation

Two Party Computation. A two-party protocol Π is cast by specifying a process that maps pairs of inputs
to pairs of outputs (one for each party). We refer to such a process as a functionality and denote it by
F = fn : {0, 1}n × {0, 1}n → {0, 1}poly(n) × {0, 1}poly(n). We restrict ourselves to symmetric functionalities,
where for every pair of inputs (x, y), the output is a random variable f(x, y) ranging over pair of strings.

Secure Two Party Computation. In this definition we assume an adversary that corrupts one of the par-
ties. The parties are sender S and receiver R. Let A ∈ {S,R} denote a corrupted party andH ∈ {S,R},H 6= A
denote the honest party.

• Ideal Execution. An ideal execution for the computation of functionality F proceeds as:

– Inputs: S and R obtain inputs x ∈ Xn and y ∈ Yn, respectively.

– Send inputs to trusted party: H sends its input to F . Moreover, there exists a simulator SimA

that has black box access to A, that sends input on behalf of A to F .

– Trusted party output to simulator: If x /∈ Xn, F sets x to some default input in Xn; likewise if
y /∈ Yn, F sets y equal to some default input in Yn. Then the trusted party sends f(x, y) to SimA.
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It waits for a special symbol from SimA, upon receiving which, it sends the output to H. If it
receives ⊥ from SimA, it outputs ⊥ toH.

– Outputs: H outputs the value it obtained from F and A outputs its view. We denote the joint
distribution of the output ofH and the view of A by IDEALF,Sim,A(x, y, n).

We let IDEALF,Sim,A(x, y, n) be the joint distribution of the view of the corrupted party and the output
of the honest party following an execution in the ideal model as described above.

• Real Execution In the real world, the two party protocol Π is executed between S and R. In this case,
A gets the inputs of the party it has corrupted and sends all the messages on behalf of this party, using
an arbitrary polynomial-time strategy. H follows the instructions in Π.

Let F be as above and let π be two-party protocol computing F . LetA be a non-uniform probabilistic
poly-time machine with auxiliary input z. We let REALΠ,A(x, y, n) denote the joint distribution the
view of corrupted party and the output of the honest party, in the real execution of the protocol.

Definition 1. A protocol Π securely computes F with computational security against a party if there exists a PPT
simulator Sim such that for every non-uniform probabilistic polynomial time adversary A corrupting the party,

IDEALF,Sim,A(x, y, n) ≈c REALΠ,A(x, y, n)

It securely computes F with statistical security against a party if there exists a PPT simulator Sim such that for every
non-uniform probabilistic polynomial time adversary A corrupting the party,

IDEALF,Sim,A(x, y, n) ≈s REALΠ,A(x, y, n)

Definition 2 (Explainable transcript). Let ΠS∗,R∗ be a protocol between an arbitrary sender S∗ and arbitrary
receiver R∗. We say that a transcript T of an execution Π between S∗ and R∗ is explainable for S∗ if there exists an
input i and coins r such that T is consistent with the transcript of an execution between Si,r and R∗, until the point
in T where Si,r aborts. (Here Si,r is the honest sender on input i using coins r). Similarly, we say that a transcript T
of an execution Π between S∗ and R∗ is explainable for R∗ if there exists an input i coins r such that T is consistent
with the transcript of an execution between Ri,r and S∗, until the point in T that Ri,r aborts. (Here Ri,r is the honest
receiver strategy using input i and coins r).

Definition 3 (Explainable sender). Let ΠS∗,R∗ be a protocol between an arbitrary sender S∗ and arbitrary receiver
R∗. A (possibly probabilistic) sender S∗ = {S∗k}k∈N is explainable if there exists a negligible µ(·) such that for any
receiver R∗ = {R∗k}k∈N, and large enough k ∈ N,

Pr
S∗k

[T is explainable |T ← ΠS∗k,R
∗
k
] ≥ 1− µ(k).

Definition 4 (Explainable receiver). Let ΠS∗,R∗ be a protocol between an arbitrary sender S∗ and arbitrary receiver
R∗. A (possibly probabilistic) receiver R∗ = {R∗k}k∈N is explainable if there exists a negligible µ(·) such that for any
sender S∗ = {S∗k}k∈N, and large enough k ∈ N,

Pr
R∗k

[T is explainable |T ← ΠS∗k,R
∗
k
] ≥ 1− µ(k).

Definition 5 (Robust Explainable Secure Protocol). We will say that a protocol is secure against explainable
adversaries, if Definition 1 holds against explainable adversaries. Furthermore, such a protocol is robust if for every
(arbitrarily) malicious R∗, the real view of the adversary until round 2 is indistinguishable from the adversary’s
simulated view until round 2, and for every (arbitrarily) malicious S∗, the real view of the adversary until round 3 is
indistinguishable from the adversary’s simulated view until round 3.

3.2 Yao’s Garbled Circuits

We will also rely on Yao’s technique for garbling circuits [Yao86]. In the following, we define the notation
that we will use, and the security properties of Yao’s garbling scheme.

9



Definition 6. Let p(·) denote any fixed polynomial. We will consider a circuit family C : {0, 1}k → {0, 1}p(k), that
takes an input of size k bits and outputs p(k) bits. Yao’s garbled circuits consist of the following algorithms:

• GARBLE(1k, C; r) obtains as input a circuit C ∈ C and randomness r, and outputs the garbled circuit GC as
well as a set of 2k keys corresponding to setting each of the k input bits to 0 and 1. We will denote this by:

(GC, {labeli,b}i∈[k],b∈{0,1})← GARBLE(1k, C; r).

• EVAL(GC, {labeli,xi
}i∈[k]) obtains as input garbled circuit GC, and a set of k keys. It generates an output z.

We will denote this by
z ← EVAL(GC, {labeli,xi

}i∈[k]).

We require these algorithms to satisfy the following properties:

• Correctness: For all C ∈ C, x ∈ {0, 1}k,

Pr

[
C(x) = z

∣∣∣∣∣(GC,{labeli,b}i∈[k],b∈{0,1})←GARBLE(1k,C;r)

z←EVAL(GC ,{labeli,xi
}i∈[k])

]
= 1− negl(k)

• Security: There exists a PPT simulator Sim such that for all non-uniform PPT D, and all C ∈ C, x ∈ {0, 1}k,∣∣∣Pr[D(GC, {labeli,xi
}i∈[k]) = 1]− Pr[D(Sim(1k, C(x))) = 1]

∣∣∣ = negl(k)

where
(GC, {labeli,b}i∈[k],b∈{0,1})← GARBLE(1k, C; r).

3.3 Extractable Commitments

Definition 7 (Extractable Commitment). A statistically binding and computationally hiding three round commit-
ment scheme is said to be extractable if there exists a PPT extractor Ext such that for any PPT committer C and every
polynomial p(·), If

Pr
c1←C,

c2←R(c1,1
k),

c3←C(c1,c2)

[R(c1, c2, c3) 6= ⊥] ≥ 1

p(k)

then

Pr
c1←C

c2←R(c1,1
k)

c3←C(c1,c2)


R(c1, c2, c3) = 1∧
d← C(c1, c2, c3)∧
s← R(c1, c2, c3, d)∧
s′ ← ExtC(1k, 1p(k))∧
s′ 6= s ∧ s 6= ⊥

 ≤ negl(k)

where R denotes the honest receiver algorithm, d denotes a decommitment string (obtained from C(c1, c2, c3) at the
start of the decommit phase), and R outputs s to be equal to the decommitted value if it accepts the decommitment,
and ⊥ otherwise.

