
Succinct Non-Interactive Secure Computation∗

Andrew Morgan
Cornell University

asmorgan@cs.cornell.edu

Rafael Pass†

Cornell Tech
rafael@cs.cornell.edu

Antigoni Polychroniadou‡

J.P. Morgan AI Research
antigonipoly@gmail.com

February 20, 2020

Abstract

We present the first maliciously secure protocol for succinct non-interactive secure two-party
computation (SNISC): Each player sends just a single message whose length is (essentially)
independent of the running time of the function to be computed. The protocol does not require
any trusted setup, satisfies superpolynomial-time simulation-based security (SPS), and is based
on (subexponential) security of the Learning With Errors (LWE) assumption. We do not rely
on SNARKs or “knowledge of exponent”-type assumptions.

Since the protocol is non-interactive, the relaxation to SPS security is needed, as standard
polynomial-time simulation is impossible; however, a slight variant of our main protocol yields
a SNISC with polynomial-time simulation in the CRS model.

∗A preliminary version of this paper will appear in the proceedings of EUROCRYPT 2020; this is the full version.
†Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, and AFOSR Award FA9550-18-1-0267.

This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.
‡This paper was prepared in part for information purposes by the Artificial Intelligence Research group of JPMor-

gan Chase & Co and its affiliates (“JP Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all liability, for the completeness, accuracy
or reliability of the information contained herein. This document is not intended as investment research or invest-
ment advice, or a recommendation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under such jurisdiction
or to such person would be unlawful. c© 2020 JPMorgan Chase & Co. All rights reserved

1

1 Introduction

Protocols for secure two-party computation (2PC) allow two parties to compute any function (f)
of their private inputs (x and y) without revealing anything more than the output f(x, y) of the
function. Since their introduction by Yao [Yao82] and Goldreich, Micali and Wigderson [GMW87],
they have become one of the most central tools in modern cryptography. In this work, our focus is
on 2PC in a setting with a non-interactivity requirement: each player sends just a single message.
The first player—typically referred to as the receiver (or R)—computes some message m1 based on
its input x and sends m1 to the second player. The second player—referred to as the sender (S)—
next computes a response m2 (based on its input y and the message m1 it received) and sends it
back to the receiver. Upon receiving the response m2, the receiver can finally compute and output
f(x, y). (Note that in such a non-interactive scenario, it is essential that only the receiver obtains
the output—in other words, that the functionality is “one-sided”; otherwise, since the protocol
only has two rounds, the sender will be able to compute the output given only m1, meaning that
it could obtain f(x, y∗) on any number of inputs y∗ of its choice.)

SNISC: Succinct Non-Interactive Secure Computation. As far as we know, this notion
of non-interactive 2PC was first formally studied in [IKO+11] under the name non-interactive
secure computation (NISC); however, informal versions of it became popular in connection with
Gentry’s breakthrough result on fully homomorphic encryption (FHE) [Gen09]. One of the original
applications of FHE was the private outsourcing of some computation to a remote party: for
instance, consider a scenario where a client (the receiver) has some secret input x and wishes a
powerful server (the sender) to compute some potentially time-consuming function f on x (and
potentially another input y belonging to the server). Using FHE, the client/receiver simply lets m1

be an FHE encryption of x; the server/sender can next use homomorphic evaluation to obtain an
encryption m2 of f(x, y) to send back, which can be decrypted by the client/receiver. Indeed, an
FHE scheme not only directly yields a NISC, but it also yields a succinct NISC (SNISC)—where
both the communication complexity of the protocol and the running time of an honest receiver are
“essentially” independent of the running time of f . More formally, we define a SNISC as a NISC
where the communication complexity and receiver running time depend only on the length of the
inputs and outputs, and polylogarithmically on the running time of the function f to be computed
(where we assume that f is given as a Turing machine).

The problem with this folklore approach towards private outsourcing/succinct NISC is that
using FHE alone only satisfies semi-honest security, as opposed to fully malicious security. For
instance, a malicious sender could decide to compute any other function of its choice instead
of the correct f ! Of course, we could always extend the protocol using ZK-SNARKs (succinct
non-interactive arguments of knowledge) [Mic94, Gro10, BCCT13, BCI+13, GGPR13] to prove
correctness of the messages m1 and m2, but doing so comes at a cost. First, we now need to assume
some trusted setup, such as a common reference string (CRS). Additionally, all known constructions
of SNARKs are based on knowledge- or extractability-type assumptions, which in general are known
to be problematic with respect to arbitrary auxiliary input [BCPR14, BP15].1 Thus, the question
as to whether succinct non-interactive secure computation with malicious security is possible in

1Finally, even forgetting about the issues with extractability assumptions, formalizing this approach requires
dealing with some subtle issues, which we will discuss later on. Works where this has been done (in the orthogonal
setting of “laconic” function evaluation) include [CDG+17, QWW18].

2

the plain model remains open:

Does there exist a succinct non-interactive secure computation protocol without any
trusted setup (and without using extractability assumptions)?

NISC protocols in models with trusted setup have been extensively studied. There exist known
constructions of NISC in the OT-hybrid model [IKO+11], in the CRS model based on cut-and-
choose [AMPR14, MR17], assuming stateful [GIS+10] and stateless [HPV16, BJOV18] tamper-
proof hardware tokens, and in the global random oracle model [CJS14]. As far as we know, none
of the above protocols are succinct.

The plain model, however, presents additional complications: Goldreich-Oren’s [GO94] clas-
sic impossibility result for two-round zero-knowledge proofs immediately shows that even a non-
succinct (let alone succinct) NISC with malicious security cannot satisfy the standard polynomial-
time simulation-based notion of security.2 Thus, to get any NISC, let alone a succinct one,
we need to use some relaxed notion of simulatability for the definition of secure computation.
Superpolynomial-time simulation-based security (SPS) [Pas03, PS04] has emerged as the stan-
dard relaxation of simulation-based security: under SPS security, the attacker is restricted to
be a non-uniform polynomial time algorithm, but the simulator (in the definition of secure com-
putation) is allowed to run in (slightly) superpolynomial time (e.g., in quasi-polynomial time).
Non-succinct NISC protocols with SPS simulation are known under various standard assumptions
[Pas03, SU11, BGI+17]. Most notably, the work of [BGI+17] constructs a maliciously secure (non-
succinct) NISC with quasi-polynomial simulation in the plain model which can securely compute
any functionality based on the subexponential security of various standard hardness assumptions;
we return to this result in more detail later on. However, all previous works only construct NISC
protocols that are non-succinct.

Towards achieving succinctness for NISC, a very recent work by Brakerski and Kalai [BK18]
takes us a step on the way: they focus on a notion of “private delegation” where the receiver’s/
client’s input x is publicly known (and thus does not need to be kept hidden) but the input y of
the sender/server is considered private. The authors present a delegation protocol that achieves
witness indistinguishability (WI) for the sender—as shown in [Pas03], WI is a strict relaxation of
SPS security.3 While their protocol achieves the desired notion of succinctness, it still falls short of
the goal of producing a succinct NISC protocol due to the fact that its only considers privacy for
one of the players (namely, the sender); this significantly simplifies the problem. Additionally, their
notion of privacy (witness indistinguishability) is also weaker than what we are aiming to achieve
(i.e., simulation-based SPS security).

1.1 Our Results

In this work, we provide an affirmative answer to the above question, presenting the first SNISC
for general functionalities. Our protocol is in the plain model (i.e., no trusted setup), and we do
not rely on any extractability-based assumptions.

2Furthermore, if we restrict to black-box simulation, [KO04] proved that four rounds are necessary and sufficient
for secure one-sided 2PC in the plain model.

3In the context of interactive proofs, WI is equivalent to a relaxed form of SPS security where the simulator’s
running time is unbounded (as opposed to some “small” superpolynomial time).

3

Theorem 1 (Informally stated). Assuming subexponential security of the LWE assumption, there
exists a maliciously SPS-secure SNISC for any efficient functionality. Furthermore, the simulator
of the protocol runs in quasi-polynomial time.

Our protocol relies on three primitives:

• A (leveled) FHE scheme [Gen09] with quasi-polynomial security. For our purposes, we ad-
ditionally require the FHE to satisfy perfect correctness. Such schemes can be based on the
(quasi-polynomial security of the) LWE (Learning With Errors) assumption [Reg05], as shown
in [BGV12, GKP+13].

• A (non-private) delegation scheme for polynomial time computations with quasi-polynomial
security. For our purpose, we require a scheme that satisfies perfect completeness and allows
the sender to adaptively choose the functionality (i.e., we need what is referred to as an
“adaptive delegation scheme”). Such schemes can in fact be based on the above notion
of quasi-polynomial FHE, and hence in turn on the quasi-polynomial security of the LWE
assumption [BHK17].

• A (non-succinct) SPS-secure NISC for general functionalities f with a quasi-polynomial sim-
ulator. Such a scheme exists based on the existence of a subexponentially-secure “weak
oblivious transfer” protocol4 [BGI+17]5, which in turn can be based on the subexponential
security of any one of the DDH [NP01], Quadratic Residuosity, or N th Residuosity [HK12]
assumptions, or (as shown in [BD18]) on subexponential security of the LWE assumption.

More precisely, if the underlying NISC protocol has a T (n) · poly(n)-time simulator, and if all
the other primitives are secure against T (n) ·poly(n) time attackers, the final protocol is secure and
has a T (n) · poly(n)-time simulator:

Theorem 2 (Informally stated). Assuming the existence of a T (n)-time simulatable NISC protocol,
a subexponentially sound adaptive delegation scheme for polynomial-time computations with perfect
completeness, and a subexponentially secure leveled FHE scheme with perfect correctness, there
exists T (n) · poly(n)-time simulatable SNISC for any efficient functionality.

As a corollary, we can directly instantiate our protocol using a NISC with polynomial-time
simulation in the CRS model (see Appendix A) based on a two-round universally composable OT
protocol (in the CRS model), which [PVW08] shows can be based on the polynomial security of
LWE. Hence:

Corollary 1 (Informally stated). Assuming the polynomial security of the LWE assumption, there
exists a maliciously-secure SNISC (with a polynomial-time simulator) in the CRS model for any
efficient functionality.

4Roughly speaking, a weak oblivious transfer protocol is an OT protocol that satisfies SPS-security against a
malicious receiver, but only indistinguishability-based (“game-based”) security against a malicious sender.

5While [BGI+17] claim a construction of SPS NISC from just the existence of a weak OT protocol, their security
proof additionally relies on the existence of an onto one-way function. As far as we know, onto one-way functions are
not known based on the existence of Weak OT. Consequently, in Appendix A we present a variant of their protocol
that dispenses of this additional assumption.

4

1.2 Technical Overview

At a high level, our approach begins with the semi-honestly secure approach of using FHE (which
we detailed in the introduction) and attempts to compile it to become secure with respect to
malicious attackers. Instead of using ZK-SNARKs (which rely on non-standard assumptions and
trusted setup), we will instead use an adaptive delegation scheme and a non-succinct NISC. For our
approach to work, we will strongly rely on perfect correctness/completeness properties of both the
FHE and the delegation scheme; as far as we know, perfect correctness of these types of primitives
has not previously been used to enable applications (where the goal itself isn’t perfect correctness).6.
Despite this, though, recent constructions (or slight variants) of both FHE and delegation protocols
fortunately do provide these guarantees.

Adaptive Delegation: A Starting Point. To explain the approach, we shall start from a
(flawed) candidate which simply combines an FHE scheme and an adaptive delegation scheme.
In an adaptive delegation scheme (as given in [BHK17]), a verifier generates a public/secret key-
pair (pk, sk) and sends pk to the prover. The prover next picks some statement x̃ and function g,
computes the output ỹ = g(x̃), and produces a “short” proof π of the validity of the statement
that ỹ = g(x̃). The prover finally sends (x̃, g, ỹ, π) to the verifier, who can use its secret key sk to
check the validity of the proof. We will rely on an adaptive delegation scheme satisfying perfect
completeness—that is, for all public keys in the range of the key generation algorithm, the prover
can convince the verifier with probability 1.

The candidate SNISC leverages delegation to “outsource” the computation of the homomor-
phic evaluation to the sender: specifically, the receiver first generates a public/secret key-pair
(pkFHE, skFHE) for the FHE, encrypts its input x using the FHE (obtaining a ciphertext ctx), gener-
ates a public/secret key pair (pkDel, skDel) for the delegation scheme, and finally sends (ctx, pkFHE,
pkDel) to the sender. The sender in turn encrypts its input y, obtaining a ciphertext cty; next, it
lets g be the function for homomorphically evaluating f on two ciphertexts, computes g(ctx, cty)
(i.e., homomorphically evaluates f on ctx and cty) to obtain a ciphertext ctout, and computes a
delegation proof π (with respect to pkDel) of the validity of the computation of g. Finally, the sender
sends (cty, ctout, π) to the receiver, who verifies the proof and, if the proof is accepting, decrypts
ctout and outputs it.

