
Provable Security for PKI Schemes
To appear in ACM SIGSAC CCS 2024

Sara Wrótniak

University of Connecticut

Storrs, CT

Hemi Leibowitz
∗

The College of Management Academic Studies

Rishon Lezion, Israel

Ewa Syta
†

Trinity College

Hartford, CT

Amir Herzberg

University of Connecticut

Storrs, CT

ABSTRACT

PKI schemes provide a critical foundation for applied cryptographic

protocols. However, there are no rigorous security specifications for

realistic PKI schemes, and therefore, no PKI schemes were proven

secure. Cryptographic systems that use PKI are analyzed by adopt-

ing overly simplified models of the PKI, often, simply assuming

securely-distributed public keys. This is problematic given the ex-

tensive reliance on PKI, the multiple failures of PKI systems, and the

complexity of both proposed and deployed systems, which involve

complex requirements and models.

We present game-based security specifications for PKI schemes,

and analyze important and widely deployed PKIs: PKIX and two

variants of Certificate Transparency (CT). All PKIs are based on the

X.509v3 standard and its CRL revocation mechanism. Our analysis

identified few subtle vulnerabilities, and provides reduction-based

proofs showing that the PKIs ensure specific requirements under

specific models (assumptions). To our knowledge, this is the first

reduction-based proof of security for a realistic PKI scheme, e.g.,

supporting certificate chains.

KEYWORDS

PKI, provable-security

1 INTRODUCTION

Public Key Infrastructure (PKI) provides an essential foundation for

applications that rely on public key cryptography, which is cru-

cial to ensure security in open networks and systems. Early PKI

ideas were proposed in 1978 [29], and the first version of the X.509

standard [10] was published in 1988. Since then, the deployment of

PKI has been dominated by X.509, specifically, by the IETF PKIX

standard, which adopts version 3 of X.509 (X.509v3) for Internet pro-

tocols, most notably, TLS/SSL [49]. Certificate Transparency (CT) [47,

32] is a recent, widely-deployed extension to PKIX, motivated by

multiple PKI failures, mainly, rogue certificates issued by corrupt

or negligent Certificate Authorities (CAs). A significant number of

other PKI schemes were proposed recently, with different goals and

properties, and different, non-trivial designs, including [52, 15, 38,

28, 57, 4, 61, 55, 56, 36, 17, 3, 58, 30].

Considering the importance, variety and complexity of (some)

PKI schemes, it is essential to ensure their security. Currently, there

∗
The work was partially completed during the author’s PhD studies at the Dept.

of Computer Science, Bar-Ilan University, Israel

†
The work was partially completed during a visiting position at the Dept. of

Computer Science and Engineering, University of Connecticut, Storrs, CT

are no rigorous security specifications for realistic PKI schemes,

and therefore, no PKI schemes were proven secure. This situation

stands in sharp contrast to the accepted norms in (applied and

theoretical) modern cryptography, which require well-defined se-

curity requirements and reduction-based proofs of security. These

norms began in the 1980s with the seminal papers defining secure

encryption [19] and secure signature schemes [20]. We present the

first complete
1
definitions and analysis for (certificate-based) PKI

schemes and their security.

The lack of rigorous specifications and analysis for PKI schemes

is especially alarming, since PKI provides a critical infrastructure to

applied cryptography, i.e., security of many applied cryptographic

systems depend on the security of the underlying PKI. Extensive

efforts to prove cryptographic protocols may be moot when these

protocols depend on an insecure PKI scheme. The concerns are

even greater, considering that attacks against PKI are not only a

theoretical threat, but also major concerns in practice [54, 14].

Rigorous security specifications are relevant to practical, emerg-

ing developments and applications of PKIs, too. The updated Euro-

pean Union eIDAS (Electronic Identification, Authentication, and

Trust Services) regulation, known as eIDAS 2.0 [12], which is ex-

pected to be approved in 2024 with a 24-month implementation

period for member states, aims to establish a comprehensive digital

identity framework across the EU. This framework will heavily

rely on the existing Web PKI. Surprisingly and alarmingly, as noted

in [40, 24], Article 45 of eIDAS 2.0 sets out very specific technical

requirements and constraints for the existing Web PKI. It essen-

tially mandates that web browsers accept and trust CAs controlled

by EU member states, does not allow for their removal even if

deemed unsafe or malicious, and prohibits the enforcement of secu-

rity mechanisms beyond what is approved by ETSI [1], potentially

limiting important security enhancements such as CT. It is concern-

ing that a large-scale, mandatory digital identity ecosystem is being

developed around a PKI system that lacks formal specifications and

proofs of security, yet is known for its many failures and pitfalls.

Further, rigorous definitions and analysis often allow the iden-

tification of subtle yet significant issues that otherwise may go

unnoticed. We identified a few of these. First, the CRL design does

not achieve the intuitively expected, guaranteed notion of revoca-

tion, but only a weaker notion, Accountable-Revocation. Second, in a

similar fashion, CT does not achieve Guaranteed-Transparency and

only ensures a weaker version of transparency, HL-Transparency.

1
Basic PKI schemes, without even revocation and certificate chains, were pre-

sented in [9, 5, 18]; the long version of [5] describes how revocation could be added.

1

https://orcid.org/0000-0002-1250-2257
https://orcid.org/0000-0002-7421-1850
https://orcid.org/0000-0003-0860-0927
https://orcid.org/0000-0001-5586-5261

This assumes that a certificate has been logged by at least one

honest logger. Third, the non-standard CTwAudit extension ([27])

avoids this assumption, but, again, only ensures a weaker notion,

Audited-Transparency. Finally, as also noted in [34], in CT, to ensure

awareness of issued certificates (transparency), we need one or

more honest monitors that (together) cover all the logs that relying

parties trust in validating transparency of certificates.

To address these concerns, we present the first rigorous (game-

based) definitions of security requirements for PKI schemes, and then

the first reduction-based proofs of security for practical PKI schemes.

Table 1 summarizes our results.

Defining and proving security for PKI schemes is challenging,

especially for post-X.509 schemes, whose requirements (goals) and

designs aremore advanced and complex. Different PKI schemesmay

assume different communication, synchronization and adversary

models; even the set of entities may differ, e.g., CT also introduces

loggers and monitors in addition to Certificate Authorities (CAs). As

a result, existing works often use informal security requirements

and models for PKI schemes.

To illustrate the challenge of properly defining goals of PKI

systems, consider accountability, a basic goal of PKI systems with

surprising subtleties. Intuitively, accountability is the ability to

identify the CA that is responsible for the issuing of an unauthorized

certificate𝜓 . However, who is the responsible CA for𝜓? Instinctively,

we may expect this to be the issuer of𝜓 , i.e., in X.509 certificates, the

CA identified in the issuer field of𝜓 , denoted as𝜓 .issuer . However,

surely𝜓 .issuer should be held accountable for𝜓 only if it actually

issued (signed) 𝜓 . On the contrary, 𝜓 .issuer should not be held

accountable if the public verification key 𝑝𝑘 used to validate𝜓 is

not a correct public-key of 𝜓 .issuer . Also, obviously, 𝜓 .issuer can

only be considered accountable if it is a real, supposedly trustworthy

CA. For example, consider a scenario where a rogue CA issues a

certificate𝜓 ′ which fraudulently specifies 𝑝𝑘 as a public verification
key of𝜓 .issuer; this rogue CA should be held accountable, rather

than the (benign or even non-existing)𝜓 .issuer .

Revocation is another basic goal of PKI systems which is not

trivial to define. In fact, we found it necessary to define two vari-

ants of revocation: Guaranteed and Accountable. The Guaranteed

variant is more intuitive; basically, a PKI scheme ensures Guaran-

teed Δ-Revocation if a certificate𝜓 revoked by a benign CA at some

time 𝑡 , will not be considered as valid by any benign party after

time 𝑡 + Δ. However, during our analysis, we realized that PKIX

does not ensure Guaranteed Δ-Revocation (Claim 1). Instead, PKIX

ensures a weaker notion which we call Accountable Δ-Revocation
(§3.4). Intuitively, Accountable Δ-Revocation means that if𝜓 was

revoked at time 𝑡 by its benign issuing CA yet considered valid

after 𝑡 + Δ, then we can identify, and hold accountable, a rogue CA

responsible for this failure to revoke𝜓 .

Transparency is another important PKI goal, underlying Cer-

tificate Transparency (CT) [31, 50]. Intuitively, transparency aims

to ensure that certificates are available for scrutiny, in the form

of a public log where certificates must appear within a specified

time-frame after being issued. Transparency allows detection of

rogue certificates (and applying accountability), before their use

by attackers, and does not rely on victims detecting their use. CT

was motivated by the detection of the issuance of over 530 fraudu-

lent certificates by DigiNotar CA [60, 31]; the detection was only a

month after the breach of the DigiNotar private key. This incident

motivated the creation of public logs of certificates to enable swift

detection of rogue certificates, aiming to avoid reliance on a set of

trusted third parties [31].

However, our analysis shows that the CT specification [31, 50]

ensures only a weak notion of transparency (HL-Transparency),

which requires that a certificate has been logged by at least one

honest logger. This is not due to a vulnerability of the cryptographic

mechanisms used by CT, which were shown to be secure by Dowl-

ing et al. [13] and Chase and Meiklejohn [11]. While the underlying

CT cryptography is sound, its deployment in CT is secure only if at

least one logger is honest; e.g., as noted in [13, 11], a rogue logger

can simply ignore some requests. The CT specifications
2
[47, 50]

also do not specify or require gossip and audit, implicitly assumed

by [13, 11].

We have also analyzed CTwAudit, which is a variant of CT, sup-

ported as an option by Google’s Chrome, where the browser per-

forms auditing of the loggers [27]. We show that CTwAudit ensures
another weak variant of the transparency requirement; we call

this variant Audited-Transparency. Note that the CTwAudit design
raises privacy concerns: it may expose a user’s browsing history

through the audited certificates.

We use theModular Security Specifications (MoSS) framework [21]

to define PKI requirements and adversary, synchronization, net-

work and other models assumed by different PKIs. The use of MoSS

provides essential modularity; different PKIs support different re-

quirements and assume different models. For example, we show

that CT ensures accountability and Accountable Δ-Revocation un-

der one model, and transparency only under a stronger model

(assuming reliable communication with bounded delays).

We present pseudocode to rigorously define and analyze (mini-

mally simplified
3
) the most well-known and widely-deployed PKI

schemes: PKIX (X.509 version 3 with CRL as defined in [42]), CT [47,

50] and CTwAudit [27]. Table 1 summarizes the results of our anal-

ysis of these schemes.

Out of scope. We do not address how relying parties select their

trust anchors, i.e., the identities of the ‘root CAs’; and we mostly

ignore constraints on the allowed certificate-chains, such as the

name, length and policy constraints (defined in X.509v3 and PKIX).

A model of such trust decisions for PKI systems was proposed by

Maurer [37], extended by [35, 7], and others [22, 33, 62, 53, 6, 26].

These constraints and solutions are complementary and orthogonal

to our results; additional constraints can only prevent an adversary

from ‘breaking’ the PKI.

Contributions. The contributions of this work are as follows.

(1) Presents the first definition of a (non-trivial) PKI scheme,

e.g., supporting certificate chains.

2
Version 1 of the CT specifications [47] incorrectly states that the public logs can

be untrusted.

3
We included every aspect which appeared to possibly impact the requirements.

Our most significant simplification is that we focus on the standard CRL revocation

mechanism, while the specifications also allow OCSP and proprietary revocation

mechanisms. We also simplify by assuming that each logger keeps only one log, that

the public key used for the log is the same as the logger’s public key, and that loggers’

self-certified keys and issued SCTs do not have a validity period, i.e., never expire. We

expect that automation will be necessary to extend our analysis to cover all aspects of

the specifications.

2

Table 1: PKI requirements defined in this work, and properties we prove for prominent PKI systems.

PKI scheme

Requirements

Unforgeability Accountability Δ-Revocation (Definition 3 and Algorithm 4) Δ-Transparency

(Algorithm 2) (Algorithm 3) Accountable Guaranteed (Definition 4 and Algorithm 5)

PKIX (X.509 version 3 with CRL)

✓ (Theorem 3) ✗ (Claim 1)

✗ (n/a)
CT HL-Transparency (Theorem 4)

CTwAudit
Audited-Transparency

(Theorem 6)

(2) Presents the first rigorous security requirements for PKI

schemes, including the unforgeability, accountability, revoca-

tion, and transparency requirements.

(3) Presents the first analysis and proofs of security for the most

widely-deployed PKI standards, PKIX, CT and CTwAudit.
(4) Identifies subtle aspects of these PKIs, especially their fail-

ure to meet the stronger (and simpler, natural) revocation

and transparency requirements; defines weaker notions and

proves they are achieved.

(5) Introduces and constructs a certificate scheme (Section 4.1), an

abstraction for applying signatures to structured information.

Certificate schemes simplify definition and analysis of PKI

schemes, and may have additional applications.

Organization. The paper is organized as follows. We define PKI

schemes in §2 and define security requirements for PKI in §3. We

present the specifications of PKIX in §4 and CT in Appendix D,

and we analyze their security in §5 and Appendix E. Finally, we

conclude and discuss future work in §6.

2 PKI SCHEMES

PKI schemes define how to issue, manage and use certificates. Usu-

ally, e.g., in X.509, a certificate is a signed object, containing some

certified information. In §2.1, we describe common certificate fields

and different certificate types. In §2.2, we discuss basic PKI enti-

ties. Then, we discuss basic PKI functions: certifying (issuing) and

revoking certificates (§2.3), and evaluating the validity of a certifi-

cate (§2.4). Finally, in §2.5, we define PKI schemes and transparent

PKI schemes, which are PKI schemes with additional entities and

functions used to ensure transparency.

2.1 Certificate Fields and Types

A certificate is a string which encodes the value of multiple fields,

as well as a signature, or other cryptographic mechanism, to vali-

date the authenticity of the certificate. Different PKIs may certify

different information (fields), use different encodings or different

signature algorithms, and, in principle, may even use a different

design (i.e., not a signature over an object). For example, in X.509

and PKIs based on it, certain certified information is encoded as a

‘field’, while other information is encoded as an ‘extension’. That

said, all deployed PKI schemes have similar designs.

PKI standards, including X.509, PKIX and CT, define and refer to

specific named values in certificates. We refer to all of these named

values as ‘fields’. We list in Table 2 some of the important fields
4
.

4
We use the term ‘field’ for all of these named values, and have abstracted away

the encoding. However, PKI specifications often use other terms to refer to these

‘fields’, and may use different encodings for different fields. For example, PKIX uses

We use the dot notation to refer to a specific field in a certificate, e.g.,

𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 refers to the value of the 𝑖𝑠𝑠𝑢𝑒𝑟 field in certificate𝜓 . The

exceptions are the 𝑡𝑦𝑝𝑒 and 𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑 fields; they are not defined

in X.509 or other existing PKIs, yet we found them important.

The 𝑡𝑦𝑝𝑒 field is used to distinguish between different types of cer-

tificates. X.509 defines two types of certificates: public key certificates

and attribute certificates, which we identify by𝜓 .𝑡𝑦𝑝𝑒 = ‘PubKey’

and𝜓 .𝑡𝑦𝑝𝑒 = ‘ATTR’, respectively. Public key certificates associate

a public key with a particular subject (‘owner’ of the public key),

whereas attribute certificates do not contain a public key (i.e., if

𝜓 .𝑡𝑦𝑝𝑒 = ‘ATTR’, then𝜓 .𝑝𝑘 = ⊥). Further, the 𝑡𝑦𝑝𝑒 field can mark

other types of certificates issued by the PKI, e.g., pre-certificates,

which can be submitted to loggers in CT, or Route Origin Autho-

rizations (ROAs), defined in the Resource Public Key Infrastructure

(RPKI) [46], used to specify allowed announcements for IP prefixes.

In the case of ROAs, the issuer certifying a ROA would have a

public-key certificate proving its ownership of relevant IP prefix.

Certificates can have additional fields indicating specific constraints

of the certificates.

PKIs may add fields, such as the ‘issuer’ field in PKIX or the ‘SCT-

set’ field in CT, to the submitted fields before creating a certificate.

We use the 𝑡𝑏𝑐.𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑 field to identify such fields. We use the

notation 𝜓 .𝑡𝑏𝑐 to refer to the entire set of (name, value) fields in

certificate𝜓 .

2.2 PKI Entities

A PKI scheme P is defined by a set of functions, some stateful

and some stateless, and a set N of stateful entities. Entities in N
can perform the stateful functions, e.g., issue certificates. We refer

to the entities in N that issue public key certificates as certificate

authorities (CAs). There could be other entities in N, e.g., Certifi-
cate Transparency (CT) uses loggers and monitors. Entities in N
may be honest (benign) or corrupt, i.e., controlled by an adversary.

Relying parties are entities which use only stateless PKI functions,

in particular, the certificate validation function, which allows the

relying parties to decide whether to rely on the certificate (i.e., use

the certified public key) or not.

The state of the entities in N is initialized using a dedicated ini-

tialization operation P.Init. Typically, P.Init outputs a self-certified
public key certificate, i.e., a certificate𝜓 which certifies a key for its

issuer (𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 = 𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡), and is validated (successfully) using

the certified public key𝜓 .𝑝𝑘 . Self-certified public key certificates

can be output by any entity: a CA, logger or a monitor. Typically,

the terms dnsName component (in the subjectAltName extension) and 𝑐𝐴 Boolean (in

the BasicConstraints extension).

3

Table 2: Common certificate fields.

Field Description Encoding in X.509

𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 The entity that issued the certificate. distinguished name in the Issuer certificate field. X.509 certificates may also include an Issuer Alternative

Name (IAN) extension that may include additional identifiers for the issuer, e.g., as a DNS name.

𝜓 .𝑓 𝑟𝑜𝑚 The date and time at which the certificate becomes valid. notBefore entry of the Validity certificate field.

𝜓 .𝑡𝑜 The date and time at which the certificate should expire (become invalid). notAfter entry of the Validity certificate field.

𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 A number that uniquely identifies the certificate. serialNumber certificate field. In X.509, it must be positive and unique among the rest of the certificates

issued by the issuing CA.

𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 An identifier for the subject of𝜓 . distinguished name in the Subject certificate field. X.509 certificates may also include a Subject Alternative

Name (SAN) extension, that may include additional identifiers for the subject, e.g., as a DNS name.

𝜓 .𝑝𝑘 A public key certified as the public key of the subject. Part of the Subject Public Key Info certificate-field.

𝜓 .𝑖𝑠_𝐶𝐴 Whether the subject is a CA, i.e., authorized to issue public key certificates. Part of the Basic Constraints extension.

𝜓 .𝑡𝑦𝑝𝑒 ,𝜓 .𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑 The specific type of certificate, e.g., public key, and a set of fields added to

the certificate by the PKI.

These fields are not defined in X.509; see discussion in §2.1.

𝜓 .𝑡𝑏𝑐 The set of all (name, value) fields in𝜓 This is a notation, not a field.

to validate a certificate 𝜓 , we use a set 𝑠𝑡𝑜𝑟𝑒.𝐶𝐴𝑠 of trusted root

certificates which are self-certified by trusted CAs.

2.3 Certifying and Revoking Certificates

A certificate𝜓 is issued using the private certification key of a CA,

which the CA maintains as part of its state st. To issue, the CA uses

the PKI’s P.Certify operation, namely, P.Certify(st, 𝑐𝑙𝑘, 𝑡𝑏𝑐) →
(st,𝜓/⊥), which takes as input the entity’s local state st, local
clock 𝑐𝑙𝑘 and the set of (name, value) fields to be certified 𝑡𝑏𝑐 , and

outputs an updated state st, and, if successful, a signed certificate

𝜓 s.t.𝜓 .𝑡𝑏𝑐 = 𝑡𝑏𝑐 .

Since certificates are typically issued for a specific time period,

most PKI schemes provide a way to revoke certificates before their

expiration date, for example, if a certificate is found to be fraudu-

lently issued or the corresponding private key exposed. Revocation

is done by the issuer using a dedicated revoke operation, denoted

as P.Revoke. The P.Revoke operation takes as input a certificate

𝜓 and outputs whether the revocation was successful or not, i.e.:

P.Revoke(st, 𝑐𝑙𝑘,𝜓) → (st,⊤/⊥). For example, P.Revoke may fail

if attempting to revoke an already expired or revoked certificate,

or a certificate not issued by this issuer.

Most PKIs use a non-revocation mechanism to allow relying

parties to verify that a certificate was not revoked at a given time 𝑡 .

X.509 defines two non-revocation mechanisms, certificate revocation

lists (CRLs) and the online certificate status protocol (OCSP) allowing

relying parties to verify non-revocation status of a certificate by

obtaining a CRL or OCSP response valid at time 𝑡 .

2.4 Certificate Validity

Each PKI has a criteria to determine whether a given certificate is

valid or not. As an example of such criteria, consider a PKI where a

certificate𝜓 is valid at time 𝑡 , if (1) 𝑡 is between𝜓 .𝑓 𝑟𝑜𝑚 and𝜓 .𝑡𝑜 ,

(2)𝜓 was certified by𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 . But, even such straightforward and

intuitive criteria has some important subtleties.

In particular, how can we determine if 𝜓 was really certified

by 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟? In a simple setting, the validating party knows the

validation key of𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 , typically by having the self-signed key of

𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 in store.CAs, the set of trusted root CAs self-certificates at

the validating party. The set store, used to establish the trust, is an

input to the validation function; store is often referred to as the root

store or trust anchor. The sequence of certificates 𝜉 ≡ 𝜓1−𝜓2−. . .−𝜓𝑟

used to validate𝜓 , terminating in a certificate𝜓𝑟 ∈ store, is called a

certificate chain or a chain of trust.

However, in a more practical setting, 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 is not a trusted

root CA, and therefore, will not exist in store.CAs. Instead, the trust

in the public key of 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 is established using a certificate for

𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 , which should also be: (1) valid, and in particular, (2) signed

by a trusted CA. This trusted CA “gains trust” either because its self-

certified certificate appears in store.CAs, or because it is certified

by a different trusted CA (and so on).

A PKI may have additional requirements for considering a cer-

tificate to be valid. PKIs often require some form of certification

that indicates non-revocation, e.g., certificate𝜓 is not included in

a CRL 𝜓𝐶𝑅𝐿 valid at time 𝑡 . To facilitate such additional require-

ments, the validation function accepts also an auxiliary input aux.

A PKI implementation would define the structure and content of

aux, based on its validity criteria. For example, in PKIX (§4.2) a

certificate is considered valid only together with aux containing a

valid certificate chain and certificate(s) of non-revocation.

Formally, the validity of a certificate 𝜓 is determined using

the stateless certificate validation predicate of the PKI, namely,

P.Valid(𝜓, 𝑡, store, aux), where the inputs include the certificate

𝜓 , the time 𝑡 , the trust-anchor store and the auxiliary information

aux. When P .Valid(𝜓, 𝑡, store, aux) = ⊤, this means that P.Valid
managed to establish trust from𝜓 to an entity with a self-signed

certificate in store, and this trust is in a form of a sequence of certifi-

cates which are chained together. To obtain this chain of certificates,

executing P.VCerts on the same input to P.Validwould output one
or more certificate chains which P.Valid used to validate𝜓 .

2.5 Definition of a PKI Scheme

Definition 1 (PKI scheme). A PKI scheme P is a set containing (at

least) the following PPT algorithms:

• P.Init(st, 𝑐𝑙𝑘, 𝑝𝑎𝑟𝑎𝑚𝑠) → (st,𝜓): Takes as input the state5
st, local clock 𝑐𝑙𝑘 , and parameters 𝑝𝑎𝑟𝑎𝑚𝑠 , and returns the

initialized local state st and a self-certified certificate 𝜓 af-

ter performing initialization based on the input parameters

𝑝𝑎𝑟𝑎𝑚𝑠 and time 𝑐𝑙𝑘 .

5
The state st is given in the input to Init (and other stateful operations) for a

technical reason. We use the Modular Security Specifications (MoSS) Framework [21] to

define PKI specifications (see §3.1). In MoSS, operations receive the state st as input.
The Init operation is invoked during the MoSS execution, and, therefore, receives the

state st as input, like other operations.