Three-message computationally hiding extractable commitments can be constructed from non-interactive
commitments [PRS02]. We will also consider statistically hiding extractable commitments, that satisfy the
same extraction guarantee, except against computationally unbounded committers. These can be obtained
in four rounds by substituting non-interactive commitments in the construction of [PRS02] with two round
statistically hiding commitments.

10



3.4 Zero-Knowledge Proofs and Arguments for NP

An n-round delayed-input interactive protocol 〈P,V〉 for deciding a language L with associated relation RL

proceeds in the following manner:

• At the beginning of the protocol, P and V receive the size of the instance and execute the first n − 1
rounds.

• At the start of the last round, P receives input (x,w) ∈ RL and V receives x. Upon receiving the last
round message from P, V outputs 0 or 1.

We will rely on proofs and arguments for NP that satisfy delayed-input completeness, adaptive sound-
ness and adaptive ZK.

Definition 8 (Statistical Zero Knowledge Argument). Fix any language L. Let 〈P,V〉 denote the execution of a
protocol between a PPT prover P and a (possibly unbounded) verifier V, let Vout denote the output of the verifier and
let ViewA〈P,V〉 denote the transcript together with the state and randomness of a party A ∈ {P,V} at the end of an
execution of a protocol. Then we say 〈P,V〉 is zero knowledge proof system for L if the following properties hold:

• Completeness: For all x ∈ L,
Pr[Vout〈P,V〉 = 1] = 1− negl(k),

where the probability is over the random coins of P and V.

• Adaptive Soundness: For all polynomial size P∗ and all x /∈ L sampled by P∗ adaptively depending
upon the first n− 1 rounds,

Pr[Vout〈P∗,V〉 = 1] = negl(k)

• Statistical Zero Knowledge: There exists a PPT simulator Sim such that for all V ∗ and all x ∈ L,∣∣∣Pr[V∗(ViewV∗〈P(x,w),V∗〉) = 1]− Pr[V∗(SimV∗(x)) = 1]
∣∣∣ = negl(k)

These can be obtained by a simple modification to delayed-input ZK arguments based on the Lapidot-
Shamir [LS90] technique, by relying on a two round statistically hiding commitent (that can itself be based
on any collision-resistant hash functions), instead of a one-round statistically binding one.

Definition 9 (Zero Knowledge Proof). Fix any language L. Let 〈P,V〉 denote the execution of a protocol between
a (possibly unbounded) prover P and a PPT verifier V, let Vout denote the output of the verifier and let ViewA〈P,V〉
denote the transcript together with the state and randomness of a party A ∈ {P,V} at the end of an execution of a
protocol. Then we say 〈P,V〉 is zero knowledge proof system for L if following properties hold:

• Completeness: For all x ∈ L,
Pr[Vout〈P,V〉 = 1] = 1− negl(k),

where the probability is over the random coins of P and V.

• Adaptive Soundness: For all P∗ and all x /∈ L sampled by P∗ adaptively depending upon the first
n− 1 rounds,

Pr[Vout〈P∗,V〉 = 1] = negl(k)

• Computational Zero Knowledge: There exists a PPT simulator Sim such that for all polynomial size
V ∗ and all x ∈ L,∣∣∣Pr[V∗(ViewV∗〈P(x,w),V∗〉) = 1]− Pr[V∗(SimV∗(x)) = 1]

∣∣∣ = negl(k)

Such proofs were first constructed by [GK96], and can be made complete and sound when the instance is
chosen by the prover in the last round of the interaction, by relying on the work of [LS90].

Imported Theorem 1. [GK96, LS90] Assuming the existence of collision-resistant hash functions, there exist 5
round zero-knowledge proofs for all languages in NP, satisfying Definition 9.
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3.5 Oblivious Transfer (OT)

Oblivious Transfer (OT) is a protocol between two parties, an (unbounded) sender S with messages (m0,m1)
and a (PPT) receiver R with choice bit b, where R receives output mb at the end of protocol. We let
〈S(m0,m1), R(b)〉 denote execution of the OT protocol with sender input (m0,m1) and receiver input b.
We will rely on a three round oblivious transfer protocol that satisfies perfect correctness and the following
security guarantee:

Definition 10 (Statistically Receiver-Private OT). We will say that an oblivious transfer protocol is statistically
receiver private if it satisfies the following properties.

• Statistical Receiver Security. For every unbounded S∗ and all (b, b′) ∈ {0, 1}, the following distributions
are statistically indistinguishable:

ViewS∗〈S∗, R(b)〉 and ViewS∗〈S∗, R(b′)〉

• Sender Security (Distinguisher-dependent Simulation Under Parallel Composition). For every polyno-
mial n = n(k), for every efficiently sampleable distribution over messages {M0,i,M1,i}i∈[n], there exists a
PPT simulator Sim such that for every non-uniform PPT receiver R∗ and non-uniform PPT distinguisher D,

|Pr[D(ViewR∗〈S({m0,i,m1,i}i∈[n]), R
∗〉) = 1]−

Pr[D(SimR∗,D,{FOT,i(m0,i,m1,i,·)}i∈[n]) = 1]| = negl(k)

where the probability is over the randomness of sampling {(m0,i,m1,i)}i∈[n]
$← {(M0,i,M1,i)}i∈[n], the

randomness of the sender and the simulator, and where FOT is a single-query ideal OT functionality with
{(m0,i,m1,i)}i∈[n] hardwired, that on input {bi}i∈[n] outputs {mbi,i}i∈[n] and then self-destructs.

Imported Theorem 2. [JJGM20] Assuming the existence of any two-round statistical sender-private OT (resp.,
polynomial hardness of CDH), there exists a three-round statistically receiver-private OT protocol in the plain model
satisfying Definition 10.

Here, we note that two-round statistical sender-private OT can in turn be based on the polynomial hardness
of DDH [NP01], QR and N th residuosity [Kal05, HK12] and LWE [BD18]. We will represent the three
messages of an OT protocol satisfying Definition 10 by OTS,1,OTR(·),OTS,3(·).

3.6 Conditional Disclosure of Secrets

Conditional disclosure of secrets for an NP language L [AIR01] can be viewed as a two-message analog
of witness encryption [GGSW13]. That is, the sender holds an instance x and message m and the receiver
holds x and a corresponding witnessw. If the witness is valid, then the receiver obtainsm, whereas if x /∈ L,
m remains hidden. We further require that the protocol hides the witness w from the sender.

Definition 11. A conditional disclosure of secrets scheme (CDS.R,CDS.S,CDS.D) for a language L ∈ NP satisfies:

1. Correctness: For any (x,w) ∈ RL, and message m ∈ {0, 1}∗,

Pr
[
CDS.DK(c′) = m

∣∣∣(c,K)←CDS.R(x,w)
c′←CDS.S(x,m,c)

]
= 1

2. Message indistinguishability: For any x ∈ {0, 1}k \ L, c∗, and two equal-length messages m0,m1, the
following distributions are statistically indistinguishable:

CDS.S(x,m0, c
∗) and CDS.S(x,m1, c

∗)

3. Receiver simulation: There exists a simulator CDS.Sim such that for any polynomial-size distinguisher D,
there exists a negligible µ such that for any x ∈ L, w ∈ RL(x) and large enough security parameter k ∈ N,

|Pr[D(CDS.R(x,w)) = 1]− Pr[D(CDS.Sim(x)) = 1]| = µ(k)
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Instantiations. CDS schemes satisfying definition 11 for relations that are verifiable in NC1 can be instan-
tiated by combining information-theoretic Yao’s garbled circuits for NC1 with any two-message oblivious
transfer protocol where the receiver message is computationally hidden from any semi-honest sender, and
with (unbounded) simulation security against malicious receivers. Such oblivious transfer schemes are
known based on DDH [NP01], Quadratic (or N th) Residuosity [HK12], and LWE [BD18].

