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Abstract

A secret sharing scheme is ideal if the size of each share is equal to the size of the secret.
Brickell and Davenport showed that the access structure of an ideal secret sharing scheme is
determined by a matroid. Namely, the minimal authorized subsets of an ideal secret sharing
scheme are in correspondence with the circuits of a matroid containing a fixed point. In
this case, we say that the access structure is a matroid port. It is known that, for an access
structure, being a matroid port is not a sufficient condition to admit an ideal secret sharing
scheme.

In this work we present a linear secret sharing scheme construction for ports of matroids
of rank 3 in which the size of each share is at most n times the size of the secret. Using the
previously known secret sharing constructions, the size of each share was O(n2/ log n) the
size of the secret.

Our construction is extended to ports of matroids of any rank k ≥ 2, obtaining secret
sharing schemes in which the size of each share is at most nk−2 times the size of the secret.
This work is complemented by presenting lower bounds: There exist matroid ports that
require (Fq, `)-linear secret schemes with total information ratio Ω(2n/2/`n3/4

√
log q).
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1 Introduction

Secret sharing schemes are cryptographic mechanisms that are designed to protect a secret
value by distributing it into shares. They were introduced by Blakley [11] and Shamir [36],
and are used to prevent the disclosure or the loss of the secret value in many cryptographic
applications. In this work we consider schemes that are information-theoretically secure, i.e.
their security does not rely on any computational assumption. It is common to assume that
the secret is held by a dealer, and each share is sent privately to a different participant. Then a
subset of participants is authorized if their shares determine the secret value, and forbidden if
their shares do not contain any information on the secret value. The access structure of a secret
sharing scheme is the family of authorized subsets. In this work we just consider schemes that
are perfect, which means that every subset of participants is either authorized or forbidden.

The efficiency of the schemes depends on the size of the shares that are generated. If the size
of each share is equal to the size of the secret, then the scheme is ideal, and its access structure
is called ideal as well. This is the optimal situation for perfect schemes. In order to study
the efficiency of non-ideal schemes, we consider the information ratio of a scheme, which is a
parameter that approximates the size of the largest share divided by the size of the secret. In
general, for a given access structure, it is not known what the scheme with smallest information
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ratio is. By means of general constructions, we know that every access structure on a set of
n participants admits a scheme with information ratio O(2cn) for some c < 1 [1, 25]. On the
other hand, Csirmaz proved that there exists a family of access structures that require schemes
with information ratio O(n/ log n) [14]. Currently, these are the best upper and lower bounds
on the information ratio.

For some particular families of access structures, there exist specific techniques that allow a
deeper insight to the efficiency problem. The study of these particular cases is also an interesting
approach to infer more general results and to understand the nature of the secret sharing
problem. This is the case of ideal access structures. Brickell and Davenport [13] proved that
ideal access structures are determined by matroids. Namely, the minimal authorized subsets
of ideal secret sharing schemes are in correspondence with the circuits of a matroid containing
a fixed point. In this case, we say that the access structure is a port of that matroid, or that
it is a matroid port. Conversely, ports of linearly representable matroids admit ideal linear
secret sharing schemes. Despite the characterization of ideal access structures is still an open
problem, these results were used in many works in order to construct ideal linear secret sharing
schemes and, among particular families of access structures, to characterize the ideal ones
(e.g. [6, 18, 26, 27]). Later, Mart́ı-Farré and Padró showed that the information ratio of secret
sharing schemes realizing access structures that are not matroid ports is at least 3/2 [28].

The connection between ideal access structures and matroids was studied in several sub-
sequent works. Matúš showed that matroids whose ports admit ideal secret sharing schemes
are multiples of entropic polymatroids and admit representations by partitions [29, 30]. He
studied the adhesivity of polymatroids, and showed that entropic polymatroids are selfadhe-
sive [31], providing new tools for the characterization of ideal access structures. Simonis and
Ashikhmin [37] constructed ideal linear schemes from matroids that do not admit linear rep-
resentations but admit multilinear representations, and Beimel et al. [8] studied the power of
these constructions. Matroids that admit linear or multilinear representations are representable
by partitions [30], but there exist algebraic matroids that are not [9]. Also, there exist ports of
matroids that are not representable by partitions that admit schemes in which the information
ratio can be arbitrarily close to 1 [7].