4

• P.Certify(st, 𝑐𝑙𝑘, 𝑡𝑏𝑐) → (st,𝜓/⊥): Takes as input the state
st, local clock 𝑐𝑙𝑘 and a set of (name, value) fields to be certified

𝑡𝑏𝑐 , and returns an updated state st and either a string𝜓 which

is a valid certificate or information which may be used to create

a valid certificate, or a failure indicator ⊥.
• P.Revoke(st, 𝑐𝑙𝑘,𝜓) → (st,⊤/⊥): Takes as input the state st,
local clock 𝑐𝑙𝑘 , and a certificate𝜓 , and returns an updated state

st and ⊤ if𝜓 was revoked successfully or ⊥ if the revocation

failed.

• P.Valid(𝜓, 𝑡, store, aux) → (⊤/⊥): This (stateless) algorithm
takes as input a certificate 𝜓 , time 𝑡 , a root store 𝑠𝑡𝑜𝑟𝑒 , and

auxiliary information aux, and returns either ⊤ or ⊥.
• P.VCerts(𝜓, 𝑡, store, aux) → ({𝜓𝑖 }/⊥): This (stateless) algo-
rithm takes as input the same input as in P.Valid, and returns
information used in the validation of 𝜓 , typically, a set of

certificates {𝜓𝑖 }.
• P.Aux(st,𝜓, 𝑐𝑙𝑘, store, aux) → (st, aux/⊥): This is an op-

tional algorithm requesting the entity, typically a CA, to pro-

vide auxiliary information aux, such as CRLs. This auxiliary

information, possibly complemented by other auxiliary infor-

mation, will be used to validate the given certificate𝜓 using

root store store.

PKI schemes might include additional inputs or operations. In

particular, we next define transparent PKI schemes; such schemes

have additional operations used to ensure that valid certificates are

publicly available (i.e., “transparent”), allowing to detect discrepan-

cies and suspect certificates. Specifically, transparent PKIs require

the ability to instruct monitors to start the monitoring process of a

given log (P .Monitor), the ability to retrieve what is known to a

monitor regarding a given subject (P .Lookup), and the ability to

decide if a given certificate is consistent with the local knowledge

of a monitor (P .Audit).
Definition 2 (Transparent PKI scheme). A transparent PKI scheme

P is a PKI scheme with the following additional PPT algorithms:

• P.Monitor(st, 𝑐𝑙𝑘,𝜓𝐿) → st: Takes as input state st, local
clock 𝑐𝑙𝑘 and certificate 𝜓𝐿 , and returns an updated state st,
and starts to monitor (certificates logged in) the log correspond-

ing to certificate𝜓𝐿 .

• P.Lookup(st, 𝑐𝑙𝑘, 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡) → (st,Ψ): Takes as input state
st, local clock 𝑐𝑙𝑘 , and an identifier 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , and returns an

updated state st and a set Ψ = {(𝜓1, aux1), (𝜓2, aux2), ...} of
all pairs (𝜓𝑖 , aux𝑖) known to the entity s.t.𝜓𝑖 is the certificate

of the given 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , i.e., 𝜓𝑖 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , and aux𝑖 is

the corresponding auxiliary information for𝜓𝑖 .

• P.Audit(st,𝜓, aux) → {𝜓𝐿}/⊥: Takes as input state st, cer-
tificate𝜓 , and auxiliary information aux. Returns ⊥ or a set of

log certificates {𝜓𝐿}. Intuitively, return ⊥ if the pair (𝜓, aux)
is known to the invoked entity, or invalid. Otherwise, return

{𝜓𝐿}, identifying the set of faulty logs.

3 PKI REQUIREMENTS

Formally defined requirements are necessary to prove whether a

given PKI implementation meets specific requirements, and if so,

under what assumptions. In §3.1, we briefly discuss the MoSS frame-

work [21], which we use to define the PKI requirements. Then, we

define the following requirements: Existential Unforgeability (§3.2),

Accountability (§3.3), Guaranteed and Accountable Δ-Revocation
(§3.4), and HL, Audited and Guaranteed Δ-Transparency (§3.5).

3.1 Modular Security Specifications

PKI schemes, deployed and proposed, vary greatly in their designs,

operate under different models (assumptions) and aim to satisfy

different requirements (goals). To define requirements which apply

to different PKI schemes, even if they assume different models, we

use the Modular Security Specifications (MoSS) Framework [21] for

our specifications. MoSS separates the definition of requirements

from the models, simplifying the definition of requirements and

allowing for the evaluation of requirements satisfied by PKI schemes

under different models. For example, we show that CT does not

provide Guaranteed Δ-Transparency and only a weaker notion, HL

Δ-Transparency (Table 1).

To illustrate the importance of separating models from require-

ments, consider this simplified Δ-Revocation requirement: a certifi-

cate revoked at time 𝑡 by an honest CA would be considered invalid

at any time after 𝑡 + Δ (Definition 3). The delay Δ can be a function

of network delays, clock bias and design decisions (e.g., periodicity

of issuing CRLs). Satisfaction of the Δ-Revocation requirement de-

pends on the clock synchronization and network/communication

delay models.

This work follows the MoSS framework [21]; we briefly recall

here concepts required for this work. MoSS defines an execution

process ExecA,P (𝑝𝑎𝑟𝑎𝑚𝑠) for a given adversary algorithm A and

protocol P. The execution consists of a series of events. In each

event 𝑒 , the adversary decides on the entity invoked 𝑒𝑛𝑡 [𝑒], the
operation 𝑜𝑝𝑟 [𝑒], the input 𝑖𝑛𝑝 [𝑒], the real-time clock 𝜏 [𝑒] and the
local clock 𝑐𝑙𝑘 [𝑒] of entity 𝑒𝑛𝑡 [𝑒]; and the adversary receives the

output 𝑜𝑢𝑡 [𝑒] of the protocol. When the execution loop of protocol

P with parameters 𝑝𝑎𝑟𝑎𝑚𝑠 and adversary A is terminated (by

the adversary), the execution outputs a transcript (trace), denoted

𝑇 ← ExecA,P (𝑝𝑎𝑟𝑎𝑚𝑠). The transcript contains the set of entities
𝑇 .N, the set of faulty entities 𝑇 .F as identified by the adversary, the

adversary’s output𝑇 .𝑜𝑢𝑡A , and the values of all inputs and outputs
for each event, e.g., 𝑇 .𝑒𝑛𝑡 [𝑒].

We use the extended execution process
6
from [21], which allows

three entity-corruption operations: Get-state (exposing the state of

the entity), Set-state (setting the state of the entity) and set-output

(causing the entity to output specified value).

To define assumptions and restrict the adversary, MoSS uses

model predicates, which are computed over the execution transcript.

For example, Algorithm 1 shows the 𝜋DriftΔ𝑐𝑙𝑘
model predicate, which

ensures bounded clock drift (and may help to understand why we

use both 𝑐𝑙𝑘 [𝑒] and 𝜏 [𝑒]). This is one of the models (assumptions)

from [21] that we use in our security analysis (§5).

Algorithm 1 The 𝜋DriftΔ𝑐𝑙𝑘
model predicate (from [21])

1: return ∀�̂� ∈ {1, . . . ,𝑇 .𝑒}: ⊲ For each event

2: |𝑇 .𝑐𝑙𝑘 [�̂�] −𝑇 .𝜏 [�̂�] | ≤ Δ𝑐𝑙𝑘 ∧ ⊲ Local clock within Δ𝑐𝑙𝑘 drift from real time

3: if �̂� ≥ 2 then𝑇 .𝜏 [�̂�] ≥ 𝑇 .𝜏 [�̂� − 1] ⊲ Monotonically increasing real time

6
In [21], these operations are included in the set X, which is specified as part of

the notation of the execution process.

5

An adversaryA satisfiesmodel predicate
7 𝜋 , if for every protocol

P it holds that Pr[𝜋 (ExecA,P (𝑝𝑎𝑟𝑎𝑚𝑠)) = ⊥] ∈ Negl(|𝑝𝑎𝑟𝑎𝑚𝑠 |),
i.e., there is a negligible probability that the transcript of a random

execution of protocol P with adversary A will fail to satisfy 𝜋 .

Similarly, MoSS uses requirement predicates, also computed over

the execution transcript 𝑇 , to define the requirements for a PKI

scheme. We define four requirements in the rest of this section, e.g.,

accountability (Algorithm 3) and transparency (Algorithm 5). A

PKI scheme P satisfies requirement predicate 𝜋R assuming model

predicate 𝜋M , if the probability that 𝜋R (ExecA,P (𝑝𝑎𝑟𝑎𝑚𝑠)) = ⊥ is

negligible, where ExecA,P (𝑝𝑎𝑟𝑎𝑚𝑠) is the transcript of a random
execution of P interacting with any PPT adversaryA that satisfies

model predicate 𝜋M .

3.2 The Existential Unforgeability Requirement

The first requirement we define is Existential Unforgeability (Algo-

rithm 2). Defining unforgeability for a PKI scheme is more complex

than in signature schemes, given that PKI’s primary purpose is to

establish trust in public keys. Indeed, an attacker may be able to

obtain a fraudulent yet valid certificate, where a fraudulent certifi-

cate is a certificate with a public key which was not self-certified

by the subject (the conventions for self-certifying’ a certificate are

described below). If an attacker controls an entity’s key or can

obtain a fraudulent yet valid certificate, then the attacker may be

able to issue a valid certificate without proper use of the ‘Certify’

operation.

Therefore, intuitively, for a PKI scheme to satisfy Existential

Unforgeability, it means that for every certificate𝜓0, either:

(1) 𝜓0 is invalid (Line 3) for the given time 𝑡 , root store store and

auxiliary information aux, or

(2) the ‘Certify’ operation of the PKI scheme was used at the en-

tity𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 to certify the non-PKIadded fields of𝜓0 (Line 4),

which implies that the adversary may have gotten either𝜓0
or another certificate with the same non-PKIadded fields as

𝜓0 correctly from𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 using the ‘Certify’ operation, or

(3) 𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 is rogue (Line 5), which implies that the issuer

may have generated certificates without correctly using the

‘Certify’ operation, or

(4) the validation of𝜓0 uses a valid fraudulent certificate𝜓1 for

the issuer of𝜓0 (Line 6), which implies that the private key

corresponding to𝜓1 .𝑝𝑘 may be known or controlled by the

adversary.

To be able to identify such a fraudulent public key certificate𝜓1,

we require PKI schemes to follow two conventions
8
:

(1) Whenever a benign entity 𝜄 generates a public key 𝑝𝑘 , it

would output a pair (‘SelfCert’,𝜓) where the issuer and sub-

ject fields are both 𝜄, i.e., 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 = 𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = 𝜄, and

𝜓 .𝑝𝑘 = 𝑝𝑘 . We refer to𝜓 as a self-certificate.

(2) The PKI supports a function P.VCerts which takes the same

input as P.Valid. When a certificate 𝜓0 is found valid by

P.Valid, then P.VCerts should return the set of certificates

7
MoSS [21] defines more general models and requirements, which supports non-

negligible probability 𝛽 of failures for some predicates; this is not required for our

models and requirements.

8
The conventions do not require changes to existing PKI implementations.

used byP.Valid to validate𝜓0. These certificates may include

certificates from aux and from store.

We use the first convention in the SelfCert function (Lines 22-

27). We utilize the second convention and SelfCert in CanFind-

FraudIssuerCert (Lines 15-21) to find, in the output of P.VCerts,
a certificate𝜓1 which certifies a fraudulent public key for𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 .

Algorithm 2 𝜋EUF: Existential Unforgeability Requirement

Input: execution transcript𝑇 .

Output: ⊥ if adversary presented a valid yet forged certificate𝜓0 , where𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 is benign

and P .VCerts did not output a valid public key certificate𝜓1 s.t.𝜓1 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 =𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟

and𝜓1 .𝑝𝑘 was not self-certified by𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 . Otherwise, output ⊤ (adversary lost).

1: procedure 𝜋EUF(𝑇)

2: (𝜓0, 𝑡, store, aux) ← 𝑇 .𝑜𝑢𝑡A ⊲ Adversary’s output

3: if ¬P .Valid(𝜓0, 𝑡, store, aux) ∨ ⊲ If𝜓0 invalid, or

4: FieldsProperlyCertified(𝑇 ,𝜓0) ∨ ⊲ fields were certified at issuer, or

5: 𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 ∉ 𝑇 .N −𝑇 .F ∨ ⊲ issuer is rogue, or

6: CanFindFraudIssuerCert(𝑇 ,𝜓0, 𝑡, store, aux) ⊲ there is a fraudulent issuer cert,

7: then return ⊤ ⊲ then adversary failed

8: else return ⊥ ⊲ else, adversary wins

9: end procedure

10: procedure FieldsProperlyCertified(𝑇 ,𝜓)

11: return ∃𝑒 s.t.𝑇 .𝑜𝑝𝑟 [𝑒] = ‘Certify’ ∧ ⊲ If ‘Certify’ operation was executed

12: 𝑇 .𝑖𝑛𝑝 [𝑒] =
 (field, val)

������ ∃(field, val) ∈ 𝜓 .𝑡𝑏𝑐 ∧field ∉𝜓 .𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑

 ∧
⊲ On non-PKIadded fields of𝜓 .𝑡𝑏𝑐

13: 𝑇 .𝑒𝑛𝑡 [𝑒] =𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 ⊲ By the entity claimed as the issuer

14: end procedure

15: procedure CanFindFraudIssuerCert(𝑇 ,𝜓0, 𝑡, store, aux)

16: 𝑣𝑐𝑒𝑟𝑡𝑠 ← P .VCerts(𝜓0, 𝑡, store, aux) ⊲ Certificates used for validating𝜓0

17: return ∃𝜓1 ∈ 𝑣𝑐𝑒𝑟𝑡𝑠 s.t. ⊲ Contain a certificate𝜓1 such that

18:

P .Valid(𝜓1, 𝑡, store, aux) ∨
𝜓1 ∈ store ∧
𝜓1 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 =𝜓1 .𝑖𝑠𝑠𝑢𝑒𝑟

∧

⊲𝜓1 is a valid certificate, or

⊲𝜓1 is in store and

⊲ has same subject and issuer

19: 𝜓1 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 =𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 ∧ ⊲ The subject of𝜓1 is the issuer of𝜓0

20: ¬SelfCert(𝑇 ,𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟,𝜓1 .𝑝𝑘) ⊲𝜓1 is fraudulent

21: end procedure

22: procedure SelfCert(𝑇 , 𝜄, 𝑝𝑘)

23: return ∃𝑒,𝜓 s.t.𝑇 .𝑒𝑛𝑡 [𝑒] = 𝜄 ∧ ⊲ Entity 𝜄

24: 𝑇 .𝑜𝑢𝑡 [𝑒] = (‘SelfCert’,𝜓) ∧ ⊲ outputted certificate𝜓

25: 𝜓 .𝑝𝑘 = 𝑝𝑘 ∧ ⊲ certifying given pk

26: 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 =𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = 𝜄 ⊲ using the same identity

27: end procedure

3.3 The Accountability Requirement

We now define the Accountability requirement (Algorithm 3). Defin-

ing Accountability turned out to be more complex than we initially

anticipated. Intuitively, for a PKI scheme to satisfy Accountabil-

ity, an ‘accountable’ root CA should be identifiable for every valid

certificate𝜓0. However, this is where things become less straight-

forward.

Following the discussion in §3.2, there is no guarantee that a

valid certificate’s non-PKIadded fields were properly certified using

the ‘Certify’ operation. Therefore, our Accountability requirement

does not automatically consider the issuer listed in a certificate𝜓 ,

or a root CA used to validate 𝜓 , to be accountable for 𝜓 . Rather,

we say that a certificate 𝜓 ′ is accountable for certificate 𝜓 if the

6

‘Certify’ operation of the PKI scheme was used at 𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 to
certify the non-PKIadded fields of𝜓 , or the ‘Certify’ operation of

the PKI scheme was used at𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 to certify the non-PKIadded
fields of another certificate which is accountable for𝜓 .

The Accountability requirement requires that there is either:

(1) a bad root certificate (Line 5), where a bad certificate is

a certificate which has a rogue subject or is a fraudulent

certificate, where fraudulent is defined in Section 3.2, or

(2) a root certificate which is accountable for a valid bad certifi-

cate (Line 6), or

(3) a root certificate which is accountable for𝜓0 (Line 7).

Our definition of accountability only ensures that a bad or ac-

countable root certificate is in the output of P .VCerts; it does not
say how such a root certificate from the output of P .VCerts would
be identified - this may depend on the PKI. If a root certificate𝜓𝑟
which appears like it should be accountable for 𝜓0 is identified,

however, then the subject of 𝜓𝑟 can be audited (using some legal

or other procedures) to check if it admits to owning 𝜓𝑟 .𝑝𝑘 . If 𝜓0
is a fraudulent certificate and𝜓𝑟 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 admits to owning𝜓𝑟 .𝑝𝑘 ,

then𝜓𝑟 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 can be held accountable for𝜓0, depending on legal

or other policies. Otherwise, if 𝜓𝑟 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 denies owning 𝜓𝑟 .𝑝𝑘 ,

then𝜓𝑟 should be removed from the root store, since either𝜓𝑟 is

a bad certificate or 𝜓𝑟 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 is not being honest when it denies

ownership of𝜓𝑟 .𝑝𝑘 . Subjects of other (non-root) certificates which

appear like they should be accountable for 𝜓0 may similarly be

audited and may possibly held accountable if they admit to owning

the relevant public keys.

3.4 Revocation Requirements

Certificates sometimes need to be revoked prior to their expiration

date. Revocation is initiated by the issuer for various reasons, in-

cluding the loss or compromise of the private key corresponding

to a certified public key, or when the certificate contains incorrect

or outdated information.

It takes time to communicate the revocation of a certificate to the

relying parties; we use Δ to denote the maximum allowed time. The

‘grace period’ Δ is typically required for three reasons: (1) the bias

between the clock of 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 and the clock of the relying party

validating 𝜓 , (2) the communication delay from 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 to the

relying parties, and (3) the time for any proof that𝜓 is non-revoked

which was issued prior to its revocation to become stale, i.e., expire.

GuaranteedΔ-Revocation and the Zombie certificate attack. Prefer-

ably, we would like revocation to be fully enforced, i.e., if the issuer

revokes a certificate at time 𝑡 , then no relying party should accept

the certificate after 𝑡 +Δ. We refer to this property as Guaranteed Δ-
Revocation. This ensures that revocation by a benign CA is always

effective, with at most Δ delay; a relying party cannot be misled to

rely on a revoked certificate after 𝑡 + Δ.
The most well-known revocation mechanism is the X.509 stan-

dard Certificate Revocation List (CRL) mechanism, the ‘basic’ revo-

cation mechanism of PKIX and CT; see §4.2 or [45] for details. The

CRL is a timestamped list of revoked certificates signed by their

issuer. CRLs are issued periodically, say once every Δ seconds. A

relying party 𝑅 considers certificate𝜓 as non-revoked at time 𝑡 , if 𝑅

received a CRL from the issuer of𝜓 , issued at 𝑡 − Δ or later, which

does not list𝜓 as a revoked certificate.

Algorithm 3 𝜋ACC: Accountability Requirement

Input: execution transcript𝑇 .

Output: ⊥ if adversary presented a valid certificate𝜓0 and the output of P .VCerts includes
no bad root certificate, no root certificate which is accountable for a valid bad certificate among

the certificates in the output of P .VCerts, and no root certificate which is accountable for𝜓0 .

Otherwise, output ⊤ (adversary lost).

1: procedure 𝜋ACC(𝑇)

2: (𝜓0, 𝑡, store, aux) ← 𝑇 .𝑜𝑢𝑡A ⊲ Adversary’s output

3: 𝑣𝑐𝑒𝑟𝑡𝑠 ← P .VCerts(𝜓0, 𝑡, store, aux)
4: if ¬P .Valid(𝜓0, 𝑡, store, aux) ∨ ⊲ Acc. holds if𝜓0 is invalid, or

5:

∃𝜓𝑟 ∈ store ∩ 𝑣𝑐𝑒𝑟𝑡𝑠 s.t.
BadCert(𝑇 ,𝜓𝑟)

 ∨ ⊲ a root cert is bad

6:

∃𝜓𝑟 ∈ store, 𝜓 ′ ∈ 𝑣𝑐𝑒𝑟𝑡𝑠 s.t.
Accountable(𝑇 ,𝜓 ′,𝜓𝑟 , 𝑣𝑐𝑒𝑟𝑡𝑠) ∧
P .Valid(𝜓 ′, 𝑡, store, aux) ∧
BadCert(𝑇 ,𝜓 ′)

∨ ⊲

a root cert is accountable for a valid

bad cert𝜓 ′

7:

∃𝜓𝑟 ∈ store ∩ 𝑣𝑐𝑒𝑟𝑡𝑠 s.t.
Accountable(𝑇 ,𝜓0,𝜓𝑟 , 𝑣𝑐𝑒𝑟𝑡𝑠)

 ⊲ a root cert is accountable for𝜓0

8: then return ⊤ ⊲ then adversary failed

9: else return ⊥ ⊲ else, adversary wins

10: end procedure

11: procedure Accountable(𝑇 ,𝜓,𝜓 ′, 𝑣𝑐𝑒𝑟𝑡𝑠)

12: return FieldsCertified(𝑇 ,𝜓,𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡) ∨ ⊲ Fields were certified at𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡

13:

∃𝜓 ′′ ∈ 𝑣𝑐𝑒𝑟𝑡𝑠 s.t.
FieldsCertified(𝑇 ,𝜓 ′′,𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡) ∧
Accountable(𝑇 ,𝜓,𝜓 ′′, 𝑣𝑐𝑒𝑟𝑡𝑠)

 ⊲

Fields of a cert𝜓 ′′ which is ac-
countable for𝜓 were certified

at𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡

14: end procedure

15: procedure BadCert(𝑇 ,𝜓)

16: return𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 ∉ 𝑇 .N −𝑇 .F ∨ ⊲𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 is not benign, or

17: ¬SelfCert(𝑇 ,𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡,𝜓 .𝑝𝑘) ⊲𝜓 is fraudulent (see Algorithm 2)

18: end procedure

19: procedure FieldsCertified(𝑇 ,𝜓, 𝑒𝑛𝑡)

20: return ∃𝑒 s.t.𝑇 .𝑜𝑝𝑟 [𝑒] = ‘Certify’ ∧ ⊲ If ‘Certify’ operation was executed

21: 𝑇 .𝑖𝑛𝑝 [𝑒] =
 (field, val)

������ ∃(field, val) ∈ 𝜓 .𝑡𝑏𝑐 ∧field ∉𝜓 .𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑

 ∧
⊲ On non-PKIadded fields of𝜓 .𝑡𝑏𝑐

22: 𝑇 .𝑒𝑛𝑡 [𝑒] = 𝑒𝑛𝑡 ⊲ By entity 𝑒𝑛𝑡

23: end procedure

The PKIX specifications [45] require the CRL to be validated

using a valid public key certificate 𝜓 ′ issued to the issuer of 𝜓 ,

i.e.,𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 . Additionally, they require that the trust

anchor for the certification path of𝜓 ′ be the same as the trust anchor

used to validate𝜓 . However, as we next show, the CRL mechanism

fails to ensure Guaranteed Δ-Revocation; we later define the weaker
Accountable Δ-Revocation property, which the CRL mechanism

ensures.

Claim 1 (The Zombie certificate attack). PKIX and CT, using the CRL

revocation mechanism, fail to ensure the Guaranteed Δ-Revocation
requirement.

