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Horst Görtz Institute for IT Security

Bochum, Germany

aein.rezaeishahmirzadi@rub.de

Shahram Rasoolzadeh

Ruhr University Bochum
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Abstract—Protection against active physical attacks is of seri-
ous concerns of cryptographic hardware designers. Introduction
of SIFA invalidating several previously-thought-effective counter-
measures, made this challenge even harder. Here in this work
we deal with error correction, and introduce a methodology
which shows, depending on the selected adversary model, how
to correctly embed error-correcting codes in a cryptographic
implementation. Our construction guarantees the correction of
faults, in any location of the circuit and at any clock cycle, as
long as they fit into the underlying adversary model. Based on
case studies evaluated by open-source fault diagnostic tools, we
claim protection against SIFA.

I. INTRODUCTION

Internet of things (IoT) increasingly become popular and

create values and concerns in our daily life by connecting

various kind of devices and transferring data over such a

network. Small embedded devices have vital role in these

systems, highlighting the significance of their security. The

crux of the matter is an attacker who may have physical

access to an embedded device enabling him to mount all

sorts of physical attacks. Thus, the device not only should

fulfill mathematical security requirements but should also be

physically secure. The focus of this paper is on fault-injection

attacks, where the adversary forces the device to operate in

non-regular conditions by injecting faults. Changing the clock

frequency [2], altering the supply voltage [26], disturbing

the circuit by means of a electromagnetic pulse [22] or

laser beam(s) [27] are the most common techniques for such

maliciously-injected faults.

After the introduction of the seminal work [11], extensive

research has been conducted on fault-injection attacks. Differ-

ential Fault Analysis (DFA) attacks [9] which make use of the

faulty and fault-free outputs, have targeted the implementation

of several (mainly) symmetric ciphers. Furthermore, Statistical

Fault Attack (SFA) [16] boosts the performance of DFA by

statistically analyzing the faulty outputs. Another category of

attacks makes no use of the faulty outputs; they instead only

need to know whether a fault injection led to a faulty output or

not. Examples include Fault Sensitivity Analysis (FSA) [19],

Ineffective Fault Attack (IFA) [13], and Statistical Ineffective

Fault Attack (SIFA) [15]. The later ones utilize fault-free

outputs even though the fault is injected, i.e., ineffective. In

an IFA the adversary needs to know the position and impact

of the injected fault, while SIFA relaxes this requirement.
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Several schemes have been considered to counteract fault-

injection attacks, all of which are common in making use

of some sort of timing-, area-, and/or information-based re-

dundancy. Application of Concurrent Error Detection (CED)

schemes to detect the faults has been widely discussed in

open literature. The computation (e.g., encryption) can trivially

be repeated allowing to check the results [21]. Checking

the consistency of an operation by adding its inverse to the

design [18] and even merging the encryption and decryption

data paths [24] are well-known techniques. Parity, as a naive

Error Detecting Code (EDC), as well as more sophisticated

linear codes have been considered in cryptographic implemen-

tations [4], [8]. Private Circuits II [17] provided provably-

secure solution against both active and passive adversaries.

An improved construction is given in [25], whose lack of any

implementation results makes it hard to evaluate its practical

efficiency. In [1], a robust and practical implementation of

code-based CED schemes is presented. The authors considered

the propagation of faults into the combinatorial logic and

introduced a methodology to restrict its negative effects. They

also guarantee the detection of any fault injected in any

location of the circuit (data path, control logic, etc.) as long

as the injected faults fit into the considered adversary model.

Notably, none of the aforementioned countermeasures is able

to protect cryptographic implementations against SIFA.

Our Contributions. In this paper, we introduce a methodology

leading to secure implementation of error-correcting code-

based schemes in the presence of fault propagation. Indeed, we

extend the error-detection facility of Impeccable Circuits [1] to

error correction by keeping almost the same adversary model.