Little is known about the efficiency of secret sharing schemes for matroids that are not
representable by partitions. For the Vámos matroid and other matroids on a small number
of points, it is possible to obtain bounds on the size of the shares by means of non-Shannon
information inequalities [8, 17, 19, 30]. However, it is hard to obtain valuable bounds for
matroids on a large number of points. There is a port of the Vámos matroid in which the
information ratio is at least 561/491 [19]. This is the current best lower bound on the information
ratio for matroid ports, while there are no specific upper bounds.

The objective of this work was to find general results on the information ratio of ports
of matroids. In particular, find secret sharing constructions that exploit the combinatorial
properties of matroids. Matroids of rank 2 are linearly representable, and so ports of matroids
of rank 2 admit ideal linear schemes. However, for k > 2, there exist matroids of rank k that do
not admit ideal schemes [30]. Moreover, it is conjectured [32] that asymptotically almost every
matroid has a minor that is the Vámos matroid, and so it is conjectured that almost every
matroid port needs schemes with information ratio larger than 1.

In this work, we present a linear secret sharing construction for matroid ports that improves
the general constructions when the rank of the matroid is small. First, we present a secret
sharing scheme for ports of matroids of rank 3 that has information ratio at most n. It improves
by a factor of O(n/ log n) the information ratio of the previous best scheme for this family of
access structures.

The construction for ports of matroids of rank 3 is extended recursively to ports of matroids
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of rank k for any k > 2. The resulting scheme has information ratio at most nk−2. For k �
lnn/ ln lnn, it improves the previously known constructions. It is the first general construction
for matroid ports that takes benefit of its combinatorial properties.

We found that these results also have applications on the complexity of Boolean functions
defined by ports of matroids. We show that ports of matroids of rank k admit monotone
formulas of size O(nk−1 log n).

Since the secret sharing construction for matroids of rank k > 2 only uses the advantage
gained on matroids of rank 2, it is very likely that the construction can be refined. Also, it is
possible that the construction for matroids of rank 3 can be improved by taking into account
that simple matroids of rank 3 can be embedded in projective planes, or by using non-linear
schemes. However, the potential improvement of the linear constructions is limited. We show
that there exist matroid ports that require (Fq, `)-linear secret schemes with total information
ratio Ω(2n/2/`n3/4

√
log q). The bound is obtained by counting the number of matroid ports

and using a counting argument from [2].
Section 2 is dedicated to preliminaries on secret sharing schemes, and Section 3 is dedicated

to matroid ports. Our constructions are presented in Section 4, and the lower bounds are
presented in Section 5.

2 Secret Sharing Schemes

In this section, we define secret sharing schemes and we present some results on homogeneous
access structures. For an introduction to secret sharing, see [4, 34]. Given a discrete random
vector S = (Si)i∈Q and a set X ⊆ Q, the Shannon entropy of the random variable SX = (Si)i∈X
is denoted by H(SX).

Definition 2.1. An access structure on a set P is a monotone increasing family of subsets
Γ ⊆ P(P ). The family of its minimal subsets is denoted by min Γ.

Definition 2.2. Let P be a set and Q = P ∪ {po}. A secret sharing scheme Σ on P is a
collection (Si)i∈Q of discrete random variables where H(Sp0) > 0 and H(Sp0 | SP ) = 0.

The random variable Sp0 corresponds to the secret value that is distributed into shares
among the participants in P according to the random variables (Si)i∈P .

Definition 2.3. Let Σ = (Si)i∈Q be a secret sharing scheme. A set X ⊆ P is forbidden for Σ
if H(Sp0 | SX) = H(Sp0), while it is authorized for Σ if H(Sp0 | SX) = 0. The access structure
of Σ is the family of authorized subsets of Σ. A secret sharing scheme is perfect if every set of
players is either forbidden or authorized.

Definition 2.4. Let F be a finite field and let ` be a positive integer. A secret sharing scheme
Σ = (Si)i∈Q is (F, `)-linear if the random variables (Si)i∈Q are given by surjective F-linear maps
Si : V → Ei, where V and Ei are F-vector spaces, the probability distribution taken on V is the
uniform one, and E0 = F`. We say that Σ is `-linear if it is (F, `)-linear for some finite field F.