Proof. Let𝜓0 be a certificate issued by a benign CA𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 , with

validity period [𝜓0 .𝑓 𝑟𝑜𝑚,𝜓0 .𝑡𝑜], which is later revoked by𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟
at time 𝑡𝑅 s.t.𝜓0 .𝑓 𝑟𝑜𝑚 < 𝑡𝑅 < 𝜓 .𝑡𝑜 −Δ, s.t. for some store, aux, and

𝑡, 𝑡 ′ s.t. 𝑡 < 𝑡𝑅 and 𝑡𝑅 +Δ < 𝑡 ′ ≤ 𝜓 .𝑡𝑜 , PKIXC .Valid(𝜓0, 𝑡, store, aux)
returns⊤ andPKIXC .VCerts(𝜓0, 𝑡, store, aux) returns aPKIXC-valid
certificate chain 𝜉 = 𝜓0 −𝜓1 − . . . −𝜓𝑟 s.t. for each𝜓𝑖 in the chain,

𝜓𝑖 .𝑡𝑜 ≥ 𝑡 ′.
7

Consider an attacker which controls a rogue CA 𝜄𝑅 ∈ 𝑇 .F which

is either the trust anchor of 𝜓0’s certificate chain, or an interme-

diate CA (of 𝜓0’s certificate chain) which has a chain rooted by

the same trust anchor as of 𝜓0 and the certificates in the chain

are valid at time 𝑡 ′ w.r.t. store and some aux
′
. That is, there exists

𝜓 ′
𝑖
s.t. 𝜓𝑖 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = 𝜄𝑅 and PKIXC .Valid(𝜓 ′𝑖 , 𝑡

′, store, aux′) returns
⊤ and PKIXC .VCerts(𝜓 ′𝑖 , 𝑡

′, store, aux′) returns a PKIXC-valid cer-

tificate chain rooted by 𝜓𝑟 , i.e., a chain 𝜉 ′ = 𝜓 ′
𝑖
− . . . − 𝜓𝑟 . In

either case, the adversary can generate aux
′′
and a certificate𝜓 ′′

1

such that 𝜓 ′′
1
.𝑖𝑠𝑠𝑢𝑒𝑟 = 𝜄𝑅 and 𝜓 ′′

1
.𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = 𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 , and where

the corresponding private key of𝜓 ′′
1
is known to the attacker (of

course,𝜓 ′′
1
.𝑝𝑘 is not the public key used by the benign𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟),

and where 𝜉 ′′ = 𝜓0 − 𝜓 ′′
1
− 𝜓 ′

𝑖
− . . . − 𝜓𝑟 is a PKIX-valid certifi-

cate chain w.r.t. time 𝑡 ′, store, and aux
′′
. Therefore, the attacker

can next generate a (fake) CRL 𝜓 ′′
𝐶𝑅𝐿

which has a validity period

s.t. 𝑡 ′ ∈ [𝜓 ′′
𝐶𝑅𝐿

.𝑓 𝑟𝑜𝑚,𝜓 ′′
𝐶𝑅𝐿

.𝑡𝑜], which does not list 𝜓0 as revoked,

and which can be verified using𝜓 ′′
1
.𝑝𝑘 .

Consider a benign relying party 𝜄 which receives 𝜓0 at time

𝑡 ′ together with aux
′′′
, which includes all of aux

′′
(including the

certificate chain 𝜉 ′′) and the CRL𝜓 ′′
𝐶𝑅𝐿

, and suppose that the relying

party does not receive any other CRL conflicting with this time

period (e.g., the real CRL which covers time 𝑡 ′ from the benign

𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟). The CRL𝜓
′′
𝐶𝑅𝐿

will therefore be considered valid at time

𝑡 ′ > 𝑡𝑅 + Δ w.r.t. store and aux
′′
, and therefore 𝜄 will consider 𝜓0

to be non-revoked, in contrast to the Guaranteed Δ-Revocation
requirement. □

Accountable Δ-Revocation. This requirement allows𝜓 to be con-

sidered valid even after being revoked by its benign issuer CA

𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 , provided that the PKI identifies a different certificate𝜓𝑅 ≠

𝜓 in the output of P .VCerts(𝜓, 𝑡, store, aux) which is a valid-yet-

rogue certificate for a benign subject, i.e.,𝜓𝑅 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 ∈ 𝑇 .N−𝑇 .F but
𝜓𝑅 .𝑝𝑘 is not a correct public key generated by𝜓𝑅 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 . Namely,

the benign𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 did not output a corresponding self-signed cer-

tificate for𝜓𝑅 .𝑝𝑘 . If the PKI can identify the rogue CA certificate

𝜓𝑅 , and assuming that the PKI ensures accountability, then we can

identify one or more CAs which could be held accountable for𝜓𝑅 ,

including a root CA which is (ultimately) accountable for𝜓𝑅 , or a

bad root certificate which should be removed from the root store.

For example, in the Zombie certificate attack of Claim 1, we will

have𝜓𝑅 = 𝜓 ′. To validate𝜓 after its revocation, using the fake CRL

𝜓 ′
𝐶𝑅𝐿

, the attacker must include𝜓 ′ = 𝜓𝑅 ; therefore, we can identify

the rogue issuer 𝜄𝑅 .

The Guaranteed Δ-Revocation requirement is stronger, as it pre-

vents the use of revoked certificates. In contrast, Accountable Δ-
Revocation only provides accountability after an attack has oc-

curred. Notably, the stipulation in [45] that the trust anchor for

the certification path of 𝜓 ′ must be the same as the trust anchor

used to validate𝜓 underscores this point. This requirement would

not be necessary if the designers were only aiming for Account-

able Δ-Revocation. We believe this indicates a clear intention to

prevent the use of revoked certificates (Guaranteed Δ-Revocation),
rather than merely offering post-attack accountability (Accountable

Δ-Revocation). Importantly, ensuring Guaranteed Δ-Revocation is

indeed feasible for PKI. For instance, PKIX could have mandated

the validation of the CRL using the same public key that is used for

validating the certificate itself.

Algorithm 4 𝑓 RevΔ : the Δ-Revocation function

Input: transcript𝑇 .

Output: ‘G’ if the adversary fails and Δ-Revocation is guaranteed, ‘A’ if Δ-Revocation is only

accountable, and ⊥ if the adversary wins.

1: procedure 𝑓 RevΔ (𝑇)

2: (𝜓, 𝑡, store, aux) ← 𝑇 .𝑜𝑢𝑡A ⊲ Extract adversary’s output

3: if

P .Valid(𝜓, 𝑡, store, aux) ∧
𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 ∈ 𝑇 .N −𝑇 .F ∧
CertifyAndRevokeReqested(𝑇 ,𝜓, 𝑡,ΔRev)

⊲𝜓 is valid

⊲𝜓 ’s issuer is benign

⊲ See Algorithm 13

4: if CanFindFraudulentCert(𝑇 ,𝜓, 𝑡, store, aux) ⊲ See Algorithm 14

5: then return ‘A’ ⊲𝜓 is ‘revoked-yet-valid’, but fraudulent cert was detected

6: else return ⊥ ⊲ Adversary wins!

7: else return ‘G’ ⊲ Adversary fails! =⇒ Guaranteed revocation

8: end procedure

We define both the Guaranteed and Accountable Δ-Revocation
requirement predicates in Definition 3. In §5, we show that PKIX

and CT, with the CRL revocation mechanism, ensure Accountable

Δ-Revocation.
Definition 3 (Δ-Revocation requirements). We define the Guaran-

teed and Accountable Δ-Revocation predicates as:

𝜋GtdRevΔ (𝑇) =

{
⊤ if 𝑓 RevΔ (𝑇) = ‘G’,

⊥ otherwise

}
𝜋AccRevΔ (𝑇) =

{
⊤ if 𝑓 RevΔ (𝑇) ∈ {‘G’, ‘A’},
⊥ otherwise

}
Algorithm 4 defines the function 𝑓 RevΔ . □

3.5 Transparency Requirements

Accountability, as described in §3.3, is a reactive defense, whose

goal is to deter rogue or negligent behavior by root CAs. For many

years, this reactivemeasure was seen as sufficient under the assump-

tion that root CAs, and CAs certified by them, are respectable and

trustworthy entities who would not risk being implicated in issuing

rogue certificates, intentionally or otherwise. However, repeated

cases of rogue certificates issued by compromised or dishonest CAs,

have proven this assumption to be overly optimistic. Punishing

root CAs is non-trivial: beyond negative publicity, punishment has

often been ineffective [51, 2, 25]. Furthermore, punishing a CA

requires that a rogue certificate is discovered. An attacker could

reduce the risk of discovery by minimizing the exposure of the

rogue certificate. Efforts such as Perspectives Project [59] and the

EFF SSL Observatory[16] provide some assistance in discovering

rogue certificates but are not sufficient to address this concern.

This motivated transparent PKI designs, most notably, the stan-

dardized and deployed Certificate Transparency (CT) [31, 50]. To

support transparency, a certificate must be logged at one or more

loggers. Loggers are parties committed to including certificates in a

public log they maintain, and to making this log available to third

parties called monitors. Each monitor keeps tabs on the certificates

logged by one or, usually, more loggers; in addition, monitors may

detect suspicious certificates and inform interested parties, such as

domain owners and relying parties.

In other words, transparency aims to prevent a CA from stealthily

generating a rogue certificate 𝜓 to attack select victims. Trans-

parency facilitates early detection of rogue certificates issued by a

8

corrupt, compromised or negligent CA. By demanding that a valid

certificate must be transparent, we ensure the detection of rogue

and suspicious certificates. There is some unavoidable delay from

the time a certificate is submitted to a log until the relevant moni-

tors are aware of it. This delay is primarily due to the significant

time allowed between receiving a certificate and including it in a

new version of the log.

The Δ-Transparency Requirements. Similarly to the case with re-

vocation, we found that the CT standard [50] does not satisfy the nat-

ural, strong and guaranteed transparency. Guaranteed-Transparency

means that an honest monitor which is monitoring the relevant

logs is always aware of the logging of a certificate
9
after a specific

delay.

CT, however, satisfies only a weaker notion, HL-Transparency,

where transparency only holds if a certificate is logged by at least

one benign logger. The Chrome implementation of CT ([27], Appen-

dix D.2) also ensures another weak notion of transparency, Audited-

Transparency. In this case, an honest monitor which is monitoring

the relevant (possibly all corrupt) logs might be unaware of a valid

certificate
10
, but when presented with such a certificate during

an audit, the monitor outputs a log certificate of a corrupt logger

responsible for this lack of transparency.

Definition 4 (Δ-Transparency requirements). We define the Guar-

anteed, HL and Audited Δ-Transparency predicates as:

𝜋GtdTraΔ (𝑇) =

{
⊤ if 𝑓 TraΔ (𝑇,⊥) = ‘G’

⊥ otherwise

}
𝜋HLTraΔ (𝑇) =

{
⊤ if 𝑓 TraΔ (𝑇,⊤) = ‘G’

⊥ otherwise

}
𝜋AudTraΔ (𝑇) =

{
⊤ if 𝑓 TraΔ (𝑇,⊥) ∈ {‘G’, ‘A’},
⊥ otherwise

}
Algorithm 5 defines the function 𝑓 TraΔ . □

4 PROVABLY-SECURE PKI SCHEMES

In this work, we present three implementation of PKI schemes

based on two PKIs used in practice: PKIX following [45] (see §4.2)

and CT following the CT 2.0 specification [50] (see Appendix D.1),

using PKIX for aspects not covered in [50]. In addition, we provide

a specification of CTwAudit, a variant of CT augmented by an

auditing mechanism [27] (see Appendix D.1). While this variant is

not standardized, we found it important to include, as it is supported

as an option by Google Chrome, the most popular browser.

9
The monitor may not be aware of all the fields of the certificate. In particular,

a certificate𝜓 may include a field𝜓 .𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑 listing fields which were added to

the certificate by the PKI, possibly after the other fields were logged. The monitor

should be aware, however, of the other fields in the certificate (those which are not in

𝜓 .𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑).
10
This is a simplification. More precisely, in addition to the fields in𝜓 .𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑

of which the monitor may be unaware, the monitor may also be unaware of the other

fields in the certificate (those which are not in𝜓 .𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑).

Algorithm 5 𝑓 TraΔ : the Δ-Transparency function

Input: transcript𝑇 and the hl flag.

Output: ‘G’, if Δ-Transparency is guaranteed; if the hl input flag is set, then we require that

one of the SCTs of the certificate is from an honest log. ‘A’, if Δ-Transparency is (only) audited.

⊥ if neither guaranteed nor audited Δ-Transparency holds (adversary wins).

1: procedure 𝑓 TraΔ (𝑇 ,hl)

2: (𝜓, 𝑡, store, aux, 𝜄𝑀) ← 𝑇 .𝑜𝑢𝑡A ⊲ Extract adversary’s output

3: if hl ∧ NoHonestLog(𝜓, 𝑡, store, aux) return ‘G’ ⊲ HL w/o honest log (Alg. 15)

4: if

𝜓 .𝑓 𝑟𝑜𝑚 ≤ 𝑡 − Δ ∧
P .Valid(𝜓, 𝑡, store, aux) ∧
𝜄𝑀 ∈ 𝑇 .N −𝑇 .F ∧
MonitoringCertLogs(𝑇 ,𝜓, 𝑡 − Δ, store, aux, 𝜄𝑀) ∧
MonitorIsUnaware(𝑇 ,𝜓, 𝑡, 𝜄𝑀)

⊲𝜓 issued

⊲𝜓 is valid

⊲ 𝜄𝑀 is benign

⊲ See Algorithm 16

⊲ See Algorithm 17

5: if Audited(𝑇 ,𝜓, 𝑡, aux, 𝜄𝑀) ⊲ See Algorithm 18

6: if FailedIdentifyCorrupted(𝑇 ,𝜓, 𝑡, store, aux, 𝜄𝑀) ⊲ See Algorithm 19

7: then return ⊥ ⊲ Adversary wins!

8: else return ‘A’ ⊲ Audited transparency

9: else return ‘G’ ⊲ Adversary fails! Guaranteed transparency

10: end procedure

In all implementations, we use the CRL revocation mechanism
11
.

The schemes cannot, realistically, cover all aspects of the corre-

sponding (lengthy and not fully specified) RFCs, but we have done

our best to retain all aspects related to the security requirements.

For example, we include the details of certificate chains and basic

constraints, but omit the (less deployed and less relevant) length,

name and policy constraints.

4.1 Certificate Scheme

Typical PKI schemes use an encoding scheme Θ to encode the

certificate fields (Table 2), and a signature scheme S to sign the

encoded fields. In practice, the PKI schemes use one or more encod-

ing schemes, e.g., BER, DER, PEM, and SPKI [45, 48, 23, 41], and

one or more signature schemes, e.g., RSA and ECDSA [43, 44]. We

could have specified a PKI implementation with a specific encod-

ing scheme Θ and signature scheme S, and then prove security

by reduction to the unforgeability of S; however, this would be

inconvenient and inefficient, given the many possible encodings

and signature schemes.

Instead, we define an abstract certificate scheme C and its exis-

tential unforgeability requirement (Definition 5). We then present

a simple, generic design of a certificate scheme from a signature

scheme S and an encoding scheme Θ (Definition 6), and prove it

satisfies unforgeability by a reduction to the unforgeability of the

signature scheme. Then, we present the implementations of the

PKI schemes (PKIX and CT) using any certificate scheme C.
The new certificate scheme abstraction offers several advantages.

Firstly, it simplifies the description of PKI schemes. Secondly, it

eases the analysis and reductions. Thirdly, analyzing multiple PKI

schemes, each using different encoding and signature schemes,

would be impractical without this abstraction. Fourthly, it may

enable PKI schemes that utilize different constructions than those

in Definition 6, such as signatures over digests of accumulators or

11
We chose CRL over other existing revocation mechanisms for its simplicity

and the fact that it is not very different from other mechanisms. For example, OCSP

introduces the issues of OCSP responders as distinct parties, stapled OCSP and more,

which introduces more complexity. While the implementation and analysis can be

extended to support additional revocation mechanisms such as OCSP, we leave it for

future work.

9

Merkle trees, allowing validation with only parts of the certified

data. Finally, certificate schemes appear useful for applications

beyond PKI schemes.

Definition 5 (Certificate scheme). A certificate scheme C is defined

as a tuple of PPT algorithms:

C = (KeyGen,Certify,Verify,Decode)
where:

• C.KeyGen(1𝑛) → ({0, 1}∗, {0, 1}∗): Takes as input security
parameter 1

𝑛
, and returns a pair (𝑠𝑘, 𝑝𝑘) of keys, where 𝑠𝑘 is

a private (certification) key and 𝑝𝑘 is a corresponding public

verification key.

• C.Certify𝑠𝑘 (𝑡𝑏𝑐) → 𝜓 : Takes as input a set 𝑡𝑏𝑐 = {(𝑛𝑖 , 𝑣𝑖)}
(to be certified) of name-value pairs, where 𝑛𝑖 is an alphanu-

meric field name and 𝑣𝑖 ∈ {0, 1}∗ is a field value, and using the
private certifying key 𝑠𝑘 , returns𝜓 ∈ {0, 1}∗. Field names are

unique, i.e., (∀𝑖 ≠ 𝑗) (𝑛𝑖 ≠ 𝑛 𝑗). We say that𝜓 is a certificate

of 𝑡𝑏𝑐 .12

• C.Verify𝑝𝑘 (𝜓) → {⊤,⊥}: Takes as input a certificate 𝜓 ∈
{0, 1}∗, and using the public verification key 𝑝𝑘 , returns ⊤ if

the certificate is valid, i.e., was certified using the private ceri-

fying key corresponding to the public key 𝑝𝑘 , and ⊥ otherwise.

• C.Decode(𝜓) → 𝑡𝑏𝑐 ∪ {⊥}: Takes as input a certificate 𝜓 ∈
{0, 1}∗, and returns a set 𝑡𝑏𝑐 , of name-value pairs, as defined

for the C.Certify algorithm above, or ⊥ (when decoding fails).

Dot notation. We use dot notation to extract the value of a field

from a 𝑡𝑏𝑐 set, e.g., 𝑡𝑏𝑐.𝑖𝑠𝑠𝑢𝑒𝑟 denotes the value of the 𝑖𝑠𝑠𝑢𝑒𝑟 field

in 𝑡𝑏𝑐 . We also use dot notation to denote the value of a field in

a certificate’s 𝑡𝑏𝑐 set, e.g.,𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 denotes the value of the 𝑖𝑠𝑠𝑢𝑒𝑟

field of 𝑡𝑏𝑐 ← C.Decode(𝜓).
We say that certificate scheme C ensures correctness if for every

(𝑠𝑘, 𝑝𝑘) ← C.KeyGen(1𝑛) and for every set of name-value pairs

𝑡𝑏𝑐 , with unique names, the following holds:

(1) C.Verify𝑝𝑘 (C.Certify𝑠𝑘 (𝑡𝑏𝑐)) = ⊤, and
(2) C.Decode(C.Certify𝑠𝑘 (𝑡𝑏𝑐)) = 𝑡𝑏𝑐

We say that C ensures Existential Unforgeability if for every PPT

A, the probability of A to win in the Existential Certificate Forgery

game (Algorithm 6), Pr[𝐸𝐶𝐹 (𝑛, C,A)], is negligible.

Algorithm 6 The Existential Certificate Forgery (𝐸𝐶𝐹) game

𝐸𝐶𝐹 (𝑛, C,A) :
1: (𝑠𝑘, 𝑝𝑘) ← C.KeyGen(1𝑛) ⊲ Generate keys

2: 𝜓 ← AC.Certify𝑠𝑘 (·) (𝑝𝑘) ⊲ Give A oracle access and 𝑝𝑘

3: 𝑡𝑏𝑐 ← C.Decode(𝜓) ⊲ Decode 𝑡𝑏𝑐 from𝜓

4: if C.Verify𝑝𝑘 (𝜓) ∧ ⊲𝜓 is valid

5: 𝑡𝑏𝑐 ≠ ⊥ ∧ ⊲ 𝑡𝑏𝑐 is not empty

6: 𝑡𝑏𝑐 ∉ {A’s inputs to C.Certify𝑠𝑘 oracle} ⊲ A did not cheat

7: then return 1 ⊲ A won

8: else return 0 ⊲ A failed

We now define a generic construction CS,Θ of a certificate

scheme from a public-key signature S and a pair of invertible

encoding functions Θ = (Θ𝐶 ,Θ𝑆), both mapping sets of name-

value pairs to binary strings. PKIX, CT and other deployed PKI

schemes use certificate schemes following this construction. The

12C.Certify adds the ‘issuer’, ‘type’, and ‘PKIadded’ fields to𝜓 .𝑡𝑏𝑐.𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑 .

invertible encoding schemes (Θ𝐶 ,Θ𝑆) are detailed, and composed

of different encoding for specific certificate types, making the use

of the certificate-scheme abstraction and this generic construction

essential to understand, analyze and prove security of PKIs.

Definition 6. Let Θ = (Θ𝐶 ,Θ𝑆) be a pair of invertible functions

from sequences of name-value pairs with unique names, to binary

strings, and let S be a signature scheme. The CS,Θ certificate scheme

is defined as:

CS,Θ .KeyGen(1𝑛) ≡ S.KeyGen(1𝑛)
CS,Θ .Certify𝑠𝑘 (𝑡𝑏𝑐) ≡ Θ𝑆 ({(‘𝑡𝑏𝑠’,Θ𝐶 (𝑡𝑏𝑐)), (‘𝜎’,S.Sign𝑠𝑘 (Θ𝐶 (𝑡𝑏𝑐)))})
CS,Θ .Verify𝑝𝑘 (𝜓) ≡ S.Verify𝑝𝑘 (Θ−1𝑆 (𝜓) [‘𝑡𝑏𝑠’],Θ

−1
𝑆
(𝜓) [‘𝜎’])

CS,Θ .Decode𝑝𝑘 (𝜓) ≡ Θ−1
𝐶
(Θ−1
𝑆
(𝜓) [‘𝑡𝑏𝑠’])

Lemma 2. Let S be an existentially-unforgeable signature scheme,

and Θ = (Θ𝐶 ,Θ𝑆) be a pair of invertible functions (from sequences

of name-value pairs with unique names to binary strings). Then

CS,Θ, defined in Definition 6, is an existentially-unforgeable certifi-

cate scheme.

Proof: Direct reduction to the security of S. □

4.2 PKIX (with CRLs)

We now explain the construction of PKIXC , which implements

PKIX and CRL using an underlying certificate scheme C.

Entities and state. In PKIXC , the set N of stateful entities is com-

prised of certificate authorities (CAs) which issue and revoke public

key certificates. Some CAs are root CAs (trust anchors), which

relying parties trust directly (by maintaining their self-signed cer-

tificates in 𝑠𝑡𝑜𝑟𝑒). Other CAs are intermediate CAs, which relying

parties trust based on a certificate chain ending at a root CA. Each

CA maintains a local state st which contains the following infor-

mation:

• st.𝜄 : the identifier of the CA.
• st.𝑠𝑘 : the CA’s secret signing key.

• st.𝑝𝑘 : the CA’s public verification key.

• st.𝐶𝑅𝐿 : the list of all revoked certificates.

• st.Δ𝑟 : CRL’s validity period.

• st.𝑐𝑒𝑟𝑡𝑠 : the set of certificates issued by the CA.

Certificate fields and scheme. PKIXC and CT use the generic certi-

fication scheme CS,Θ of Definition 6, where the encoding schemes

are defined in [45] and the certificate fields listed in Table 2.

Implementation. We now present the PKIX implementation, with

CRLs (Algorithms 7-11), consisting of the operations in Definition 1.

PKIXC .Init (Algorithm 7). The PKIX Init function generates the

CA’s keypair (Line 4) and self-certifies the public key (Line 5). It

initializes the state st of the CA: the CA’s identity st.𝜄, the st.Δ𝑟
parameter (the CRL validity period) from 𝑝𝑎𝑟𝑎𝑚𝑠 , and define the

sets of certificates issued (st.𝑐𝑒𝑟𝑡𝑠) and revoked (st.𝐶𝑅𝐿) by the CA

as empty.

PKIXC .Certify (Algorithm 8). PKIX certifies only public-key

certificates. Hence, the algorithm sets the certificate’s type to ‘public-

key’ (Line 5), and then signs 𝑡𝑏𝑐 using C.Certify(st, 𝑐𝑙𝑘, 𝑡𝑏𝑐) and
the CA’s secret signing key (Line 7). Then, a copy of 𝜓 is stored

locally (Line 8) and the algorithm outputs𝜓 .

10

PKIXC .Revoke (Algorithm 9). The algorithm verifies that the

certificate to be revoked was issued by the CA (Line 1). If so, the

algorithm adds the certificate to the list of revoked cert (Line 2).

PKIXC .VCerts (Algorithm 10). In PKIX, this function simply

returns the set of all certificates in store as well as certificates in

aux, including certificates in chains.