Intuitively, this approach hides the input x of the receiver, but clearly fails to hide the input
y of the sender, as the receiver can simply decrypt cty to obtain y. So, rather than providing cty
and π in the clear (as even just the proof π could leak things about cty), we instead use the (non-
succinct) NISC to run the verification procedure of the delegation scheme. That is, we can add
to the protocol a NISC instance where the receiver inputs skDel, the sender inputs ctx, cty, ctout, π,
and the functionality runs the verification algorithm for the delegation scheme, outputting either
⊥ if verification fails or, otherwise, ctout (which can be decrypted by the receiver).

Input Independence: Leveraging Perfect Correctness of FHE. The above approach in-
tuitively hides the inputs of both players, and also ensures that the function is computed correctly.
But there are many problems with it. For instance, while it guarantees that the sender does not
learn the receiver’s input x, it does not guarantee “input independence”, or that the sender’s input

6The only work we are aware that uses perfect correctness of a FHE is a very recent work [AEKP19] which uses
perfectly correct FHE as a tool to get perfectly correct iO.

5

does not depend on the receiver’s somehow: for instance, the sender can easily maul ctx into, say,
an encryption cty of x + 1 and use that as its input. On a more technical level, simulation-based
security requires the simulator to be able to extract the inputs of malicious players, but it is not
clear how this can be done here—in fact, a simulator cannot extract the sender’s input y due to
the above malleability attack.

To overcome this issue, we again leverage the non-succinct NISC to enable extractability: we
add x and the randomness, rx, needed to generate ctx as an input from the receiver, and we add
ctx (i.e., the ciphertext obtained from the receiver), y, and the randomness needed to generate
cty as input from the sender. The functionality additionally checks that the ciphertexts ctx, cty
respectively are valid encryptions of the inputs x, y using the given randomness. (It is actually
essential that the sender includes the ciphertext ctx from the receiver as part of its input, as
opposed to having the receiver input it, as otherwise we could not guarantee that the receiver
is sending the same ciphertext to the sender as it is inputting to the NISC). If we have perfect
correctness for the underlying FHE scheme with respect to the public-keys selected by the receiver,
this approach guarantees that we can correctly extract the inputs of the players. The reason that we
need perfect correctness is that the NISC only guarantees that the ciphertexts have been honestly
generated using some randomness, but we have no guarantees that the randomness is honestly
generated. Perfect correctness ensures that all randomness is “good” and will result in a “well-
formed” ciphertext on which homomorphic computation, and subsequently decryption, will always
lead to the correct output.

Dealing with a Malicious Receiver: Interactive Witness Encryption and Perfectly
Correct Delegation. While the above protocol suffices to deal with a malicious sender (although,
as we shall discuss later on, even this is not trivial due to the potential for “spooky interactions”
[DLN+04]), it still does not allow us to deal with a malicious receiver. The problem is that the
receiver could send invalid public keys, either for the FHE or for the delegation scheme. For
instance, if the public key for the FHE is invalid, perfect correctness may no longer hold, and we
may not be able to extract a correct input for the receiver. Likewise, if the public key for the
delegation scheme is invalid, we will not be able to determine whether the verification algorithm
of the delegation scheme will be accepting, and thus cannot carry out a simulation. Typically,
dealing with a malicious receiver would require adding a zero-knowledge proof of well-formedness
of its messages; however, given that the receiver is sending the first message, this seems problematic
since, even with SPS-security, one-message ZK is impossible (with respect to non-uniform attackers
[Pas03, BP04]).

To explain our solution to this problem, let us first assume that we have access to a witness
encryption scheme [GGSW13]. Recall that a witness encryption scheme enables encrypting a
message m with a statement x̃ so that anyone having a witness w to x̃ can decrypt the message;
if the statement is false, however, the encryption scheme conceals the message m. If we had
access to such a witness encryption scheme, we could have the functionality in the NISC compute
a witness encryption of ctout with the statement being that the public keys have been correctly
generated. This method ensures that the receiver does not get any meaningful output unless it
actually generated the public keys correctly. Of course, it may still use “bad” randomness—we
can only verify that the public keys are in the range of the key generating function. But, if the
delegation scheme also satisfies a “perfect correctness” property (specifically, both correctness of
the computation and perfect completeness of the generated proof), this enables us to simulate the

6

verification of the delegation scheme (as once again, in this case, perfect correctness guarantees
that there is no “bad” randomness).

We still have an issue: perfect correctness of the FHE will ensure that the decryption of the out-
put is correct, but we also need to ensure that we can simulate the ciphertext output by the NISC.
While this can be handled using an FHE satisfying an appropriate rerandomizability/simulatability
property (also with respect to maliciously selected ciphertext), doing so introduces additional com-
plications. Furthermore, while we motivated the above modification using witness encryption,
currently known constructions of witness encryption rely on non-standard, and less understood,
hardness assumptions; as such, we would like to altogether avoid using it as an underlying primi-
tive.

So, to circumvent the use of witness encryption—while at the same time ensuring that the out-
put of the NISC is simulatable—we realize that in our context, it in fact suffices to use a two-round
version of witness encryption, where the receiver of the encryption chooses the statement and can
first send a message corresponding to the statement. And such a non-interactive version of witness
encryption can be readily implemented using a NISC! As we are already running an instance of
a NISC, we can simply have the NISC also implement this interactive witness encryption. More
precisely, we now additionally require the receiver to provide its witness—i.e., the randomness for
the key generation algorithms—as an input to the NISC, while the sender additionally provides the
public keys pkFHE and pkDel which it receives. The functionality will now only release the output
ctout if it verifies that the keys input by the sender are correctly generated from the respective ran-
domness input by the receiver. Better still, since the randomness used to generate the public/secret
key-pair is now an input to the functionality, the functionality can also recover the secret key for
the FHE, and next also decrypt ctout and simply output plain text corresponding to ctout. This
prevents the need for rerandomizing ctout, since it is now internal to the NISC instance (and is no
longer output). With all of the above modifications, we can now prove that the protocol satisfies
SPS security.

The Final Protocol. For clarity, let us summarize the final protocol.

• The Receiver generates (pkFHE, skFHE) and (pkDel, skDel) using randomness rFHE and rDel (re-
spectively) and generates an encryption ctx of its input x using randomness rx. It then sends
(pkFHE, pkDel, ctx) and the first message msg1 of a NISC using the input x′ = (x, rFHE, rDel, rx)
(for a functionality to be specified shortly).

• The Sender, upon receiving pkFHE, pkDel,msg1 generates an encryption cty of its input y using
randomness ry, applies the homomorphic evaluation of f to ctx and cty to obtain a ciphertext
ctout = g(ctx, cty), generates a proof π using the delegation scheme (w.r.t. pkDel) of the
correctness of the computation that ctout = g(ctx, cty), and finally sends the second message
msg2 of the NISC using the input y′ = (y, pkFHE, pkDel, ctx, cty, ctout, π, ry).

• Finally, the receiver, upon getting msg2, computes the output z of the NISC protocol and
outputs it.

• The functionality computed by the NISC on input x′ = (x, rFHE, rDel, rx) and y′ = (y, pkFHE,
pkDel, ctx, cty, ctout, π, ry) does the following: it checks that:

1. the public keys pkFHE, pkDel were respectively generated using randomness rFHE, rDel;

7

Sender(y)

(pkFHE, skFHE)← GenFHE(rFHE)

(pkDel, skDel)← GenDel(rDel)

ctx ← EncFHE(pkFHE, x; rx)

msg1 ← NISC1(x, rFHE, rDel, rx)

z ← NISC3(msg2) ; output z

pkFHE, pkDel, ctx,msg1

Receiver(x)

msg2

cty ← EncFHE(pkFHE, y; ry)

(π, ctout)← CompDel(pkDel, g, ctx, cty)

msg2 ← NISC2(y, pkFHE, pkDel, ctx, cty,

ctout, π, ry)

Figure 1: The final SNISC protocol. (NISC1,NISC2,NISC3) denotes the underlying (non-succinct)
NISC protocol and and the functionality g denotes the homomorphic evaluation g(c1, c2) =
EvalFHE(pkFHE, f, c1, c2).

2. the ciphertexts ctx, cty are respectively encryptions of x, y using randomness rx, ry; and,

3. π is a valid proof of ctout = g(ctx, cty) w.r.t. (pkDel, skDel) (as generated from rDel).

If the checks pass, it decrypts ctout (by first generating skFHE from rFHE), obtaining the
plaintext z, and finally outputs z. (If any of the checks fail, it instead outputs ⊥.)

A summary of the message flow can be found in Figure 1.

A Subtlety in the Security Proof One subtle point that arises in the proof of security is
that, to simulate a malicious sender, we need to simulate the ciphertext ctx without knowledge of
x. But the functionality of the underlying NISC takes as input the randomness used for both the
key generation of pkFHE and for encrypting ctx, and thus the functionality implicitly knows how to
decrypt ctx. A similar issue has arisen in the related context of constructing delegation schemes
from FHE and related primitives (see [DLN+04]), where it was shown that so-called “spooky
interactions” can arise, where a malicious sender (even though it does not how to decrypt the
ciphertext) can in fact use this dependence to make the receiver output values that correlate in
undesirable ways with the input x (in particular, in ways that would not have been possible if
using an “idealized” FHE). Fortunately, in our context, we are able to overcome this issue by using
the perfect correctness of the FHE scheme and soundness of our underlying delegation scheme to
perform a carefully designed hybrid argument.

A bit more precisely, the key point is that when simulating a malicious sender in communica-
tion with an honest receiver, the receiver’s public key and ciphertext ctx will always be correctly
generated (as such, we do not have to perform the checks involving the receiver to simulate the
underlying NISC’s output); furthermore, by soundness of delegation and the perfect correctness of
the FHE, the decryption of ctout must equal f(x, y) (with overwhelming probability) if π is accept-
ing, so we can use this fact to show that decrypting ctout is actually also unnecessary. As such, we
do not need to use either rFHE or rx to emulate the experiment for a malicious sender, and we can
create (and prove security in) a hybrid functionality for the underlying NISC which is independent
of this randomness (and only depends on pkFHE).

8

2 Preliminaries

Notation. Let N denote the set of natural numbers (positive integers), and let [n] denote the
set of natural numbers at most n, or {1, 2, . . . , n}. For n ∈ N, we denote by 1n the string of
n ones, which will be used to provide a security parameter as input to an algorithm (this is by
convention, so that the input length is bounded below by the security parameter). We assume the
reader is familiar with polynomial-time and probabilistic polynomial time (PPT) algorithms. We
say a function ε(·) is negligible if, for any polynomial p(·), ε(n) < 1/p(n) for all sufficiently large
n ∈ N—that is, if ε(·) is asymptotically smaller than any inverse polynomial.

2.1 Fully Homomorphic Encryption

Intuitively, a fully homomorphic encryption (FHE) scheme [Gen09] is an encryption scheme with
the additional property that computations may, using the public key, be performed on ciphertexts
for respective inputs in such a way that the result will be a ciphertext for the correct output. We
formalize this as follows:

Definition 1 (based on [Gen09]). A fully homomorphic encryption (FHE) scheme consists
of a tuple of algorithms (Gen,Enc,Eval,Dec), where Gen, Enc are PPT and Eval, Dec are (deter-
ministic) polynomial-time algorithms, such that:

• (pk, sk) ← Gen(1n; ρ): takes the security parameter n as input and outputs a public key pk
and secret key sk.
• ct ← Enc(pk,m; ρ): takes as input a public key pk and a message m ∈ {0, 1}, and outputs a

ciphertext ct. (For multi-bit messages −→m ∈ {0, 1}p(n), we let
−→
ct ← Enc(pk,−→m) be such that

cti = Enc(pk,mi).)
• ct′ = Eval(pk, C,

−→
ct): takes as input a list of ciphertexts

−→
ct and a circuit description C of

some function to evaluate and outputs a ciphertext ct′.
• m′ ← Dec(sk, ct): takes as input a ciphertext ct and outputs a message m′.

We furthermore require that the following properties are satisfied:

1. Full homomorphism: There exist sets of boolean circuits {Cn}n∈N, negligible function ε(n),
and polynomial p(·) such that C =

⋃
n Cn includes the set of all arithmetic circuits over GF(2)7,

and, for any n ∈ N, we have that, for all C ∈ Cn and −→m ∈ {0, 1}p(n):

Pr[z 6= C(−→m) : (pk, sk)← Gen(1n),
−→
ct ← Enc(pk,−→m),

z ← Dec(sk,Eval(C, pk,
−→
ct))] < ε(n),

Furthermore, if this probability is identically zero, we refer to the scheme as having perfect
correctness.

2. Compactness: There exists a polynomial q(·) such that the output length of Eval given (any
number of) inputs generated with security parameter n is at most q(n).

7GF(2) is the set of arithmetic circuits consisting only of + and × gates over the field F2.

9

Definition 2 (based on [GM84]). We say that an FHE (Gen,Enc,Eval,Dec) is secure if, for all
non-uniform PPT D, there exists a negligible ε(·) such that for any n ∈ N:

|Pr[D(1n, pk,Enc(pk, 0)) = 1]− Pr[D(1n, pk,Enc(pk, 1)) = 1]| < ε(n)

over (pk, sk)← Gen(1n). If this condition holds also with respect to subexponential-size distinguish-
ers D (i.e., algorithms implemented by circuits of size poly(2n

ε
) for some ε > 0), we refer to the

scheme as being subexponentially secure.