The information ratio σ(Σ) and the total information ratio σT(Σ) of a secret sharing Σ =
(Si)i∈Q are defined as

σ(Σ) =
maxi∈P H(Si)

H(Sp0)
and σT(Σ) =

∑
i∈P H(Si)

H(Sp0)
.

This work is restricted to the study of secret sharing schemes whose access structure is
connected. That is, that every participant is in at least one minimal authorized subset.
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Definition 2.5. We say that a secret sharing scheme Σ is ideal if the information ratio of Σ
is 1. In this case, we say that its access structure is ideal as well.

Next, we introduce some set operations that will be used in this work. For any Λ ⊆ 2P , we
define the closure of Λ as cl(Λ) = {A ∪ B : A ∈ Λ, B ⊆ P \ A}. Since access structures are
monotone increasing, Γ = cl(Γ) = cl(min Γ) for every access structure Γ.

For every access structure Γ on P and B ⊆ P , we define the access structures Γ\B and Γ/B
on the set P \B by

Γ\B = {A ⊆ P \B : A ∈ Γ} and Γ/B = {A ⊆ P \B : A ∪B ∈ Γ}.

The operations \ and / are called deletion and contraction, respectively. Any access structure
obtained by a sequence of deletions and contractions of subsets of P is a minor of Γ. Minors
of access structures correspond to a natural scenario. Namely, if several participants of a secret
sharing scheme leave the scheme or reveal their shares, then the new access structure is a minor
of the original one. The dual of an access structure Γ on a set P is the access structure Γ∗ on
the same set defined by Γ∗ = {A ⊆ P : P \A /∈ Γ}. The next result is an extension of a result
in [22].

Theorem 2.6 ([34]). If Σ is linear secret sharing scheme with access structure Γ, then Γ∗

admits a linear secret sharing scheme of the same information ratio.

Every access structure Γ on P = [n] defines a monotone Boolean formula f : {0, 1}P → {0, 1}
where f(x) = 1 if and only if the support of x is in Γ. Benaloh and Leichter [10] presented
a general method to construct secret sharing schemes in which, given a monotone formula of
length L computing f , it creates a secret sharing scheme with total information ratio L. In
particular, if Γ is an access structure whose minimal subsets are of size at most k ≤ n/2, the
DNF formula for Γ gives a secret sharing scheme with information ratio at most

(
n−1
k−1
)
. As a

consequence of the results in [15], these access structures also admit schemes with information

ratio at most nk−1

logn ( 1
k! + o(1)). If k is close n/2, then the schemes in [1, 25] have smaller

information ratio. In this work, we denote the logarithmic function with base 2 and base e by
log and ln, respectively.

3 Matroid Ports

In this section we introduce the family of matroid ports and we present properties of matroids
that are used later in this work.

A matroid is a pair M = (Q, r), where Q is a non-empty finite set and r is a mapping
r : 2Q → Z satisfying the following properties for all X,Y ⊆ Q:

1. 0 ≤ r(X) ≤ |X|, and

2. r is monotone increasing: if X ⊆ Y , then r(X) ≤ r(Y ), and

3. r is submodular: r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

The set Q and the mapping r are called, respectively, the ground set and the rank function of
the matroidM. If a nonempty subset A ⊆ Q satisfies that r(A) > r(A\{p}) for all p ∈ A, then
A is independent. If not, it is dependent. The maximal independent subsets are called basis,
and the minimal dependent subsets are called circuits. A matroid M = (Q, r) is connected if
for every x, y ∈ Q there exists a circuit containing both x and y. A matroid is paving if its
circuits are of size r(M) or r(M) + 1.
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Given a matroid M = (Q, r) and a set Z ⊆ Q, we define the matroids M\Z = (Q \ Z, r\Z)
and M/Z = (Q \ Z, r/Z) with r\Z(A) = r(A) and r/Z(A) = r(A ∪ Z) − r(Z). Every matroid
that can be obtained from M by repeatedly applying these operations is called a minor of
M. For every minor M′ of M, there exist Z1, Z2 ⊆ Q for which M′ = (M\Z1)/Z2. The
dual of M is the matroid M∗ = (Q, r∗) whose rank function r∗ : 2Q → Z is defined by
r∗(X) = |X| − r(Q) + r(Q \X).