3.7 Low-Depth Proofs

We will describe how any computation that is verifiable by a family of polynomial sized ciruits can be
transformed into a proof that is verifiable by a family of circuits in NC1. Let R be an efficiently computable
binary relation. For pairs (x,w) ∈ R we call x the statement and w the witness. Let L be the language
consisting of statements in R.

Definition 12 (Low-Depth Non-Interactive Proofs). A low-depth non-interactive proof with perfect completeness
and soundness for a relation R consists of an (efficient) prover P and a verifier V that satisfy:

• Perfect completeness. A proof system is perfectly complete if an honest prover with a valid witness can
always convince an honest verifier. For all (x,w) ∈ R we have

Pr[V (π) = 1|π ← P (x,w)] = 1

• Perfect soundness. A proof system is perfectly sound if it is infeasible to convince an honest verifier when the
statement is false. For all x 6∈ L and all (even unbounded) adversaries A we have

Pr[V (x, π) = 1|π ← A(x)] = 0.

• Low Depth. The verifier V can be implemented in NC1.

We discuss a very simple construction of a low-depth non-interactive proof, that was outlined in [GGH+16].
The prover P executes the NP-verification circuit on the witness and generates the proof as the sequential
concatenation (in some specified order) of the bit values assigned to the individual wires of the circuit. The
verifier V proceeds by checking consistency of the values assigned to the internal wires of the circuit for
each gate. In particular for each gate in the NP-verification circuit the verifier checks if the wire vales pro-
vided in the proof represent a correct evaluation of the gate. Since the verification corresponding to each
gate can be done independent of every other gate and in constant depth, we have that V itself is constant
depth.

4 2PC with One-sided Statistical Security against Explainable Parties

4.1 Construction

As a first step, in Figure 1, we describe a 5 round protocol with security against explainable adversaries
(Definitions 3 and 4). In a nutshell, these adversaries are like malicious adversaries, but with an additional
promise: explainable adversaries generate messages that are in the suport of honestly generated messages,
except with negligible probability.

Our protocol uses the following building blocks:

• A 3 round statistically binding and computationally hiding commitment scheme satisfying extractabil-
ity according to Definition 7, denoted by Ecom.

• A 4 round statistically hiding and computationally binding commitment scheme satisfying extractabil-
ity according to Definition 7, denoted by SHEcom.

• A 3 round statistically receiver private oblivious transfer protocol satisfying Definition 10, denoted by
OT.

• Garbled circuits satisfying Definition 6, with algorithms denoted by Garble,Eval.
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Public Input: Function f that players wish to compute on their private inputs.
Private Inputs: The receiver R has private input A and sender S has private input B.

Round 1: R does the following.

1. Sample randomness rc, rd, renc, {rOT,i}i∈[k]
$←{0, 1}∗. Set (pk, sk) = KeyGen(1k).

2. Set f ′ = Encpk(fA(·); renc) where fA(·) denotes f with input A hardwired.

3. Garble f ′ to obtain a garbled circuit and labels (G, {labeli,b}i∈[k],b∈{0,1} = Garble(1k, f ′). Compute
OT sender messages for i ∈ [k] as o1,i = OTS,1(labeli,0, labeli,1; rOT,i).

4. Set c1 = EcomS((A||renc); rc) to be the first (committer) message of a statistically binding extractable
commitment to (A||renc). Additionally, set d1 = SHEcomR(rd) to be the first (receiver) message of a
statistically hiding extractable commitment.

5. Send (pk, {o1,i}i∈k, c1, d1) to S. Note that R does not send G yet.

Round 2: S does the following.

1. Sample randomness {r′OT,i}i∈[k], r
′
c, r
′
d

$←{0, 1}∗.
2. Set c2 = EcomR,c1(r′c) to be the second (receiver) message of the statistically binding extractable
commitment, and d2 = SHEcomS,d1(B; r′d) to be the second (committer) message of the statistically
hiding extractable commitment, committing to input B.

3. Compute OT receiver messages for every i ∈ [k] as o2,i = OTR(o1,i,Bi; r
′
OT,i).

4. Send (c2, d2, {o2,i}i∈[k]) to R.

Round 3: R does the following.
1. Compute OT sender messages for i ∈ [k] as {o3,i = OTS,3(o2,i, (labeli,0, labeli,1); rOT,i)}i∈[k].

2. Set c3 = EcomS,c1,c2(A||renc; rc) to be the final (committer) message of the statistically binding ex-
tractable commitment and d3 = SHEcomR,d1,d2(rd) to be the third (receiver) messages of the statistically
hiding extractable commitment.

3. Send (G, c3, d3, {o3,i}i∈[k]) to S, where recall that G was computed in round 1.

Round 4: S does the following.
1. For i ∈ [k], get labi from o3,i. Evaluate the garbled circuit to obtain z = Eval(G, {labi}i∈[k]).

2. Set d4 = SHEcomS,d1,d2,d3(B; r′d) to be the final message of the statistically hiding extractable com-
mitment.

3. Send (z, d4) to R.

Round 5: R outputs out = DECsk(z) and sends out to S.

Output: S outputs out.

Figure 1: The protocol Πexp〈S,R〉 secure against explainable adversaries.

4.2 Analysis

We demonstrate security of our protocol against explainable adversaries by proving the following theorem.

Theorem 1. Assuming 3 round computationally hiding and 4 round statistically hiding extractable commitments
according to Definition 7, garbled circuits satisfying Definition 6 and three round oblivious transfer satisfying Def-
inition 10, there exists a robust 5-round secure two-party computation protocol with black-box simulation against
unbounded explainable receivers and PPT explainable senders, where the receiver obtains its output at the end of
round 4 and the sender obtains its output at the end of the fifth round5.

5We point out that Informal Theorem 2 follows from this theorem by exchanging the roles of S and R.
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We observe that 3 round computationally hiding commitments can be based on any non-interactive
commitment scheme [PRS02], which can itself be based on any public-key encryption [LS19], and 4 round
statistically hiding extractable commitments can be based on collision-resistant hash functions. Garbled cir-
cuits can be obtained only assuming the existence of one-way functions [Yao86], and three round oblivious
transfer satisfying Definition 10 can be based on any statistically sender-private 2 round OT. All of these
primitives can be based on the hardness of the Decisional Diffie-Hellman assumption (DDH), or Quadratic
Residuosity (QR), or the Learning with Errors assumption (LWE), and we therefore have the following
corollary.

Corollary 2. Assuming polynomial hardness of the Decisional Diffie-Hellman assumption (DDH), or Quadratic
Residuosity (QR), or the Learning with Errors assumption (LWE), there exists a robust 5-round secure two-party com-
putation protocol with black-box simulation against unbounded explainable receivers and PPT explainable senders,
where the receiver obtains its output at the end of round 4 and the sender obtains its output at the end of round 5.

Theorem 1 follows immediately from Lemma 1 that proves security against bounded explainable senders
and Lemma 2 that proves security against unbounded explainable receivers.

Lemma 1. Assuming computational hiding of Ecom, extractability of SHEcom according to Definition 7, security of
garbled circuits according to Definition 6, and sender security of OT according to Definition 10, the construction in
Figure 1 satisfies robust simulation-based security against explainable PPT senders according to Definition 3.

Proof. We prove that there exists a simulator SimS∗ that with black-box access to a computationally bounded
explainable sender S∗, outputs a simulated view that is indistinguishable from the real view of S∗. Our
simulator is described in Figure 2, with differences from the real protocol underlined.