We have the following consequence for encryptions of poly(n)-bit messages −→m0,
−→m1:

Fact 1. If an FHE scheme (Gen,Enc,Eval,Dec) is secure (resp., subexponentially secure), then,
for any polynomial p(·) and for any non-uniform PPT (resp., subexponential-size) (A, D) where A
outputs messages −→m0,

−→m1 ∈ {0, 1}p(n) for polynomial p(·), there exists a negligible ε(·) such that for
any n ∈ N:

|Pr[D(1n, pk,Enc(pk,−→m0)) = 1]− Pr[D(1n, pk,Enc(pk,−→m1)) = 1]| < ε(n)

where
(pk, sk)← Gen(1n), (−→m0,

−→m1)← A(1n, pk)

We can construct an FHE scheme with all of the above properties based on the Learning With
Errors (LWE) assumption:

Theorem 3 ([BGV12, GKP+13, AEKP19]). Based on computational (resp., subexponential) hard-
ness of the Learning With Errors assumption, there exists a secure (resp., subexponentially secure)
fully homomorphic encryption scheme satisfying perfect correctness.

2.2 Adaptive Delegation Schemes

A delegation scheme allows for the effective “outsourcing” of computation from one party to an-
other; that is, using delegation, the sender can compute both the correct result of some (possibly
expensive) computation on a receiver’s input and a (short) proof which can convince the receiver
of the correctness of the computation without requiring the receiver to perform the computation
themselves. We consider a notion of delegation with the additional property, formalized in [BHK17],
that the functionality f(·) whose computation is to be delegated can be decided adaptively after the
keys pk, sk are computed (i.e., the key-generation algorithm Gen is independent from f). Formally:

Definition 3 (based on [BHK17]). An adaptive delegation scheme is given by a triple of
algorithms (Gen,Comp,Ver), where Comp and Ver are (deterministic) polynomial-time algorithms
and Gen is PPT, such that:

• (pk, sk) ← Gen(1n; ρ) takes as input a security parameter n and probabilistically outputs a
public key pk and secret key sk.
• (y, π, 1T)← Comp(pk, f,−→x) takes as input a Turing machine description of the functionality
f to be computed, as well as the inputs −→x to f , and produces a result y which the sender
claims to be the result of the computation, a poly(n)-size proof π of its correctness, and the
running time T of the computation in unary.

10

• {Accept,Reject} ← Ver(sk, f,−→x , y, π, T) takes as input the functionality f to be computed,
inputs −→x , result y, proof π, and running time T , and returns Accept or Reject depending on
whether π is a valid proof of f(−→x) = y.

Furthermore, we require the following properties:

1. Completeness: There exists a negligible function ε(·) such that, for any n ∈ N, any f
computable by a Turing machine that runs in time at most 2n, and any −→x in the domain of
f :

Pr
[
(pk, sk)← Gen(1n); (π, y, 1T) = Comp(pk, f,−→x) : Ver(sk, f,−→x , π, y, T) = Reject

]
< ε(n)

In addition, if the above probability is identically zero, we say that the adaptive delegation
scheme satisfies perfect completeness.

2. Correctness: For any n ∈ N, any f computable by a Turing machine that runs in time at
most 2n, and any −→x in the domain of f :

Pr [(pk, sk)← Gen(1n) : Comp(pk, f,−→x) = (f(−→x), ·, ·)] = 1

3. Soundness: For any non-uniform PPT adversary A, there exists a negligible function ε(·)
such that, for any n ∈ N:

Pr
[
(pk, sk)← Gen(1n), (f,−→x , y1, y2, π1, π2, 1

T1 , 1T2)← A(1n, pk) :

T < 2n ∧ Ver(sk, f,−→x , y1, π1, T1) = Accept

∧Ver(sk, f,−→x , y2, π2, T2) = Accept ∧ y1 6= y2] < ε(n)

Furthermore, if this condition holds with respect to subexponential-size adversaries, we say
that the scheme is subexponentially sound.

A construction of an adaptive delegation scheme with perfect completeness can be found in the
work of Brakerski et al. [BHK17], and is based on a secure private information retrieval (PIR)
scheme, which in turn can be constructed based on a leveled FHE scheme (including the one
presented in Theorem 3). Hence:

Theorem 4 ([BGV12, GKP+13, BHK17, AEKP19]). Based on computational (resp., subexponen-
tial) hardness of the Learning With Errors assumption, there exists a sound (resp., subexponentially
sound) adaptive delegation scheme satisfying perfect completeness.

2.3 Non-Interactive Secure Computation

Definition 4 (based on [Yao82, GMW87, BGI+17]). A non-interactive two-party computa-
tion protocol for computing some functionality f(·, ·) (where f is computable by a polynomial-time
Turing machine) is given by three PPT algorithms (NISC1,NISC2,NISC3) defining an interaction
between a sender S and a receiver R, where only R will receive the final output. The protocol will
have common input 1n (the security parameter); the receiver R will have input x, and the sender
will have input y. The algorithms (NISC1,NISC2,NISC3) are such that:

11

• (msg1, σ) ← NISC1(1n, x) generates R’s message msg1 and persistent state σ (which is not
sent to S) given the security parameter n and R’s input x.
• msg2 ← NISC2(msg1, y) generates S’s message msg2 given S’s input y and R’s message msg1.
• out← NISC3(σ,msg2) generates R’s output out given the state σ and S’s message msg2.

Furthermore, we require the following property:

• Correctness. For any parameter n ∈ N and inputs x, y:

Pr [(msg1, σ)← NISC1(1n, x) : NISC3(σ,NISC2(msg1, y)) 6= f(x, y)] ≤ ε(n)

Defining non-interactive secure computation will require us to add a security definition, which
we formalize as follows:

Security. We adopt a standard notion of simulation-based security, with the relaxation that we
allow superpolynomial-time simulation (as pioneered by [Pas03, PS04]). We define security by
comparing two experiments conducted between the sender and receiver, either of whom may be
corrupted and act arbitrarily (while the other is honest and follows the protocol). In the real
experiment, the two parties will perform the actual protocol; in the ideal experiment, the two
parties will instead send their inputs to a “trusted third party” who performs the computation and
returns the result only to, in this case (because the protocol is one-sided), the receiver. Informally,
we say that a protocol is secure if, for any adversary A against the real experiment, acting either as
the sender or receiver, there is a simulated adversary S in the ideal experiment which produces a
near-identical (i.e., computationally indistinguishable) result; intuitively, if this is the case, we can
assert that the real adversary cannot “learn” anything more than they could by interacting with a
trusted intermediary. Let us formalize this notion for the case of SNISC:

• Let the real experiment be defined as an interaction between a sender S with input y and a
receiver R with input x, defined as follows:

– R computes (msg1, σ)← NISC1(1n, x), stores σ, and sends msg1 to S.

– S, on receiving msg1, computes msg2 ← NISC2(msg1, y) and sends msg2 to R.

– R, on receiving msg2 computes out← NISC3(σ,msg2) and outputs out.

In this interaction, one party I ∈ {S,R} is defined as the corrupted party; we additionally
define an adversary, or a polynomial-time machine A, which receives the security parameter
1n, an auxiliary input z, and the inputs of the corrupted party I, and sends messages (which
it may determine arbitrarily) in place of I.

Letting Π denote the protocol to be proven secure, we shall denote by OutΠ,A,I(1
n, x, y, z)

the random variable, taken over all randomness used by the honest party and the adversary,
whose output is given by the outputs of the honest receiver (if I = S) and the adversary
(which may output an arbitrary function of its view).

• Let the ideal experiment be defined as an interaction between a sender S, a receiver R, and
a trusted party Tf , defined as follows:

12

– R sends x to Tf , and S sends y to Tf .

– Tf , on receiving x and y, computes out = f(x, y) and returns it to R.

– R, on receiving out, outputs it.

As with the real experiment, we say that one party I ∈ {S,R} is corrupted in that, as before,

their behavior is controlled by an adversary A. We shall denote by Out
Tf
Πf ,A,I(1

n, x, y, z) the

random variable, once again taken over all randomness used by the honest party and the
adversary, whose output is again given by the outputs of the honest receiver (if I = S) and
the adversary.

Given the above, we can now formally define non-interactive secure computation:

Definition 5 (based on [Yao82, GMW87, Pas03, PS04, BGI+17]). Given a function T (·), a non-
interactive two-party protocol Π = (NISC1,NISC2,NISC3) between a sender S and a receiver R,
and functionality f(·, ·) computable by a polynomial-time Turing machine, we say that Π securely
computes f with T (·)-time simulation, or that Π is a non-interactive secure computation
(NISC) protocol (with T (·)-time simulation) for computing f , if Π is a non-interactive two-
party computation protocol for computing f and, for any polynomial-time adversary A corrupting
party I ∈ {S,R}, there exists a T (n)·poly(n)-time simulator S such that, for any T (n)·poly(n)-time
algorithm D : {0, 1}∗ → {0, 1}, there exists negligible ε(·) such that for any n ∈ N and any inputs
x, y ∈ {0, 1}n, z ∈ {0, 1}∗, we have:∣∣∣Pr [D(OutΠ,A,I(1

n, x, y, z)) = 1]− Pr
[
D(Out

Tf
Πf ,S,I(1

n, x, y, z)) = 1
]∣∣∣ < ε(n)

where the experiments and distributions Out are as defined above.
Furthermore, if Π securely computes f with T (·)-time simulation for T (n) = nlogc(n) for some

constant c, we say that Π securely computes f with quasi-polynomial simulation.

Succinctness. The defining feature of our construction will be a notion of succinctness; specifi-
cally, for functionality f(·, ·) with Turing machine description M and running time bounded by Tf ,
we show the existence of a NISC protocol Π = (NISC1,NISC2,NISC3) for computing f whose mes-
sage length (i.e., the combined output length of NISC1 and NISC2) and total receiver running time
on input 1n are relatively short and essentially independent of the running time of f . Formally:

Definition 6. We say that a NISC protocol Π = (NISC1,NISC2,NISC3) has communication
complexity ρ(·) if, for any n ∈ N, x, y ∈ {0, 1}n, and z ∈ {0, 1}∗, the outputs of NISC1(1n, x) and
NISC2(1n, y, z) contain at most ρ(n) bits.

We shall define a NISC protocol which, given functionality f : {0, 1}n × {0, 1}n ← {0, 1}`(n)

computable by a Turing machine M with running time Tf (n), features communication complex-
ity and receiver running time bounded above by p(n, log(Tf (n)), |M |, `(n)) for an a priori fixed
polynomial p.

There exist non-succinct non-interactive secure computation protocols in the standard model
based on a notion of “weak oblivious transfer” ([BGI+17]), which in turn can be based on subex-
ponential security of the Learning With Errors assumption [BD18]:

13

Theorem 5 ([BGI+17, BD18], see also Appendix A). Assuming subexponential hardness of the
Learning With Errors assumption, for any functionality f(·, ·) computable by a polynomial-time
Turing machine there exists a (non-succinct) non-interactive secure computation protocol for com-
puting f with quasi-polynomial simulation.

We note that this theorem essentially follows from [BGI+17, BD18]; however, [BGI+17] required
as an additional assumption the existence of an onto one-way function. In Appendix A, we present
a variant which demonstrates how to prove Theorem 5 without this added assumption.

3 Protocol

We state our main theorem:

Theorem 6. Assuming subexponential hardness of the Learning With Errors assumption, there
exists polynomial p(·, ·, ·, ·) such that, for any polynomials Tf (·) and `(·) and any Turing machine
M with running time bounded by Tf (·) computing functionality f(·, ·) : {0, 1}n×{0, 1}n ← {0, 1}`(n),
there exists a non-interactive secure computation protocol for computing f with quasi-polynomial
simulation which is additionally succinct in that both its communication complexity and the running
time of the honest receiver are at most p(n, log(Tf (n)), |M |, `(n)).

We propose the protocol Π given in Figure 2 for secure non-interactive secure computation of
a function f(x, y) given a receiver input x and sender input y, where Π shall use the following
primitives:

• Let π = (NISC1,NISC2,NISC3) be a non-succinct NISC protocol with T (n)-time simulation for
T (n) = nlogc(n) (i.e., quasi-polynomial simulation), whose functionality h will be determined
in the first round of the protocol. (The existence of such a primitive is guaranteed by Theorem
5 under subexponential LWE.)

• Let (GenFHE,EncFHE,DecFHE,EvalFHE) be a fully homomorphic encryption scheme satisfying
perfect correctness, compactness, and subexponential security (in particular, with respect to
T (n) ·poly(n)-time adversaries). (The existence of such a primitive is guaranteed by Theorem
3 under subexponential LWE.)