PKIXC .Valid (Algorithm 11). The PKIXC .Valid algorithm en-

sures two main things: (1) the inputted certificate 𝜓 has a valid

chain of certificates from 𝜓 to one of the root CAs, and that (2)

every certificate in the chain (including 𝜓) was not revoked. The

algorithm starts by validating that the inputted certificate 𝜓 has

a type ‘PubKey’ (Line 1). Then, the algorithm verifies that the in-

putted aux parameter contains a chain 𝜉 (Line 5), which contains

a sequence of certificates from𝜓 to𝜓𝑟𝑜𝑜𝑡 (Lines 6-7), and that for

each certificate 𝜉 [𝑘]:

(1) The inputted time 𝑡 is within the validity period of 𝜉 [𝑘]
(Lines 8 and 13), and

(2) 𝜉 [𝑘 + 1] has indeed issued 𝜉 [𝑘] (Lines 7, 9, 12 and 14), and

(3) For 𝜉 [𝑘] from𝜓 to the second-to-last certificate before𝜓𝑟𝑜𝑜𝑡 ,

that 𝜉 [𝑘+1] is a public key certificate (Line 15) for a certificate
authority (Line 16).

To ensure that none of the certificates were revoked (Lines 10

and 17), the algorithm ensures that aux contains a valid CRL𝜓𝐶𝑅𝐿
with valid certificate chain 𝜉𝐶𝑅𝐿 (Line 20) for every certificate 𝜉 [𝑘]
such that:

(1) 𝜓𝐶𝑅𝐿 is a CRL certificate (Line 21), and

(2) 𝜓𝐶𝑅𝐿 has the same issuer as 𝜉 [𝑘] (Line 22), and
(3) The relevant CRL does not contain the serial of 𝜉 [𝑘] (Line 23),

and

(4) That 𝜓𝐶𝑅𝐿 has a valid chain that terminates in a root CA

(Line 24).

If any of the aforementioned checks fail, the algorithm outputs

⊥, otherwise, the certificate is considered valid and therefore, the

algorithm outputs ⊤.

PKIXC .Aux (Algorithm 12). First, the algorithm removes all the

certificates that expired from the current CRL (Line 1). Then, it

generates an updated CRL, i.e., defines data to be certified 𝑡𝑏𝑐 with

CRL type (Line 2), sets the issuer and validity period (Lines 3-5), and

sets the list of revoked certificates (Line 6). Finally, the algorithm

signs 𝑡𝑏𝑐 using C.Certify and the CA’s secret signing key (Line 7)

and outputs the CRL certificate along with the local state (Line 8).

5 SECURITY ANALYSIS

We analyze the security of the three schemes we present (PKIXC ,
CTC,ℎ , and CTwAuditC,ℎ) against the security requirements de-

fined in §3. First, in §5.1, we describe the models assumed by these

protocols, following [21]; we provide the corresponding model pred-

icates in Appendix C. Then, in §5.2, we prove that all three PKIs

satisfy Existential Unforgeability, Accountability and Accountable

Revocation. Lastly, in §5.3 we sum-up the results of the analysis

of Δ-Transparency for CTC,ℎ and CTwAuditC,ℎ ; we present the

complete analysis in Appendix E.

5.1 Model predicates

We reuse the following adversary and clock drift model predicates

defined in [21]:

• The 𝜋F predicate ensures that all benign entities, i.e., not

in T.F, follow the protocol correctly. 𝑇 .F is the set of faulty

entities outputted by the adversary. More precisely, the ad-

versary can view the state, corrupt the state, or corrupt the

output of the entities in 𝑇 .F but not of any other entity.

• The 𝜋DriftΔ𝑐𝑙𝑘
predicate ensures that clock drifts from real time

are bounded by Δ𝑐𝑙𝑘 . We presented it in Algorithm 1 (§3.1).

In addition, we reuse the standard communication model pred-

icate 𝜋ComΔ𝑐𝑜𝑚
, also from [21], which ensures reliable communica-

tion between non-faulty parties, with delays bounded by Δ𝑐𝑜𝑚 .

The 𝜋ComΔ𝑐𝑜𝑚
predicate in [21] ensures that if an operation outputs

a (‘send’,𝑚, 𝑗) triplet, then after at most Δ𝑐𝑜𝑚 , entity 𝑗 would re-

ceive𝑚. Since the CT implementation in §D.1 has several request-

response operations, we used a simpler notation for sending mes-

sages, and make the following small adjustment to the predicate:

(1) Whenever an entity 𝜄 includes in its output a triplet of the

form (𝛼-req,𝜄′,𝑥), where 𝛼-req is one of the request opera-

tions of CT, then, within Δ𝑐𝑜𝑚 , there is an 𝛼-req event at 𝜄′

with input 𝑥 .

(2) Whenever an entity 𝜄′ outputs a pair of the form (𝛼-resp,𝑦) in

the output of an 𝛼-req operation, and this 𝛼-req was invoked

by some entity 𝜄, then, within Δ𝑐𝑜𝑚 , there is an 𝛼-resp event

at 𝜄 with input 𝑦.

The 𝜋 Init model predicate (Algorithm 22) ensures correct initial-

ization of all entities at the beginning of the execution.

The CTC,ℎ PKI requires periodic operations; to support that, we

define the 𝜋WakeAt

Δ𝑐𝑙𝑘 ,Δ𝑤
predicate shown in Algorithm 20. This model

supports waking up at a specified local time (within Δ𝑤) and allows
passing values to the wake-up event

13
; it is likely to be useful

for the analysis of other protocols. According to the predicate, if

(‘WakeAt’, 𝑡, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) is output, 𝑡 is the current local time or later,

and execution did not end too early, then there is a Wakeup event

at the same entity at local time
14

at least 𝑡 and at most 𝑡 +Δ𝑤 , with
input 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 .

Finally, the 𝜋1LogCert model predicate ensures that honest moni-

tors do not receive multiple different log certificates with the same

log identifier as input to the ‘Monitor’ operation (Algorithm 21).

5.2 Analysis of Existential Unforgeability,

Accountability and Accountable Revocation

We first show that the three PKIs satisfy Existential Unforgeability,

Accountability and Accountable ΔRev-Revocation.

Theorem 3. LetC be an existentially-unforgeable certificate scheme
15
.

PKIXC , CTC,ℎ and CTwAuditC,ℎ satisfy the following requirements:

13
The 𝜋

Wake-up

Δ𝑐𝑙𝑘
predicate in [21] supports waking up after a delay (within Δ𝑐𝑙𝑘),

which is not optimal for CTC,ℎ as it could cause gradual drift from the correct period

time. Also, it does not support passing values from the request to the wake-up event.

14
The reason why we use the local time is to keep the model realistic; if we required

the wake-ups to be at real time at least 𝑡 and at most 𝑡 + Δ𝑤 , then entities may be

able to use wake-ups to determine something about the real time, which should not

be possible.

15
From Lemma 2, this is equivalent to the unforgeability of the underlying signature

scheme.

11

• Existential unforgeability, under the 𝜋 Init ∧ 𝜋F model.

• Accountability, under the trivial (always true) model.

• Accountable ΔRev-Revocation, under the 𝜋
Init ∧ 𝜋F ∧ 𝜋

Drift

Δ𝑐𝑙𝑘
model, where ΔRev ≡ Δ𝑐𝑙𝑘 + Δ𝑟 and Δ𝑟 is the CRL validity

period used in PKIXC .

Proof. The proof is identical for the three PKIs; for convenience,

we refer to PKIXC . We show that if each of the three requirements

does not hold, then there is a PPT adversary AC that can forge

C-certificates with non-negligible probability, contradicting the as-

sumption that C is an existentially-unforgeable certificate scheme.

Existential Unforgeability.Assume to the contrary thatPKIXC
does not ensure existential unforgeability. By definition, this means

that there exists a PPT adversary AEUF that satisfies:

Pr

[
𝜋EUF (𝑇) = ⊥, where

𝑇 ← ExecAEUF,PKIXC
(𝑝𝑎𝑟𝑎𝑚𝑠)

]
∉ 𝑁𝑒𝑔𝑙 (|𝑝𝑎𝑟𝑎𝑚𝑠 |) (1)

From Equation (1), with non-negligible probability over the tran-

scripts 𝑇 of executions of PKIXC with AEUF, we have 𝜋EUF (𝑇) =
⊥. Following the implementation of 𝜋EUF (Algorithm 2) and of

PKIXC .VCerts and PKIXC .Valid (Algorithms 10 and 11), the adver-

sary AEUF managed to generate a certificate𝜓0 which is valid for

time 𝑡 , root store store and auxiliary information aux, and yet: (1)

𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 is a benign entity, (2) the PKIXC .Certify operation was

not invoked at the benign issuer𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 with the non-PKIadded

fields of𝜓0 given as input, and (3) the validation of𝜓0 does not use

a fraudulent certificate for the issuer 𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 . In addition, from

PKIXC .Valid we know that𝜓0 .𝑡𝑦𝑝𝑒 =‘PubKey’, since𝜓0 is valid.

We first show that AEUF could not have generated𝜓0 by abus-

ing PKIXC ’s implementation and could not have used C.Certify
(through PKIXC) at𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 to certify 𝑡𝑏𝑐 ← C.Decode(𝜓0). Then,
we complete the proof by showing reduction to the security of C,
i.e., the existence of AEUF means that C is not a secure certificate

scheme.

According to the implementation of PKIXC (Figure 1), the private
key of an entity is generated using C.KeyGen in the PKIXC .Init
operation (Algorithm 7) and stored locally in the state st. Following
𝜋 Init (Algorithm 22), no operation is called before the Init operation
has been called at an entity, and the Init operation is always called

with the correct inputs. Since the MoSS execution process ensures

correctness of the states of benign entities, then following Line 1

of PKIXC .Init, an entity calls C.KeyGen from PKIXC .Init at most

once, the first time that PKIXC .Init is called at the entity. Non-

faulty entities output a self-signed certificate only for a public key

generated by the entity using C.KeyGen in PKIXC .Init, and never

output the corresponding private key. Thus, the adversary did not

have direct access to the private key, and therefore, could not use it

directly to generate𝜓0.

Moreover, the only time the private key is accessed is when used

by the entity to certify information using C.Certify in PKIXC .Init,
PKIXC .Certify and PKIXC .Aux. However, out of these three func-
tions, the only function where a certificate with type ‘PubKey’ is

certified is PKIXC .Certify, and as mentioned earlier, following 𝜋EUF,

we know that PKIXC .Certify was not invoked at the benign issuer

𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 with the non-PKIadded fields of 𝜓0 given as input. Fol-

lowing the implementation of PKIXC .Certify (Algorithm 8), this

implies that AEUF could not have used C.Certify (through PKIXC)
at𝜓0 .𝑖𝑠𝑠𝑢𝑒𝑟 to certify 𝑡𝑏𝑐 ← C.Decode(𝜓0).

Consider an adversary AC that receives as input a public key

𝑝𝑘 and oracle access to C.Certify𝑠𝑘 (·). AC runs AEUF internally

against PKIXC , with the following changes: instead of benign enti-

ties calling C.KeyGen,AC sets (st.𝑠𝑘, st.𝑝𝑘) ← (⊥, 𝑝𝑘), and when-
ever a benign entity calls C.Certify, AC replaces this call with a

call to the oracle. If AEUF succeeds with non-negligible probability

in 𝜋EUF against PKIXC , thenAC also succeeds with non-negligible

probability in the 𝐸𝐶𝐹 game (Algorithm 6), which contradicts the

assumption that C is a secure certificate scheme. □
Accountability. Assume to the contrary that PKIXC does not

ensure accountability. By definition, there exists a PPT adversary

AACC which satisfies:

Pr

[
𝜋ACC (𝑇) = ⊥, where

𝑇 ← ExecAACC,PKIXC
(𝑝𝑎𝑟𝑎𝑚𝑠)

]
∉ 𝑁𝑒𝑔𝑙 (|𝑝𝑎𝑟𝑎𝑚𝑠 |) (2)

From Equation (2), with non-negligible probability over the tran-

scripts𝑇 of executions of PKIXC withAACC, 𝜋ACC (𝑇) = ⊥. Follow-
ing 𝜋ACC (Algorithm 3) and the implementation of PKIXC .VCerts
and PKIXC .Valid (Algorithms 10 and 11), the adversaryAACC man-

aged to generate a certificate𝜓0 which is valid for time 𝑡 , root store

store and auxiliary information aux with type ‘PubKey’, and yet,

the output of P .VCerts for𝜓0, 𝑡 , store, and aux includes no bad root
certificate, no root certificate which is accountable for a valid bad

certificate among the certificates in the output of P .VCerts, and no
root certificate which is accountable for𝜓0.

We first show that PKIXC ’s implementation will not classify a

certificate as valid unless there is a corresponding certificate chain,

and then complete the proof by showing reduction to the security of

C, i.e., the existence ofAACC means that C is not a secure certificate

scheme.

Line 2 in PKIXC .Valid requires that there exists a root certifi-

cate 𝜓𝑟𝑜𝑜𝑡 in store such that ExistsValidChain(𝜓0, 𝑡,𝜓𝑟𝑜𝑜𝑡 , aux)
(Lines 4-18) is true. This means that there exists an acceptable chain

𝜉 of certificates based on aux and store from𝜓0 to𝜓𝑟𝑜𝑜𝑡 . For such

a chain 𝜉 = 𝜓0 −𝜓1 − . . . −𝜓𝑟 , PKIXC .Valid ensures the following:

(1) Line 2 ensures that 𝜓𝑟 ∈ store, (2) Lines 7 and 12 ensure that

(∀𝑖 < 𝑟)𝜓𝑖 .𝑖𝑠𝑠𝑢𝑒𝑟 = 𝜓𝑖+1 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , (3) Lines 9 and 14 ensure that

(∀𝑖 > 0)C.Verify𝜓𝑖 .𝑝𝑘 (𝜓𝑖−1) = ⊤, and (4) the implementation of

ExistsValidChain ensures that if PKIXC .Valid(𝜓0, 𝑡,𝜓𝑟𝑜𝑜𝑡 , aux) =
⊤ then (∀𝑖 < 𝑟)PKIXC .Valid(𝜓𝑖 , 𝑡, store, aux) = ⊤. Further, since
PKIXC .VCerts outputs the union of all certificates in store and aux,

surely every certificate in 𝜉 is in the set returned by PKIXC .VCerts.
Consider the certificates in the chain 𝜉 = 𝜓0 − 𝜓1 − . . . − 𝜓𝑟

described above. All of the certificates in 𝜉 are in the output of

PKIXC .VCerts(𝜓0, 𝑡, store, aux), all except for 𝜓𝑟 are valid certifi-

cates, and 𝜓𝑟 is in store. Since 𝜋ACC (𝑇) = ⊥, then 𝜓𝑟 is not a bad
certificate (i.e., 𝜓𝑟 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 is a benign entity and 𝜓𝑟 .𝑝𝑘 was self-

certified by 𝜓𝑟 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡). We will show that for some certificate

𝜓𝑖 ∈ {𝜓𝑟−1, . . .𝜓1} such that 𝜓𝑖+1 .𝑝𝑘 belongs to a benign entity,

AACC forged𝜓𝑖 such that𝜓𝑖 is valid w.r.t.𝜓𝑖+1 .𝑝𝑘 . For contradic-
tion, assume that this is not the case. Let𝜓 𝑗 be the ‘lowest’ certificate

in 𝜉 before the first bad certificate, i.e., none of {𝜓𝑟 , . . .𝜓 𝑗 } is a bad
certificate. If none of the certificates in 𝜉 is a bad certificate, then

let𝜓 𝑗 = 𝜓0.

12

All of the certificates {𝜓𝑟−1, . . .𝜓 𝑗 } are valid, none of them is

a bad certificate (so ∀𝜓𝑖 ∈ {𝜓𝑟−1, . . .𝜓 𝑗 },𝜓𝑖 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 is benign and

𝜓𝑖 .𝑝𝑘 was self-certified by𝜓𝑖 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡), and from PKIXC .Valid, (∀𝑖 >
0)C.Verify𝜓𝑖 .𝑝𝑘 (𝜓𝑖−1) = ⊤. From the implementation of PKIXC
(Figure 1), AACC could not have abused PKIXC to obtain any valid

certificate certified using a private key of a benign entity although

the PKIXC .Certify operation (Algorithm 8) was not used at the be-

nign entity to certify the non-PKIadded fields of the certificate. Since

none of the certificates {𝜓𝑟−1, . . .𝜓 𝑗 } is a bad certificate, then for ev-
ery certificate𝜓𝑖 ∈ {𝜓𝑟−1, . . .𝜓1},𝜓𝑖+1 .𝑝𝑘 belongs to a benign entity.
We assumed thatAACC did not forge certificate𝜓𝑖 ∈ {𝜓𝑟−1, . . .𝜓1}
such that 𝜓𝑖+1 .𝑝𝑘 belongs to a benign entity such that 𝜓𝑖 is valid

w.r.t.𝜓𝑖+1 .𝑝𝑘 .
If 𝑗 > 0 and 𝜓 𝑗−1 is a valid bad certificate, then it follows that

for all 𝑖 ≥ 𝑗 , the PKIXC .Certify operation was used at 𝜓𝑖 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡

to certify the non-PKIadded fields of 𝜓𝑖−1, which implies that 𝜓𝑟
is accountable for 𝜓 𝑗−1. Thus, 𝜓𝑟 is accountable for a valid bad

certificate from the output of PKIXC .VCerts(𝜓0, 𝑡, store, aux), which
contradicts the assumption that 𝜋ACC (𝑇) = ⊥. If 𝑗 = 0, then it

follows that for all 𝑖 > 0, the PKIXC .Certify operation was used at

𝜓𝑖 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 to certify the non-PKIadded fields of𝜓𝑖−1, which implies

that𝜓𝑟 is accountable for𝜓0. This also contradicts the assumption

that 𝜋ACC (𝑇) = ⊥.
Therefore, for some valid certificate𝜓𝑖 ∈ {𝜓𝑟−1, . . .𝜓1} such that

𝜓𝑖+1 .𝑝𝑘 belongs to a benign entity, AACC forged𝜓𝑖 such that𝜓𝑖 is

valid w.r.t.𝜓𝑖+1 .𝑝𝑘 .
Following similar reasoning to the proof of Existential Unforge-

ability for PKIXC , it follows that there exists an adversary AC
which runsAACC internally against PKIXC such that ifAACC suc-

ceeds with non-negligible probability in 𝜋ACC against PKIXC , then
AC also succeeds with non-negligible probability in the 𝐸𝐶𝐹 game

(Algorithm 6), which contradicts the assumption that C is a secure

certificate scheme. □
Accountable ΔRev-Revocation. Let ΔRev = Δ𝑐𝑙𝑘 + Δ𝑟 . Assume

to the contrary that PKIXC does not ensure Accountable ΔRev-

Revocation. By definition, this means that there exists a PPT adver-

sary ARev that satisfies:

Pr

[
𝜋AccRevΔRev

(𝑇) = ⊥, where
𝑇 ← ExecARev,PKIXC

(𝑝𝑎𝑟𝑎𝑚𝑠)

]
∉ 𝑁𝑒𝑔𝑙 (|𝑝𝑎𝑟𝑎𝑚𝑠 |) (3)

From Equation (3) and following the 𝜋AccRevΔ predicate (in Defini-

tion 3), with non-negligible probability over the transcripts𝑇 of ex-

ecutions of PKIXC withARev, we have 𝑓
Rev
ΔRev
(𝑇) ∉ {‘G’, ‘A’}, where

the 𝑓 RevΔ function is defined in Algorithm 4. Following the 𝑓 RevΔ
function, this means that the adversary ARev can output values

(𝜓, 𝑡, store, aux) such that PKIXC .Valid(𝜓, 𝑡, store, aux) = ⊤, even
though 𝜓 was certified by its benign issuer 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 and was re-

voked at least ΔRev before 𝑡 by𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 , and there is no fraudulent

certificate that can be blamed for this discrepancy.

We first consider the validation of𝜓 by PKIXC .Valid. We see that

𝜓 is valid if there is some root certificate 𝜓𝑟𝑜𝑜𝑡 ∈ store such that

there is a valid certificate chain from𝜓 to𝜓𝑟𝑜𝑜𝑡 . This is validated

by ExistsValidChain, which searches aux for a chain 𝜉 ∈ aux,

where for some 𝑖 holds 𝜉 [𝑖] = 𝜓 . In Lines 6-17, ExistsValidChain

performs several checks for 𝜉 [𝑖] (and the rest of the relevant part

of 𝜉). In particular, Line 13 checks that 𝑡 ∈ [𝜓 .𝑓 𝑟𝑜𝑚,𝜓 .𝑡𝑜] and

Line 17 calls CertIsNotRevoked to verify that aux also contains

a valid CRL certificate 𝜓𝐶𝑅𝐿 with 𝜓𝐶𝑅𝐿 .𝑡𝑦𝑝𝑒 = ‘CRL’, where 𝜓

is not listed as revoked (𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 ∉ 𝜓𝐶𝑅𝐿 .𝐶𝑅𝐿). In Line 24, we

check that the CRL has a valid certificate chain by calling recur-

sively ExistsValidChain, which then confirms, in Line 13, that

𝑡 ∈ [𝜓𝐶𝑅𝐿 .𝑓 𝑟𝑜𝑚,𝜓𝐶𝑅𝐿 .𝑡𝑜].
Following PKIXC .Revoke (Algorithm 9), we next observe that

once a certificate𝜓 is revoked at its benign issuer using operation

PKIXC .Revoke, then the serial number,𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 , is added to st.𝐶𝑅𝐿.
There is no operation which removes entries from st.𝐶𝑅𝐿 until the

entries are expired (i.e., if𝜓 .𝑡𝑜 < 𝑐𝑙𝑘 , then PKIXC .Revoke removes

𝜓 from st.𝐶𝑅𝐿). Furthermore, in any future call to PKIXC .Aux (Algo-
rithm 12), if 𝑐𝑙𝑘 ≤ 𝜓 .𝑡𝑜 , then the contents of st.𝐶𝑅𝐿 will include the
serial number𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 and will be certified in𝜓𝐶𝑅𝐿 .𝐶𝑅𝐿 together

with the current value of 𝑐𝑙𝑘 as 𝜓𝐶𝑅𝐿 .𝑓 𝑟𝑜𝑚 (Line 4) and 𝑐𝑙𝑘 + Δ𝑟
as𝜓𝐶𝑅𝐿 .𝑡𝑜 (Line 5).

Let 𝑡𝑅 be the (real) timewhen𝜓 was revoked at𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 . From the

clock-drift model 𝜋DriftΔ𝑐𝑙𝑘
(Algorithm 1), if PKIXC .Aux was invoked

before 𝑡𝑅 to generate𝜓𝐶𝑅𝐿 which does not include𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 (since

𝜓 was not revoked yet), then 𝑐𝑙𝑘 is less than 𝑡𝑅 + Δ𝑐𝑙𝑘 , so𝜓𝐶𝑅𝐿 .𝑡𝑜
is less than 𝑡𝑅 + Δ𝑐𝑙𝑘 + Δ𝑟 . This implies that any such ‘old’ CRL

certificate would be expired at time 𝑡 ≥ 𝑡𝑅 + Δ𝑐𝑙𝑘 + Δ𝑟 , i.e., 𝑡 ∉

[𝜓𝐶𝑅𝐿 .𝑓 𝑟𝑜𝑚,𝜓𝐶𝑅𝐿 .𝑡𝑜] so this𝜓𝐶𝑅𝐿 could not be used to validate𝜓

in PKIXC .Valid.
On the other hand, if PKIXC .Aux is invoked after time 𝑡𝑅 to gener-

ate𝜓𝐶𝑅𝐿 , then there are two cases: either 𝑐𝑙𝑘 ≤ 𝜓 .𝑡𝑜 or 𝑐𝑙𝑘 > 𝜓 .𝑡𝑜 .