Our goal is to guarantee the correction of any faults injected in-

side the circuit as long as they fit into the considered bounded

model. We cover every cell belonging to data path, finite state

machine, and control signals at any time of computation.

As a case study, we consider symmetric cipher CRAFT [7]

to show the application of our methodology and to assess

the strategy. To this end, we made use of the open-source

fault-diagnostics tool VerFI [3] and verified the ability of our

constructions in correcting the faults. In short, it confirms

our claim achieving 100% correction rate. Moreover, by em-

ploying simulated data we show that the circuits equipped

with error-detection are trivially vulnerable to SIFA, while the

opposite is demonstrated here when error-correction is applied.

Overall, we give a formal guideline of how error-correcting

code-based schemes should be implemented to guarantee the

maximum level of security against sophisticated attacks (e.g.,



SIFA) making use of up to a certain number of faulty cells.

Related Works. Recently, a couple of techniques have been

proposed to protect against SIFA. Binary repetition code

(a basic error-correcting code) is used in [12], where the

correction is performed in the non-linear (S-box) Layer. The

paper does not include any full design (cipher) evaluation.

Further, no area- and/or latency-overhead using standard ASIC

libraries has been reported, making the comparisons difficult.

A two-phase approach is introduced in [23], where masking is

suggested for the one phase, and repetition code for the other

phase. Each S-box output bit is instantiated multiple times,

and then fed into a majority voting circuitry. While the authors

validated their design by simulation, they did not report the

overhead either in software or hardware. In [14], a combined

countermeasure against Side-Channel Analysis (SCA) and

single-fault SIFA has been proposed, in which the nonlinear

functions are implemented by Toffoli gates, and the whole

design must be masked. While the theoretical foundations

are well discussed, it does not include any implementation

to assess the practical efficiency or any simulation to check

the consistency of the proposed strategy. In comparison, our

methodology deals with error correction and does not force

the designer to apply masking. In fact, the application of our

methodology does not increase the difficulty of equipping the

design with a masking countermeasure, as the algebraic degree

of the underlying functions stay unchanged.

II. BACKGROUND

Unlike SFA and IFA, SIFA does not rely on a specific fault

model and is applicable in a broader range of models specially

in the presence of countermeasures. It simply requires some

dependency between the output and the intermediate value on

which the injected fault has no effect. However, the attacker

does not need to know this dependency. Indeed, the probability

of changing an intermediate value x by a fault injection (like

stuck-at-0/1) is not the same for all values of x. This bias is

the only necessary requirement of SIFA.

To thwart fault-injection attacks, some form of redundancy

(either in time and/or area) should be used to detect or correct

the errors. It is shown in [15] that countermeasures against

SFA and DFA cannot provide protection against SIFA. In fact,

countermeasures based on effective faults are ideal targets for

SIFA, because such countermeasures permit the attacker to

collect observations with ineffective faults. A trivial solution

to protect against SIFA is correction of errors to avoid any

bias in the aforementioned distribution of the intermediate

values. Therefore, the attacker cannot distinguish between

the corrected errors and ineffective ones, hence defeating the

attack. Majority voting and Error Correcting Codes (ECCs)

are among such techniques. It is stated in [15] that faults can

be injected on multiple instances of majority voting with less

complications, leading to successful attacks. We also present

successful SIFAs on different variants of majority voting in

Section IV. In this work, we instead deal with ECCs, where

data is encoded and the redundancy allows the decoder to

correct a limited number of faults.

A. Error Correcting Code (ECC)

Below, we restate some notions related to linear ECCs used

in our work borrowed from [20].

Definition 1 (Linear Code). A binary linear [n, k]-code C is

defined as a vector subspace over F
n
2 which maps messages

x ∈ F
k
2 to codewords c ∈ C, where n and k are refereed as

the length and rank of the [n, k]-code C.

Since most of CEDs rely on binary linear codes due to

performance efficiency in symmetric cryptography, we only

focus on such codes.