• Let (GenDel,CompDel,VerDel) be an adaptive delegation scheme with perfect completeness,
correctness, and subexponential soundness (in particular, with respect to T (n) · poly(n)-time
adversaries). (The existence of such a primitive is guaranteed by Theorem 4 under subexpo-
nential LWE.)

4 Proof

Overview. After first proving the succinctness and correctness of the protocol, we turn to proving
its security. We do this in two steps. In the first step, we consider a “hybrid” model in which the
underlying NISC protocol is replaced by an “ideal” third party Th. If the underlying protocol were
universally composable [Can01], this step would be trivial; unfortunately, it is not, so we need to

14

Input: The receiver R and the sender S are given input x, y ∈ {0, 1}n, respectively, and
both parties have common input 1n.
Output: R receives f(x, y).

Round 1: R proceeds as follows:

1. Generate random coins rFHE ← {0, 1}∗ and compute (pkFHE, skFHE) =
GenFHE(1n; rFHE).

2. Let Tg denote the running time of the functionality g(c1, c2) =
EvalFHE(pkFHE, f, c1, c2), and let λ = max(n, log(Tg)). Generate random coins
rDel ← {0, 1}∗ and compute (pkDel, skDel) = GenDel(1

λ; rDel).
3. Generate random coins rEnc(x) ← {0, 1}∗ and compute ctx =

EncFHE(pkFHE, x; rEnc(x)).
4. Generate message msg1 ← NISC1(x, rFHE, rDel, rEnc(x)) to compute the functionality
h described in Figure 3.

5. Send (pkFHE, pkDel, ctx,msg1) to S.

Round 2: S proceeds as follows:

1. Generate random coins rEnc(y) ← {0, 1}∗ and compute cty =
EncFHE(pkFHE, y; rEnc(y)).

2. Compute (ctout, πDel, 1
T) = CompDel(pkDel, g, ctx, cty) for the functionality

g(c1, c2) = EvalFHE(pkFHE, f, c1, c2).
3. Generate message msg2 ← NISC2(y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y), T) to

compute the functionality h described in Figure 3.
4. Send msg2 to R.

Output phase: R proceeds as follows:

1. Compute out = NISC3(msg2) and return the result.

Figure 2: Protocol Π for succinct non-interactive secure computation.

15

Input: The receiver R has input (x, rFHE, rDel, rEnc(x)), and the sender S has input
(y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y), T)
Output: Either a message out or the special symbol ⊥.

Functionality:

1. Verify that all of the following checks hold. If any fail, return ⊥.

(a) (pkFHE, ·) = GenFHE(1n; rFHE)
(b) (pkDel, ·) = GenDel(1

λ; rDel)
(c) ctx = EncFHE(pkFHE, x; rEnc(x))
(d) cty = EncFHE(pkFHE, y; rEnc(y))

2. Compute (·, skFHE) = GenFHE(1n; rFHE) and (·, skDel) = GenDel(1
λ; rDel).

3. If VerDel(skDel, g, ctx, cty, ctout, πDel, T) = Reject for the functionality g(c1, c2) =
EvalFHE(pkFHE, f, c1, c2), then return ⊥.

4. Compute out = DecFHE(skFHE, ctout) and return the result.

Figure 3: Functionality h used for the underlying 2PC protocol π.

take care to formally reduce this transformation to the simulation-based security of the underlying
protocol. Crucially, this will rely on the fact that we restrict our attention to two-round protocols.

Next, in the second step, we can create and prove the respective simulators for a corrupted
sender and corrupted receiver in the Th-hybrid model. The corrupted receiver case follows in a fairly
straightforward way, relying on the perfect correctness and completeness of the delegation and FHE
schemes. The corrupted sender case, however, has some interesting subtleties in the reduction, and
in fact will require another hybrid with a slightly different third party Th′ to complete; we discuss
these subtleties in more detail when they arise during the proof.

We begin the formal proof by proving that the protocol Π is succinct :

Lemma 1. There exists polynomial p(·, ·, ·, ·) such that, for any polynomials Tf (·) and `(·) and any
Turing machine M with running time bounded by Tf (·) computing functionality f(·, ·) : {0, 1}n ×
{0, 1}n ← {0, 1}`(n), the respective non-interactive secure computation protocol Π has communi-
cation complexity and honest receiver running time bounded above by p(n, log(Tf (n)), |M |, `(n)).

Proof. To lead, we point out that, while Tf (n) and `(n) are given to be poly(n), we deliberately
quantify them after p(n) in order to treat them separately in the analysis below, as we specifically
wish to show that the communication complexity of Π is at most polylogarithmic in the running
time Tf (n) for any possible polynomial-time Turing machine computable functionality f(·, ·). Fur-
thermore, we assume without loss of generality that the input lengths provided to sub-algorithms
are correct, as in the event that an adversary provides incorrectly sized inputs the algorithms may
simply abort.

We begin by analyzing the communication complexity, as succinctness of the receiver’s running
time will follow immediately from this analysis. Aside from messages msg1 and msg2 for the
underlying NISC π, the only communication consists of the public keys pkFHE and pkDel and the

16

ciphertext ctx. pkFHE has length poly(n) since GenFHE is a polynomial-time algorithm running on
input 1n, and the ciphertext ctx (which consists of a ciphertext for each bit in x ∈ {0, 1}n) also has
length poly(n) since EncFHE is polynomial-time and is run on inputs of length poly(n). pkDel will
have length poly(n, log(Tf)); specifically, its length is given to be poly(λ) = poly(n, log(Tg)), where
Tg is the running time of the functionality g(c1, c2) = EvalFHE(pkFHE, f, c1, c2) with inputs generated
from common input 1n. However, since pkFHE has poly(n) length, the input ciphertexts both have
poly(n) length by the efficiency of EncFHE, and f in this case is given as a circuit description, which
will have size poly(Tf (n)), we have by the efficiency of EvalFHE that Tg = poly(n, Tf (n)), implying
poly(λ) = poly(n, log(Tf (n))).

So it suffices now to bound the length of the NISC messages msg1 and msg2. Specifically, even
for a non-succinct NISC protocol π, the honest sender and receiver must be efficient, and so the
message length is still at most polynomial in the input length and running time of the functionality
h. We argue that these are poly(n, log(Tf (n)), |M |, `(n)) to complete the proof of the claim:

• The input length to π is given as the size of the inputs (x, rFHE, rDel, rEnc(x)) from the receiver
and (y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y), T) from the sender. x and y have length n by
assumption. pkFHE, ctx, and cty have length poly(n) as argued above, and ctout (which consists
of a ciphertext output from EvalFHE for each bit of f(x, y) ∈ {0, 1}`(n)) has length poly(n, `(n))
by the compactness of the underlying FHE scheme. pkDel has length poly(n, log(Tf (n)))
as argued above, and πDel also has length poly(λ) = poly(n, log(Tf (n))); T will have size
λ = poly(n, log(Tf (n))) as T ≤ 2λ is required by the properties of the delegation scheme.
Lastly, the randomness rFHE, rDel, rEnc(x), rEnc(y) cannot have length greater than the running
times of the respective algorithms GenFHE,GenDel,EncFHE, all of which we have already noted
are at most poly(n, log(Tf (n))).

• To bound the running time of the functionality h, notice that it consists of the following:

– GenFHE (run twice), EncFHE (run 2n times, once for each bit of x and y), EvalFHE (run
`(n) times, once for each bit of out), all of which are efficient algorithms run on inputs
of at most length poly(n) (and hence have running time poly(n));

– DecFHE (run `(n) times), which has inputs skFHE with size poly(n) and ctout with size
poly(n, `(n)), and hence has running time poly(n, `(n));

– GenDel (run twice), which runs in time poly(λ) = poly(n, log(Tf (n)));

– VerDel (run once), which, given inputs skDel, πDel of size poly(λ) = poly(n, log(Tf (n))),
ctx, cty of size poly(n), ctout of size poly(n, `(n)), g (the description of g(c1, c2) = EvalFHE(
pkFHE, f, c1, c2), where we here interpret f as the Turing machine M) of size poly(|M |),
and T ≤ 2λ of size at most λ = poly(n, log(Tf (n))), has running time which is at most
poly(n, log(Tf (n)), |M |, `(n));

and a poly(n) number of comparisons between input values and function outputs which have
already been established to have at most poly(n, log(Tf (n))) length.

The above shows that the communication complexity of Π is succinct. Furthermore, as the
honest receiver runs only GenFHE, GenDel, EncFHE, and the (efficient) receiver protocol for the
underlying NISC on the aforementioned inputs, and as we have already established that all of
these algorithms have running time poly(n, log(Tf (n)), |M |, `(n)), the receiver will inherit the same
running time bound.

17

Towards proving security for Π, let OutΠ,A,I(1
n, x, y, z) denote the random variable, taken

over all randomness used by the honest party and the adversary, of the outputs of the honest
receiver (if I = S) and the adversary in the execution of protocol Π given adversary A controlling
corrupted party I ∈ {S,R}, receiver input x, sender input y, and adversary auxiliary input z. Let
ExecΠ,A,I(1

n, x, y, z) denote the respective experiment.
Let us also define the “ideal” execution by letting Tf denote the ideal functionality corresponding

to the computation target f(x, y) and letting Πf be the “ideal” version of the protocol where R
sends x to Tf , S sends y to Tf , and then R finally outputs the result out output by Tf . We want
to show the following theorem:

Theorem 7. Assume, given functionality f(·, ·), the respective protocol Π described in Figure 2 and
the assumptions required in Theorem 6, and let T (·) be such that the underlying NISC π is secure
with T (·)-time simulation. For any efficient adversary A corrupting party I ∈ {S,R}, there exists
a T (n) · poly(n)-time simulator S such that, for any non-uniform polynomial-time distinguisher D,
there exists a negligible function ε(·) such that, for all n ∈ N, x, y ∈ {0, 1}n, and auxiliary input z, D

distinguishes the distributions OutΠ,A,I(1
n, x, y, z) and Out

Tf
Πf ,S,I(1

n, x, y, z) with at most probability

ε(n).

Notice that correctness of Π holds trivially from the perfect correctness of the underlying FHE,
the correctness and perfect completeness of the underlying adaptive delegation scheme, and the
correctness of the underlying NISC protocol π; hence, Theorem 7, which proves security, and
Lemma 1, which proves succinctness, will in conjunction directly imply Theorem 6 (where quasi-
polynomial simulation results from our use of an underlying NISC protocol with quasi-polynomial
simulation, as given in Theorem 5). The remainder of the section, then, is devoted to proving
Theorem 7.

4.1 Comparing Real and Hybrid Executions

We begin by defining a “trusted third party” Th which executes the ideal functionality for h—
that is, given the corresponding sender and receiver inputs, Th outputs the correct value of h
computed on those inputs. Our first task is to show, then, that the “real” experiment’s outputs
OutΠ,A,I(1

n, x, y, z) cannot be distinguished from those of a “hybrid” experiment, which we shall

denote by OutThΠh,A′,I(1
n, x, y, z).

Formally, we let Πh denote a protocol which is identical to Π with the exception that, in rounds
1 and 2, rather than generating msg1 and msg2, R and S instead send the respective inputs to Th,
and, in the output phase, R receives and returns the output from Th rather than unpacking msg2.
We then prove the following lemma:

Lemma 2. For any efficient adversary A corrupting party I ∈ {S,R}, there exists a T (n) ·poly(n)-
time adversary A′ such that, for any non-uniform polynomial-time distinguisher D, there exists a
negligible function ε(·) such that, for all n ∈ N, x, y ∈ {0, 1}n, and auxiliary input z, D distinguishes
the distributions OutΠ,A,I(1

n, x, y, z) and OutThΠh,A′,I(1
n, x, y, z) with at most probability ε(n).

Proof. We separate into two cases, based on whether I = R (the receiver is corrupted) or I = S
(the sender is corrupted).

18

Corrupted Receiver. In this case we begin by, given some adversary A against the real ex-
periment ExecΠ,A,R(1n, x, y, z), defining an adversary Ah against the underlying 2PC protocol π.
Without loss of generality, let A be a deterministic algorithm which uses the auxiliary input z as
its source of randomness for rFHE, rDel, and rEnc(x). Ah(1n, z) will behave identically to A(1n, z)
(acting as the corrupted receiver), with the exception that Ah will only send msg1 in round 1. On
receiving msg2 from the honest sender, Ah will run the output phase of A once again, using msg2

as the input from the second round, to determine A’s final output outA and return the result.
Now, consider the following adversary A′Real(1n, z) in the real experiment, which runs Ah:

1. Run Ah(1n, z), which will start by producing a message msg1 for π. Also run A(1n, z) to
produce a message (pkFHE, pkDel, ctx, ·), and send (pkFHE, pkDel, ctx,msg1) to the sender S.

2. S will return a message msg2 for π. Run the output phase of Ah on this message.

3. Ah will output outAh ; return it.

Also consider a T (n) · poly(n)-time adversary A′ in the hybrid experiment ExecThΠh,A′,R(1n, x, y, z)
which runs the (T (n) ·poly(n)-time) simulator Sh corresponding to the adversary Ah (as guaranteed
by the definition of simulation-based security for π). A′(1n, z) will do as follows:

1. Run Sh(1n, z), which will start by producing a message m1 to send to the ideal functionality
Th; forward this message. Also run A(1n, z) to produce a message (pkFHE, pkDel, ctx,msg1),
and send (pkFHE, pkDel, ctx) to the sender S.