Definition 3.1. Let Γ be an access structure on P and let M = (Q, r) be a matroid on Q =
P ∪ {p0}. We say that min Γ is a port of M at p0 if

min Γ = {A ⊆ P : A ∪ {p0} is a circuit of M}.

If min Γ is a port of a matroid, then Γ = {A ⊆ P : r(A ∪ {p0}) = r(A)}. By an abuse of
notation, in this case we also say that Γ is a port of M, and that Γ is a matroid port. If Γ is a
port of the matroid M, and B ⊆ P , then Γ\B is a port of the matroid M\B and Γ/B a port
of the matroid M/B.

The interest in matroid ports for secret sharing is due to the following result of Brickell and
Davenport [13].

Theorem 3.2 ([13]). Every ideal access structure is a matroid port.

If Γ is a connected access structure on P that is a matroid port, then there exists a unique
connected matroidM on Q = P ∪{p0} with Γ = Γp0(M). This is a consequence of the following
two facts. First, by [33, Proposition 4.1.2], a matroid M is connected if and only if one of its
ports is connected, and in this case all the ports of M are connected. Second, a connected
matroid is completely determined by the circuits that contain some given point [33, Theorem
4.3.3]. Therefore, there is a bijection between the family of connected access structures on P
that are ports of matroids, and the family of connected matroids on Q. This bijection is used
in the proof of Proposition 5.1.

The following lemma shows a connection between the ports of a matroid and the ports of
its dual.

Lemma 3.3. If Γ is the p0-port of a matroid M, then Γ∗ is the p0-port of M∗.

Matroid ports were characterized by Seymour [35]. The forbidden minors of the matroid
ports are the access structures Φ, Φ̂, Φ̂∗, and Ψs described below.

The access structures Φ, Φ̂, Φ̂∗ are defined on P = {p1, p2, p3, p4}. The minimal subsets of
Φ are {p1, p2}, {p2, p3}, {p2, p4} and {p3, p4}, the minimal subsets of Φ̂ are {p1, p2}, {p2, p3}
and {p3, p4}, and the minimal subsets of Φ̂∗ are {p1, p3, p4}, {p2, p3} and {p2, p4}. For s ≥ 3,
Ψs is the access structure on P = {p1, . . . , ps, ps+1} whose minimal subsets are {p1, . . . , ps} and
{pi, ps+1} for every i = 1, . . . , s.

Theorem 3.4 ([35]). An access structure is a matroid port if and only if it has no minor
isomorphic to Φ, Φ̂, Φ̂∗, or Ψs for some s ≥ 3.

Mart́ı-Farré and Padró used the previous characterization of matroid ports to obtain a
bound on the information ratio of secret sharing schemes realizing access structures that are
not matroid ports [28].

Theorem 3.5 ([28]). The information ratio of secret sharing schemes realizing access structures
that are not matroid ports is at least 3/2.
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The rest of this section is dedicated to some results on the information ratio of matroid
ports. If Γ is a 2-homogeneous access structure that defines a connected graph, and this graph
is not a complete multipartite graph, then the information ratio of the schemes realizing Γ is
at least 3/2 [12]. Namely, it was shown in [12] that if a connected graph is not a complete
multipartite graph, then it has a minor isomorphic to Φ or Φ̂. Therefore, they showed that if G
is a connected graph that is not complete multipartite graph, then it is not a matroid port. On
the other hand, we know that complete multipartite graphs admit ideal linear secret sharing
schemes [13]. Therefore, we obtain the following result.

Corollary 3.6. Let Γ be an access structure whose minimal subsets are of size at most 2. Then
it is a matroid port if and only if min Γ is the union of disjoint complete multipartite graphs
and singletons. In this case, Γ admits an ideal (F, 1)-linear secret sharing scheme for any finite
field F with |F| ≥ n.