Definition 2 (Generator Matrix). A k × n-matrix G is a

generator matrix of a linear [n, k]-code C iff it is formed

by k basis vectors of C with length n. It can be used to

map any message x ∈ F
k
2 to its corresponding codeword with

x ·G = c ∈ C.

Definition 3 (Minimum Distance). The minimum distance d
of an [n, k]-code C is defined as

d = min
{

wt (c1 ⊕ c2) | ∀c1, c2 ∈ C , c1 6= c2
}

,

where wt : Fn
2 7→ N denotes the number of ‘1’s in the binary

representation. Such a code is denoted by [n, k, d].

Indeed, the error detection and correction capability of a linear

code depends on its minimum distance, i.e., larger d allows

more errors to be detected or corrected.

Lemma 1. A linear [n, k, d]-code can detect all erroneous

codewords c′ = c⊕ e with wt(e) < d.

Lemma 2. A linear [n, k, d]-code can correct all erroneous

codewords c′ = c⊕ e with wt(e) < d/2.

In other words, a linear [n, k, d]-code can detect errors up to

(d− 1) bits, or correct errors up to (d− 1)/2 bits.

Definition 4 (Systematic Code). A code in which the message

x is embedded in the codeword c is called a systematic code.

The generator matrix G of a linear systematic [n, k]-code is

of the form G = [Ik|P ] with Ik the identity matrix of size

k. Thus, each codeword c contains message x padded with

check bits (redundancy) x′, i.e., c = 〈x|x′〉, while the check

bits are generated using the matrix P as x′ = x · P . This

property enables a separation between the message and check

bits; hence, the systematic codes do not require extra logic to

recover the message from the codeword. This implementation

advantage justifies why most of the the CEDs make use of

systematic codes, as we do in this work. As noted in [10], the

focus on systematic linear codes does not make any restric-

tions, since any linear non-systematic code can be transformed

to a systematic code with the same minimum distance.

Syndrome Decoding is an efficient method of error correction,

originating from the linearity of the code. Since x′ ⊕ x · P =
0, for an erroneous codeword 〈x ⊕ e|x′ ⊕ e′〉 we can write

(x′⊕ e′)⊕ (x⊕ e) ·P = e′⊕ e ·P which is called a syndrome.

Using a proper look-up table, one can map all syndrome values

to corresponding error vectors 〈e|e′〉 with wt(e) + wt(e′) <
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Fig. 1. Correction point using an ECC.

d/2 and thus, correct the erroneous codeword. Such a look-up

table (e′ ⊕ e · P ) 7→ 〈e|e′〉 is called a syndrome decoder.

III. METHODOLOGY

A. Definitions

Adversary Model. Borrowed from [1], we define a slightly

stronger adversary model. The attacker is able to inject fault

at t arbitrarily cells (either a register or a gate), which means

flipping the output of the cell or setting it to a certain value.

As a consequence, every cell driven by faulty cell(s) can be

faulty as well.

Definition 5 (Univariate Adversary Model Mt). In a given

sub-circuit, the adversary is able to make up to t cells faulty

in the entire operation of the algorithm, e.g., a full encryption.

t can be split into various clock cycles.

Definition 6 (Multivariate Adversary Model M∗
t [1]). Here,

the adversary can target up to t cells at every clock cycle.

Fault Propagation and Independence Property. When the

attacker induces fault in t cells, more than t faulty bits can be

present at the sub-circuit output due to fault propagation. In

other words, an Mt-bounded attacker can target t certain cells

in such a way that more than t faults appear at the sub-circuit

output avoiding the underlying code to detect or correct it.

To thwart fault propagation, independence property has been

defined in [1]. It means that no cell should be shared between

functions which generate different output wires. Hence, by

inducing fault in one cell, the fault can only affect one output.