2. S will provide its input to Th, and subsequently Th will return a result out. Forward out to
Sh.

3. Sh will return a simulated message outS ; return it.

We can use these adversaries to show that OutΠ,A,R(1n, x, y, z) and OutThΠh,A′,R(1n, x, y, z) cannot
be distinguished with non-negligible probability, based on the following two claims:

Claim 1. OutΠ,A,R(1n, x, y, z) and OutΠ,A′Real,R(1n, x, y, z) are identically distributed.

Proof. Importantly, recall that the adversaries A and Ah are deterministic and use z as their source
of randomness. We begin by reproducing the experiment ExecΠ,A,R(1n, x, y, z) for clarity:

1. Run A(1n, z) to produce a message (pkFHE, pkDel, ctx,msg1), and send it to the sender S.

2. S will return a message msg2 for π. Run the output phase of A on this message.

3. A will output outA; return it.

There are two semantic differences between the two experiments. Namely, A′Real uses Ah(1n, z)
rather than A(1n, z) to produce msg1, as well as to produce the final output. However, by the
definition of Ah, for any auxiliary input z it is clearly the case that Ah(1n, z) and A(1n, z) compute
msg1 and their final output in an identical way; hence, the full experiments are completely identical.

So it is equivalent to compare OutΠ,A′Real,R(1n, x, y, z) and OutThΠh,A′,R(1n, x, y, z). The following
claim, then, yields the desired conclusion:

19

Claim 2. For any polynomial-time non-uniform distinguisher D, there exists negligible ε(·) such
that, for any n ∈ N and inputs x, y, z, the distributions OutΠ,A′Real,R(1n, x, y, z) and OutThΠh,A′,R(1n, x,
y, z) cannot be distinguished by D with probability greater than ε(n).

Proof. This will intuitively follow from the simulation-based security of the underlying protocol π.
Formally, assume for contradiction that there exists a non-uniform polynomial-time distin-

guisher D and polynomial p(·) such that, for infinitely many n ∈ N, there are inputs x, y, z such
that D is able to distinguish the two distributions OutΠ,A′Real,R(1n, x, y, z) and OutThΠh,A′,R(1n, x, y, z)
with probability 1/p(n). In this case, for each such n, there must exist some assignment r∗ of
the (honest) sender’s randomness rEnc(y) such that D distinguishes OutΠ,A′Real,R(1n, x, y, z)|r∗ and

OutThΠh,A′,R(1n, x, y, z)|r∗ (which denote the respective experiments with rEnc(y) fixed to r∗) with
probability at least 1/p(n).

Given fixed x, y, z and fixed rEnc(y) = r∗, recall the inputs x′ = (x, rFHE, rDel, rEnc(x)) and
y′ = (y, pkFHE, pkDel, ctx, cty, ctout, πDel, rEnc(y), T) provided by the receiver and sender (respectively)
to the protocol π; all randomness used to generate these inputs is now fixed (since rFHE, rDel, rEnc(x)

are given by z), which means that each assignment of inputs x, y, z, r∗ for Π corresponds uniquely
to fixed inputs x′, y′, z for the underlying protocol π.

This implies that we can use the distinguisher D directly to break the simulation-based secu-
rity of the underlying protocol π. Specifically, given the previously fixed x, y, z, r∗, consider the
distributions Outπ,Ah,R(1n, x′, y′, z) and Outπh,Sh,R(1n, x′, y′, z), where πh is the idealized version of
π (as executed in Πh) where both parties send their respective inputs x′, y′ to the functionality Th,
which computes h(x′, y′).

Since, by definition, the outputs of A′Real and A′ (fixing inputs x, y, z, r∗) are given by the
outputs of Ah and Sh (fixing the corresponding inputs x′, y′, z) in the respective experiments π and
πh, we have that

OutΠ,A′Real,R(1n, x, y, z)|r∗ = Outπ,Ah,R(1n, x′, y′, z)

and
OutThΠh,A′,R(1n, x, y, z)|r∗ = Outπh,Sh,R(1n, x′, y′, z)

But, since D distinguishes OutΠ,A′Real,R(1n, x, y, z)|r∗ and OutThΠh,A′,R(1n, x, y, z)|r∗ with probabil-
ity 1/p(n), it must also distinguish Outπ,Ah,R(1n, x′, y′, z) and Outπh,Sh,R(1n, x′, y′, z) with the
same probability. And, as this holds for infinitely many n ∈ N, it follows that D contradicts
the simulation-based security of the underlying protocol π (w.r.t. non-uniform polynomial-time
distinguishers), which is a contradiction.

Corrupted Sender. Given an adversary A against the real experiment ExecΠ,A,S(1n, x, y, z), let
Ah as before be the respective adversary against simulation-based security of the 2PC protocol
π. Now Ah receives message msg1 from the honest receiver and must generate msg2 using A;
however, A also requires the public parameters (pkFHE, pkDel, ctx) from the receiver’s first-round
message as input. As such, we concatenate these parameters with the auxiliary input z provided to
Ah. Formally, we let Ah(1n, (pkFHE, pkDel, ctx, z)) given message msg1 run A(1n, z) given message
(pkFHE, pkDel, ctx,msg1). Then let A′Real(1n, z) in the real experiment proceed as follows:

1. Receive a message (pkFHE, pkDel, ctx,msg1) from the receiver R.

2. Run Ah(1n, z′ = (pkFHE, pkDel, ctx, z)) with msg1 as the input from the receiver; forward the
message msg2 from Ah to the sender.

20

3. Output whatever Ah outputs.

By simulation-based security, then, there is also a simulator Sh in the idealized experiment for π
which sends the relevant inputs to the ideal functionality Th but returns no output to the receiver.
Let A′(1n, z) be a T (n) · poly(n)-time adversary in the hybrid experiment ExecThΠh,A′,S(1n, x, y, z)
which does the following:

1. Receive a message (pkFHE, pkDel, ctx) from the receiver R.

2. Run Sh(1n, z′ = (pkFHE, pkDel, ctx, z)). Sh will produce a message m2 to send to the ideal
functionality Th; forward it to Th.

3. Output whatever Sh outputs.

We must show that, given this A′, both (1) the outputs of the adversary and (2) the out-
puts of the honest receiver R between ExecΠ,A,S(1n, x, y, z) and ExecThΠh,A′,S(1n, x, y, z) cannot be
distinguished. The following claims imply the desired conclusion:

Claim 3. OutΠ,A,S(1n, x, y, z) and OutΠ,A′Real,S(1n, x, y, z) are identically distributed.

Proof. This follows directly from the fact that the adversaries A and Ah are deterministic and use
z as their source of randomness, and the fact that Ah(1n, (pkFHE, pkDel, ctx, z)) given message msg1

behaves identically to A(1n, z) given message (pkFHE, pkDel, ctx,msg1), implying that msg2 and the
output of A (resp. Ah) are identically distributed between the experiments.

So it suffices to compare OutΠ,A′Real,S(1n, x, y, z) and OutThΠh,A′,S(1n, x, y, z), which we do as fol-
lows:

Claim 4. For any polynomial-time non-uniform distinguisher D, there exists negligible ε(·) such
that, for any n ∈ N and inputs x, y, z, the distributions OutΠ,A′Real,S(1n, x, y, z) and OutThΠh,A′,S(1n, x,
y, z) cannot be distinguished by D with probability greater than ε(n).

Proof. Once again this will intuitively follow from the simulation-based security of the underlying
protocol π.

Formally, assume for contradiction that there exists a non-uniform polynomial-time distin-
guisher D and polynomial p(·) such that, for infinitely many n ∈ N, there are inputs x, y, z such
that D is able to distinguish the two distributions OutΠ,A′Real,S(1n, x, y, z) and OutThΠh,A′,S(1n, x, y, z)
with probability 1/p(n). As with the corrupted receiver case, for each such n, there must exist
some assignment r∗ of the (honest) receiver’s randomness rR = (rFHE, rDel, rEnc(x)) such that D

distinguishes OutΠ,A′Real,S(1n, x, y, z)|r∗ and OutThΠh,A′,S(1n, x, y, z)|r∗ (which once again denote the
respective experiments with rS fixed to r∗) with probability at least 1/p(n).

Given x, y, z, and rR = r∗ fixed, we must argue as before that this corresponds uniquely to
fixed inputs x′, y′, z′ for the underlying protocol π. In this case, this will follow from the fact that
A′Real and A′ run Ah and Sh (respectively) on the input (1n, z′), where z′ = (pkFHE, pkDel, ctx, z)
is fully determined by z, x, and the randomness rR consumed by the receiver in the first round
(notice that this holds because (pkFHE, pkDel, ctx) is part of the honest receiver’s first message in
the protocol Π). Furthermore, x′ is uniquely determined by x and rR, and y′, the sender’s input,
is uniquely determined by z′, y, and the sender’s randomness (which, since the sender is malicious,
is given by z).

21

As before, consider the distributions Outπ,Ah,R(1n, x′, y′, z′) and Outπh,Sh,R(1n, x′, y′, z′), where
πh is the idealized version of π (as executed in Πh) where both parties send their respective inputs
x′, y′ to the functionality Th. As before, the outputs of A′Real and A′ (fixing inputs x, y, z, r∗) are
given by the outputs of Ah and Sh (fixing the corresponding inputs x′, y′, z′) in the respective
experiments π and πh; furthermore, by the definition of the protocols Π and Pih, the (honest)
receiver’s outputs are given by the outputs of π and πh (respectively). So we once again determine
that

OutΠ,A′Real,S(1n, x, y, z)|r∗ = Outπ,Ah,S(1n, x′, y′, z′)

and
OutThΠh,A′,S(1n, x, y, z)|r∗ = Outπh,Sh,S(1n, x′, y′, z′)

which, since D distinguishes OutΠ,A′Real,S(1n, x, y, z)|r∗ and OutThΠh,A′,S(1n, x, y, z)|r∗ with probability
1/p(n), implies that it must also distinguish Outπ,Ah,S(1n, x′, y′, z′) and Outπh,Sh,S(1n, x′, y′, z′) with
the same probability. Thus, since the above implies that there exist x′, y′, z′ for infinitely many
n ∈ N such that D distinguishes the respective distributions, it follows that D contradicts the
simulation-based security of π (w.r.t. non-uniform polynomial-time distinguishers), a contradiction.

4.2 Comparing Hybrid and Ideal Executions

Next, we need to compare the hybrid execution ExecThΠh,A′,I(1
n, x, y, z) to the “ideal” execution

Exec
Tf
Πf ,S,I(1

n, x, y, z) to finish the proof of Theorem 7.

Lemma 3. For any T (n) · poly(n)-time adversary A′ corrupting party I ∈ {S,R}, there exists a
T (n) · poly(n)-time simulator S such that, for any non-uniform polynomial-time distinguisher D,
there exists a negligible function ε(·) such that, for all n ∈ N, x, y ∈ {0, 1}n, and auxiliary input

z, D distinguishes the distributions OutThΠh,A′,I(1
n, x, y, z) and Out

Tf
Πf ,S,I(1

n, x, y, z) with at most

probability ε(n).

Proof. We again separate into two cases, based on whether I = R (the receiver is corrupted) or
I = S (the sender is corrupted).

Corrupted Receiver. In this case, define a T (n) · poly(n)-time simulator SR which does as
follows:

1. Run the corrupted receiver A′. A′, in the first round, will output a message (x, rFHE, rDel, rEnc)
to be sent to Th. Send x to the ideal functionality Tf .

2. Receive an output message out from the ideal functionality Tf . If out is ⊥, return ⊥ to A′
(as the output of Th).

3. Verify the following. If any checks fail, return ⊥ to A′.

(a) (pkFHE, ·) = GenFHE(1n; rFHE)
(b) (pkDel, ·) = GenDel(1

λ; rDel)

22

(c) ctx = EncFHE(pkFHE, x; rEnc(x))

4. If all checks in the previous step pass, return out to A′. Finally, output whatever A′ outputs.

It suffices here to argue that the output which SR returns to A′ in the ideal experiment is
identically distributed to the output which Th would return to A′ in the hybrid experiment, as
this, combined with the observation that the only input A′ receives (aside from the auxiliary input
z) is the output from Th, allows us to conclude that A′’s views in ExecThΠh,A′,R(1n, x, y, z) and

Exec
Tf
Πf ,SR,R(1n, x, y, z) (and hence A′’s outputs) are likewise identically distributed. We can argue

this using the following claims:

Claim 5. If S is honest, then, given messages (x, rFHE, rDel, rEnc) and (pkFHE, pkDel, ctx) from A′,
step (4) of SR succeeds (i.e., does not return ⊥) in Πf if and only if all checks in step (1) of the
functionality h described in Figure 3 succeed in the respective instance of Πh.

Proof. The “if” direction is trivial since the checks in step (4) of SR are a strict subset of the checks
in step (1) of h.