The characterization of the ideal access structures whose minimal authorized subsets are of
size at most 3 is an open problem. Matúš [30], and Mart́ı-Farré and Padró [27] studied this
family of access structures, and showed that there are matroid ports that do not admit ideal
secret sharing schemes. The characterization of the ideal 3-homogeneous access structures is
also an open problem, but for the case of sparse access structures it was solved in [26]. In both
cases, for matroid ports that do not admit ideal schemes, there are no specific bounds on the
information ratio.

4 Schemes for Matroid Ports

This section is dedicated to the construction of secret sharing schemes for matroid ports. First,
in Theorem 4.1, we present a construction for ports of matroids of rank 3, and then, in Theo-
rem 4.3, we extend it to arbitrary matroids.

4.1 Ports of Matroids of Rank 3

Theorem 4.1. Let Γ be port of a matroid of rank 3. Then it admits a 1-linear secret sharing
scheme whose information ratio is at most n.

In order to prove this theorem, we need to define some specific notation and a technical
result. Let Γ be an access structure on P . For any p ∈ P , we define the access structure Γp on
P \ {p} as the one with

min Γp = {A ⊆ P \ {p} : A ∪ {p} ∈ min Γ},

and the access structure Γ̃p = Γ\{p}. Observe that

Γ = cl({A ∪ {p} : A ∈ min Γp for some p ∈ P}) (1)

= cl({A ∪ {p} : A ∈ min Γp ∪min Γ̃p for some p ∈ P}). (2)

Lemma 4.2. Let Q = P ∪ {p0}, let p ∈ P , let M = (Q, r) be a matroid of rank k > 1, and let
Γ be the p0-port of M. If Γ is connected and {p} /∈ Γ, then there exists an access structure Γ′

that is a port of a matroid of rank k − 1 satisfying

min Γp ⊆ min Γ′ ⊆ min Γp ∪min Γ̃p.
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Proof. Let M′ = (Q \ {p}, r′) be the matroid defined by M′ = M/{p}, and let Γ′ be the
p0-port of M′. Since Γ is connected, then r′(A) = r(A ∪ {p}) − r({p}) = r(A ∪ {p}) − 1 for
every A ⊆ Q \ {p}. Hence,

r′(A) ≤ r(A) ≤ r′(A) + 1 for every A ⊆ Q \ {p}. (3)

First we prove that min Γ′ ⊆ min Γp ∪ min Γ̃p. Let A ∪ {p0} be a circuit of M′. By (3),
|A| ≤ r(A ∪ {p0}) ≤ |A| + 1. If r(A ∪ {p0}) = |A|, then A ∪ {p0} is dependent in M. In this
case, A ∪ {p0} is a circuit of M, because r(A ∪ {p0} \ {q}) ≥ r′(A ∪ {p0} \ {q}) = |A| for every
q ∈ A ∪ {p0}. Therefore, A ∈ min Γ, and A ∈ min Γ̃p because p /∈ A.

If r(A ∪ {p0}) = |A| + 1, then A ∪ {p0} is independent in M. The subset A ∪ {p, p0} is
dependent in M because r(A ∪ {p, p0}) = r′(A ∪ {p0}) + 1 = |A|+ 1. Moreover, it is a circuit,
because r(A ∪ {p, p0} \ {q}) = r′(A ∪ {p0} \ {q}) + 1 = |A| + 1 for every q ∈ A ∪ {p0}, and
r(A ∪ {p0}) = |A|+ 1. Hence, A ∪ {p} ∈ min Γ and A ∈ min Γp.

Finally, we prove that min Γp ⊆ min Γ′. Suppose that there exists A ∈ min Γp \min Γ′. In
this case, A∪{p, p0} is a circuit ofM and A∪{p0} is not a circuit ofM′. Since r′(A∪{p0}) =
r(A ∪ {p, p0})− 1 = |A|, A ∪ {p0} is a dependent set of M′ that is not a circuit. Hence, there
exists q ∈ A ∪ {p0} for which r′(A ∪ {p0} \ {q}) = |A| − 1. But then r(A ∪ {p, p0} \ {q}) =
r′(A ∪ {p0} \ {q}) + 1 = |A|, which implies that A ∪ {p, p0} \ {q} is a dependent set of M, a
contradiction.