In the first case, if 𝑐𝑙𝑘 ≤ 𝜓 .𝑡𝑜 , then 𝜓𝐶𝑅𝐿 will include 𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 ,

i.e., 𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 ∈ 𝜓𝐶𝑅𝐿 .𝐶𝑅𝐿, so this 𝜓𝐶𝑅𝐿 could not be used to val-

idate 𝜓 in PKIXC .Valid. In the second case, if 𝑐𝑙𝑘 > 𝜓 .𝑡𝑜 , then

𝜓𝐶𝑅𝐿 .𝑓 𝑟𝑜𝑚 > 𝜓 .𝑡𝑜 . This implies that for any 𝑡 , if 𝑡 is in the validity

period of𝜓 , i.e., 𝑡 ∈ [𝜓 .𝑓 𝑟𝑜𝑚,𝜓 .𝑡𝑜], then 𝑡 is less than𝜓𝐶𝑅𝐿 .𝑓 𝑟𝑜𝑚,

so 𝑡 ∉ [𝜓𝐶𝑅𝐿 .𝑓 𝑟𝑜𝑚,𝜓𝐶𝑅𝐿 .𝑡𝑜]. Therefore, this 𝜓𝐶𝑅𝐿 also could not

be used to validate𝜓 in PKIXC .Valid.
Thus, there is no way to obtain a CRL certificate𝜓𝐶𝑅𝐿 from the

benign entity 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 using PKIXC .Aux such that 𝜓𝐶𝑅𝐿 could be

used to validate 𝜓 in PKIXC .Valid w.r.t. a time 𝑡 ≥ 𝑡𝑅 + Δ𝑐𝑙𝑘 + Δ𝑟 .
Yet, according to Lines 20-24 in PKIXC .Valid, there is such a certifi-

cate𝜓𝐶𝑅𝐿 which furthermore has a valid certificate chain rooted at

𝜓𝑟𝑜𝑜𝑡 . This leaves us with three possibilities: (1) the adversary got

the benign entity 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 to certify 𝜓𝐶𝑅𝐿 with its private key in

some operation other than PKIXC .Aux; (2)𝜓𝐶𝑅𝐿 was not validated

using a public key belonging to𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 ; or (3) the adversary forged

𝜓𝐶𝑅𝐿 such that it validates correctly using a public key belonging

to 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 , even though the adversary did not know the private

key of 𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 . The first case is not possible, because according

to the implementation of PKIXC , certificates with type ‘CRL’ are

only certified with the entity’s private key in the PKIXC .Aux oper-
ation. The second case would imply that PKIXC .VCerts includes a
fraudulent certificate, which is not the case according to 𝜋AccRevΔRev

(see Line 4 in the 𝑓 RevΔ function). Consequently, ARev must have

forged𝜓𝐶𝑅𝐿 .

It follows that there exists an adversary AC which runs ARev
internally against PKIXC such that if ARev succeeds with non-

negligible probability in 𝜋AccRevΔRev
against PKIXC , then AC also

13

succeeds with non-negligible probability in the 𝐸𝐶𝐹 game (Al-

gorithm 6), which contradicts the assumption that C is a secure

certificate scheme.

□

5.3 Analysis of Transparency

We now provide an overview of the main results of our analysis of

CTC,ℎ and CTwAuditC,ℎ . The proofs and details are in Appendix E.

5.3.1 CTC,ℎ ensures HL ΔTra-Transparency.

Theorem 4. Let C be an existentially-unforgeable certificate scheme

andℎ be a collision-resistant hash. Denote ΔTra ≡ 6·Δ𝑐𝑙𝑘 +2·Δ𝑀𝑀𝐷 +
2 · Δ𝑤 + 5 · Δ𝑐𝑜𝑚 . Then, CTC,ℎ satisfies the HL ΔTra-Transparency

requirement under model predicate:

𝜋 Init ∧ 𝜋F ∧ 𝜋1LogCert ∧ 𝜋
Drift

Δ𝑐𝑙𝑘
∧ 𝜋ComΔ𝑐𝑜𝑚

∧ 𝜋WakeAt

Δ𝑐𝑙𝑘 ,Δ𝑤
(4)

Proof. See Appendix E.1. □

5.3.2 CTC,ℎ does not ensure Guaranteed Δ-Transparency or Audited
Δ-Transparency.
Theorem 5. Let C be a secure certificate scheme and ℎ be a collision-

resistant hash, and let Δ be any finite delay. Then, CTC,ℎ does not

satisfy the Guaranteed Δ-Transparency requirement or the Audited

Δ-Transparency requirement under the model predicate of Equation 4.

Proof. See Appendix E.2. □

5.3.3 CTwAuditC,ℎ ensures Audited Δaud

Tra -Transparency.

Theorem 6. Let C be an existentially-unforgeable certificate scheme

and ℎ be a collision-resistant hash. Denote Δaud

Tra ≡ 7 · Δ𝑐𝑙𝑘 + 2 ·
Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 5 · Δ𝑐𝑜𝑚 , where Δ𝑀𝑀𝐷 is the maximal merge

delay. Then, CTwAuditC,ℎ satisfies the Audited Δaud

Tra -Transparency

requirement under the model predicate of Equation 4.

Proof. See Appendix E.3. □

6 CONCLUSIONS AND FUTUREWORK

PKI provides the foundation for the security of many deployed,

critical distributed systems, in particular, the web and other applica-

tions using TLS, software signing, email security, and more. In spite

of that, this work is the first to define security specifications for

realistic PKI systems, supporting revocation, transitive trust (typi-

cally, certificate chains) and transparency, and considering realistic

models allowing for corruptions, clock drift, delays and more.

A possible reason for this fundamental security infrastructure

to remain without precise specifications and analysis may be that

defining the requirements is tricky; they appear ‘obvious’ yet are

hard to clearly define.

We applied our specifications to analyze the security of the two

predominant PKI systems: PKIX and CT, as well as CTwAuditC,ℎ , a
variant of CT implemented in the Chrome browser. Our analysis

exposed several subtle issues with these systems, related to revoca-

tion and transparency. Due to these issues, the systems satisfy only

relaxed variants of revocation and transparency.

This work makes only the first steps toward provable security of

PKI schemes. Much work remains, including design and analysis

of PKIs that will meet the stronger revocation and transparency

requirements; formally defining other PKI schemes for the entire

ecosystem (including browser specific implementations) and apply-

ing our specifications to such schemes; extending our specifications

for non-certificate PKIs (e.g., [39]) or to additional properties (e.g.,

privacy, non-equivocation); and showing similar specifications and

proofs under UC [8] or another framework allowing compositions

of protocols. We also hope that similar specifications and analy-

sis can be applied to other applied cryptographic protocols, e.g.,

blockchains.

REFERENCES

[1] European Telecommunications Standards Institute (ETSI). [n. d.] https://www

.etsi.org/. ().

[2] Hadi Asghari, Michel Van Eeten, Axel Arnbak, and Nico ANM van Eijk. 2013.

Security Economics in the HTTPS Value Chain. In Twelfth Workshop on the

Economics of Information Security (WEIS 2013), Washington, DC.

[3] Louise Axon andMichael Goldsmith. 2017. PB-PKI: A Privacy-aware Blockchain-

based PKI. In SECRYPT.

[4] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse,

and Pawel Szalachowski. 2014. ARPKI: Attack Resilient Public-Key Infrastruc-

ture. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 382–393.

[5] Alexandra Boldyreva, Marc Fischlin, Adriana Palacio, and Bogdan Warinschi.

2007. A Closer Look at PKI: Security and Efficiency. In International Workshop

on Public Key Cryptography. Springer, 458–475.

[6] Johannes Braun. 2015. Maintaining Security and Trust in Large Scale Public Key

Infrastructures. Ph.D. Dissertation. Technische Universität.

[7] Johannes Braun, Franziskus Kiefer, and Andreas Hülsing. 2013. Revocation &

Non-Repudiation: When the first destroys the latter. In European Public Key

Infrastructure Workshop. Springer, 31–46.

[8] Ran Canetti. 2020. Universally composable security. Journal of the ACM (JACM),

67, 5, 1–94.

[9] Ran Canetti, Daniel Shahaf, and Margarita Vald. 2016. Universally Composable

Authentication andKey-exchangewithGlobal PKI. In Public-Key Cryptography–

PKC 2016. Springer, 265–296.

[10] BLUE BOOK CCITT. 1988. Recommendations X. 509 and ISO 9594-8. Infor-

mation Processing Systems-OSI-The Directory Authentication Framework

(Geneva: CCITT). (1988).

[11] Melissa Chase and Sarah Meiklejohn. 2016. Transparency Overlays and Appli-

cations. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 168–179.

[12] Council of European Union. 2021. Com/2021/281, Revision of the eIDAS Regu-

lation - European Digital Identity (EUid). (2021).

[13] Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila. 2016.

Secure Logging Schemes and Certificate Transparency. In European Symposium

on Research in Computer Security. Springer, 140–158.

[14] John Dyer. 2015. China Accused of Doling Out Counterfeit Digital Certificates

in ‘Serious’ Web Security Breach. VICE News. (Apr. 2015).

[15] Peter Eckersley. 2012. Sovereign Key Cryptography for Internet Domains.

https://git.eff .org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt

;hb=HEAD. (2012).

[16] Electronic Frontier Foundation (EFF). [n. d.] The EFF SSL Observatory. Re-

trieved May 30, 2019 from https://www.eff .org/observatory.

[17] Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. 2014. A Decen-

tralized Public Key Infrastructure with Identity Retention. IACR Cryptology

ePrint Archive, 2014, 803.

[18] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and

Jörg Schwenk. 2008. Universally Composable Security Analysis of TLS. In

International Conference on Provable Security. Springer, 313–327.

[19] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic Encryption. Journal of

Computer and System Sciences, 28, 2, 270–299.

[20] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. 1988. A digital signature

scheme secure against adaptive chosen-message attacks. SIAM Journal on

computing, 17, 2, 281–308.

[21] Amir Herzberg, Hemi Leibowitz, Ewa Syta, and Sara Wrótniak. 2021. MoSS:

Modular Security Specifications framework. In CRYPTO’ 2021. Full version at:

https://eprint.iacr.org/2020/1040, 33–63.

[22] Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor, and Yiftach Ravid. 2000. Ac-

cess Control Meets Public Key Infrastructure, Or: Assigning Roles to Strangers.

In Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000. IEEE,

2–14.

[23] P. Hoffman, M. Blanchet, E. Lafon, Y. Galand, C. Elphick, and M. Moeller. 2002.

International organization for standardization, information technology - asn.1 -

basic encoding rules (ber). In ITU-T Recommendation X.690 | ISO/IEC 8825-1:2002.

Also covers DER, 1–105.

14

https://www.etsi.org/
https://www.etsi.org/
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://www.eff.org/observatory
https://eprint.iacr.org/2020/1040

[24] Jacob Hoffman-Andrews. 2023. Article 45 Will Roll Back Web Security by 12

Years. ACLU. https://www.eff .org/deeplinks/2023/11/article-45-will-roll-back-

web-security-12-years. (Nov. 2023).

[25] Joel Hruska. 2015. Apple, Microsoft buck trend, refuse to block unauthorized

Chinese root certificates. ExtremeTech. (Apr. 2015).

[26] Jingwei Huang and David M Nicol. 2017. An anatomy of trust in public key

infrastructure. International Journal of Critical Infrastructures, 13, 2-3, 238–258.

[27] Google LLC Joe DeBlasio. [n. d.] Opt-out SCT Auditing in Chrome. Other.

https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3n

KSYyEb77YsM7TMZGE/. ().

[28] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and

Virgil Gligor. 2013. Accountable Key Infrastructure (AKI): A Proposal for a

Public-Key Validation Infrastructure. In Proceedings of the 22nd international

conference on World Wide Web. ACM, 679–690.

[29] Loren M Kohnfelder. 1978. Towards a practical public-key cryptosystem. Ph.D.

Dissertation. Massachusetts Institute of Technology.

[30] Murat Yasin Kubilay, Mehmet Sabir Kiraz, and Haci Ali Mantar. 2018. Cer-

tLedger: A new PKI model with Certificate Transparency based on blockchain.

arXiv preprint arXiv:1806.03914.

[31] Ben Laurie. 2014. Certificate transparency. Communications of the ACM, 57, 10,

40–46.

[32] Ben Laurie and Emilia Kasper. 2012. Revocation Transparency. Google Research,

September.

[33] Dimitrios Lekkas. 2003. Establishing and managing trust within the Public Key

Infrastructure. Computer Communications, 26, 16, 1815–1825.

[34] Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Qi Li, Jiwu Jing, and

CongliWang. 2019. Certificate transparency in thewild: exploring the reliability

of monitors. In Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security, 2505–2520.

[35] John Marchesini and Sean Smith. 2005. Modeling Public Key Infrastructure

in the Real World. In European Public Key Infrastructure Workshop. Springer,

118–134.

[36] Stephanos Matsumoto and Raphael M Reischuk. 2017. IKP: Turning a PKI

Around with Decentralized Automated Incentives. In Security and Privacy (SP),

2017 IEEE Symposium on. IEEE, 410–426.

[37] Ueli Maurer. 1996. Modelling a Public-Key Infrastructure. In European Sympo-

sium on Research in Computer Security. Springer, 325–350.

[38] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and

Michael J Freedman. 2015. CONIKS: Bringing Key Transparency to End Users.

In USENIX Security Symposium, 383–398.

[39] [n. d.] Namecoin. (). https://www.namecoin.org/.

[40] Scientists Organisations and Researchers as signed. 2023. Joint statement of

scientists and NGOs on the EU’s proposed eIDAS reform. Other. https://nce.m

pi-sp.org/index.php/s/cG88cptFdaDNyRr. (Nov. 2023).

[41] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. 1999.

SPKI Certificate Theory. RFC 2693 (Experimental). RFC. Fremont, CA, USA:

RFC Editor, (Sept. 1999). doi: 10.17487/RFC2693.

[42] R. Housley, W. Polk, W. Ford, and D. Solo. 2002. Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC

3280 (Proposed Standard). RFC. Obsoleted by RFC 5280, updated by RFCs 4325,

4630. Fremont, CA, USA: RFC Editor, (Apr. 2002). doi: 10.17487/RFC3280.

[43] J. Jonsson and B. Kaliski. 2003. Public-Key Cryptography Standards (PKCS)

#1: RSA Cryptography Specifications Version 2.1. RFC 3447 (Informational).

RFC. Obsoleted by RFC 8017. Fremont, CA, USA: RFC Editor, (Feb. 2003). doi:

10.17487/RFC3447.

[44] M. Lepinski and S. Kent. 2008. Additional Diffie-Hellman Groups for Use with

IETF Standards. RFC 5114 (Informational). RFC. Fremont, CA, USA: RFC Editor,

(Jan. 2008). doi: 10.17487/RFC5114.

[45] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile. RFC 5280 (Proposed Standard). RFC. Updated by RFCs 6818,

8398, 8399. Fremont, CA, USA: RFC Editor, (May 2008). doi: 10.17487/RFC5280.

[46] M. Lepinski and S. Kent. 2012. An Infrastructure to Support Secure Internet

Routing. RFC 6480 (Informational). RFC. Fremont, CA, USA: RFC Editor, (Feb.

2012). doi: 10.17487/RFC6480.

[47] B. Laurie, A. Langley, and E. Kasper. 2013. Certificate Transparency. RFC 6962

(Experimental). RFC. Obsoleted by RFC 9162. Fremont, CA, USA: RFC Editor,

(June 2013). doi: 10.17487/RFC6962.

[48] S. Josefsson and S. Leonard. 2015. Textual Encodings of PKIX, PKCS, and CMS

Structures. RFC 7468 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor,

(Apr. 2015). doi: 10.17487/RFC7468.

[49] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, (Aug. 2018).

doi: 10.17487/RFC8446.

[50] B. Laurie, E. Messeri, and R. Stradling. 2021. Certificate Transparency Version

2.0. RFC 9162 (Experimental). RFC. Fremont, CA, USA: RFC Editor, (Dec. 2021).

doi: 10.17487/RFC9162.

[51] Steven B Roosa and Stephen Schultze. 2010. The "Certificate Authority" Trust

Model for SSL: A Defective Foundation for Encrypted Web Traffic and a Legal

Quagmire. Intellectual property & technology law journal, 22, 11, 3.

[52] Mark Dermot Ryan. 2014. Enhanced certificate transparency and end-to-end

encrypted mail. In NDSS.

[53] Wazan Ahmad Samer, Laborde Romain, Barrere Francois, and Benzekri Ab-

delMalek. 2011. A formal model of trust for calculating the quality of X. 509

certificate. Security and Communication Networks, 4, 6, 651–665.

[54] Nicolas Serrano, Hilda Hadan, and Jean L. Camp. 2019. A complete study of P.K.I.

(PKI’s Known Incidents). Available at SSRN, https://ssrn.com/abstract=3425554.

(July 2019).

[55] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, and Bryan Ford.

2015. Certificate Cothority: Towards Trustworthy Collective CAs. Hot Topics

in Privacy Enhancing Technologies (HotPETs), 7.

[56] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,

Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. 2016. Keeping

Authorities “Honest or Bust” with DecentralizedWitness Cosigning. In Security

and Privacy (SP), 2016 IEEE Symposium on. Ieee, 526–545.

[57] Pawel Szalachowski, Stephanos Matsumoto, and Adrian Perrig. 2014. PoliCert:

Secure and Flexible TLS Certificate Management. In Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security. ACM,

406–417.

[58] Alin Tomescu and Srinivas Devadas. 2017. Catena: Efficient Non-equivocation

via Bitcoin. In 2017 38th IEEE Symposium on Security and Privacy (SP). IEEE,

393–409.

[59] Dan Wendlandt, David G Andersen, and Adrian Perrig. 2008. Perspectives:

Improving SSH-style Host Authentication with Multi-Path Probing. In USENIX

Annual Technical Conference. Vol. 8, 321–334.

[60] Wikipedia contributors. 2021. Diginotar — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/w/index.php?title=DigiNotar&oldid=1036090956.

[Online; accessed 7-August-2021]. (2021).

[61] Jiangshan Yu, Vincent Cheval, and Mark Ryan. 2016. DTKI: A New Formalized

PKI with Verifiable Trusted Parties. The Computer Journal, 59, 11, 1695–1713.

[62] Michelle Zhou, Prithvi Bisht, and VN Venkatakrishnan. 2011. Strengthening

XSRF Defenses for Legacy Web Applications Using Whitebox Analysis and

Transformation. In Information Systems Security. Springer, 96–110.

15

https://www.eff.org/deeplinks/2023/11/article-45-will-roll-back-web-security-12-years
https://www.eff.org/deeplinks/2023/11/article-45-will-roll-back-web-security-12-years
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/
https://www.namecoin.org/
https://nce.mpi-sp.org/index.php/s/cG88cptFdaDNyRr
https://nce.mpi-sp.org/index.php/s/cG88cptFdaDNyRr
https://doi.org/10.17487/RFC2693
https://doi.org/10.17487/RFC3280
https://doi.org/10.17487/RFC3447
https://doi.org/10.17487/RFC5114
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC6480
https://doi.org/10.17487/RFC6962
https://doi.org/10.17487/RFC7468
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC9162
https://ssrn.com/abstract=3425554
https://en.wikipedia.org/w/index.php?title=DigiNotar&oldid=1036090956

Algorithm 7 PKIXC .Init: initialization
Input: local state st, local clock 𝑐𝑙𝑘 and parameters 𝑝𝑎𝑟𝑎𝑚𝑠 , including identifier

𝑝𝑎𝑟𝑎𝑚𝑠.𝜄, security parameter 𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑙𝑜𝑏𝑎𝑙 .1𝜅 , and acceptable revocation delay

𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑙𝑜𝑏𝑎𝑙 .Δ𝑟 .

Output: updated state and self-signed certificate𝜓 .

procedure PKIXC .Init (st, 𝑐𝑙𝑘, 𝑝𝑎𝑟𝑎𝑚𝑠)

1: if st ≠ ⊥ then return (st,⊥) ⊲ Do not initialize non-empty state

2: st.Δ𝑟 ← 𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑙𝑜𝑏𝑎𝑙 .Δ𝑟 ⊲ Save CRL interval Δ𝑟

3: st.𝜄 ← 𝑝𝑎𝑟𝑎𝑚𝑠.𝜄 ⊲ Save identity (𝜄)

4: (st.𝑠𝑘, st.𝑝𝑘) ← C.KeyGen(𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑙𝑜𝑏𝑎𝑙 .1𝜅) ⊲ Generate signature key pair

5: 𝑡𝑏𝑐 ←

(‘pk’, st.𝑝𝑘), (‘type’, ‘SelfCert’),
(‘issuer’, st.𝜄), (‘subject’, st.𝜄)

6: 𝜓 ← C.Certifyst.𝑠𝑘 (𝑡𝑏𝑐) ⊲ Certify a self-signed certificate

7: (st.𝑐𝑒𝑟𝑡𝑠, st.𝐶𝑅𝐿) ← ⊥ ⊲ Init both sets as empty

8: return (st, (‘SelfCert’,𝜓))
end procedure

Algorithm 8 PKIXC .Certify: certificate issuance
Input: local state st, local clock 𝑐𝑙𝑘 and data to be certified 𝑡𝑏𝑐 .

Output: updated state and and certificate𝜓 .

procedure PKIXC .Certify (st, 𝑐𝑙𝑘, 𝑡𝑏𝑐)

1: if 𝑡𝑏𝑐.𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = st.𝜄 then return (st,⊥) ⊲ Self-signed cert only from ‘Init’!

2: if 𝑡𝑏𝑐.𝑡𝑦𝑝𝑒 ∈ {‘SelfCert’, ‘CRL’} then return (st,⊥) ⊲ Type cannot be ‘SelfCert’ or ‘CRL’!
3: if 𝑡𝑏𝑐.𝑠𝑒𝑟𝑖𝑎𝑙 = ⊥ then return (st,⊥) ⊲ Serial number must be nonempty!

4: 𝑡𝑏𝑐.𝑖𝑠𝑠𝑢𝑒𝑟 ← st.𝜄 ⊲ Set issuer field

5: if 𝑡𝑏𝑐.𝑡𝑦𝑝𝑒 = ⊥ then 𝑡𝑏𝑐.𝑡𝑦𝑝𝑒 ← ‘PubKey’ ⊲ Default type is ‘PubKey’

6: 𝑡𝑏𝑐.𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑 += {‘issuer’, ‘type’, ‘PKIadded’} ⊲ Set PKIadded field

7: 𝜓 ← C.Certifyst.𝑠𝑘 (𝑡𝑏𝑐) ⊲ Issue certificate

8: st.𝑐𝑒𝑟𝑡𝑠 +=𝜓 ⊲ Store locally

9: return (st,𝜓)
end procedure

Algorithm 9 PKIXC .Revoke: certificate revocation
Input: local state st, local clock 𝑐𝑙𝑘 and certificate𝜓 .

Output: updated state, ⊤ if revocation completed successfully, and ⊥ otherwise.

procedure PKIXC .Revoke (st, 𝑐𝑙𝑘,𝜓)

1: if 𝜓 ∈ st.𝑐𝑒𝑟𝑡𝑠 ∧ 𝜓 .𝑡𝑜 ≥ 𝑐𝑙𝑘 then ⊲𝜓 was issued by this CA and is not expired

2: st.𝐶𝑅𝐿 +=𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 ⊲ Add to local CRL

3: return (st,⊤) ⊲𝜓 revoked successfully

4: end if

5: return (st,⊥) ⊲ Failure

end procedure

Algorithm 10 PKIXC .VCerts: output certificates used for validation
Input: certificate𝜓 , time 𝑡 , root store store and auxiliary information aux.

Output: a set of certificates {𝜓𝑖 }.
procedure PKIXC .VCerts(𝜓, 𝑡, store, aux)

1: return store ∪ {𝜓 ′ | ∃𝜉 ∈ aux s.t.𝜓 ′ ∈ 𝜉 }
end procedure

Algorithm 11 PKIXC .Valid: certificate validation
Input: certificate𝜓 , time 𝑡 , root store store and auxiliary information aux.