The “only if” direction follows from the assumption that S is honest, and will hence compute
cty = EncFHE(pkFHE, y; rEnc(y)) correctly using the correct inputs.

Claim 6. If S is honest and all checks in step (1) of the functionality h described in Figure 3
succeed in Πh, then, with probability 1, step (3) of the functionality h will not return ⊥.

Proof. Since step (1) is successful, we know that (pkDel, skDel) = GenDel(1
λ, rDel); moreover, since

S is honest, we know that it must have computed (ctout, πDel, 1
T) = CompDel(pkDel, g, ctx, cty)

correctly (and using the correct pkDel and ctx, since the checks in step (1) passed). It follows by
perfect completeness of the delegation scheme (GenDel,CompDel,VerDel) that

VerDel(skDel, g, ctx, cty, ctout, πDel, T) = Accept

as desired.

Claim 7. If S is honest and, in Πh, all checks in step (1) of the functionality h described in Figure
3 succeed, and step (3) of the functionality h does not return ⊥, then the value of out returned by
step (4) of h will be equal to f(x, y) with probability 1.

Proof. Since S is honest and step (1) is successful, we know, as in the previous claim, that
(pkDel, skDel) = GenDel(1

λ, rDel) and (ctout, πDel, 1
T) = CompDel(pkDel, g, ctx, cty). It follows by cor-

rectness of the delegation scheme (GenDel,CompDel,VerDel) that

ctout = g(ctx, cty) = EvalFHE(pkFHE, f, ctx, cty)

It suffices to show that this will decrypt to the correct output out = f(x, y). This holds due
to perfect correctness of the FHE scheme (GenFHE,EncFHE,DecFHE,EvalFHE); specifically, since ctx
and cty are encryptions of x and y, respectively:

DecFHE(skFHE, ctout) = DecFHE(skFHE,EvalFHE(pkFHE, f, ctx, cty)) = f(x, y)

23

Chaining together Claims 5, 6, and 7 leads us to the conclusion that (by Claim 5), SR returns ⊥
in Exec

Tf
Πf ,SR,R(1n, x, y, z) if and only if Th would return ⊥ (from step (1)) in the respective execution

of ExecThΠh,A′,R(1n, x, y, z), and furthermore, if this event does not occur, then (by Claims 6 and 7 as

well as the definition of SR) both SR (in Exec
Tf
Πf ,SR,R(1n, x, y, z)) and Th (in the respective execution

of ExecThΠh,A′,R(1n, x, y, z)) will return an output out that is precisely equal to f(x, y), where x is
the value sent by the adversary to Th and y is the (honest) sender’s input. This completes the
argument for the case I = R.

Corrupted Sender. In the case I = S, define a T (n) · poly(n)-time simulator SS which does as
follows:

1. Generate rFHE, rDel, rEnc(x) ← {0, 1}∗

and (pkFHE, ·) = GenFHE(1n; rFHE), (pkDel, ·) = GenDel(1
λ; rDel), ctx = EncFHE(pkFHE, 0; rEnc(x))

2. Run the corrupted sender A′ using input (pkFHE, pkDel, ctx). A′ will generate a message
(y′, pk′FHE, pk

′
Del, ct

′
x, ct

′
y, ct

′
out, π

′
Del, r

′
Enc(y), T

′) to send to Th. Perform the following checks to

verify this message, and return ⊥ to Tf (causing it to output ⊥) if any of them fail.

(a) pkFHE = pk′FHE, pkDel = pk′Del, ctx = ct′x.
(b) ct′y = EncFHE(pkFHE, y

′; r′Enc(y))

(c) VerDel(skDel, g, ctx, cty, ct
′
out, π

′
Del, T

′) = Accept
for the functionality g(c1, c2) = EvalFHE(pkFHE, f, c1, c2).

3. Otherwise (if the above checks pass), send y′ to Tf . Finally, output whatever A′ outputs.

As this case has interesting subtleties, we lead the formal proof with a brief overview. Recall
that, for this case, we need not only to verify that the adversary A′’s views in the experiments

ExecThΠh,A′,S(1n, x, y, z) and Exec
Tf
Πf ,SS ,S(1n, x, y, z) (and hence A′’s outputs) cannot be distinguished,

but also that the honest receiver R’s outputs cannot be distinguished between the two experiments.
The natural way to do this would be to begin by creating a hybrid protocol Π′h where the

receiver, instead of sending a ciphertext of their input x in the first round, sends the corresponding
ciphertext of 0 (as the simulator does when running A′ in Πf). Ostensibly, this would allow us
to show that the output distributions between Πh and Π′h are close by using the CPA-security
of the underlying FHE protocol to assert that the ciphertexts, and hence the views of A′, are
indistinguishable between the two experiments. And while this does indeed directly imply that the
adversary’s outputs are close, we run into an issue the moment we consider the receiver’s output;
specifically, the receiver’s output is the output from the ideal functionality Th, which among other
things depends on the secret key skFHE and the randomness rFHE used to generate it. In fact, this
makes a reduction from Π′h to the security of the FHE scheme impossible (using current techniques),
since a hypothetical adversary simulating this functionality would only know pkFHE.

Instead we will have to consider an alternate functionality h′ which only depends on the public
key pkFHE and does not use the randomness or secret key. Specifically, rather than decrypting the
final result ctout, h

′ will instead simply return f(x, y′). We then show that the output distribution
of Πh′ is statistically close to that of Πh. Specifically, they are identical except when the adversary
A′ can force the ideal functionality h′ to verify a proof πDel of an incorrect ciphertext ctOut—this

24

implies that their statistical distance must be at most the (negligible) soundness error of delegation.8

Now, given Πh′ , we can finally consider a protocol Π′h′ where the receiver uses a ciphertext of 0;
now that h′ no longer depends on skFHE, the reduction to the CPA-security will go through (for
both the adversary’s and receiver’s outputs), and we can lastly compare ExecTh

Π′
h′ ,A

′,S(1n, x, y, z) and

Exec
Tf
Πf ,SS ,S(1n, x, y, z) to show that, actually, the output distributions are identically distributed.

We continue to the formal proof. Let h′ be the functionality defined as h, but with four key
differences:

• h′, instead of taking input rFHE from the receiver, takes input pkFHE.

• In step (1), instead of verifying that (pkFHE, ·) = GenFHE(1n, rFHE), h′ verifies that the sender’s
and receiver’s inputs pkFHE match.

• In step (2), h′ no longer computes (·, skFHE) = GenFHE(1n; rFHE).

• In step (4), h′ returns f(x, y) rather than DecFHE(skFHE, ctout).

Let Πh′ be defined identically to Πh except that both parties use the ideal functionality Th′ in
place of Th and the receiver inputs pkFHE to Th′ instead of rFHE as specified above. We state the
following claim:

Claim 8. There exists negligible ε(·) such that, for all n ∈ N and inputs x, y, z, the output distri-

butions OutThΠh,A′,S(1n, x, y, z) and Out
Th′
Πh′ ,A′,S

(1n, x, y, z) are ε(n)-statistically close.

Proof. Intuitively, this will follow from the soundness of the delegation scheme (GenDel,CompDel,
VerDel).

First, observe that the adversary’s views in ExecThΠh,A′,S(1n, x, y, z) and Exec
Th′
Πh′ ,A′,S

(1n, x, y, z),
and thus the adversary’s outputs, are identically distributed; hence, it suffices to argue about the
honest receiver’s output, i.e., the output of Th or Th′ .

Second, since the receiver R is honest, the fact that h′ verifies that the sender’s and receiver’s
inputs pkFHE match is equivalent to the verification in h of the sender’s pkFHE (that (pkFHE, ·) =
GenFHE(1n, rFHE)), since the receiver’s input pkFHE will always be equal to GenFHE(1n, rFHE). So the
only change that can possibly affect the output of Th′ compared to Th in the corrupted sender case
is the fact that h′ returns f(x, y) rather than DecFHE(skFHE, ctout).

Now, assume for the sake of contradiction that there is some polynomial p(·) such that, for
infinitely many n ∈ N, there exist x, y, z so that the ideal functionality’s output is different between

ExecThΠh,A′,S(1n, x, y, z) and Exec
Th′
Πh′ ,A′,S

(1n, x, y, z) with probability 1/p(n). We shall use this to

construct a T (n) · poly(n)-time adversary ADel to break the soundness of the delegation scheme
with probability 1/p(n).

Specifically, let ADel do as follows on input (1n, pkDel):

1. Generate rFHE, rEnc(x) ← {0, 1}∗
and (pkFHE, ·) = GenFHE(1n; rFHE), ctx = EncFHE(pkFHE, x; rEnc(x)).

8An attentive reader might wonder at this point why, in doing this, we are not simply backing ourselves into the
same corner, since indeed Th and even Th′ are very much dependent on the randomness rDel and secret key skDel. The
intuitive answer is that, unlike with the reduction to FHE, we are able to “outsource” the dependence on skDel in Th′

to the security game for the soundness of delegation, allowing us to effectively emulate h′ without said secret key in
the adversary we construct.

25

2. Run the corrupted sender A′ with sender input y, auxiliary input z, and first-round message
(pkFHE, pkDel, ctx). A′ will generate a message (y′, pk′FHE, pk

′
Del, ct

′
x, ct

′
y, ct

′
out, π

′
Del, r

′
Enc(y), T

′)

to send to the ideal functionality (Th or Th′).

3. Run (ctout, πDel, 1
T)← CompDel(pkDel, g, ctx, ct

′
y)

for the functionality g(c1, c2) = EvalFHE(pkFHE, f, c1, c2)

4. Verify the following and abort if any are false.

(a) pkFHE = pk′FHE, pkDel = pk′Del, ctx = ct′x
(b) ct′y = EncFHE(pkFHE, y

′; r′Enc(y))

5. Otherwise, return (g, ctx, ct
′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
).

We claim that ADel returns a tuple (g, ctx, ct
′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
) such that ctout 6=

ct′out but VerDel(skDel, g, ctx, ct
′
y, ctout, πDel, T) = VerDel(skDel, g, ctx, ct

′
y, ct

′
out, π

′
Del, T

′) = Accept—
that is, ADel breaks soundness of the delegation scheme—precisely when h decrypts a ciphertext
that is not equal to ctout as returned by CompDel(pkDel, g, ctx, cty) for the corresponding functionality
and inputs; furthermore, we claim that this is the only case where h and h′ may not be identically
distributed.

To verify this, we start by observing that the input to A′ in step (2) of ADel is identically

distributed to the inputs in the experiments ExecThΠh,A′,S(1n, x, y, z) and Exec
Th′
Πh′ ,A′,S

(1n, x, y, z),
since pkDel is honestly generated and the receiver is honest. Furthermore, given the message from
A′ to the ideal functionality, as well as the fact that R is honest, we can assert that the checks
in step (4) of ADel are equivalent to the checks in step (1) of h or h′, since the receiver’s inputs
pkFHE, pkDel, ctx are guaranteed to be honestly generated. So, comparing Th and Th′ for a particular
interaction, there are four possible outcomes, which we shall analyze:

1. Step (1) of h or h′ fails, in which case both return ⊥ (and ADel will abort).

2. Step (1) succeeds, but the verification in step (3) fails, in which case both will return ⊥ (and
ADel will produce output (g, ctx, ct

′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
) which is rejected because

(ct′out, π
′
Del) fails to verify).

3. Steps (1) and (3) succeed, and ct′out given by the adversary is the same as the correct
(ctout, ·, ·) = CompDel(pkDel, g, ctx, ct

′
y), in which case the outputs of h and h′ are identical

and not ⊥ by perfect correctness of Enc and Eval, as well as correctness of the delegation
scheme.

Specifically, considering the inputs to h, we know by correctness of delegation that, since
(ct′out, ·, ·) = CompDel(pkDel, g, ctx, ct

′
y), ct′out = g(ctx, ct

′
y) = EvalFHE(pkFHE, f, ctx, ct

′
y). Fur-

thermore, by perfect correctness of the FHE scheme and the fact that ctx and ct′y are encryp-
tions of x and y, respectively:

DecFHE(skFHE, ctout) = DecFHE(skFHE,EvalFHE(pkFHE, f, ctx, ct
′
y)) = f(x, y′)

that is, the output of h will be identical to the output f(x, y′) of h′. In this case, ADel

will produce output (g, ctx, ct
′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
) which is rejected because ct′out =

ctout.

26

4. Steps (1) and (3) succeed, and ct′out given by the adversary is not the same as the correct
(ctout, ·, ·) = CompDel(pkDel, g, ctx, ct

′
y), in which case the outputs of h and h′ may be differ-

ent (and ADel will produce output (g, ctx, ct
′
y, ctout, ct

′
out, πDel, π

′
Del, 1

T , 1T
′
) which is accepted

because ct′out 6= ctout and (ct′out, π
′
Del, 1

T ′) verifies successfully).