The simulator SimS∗ interacts with S∗, sending the following messages on behalf of R. It uses as sub-
routine SHEcomExt, which denotes the extractor for SHEcom.

Round 1: SimS∗ does the following.

1. Sample rk, rc, , renc, {rOT,i}i∈[k]
$←{0, 1}∗, set A = 0k. Set (pk, sk) = KeyGen(1k; rk).

2. Set f ′ = Encpk(fA(·), rk), (G, {labeli,b}i∈[k],b∈{0,1}) = Garble(1k, f ′).

3. Set {o1,i = OTS,1(labeli,0, labeli,1; rOT,i)}i∈[k], and

4. Set c1 = EcomS((A, 0k); rc), and obtain d1 from SHEcomExt.

5. Send
(
pk, {o1,i}i∈[k], c1, d1

)
to S∗.

Round 3: SimS∗ does the following.
1. Obtain input (c2, d2, {o2,i}i∈[k]) from S∗. Send d2 to SHEcomExt and obtain d3.

2. Set {o3,i = OTS,3(o2,i, (labeli,0, labeli,1); rOT,i)}i∈[k] and c3 = EcomS,c1,c2(A; rc).

3. Send (G, c3, d3, {o3,i}i∈[k]) to S∗.

Round 5: SimS∗ does the following.
1. Obtain input (z, d4) from S∗ and send d4 to SHEcomExt.

2. If SHEcomExt rewinds, the execution automatically goes back to round 3. Otherwise,
obtain B′ from SHEcomExt.

3. Send B′ to the ideal functionality F and obtain output out. Send out to S∗.

Figure 2: Simulation strategy for an explainable adversarial sender S∗

We now prove that the real and ideal worlds are indistinguishable. Towards a contradiction, assume
that there exists a polynomial p(·) and a distinguisher D that distinguishes the joint distribution of the view
of S∗ and the output of R in the real and ideal worlds, with probability 1

p(k) for infinitely many k ∈ N. We
consider the following sequence of hybrids:
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Hyb0: This hybrid represents an execution where the explainable sender S∗ interacts with an honest R,
that follows the strategy in Figure 1. The output of this hybrid is the view of the adversary in its interaction
with honest R, together with the output of R.

Hyb1: In this hybrid, the adversary interacts with a challenger that behaves identically to Hyb0, except that
it generates (c1, c3) as messages for an extractable commitment to (0k, 0k), instead of to (A, renc). The output
of this hybrid corresponds to the view of the adversary S∗ in it’s interaction with the challenger, together
with the output of R.

Claim 1. Assuming that Ecom is computationally hiding, for every PPT distinguisher D, there exists a negligible
function µ(·) s.t. for large enough k ∈ N,

|Pr[D(Hyb0) = 1]− Pr[D(Hyb1) = 1]| = µ(k)

Proof. The proof of this claim follows directly based on the hiding property of Ecom. Specifically, if this
claim is not true, then a reduction that obtains the messages of Ecom externally, generates remaining proto-
col messages according to Hyb1, can use D to directly contradict the hiding of Ecom.

Hyb2 : In this hybrid, the adversary interacts with the challenger that behaves exactly as in Hyb1. Except,
the challenger extracts B by using SHEcomExt at the end of round 4, queries the ideal functionalityF2PC with
input B, and obtains output out from the ideal functionality. It then outputs out to S∗. The hybrid outputs
⊥ if extraction fails.

The output of this hybrid corresponds to the view of the adversary S∗ in it’s interaction with with the
challenger, together with the output of R.

Claim 2. Assuming that SHEcom is extractable according to Definition 7, denoting statistical distance by ∆, there
exists a negligible function µ(·) s.t. for large enough k ∈ N,

∆(Hyb1,Hyb2) = µ(k)

Proof. The only difference between these hybrids is that the challenger extracts the adversary’s input via
the extractor of SHEcom, and relays the extracted value to the ideal functionality. Because the adversary is
explainable, these hybrids are identical whenever extraction succeeds. Furthermore, by the extractability
property of SHEcom, extraction succeeds except with negligible probability.

Hyb3,D: This is a distinguisher-dependent hybrid: the challenger runs the PPT distinguisher-dependent
simulator SimOT for the 3 round OT protocol, with error 1

4p(·) .
Recall that SimOT requires oracle access to a receiverR∗OT, a distinguisherDOT and an ideal functionality

{F iOT(labeli,0, labeli,1)}i∈[k]. The challenger constructs R∗OT as follows:

• R∗OT obtains {o1,i}i∈[k] externally. Next, it samples remaining round 1 messages (pk, c1, d1) exactly
according to the strategy in Hyb1 and sends them to S∗ on behalf of R.

• On receiving (c2, d2, {o2,i}i∈[k]) from S∗, R∗OT forwards {o2,i}i∈[k] as its own OT receiver message, and
obtains {o3,i}i∈[k] externally. It samples remaining round 3 messages (c3, d3, G) exactly according to
the strategy in Hyb1 and sends ({o3,i}i∈[k], G, c3, d3) to S∗ on behalf of R.

• On input (z, d4) from S∗, it runs SHEcomExt to find B, obtain out from the ideal functionality, and
outputs the final view V of S∗.

The challenger constructsDOT that on input view V , executes the hybrid distinguisher D on V and forwards
its output externally. The output of this hybrid is the view V generated by R∗OT described above.

Claim 3. Assuming that OT satisfies distinguisher-dependent simulation security against malicious receivers ac-
cording to Definition 10, for large enough k ∈ N,

|Pr[D(Hyb1) = 1]− Pr[D(Hyb3,D) = 1]| ≤ 1

4p(k)
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Proof. We note that when {o1,i, o3,i}i∈[k] are generated according to honest strategy, the output of DOT is
identical to that of D on input distribution Hyb1. When {o1,i, o3,i}i∈[k] are generated according to OT simu-
lation strategy, the output of DOT is identical to that of D on input distribution Hyb3,D. Therefore, the claim
follows by the definition of distinguisher-dependent simulation, with error parameter 1

4p(·) .

Hyb4,D: This is a distinguisher-dependent hybrid like Hyb3,D. Here, just like in Hyb3,D, the challenger runs
the PPT distinguisher-dependent simulator SimOT for the 3-round OT protocol, with error 1

4p(·) in order
to generate messages {o1,i, o3,i}i∈[k]. Recall that SimOT requires oracle access to a receiver R∗OT, a distin-
guisher DOT and an ideal functionality {F iOT(labeli,0, labeli,1)}i∈[k]. These are all constructed the same way
as Hyb3,D.

To generate the output of this hybrid, however, the challenger behaves differently from Hyb3,D. Specif-
ically, it takes the partial transcript and partial view of R∗OT until round 2, obtains the simulated message
o3,i from SimOT, and generates (c3, d3) exactly according to the strategy in Hyb1. However, it generates G
as the output of SimGC(1k, f ′, f ′A(B′)), where B′ denotes the input query of SimOT to the OT ideal function-
ality {F iOT(labeli,0, labeli,1)}i∈[k]. As before, it sends these values to S∗. On input (z, d4) from S∗, it runs
SHEcomExt to find the sender input B committed to in the extractable commitment, obtains out from the
ideal functionality, and outputs the final view V of S∗.