Correction Point. In order to correct a faulty codeword, we

use the typical ECC construction shown in Fig. 1. We refer to

the application of matrix P on x to derive x′ by F : Fk
2 7→ F

m
2

as F (x) = x · P , where m = n − k denotes the redundancy

bit-length. As discussed in Section II-A, using an [n, k, 2t+1]-
code, there exist a syndrome decoder to correct all faults with

Hamming weight of at most t. Assume a faulty input 〈x|x′〉
with the injected fault being 〈e|e′〉. At the correction point,

the syndrome decoder is fed by F (x)⊕x′; hence, the injected

fault 〈ê|ê′〉 is predicted. If wt(e) + wt(e′) ≤ t, the predicted

fault is the same as the injected one. If so, XORing 〈ê|ê′〉 to

the input word omits the injected fault. Note that in Figure 1

we split the syndrome decoder to two parts with SD1 and

SD2 predicting ê and ê′, respectively.

B. Application

In order to apply our strategy, we consider a general

algorithm that is realized by a sequential circuit depicted in

Figure 2(a). It consists of a register which loads the INPUT

rst
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T
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Fig. 2. Our construction with respect to application of an ECC.

at the beginning (triggered by rst signal) and performs the

function T repeatedly until the OUTPUT is taken from the

register. Note that any sequential circuit can be represented

by such a construction. For the sake of simplicity suppose

that the bit-length of INPUT, register, and input and output of

T is a multiple of k bits. The application of an [n, k]-code

would lead to transforming every k-bit chunk x to an n-bit

codeword c = 〈x|x′〉. In the following, considering only a

univariate adversary model and also two different cases for F ,

we explain how the underlying ECC is applied.

Injective F . In this case which necessities the redundancy to

be at least as large as the message size (e.g., n ≥ 2k), the

redundant part of the circuit can operate on x′ independent of

x, as shown in Figure 2(b). The redundant function T ′ can

also be achieved as T ′ = F ◦T ◦F−1. It is necessary to put a

correction point at the input of each operation. Otherwise, the

faults injected at the register cells would potentially propagate

to multiple output bits of T/T ′. All output bits (dashed

boxes in Figure 2(b)) must be implemented fulfilling the

independence property which may necessitate to implement

several instances of F , SD1 and SD2. Note that, in a code

with distance d = 2t+1, the output of SD1 does not change

if up to t faults are injected at its input. In other words,

SD1 does not propagate faults e with wt(e) < t. Thus, F
and the corresponding XOR can be instantiated separately,

while it does not hold for SD2 (see Figure 2(b)). Since the

multiplexer and the register operate on each bit of the T
output independently, they fulfill the independence property

automatically. Hence, any fault injected on T/T ′ fitting to the

adversary model is corrected at the correction point in the next

clock cycle.

Non-Injective F . Here, T ′ needs to receive the original data

x to compute T ′(x) = F ◦ T (x). This means that we only

need to correct x. The corresponding construction is shown in

Figure 2(c), where the independence property can be divided

in two parts (two dashed boxes). It is indeed the same as the

left part of Figure 2(b) with a different T ′.

Optimization. In symmetric ciphers, often T is a composition

of some sub-functions, for instance T = T2◦T1 where usually

one is a nonlinear function and the other ones linear. Due



to the diffusion properties of T , implementing T fulfilling

the independence property can be area-wise expensive. The

area overhead might be reduced by implementing T1 and T2

independently with their corresponding correction points, and

fulfilling the independence property for each part. It is worth

to mention that the benefit might be marginal since more

correction points are required (it depends on the diffusion of

T1 and/or T2).

In several block ciphers including CRAFT [7], Midori [5]

and Skinny [6], the linear layer can be represented as a binary

matrix over elements of F2k . It is proven in [1] that such sub-

functions do not propagate the injected faults. Hence, they do

not need an extra correction point if implemented following

the aforementioned decomposition form.