Output: ⊤ if𝜓 is a valid certificate, and ⊥ otherwise.

procedure PKIXC .Valid(𝜓, 𝑡, store, aux)

1: if 𝜓 .𝑡𝑦𝑝𝑒 ≠ ‘PubKey’ then return ⊥ ⊲ Non-‘PubKey’ invalid

2: if ∃𝜓𝑟𝑜𝑜𝑡 ∈ store s.t. ExistsValidChain(𝜓, 𝑡,𝜓𝑟𝑜𝑜𝑡 , aux) then return ⊤ ⊲ Valid chain

3: return ⊥ ⊲ Otherwise,𝜓 is invalid

end procedure

4: procedure ExistsValidChain(𝜓 ′, 𝑡,𝜓𝑟𝑜𝑜𝑡 , aux)

5: return ∃𝜉 ∈ aux, 𝑖 ≤ 𝑗 ≤ |𝜉 | s.t. ⊲ Part of a chain in aux

6: 𝜉 [𝑖] =𝜓 ′ ∧ ⊲ Starts with𝜓 ′

7: 𝜉 [𝑗] .𝑖𝑠𝑠𝑢𝑒𝑟 =𝜓𝑟𝑜𝑜𝑡 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 ∧ ⊲ End issuer is root subject

8: 𝑡 ∈ [𝜉 [𝑗] .𝑓 𝑟𝑜𝑚, 𝜉 [𝑗] .𝑡𝑜] ∧ ⊲ End cert is not expired

9: C.Verify𝜓𝑟𝑜𝑜𝑡 .𝑝𝑘 (𝜉 [𝑗]) ∧ ⊲ End verified by root pk

10: CertIsNotRevoked(𝜉 [𝑗], 𝑡,𝜓𝑟𝑜𝑜𝑡 , aux) ∧ ⊲ Cert 𝜉 [𝑗] is not revoked
11: ∀𝑖 ≤ 𝑘 < 𝑗 : ⊲ For all previous certs

12: 𝜉 [𝑘] .𝑖𝑠𝑠𝑢𝑒𝑟 = 𝜉 [𝑘 + 1] .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 ∧ ⊲ Issuer is next subject

13: 𝑡 ∈ [𝜉 [𝑘] .𝑓 𝑟𝑜𝑚, 𝜉 [𝑘] .𝑡𝑜] ∧ ⊲ Cert 𝜉 [𝑘] is not expired
14: C.Verify𝜉 [𝑘+1] .𝑝𝑘 (𝜉 [𝑘]) ∧ ⊲ Verified by next cert pk

15: 𝜉 [𝑘 + 1] .𝑡𝑦𝑝𝑒 = ‘PubKey’ ∧ ⊲ Next is a ‘PubKey’ cert

16: 𝜉 [𝑘 + 1] .𝑖𝑠_𝐶𝐴 ∧ ⊲ Next cert is for a CA

17: CertIsNotRevoked(𝜉 [𝑘], 𝑡,𝜓𝑟𝑜𝑜𝑡 , aux) ⊲ Cert 𝜉 [𝑘] is not revoked
18: end procedure

19: procedure CertIsNotRevoked(𝜓 ′′, 𝑡,𝜓𝑟𝑜𝑜𝑡 , aux)

20: return ∃𝜉𝐶𝑅𝐿 ∈ aux,𝜓𝐶𝑅𝐿 ∈ 𝜉𝐶𝑅𝐿 s.t. ⊲ There is a cert in aux

21: 𝜓𝐶𝑅𝐿 .𝑡𝑦𝑝𝑒 = ‘CRL’ ∧ ⊲ Which is a CRL

22: 𝜓𝐶𝑅𝐿 .𝑖𝑠𝑠𝑢𝑒𝑟 =𝜓 ′′ .𝑖𝑠𝑠𝑢𝑒𝑟 ∧ ⊲ Issued by𝜓 ′′ .𝑖𝑠𝑠𝑢𝑒𝑟

23: 𝜓 ′′ .𝑠𝑒𝑟𝑖𝑎𝑙 ∉𝜓𝐶𝑅𝐿 .𝐶𝑅𝐿 ∧ ⊲𝜓 ′′ is not in the CRL

24: ExistsValidChain(𝜓𝐶𝑅𝐿 , 𝑡,𝜓𝑟𝑜𝑜𝑡 , aux) ⊲ With valid chain to root

25: end procedure

Algorithm 12 PKIXC .Aux: CRL generation

Input: local state st, certificate𝜓 , local clock 𝑐𝑙𝑘 , root store store and auxiliary information aux.

Output: updated state and current CRL.

procedure PKIXC .Aux(st,𝜓, 𝑐𝑙𝑘, store, aux)

1: st.𝐶𝑅𝐿 −=

𝜓 .𝑠𝑒𝑟𝑖𝑎𝑙 ∈ st.𝐶𝑅𝐿

s.t.𝜓 .𝑡𝑜 < 𝑐𝑙𝑘

 ⊲
Remove expired certifi-

cates from CRL

2: 𝑡𝑏𝑐 ← {(‘type’, ‘CRL’) } ⊲ Certificate of type CRL

3: 𝑡𝑏𝑐.𝑖𝑠𝑠𝑢𝑒𝑟 ← st.𝜄 ⊲ The issuer of the CRL

4: 𝑡𝑏𝑐.𝑓 𝑟𝑜𝑚 ← 𝑐𝑙𝑘 ⊲ When was issued

5: 𝑡𝑏𝑐.𝑡𝑜 ← 𝑐𝑙𝑘 + st.Δ𝑟 ⊲ Valid until

6: 𝑡𝑏𝑐.𝐶𝑅𝐿 ← st.𝐶𝑅𝐿 ⊲ CRL information

7: 𝜓𝐶𝑅𝐿 ← C.Certifyst.𝑠𝑘 (𝑡𝑏𝑐) ⊲ Issue certificate

8: return (st,𝜓𝐶𝑅𝐿)

end procedure

Figure 1: PKIX (X.509 version 3 with CRL) implementation

16

A PKIXC IMPLEMENTATION

Figure 1 presents the PKIXC PKI, as a simplified pseudocode based

on the specifications [45].

B ADDITIONAL PREDICATE PROCEDURES

This appendix provides specifications of procedures used in the

ΔRev-Revocation function (Algorithm 4) and the Tra-Transparency
function (Algorithm 5) predicates.

Algorithm 13 Ensure P.Certify and P.Revoke requested predicate
1: procedure CertifyAndRevokeReqested(𝑇 ,𝜓, 𝑡,ΔRev)

2: return ∃𝑒, 𝑒𝑅 𝑠.𝑡 . 𝑒 < 𝑒𝑅 ∧ ⊲𝜓 issued, then revoked

3: 𝑇 .𝑒𝑛𝑡 [𝑒] = 𝑇 .𝑒𝑛𝑡 [𝑒𝑅] =𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟 ∧ ⊲ by𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟

4: 𝑇 .𝑜𝑝𝑟 [𝑒] = ‘Certify’ ∧ ⊲ 𝑒 was a Certify operation

5: 𝑇 .𝑜𝑝𝑟 [𝑒𝑅] = ‘Revoke’ ∧ ⊲ 𝑒𝑅 was a Revoke operation

6: 𝑇 .𝑜𝑢𝑡 [𝑒] =𝜓 ∧ ⊲𝜓 issued by𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟

7: 𝑇 .𝑖𝑛𝑝 [𝑒𝑅] =𝜓 ∧ ⊲𝜓 revoked by𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟

8: 𝑇 .𝜏 [𝑒] ≤ 𝑇 .𝜏 [𝑒𝑅] ≤ 𝑡 − ΔRev ⊲ both at least ΔRev before 𝑡

9: end procedure

Algorithm 14 Ensure fraudulent certificate can be found predicate

1: procedure CanFindFraudulentCert(𝑇 ,𝜓, 𝑡, store, aux)

2: 𝑣𝑐𝑒𝑟𝑡𝑠 ← P .VCerts(𝜓, 𝑡, store, aux) ⊲ Certificates used for validating𝜓

3: return ∃𝜓 ′ ∈ 𝑣𝑐𝑒𝑟𝑡𝑠 s.t. ⊲ Contain a certificate𝜓 ′ such that

4: 𝜓 ′ ≠𝜓 ∧ ⊲𝜓 ′ is different than𝜓

5:

P .Valid(𝜓 ′, 𝑡, store, aux) ∨
𝜓 ′ ∈ store ∧
𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 =𝜓 ′ .𝑖𝑠𝑠𝑢𝑒𝑟

∧

⊲𝜓 ′ is a valid certificate, or

⊲𝜓 ′ is in store and

⊲ has same subject and issuer

6: 𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 ∈ 𝑇 .N −𝑇 .F ∧ ⊲ The subject of𝜓1 is benign

7: ¬SelfCert(𝑇 ,𝜓 ′ .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡,𝜓 ′ .𝑝𝑘) ⊲𝜓 ′ is fraudulent (Alg. 2)

8: end procedure

Algorithm 15 There is no subset of aux.logs which includes an

honest log which is needed to validate𝜓 using P .Valid
1: procedure NoHonestLog(𝜓, 𝑡, store, aux)

2: return �𝑙𝑜𝑔𝑠𝜓 ⊆ aux.logs, 𝑖𝑑hl ∈ 𝑙𝑜𝑔𝑠𝜓 s.t. ⊲
There is a subset 𝑙𝑜𝑔𝑠𝜓 of aux.logs

and a log id 𝑖𝑑hl in this subset

3:

P.Valid(𝜓, 𝑡, store, aux′) ∧

where

{
aux
′ ← aux;

aux
′ .logs← 𝑙𝑜𝑔𝑠𝜓

} ∧ ⊲
𝜓 is valid w.r.t. logs

𝑙𝑜𝑔𝑠𝜓

4:

¬P.Valid(𝜓, 𝑡, store, aux′′)

where

{
aux
′′ ← aux;

aux
′′ .logs← 𝑙𝑜𝑔𝑠𝜓 − 𝑖𝑑hl

} ∧ ⊲
𝜓 is not valid w.r.t.

logs 𝑙𝑜𝑔𝑠𝜓 − 𝑖𝑑hl

5:

[
∃𝑒 s.t.𝑇 .𝑒𝑛𝑡 [𝑒] ∈ 𝑇 .N −𝑇 .F ∧
(‘LogCert’, store.logs[𝑖𝑑hl]) ∈ 𝑇 .𝑜𝑢𝑡 [𝑒]

]
⊲

The log cert from

store.logs for log

𝑖𝑑hl is a benign en-

tity’s log cert

6: end procedure

Algorithm 16 Ensure certificate logs are monitored by entity

1: procedure MonitoringCertLogs(𝑇 ,𝜓, 𝑡 ′, store, aux, 𝜄𝑀)

2: return ∀𝑙𝑜𝑔_𝑖𝑑 ∈ aux.logs : ⊲ for each log in aux.logs

3: ∃𝑒 s.t.𝑇 .𝑜𝑝𝑟 [𝑒] = ‘Monitor’ ∧ ⊲ ‘Monitor’ operation was invoked

4: 𝑇 .𝑒𝑛𝑡 [𝑒] = 𝜄𝑀 ∧ ⊲ at entity 𝜄𝑀

5: 𝑇 .𝑖𝑛𝑝 [𝑒] = store.logs[𝑙𝑜𝑔_𝑖𝑑] ∧ ⊲ to monitor this log

6: 𝑇 .𝜏 [𝑒] ≤ 𝑡 ′ ⊲ at real time 𝑡 ′ or earlier

7: end procedure

17

Algorithm 17Monitor is unaware of logged fields of certificate

1: procedure MonitorIsUnaware(𝑇 ,𝜓, 𝑡, 𝜄𝑀)

2: return ∃𝑒 s.t.𝑇 .𝑜𝑝𝑟 [𝑒] = ‘Lookup’ ∧ ⊲ ‘Lookup’ operation was invoked

3: 𝑇 .𝑒𝑛𝑡 [𝑒] = 𝜄𝑀 ∧ ⊲ at entity 𝜄𝑀

4: 𝑇 .𝑖𝑛𝑝 [𝑒] =𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 ∧ ⊲ w.r.t𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡

5: 𝑇 .𝜏 [𝑒] > 𝑡 ∧ ⊲ sometime after 𝑡

6: �𝜓 ′ ∈ 𝑇 .𝑜𝑢𝑡 [𝑒] s.t. ⊲ but 𝜄𝑀 was unaware of any𝜓 ′ s.t.

7: NonAdded(𝜓 ′) = NonAdded(𝜓) ⊲𝜓
′ .𝑡𝑏𝑐 and𝜓 .𝑡𝑏𝑐 have the same

non-PKIadded fields and values

8: end procedure

9: procedure NonAdded(𝜓)

10: return

{
(field, 𝑥)

����� (field, 𝑥) ∈ 𝜓 .𝑡𝑏𝑐 ∧field ∉𝜓 .𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑

}
⊲
Return set of all non-PKIadded fields

and values in𝜓 .𝑡𝑏𝑐

11: end procedure

Algorithm 18Monitor is audited

1: procedure Audited(𝑇 ,𝜓, 𝑡, aux, 𝜄𝑀)

2: return ∃𝑒 s.t.

3:

𝑇 .𝑜𝑝𝑟 [𝑒] = ‘Audit’ ∧
𝑇 .𝑒𝑛𝑡 [𝑒] = 𝜄𝑀 ∧
𝑇 .𝑖𝑛𝑝 [𝑒] = (𝜓, aux) ∧
𝑇 .𝜏 [𝑒] > 𝑡

⊲ ‘Audit’ invoked

⊲ at entity 𝜄𝑀

⊲ w.r.t𝜓 and aux

⊲ sometime after 𝑡

4: end procedure

Algorithm 19Monitor fails to correctly identify corrupted log cert

1: procedure FailedIdentifyCorrupted(𝑇 ,𝜓, 𝑡, store, aux, 𝜄𝑀)

2: return ∃𝑒 s.t.

3:

𝑇 .𝑜𝑝𝑟 [𝑒] = ‘Audit’ ∧
𝑇 .𝑒𝑛𝑡 [𝑒] = 𝜄𝑀 ∧
𝑇 .𝑖𝑛𝑝 [𝑒] = (𝜓, aux) ∧
𝑇 .𝜏 [𝑒] > 𝑡

[
�(‘Corrupt’,𝜓𝐿) ∈ 𝑇 .𝑜𝑢𝑡 [𝑒] s.t.

CorruptedLog(𝑇 ,𝜓𝐿 , store, aux)

]
∨[

∃(‘Corrupt’,𝜓𝐿) ∈ 𝑇 .𝑜𝑢𝑡 [𝑒] s.t.
¬CorruptedLog(𝑇 ,𝜓𝐿 , store, aux)

]

⊲ ‘Audit’ invoked

⊲ at entity 𝜄𝑀

⊲ w.r.t𝜓 and aux

⊲ sometime after 𝑡

⊲ did not identify

⊲ corrupt log cert

⊲ or identified

⊲ incorrect log cert

4: end procedure

5: procedure CorruptedLog(𝑇 ,𝜓𝐿 , store, aux)

6: return ∃𝑙𝑜𝑔_𝑖𝑑 ∈ aux.logs s.t.𝜓𝐿 = store.logs[𝑙𝑜𝑔_𝑖𝑑] ∧ ⊲
𝜓𝐿 is a log cert from

aux.logs and store.logs

7: �𝑒 ′ s.t.
[
𝑇 .𝑒𝑛𝑡 [𝑒 ′] ∈ 𝑇 .N −𝑇 .F ∧
(‘LogCert’,𝜓𝐿) ∈ 𝑇 .𝑜𝑢𝑡 [𝑒 ′]

]
⊲ no benign entity

⊲ outputted𝜓𝐿 as its log cert

8: end procedure

Algorithm 20 𝜋WakeAt

Δ𝑐𝑙𝑘 ,Δ𝑤
model predicate

1: return ∀�̂� ∈ {1, . . . ,𝑇 .𝑒 }: ⊲ For each event �̂�

2: if

(‘WakeAt’, 𝑡, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) ∈ 𝑇 .𝑜𝑢𝑡 [�̂�] ∧
𝑡 ≥ 𝑇 .𝑐𝑙𝑘 [�̂�] ∧
𝑇 .𝜏 [𝑇 .𝑒] ≥ 𝑡 + Δ𝑐𝑙𝑘 + Δ𝑤

⊲ If the output includes
a ‘WakeAt’ triplet, and

⊲ the requested time is

the local time or later, and

⊲ execution did not end before

last allowed wakeup time

3: then ∃�̂�′ ∈ {�̂� + 1, . . . ,𝑇 .𝑒 } s.t. ⊲ There is a later event

4:

𝑡 ≤ 𝑇 .𝑐𝑙𝑘 [�̂�′] ≤ 𝑡 + Δ𝑤
𝑇 .𝑒𝑛𝑡 [�̂�′] = 𝑇 .𝑒𝑛𝑡 [�̂�] ∧
𝑇 .𝑜𝑝𝑟 [�̂�′] = ‘Wakeup’ ∧
𝑇 .𝑖𝑛𝑝 [�̂�′] = 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

⊲ At the correct local time

⊲ At the same entity

⊲With operation ‘Wakeup’

⊲With input 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

5: end if

C MODEL PREDICATES

This appendix provides model predicates used in the security anal-

ysis.

Algorithm 21 The 𝜋1LogCert model predicate

1: return ��̂�, �̂� ′ ∈ {1, . . . ,𝑇 .𝑒} s.t. ⊲ There are not two events

2: �̂� ≠ �̂� ′ ∧ ⊲ Which are different

3: 𝑇 .𝑒𝑛𝑡 [�̂�] = 𝑇 .𝑒𝑛𝑡 [�̂� ′] ∈ 𝑇 .N −𝑇 .F ∧ ⊲ Both at the same benign entity

4: 𝑇 .𝑜𝑝𝑟 [�̂�] = 𝑇 .𝑜𝑝𝑟 [�̂� ′] = ‘Monitor’ ∧ ⊲ Asking to monitor a log

5: 𝑇 .𝑖𝑛𝑝 [�̂�] .𝑙𝑜𝑔_𝑖𝑑 = 𝑇 .𝑖𝑛𝑝 [�̂� ′] .𝑙𝑜𝑔_𝑖𝑑 ⊲
With input log certificates with the

same log identifier

6: 𝑇 .𝑖𝑛𝑝 [�̂�] ≠ 𝑇 .𝑖𝑛𝑝 [�̂� ′] ⊲ But the log certificates are different

Algorithm 22 The 𝜋 Init model predicate

1: return

∀�̂� ∈ {1, . . . ,𝑇 .𝑒} : ∃�̂� ′ ≤ �̂� s.t.

𝑇 .𝑒𝑛𝑡 [�̂� ′] = 𝑇 .𝑒𝑛𝑡 [�̂�] ∧
𝑇 .𝑜𝑝𝑟 [�̂� ′] = ‘Init’

 ∧ ⊲

There must be an ‘Init’

event before any other

event at the entity

2: ∀�̂� s.t.𝑇 .𝑜𝑝𝑟 [�̂�] = ‘Init’ : ⊲ In every ‘Init’ event

3: |𝑇 .𝑖𝑛𝑝 [�̂�] | ≥ |𝑇 .𝑝𝑎𝑟𝑎𝑚𝑠 | ∧ ⊲
Input size is at least

|𝑇 .𝑝𝑎𝑟𝑎𝑚𝑠 |
4: 𝑇 .𝑖𝑛𝑝 [�̂�] .𝑝𝑎𝑟𝑎𝑚𝑠.𝜄 = 𝑇 .𝑒𝑛𝑡 [�̂�] ∧ ⊲

Correct entity identifier

parameter is given

5: 𝑇 .𝑖𝑛𝑝 [�̂�] .𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑇 .𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑙𝑜𝑏𝑎𝑙 ⊲
Global parameters are

𝑇 .𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑙𝑜𝑏𝑎𝑙

D CERTIFICATE TRANSPARENCY

IMPLEMENTATIONS

This appendix provides our implementation of two versions of

Certificate Transparency. The first version, CT, presented in Appen-

dix D.1, follows the CT 2.0 specification [50]. The second version

CTwAudit, presented in Appendix D.2, is the CT augmented by

an auditing mechanism [27] and available as an option in Google

Chrome.

D.1 Certificate Transparency

Certificate Transparency (CT) [47, 50] extends PKIX to ensure trans-

parency (Definition 2 and Algorithm 5). Algorithm 23 presents the

CTC,ℎ algorithms, utilizing, as subroutines, the PKIXC algorithms

(Algorithms 7-12). Note the design uses a hash function ℎ (used for

Merkle-tree integrity protection). For convenience, we use a few

timing parameters (Δ𝑟 , Δ𝑀𝑀𝐷 , Δ𝑐𝑙𝑘 and Δ𝑐𝑜𝑚) as constants in the

algorithms.

Entities and state. The set N of stateful entities in CTC,ℎ has two

additional types of entities in addition to CAs: loggers and monitors.

Each logger maintains a log of certificates (st.𝑙𝑜𝑔) and an identifier

for the log (st.𝑙𝑜𝑔_𝑖𝑑). Each monitor keeps a dictionary of log public

key certificates (in st.𝑙𝑜𝑔𝑐𝑒𝑟𝑡𝑠), which is indexed by log identifiers

𝑙𝑜𝑔_𝑖𝑑 . For each log 𝑙𝑜𝑔_𝑖𝑑 which the monitor oversees, the monitor

keeps the latest version of the log received (st.𝑙𝑜𝑔𝑠 [𝑙𝑜𝑔_𝑖𝑑]).

SCTs and pre-certificates. CT certificates use the same certifica-

tion schemes and certificate fields as in PKIX, but add additional

certificate types and encodings. One of these new certificate types

is the signed certificate timestamp (SCT). In CT, a certificate is valid

only together with two valid SCTs from different loggers
16
. A CA

wishing to issue a CT certificate, typically first certifies and sub-

mits a pre-certificate to loggers, using the CTC,ℎ .AddPreChain-Req

16
We simplified; the RFC [50] actually allows the use of different criteria for a

sufficient set of SCTs.

18

operation at the loggers. The pre-certificate is a PKIX-invalid
17

cer-

tificate. A logger may add a pre-certificate to a log, then certify and

return the corresponding SCT.
18

Implementation. Algorithm 23 presents the implementation of

CTC,ℎ . The operations defined in Algorithm 23 include these re-

quired from any PKI (Definition 1), operations required from any

transparent PKI (Definition 2), and operations
19

defined in CT
specifications [47]:GetSTH-Req,GetSTH-Resp,AddPreChain-Req,
GetEntries-Req and GetEntries-Resp. One more operation, not ex-

plicitly defined in the CT specifications [47], is CTC,ℎ .Wakeup. The
Wakeup operation is required to perform scheduled operations de-

fined in [47], such as updating the log’s Signed Tree Head (STH),

and periodically retrieving the updated logs by monitors.

The CT implementation uses several time-related bounds: Δ𝑐𝑜𝑚 ,

Δ𝑐𝑙𝑘 , and Δ𝑤 . These represent the maximum communication delay,

maximum clock drift, and maximum wake-up imprecision, respec-

tively. We assume these to be known to entities, and we use them

also in the model predicates (Section 5.1) and for security analysis.

To schedule a Wakeup operation at time 𝑡 , the protocol out-

puts (‘WakeAt’, 𝑡). The 𝜋WakeAt

Δ𝑐𝑙𝑘 ,Δ𝑤
model predicate, described in Sec-

tion 5.1, assumes that if (‘WakeAt’, 𝑡) is output at real time 𝜏 and

𝑡 ≥ 𝜏 , then the Wakeup operation is invoked, at the entity request-

ing the wake-up, at real time within a window of Δ𝑤 before and

after time 𝑡 , i.e., in [𝑡 − Δ𝑤 , 𝑡 + Δ𝑤]. If 𝑡 < 𝜏 , then the Wakeup
operation is invoked at real time within a window of Δ𝑤 before

and after time 𝜏 .

We describe the implementation, focusing on the differences

from PKIX. The revocation mechanism used in PKIX and CT is

identical, hence, the CTC,ℎ .Revoke algorithm simply invokes its

PKIX counterpart. The CTC,ℎ .Aux algorithm also simply invokes

its PKIX counterpart to update the CRL in the state and to output a

CRL. Different CT operations are intended to be invoked at differ-

ent types of entities. All entities (CAs, loggers, and monitors) use

CTC,ℎ .Init for initialization. CAs use CTC,ℎ .Certify, CTC,ℎ .Revoke,
and CTC,ℎ .Aux for certifying and revoking certificates. All en-

tities may use CTC,ℎ .Valid, which is a stateless functions. The

CTC,ℎ .Wakeup operation is invoked periodically at loggers (to

compute new STHs) and monitors (to ask for new STHs). In addi-

tion, CTC,ℎ has four monitor-specific operations:Monitor, Lookup,
GetSTH-Resp and GetEntries-Resp. Finally, CTC,ℎ includes three

logger-specific operations: AddPreChain-Req, GetSTH-Req, and
GetEntries-Req.