The above implies that the probability over possible interactions that the outputs of h and h′

are different—which, as we have argued above, is equal to the statistical distance between the

distributions OutThΠh,A′,S(1n, x, y, z) and Out
Th′
Πh′ ,A′,S

(1n, x, y, z)—is no greater9 than the probability
with which ADel’s output is accepted. In particular, by our assumption that, for infinitely many
n ∈ N, there were x, y, z such that this statistical distance was greater than 1/p(n), this implies
that the probability that ADel’s output is accepted (for the corresponding inputs) must be greater
than 1/p(n) for infinitely many n ∈ N. But this contradicts the soundness of delegation, so the
claim is proven.

Now let Π′h′ be identical to Πh′ , with the sole exception that the receiver’s first-round message
to the sender replaces the correctly generated ctx = EncFHE(pkFHE, x; rEnc(x)) with the correspond-
ing encryption ctx = EncFHE(pkFHE, 0; rEnc(x)) of 0. We present the following claim comparing

Exec
Th′
Πh′ ,A′,S

(1n, x, y, z) and Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z):

Claim 9. For any polynomial-time non-uniform distinguisher D, there exists negligible ε(·) such

that, for any n ∈ N and inputs x, y, z, the distributions Out
Th′
Πh′ ,A′,S

(1n, x, y, z) and Out
Th′
Π′
h′ ,A

′,S(1n, x,

y, z) cannot be distinguished by D with probability greater than ε(n).

Proof. Intuitively, this follows from the CPA-security of the FHE scheme with respect to T (n) ·
poly(n)-time adversaries and the fact that both h′ and the view of A′ are independent of rFHE and
skFHE.

Formally, assume for contradiction that there exists a non-uniform polynomial-time distin-
guisher D and polynomial p(·) such that, for infinitely many n ∈ N, there are inputs x, y, z such that

D is able to distinguish Out
Th′
Πh′ ,A′,S

(1n, x, y, z) and Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z) with probability 1/p(n).

We define a tuple of T (n) · poly(n)-time algorithms (AFHE, D
′) that can break the CPA-security of

the FHE scheme (GenFHE,EncFHE,EvalFHE,DecFHE) with probability 1/p(n) as follows:

• AFHE, on input 1n, outputs (0, x).

• D′, on input (1n, pkFHE, ctx), where c is either ct0x = EncFHE(pkFHE, 0)
or ct1x = EncFHE(pkFHE, x), does the following:

1. Generate rDel ← {0, 1}∗ and (pkDel, skDel) = GenDel(1
λ; rDel).

2. Run the corrupted sender A′ with sender input y, auxiliary input z, and first-round mes-
sage (pkFHE, pkDel, ctx). A′ will generate a message (y′, pk′FHE, pk

′
Del, ct

′
x, ct

′
y, ct

′
out, π

′
Del,

r′Enc(y), T
′) to send to Th′ and output outA′ . Store outA′ .

3. Verify the following and set outR = ⊥ if any are false. Otherwise, set outR = f(x, y′).

(a) pkFHE = pk′FHE, pkDel = pk′Del, ctx = ct′x

9Note that equality is not guaranteed, as h could possibly accept a ciphertext ct′out 6= ctout that still decrypts to
f(x, y).

27

(b) ct′y = EncFHE(pkFHE, y
′; r′Enc(y))

(c) VerDel(skDel, g, ctx, ct
′
y, ct

′
out, π

′
Del, T

′) = Accept
for the functionality g(c1, c2) = EvalFHE(pkFHE, f, c1, c2)

4. Return D(1n, (outA′ , outR)).

First, notice that (given that the inputs pkFHE and ctx = EncFHE(pkFHE,m) for either m = 0 or
m = x are generated correctly) the inputs to A′ in step (2) of D′ are identically distributed to

either the inputs in Exec
Th′
Πh′ ,A′,S

(1n, x, y, z) (if m = x) or the inputs in Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z) (if

m = 0). Hence, the view of A′ in D′ is identically distributed to the corresponding view in the
respective experiment, which implies that the output outA′ must be as well, as must the message
sent to Th′ .

It remains to argue about the receiver’s output outR; recall that the honest receiver’s output
in either experiment is given by the output of the ideal functionality Th′ . However, outR as de-
fined in step (3) of D′ can easily be seen to be identically distributed to the output of h′ in the

respective experiment Exec
Th′
Πh′ ,A′,S

(1n, x, y, z) (if m = x) or Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z) (if m = 0). This

holds because, since R is honest, R’s inputs (pkFHE, pkDel, ctx) are honestly generated and so the
verifications in steps (3a) and (3b) are identical to the respective checks in step (1) of h. Further-
more, the verification in step (3c) of D′ is identical to the verification in step (3) of h, so it follows
that outR = ⊥ exactly when h′ in the respective experiment would return ⊥, and that, otherwise,
outR = f(x, y′), which by the definition of h′ is identical to what h′ would return if not outputting
⊥.

So we have argued that the distribution (outA′ , outR) is identical to Out
Th′
Πh′ ,A′,S

(1n, x, y, z) when

m = x and to Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z) when m = 0. But we have assumed that for infinitely many

n ∈ N there exist x, y, z so that D can distinguish Out
Th′
Πh′ ,A′,S

(1n, x, y, z) and Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z)

with probability 1/p(n), i.e., that there is at least a 1/p(n) difference between the probability that
D(1n, (outA′ , outR)) returns 1 in the m = x case and the respective probability in the m = 0 case.
But, since D′ returns precisely D(1n, (outA′ , outR)), this gives us

|Pr[D(1n, pkFHE,EncFHE(pkFHE, 0)) = 1]− Pr[D(1n, pkFHE,EncFHE(pkFHE, x)) = 1]| ≥ 1/p(n)

which, since AFHE always returns (0, x), means that (AFHE, D
′) is able to break the CPA-security

of the underlying FHE scheme (w.r.t. T (n) · poly(n)-time adversaries) with probability 1/p(n) for
infinitely many n ∈ N, a contradiction.

It remains to compare Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z) and Out
Tf
Πf ,SS ,S(1n, x, y, z); however, we claim that

in fact these distributions are already identical. First, observe that the input provided to A′ in

SS is identically distributed to the input provided to A′ in Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z); in both cases

this consists of an honestly generated pkFHE, pkDel, ctx such that ctx is the respective encryption of
0. So it follows that the adversary’s output, as well as the message sent by the adversary to the
ideal functionality, must be identically distributed between the two experiments. Demonstrating

that the receiver’s outputs are identical—that is, that the output of h′ in Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z) is

always equal to the output f(x, y) in Exec
Tf
Πf ,SS ,S(1n, x, y, z)—will follow from the following claim,

to which we have already alluded in the previous two reductions:

28

Claim 10. If R is honest, then, given messages (x, pkFHE, rDel, rEnc) sent to Th′, (pkFHE, pkDel, ctx)
sent to A′, and (y′, pk′FHE, pk

′
Del, ct

′
x, ct

′
y, ct

′
out, π

′
Del, r

′
Enc(y), T

′) sent by A′ to Th′, the checks in step

(2) of SS succeed if and only if all checks in steps (1) and (3) of the functionality h′ succeed.

Proof. If R is honest, it must be the case that (pkDel, ·) = GenDel(1
λ; rDel) and ctx = EncFHE(pkFHE, x

; rEnc(x)); hence step (2a) of SS is equivalent to verifying pk′FHE = pkFHE, (pk′Del, ·) = GenDel(1
λ; rDel),

and ct′x = EncFHE(pk′FHE, x; rEnc(x)), i.e., the first three checks of step (1) of h′. Step (2b) is trivially
equivalent to the last check in step (1) of h′ and step (2c) is trivially equivalent to the check in step
(3) of h′, completing the argument.

This implies that the receiver in Exec
Th′
Π′
h′ ,A

′,S(1n, x, y, z) will return ⊥ as the output from h′

precisely when SS will return ⊥ to the ideal functionality (based on the checks in step (2)) and

cause the receiver in Exec
Tf
Πf ,SS ,S(1n, x, y, z) to return ⊥. However, when Tf does not output ⊥,

it will always output f(x, y′) on the respective inputs x from the honest receiver and y′ from
SS ; similarly, when Th′ does not return ⊥, it will, by definition, also always output f(x, y′) on
the respective input x from the honest receiver and y′ from A′. The above, then, is sufficient to

conclude that the distributions Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z) and Out
Tf
Πf ,SS ,S(1n, x, y, z) are identical.

We conclude the proof of the lemma with a standard hybrid argument; specifically, if there
exists some non-uniform polynomial-time distinguisher D and polynomial p(·) such that, for in-
finitely many n ∈ N, there are inputs x, y, z so that D can distinguish OutThΠh,A′,S(1n, x, y, z) and

Out
Tf
Πf ,S,S(1n, x, y, z) with probability 1/p(n), then D must likewise be able to distinguish one of

the following pairs with probability 1/p′(n) for some polynomial p′(·):

• OutThΠh,A′,S(1n, x, y, z) and Out
Th′
Πh′ ,A′,S

(1n, x, y, z)

• Out
Th′
Πh′ ,A′,S

(1n, x, y, z) and Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z)

• Out
Th′
Π′
h′ ,A

′,S(1n, x, y, z) and Out
Tf
Πf ,S,S(1n, x, y, z)

The first case would contradict Claim 8, the second case would contradict Claim 9, and the third case
is impossible because we showed the distributions to be identical. Therefore, such a distinguisher
D cannot exist.

By the same logic, a standard hybrid argument shows that Lemmas 2 and 3 imply Theorem
7: if there were some non-uniform polynomial-time distinguisher D and polynomial p(·) such that,
for infinitely many n ∈ N, there were inputs x, y, z so that D could distinguish OutΠ,A,I(1

n, x, y, z)

and Out
Tf
Πf ,S,I(1

n, x, y, z) with probability 1/p(n), then D would be able to distinguish either:

• OutΠ,A,I(1
n, x, y, z) and OutThΠh,A′,I(1

n, x, y, z), or

• OutThΠh,A′,I(1
n, x, y, z) and Out

Tf
Πf ,S,I(1

n, x, y, z)

with probability 1/p′(n) for some polynomial p′(·). The first case would contradict Lemma 2 and
the second Lemma 3; hence, Theorem 7 is proven.

29

References

[AEKP19] Gilad Asharov, Naomi Ephraim, Ilan Komargodski, and Rafael Pass. On perfect cor-
rectness without derandomization. Cryptology ePrint Archive, Report 2019/1025, 2019.
https://eprint.iacr.org/2019/1025.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15:115–162,
01 2006.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, EUROCRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg,
May 2014.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM
Press, June 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of ex-
tractable one-way functions. In David B. Shmoys, editor, 46th ACM STOC, pages
505–514. ACM Press, May / June 2014.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from
LWE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume
11240 of LNCS, pages 370–390. Springer, Heidelberg, November 2018.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wa-
dia. Two-message witness indistinguishability and secure computation in the plain
model from new assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 275–303. Springer, Heidelberg,
December 2017.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages
309–325. ACM, January 2012.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-dependent
message security. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 423–444. Springer, Heidelberg, May / June 2010.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delega-
tion and batch NP verification from standard computational assumptions. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, 49th ACM STOC, pages 474–482.
ACM Press, June 2017.

30

https://eprint.iacr.org/2019/1025

[BJOV18] Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky, and Ivan Visconti. Non-
interactive secure computation from one-way functions. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 118–138.
Springer, Heidelberg, December 2018.

[BK18] Zvika Brakerski and Yael Tauman Kalai. Monotone batch np-delegation with ap-
plications to access control. Cryptology ePrint Archive, Report 2018/375, 2018.
https://eprint.iacr.org/2018/375.

[BP04] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 121–132. Springer,
Heidelberg, February 2004.

[BP15] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part II, volume 9453 of LNCS, pages 236–261. Springer, Heidelberg, November / De-
cember 2015.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 33–65.
Springer, Heidelberg, August 2017.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 2014, pages 597–608. ACM Press, November 2014.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct Proofs for NP and Spooky Interactions. 2004.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 467–476. ACM Press, June 2013.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio, edi-
tor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer, Heidelberg, February
2010.

31

https://eprint.iacr.org/2018/375

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
555–564. ACM Press, June 2013.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of computer and
system sciences, 28(2):270–299, 1984.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In Ran
Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 412–426. Springer, Heidelberg,
March 2008.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. J. Cryptology, 25(1):158–193, 2012.

[HPV16] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubrama-
niam. Composable security in the tamper-proof hardware model under minimal com-
plexity. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985
of LNCS, pages 367–399. Springer, Heidelberg, October / November 2016.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sa-
hai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May
2011.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31. ACM Press, May 1988.

[KMO89] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-knowledge
proofs (extended abstract). In 30th FOCS, pages 474–479. IEEE Computer Society
Press, October / November 1989.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354.
Springer, Heidelberg, August 2004.

32

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE
Computer Society Press, November 1994.

[MR17] Payman Mohassel and Mike Rosulek. Non-interactive secure 2PC in the offline/online
and batch settings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 425–455. Springer, Heidelberg,
April / May 2017.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, pages
448–457, 2001.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
160–176. Springer, Heidelberg, May 2003.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving universal
composability without trusted setup. In László Babai, editor, 36th ACM STOC, pages
242–251. ACM Press, June 2004.