FSM and Control Signals. Finite-State Machine (FSM) is a

vital part of the algorithm because the attacker can manipulate

the FSM and control the flow to obtain critical outputs, like

middle value of the cipher easily exploiting the secrets. Every

FSM can be implemented by a set of registers called STATE,

initialized by INIT and updated every clock cycle by means

of an update function U . The statements given for different

constructions depending on F (injective/non-injective) hold for

the FSM as well. It should be implemented following Fig 2

replacing T by the update function U and INPUT by INIT.

Each function Gi which generates a control signal si, receives

the corrected STATE, where its redundant counterpart s′i =
F ({0}k−1|si). In other words, every single-bit control signal

is padded with zero to form a k-bit chunk; the encoded chunk

s′i is of m bits.

• Injective F : Here, the redundant part of each control signal

is made as s′i = G′
i(STATE

′) with G′
i = F ◦Gi ◦ F

−1.

• Non-Injective F : Each control signal si is mapped to

s′i = G′
i(STATE) with G′

i = F ◦ Gi. Note that, if there

is a G′
i(.) satisfying G′

i ◦ F = F ◦ Gi, it is possible to

generate s′i over STATE
′.

It is noteworthy that implementation of all functions should

follow the independence property.

Multiplexer. Suppose a k-bit multiplexer switching between

x and y controlled by the signal s. As stated before, the redun-

dant counterpart of s, x, and y are m-bit wide. To apply error

correction, the multiplexer is combined with its redundant

counterpart to form a k+m-bit multiplexer switching between

〈x|x′〉 and 〈y|y′〉 by an m+1-bit control signal 〈s|s′〉. The

combined multiplexer should be implemented by a multiplexer

tree in m+1 levels. The first row is controlled by the control

signal s, and the other rows by the corresponding bit of the

redundant control signal s′. The inputs vi∈{0,...,2k+m−1} of the

first multiplexer row are defined as follows:

vi =







〈x|x′〉 ; i = 〈0|F (0)〉 ⊕∆, wt(∆) < d/2
〈y|y′〉 ; i = 〈1|F (1)〉 ⊕∆, wt(∆) < d/2
0 ; else

If the functions generating the control signals and their redun-

dant part fulfill the independence property, this construction

guarantees the correction of t < d/2 faulty gates, since 〈s|s′〉
is a codeword with distance d.

Output. We suppose that the circuit contains a control signal

DONE indicating the termination of the computation. To avoid

sniffing intermediate results by injecting a fault into such a

signal, a construction similar to the multiplexer can be used. To

this end, DONE signal should be protected from faults turning it

from ‘0’ to ‘1’. The DONE signal is concatenated with its m-bit

redundancy and forms an m+1-bit signal controlling an m+1
levels multiplexer. The final result of the cipher should pass

through this multiplexer whose first row inputs are defined as:

vi =

{

OUTPUT ; i = 〈1|F (1)〉
0 ; else

Considering the independence property, this construction guar-

antees to prevent any sniffing with t < d faults on DONE and

its redundancy DONE
′.

C. Extension to Multivariate

Suppose the circuits shown in Fig 2 with an [n, k, d]-code,

which under the Mt adversary model correct all t faults

when d = 2t + 1. To protect the circuit against the M∗
t

adversary model, we need d/2 to be larger than the maximum

number of faults that the adversary can inject between two

consecutive correction points. For instance, in the circuits

shown in Figure 2, there is only one correction point in each

clock cycle; hence, the maximum number of faults that can be

injected between two consecutive correction points is 2t. To

protect this circuit against the M∗
t adversary model, we need

to embed a code with d = 4t+1. It is noteworthy to mention

that for circuits which include more than one correction point

in one clock cycle, only changing the first correction point to

the one using a code with d = 4t+ 1 is enough. While other

correction points can still use the code with d = 2t+ 1.