Claim 4. Assuming that garbled circuits satisfy Definition 6, for every distinguisher D, there exists a negligible
function µ(·) such that for large enough k ∈ N,

|Pr[D(Hyb3,D) = 1]− Pr[D(Hyb4,D) = 1]| ≤ µ(k)

Proof. This claim follows directly by the security property of garbled circuits, as otherwise distinguisher D
can be used to distinguish a real garbled circuit from a simulated one. Specifically, there exists a reduction
that obtains a challenge garbled circuit externally, and generates the rest of the protocol execution according
to Hyb3. Since the only difference between these hybrids is whether the garbled circuit is real or simulated,
the reduction can run D to distinguish real from simulated garbled circuits.

Hyb5,D: This is a distinguisher-dependent hybrid like Hyb4,D. Here, just like in Hyb3,D, the challenger runs
the PPT distinguisher-dependent simulator SimOT for the 3-round OT protocol, with error 1

4p(·) in order
to generate messages {o1,i, o3,i}i∈[k]. Recall that SimOT requires oracle access to a receiver R∗OT, a distin-
guisher DOT and an ideal functionality {F iOT(labeli,0, labeli,1)}i∈[k]. These are all constructed the same way
as Hyb3,D.

To generate the output of this hybrid, however, the challenger behaves differently from Hyb4,D. Specif-
ically, as befpre it takes the partial transcript and partial view of R∗OT until round 2, obtains the simu-
lated message o3,i from SimOT, and generates (c3, d3) exactly according to the strategy in Hyb1. How-
ever, it generates G as the output of SimGC(1k, f ′, f ′0k(B′)), where B′ denotes the input query of SimOT

to {F iOT(labeli,0, labeli,1)}i∈[k]. As before, it sends these values to S∗. On input (z, d4) from S∗, it runs
SHEcomExt to find the sender input B committed in the extractable commitment, obtain out from the ideal
functionality, and outputs the final view V of S∗.

Claim 5. Assuming that IND-CPA security of the public key encryption scheme, for every distinguisher D, there
exists a negligible function µ(·) such that for large enough k ∈ N,

|Pr[D(Hyb4,D) = 1]− Pr[D(Hyb5,D) = 1]| ≤ µ(k)

Proof. This claim follows directly by IND-CPA security of the public key encryption scheme.

Hyb6,D: This is a distinguisher-dependent hybrid like Hyb5,D. Here, just like in Hyb5,D, the challenger runs
the PPT distinguisher-dependent simulator SimOT for the 3-round OT protocol, with error 1

4p(·) in order
to generate messages {o1,i, o3,i}i∈[k]. Recall that SimOT requires oracle access to a receiver R∗OT, a distin-
guisher DOT and an ideal functionality {F iOT(labeli,0, labeli,1)}i∈[k]. These are all constructed the same way
as Hyb5,D.

To generate the output of this hybrid, however, the challenger behaves differently from Hyb5,D. Specif-
ically, it takes the partial transcript and partial view of R∗OT until round 2, obtains the simulated message
o3,i from SimOT, and generates (c3, d3) exactly according to the strategy in Hyb1.
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However, it generates G, {labeli,b}i∈[k],b∈{0,1} as the output of Garble(1k, f ′0k(B′)), where B′ denotes the
input query of SimOT. As before, it sends these values to S∗. On input (z, d4) from S∗, it runs SHEcomExt to
find the sender input B committed in the extractable commitment, obtains out from the ideal functionality,
and outputs the final view V of S∗.

Claim 6. Assuming that garbled circuits satisfy Definition 6, for every distinguisher D, there exists a negligible
function µ(·) such that for large enough k ∈ N,

|Pr[D(Hyb5,D) = 1]− Pr[D(Hyb6,D) = 1]| ≤ µ(k)

Proof. The proof of this claim follows identically to the proof of indistinguishability between Hyb3,D and
Hyb4,D.

Hyb7: In this hybrid, the adversary interacts with the simulator. We note that the simulator behaves exactly
like the challenger of Hyb2, except that the simulator sets A to 0k. That is, the simulator garbles the circuit
corresponding to function f ′(·) = Encpk(f0k(·); renc), and extracts B from SHEcom to query the ideal func-
tionality. The output of this hybrid corresponds to the view of the explainable sender S∗ interacting with
the simulator together with the output of honest party R.

Claim 7. Assuming that 3 round OT satisfies Definition 10, for every distinguisher D, for large enough k ∈ N,

|Pr[D(Hyb6,D) = 1]− Pr[D(Hyb7) = 1]| ≤ 1

4p(k)

Proof. The proof of this claim follows in a similar way as the proof of indistinguishability between Hyb2 and
Hyb3,D.

Together, these claims contradict our assumption that D distinguishes real and ideal worlds with prob-
ability 1

p(k) , completing our proof of security against an explainable S∗. Robustness follows by noting that
throughout these claims, we only rely on explainability to argue that messages generated in round 5 are
indistinguishable. This completes the proof of Lemma 1.

Lemma 2. Assuming statistical hiding of SHEcom and extractability of Ecom according to Definition 7 and receiver
security of OT according to Definition 10, the construction in Figure 1 satisfies robust statistical simulation security
(Definition 1) against explainable unbounded receivers as per Definition 3.

Proof. We prove that there exists a PPT simulator SimR∗ that with black-box access to an unbounded ex-
plainable sender R∗, outputs a simulated view that is statistically indistinguishable from the real view of
R∗. Our simulator is described in Figure 3, with changes from the real protocol underlined.

Suppose there exists a polynomial p(·) and an unbounded distinguisher D that distinguishes the joint
distribution of the view of R∗ and the output of S in the real and ideal worlds with probability 1

p(k) for large
enough k ∈ N. We consider the following sequence of hybrids:

Hyb0 : This hybrid represents an execution where the explainable receiver R∗ interacts with an honest S
that follows the strategy in Figure 1. The output of this hybrid is the view of the adversary in its interaction
with honest S, together with the output of S.

Hyb1 : This hybrid is similar to Hyb0, except that the challenger runs the extractor Ecom.Ext to obtain
(A, renc), and aborts if extraction fails.

Claim 8. Assuming that Ecom is extractable according to Definition 7, Hyb0 and Hyb1 are statistically indistin-
guishable.

Proof. From extractability of the statistically binding extractable commitment scheme according to Defini-
tion 7, it follows that the probability of abort in Hyb1 is negl(k). Therefore, the two hybrids are statistically
indistinguishable.
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The simulator SimR∗ interacts with R∗, sending the following messages on behalf of S. It uses as subroutine
Ecom, the extractor of Ecom.

Round 2: SimR∗ does the following.

1. Obtain input (pk, {o1,i}i∈[k], c1, d1) from R∗. Send c1 to EcomExt and obtain c2.

2. Sample {r′OT,i}i∈[k], r
′
c, r
′
d

$←{0, 1}∗. Set B = 0k.

3. Set d2 = SHEcomS,d1(B; r′d) and {o2,i = OTR(Bi; r
′
OT,i)}i∈[k].

4. Send (c2, d2, {o2,i}i∈[k]) to R∗.

Round 4: SimR∗ does the following.

1. Obtain input (G, c3, d3, {o3,i}i∈[k]) from R∗. Send c3 to EcomExt.

2. If EcomExt rewinds, the execution automatically goes back to the beginning of round 2. Otherwise,
obtain (A, renc) from EcomExt.

3. Send A to the ideal functionality. Obtain out and compute z = Encpk(out; renc).

4. Set d4 = SHEcomS,d1,d3(B; r′d) where recall that B was set to 0k.

5. Send (z, d4) to R∗.

Figure 3: Simulation strategy against an explainable unbounded adversarial receiver R∗

Hyb2 : This hybrid is similar to Hyb1, except that the challenger generates the messages d2, d4 as statisti-
cally hiding commitments SHEcom to 0k instead of to B.