Proof of Theorem 4.1. Let M be the matroid associated to Γ. Let F be a finite field with
|F| ≥ n. Let s ∈ F be the secret to be shared. For each p ∈ P , we construct a secret sharing
scheme Σp to share s. The resulting secret sharing scheme Σ consists on sharing independently
s by means of every Σp.

If {p} ∈ Γ, just send s to p. In this case Γp = Γ′p = Γ̃p = {∅}. If {p} /∈ Γ, consider an access
structure Γ′p satisfying that it is a port of a matroid of rank 2, and

min Γp ⊆ min Γ′p ⊆ min Γp ∪min Γ̃p. (4)

It exists by Lemma 4.2. By Corollary 3.6, Γ′p admits an ideal linear secret sharing scheme Σp

on P \ {p}. Send a random element r ∈ F to p and share r + s with the scheme Σp among
P \ {p}.

The resulting scheme Σ has information ratio at most n and has access structure

cl({A ∪ {p} : A ∈ min Γ′p for some p ∈ P}).

By (1), (2), and (4), the access structure of Σ is Γ.

4.2 Ports of Matroids of Higher Rank

In this section we extend the result on ports of matroids of rank 3 to ports of matroids of
arbitrary rank. We also see that this result can be extended to the construction of monotone
formulas for monotone Boolean functions.

Theorem 4.3. Let Γ be port of a matroid of rank k. Then it admits a 1-linear secret sharing
scheme of information ratio nk−2.

Proof. The result is proved by induction. For k = 2 it is satisfied by Corollary 3.6. Suppose
that it is true for ports of matroid of rank less or equal than k − 1.

Let F be a finite field with |F| ≥ n. Let s ∈ F be the secret to be shared. For every p ∈ P ,
consider an access structure Γ′p satisfying that it is a port of a matroid of rank k − 1, and
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min Γp ⊆ min Γ′p ⊆ min Γp ∪min Γ̃p. It exists by Lemma 4.2. By the induction hypothesis, Γ′p
admits a linear secret sharing scheme Σp on P \ {p} with information ratio nk−3. Using the
construction provided in the proof of Theorem 4.1, we construct a secret sharing scheme for Γ
whose information ratio is at most n · nk−3 = nk−2.

The scheme in Theorem 4.3 is only useful when k is small. The DNF construction from [10]
has information ratio at most

(
n−1
k−1
)
. Observe that if k = lnn

ln lnn , then(
n

k

)
<
nkek

kk
=

nke
lnn

ln lnn

e
lnn

ln lnn
ln( lnn

ln lnn
)

=
nkn

1
ln lnn

n1−
ln ln lnn
ln lnn

= nk−1+o(1),

and so
(
n−1
k−1
)

= nk−2+o(1). Therefore, our construction is useful if k is constant or k � lnn
ln lnn .

Corollary 4.4. Let Γ be a port of a matroid of rank n − k for some k > 1. Then it admits a
1-linear secret sharing of information ratio at most nk−1.

Proof. Assume that Γ is the p0-port of a matroidM = (Q, r). SinceM has rank n−k,M∗ has
rank n+ 1− (n− k) = k+ 1. By Theorem 4.1, the p0-port ofM∗ admits a linear secret sharing
scheme with information ratio nk−1. The result holds by Theorem 2.6 and Lemma 3.3.

The recursive construction for secret sharing schemes can be also applied to monotone for-
mulas for monotone Boolean functions in a straightforward manner. See [38] for an introduction
to this area.

Definition 4.5. Let M = (Q, r) be a matroid. A monotone Boolean function f : {0, 1}P →
{0, 1} is a p0-port of M if for every A ⊆ P ,

A is a minterm of f if and only if A ∪ {p0} is a circuit of M.

Corollary 4.6. Let f be a monotone Boolean function that is a port of a matroid of rank k.
Then there is a AND-OR formula for f of size O(nk−1 log n).

Proof. By Corollary 3.6, the minterms of monotone Boolean functions determined by matroids
of rank 2 define mulipartite graphs. A multipartite graph on a set of n points can be described
by an AND-OR formula of size O(n log n). The result holds by using the recursive argument in
Theorem 4.3.