IV. CASE STUDY

To evaluate our proposed methodology in terms of overhead

as well as fault correction, we investigated the block cipher

CRAFT designed with respect to efficient protection against

DFA [7]. Our analyses are base on Synopsys Design Compiler

with the NanGate 45 nm ASIC standard cell library.

A. Cipher

CRAFT operates on a 64-bit state, 64-bit tweak, and a 128-

bit key in 32 rounds. Each round consists of SubBox (SB),

MixColumn (MC), PermuteNibbles (PN), AddConstant (AC),

and AddTweakey (AT), while SB and PN are not applied

in the last round. Based on the given key and tweak, the

KeySchedule generates four 64-bit tweakeys, one of which

is selected depending on the round counter. After loading the

plaintext, MC is applied to each column; then the selected

tweakey and RoundConstants are XORed to the state, followed

by PN and SB.

B. Implementation Details

We focused on a round-based implementation of CRAFT.

Since CRAFT uses a 4-bit S-box, we fixed k = 4 in [n, k, d]
codes, while the distance d (hence the code length n) are

defined by the considered adversary model. We examined two

codes with distance 3 and 5 to be able to correct 1-bit and



2-bit faults, respectively. Thus, we used [7, 4, 3]-code for 1-bit

and [11, 4, 5]-code for 2-bit corrections in our implementation.

[7,4,3]-code: Here, F (.) cannot be injective; therefore, the

architecture shown in Figure 2(c) should be followed by the

following generator matrix.

G[7,4,3] =





1 0 0 0 0 1 1
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0



 = (I4 | P)

In such cases, the MC, PN, and XORs can operate solely on

redundant part of the cipher. For FSM and S-box, F ◦UFSM

and F ◦ S should be implemented respectively.

Optimization. As mentioned in Section III-B, the select signal

of the multiplexers is a concatenation of the single-bit s and

its redundancy s′. Hence, 〈s|s′〉 can be 〈0|F (0) = 0000〉 or

〈1|F (1) = 1111〉. The distance of these two codewords is 4

while it is possible to correct single-bit faults with a distance

of 3. Thus, by selecting only 3 bits of 〈s|s′〉 (including s), we

can achieve the same goal with less area overhead.

[11,4,5]-code: Since here F (.) is injective, the structure shown

in Figure 2(b) is followed with the following generator matrix.

G[11,4,5] =





1 0 0 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 0 1 1 0
0 0 1 0 1 0 1 0 1 0 1
0 0 0 1 0 1 0 1 0 1 1





Since the MC matrix consists only of zero and one and

as stated in [1], the same MC matrix can be used for the

redundant counterpart. The same holds for the PN module,

while the redundant part of the S-box is derived by F ◦S◦F−1,

as given in Section III-B.

Similar to the data path, all key nibbles are also encoded,

so all XORs (AC and AT) are straightforward in the redundant

part. The permutation of the tweak is also done trivially

due to its nibble-wise structure. Two LFSRs are used in this

block cipher to generate RoundConstants. We followed the

same implementation styles as in [7] to encode them. The

DONE, derived from the LFSR states, is a 7-bit coordinate

function, while the redundant counterpart contains seven 14-

bit coordinate functions (due to the independence property and

the code length n = 4 + 7).

Optimization. The output of syndrome decoders is “don’t-

care” for some inputs which helped us to reduce the area

overhead. The select signal of the multiplexers (which select

the tweakeys) can take 〈0|F (0) = 00000000〉 or 〈1|F (1) =
10001111〉. By removing the bits tied to ‘0’, we further

reduced the area while achieving the same level of protection.

Majority Voting. We have also implemented the same design

equipped with Majority Voting (MV), where the cipher is

instantiated 2t+1 number of times to correct up to t bit faults.