Claim 9. Assuming that SHEcom is statistically hiding against malicious receivers, Hyb1 and Hyb2 are statistically
indistinguishable.

Proof. This claim follows directly from the statistical hiding property of the commitment scheme SHEcom.

Hyb3 : This hybrid represents the joint distribution of the view of R∗ and the output of S, when interacting
with the simulator SimR∗ .

Claim 10. Assuming that the OT protocol satisfies statistical security against malicious senders according to Defi-
nition 1, Hyb2 and Hyb3 are statistically indistinguishable.

Proof. This claim follows because of the fact that the receiver’s choice is statistically hidden (due to statisti-
cally receiver private security of the OT protocol), and due to the correctness of extraction of (A, renc) from
Ecom against explainable receivers.

Together, these claims contradict our assumption that for an explainable R∗, Hyb0 and Hyb3 are statis-
tically distinguishable, completing our proof of security against an explainable R∗. Robustness follows by
observing that throughout these claims, we only rely on explainability to argue that (A, renc) are correctly
extracted in order to prove indistinguishability of the messages generated in round 4. This completes the
proof of Lemma 2.

5 From Explainable to Malicious One-sided Statistical Security

In this section, we describe a compiler that compiles any robust two-party secure computation protocol
against explainable adversaries, into one that is secure against arbitrary malicious adversaries. Assuming
the hardness of DDH/LWE/QR, the resulting protocol is computationally secure against PPT malicious
senders. In addition, we demonstrate that the resulting protocol is secure against unbounded malicious
receivers if the underlying robust explainable protocol is secure against unbounded malicious receivers.
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5.1 Construction

In Figure 4, we describe a protocol compiler that compiles any 5 round robust explainable protocol into a
fully malicious protocol while preserving round complexity. In the next section, we prove that when instan-
tiated with special types of robust explainable protocols, including the protocol in Section 4, the resulting
protocol is secure against unbounded malicious receivers and PPT malicious senders. Our protocol uses
the following building blocks:

• Any robust two-party protocol secure against explainable adversaries from Figure 1 by Πexp〈S,R〉. We
denote the messages of this protocol where S uses input B and randomness rS, and R uses input A and
randomness rR, by:(

τR,1 = Πexp,R,1(A; rR), τS,2 = Πexp,S,2(τR,1,B; rS), τR,3 = Πexp,R,3(τS,2,A; rR),

τS,4 = Πexp,S,4(τR,1, τR,3,B; rS), τR,5 = Πexp,R,5(τS,2, τS,4,A; rR)
)

• A 4 round delayed-input adaptively sound and adaptively statistical ZK argument of knowledge
according to Definition 8, with messages denoted by

SZKA.V,SZKA.P(·),SZKA.V(·),SZKA.P(·, x, w),

and the output of the verifier denoted by SZKA.out(·, x).

• A 5 round delayed-input adaptively sound and adaptively computational ZK proof according to Def-
inition 9, with messages denoted by

ZKP.P,ZKP.V(·),ZKP.P(·),ZKP.V(·),ZKP.P(·, x, w),

and the output of the verifier denoted by ZKP.out(·, x).

5.2 Analysis

We demonstrate one-sided statistical security of our protocol against arbitrary malicious adversaries by
formally proving the following theorem.

Theorem 3. Assume the existence of four round delayed-input adaptive statistical zero-knowledge arguments of
knowledge with adaptive soundness according to Definition 8, five round delayed-input adaptive computational zero-
knowledge proofs with adaptive soundness according to Definition 9, and two round statistical CDS for NP relations
verifiable by NC1 circuits according to Definition 11. Assume also that there exists a robust two-party secure compu-
tation protocol against explainable adversaries according to Definition 5. Then there exists a 5-round secure two-party
computation protocol with black-box simulation against unbounded malicious receivers and PPT malicious senders,
where the receiver obtains its output at the end of round 4 and the sender obtains its output at the end of round 5.

Here, we note that the required proof systems can be based on two round statistically hiding commit-
ments, which can themselves be based on the hardness of Decisional Diffie-Hellman (DDH), Quadratic
Residuosity (QR) or the Learning with Errors (LWE) assumption. Furthermore, the requisite statistical CDS
for NP relations verifiable by NC1 circuits can be based on any two round statistically sender private OT,
which can itself be based on DDH/QR/LWE. In addition, we observe that the robust two-party secure com-
putation protocol against explainable adversaries constructed in Section 4 satisfies Definition 5, and can be
instantiated based on DDH/QR/LWE. This results in the following Corollary of Theorem 3.

Corollary 4. Assuming polynomial hardness of the Decisional Diffie-Hellman (DDH) assumption, or Quadratic
Residuosity (QR) or Learning with Errors (LWE), there exists a 5-round secure two-party computation protocol with
black-box simulation against unbounded malicious receivers and PPT malicious senders, where the receiver obtains
its output at the end of round 4 and the sender obtains its output at the end of round 5.

The proof of Theorem 3 follows from Lemma 3 and Lemma 4, that prove security against malicious
senders and unbounded malicious receivers respectively. These are formally stated and proved below.
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Public Input: Function f that players wish to compute on their private inputs.
Private Inputs: The receiver R has private input A and sender S has private input B.

Round 1: R does the following.
1. Sample rR ← {0, 1}∗, compute τR,1 = Πexp,R,1(A; rR) according to the explainable protocol.

2. Set z1 ← ZKP.P and z′1 ← SZKA.V as the first messages of the ZK proof with R as prover, and SZK
argument with R as verifier, respectively.

3. Send (τR,1, z1, z
′
1) to S.

Round 2: S does the following.
1. Sample rS ← {0, 1}∗ and set τS,2 = Πexp,S,2(τR,1,B; rS) according to the explainable protocol.

2. Set z2 ← ZKP.V(z1), z′2 ← SZKA.P(z′1) as the second message of the ZK proof with S as verifier, and
SZK argument with S as prover, respecitvely.

3. Send (τS,2, z2, z
′
2) to R.

Round 3: R does the following.
1. Set τR,3 = Πexp,R,3(τS,2,A; rR). Set x = (τR,1, τR,3), w = (A, rR, ldp) where ldp is a low-depth proof of
(τR,1, τR,3) = R(A, rR, τS,2).

2. Compute CDS message (ct, k)← CDS.R(x,w) and z3 ← ZKP.P(z2), z′3 ← SZKA.V(z′2).

3. Send (τR,3, ct, z3, z
′
3) to S.

Round 4: S does the following.
1. Set τS,4 = Πexp,S,4(τR,1, τR,3,B; rS), and CDS response c← CDS.S(x, τS,4, ct).

2. Set x1 = (τS,2, c), w1 = (B, rS), z4 ← ZKP.V(z1, z3), z′4 ← SZKA.P(z′1, z
′
3, x1, w1).

3. Send (c, z4, z
′
4) to R.

Round 5: R does the following.
1. If SZKA.out(z′1, z

′
2, z
′
3, z
′
4) = 0, abort. Otherwise, recover τS,4 = CDS.Dk(c) and set τR,5 =

Πexp,R,5(τS,2, τS,4,A; rR).

2. Set x = (τR,1, τR,3, τR,5), w = (A, rR), z5 = ZKP.P(z2, z4, x2, w2).

3. Send (τR,5, z5) to S, and output Πexp,R,out(τS,2, τS,4,A; rR).

Sender Output: If ZKP.out(z1, z2, z3, z4, z5) = 0, abort. Else output Πexp,S,out(τR,1, τR,3, τR,5,B; rS).