CTC,𝒉 .Init. The algorithm adds the initialization details for log-

gers and monitors. First, the algorithm calls PKIX.Init to handle

any of PKIX related details (Line 4). Then, the algorithm performs

additional operations for loggers and monitors. First, the algorithm

requests a wake-up in Δ𝑀𝑀𝐷 from the current local time (Line 9).
20

Finally, for monitors, the algorithm initializes an empty dictionary

of log certificates (indexed by log identifiers) for public keys of

monitored logs, and an empty dictionary of monitored logs (also

17
The method of making pre-certificates invalid changed between CT 1.0 [47],

where pre-certificates contain a ‘poison’ extension, and CT 2.0 [50], which we follow,

where pre-certificates are encoded as CMS objects which are not PKIX-valid certificates.

18
The SCTset field in CT certificates is a PKI-added field.

19
We kept the operation names from RFC 6962 [47], although some may be sub-

optimal.

20Δ𝑀𝑀𝐷 is the ‘maximal merge delay’ [50].

indexed by log identifiers), while for loggers, the algorithm sets

its log identifier to its entity identifier and initializes an empty

maintained log
21

(Lines 10-16).

CTC,𝒉 .Certify. The algorithm checks if the inputted data to

be certified (𝑡𝑏𝑐) contains a field 𝑡𝑏𝑐.SCTset which is non-empty

(Line 1), and if so, sets the 𝑡𝑏𝑐.𝑡𝑦𝑝𝑒 field to ‘pre-certificate’ and

issues a pre-certificate. If 𝑡𝑏𝑐 includes a non-empty 𝑡𝑏𝑐.SCTset field,

then CTC,ℎ .Certify adds ‘SCTset’ to 𝑡𝑏𝑐.𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑 and issues a

final certificate. In either case, the certificate is generated using the

PKIX.Certify algorithm (Lines 3 and 10).

CTC,𝒉 .Valid. First, use PKIX.Valid to validate that𝜓 is a PKIX-
valid certificate. From Line 5, we verify that𝜓 is submitted with two

valid SCTs, issued for𝜓 .𝑡𝑏𝑐 −𝜓 .SCTset, from different loggers, from

logs in aux.logs which are trusted (i.e., verified with certificates

from store.logs).

CTC,𝒉 .Monitor. CTC,ℎ .Monitor initiates the monitoring pro-

cess for a log. The algorithm receives a log certificate𝜓𝐿 and adds

it to the dictionary of public key certificates for monitored logs

(Line 1); . As a result, starting from the next time theCTC,ℎ .Wakeup
algorithm is invoked, the log maintained by𝜓𝐿 .𝑖𝑠𝑠𝑢𝑒𝑟 will be mon-

itored along with the other logs.

CTC,𝒉 .Wakeup. First, the algorithm asks for another Wake-up

in Δ𝑀𝑀𝐷 from the previous wake-up time it asked for (Line 1).

In a logger, the algorithm updates the signed tree hash (STH) over

the local log maintained by the logger (Lines 4-10), and stores

the STH locally (Line 11) so it can be retrieved by monitors in

CTC,ℎ .GetSTH-Req. In a monitor,CTC,ℎ .Wakeup outputs a request
to get the latest STH for each of the loggers overseen by this monitor

(Line 13).

CTC,𝒉 .Lookup. The algorithm returns the set of certificates

that were issued to the given 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , based on the local copies of

the logs that the monitor maintains (Lines 2-4).

CTC,𝒉 .AddPreChain-Req. Add a pre-certificate to the log. The
algorithm ensures that the pre-certificate is a valid PKIX certificate,

not already logged, and with validity period starting the maximal

communication delay (Δ𝑐𝑜𝑚) and clock drift (Δ𝑐𝑙𝑘) before the cur-
rent local time or later (Line 1). It adds the certificate to the local log

(Line 2), generates a Signed Certificate Timestamp (SCT; Lines 3-8)

and outputs the SCT (Line 9).

CTC,𝒉 .GetSTH-Req. The algorithm outputs the latest STH cer-

tificate (Line 1) that was generated in CTC,ℎ .Wakeup.

CTC,𝒉 .GetSTH-Resp. The algorithm is used to receive a new

STH. It uses the logger’s certificate, which is stored in the monitor’s

local state (Line 3), to check that the given STH was indeed signed

by the logger, and that new certificates, in the STH, were added to

the log (Line 4). If so, the monitor stores the new STH in a temporary

location in its state (Line 5), until the newly logged certificates will

be retrieved and the new STH root can be verified as a valid root

(tree hash) that reflects the addition of the newly logged certificates.

To that end, the algorithm outputs a ‘GetEntries’ request, to be sent

21
We simplify to one log per logger and using the entity identifier as the log

identifier. It seems easy to extend support for multiple logs per logger, with distinct

log identifiers.

19

to the logger, to which the logger should respond by sending the

entries (of the newly logged certificates) (Line 6).

CTC,𝒉 .GetEntries-Req. The algorithm outputs a subset of the

logged certificates, starting from index 𝑠𝑡𝑎𝑟𝑡 until index 𝑒𝑛𝑑 . The

algorithm takes the relevant subset from the log which is saved in

the entity’s state (Line 2)and outputs it (Line 3).

CTC,𝒉 .GetEntries-Resp. The algorithm calculates the updated

tree hash (𝑟𝑜𝑜𝑡) by adding the newly logged certificates to the local

copy of the log and computing the root (‘tree hash’) of the Merkle

tree [13] (Lines 2-3). If the root in the STH that was stored tem-

porarily in CTC,ℎ .GetSTH-Resp indeed matches 𝑟𝑜𝑜𝑡 (calculated

in Line 3), the monitor saves the new certificates and the STH

(Lines 7-8), and may inspect the newly logged certificates (Line 10).

D.2 Certificate Transparency with Audit

CTC,𝒉 .Audit (Algorithm 25). Return a set of log certificates with

a certificate for each log for which there is an identifier in aux.logs,

the log certificate is in store.logs, and𝜓 .SCTset includes a correctly-

verifying SCT for the log, yet𝜓 is missing from the local log copy

of the log, or return ⊥ if no such logs were identified.

In Appendix E, we show that CTwAuditC,ℎ ensures Audited-

Transparency under the same model predicate under which we

show that CTC,ℎ ensures HL-Transparency.

Privacy concerns. The CTwAuditC,ℎ operation may expose the

certificates used by Chrome to the monitor, which can be a pri-

vacy exposure. The definition of the related privacy property, and

analysis of the exposure and of alternatives, are beyond our scope.

Algorithm 25 CTMT
h

C .Audit (for CTwAuditC,ℎ)

procedure CT.Audit(st,𝜓, aux)

1: CorruptLogCerts← ∅
2: ∀𝑙𝑜𝑔_𝑖𝑑 ∈ aux.logs : ⊲

For each log identifier in

aux.logs

3: if

st.𝑙𝑜𝑔𝑐𝑒𝑟𝑡𝑠 [𝑙𝑜𝑔_𝑖𝑑] ≠ ⊥ ∧
𝜓 ∉ st.𝑙𝑜𝑔𝑠 [𝑙𝑜𝑔_𝑖𝑑] ∧
∃𝜓𝑆𝐶𝑇 ∈ 𝜓 .SCTset s.t.:

𝜓𝑆𝐶𝑇 .𝑡𝑦𝑝𝑒 = ‘SCT’ ∧
𝜓𝑆𝐶𝑇 .𝑙𝑜𝑔_𝑖𝑑 = 𝑙𝑜𝑔_𝑖𝑑 ∧
C.Verifyst.𝑙𝑜𝑔𝑐𝑒𝑟𝑡𝑠 [𝑙𝑜𝑔_𝑖𝑑] .𝑝𝑘 (𝜓𝑆𝐶𝑇) ∧
𝜓𝑆𝐶𝑇 .𝑡𝑏𝑐.𝑐𝑒𝑟𝑡 =𝜓 .𝑡𝑏𝑐 −𝜓 .SCTset

then

⊲
st.𝑙𝑜𝑔𝑐𝑒𝑟𝑡𝑠 includes a
corresponding log cert

⊲
But𝜓 is not in the corre-

sponding local log copy

⊲𝜓 includes a cert𝜓𝑆𝐶𝑇

⊲𝜓𝑆𝐶𝑇 is an SCT

⊲
𝜓𝑆𝐶𝑇 has this log iden-

tifier

⊲ Verify𝜓𝑆𝐶𝑇

⊲𝜓𝑆𝐶𝑇 signs𝜓

4: CorruptLogCerts += (‘Corrupt’, st.𝑙𝑜𝑔𝑐𝑒𝑟𝑡𝑠 [𝑙𝑜𝑔_𝑖𝑑]) ⊲ Add corrupt log cert
5: end if

6: if CorruptLogCerts = ∅ then
7: return ⊥ ⊲ No corrupt log certs found

8: else

9: return CorruptLogCerts ⊲ Output corrupt log certs

10: end if

end procedure

E ANALYSIS OF TRANSPARENCY IN CT AND

CTwAudit
This appendix provides an analysis of transparency properties for

the two versions of CT we define, CTC,ℎ and CTwAuditC,ℎ . We

show that CTC,ℎ ensures the HL ΔTra-Transparency requirement,

under an appropriate model predicate; see Theorem 4. Then, we

show that CTC,ℎ does not ensure the Guaranteed Δ-Transparency
requirement or the Audited Δ-Transparency requirement under the

same model predicate; see Theorem 5. Namely, CT only ensures

transparency for certificates which are logged by at least one be-

nign logger and include an SCT from the benign logger. Lastly, we

show that CTwAuditC,ℎ ensures the Audited Δaud

Tra -Transparency

requirement under the same model predicate; see Theorem 6.

E.1 CTC,ℎ ensures HL ΔTra-Transparency

Theorem 4. Let C be an existentially-unforgeable certificate scheme

andℎ be a collision-resistant hash. Denote ΔTra ≡ 6·Δ𝑐𝑙𝑘 +2·Δ𝑀𝑀𝐷 +
2 · Δ𝑤 + 5 · Δ𝑐𝑜𝑚 . Then, CTC,ℎ satisfies the HL ΔTra-Transparency

requirement under model predicate:

𝜋 Init ∧ 𝜋F ∧ 𝜋1LogCert ∧ 𝜋
Drift

Δ𝑐𝑙𝑘
∧ 𝜋ComΔ𝑐𝑜𝑚

∧ 𝜋WakeAt

Δ𝑐𝑙𝑘 ,Δ𝑤
(4)

Note 1: to simplify, we ignore the fact that ℎ is a keyless hash,

which limits the analysis to the Random Oracle Model (ROM). This

could be avoided by using a keyed hash.

Note 2: Δ𝑀𝑀𝐷 is called the maximal merge delay. The model

predicate 𝜋 Init ensures that the value of Δ𝑀𝑀𝐷 given to each entity

at initialization is the same as 𝑝𝑎𝑟𝑎𝑚𝑠.Δ𝑀𝑀𝐷 .

Proof. (Sketch) Suppose CTC,ℎ does not satisfy the HL ΔTra-

Transparency requirement under the model predicate of Equation 4.

By definition, there exists a PPT adversary ATra that satisfies:

Pr

[
𝜋HLTraΔTra

(𝑇) = ⊥, where
𝑇 ← ExecATra,CTC,ℎ

(𝑝𝑎𝑟𝑎𝑚𝑠)

]
∉ 𝑁𝑒𝑔𝑙 (|𝑝𝑎𝑟𝑎𝑚𝑠 |) (5)

Following Equation (5) and the 𝜋HLTraΔ predicate (in Definition 4),

with non-negligible probability over the transcripts𝑇 of executions

of CTC,ℎ with ATra, we have 𝑓 TraΔTra
(𝑇,⊤) ≠ ‘G’, where the 𝑓 TraΔ

function is defined in Algorithm 5.

Following the 𝑓 TraΔ function, which in Line 3 returns (‘G’) if the

hl flag is set but theNoHonestLog function (Algorithm 15) returns

⊤, and the implementation ofCTMT
h

C .Valid (in Algorithm 23), none

of the loggers providing SCTs in 𝜓 are honest. Therefore we can

safely assume that in all these executions, the adversary will ensure

that the NoHonestLog function (Algorithm 15) will return ⊥.
Namely, the adversary will provide in aux.𝑙𝑜𝑔𝑠 a set of log iden-

tifiers 𝑙𝑜𝑔𝑠𝜓 , such that 𝜓 remains valid even if we validate using

only these log identifiers, i.e., with aux.𝑙𝑜𝑔𝑠 = 𝑙𝑜𝑔𝑠𝜓 . Furthermore,

there is at least one of them, 𝑖𝑑𝐻𝐿 ∈ 𝑙𝑜𝑔𝑠𝜓 , which we call the

‘honest log identifier’, which is ‘essential’, i.e., 𝜓 is invalid with

aux.𝑙𝑜𝑔𝑠 = 𝑙𝑜𝑔𝑠𝜓 − 𝑖𝑑𝐻𝐿 , such that the certificate of log 𝑖𝑑𝐻𝐿 in

store.𝑙𝑜𝑔𝑠 , i.e., store.𝑙𝑜𝑔𝑠 [𝑖𝑑𝐻𝐿], was generated by a benign entity

𝜄𝐻𝐿 . Since 𝑖𝑑𝐻𝐿 is ‘essential’ and following the implementation of

CTMT
h

C .Valid, this implies that𝜓 .𝑆𝐶𝑇𝑠𝑒𝑡 must contain a valid SCT

of the honest log 𝑖𝑑𝐻𝐿 , and the SCT certifies the logged fields of𝜓 .

Also, since 𝑓 TraΔTra
does not return ‘G’ in these executions, we know

that all of the following must hold:

(1) 𝜓 is valid at time 𝑡 ≥ 𝜓 .𝑓 𝑟𝑜𝑚 + ΔTra w.r.t. store and aux

(2) The logs of𝜓 are monitored by a benign monitor 𝜄𝑀 since

𝑡 − ΔTra; this includes the honest log, i.e., log 𝑖𝑑𝐻𝐿 .

(3) The same benign monitor 𝜄𝑀 is unaware of the logged fields

of𝜓 after real time 𝑡 .

20

Algorithm 23 CTMT
h

C , i.e., CT implemented using certificate scheme C and Merkle TreeMTℎ ; see [13] forMTℎ

procedure CTMT
h

C .Init (st, 𝑐𝑙𝑘, 𝑝𝑎𝑟𝑎𝑚𝑠)

1: if st ≠ ⊥ then ⊲ If state is non-empty

2: return (st,⊥) ⊲ Do not initialize

3: end if

4: (st, 𝑜𝑢𝑡) ← PKIXC .Init(st, 𝑐𝑙𝑘, 𝑝𝑎𝑟𝑎𝑚𝑠) ⊲ See Algorithm 7

5: st.𝑟𝑜𝑙𝑒 ← 𝑝𝑎𝑟𝑎𝑚𝑠.𝑟𝑜𝑙𝑒 ⊲ Set entity’s role

6: st.Δ𝑀𝑀𝐷 ← 𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑙𝑜𝑏𝑎𝑙 .Δ𝑀𝑀𝐷 ⊲ Set Δ𝑀𝑀𝐷 delay

7: st.𝑡𝑤𝑎𝑘𝑒 ← 𝑐𝑙𝑘 + st.Δ𝑀𝑀𝐷 ⊲ Save next wake-up time

8: if st.𝑟𝑜𝑙𝑒 ∈ {‘Logger’, ‘Monitor’} then ⊲ Only monitors and loggers

9: 𝑜𝑢𝑡 += (‘WakeAt’, st.𝑡𝑤𝑎𝑘𝑒) ⊲ Add next wakeup time

10: if st.𝑟𝑜𝑙𝑒 = ‘Monitor’ then ⊲ If monitor

11: st.𝑙𝑜𝑔𝑐𝑒𝑟𝑡𝑠 ← ⊥ ⊲ Init empty log certs dictionary

12: st.𝑙𝑜𝑔𝑠 ← ⊥ ⊲ Init empty logs dictionary

13: else ⊲ If logger

14: 𝑜𝑢𝑡 += (‘LogCert’, 𝑜𝑢𝑡 [‘SelfCert’]) ⊲ Add entity’s self cert as log cert

15: st.𝑙𝑜𝑔← ⊥ ⊲ Initialize log

16: end if

17: end if

18: return (st, 𝑜𝑢𝑡) ⊲ Output

end procedure

procedure CTMT
h

C .Certify (st, 𝑐𝑙𝑘, 𝑡𝑏𝑐)

1: if 𝑡𝑏𝑐.SCTset = ⊥ then ⊲ If SCTset is empty

2: 𝑡𝑏𝑐.𝑡𝑦𝑝𝑒 ← ‘pre-certificate’ ⊲ Set type to ‘pre-certificate’

3: (st,𝜓𝑝𝑟𝑒) ← PKIXC .Certify(st, 𝑐𝑙𝑘, 𝑡𝑏𝑐) ⊲ See Algorithm 8

4: return (st,𝜓𝑝𝑟𝑒) ⊲ Output pre-certificate

5: else ⊲ If SCTset is not empty

6: 𝑡𝑏𝑐.𝑃𝐾𝐼𝑎𝑑𝑑𝑒𝑑 += {‘SCTset’} ⊲ Set ‘SCTset’ as a ‘PKIadded’ field

7: if 𝑡𝑏𝑐.𝑡𝑦𝑝𝑒 ∈ {‘SCT’, ‘STH’} then ⊲ Type which is not allowed!

8: return (st,⊥)
9: end if

10: (st,𝜓) ← PKIXC .Certify(st, 𝑐𝑙𝑘, 𝑡𝑏𝑐) ⊲ See Algorithm 8

11: return (st,𝜓) ⊲ Output final certificate

12: end if

end procedure

procedure CTMT
h

C .Revoke (st, 𝑐𝑙𝑘,𝜓)

1: return PKIXC .Revoke(𝜓) ⊲ See Algorithm 9

end procedure

procedure CTMT
h

C .Aux (st, 𝑐𝑙𝑘)

1: return PKIXC .Aux(st, 𝑐𝑙𝑘) ⊲ See Algorithm 12

end procedure

procedure CTMT
h

C .Valid (𝜓, 𝑡, store, aux)

1: return PKIXC .Valid(𝜓, 𝑡, store.CAs, aux.chains) ∧ ⊲ See Algorithm 11

2: (∃𝜓1,𝜓2 ∈ 𝜓 .SCTset) s.t. ⊲ Two certificates

3: 𝜓1 .𝑖𝑠𝑠𝑢𝑒𝑟 ≠𝜓2 .𝑖𝑠𝑠𝑢𝑒𝑟 ∧ ⊲ From different loggers

4: (∀𝜓𝑆𝐶𝑇 ∈ {𝜓1,𝜓2}) :
5: 𝜓𝑆𝐶𝑇 .𝑡𝑦𝑝𝑒 = ‘SCT’ ∧ ⊲𝜓𝑆𝐶𝑇 is an SCT

6: 𝜓𝑆𝐶𝑇 .𝑙𝑜𝑔_𝑖𝑑 ∈ aux.logs ∧ ⊲ Log identifier is in aux.logs

7: C.Verify
store.logs[𝜓𝑆𝐶𝑇 .𝑙𝑜𝑔_𝑖𝑑] .𝑝𝑘 (𝜓𝑆𝐶𝑇) ∧ ⊲ Verify𝜓𝑆𝐶𝑇

8: 𝜓𝑆𝐶𝑇 .𝑡𝑏𝑐.𝑐𝑒𝑟𝑡 =𝜓 .𝑡𝑏𝑐 −𝜓 .SCTset ⊲𝜓𝑆𝐶𝑇 signs𝜓

end procedure

procedure CTMT
h

C .VCerts (𝜓, 𝑡, store, aux)

1: return PKIXC .VCerts(𝜓, 𝑡, store, aux) ∪𝜓 .SCTset ⊲ See Algorithm 10

end procedure

procedure CTMT
h

C .Monitor (st, 𝑐𝑙𝑘,𝜓𝐿)

1: st.𝑙𝑜𝑔𝑐𝑒𝑟𝑡𝑠 [𝜓𝐿 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡] ←𝜓𝐿 ⊲ Save log certificate𝜓𝐿

2: return st ⊲ Output

end procedure

procedure CTMT
h

C .AddPreChain-Req (st, 𝑐𝑙𝑘,𝜓, store, aux)

1: if 𝜓 ∉ st.𝑙𝑜𝑔 ∧ 𝑐𝑙𝑘 ≤ 𝜓 .𝑓 𝑟𝑜𝑚 + Δ𝑐𝑙𝑘 + Δ𝑐𝑜𝑚 then

2: st.𝑙𝑜𝑔 +=𝜓 ⊲ Store locally

3: 𝑡𝑏𝑐 ← {(‘type’, ‘SCT’) } ⊲ Certificate of type SCT

4: 𝑡𝑏𝑐.𝑖𝑠𝑠𝑢𝑒𝑟 ← st.𝜄 ⊲ The issuer of the SCT

5: 𝑡𝑏𝑐.𝑙𝑜𝑔_𝑖𝑑 ← st.𝜄 ⊲ The log to which𝜓 was added

6: 𝑡𝑏𝑐.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ← 𝑐𝑙𝑘 ⊲ Timestamp (when issued)

7: 𝑡𝑏𝑐.𝑐𝑒𝑟𝑡 ←𝜓 .𝑡𝑏𝑐 ⊲ Certificate information

8: 𝜓𝑆𝐶𝑇 ← C.Certifyst.𝑠𝑘 (𝑡𝑏𝑐) ⊲ Issue certificate

9: return (st, (‘AddPreChain-Resp′,𝜓𝑆𝐶𝑇)) ⊲ Respond with SCT

10: end if

11: return (st,⊥) ⊲ Invalid request

end procedure

procedure CTMT
h

C .GetSTH-Req (st, 𝑐𝑙𝑘)

1: return (st, (‘GetSTH-Resp’, st.𝜓𝑆𝑇𝐻)) ⊲ Output

end procedure

procedure CTMT
h

C .GetSTH-Resp (st, 𝑐𝑙𝑘, 𝑠𝑡𝑜𝑟𝑒,𝜓)

1: 𝑜𝑢𝑡 ← ⊥
2: 𝑙𝑜𝑔← st.𝑙𝑜𝑔𝑠 [𝜓 .𝑙𝑜𝑔_𝑖𝑑] ⊲ Monitor’s local log data

3: 𝜓𝐿 ← store.logs[𝜓 .𝑙𝑜𝑔_𝑖𝑑] ⊲ Log certificate

4: if C.Verify𝜓𝐿 .𝑝𝑘 (𝜓) ∧ |𝑙𝑜𝑔.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 | < 𝜓 .𝑠𝑖𝑧𝑒 then ⊲ Valid STH

5: st.𝑛𝑒𝑤𝑆𝑇𝐻 ←𝜓 ⊲ Store new STH

6: 𝑜𝑢𝑡 ← (‘GetEntries-Req’,𝜓 .𝑖𝑠𝑠𝑢𝑒𝑟,
7: 𝑠𝑡𝑎𝑟𝑡 = |𝑙𝑜𝑔.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 |, 𝑒𝑛𝑑 =𝜓 .𝑠𝑖𝑧𝑒) ⊲ Ask for new certs

8: end if

9: return (st, 𝑜𝑢𝑡) ⊲ Output

end procedure

procedure CTMT
h

C .GetEntries-Req (st, 𝑐𝑙𝑘, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)

1: 𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑙𝑜𝑔_𝑖𝑑 ← st.𝜄 ⊲ The log identifier

2: 𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑐𝑒𝑟𝑡𝑠 ← st.𝑙𝑜𝑔 [𝑠𝑡𝑎𝑟𝑡 : 𝑒𝑛𝑑] ⊲ Desired certificates

3: return (st, (‘GetEntries-Resp’, 𝑒𝑛𝑡𝑟𝑖𝑒𝑠)) ⊲ Output

end procedure

procedure CTMT
h

C .GetEntries-Resp (st, 𝑐𝑙𝑘, 𝑠𝑡𝑜𝑟𝑒, 𝑒𝑛𝑡𝑟𝑖𝑒𝑠)

1: 𝜓𝐿 ← store.logs[𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑙𝑜𝑔_𝑖𝑑] ⊲ Log certificate

2: 𝑙𝑜𝑔← st.𝑙𝑜𝑔𝑠 [𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑙𝑜𝑔_𝑖𝑑] ⊲ Monitor’s local data

3: 𝑟𝑜𝑜𝑡 ←MTℎ (𝑙𝑜𝑔.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 + 𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑐𝑒𝑟𝑡𝑠) ⊲ Calc new root

4: if 𝑟𝑜𝑜𝑡 = st.𝑛𝑒𝑤𝑆𝑇𝐻 .𝑟𝑜𝑜𝑡 then ⊲ Verify Merkle root

5:

6: if

∀𝜓 ∈ 𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑐𝑒𝑟𝑡𝑠 :

𝑐𝑙𝑘 ≤ 𝜓 .𝑓 𝑟𝑜𝑚 + 6 · Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 5 · Δ𝑐𝑜𝑚

 then

7: 𝑙𝑜𝑔.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 += 𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑐𝑒𝑟𝑡𝑠 ⊲ Update log certs

8: 𝑙𝑜𝑔.𝑆𝑇𝐻 ← st.𝑛𝑒𝑤𝑆𝑇𝐻 ⊲ Update local log STH

9: st.𝑙𝑜𝑔𝑠 [𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑙𝑜𝑔_𝑖𝑑] ← 𝑙𝑜𝑔 ⊲ Update local log data

10: Optionally: examine new certificates for problems, e.g., potential phishing

11: end if

12: end if

13: return st ⊲ Output

end procedure

21

Algorithm 24 CTMT
h

C continued

procedure CTMT
h

C .Wakeup (st, 𝑐𝑙𝑘,𝑑𝑎𝑡𝑎)

1: 𝑜𝑢𝑡 ← (‘WakeAt’, st.𝑡𝑤𝑎𝑘𝑒) ⊲ Set next wake-up

2: st.𝑡𝑤𝑎𝑘𝑒 ← st.𝑡𝑤𝑎𝑘𝑒 + st.Δ𝑀𝑀𝐷 ⊲ Save next wake-up time

3: if st.𝑟𝑜𝑙𝑒 = ‘Logger’ then

4: 𝑡𝑏𝑐 ← {(‘type’, ‘STH’) } ⊲ Certificate of type STH

5: 𝑡𝑏𝑐.𝑖𝑠𝑠𝑢𝑒𝑟 ← st.𝜄 ⊲ The issuer of the STH

6: 𝑡𝑏𝑐.𝑙𝑜𝑔_𝑖𝑑 ← st.𝜄 ⊲ The log identifier of the STH

7: 𝑡𝑏𝑐.𝑓 𝑟𝑜𝑚 ← 𝑐𝑙𝑘 ⊲ When was issued

8: 𝑡𝑏𝑐.𝑡𝑜 ← 𝑐𝑙𝑘 + st.Δ𝑀𝑀𝐷 ⊲ Time for next STH

9: 𝑡𝑏𝑐.𝑟𝑜𝑜𝑡 ←MTℎ (st.𝑙𝑜𝑔)
10: 𝑡𝑏𝑐.𝑠𝑖𝑧𝑒 ← |st.𝑙𝑜𝑔 | ⊲ Log size

11: st.𝜓𝑆𝑇𝐻 ← C.Certifyst.𝑠𝑘 (𝑡𝑏𝑐) ⊲ Issue certificate

12: else if st.𝑟𝑜𝑙𝑒 = ‘Monitor’ then ⊲ Ask for logs’ latest STH

13: 𝑜𝑢𝑡 += {(‘GetSTH-Req’,𝜓𝐿 .𝑖𝑠𝑠𝑢𝑒𝑟) | ∀𝜓𝐿 ∈ st.𝑙𝑜𝑔𝑐𝑒𝑟𝑡𝑠}
14: end if

15: return (st, 𝑜𝑢𝑡) ⊲ Output

end procedure

procedure CTMT
h

C .Lookup (st, 𝑐𝑙𝑘, 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡)

1: 𝑐𝑒𝑟𝑡𝑠 ← ⊥ ⊲ Initialize set to ⊥
2: if st.𝑟𝑜𝑙𝑒 = ‘Monitor’ then

3: 𝑐𝑒𝑟𝑡𝑠 ←
𝜓

∀𝑙𝑜𝑔 ∈ st.𝑙𝑜𝑔𝑠,𝜓 ∈ 𝑙𝑜𝑔 s.t.

𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 = 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡

 ⊲ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 ’s certificates

4: end if

5: return (st, 𝑐𝑒𝑟𝑡𝑠) ⊲ Output

end procedure

Since 𝜄𝐿 is benign, and 𝜓𝑆𝐶𝑇 is a valid SCT, then with over-

whelming probability,𝜓𝑆𝐶𝑇 was properly generated and outputted

by 𝜄𝐿 . CTC,ℎ .AddPreChain-Req is the only operation where 𝜄𝐿 is-

sues an SCT certificate. Let 𝜏𝑆𝐶𝑇 denote the real time when 𝜄𝐿
issued the SCT. Since the SCT certifies the logged fields of𝜓 , then

the CTC,ℎ .AddPreChain-Req operation must have received a cer-

tificate 𝜓 ′ which has the same logged fields as 𝜓 . From Line 1 of

CTC,ℎ .AddPreChain-Req and since the 𝑓 𝑟𝑜𝑚 field is a logged field

in CTC,ℎ , then 𝜄𝐿 would issue the SCT only if its clock upon receiv-

ing𝜓 ′ is at most𝜓 .𝑓 𝑟𝑜𝑚 + Δ𝑐𝑙𝑘 + Δ𝑐𝑜𝑚 , so the real time 𝜏𝑆𝐶𝑇 is at

most𝜓 .𝑓 𝑟𝑜𝑚 + 2 · Δ𝑐𝑙𝑘 + Δ𝑐𝑜𝑚 (due to the 𝜋DriftΔ𝑐𝑙𝑘
model predicate).

Since 𝜄𝐿 is benign, it asks for wake-up at time values which are

Δ𝑀𝑀𝐷 apart (see the CTC,ℎ .Init and CTC,ℎ .Wakeup operations).

From the 𝜋 Init model predicate (Algorithm 22), the Init operation
is called before any other operation, including AddPreChain-Req.
Due to the 𝜋WakeAt

Δ𝑐𝑙𝑘 ,Δ𝑤
and 𝜋DriftΔ𝑐𝑙𝑘

model predicates, the maximum time

between an CTC,ℎ .Init event and the first following CTC,ℎ .Wakeup
event at the same entity is 2 ·Δ𝑐𝑙𝑘 +Δ𝑀𝑀𝐷 +Δ𝑤 , and similarly, the

maximum time between two consecutive CTC,ℎ .Wakeup events at

the same entity is 2 · Δ𝑐𝑙𝑘 + Δ𝑀𝑀𝐷 + Δ𝑤 . Thus, the CTC,ℎ .Wakeup
event will occur after at most 2 · Δ𝑐𝑙𝑘 + Δ𝑀𝑀𝐷 + Δ𝑤 , i.e., at or

before 𝜏𝑆𝐶𝑇 + 2 · Δ𝑐𝑙𝑘 + Δ𝑀𝑀𝐷 + Δ𝑤 . At this time, 𝜄𝐿 updates its

STH to reflect the logging of 𝜓 ′ (and possibly other certificates).

The STH is signed by 𝜄𝐿 , and includes the Merkle-tree digest of 𝜄𝐿 ’s

log, which contains all certificates logged by 𝜄𝐿 in its log until this

time.

The benign monitor 𝜄𝑀 which monitors 𝜄𝐿 ’s log also asks for

wake-up at time values which are Δ𝑀𝑀𝐷 apart. Again, by the

𝜋WakeAt

Δ𝑐𝑙𝑘 ,Δ𝑤
and 𝜋DriftΔ𝑐𝑙𝑘

model predicates, the operation will occur after

at most 2 · Δ𝑐𝑙𝑘 + Δ𝑀𝑀𝐷 + Δ𝑤 after 𝜄𝐿 updates its STH, i.e., at or

before 𝜏𝑆𝐶𝑇 + 4 · Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 · Δ𝑤 . In every invocation of

CTC,ℎ .Wakeup, 𝜄𝑀 requests a CTC,ℎ .GetSTH-Req operation from

the logger of every log that 𝜄𝑀 is monitoring, which includes 𝜄𝐿 .

From the 𝜋ComΔ𝑐𝑜𝑚
model predicate, the CTC,ℎ .GetSTH-Req operation

in 𝜄𝐿 occurs at most Δ𝑐𝑜𝑚 afterwards, i.e., at or before 𝜏𝑆𝐶𝑇 + 4 ·
Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + Δ𝑐𝑜𝑚 (including the possible impacts

of the local clock bias, the wake-up imprecision, and the network

delay).

From the 𝜋ComΔ𝑐𝑜𝑚
model predicate, the corresponding event with

operation CTC,ℎ .GetSTH-Resp in 𝜄𝑀 occurs within Δ𝑐𝑜𝑚 . Suppose

that no malicious entries are received by 𝜄𝑀 for the benign log.

This means that the size of 𝜄𝑀 ’s local copy of the benign log is

less than the size specified in the STH. Since 𝜄𝐿 is benign, then

the STH is correctly signed. Since 𝜄𝑀 is benign and due to the

𝜋1LogCert model predicate, 𝜄𝑀 only has the correct log certificate

and should accept benign STHs and benign entries for the benign

log. As shown in CTC,ℎ .GetSTH-Resp, this means that the monitor

𝜄𝑀 identifies that new certificates were logged and asks for them, i.e.,

invokes CTC,ℎ .GetEntries-Req at 𝜄𝐿 ; and the logger 𝜄𝐿 immediately

responds by sending the certificates, including𝜓 ′. Then, 𝜄𝑀 receives

𝜓 ′ in the corresponding CTC,ℎ .GetEntries-Resp event. This round-

trip of communication will take at most 2 ·Δ𝑐𝑜𝑚 ; hence, 𝜄𝑀 receives

𝜓 ′ at or before time 𝜏𝜓 , defined as:

𝜏𝜓 ≡ 𝜏𝑆𝐶𝑇 + 4 · Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 4 · Δ𝑐𝑜𝑚
≤ 𝜓 .𝑓 𝑟𝑜𝑚 + 2 · Δ𝑐𝑙𝑘 + Δ𝑐𝑜𝑚
+ 4 · Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 4 · Δ𝑐𝑜𝑚

= 𝜓 .𝑓 𝑟𝑜𝑚 + 6 · Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 5 · Δ𝑐𝑜𝑚
= 𝜓 .𝑓 𝑟𝑜𝑚 + ΔTra

(6)

Since 𝜄𝑀 is a benign monitor and due to the 𝜋1LogCert model predi-

cate, 𝜄𝑀 should accept the benign entries for the benign log, so in the

CTC,ℎ .GetEntries-Resp event, 𝜄𝑀 stores𝜓 ′ in its local copy of 𝜄𝐿 ’s

log. After this time, when the CTC,ℎ .Lookup operation is invoked

at 𝜄𝑀 with input𝜓 .𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , then 𝜄𝐿 ’s output includes𝜓
′
, which has

the same logged fields as𝜓 . This contradicts the assumption that

ATra produces, with non-negligible probability, a certificate𝜓 that

is valid at time 𝑡 ≥ 𝜓 .𝑓 𝑟𝑜𝑚 + ΔTra but no certificate with the same

logged fields as the logged fields of𝜓 is known to 𝜄𝑀 after time 𝑡 .

Therefore, either:

• 𝜓𝑆𝐶𝑇 was not properly generated by 𝜄𝐿 . Since 𝜄𝐿 is benign,

this means that 𝜄𝐿 ’s signature in 𝜓𝑆𝐶𝑇 was forged, which

contradicts the existential unforgeability of C.
22

• Using a malicious STH, malicious entries were accepted by

𝜄𝑀 for the benign log, which prevented 𝜄𝑀 from receiving𝜓 .

Since 𝜄𝐿 is benign, this implies that 𝜄𝐿 ’s signature was forged,

which contradicts the existential unforgeability of C.
• Using a correct Merkle tree root output in an STH by 𝜄𝐿 , mali-

cious entries, which were not used to compute the root by 𝜄𝐿 ,

were accepted by 𝜄𝑀 for the benign log, which prevented 𝜄𝑀
from receiving𝜓 ′. This contradicts the collision-resistance
of the Merkle treeMTℎ , which is guaranteed when ℎ is a

collision-resistant hash function (see [13]).

□

E.2 CTC,ℎ does not ensure Guaranteed
Δ-Transparency or Audited Δ-Transparency

Wenext show thatCT fails to satisfy theGuaranteedΔ-Transparency
requirement and the Audited Δ-Transparency requirement, for any

finite delay Δ, assuming the same model predicate (of Equation 4).

Theorem 5. Let C be a secure certificate scheme and ℎ be a collision-

resistant hash, and let Δ be any finite delay. Then, CTC,ℎ does not

satisfy the Guaranteed Δ-Transparency requirement or the Audited

Δ-Transparency requirement under the model predicate of Equation 4.

Proof. Notice that the adversary may control all of the logs in

aux.logs, i.e., each log 𝑖𝑑𝐿 ∈ aux.logs may be either controlled by a

corrupt entity in the execution or may be a fake log of the adversary,

not existing in the execution. We construct an adversary AG

Tra
that controls all of the logs in aux.logs through corrupt entities

in the execution. That is, each 𝑖𝑑𝐿 ∈ aux.logs is controlled by a

logger 𝜄𝐿 ∈ 𝑇 .F (where 𝑇 is an execution transcript). For each such

adversary-controlled logger 𝜄𝐿 , AG

Tra instructs 𝜄𝐿 to execute CTC,ℎ
as described in §D.1, with the single change of eliminating Line 2

fromAddPreChain-Req. As a result, each such adversary-controlled
logger 𝜄𝐿 generates an SCT to every certificate with an acceptable

‘from’ field time value, yet 𝜄𝐿 never logs these certificates in its log,

and therefore, never informs monitors about them. This means that

despite the fact that there is a valid SCT from 𝜄𝐿 for each of the

certificates, none of these certificates will be known to monitors.

Thus, even if𝜓 is valid and thus includes valid SCTs for at least two

of the log identifiers in aux.logs, and monitor 𝜄𝑀 monitors all of the

logs in aux.logs, no certificate with the same logged fields as the

logged fields of𝜓 may be known to 𝜄𝑀 during the entire execution.

Hence, the existence of such AG

Tra means that the Guaranteed Δ-
Transparency requirement is not satisfied under themodel predicate

of Equation 4.

CTC,ℎ also does not satisfy the Audited Δ-Transparency require-

ment under the model predicate of Equation 4, as we show next. We

construct an adversary AA

Tra which works like AG

Tra and in addi-

tion,AA

Tra does the following. After invoking AddPreChain-Req at

a corrupt logger 𝜄𝐿 ∈ 𝑇 .F which is in aux.logs to correctly generate

and output an SCT certificate 𝜓𝑆𝐶𝑇 with 𝜓𝑆𝐶𝑇 .𝑙𝑜𝑔_𝑖𝑑 = 𝜄𝐿 , AA

Tra
certifies a corresponding valid certificate𝜓 which includes𝜓𝑆𝐶𝑇 ,

and then AA

Tra waits until after 𝜓 .𝑓 𝑟𝑜𝑚 + Δ. Then, A
A

Tra invokes

the ‘Audit’ operation with input 𝜓, aux) at a monitor 𝜄𝑀 which

monitors 𝜄𝐿 . As described above, 𝜄𝐿 never logs in its log the cer-

tificates for which it generates SCTs and never informs monitors

about them. Consequently, 𝜄𝑀 will not be aware of𝜓 before AA

Tra
audits 𝜄𝑀 with input 𝜓, aux), where 𝜓 includes the correct SCT

certificate 𝜓𝑆𝐶𝑇 for log 𝜄𝐿 . Since CTC,ℎ does not have an ‘Audit’

operation which would allow monitors to identify certificates of

corrupted logs, then the monitor audited by AA

Tra will not output

the corrupt log certificate for log 𝜄𝐿 . Thus, 𝜄𝑀 will fail to correctly

identify a corrupt log certificate. Hence, trivially, the existence of

such AG

Tra means that the Audited Δ-Transparency requirement is

not satisfied under the model predicate of Equation 4. □

E.3 CTwAuditC,ℎ ensures Audited
Δaud

Tra -Transparency

Finally, Theorem 6 proves that CTwAuditC,ℎ ensures the Audited

Δaud

Tra -Transparency requirement under the model predicate of Equa-

tion 4.

Theorem 6. Let C be an existentially-unforgeable certificate scheme

and ℎ be a collision-resistant hash. Denote Δaud

Tra ≡ 7 · Δ𝑐𝑙𝑘 + 2 ·
Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 5 · Δ𝑐𝑜𝑚 , where Δ𝑀𝑀𝐷 is the maximal merge

delay. Then, CTwAuditC,ℎ satisfies the Audited Δaud

Tra -Transparency

requirement under the model predicate of Equation 4.

Proof. (Sketch) Suppose that CTwAuditC,ℎ does not satisfy the

Audited Δaud

Tra -Transparency requirement under the model predicate

of Equation 4. By definition, there exists a PPT adversary Aaud

Tra
that satisfies:

Pr

[
𝜋AudTra
Δaud

Tra
(𝑇) = ⊥, where

𝑇 ← ExecAaud

Tra ,CTC,ℎ
(𝑝𝑎𝑟𝑎𝑚𝑠)

]
∉ 𝑁𝑒𝑔𝑙 (|𝑝𝑎𝑟𝑎𝑚𝑠 |) (7)

Following Equation (7) and the 𝜋AudTraΔ predicate (in Defini-

tion 4), with non-negligible probability over the transcripts 𝑇 of

executions of CTC,ℎ with Aaud

Tra , we have 𝑓
Tra
Δaud

Tra
(𝑇,⊥) ∉ {‘G’, ‘A’},

where the 𝑓 TraΔ function is defined in Algorithm 5.

That is, there exists an adversary Aaud

Tra that produces, with

non-negligible probability, a certificate𝜓 that is valid at time 𝑡 ≥
𝜓 .𝑓 𝑟𝑜𝑚 + Δaud

Tra w.r.t. store and aux, such that a benign monitor 𝜄𝑀

who is monitoring all the logs in aux.logs since 𝑡 −Δaud

Tra , is unaware

of𝜓 after time 𝑡 , and when audited at some time after 𝑡 , it does not

identify any corrupt log certificate from aux.logs and store.logs or it

identifies an incorrect log certificate as corrupt (either a certificate

that is not in aux.logs and store.logs or a certificate which was

outputted as a log certificate by a benign entity). We use 𝑡 to denote

some specific point in time to derive the bound for Δaud

Tra based on

the Δ𝑀𝑀𝐷 , Δ𝑐𝑙𝑘 , Δ𝑐𝑜𝑚 , and Δ𝑤 parameters.

Since 𝜓 is valid at time 𝑡 , then Lines 2-8 of CTwAuditC,ℎ .Valid
(in Algorithm 23), ensure that𝜓 contains at least two SCTs which

correctly verify using the public keys of the corresponding log certs

in store.logs. Let us consider the set of all such SCTs and let us call

the logs corresponding to these SCTs the ‘SCT logs’. There are two

cases: (1) at least one of the SCT logs is benign; (2) every one of the

SCT logs is corrupt (i.e., either is controlled by a corrupt entity in

the execution or is a fake log of the adversary, not existing in the

execution).

Suppose that at least one of the SCT logs is benign. By Theorem 4,

𝜄𝑀 would be aware of a certificate with the same logged fields as

the logged fields of𝜓 after time 𝑡 , since the Δaud

Tra in Theorem 6 is

≥ the ΔTra in Theorem 4. This is a contradiction. This implies that

every one of the SCT logs is corrupt.

23

From CTC,ℎ .Audit (Algorithm 25), when 𝜄𝑀 is audited, every log

certificate in the output of 𝜄𝑀 has its log identifier in aux.logs, the

log certificate is in store.logs, and the corresponding log is one of the

SCT logs. This implies that if all of the SCT logs are corrupt, then the

reason for FailedIdentifyCorrupted(𝑇,𝜓, 𝑡, store, aux, 𝜄𝑀) (Algo-
rithm 19) being true cannot be that 𝜄𝑀 identified an incorrect log

cert (a log cert without its log identifier in aux.logs or a log cert not

in store.logs or a log cert outputted by a benign entity) as corrupt,

but rather, it must be that 𝜄𝑀 failed the audit due to not outputting

any corrupt log cert when audited.

As stated before, since 𝜓 is valid at time 𝑡 , it must contain at

least two correctly-verifying SCTs of logs in aux.logs and store.logs,

so if 𝜄𝑀 is not aware of any certificate with the same logged fields

as the logged fields of 𝜓 when audited, then it should output at

least two corrupt log certificates. If 𝜄𝑀 did not output any corrupt

log certificate when audited, this implies that there must exist a

certificate𝜓 ′ with the same logged fields as the logged fields of𝜓

such that 𝜄𝑀 was unaware of𝜓 ′ in the ‘Lookup’ event after time 𝑡

but aware of𝜓 ′ in the ‘Audit’ event after time 𝑡 . This implies that 𝜄𝑀
must have received𝜓 ′ in aCTC,ℎ .GetEntries-Resp (in Algorithm 23)

event after the ‘Lookup’ event and before the ‘Audit’ event.

Both the ‘Lookup’ and ‘Audit’ events occurred after time 𝑡 , and

𝑡 ≥ 𝜓 .𝑓 𝑟𝑜𝑚+Δaud

Tra = 𝜓 .𝑓 𝑟𝑜𝑚+7 ·Δ𝑐𝑙𝑘 +2 ·Δ𝑀𝑀𝐷 +2 ·Δ𝑤 +5 ·Δ𝑐𝑜𝑚 ,

so by the 𝜋DriftΔ𝑐𝑙𝑘
model predicate, the CTC,ℎ .GetEntries-Resp event

occurred with local time 𝑐𝑙𝑘 > 𝜓 .𝑓 𝑟𝑜𝑚 + 7 · Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 ·
Δ𝑤 + 5 · Δ𝑐𝑜𝑚 − Δ𝑐𝑙𝑘 = 𝜓 .𝑓 𝑟𝑜𝑚 + 6 · Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 5 ·
Δ𝑐𝑜𝑚 . Since the 𝑓 𝑟𝑜𝑚 field is a logged field in CTwAuditC,ℎ , then
𝜓 ′ .𝑓 𝑟𝑜𝑚 = 𝜓 .𝑓 𝑟𝑜𝑚, which implies that the CTC,ℎ .GetEntries-Resp
event occurred with local time 𝑐𝑙𝑘 > 𝜓 ′ .𝑓 𝑟𝑜𝑚 + 6 · Δ𝑐𝑙𝑘 + 2 ·
Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 5 · Δ𝑐𝑜𝑚 . However, from CTC,ℎ .GetEntries-Resp
(in Algorithm 23), 𝜄𝑀 would only accept𝜓 ′ if 𝑐𝑙𝑘 ≤ 𝜓 ′ .𝑓 𝑟𝑜𝑚 + 6 ·
Δ𝑐𝑙𝑘 + 2 · Δ𝑀𝑀𝐷 + 2 · Δ𝑤 + 5 · Δ𝑐𝑜𝑚 . So 𝜄𝑀 would not accept 𝜓 ′,
and consequently, 𝜄𝑀 would not be aware of𝜓 ′ in the ‘Audit’ event

after time 𝑡 . This is a contradiction.

□

24

	Abstract
	1 Introduction
	2 PKI Schemes
	2.1 Certificate Fields and Types
	2.2 PKI Entities
	2.3 Certifying and Revoking Certificates
	2.4 Certificate Validity
	2.5 Definition of a PKI Scheme

	3 PKI Requirements
	3.1 Modular Security Specifications
	3.2 The Existential Unforgeability Requirement
	3.3 The Accountability Requirement
	3.4 Revocation Requirements
	3.5 Transparency Requirements

	4 Provably-secure PKI Schemes
	4.1 Certificate Scheme
	4.2 PKIX (with CRLs)

	5 Security Analysis
	5.1 Model predicates
	5.2 Analysis of Existential Unforgeability, Accountability and Accountable Revocation
	5.3 Analysis of Transparency

	6 Conclusions and Future Work
	A PKIXC Implementation
	B Additional Predicate Procedures
	C Model Predicates
	D Certificate Transparency Implementations
	D.1 Certificate Transparency
	D.2 Certificate Transparency with Audit

	E Analysis of Transparency in CT and CTwAudit
	E.1 CT-C-h ensures HL Delta-Tra-Transparency
	E.2 CT-C-h does not ensure Guaranteed Delta-Tra-Transparency or Audited Delta-Tra-Transparency
	E.3 CTwAudit-C-h ensures Audited Delta-AUD-Tra-Transparency