To this end, we instantiated the cipher 3 and 5 times, followed

by the corresponding voting circuitry. Different approaches can

be used to realize the voting module, we employed a variant

where the entire 65-bit outputs are compared (64-bit ciphertext

concatenated by the DONE signal). The area and latency of our

TABLE I
AREA AND LATENCY COMPARISON OF CRAFT IMPLEMENTATIONS,

USING NANGATE 45 NM ASIC LIBRARY.

Plain 1-bit Correction 2-bit Correction

MV [7,4,3] MV [11,4,5]

Area (GE) 1097 4502 5187 7711 21617

Latency (ns) 0.55 1.00 0.87 1.03 1.08

implementations are summarized in Table I. It can be seen that

our designs has almost no performance benefits compared to

the classical MV variants. However, in the following we show

the pitfalls of MV designs and advantages of our constructions

with respect to protection against SIFA.

C. Simulation

In order to assess the effectiveness of our construction,

we made use of VerFI [3] the open-source fault-diagnostics

tool (ver 2 Beta) https://github.com/emsec/VerFI. It receives

the NanGate 45 net-list of the circuit and injects (bounded)

stuck-at or toggle faults at any cell at desired clock cycles.

We examined our CRAFT implementation with [7,4,3]-code

(containing 2729 cells) with all possible single-bit toggle faults

at a certain clock cycle, i.e., Mt=1 adversary model. The tool

required a couple of seconds to report the correction of all

single-bit fault injections. For our implementation equipped

with [11,4,5]-code, we repeated this experiment for two sce-

narios: 1) injecting 2-bit faults on all cells at a clock cycle,

i.e., Mt=2 adversary model, and 2) injecting 2-bit faults

split in consecutive clock cycles, i.e., M∗
t=1 model. The tool

confirmed the correction of all faults in both scenarios. The

design contains 14102 cells, and the bitsliced version of VerFI

running on a 30-core machine with two Intel Xeon CPUs

finished all fault injections in 41 and 52 minutes in the first

and second scenarios respectively.

Attacks. We further used the same tool to inject stuck-at faults

to emulate SIFA. We first took the CRAFT implementations

with fault detection facility [7] (available at https://github.com/

emsec/ImpeccableCircuits/tree/master/CRAFT). We examined

3 versions of such implementations: with 1-, 2-, and 3-bit error

detection. Since only fault-free ciphertexts are used in SIFA,

recovering the secret is straightforward. We targeted an S-box

in the penultimate round with faults fitting into the underlying

error detection facility, i.e., 1-bit fault on 1-bit error detection

version, etc. We conducted the attack on the collected fault-

free ciphertexts by computing the target intermediate value

based on a key guess where the correct key guess is identified

by the highest Squared Euclidean Imbalance (SEI). The result

of the attacks (no. of required fault-free cipheretxts) are shown

in Figure 3.

We further conducted attacks on MV implementations. The

3-instance MV design (for 1-bit correction) can be easily

attacked by sniffing the output of a middle round by injecting a

single stuck-at fault at a part of the voting circuit responsible

for the DONE signal. In order to attack the 5-instance MV

design, we injected a single stuck-at fault on an S-box in the

penultimate round of one of the cipher instances. The second
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Fig. 3. Result of SIFA on various protected implementations.

single-bit stuck-at fault was injected on the voting circuit to

let the output pass. This reveals whether the first injected

fault was ineffective or not. Such information was adequate to

successfully mount the SIFA (results in Figure 3). Note that in

these cases the injected faults should have been covered by the

underlying countermeasure (i.e., 1-bit fault on 1-bit correction,

etc.). However, as we examined our constructions with all

possible (1-/2-bit) faults exhaustively, no similar attacks is

possible on our constructions. The entire HDL codes and

analysis scripts used for this paper are available online1.