5 Lower bounds for linear secret sharing schemes

In this section we show a lower bound on the size of linear secret sharing schemes for matroid
ports.

5.1 Number of Matroid Ports

First, we approximate the number of matroid ports in Proposition 5.1. This number is approxi-
mated by using the latest results on the number of matroids [3] and on the number or connected
matroids [32].

For every n > 1, let m(n) be the number of matroids on a ground set on n elements, and
let mp(n) be the number of matroid ports on a set of n participants.

Proposition 5.1.
log mp(n) = Θ(2n/n3/2)
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In order to prove this result we need some results on matroid theory that are presented
below. As discussed in Section 3, the number of connected access structures on P that are
matroid ports is equal to the number of labeled p0-ports of connected matroids on Q. It is
conjectured that almost every matroid is connected [32]. The best result in this direction is the
following theorem.

Theorem 5.2 ([32]). The proportion of n-element matroids that are connected is asymptotically
at least 1/2.

In the following theorem, we present bounds on m(n). Both bounds were presented by
Bansal et al. [3], and the lower bound combines the results of Knuth [24] and Graham and
Sloane [20].

Theorem 5.3 ([3]).

1

n

(
n

bn/2c

)
≤ log m(n) ≤ 2

n

(
n

bn/2c

)
(1 + o(1))

Proof of Proposition 5.1. Every matroid defines a matroid port, and so mp(n) ≤ m(n + 1).
Moreover, by Theorem 5.2, for a large enough n we have mp(n) > 1

2m(n + 1). Now we use
Theorem 5.3 to bound log mp(n). The proof is completed by considering the approximation of
the binomial coefficients

(
n
bn/2c

)
= Θ(2n/

√
n).

Using the approximation of the number of matroid ports presented above, we have some
information about the proportion of matroid ports among the family of access structures, and
the total information ratio of linear schemes for matroid ports.

Let a(n) be the number of access structures on a set of n elements for every n > 1. It is
known that a(n) is equal to the n-th Dedekind number, and it satisfies a(n) ∼

(
n
bn/2c

)
(see [23],

for example). Hence,
log a(n)

log mp(n)
= Θ(n).

5.2 A Lower Bound

Next, we provide an asymptotic lower bound on the total information ratio of linear secret
sharing schemes for matroid ports. The proof of this bound follows the techniques used by
Babai, Gál and Wigderson [2] for proving lower bounds on the size of span programs for general
access structures.

Theorem 5.4. For every finite field Fq and integer ` > 0 and for every large enough n, there
exists a matroid port that requires (Fq, `)-linear secret sharing schemes of total information ratio

Ω

(
2n/2

n3/4`
√

log q

)
.

Proof. For any t ≥ n, we define L(n, t, q, `) as the family of access structures on [n] that admit
(Fq, `)-linear secret sharing schemes with total information ratio at most t. We also define
A(`, t, q) as the family of `(t + 1)× `t matrices over Fq in which the first ` rows are the first `
rows of the identity matrix.

We can assume that a (Fq, `)-linear secret sharing scheme with total information ratio t′

determines a (t′ + 1)`× k matrix M over Fq, for some k ≤ t′`, in which the first ` rows are the
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first ` rows of the identity matrix (see [4] for more details). By adding zero rows and columns to
M , we can assume that M is in A(`, t, q) for any t ≥ t′. Hence, |L(n, t, q, `)| ≤ |A(`, t, q)| = q`

2t2 .
By Proposition 5.1, log mp(n) = Ω(2n/n3/2). Hence, there exists some c ∈ R+ for which

the parameter t = c2n/2/(n3/4`
√

log q) satisfies |L(n, t, q, `)| < mp(n) for a large enough n. It
implies that there exist matroid ports that require (Fq, `)-linear secret sharing schemes with
total information ratio greater than t.

Note about this work: Fero Matúš was my advisor during a research stay in UTIA in 2010.
In that stay, I had the opportunity to know an excellent person who was an excellent researcher.
He left a legacy of clarity and honesty.
After the Mariánská Winter School of 2017, we discussed the results included in this work. He
liked the idea of constructing secret sharing schemes for general matroid ports. This work is
included in a special issue of Kybernetika dedicated to Fero.
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