Figure 4: Our two-party secure computation protocol Πmal〈S,R〉 for general functionalities, with computational secu-
rity against malicious S and statistical security against malicious R. Here languages for the CDS protocol, SZK argument
and ZK proof are defined as follows:

LCDS = {(τR,1, τR,3) : ∃(A, rR, ldp) s.t. ldp is a low-depth proof of (τR,1, τR,3) = R(A, rR, τS,2)}

LZKP = {(τR,1, τR,3, τR,5) : ∃(A, rR) s.t. (τR,1, τR,3, τR,5) = R(A, rR, τS,2, τS,4)}
LSZKA = {(τS,2, c) : ∃(B, rS) s.t. (τS,2, c) = S(B, rS, τR,1, τR,3)}

where R(A, rR, τS,2)) denotes that the transcript (τR,1, τR,3) is generated using honest receiver strategy with input A
and randomness rR; R(A, rR, τS,2, τS,4)) denotes that the transcript (τR,1, τR,3, τR,5) is generated using honest receiver
strategy with input A and randomness rR; and S(B, rS, τR,1, τR,3)) denotes that the transcript (τS,2, c) is generated using
honest sender strategy with input B and randomness rS.
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Lemma 3. Assuming CDS satisfies receiver simulation according to Definition 11, SZKA is adaptively sound accord-
ing to Definition 8 and ZKP satisfies adaptive computational zero-knowledge according to Definition 9, and assuming
Πexp is a robust explainable protocol satisfying the additional property described in Theorem 3, the protocol Πmal〈S,R〉
in Figure 4 is secure against PPT malicious senders according to Definition 1.

Proof. We prove that there exists a simulator SimS∗ that with black-box access to a computationally bounded
malicious sender S∗, outputs a simulated view that is indistinguishable from the real view of S∗. Our
simulator is in Figure 5.

The simulator SimS∗ interacts with S∗, sending the following messages on behalf of R. It uses as subrou-
tine the simulator SimS,exp against an explainable sender S, the simulator CDS.Sim of the CDS protocol,
the simulator ZKP.Sim of the 5 round zero-knowledge proof and the extractor SZKA.Ext of the 4 round
statistical zero-knowledge argument of knowledge.

Round 1: SimS∗ does the following.
1. Obtain τR,1 from SimS,exp.

2. Sample z1 ← ZKP.Sim, z′1 ← SZKA.Ext.

3. Send (τR,1, z1, z
′
1) to S∗.

Round 3:
1. Obtain (τS,2, z2, z

′
2) from S∗.

2. Send τS,2 to SimS,exp and obtain τR,3.

3. Set x = (τR,1, τR,3), ct← CDS.Sim(x).

4. Sample z3 ← ZKP.Sim(z2), z′3 ← SZKA.Ext(z′2).

5. Send (τS,2, ct, z3, z
′
3) to S∗.

Round 5:
1. Obtain (ct, z4, z

′
4) from S∗.

2. Obtain τS,4 from SZKA.Ext. Send τS,4 to SimS,exp and obtain τR,5.

3. Set x2 = (τR,1, τR,3, τR,5), and z5 ← ZKP.Sim(z2, z4, x2).

4. Send (τR,5, z5) to S∗.

Figure 5: Simulation strategy against a PPT malicious sender S∗

Suppose there exists a polynomial p(·) and a distinguisher D that distinguishes the joint distribution of
the view of S∗ and the output of R in the real and ideal worlds, with probability 1

p(k) for infinitely many
k ∈ N. We consider the following sequence of hybrids:

Hyb0: This hybrid represents an execution where the malicious sender S∗ interacts with an honest R, that
follows the strategy in Figure 1. The output of this hybrid is the view of the adversary in its interaction
with honest R, together with the output of R.

Hyb1: In this hybrid, the adversary interacts with the challenger that behaves identically to Hyb0, except
that it generates the messages (z1, z3, z5) as the output of the simulator ZKP.Sim as opposed to executing
honest prover strategy.

Claim 11. Assuming that the zero-knowledge proof ZKP is computationally zero-knowledge according to Definition
9, for every PPT distinguisher D, there exists a negligible function µ(·) s.t. for large enough k ∈ N,

|Pr[D(Hyb0) = 1]− Pr[D(Hyb1) = 1]| = µ(k)
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Proof. This claim follows directly from the computational zero-knowledge property of the zero-knowledge
proof according to Definition 9, because the only difference between Hyb0 and Hyb1 is whether the proof
is real or simulated. Therefore, there is a straightforward reduction that with access to a distinguisher D
that distinguishes these hybrids with non-negligible probability, contradicts the zero-knowledge property
according to Definition 9.

Hyb2: In this hybrid, the adversary interacts with the challenger that behaves identically to Hyb1, except
that it generates the message ct as the output of the CDS simulator on input x, and extracts τS,4 from the
extractor of the SZK argument.

Claim 12. Assuming that the CDS satisfies receiver simulation according to Definition 11 and the SZK argument of
knowledge satisfies Definition 8, for every PPT distinguisher D, there exists a negligible function µ(·) s.t. for large
enough k ∈ N,

|Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]| = µ(k)

Proof. This claim follows by correctness of extraction of the SZK argument, by Definition 8, and the receiver
simulation property of the CDS protocol according to Definition 11.

Hyb3: This hybrid denotes the view of the simulator interacting with malicious S∗, together with the out-
put of R.

Claim 13. Assuming that the conditions in Lemma 1 hold for Πexp, for every PPT distinguisher D, there exists a
negligible function µ(·) s.t. for large enough k ∈ N,

|Pr[D(Hyb2) = 1]− Pr[D(Hyb3) = 1]| = µ(k)

Proof. The only difference between Hyb2 and Hyb3 is that Hyb2 uses honest receiver strategy to generate the
messages of Πexp, whereas Hyb3 uses the simulator Simexp of the explainable protocol.

Note that these hybrids are indistinguishable whenever S∗ is explainable, by simulation-based security
of Πexp against explainable senders. For any S∗ that is not explainable, the argument of knowledge property
of the statistical ZK argument of knowledge provided by S∗ in the 4th round ensures that both hybrids abort
at the end of the 4th round, except with negligible probability. Furthermore, because Πexp is robust, in that
the first three messages of the sender (and receiver respectively) are indistinguishable in real and ideal
experiments even against malicious adversaries, these hybrids are indistinguishable upto round 4, in the
case where the experiment aborts at the end of the 4th round.

This completes the proof of Lemma 3.

Lemma 4. Assuming CDS satisfies statistical message indistinguishability for NP relations verifiable by NC1 circuits
according to Definition 11, assuming LCDS is verifiable in NC1, assuming ZKP is adaptively sound against unbounded
provers according to Definition 9 and SZKA satisfies adaptive statistical zero-knowledge according to Definition 8,
and assuming Πexp is robust and statistically secure against unbounded explainable receivers, the protocol Πmal〈S,R〉
in Figure 4 is statistically secure against unbounded malicious receivers according to Definition 1.

Proof. We prove that there exists a simulator SimR∗ that with black-box access to a malicious receiver R∗,
outputs a simulated view that is indistinguishable from the real view of R∗. Our simulator is described in
Figure 6.

Suppose there exists a polynomial p(·) and a distinguisher D that distinguishes the joint distribution of
the view of R∗ and the output of S in the real and ideal worlds, with probability 1

p(k) for infinitely many
k ∈ N. We consider the following sequence of hybrids:

Hyb0: This hybrid represents an execution where the malicious receiver R∗ interacts with an honest S, that
follows the strategy in Figure 1. The output of this hybrid is the view of the adversary in its interaction
with honest S, together with the output of S.
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The simulator SimR∗ interacts with R∗, sending the following messages on behalf of S. It uses as
subroutine the simulator SimR∗,exp against an explainable receiver R∗ and the simulator SZKA.Sim of the
4 round zero-knowledge argument of knowledge.