V. CONCLUSIONS

Sensitive information of any unprotected cryptographic im-

plementation can be easily revealed by fault attacks. This

necessitates to utilize proper countermeasures. In this work,

we demonstrated how to construct circuits which guarantee

the correction of faults in two circumstances: 1) when the

adversary can inject up to t faults per encryption and 2) when

t faults are injected at every clock cycle. Our constructions

cover every component of the design including the data path,

FSM, control signals, and even the modules responsible for

error correction. As a case study, we applied our methodology

on CRAFT block cipher and studied the overhead in terms

of area and latency. We further exhaustively evaluated our

constructions by VerFI which confirmed the 100% correction

of any possible faults fitting into the considered adversary

model. Last but not least, we mounted successful SIFA on

various designs equipped with fault detection as well as on

constructions making use of majority voting. This highlights

the advantage of our construction in counteracting such pow-

erful attacks that justifies its high area overhead.

REFERENCES

[1] A. Aghaie, A. Moradi, S. Rasoolzadeh, A. R. Shahmirzadi, F. Schellen-
berg, and T. Schneider, “Impeccable Circuits,” IEEE Trans. Computers,
2019.

[2] M. Agoyan, J. Dutertre, D. Naccache, B. Robisson, and A. Tria, “When
Clocks Fail: On Critical Paths and Clock Faults,” in CARDIS, ser. LNCS,
vol. 6035, 2010, pp. 182–193.

[3] V. Arribas, F. Wegener, A. Moradi, and S. Nikova, “Cryptographic Fault
Diagnosis using VerFI,” in HOST 2020. IEEE, 2020, https://eprint.iacr.
org/2019/1312.

1https://github.com/emsec/ImpeccableCircuitsII

[4] S. Azzi, B. Barras, M. Christofi, and D. Vigilant, “Using Linear Codes as
a Fault Countermeasure for Nonlinear Operations: Application to AES
and Formal Verification,” J. Cryptographic Engineering, vol. 7, no. 1,
pp. 75–85, 2017.

[5] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita,
and F. Regazzoni, “Midori: A Block Cipher for Low Energy,” in
ASIACRYPT, ser. LNCS, vol. 9453. Springer, 2015, pp. 411–436.

[6] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim, “The SKINNY Family of Block Ciphers
and Its Low-Latency Variant MANTIS,” in CRYPTO, ser. LNCS, vol.
9815. Springer, 2016, pp. 123–153.

[7] C. Beierle, G. Leander, A. Moradi, and S. Rasoolzadeh, “CRAFT:
lightweight tweakable block cipher with efficient protection against DFA
attacks,” IACR ToSC, vol. 2019, no. 1, pp. 5–45, 2019.

[8] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error
Analysis and Detection Procedures for a Hardware Implementation of
the Advanced Encryption Standard,” IEEE Trans. Computers, vol. 52,
no. 4, pp. 492–505, 2003.

[9] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” in CRYPTO, ser. LNCS, vol. 1294. Springer, 1997,
pp. 513–525.

[10] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge Univ.
Press, 2003.

[11] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of
Checking Cryptographic Protocols for Faults (Extended Abstract),” in
EUROCRYPT, ser. LNCS, vol. 1233. Springer, 1997, pp. 37–51.

[12] J. Breier, M. Khairallah, X. Hou, and Y. Liu, “A Countermeasure Against
Statistical Ineffective Fault Analysis,” IACR Cryptology ePrint Archive,
vol. 2019, p. 515, 2019.

[13] C. Clavier, “Secret External Encodings Do Not Prevent Transient Fault
Analysis,” in CHES, ser. LNCS, vol. 4727. Springer, 2007, pp. 181-194.

[14] J. Daemen, C. Dobraunig, M. Eichlseder, H. Groß, F. Mendel, and
R. Primas, “Protecting against Statistical Ineffective Fault Attacks,”
IACR Cryptology ePrint Archive, vol. 2019, p. 536, 2019.

[15] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and
R. Primas, “SIFA: exploiting ineffective fault inductions on symmetric
cryptography,” IACR TCHES, vol. 2018, no. 3, pp. 547–572, 2018.
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