Round 2: SimR∗ does the following.
1. Obtain (τR,1, z1, z

′
1) from R∗.

2. Send τR,1 to SimR∗,exp and obtain τS,2.

3. Sample z2 ← ZKP.V(z1), z′2 ← SZKA.Sim(z′1).

4. Send (τS,2, z2, z
′
2) to R∗.

Round 4: SimR∗ does the following.
1. Obtain input (τR,3, ct, z3, z

′
3) from R∗.

2. Send τR,3 to SimR∗,exp and obtain τS,4.

3. Set x1 = (τS,2, c), where c← CDS.S(x, τS,4, ct) and x = (τR,1, τR,3).

4. Sample z4 ← ZKP.V(z3), z′4 ← SZKA.Sim(z′3, x1).

5. Send (c, z4, z
′
4) to R∗.

Output: Obtain τR,5, z5 from R∗. Allow the ideal functionality to release the output to honest party iff
ZKP.out(z1, z2, z3, z4, z5) = 1.

Figure 6: Simulation strategy against a malicious receiver R∗

Hyb1: In this hybrid, the adversary interacts with a challenger that behaves identically to Hyb0, except that
it generates the messages (z2, z4) as the output of the simulator SZKA.Sim as opposed to executing honest
prover strategy.

Claim 14. Assuming that the zero-knowledge argument SZKA is statistically zero-knowledge according to Definition
9, there exists a negligible function µ(·) s.t. for large enough k ∈ N, the statistical distance between Hyb0 and Hyb1

is µ(k).

Proof. This claim follows directly from the statistical zero-knowledge property of the zero-knowledge ar-
gument according to Definition 9, because the only difference between Hyb1 and Hyb2 is whether the proof
is real or simulated. Therefore, there exists a reduction that with access to any unbounded distinguisher D
that distinguishes these hybrids with non-negligible probability, contradicts the statistical zero-knowledge
property according to Definition 8.

Hyb2: This hybrid denotes the view of the simulator interacting with malicious R∗, together with the
output of S.

Claim 15. Assuming that Πexp is robust and unconditionally secure against explainable receivers, that CDS satis-
fies statistical message indistinguishability according to Definition 11 for relations verifiable by NC1 circuits, that
instances in LCDS are verifiable by NC1 circuits given the witness, there exists a negligible function µ(·) s.t. for large
enough k ∈ N, the statistical distance between Hyb1 and Hyb2 is µ(k).

Proof. The only difference between Hyb1 and Hyb2 is that Hyb1 uses honest sender strategy to generate the
messages of Πexp, whereas Hyb2 uses the simulator SimR,exp of the explainable protocol.

These hybrids are statistically indistinguishable whenever R∗ is explainable, by simulation-based statis-
tical security of Πexp against explainable receivers. For any R∗ that is not explainable, the soundness of the
zero-knowledge proof provided by R∗ at the end of the 5th round ensures that both hybrids abort at the end
of the 5th round. For any R∗ that behaves arbitrarily maliciously in the first three rounds, the fact that Πexp
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is robust in the first two rounds together with the statistical message indistinguishability property of CDS
ensures that Hyb1 and Hyb2 are statistically indistinguishable.

This completes the proof of Lemma 4, and the proof of our main theorem.
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A Lower Bound on 4 Round Secure Computation with an Unbounded
Sender

Theorem 5. A 4-round two-party secure computation protocol with black-box simulation, where the sender is un-
bounded and only the (bounded) receiver gets the output, is impossible unless the polynomial hierarchy collapses.

Our proof makes use of the following theorem from [Kat08b].

Imported Theorem 3. [Kat08b] NP-complete languages do not have 4-round zero-knowledge proofs, unless the
polynomial hierarchy collapses.

Proof. (of Theorem 5) We prove Theorem 5 by contradiction. Suppose there exists a 4-round two-party
secure computation protocol Π, with black-box simulation, where S is unbounded and R is bounded. We
show that this protocol can be used to construct a 4-round ZK proof for any language in NP, contradicting
the result of Imported Theorem 3.

From 4-round 2PC to 4-round ZK proof for NP-complete languages. By definition, given a functionality
F , Π realizes F such that

IDEALF,Sim,A∈{S,R}(x, y, n) ≈ REALπ,A∈{S,R}(x, y, n).

Ideal Functionality for ZK proofs. Given any NP language L and an instance X , we define F as follows:
F takes (x,w) as input from unbounded S (prover) and x′ as input from bounded R (verifier). It then outputs 1

to R (verifier) if and only if:

• x = x′, and

• RL(x,w) = 1

Otherwise, F outputs 0.
Here RL(x,w) is the relation for language L. It remains to show that 2PC protocol based on the function-

ality F satisfies the completeness, soundness and zero-knowledge properties in Definition 9.
Following the security definition of 2PC, for each malicious party (either S or R) interacting with the 2PC

protocol π in the real world, there exists a simulator Sim in ideal world, such that the view of the malicious
party in the real world together with the output of the honest party, is indistinguishable from its view in
the ideal world and the output of the honest party. Without loss of generality, we denote the simulators
simulating the view of S and R respectively SimSen and SimRec.

28



Completeness. Completeness follows from the definition of the functionality. If x ∈ L, the functionality
will always return 1 to the R.

Soundness. Fix x /∈ L, any polynomial poly(·), and any malicious S (prover) P∗ that tries to force an honest
R to accept with probability 1

poly(k) . By the security definition of 2PC, there exists a simulator SimSen that
simulates the a view of a malicious S in the ideal world. SimSen will extract the input of S and forward
it to the ideal functionality. The ideal functionality will output 1 to the honest R if and only if x ∈ L. By
Definition,

{IDEALF,A∈{S,R}(x, y, n)} ≈ {REALπ,A∈{S,R}(x, y, n)} (1)

which in particular implies that
output-idealRec ≈c output-realRec (2)

where output-idealRec and output-realRec represent the output of honest R in ideal and real world respectively.
Because x /∈ L,

output− idealRec = 0 (3)

Equations (2) and (3) imply that

Pr[output− realRec = 0] = 1− negl (4)

which concludes the proof of soundness.

Zero Knowledge. We prove that the protocol is zero-knowledge by showing that for every malicious
verifier V ∗, there exists a simulator SimV ∗ , which only takes as input x and simulates a view for V ∗, which
is indistinguishable from its view in the real world. SimV ∗ runs the code of SimR internally, forwards to
SimR the messages it received from V ∗. SimR extracts V ∗’s input x′ from the messages and forwards it to
ideal functionality as a R. On receiving an output z from the ideal functionality, Simrec outputs simulated
view for the malicious R, the SimV ∗ outputs this view as the simulated view of V ∗. By Definition,

{IDEALF,R(x, y, n) ≈ REALπ,R(x, y, n)} (5)

Also by construction
{IDEALF,V∗(x, y, n)} = {IDEALF,R(x, y, n)} (6)

Moreover, V ∗ and R are identical in the real world, which implies that

{REALπ,R(x, y, n)} = {REALπ,V∗(x, y, n)} (7)

Then, equations (5), (6) and (7) imply:

{IDEALF,V∗(x, y, n)} = {IDEALF,R(x, y, n)} ≈ {REALπ,R(x, y, n)} =

{REALπ,V∗(x, y, n)}
(8)

which further implies that

{IDEALF,V∗(x, y, n)} ≈ {REALπ,V∗(x, y, n)} (9)

as desired. This completes the proof of zero-knowledge.
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