[Ps05] Rafael Pass and Abhi shelat. Unconditional characterizations of non-interactive zero-
knowledge. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
118–134. Springer, Heidelberg, August 2005.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and appli-
cations. In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE Computer Society
Press, October 2018.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM
Press, May 2005.

[SU11] Dominique Schröder and Dominique Unruh. Round optimal blind signatures. Cryptol-
ogy ePrint Archive, Report 2011/264, 2011. https://eprint.iacr.org/2011/264.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

33

https://eprint.iacr.org/2011/264

A Non-succinct NISC Protocols

Here, we state our candidate non-succinct NISC protocols for use in our main theorem. Specifi-
cally, while [BGI+17] claims that NISC with superpolynomial-time simulation can be constructed
from just a notion of “weak oblivious transfer” (see Appendix A.1 for a formal definition), their
construction requires an onto one-way function, which cannot necessarily be constructed just from
weak OT. While this distinction is unimportant in the context of their major results, we wish to
show that our construction of succinct NISC can be based solely on subexponential LWE; hence,
in Figure 4, we present an adaptation of their protocol which can be based solely on weak OT. The
key difference is that, while [BGI+17] relies on a witness-indistinguishable argument and the afore-
mentioned onto one-way function, we instead discard the one-way function and rely on a two-round
zero-knowledge argument with superpolynomial-time simulation, showing that this is sufficient via
complexity leveraging and a careful sequence of hybrids.

Consider some quasi-polynomial functions TOT(n), TExtOT(n), TSim(n), TGC(n), TExtCom(n),
TCom(n) satisfying:

TGC(n)� TExtOT(n)� TOT(n)� TExtCom(n)� TCom(n)� TSim(n)

where we write T (n) � T ′(n) to indicate that T (n) > T ′(n) · p(n) for any polynomial p(·) and
sufficiently large n ∈ N. Specifically, we can achieve quasi-polynomial simulation by letting each
function be given by nlogc(n) for some different constant c. Π will use the following primitives:

• Let (OT1,OT2,OT3) be a 1-of-2 oblivious transfer scheme satisfying the definition of “(TOT(·),
TExtOT(·))-weak OT” given in Appendix A.1 with respective TExtOT(n) ·poly(n)-time extractor
ExtOT (for TExtOT(n)� TOT(n), as otherwise ExtOT would trivially break chooser’s security).

• Let (ZK1,ZK2,ZK3) be a two-message zero-knowledge protocol with TSim(n) · poly(n)-time
simulation; let SimZK be the respective simulator. [BGI+17] shows that such schemes can be
constructed from the above notion of “weak OT”.

• Let (Garble,Eval) be a garbled circuit scheme secure against TGC(n) · poly(n)-time adversaries
which satisfies perfect correctness (see Appendix A.2); let SimGC be the respective simulator
in the definition of security.

• Let (SetupCom,Com) be a secure two-round commitment scheme with TExtCom(n) · poly(n)-
time extraction which satisfies statistical binding and hiding against TCom(n) · poly(n)-time
adversaries (where TExtCom(n)� TCom(n), as otherwise ExtCom would trivially break hiding);
let ExtCom denote the respective extractor.

As we notice that there exist constructions of both garbled circuit schemes [BHHI10] and two-round
commitment schemes [Nao91] based on one-way functions, and as (even semi-honest) OT implies
one-way functions [Hai08], this yields the following theorem:

Theorem 8 (Adapted from [BGI+17]). Assuming the existence of weak oblivious transfer, then,
for any functionality f(·, ·) computable by a polynomial-time Turing machine, there exists a non-
interactive secure computation protocol Π for f with quasi-polynomial simulation.

Furthermore, since weak OT can be based on subexponential LWE [BD18], we have as a corollary:

34

Corollary 2 (Theorem 5). Assuming subexponential hardness of the Learning With Errors assump-
tion, then, for any functionality f(·, ·) computable by a polynomial-time Turing machine, there exists
a non-interactive secure computation protocol Π for f with quasi-polynomial simulation.

The proof of Theorem 8 follows analogously to the original in [BGI+17]; we provide a slightly
abbreviated version here.

Proof. We separate into two cases based on whether the sender or receiver is corrupted.

Corrupted Sender. In the case where the sender is corrupted, we present the simulator given in
Figure 5, which will run in time TExtCom(n) · poly(n) = poly(n)nlogc(n) for constant c. It suffices to
show that, between the real and ideal experiments, the outputs of the adversary and of the honest
receiver (which simply outputs the result of the ideal functionality) are indistinguishable.

First, consider a hybrid experiment H where R, after receiving the malicious sender’s second-
round message, computes y∗ by using ExtCom after verifying zk2 and then computes and outputs
f(x, y∗), rather than computing an output by evaluating GC as in the real experiment. We claim
that R’s and the adversary’s outputs are statistically close between the real experiment and H. The
adversary’s output is trivially identical as their view does not change. To reason about R’s output
in H, notice that the two experiments return ⊥ under precisely the same conditions; furthermore,
by security of the underlying ZK protocol, the experiments, with overwhelming probability, return
something besides ⊥ if and only if (

−→
ot2,GC, cy) ∈ L.

If (
−→
ot2,GC, cy) ∈ L, there exists a witness w = (

−→
ot1,
−→
K,−−→rOT, rGC, c1, y, rCom) demonstrating

that (
−→
ot2,GC, cy) is properly generated given some randomness (−−→rOT, rGC, rCom) and the malicious

sender’s input y. In the real protocol, we know that, by perfect correctness of the OT protocol, the
honest receiver will always recover the keys corresponding to their input x when

−→
ot2 is correctly

generated. Furthermore, by perfect correctness of the garbled circuit scheme, using the respective
keys on a (correctly formed) garbled circuit GC will always result in the correct output C(x) =
f(x, y), where y is as given in the witness w. However, by statistical binding and extractability of
Com, this y must with overwhelming probability (i.e., unless binding fails) be the same one as the
y∗ returned by ExtCom(cy), and so in this case the output C(x) = f(x, y) in the real experiment
must always be equal to the output f(x, y∗) of the ideal functionality in the ideal experiment, since
the honest receiver will always provide the same x. Thus, the outputs of R and the adversary are
statistically close between the real experiment and H whenever (

−→
ot2,GC, cy) ∈ L, implying that

they are statistically close overall (since it is overwhelmingly likely that either (
−→
ot2,GC, cy) ∈ L or

both protocols return ⊥).
So it suffices to compare H to the ideal experiment. The only difference between H and the ideal

experiment is the way in which the message
−→
ot1 is generated; hence, by TOT(n)-chooser’s security of

the OT protocol (see Appendix A.1), we can show that the joint distribution of the adversary’s and
receiver’s output is indistinguishable between H and the ideal experiment. Specifically, assume
for the sake of contradiction that there exists some non-uniform polynomial-time distinguisher
D that can successfully distinguish between the respective joint distributions; we can construct
a TExtCom(n) · poly(n)-time distinguisher D′ that breaks chooser’s security of the underlying OT
scheme (note that the OT is assumed secure against TOT(n)·poly(n)-time adversaries and TOT(n)�
TExtCom(n)) by, given some OT message ot∗1, running the receiver protocol and respective adversarial
sender in the experiment using ot∗1 (note that the experiment must run ExtCom, hence the running
time bound) to generate the respective output distribution and subsequently returning the output

35

Input: The receiver R and the sender S are given input x, y ∈ {0, 1}n, respectively, and
both parties have common input 1n.
Output: R receives f(x, y).

Round 1: R proceeds as follows:

1. Generate
−→
ot1,
−−→σOT by, for i ∈ [n], taking ((

−→
ot1)i, (

−−→σOT)i)← OT1(1n, xi).
2. Generate (zk1, σZK)← ZK1(1n).
3. Generate c1 ← SetupCom(1n).
4. Send (

−→
ot1, zk1, c1) to S.

Round 2: S proceeds as follows:

1. Compute cy = Com(c1, y; rCom) using randomness rCom ← {0, 1}∗.
2. Generate keys

−→
K = {Ki,b}i∈[n],b∈{0,1}, where Ki,b ← {0, 1}n for each i ∈ [n] and

b ∈ {0, 1}.
3. Generate garbled circuit GC = Garble(

−→
K,C; rGC), where C(·) is the circuit that

computes f(·, y).
4. Compute

−→
ot2 and −−→rOT by, for i ∈ [n], taking (−−→rOT)i ← {0, 1}∗ and (

−→
ot2)i =

OT2((
−→
ot1)i,Ki,0,Ki1 ; (−−→rOT)i).

5. Compute zk2 ← ZK2(1n, zk1, (
−→
ot2,GC, cy), (

−→
ot1,
−→
K,−−→rOT, rGC, c1, y, rCom)) for the lan-

guage L consisting of tuples x = (ot2,GC, cy) such that there exists a witness

w = (
−→
ot1,
−→
K,−−→rOT, rGC, c1, y, rCom) satisfying:

(a) (
−→
ot2)i = OT2((

−→
ot1)i,Ki,0,Ki,1; (−−→rOT)i) for all i ∈ [n].

(b) GC = Garble(
−→
K,C; rGC), where C(·) is the circuit that computes f(·, y).

(c) cy = Com(c1, y; rCom).

6. Send (zk2,
−→
ot2,GC, cy) to R.

Output phase: R proceeds as follows:

1. Verify that ZK3(zk2, (
−→
ot2,GC, cy), σZK) = Accept; if not, output ⊥.

2. Compute
−→
K∗ by taking K∗i = OT3((

−→
ot2)i, (

−−→σOT)i) for each i ∈ [n].

3. Output Eval(
−→
K∗,GC).

Figure 4: Protocol Π for (non-succinct) non-interactive secure computation.

36

Simulator SS
1. Generate

−→
ot1,
−−→σOT by, for i ∈ [n], taking ((

−→
ot1)i, (

−−→σOT)i)← OT1(1n, 0).
2. Generate (zk1, σZK)← ZK1(1n).
3. Generate c1 ← SetupCom(1n).
4. Send (

−→
ot1, zk1, c1) to the (malicious) sender S.

5. Receive output (zk2,
−→
ot2,GC, cy) from S.

6. Verify that ZK3(zk2, (
−→
ot2,GC, cy), σZK) = Accept; if not, output ⊥.

7. Use the extractor ExtCom to compute y∗ ← ExtCom(cy), and send y∗ to the ideal functionality Tf .

Figure 5: Simulator for a malicious sender.

of D on the distribution. Since the experiments are identical aside from the first OT message,
D being able to distinguish the ideal experiment (with OT input 0) from H (with a non-zero
OT input) would imply D′ successfully distinguishing between OT1(1n, 0) and OT1(1n, 1), hence
contradicting the OT’s security and completing the argument for the malicious sender case.

Corrupted Receiver. Otherwise, if the receiver is corrupted, we use the TExtOT(n) ·poly(n)-time
simulator given in Figure 6; once again we note that the running time is given by poly(n)nlogc(n)

for constant c. It suffices to show that the output of the malicious receiver is indistinguishable
between the two experiments, which we can do by showing that the views of the adversary R are
likewise indistinguishable.

To argue that this is the case, we introduce the following sequence of hybrids:

1. Let hybrid H0 denote the real experiment.

2. Let H1 be identical to H0, except that zk2, rather than being computed honestly by ZK2, is
computed as zk2 ← SimZK(zk1, (

−→
ot2,GC, cy)).

3. Let H2 be identical to H1, except that the commitment cy is generated as cy = Com(c1, 0)
rather than Com(c1, y).

4. Let H3 be identical to H2, except that H3 now uses the extractor ExtOT to recover x∗ and
generates the inputs Ki,b to OT2 (for any i, b such that x∗i 6= b) uniformly at random rather
than using the respective keys.

5. LetH4 be identical toH3, except thatH4 additionally computes z = f(x∗, y), and furthermore
the garbled circuit GC, rather than being computed honestly by Garble, is generated as GC =

SimGC(
−→
K, z).

Notice that H4 is now identical to the behavior of SR in the ideal world; hence, it suffices to
argue that the above sequence of hybrids are indistinguishable by the non-uniform polynomial-time
adversary A in order to show that the adversary’s view (and hence their output) must likewise be
indistinguishable between the real and ideal experiments.

H0 is (non-uniform polynomial-time) indistinguishable from H1 by simulation-based security
of the zero-knowledge protocol (ZK1,ZK2,ZK3): since (

−→
ot2,GC, cy) ∈ L (i.e., they are honestly

generated, and hence there exists a valid witness w), the definition of security implies that zk2 ←
SimZK(zk1, (

−→
ot2,GC, cy)) and zk2 ← ZK2(1n, zk1, (

−→
ot2,GC, cy), w) (for some valid witness w) are

indistinguishable by any non-uniform polynomial-time adversary.

37

Simulator SR
1. Run the malicious receiver R to receive a first-round message (

−→
ot1, zk1, c1).

2. Use the extractor ExtOT to compute x∗ by taking x∗i ← ExtOT((
−→
ot1)i) for each i ∈ [n].

3. Send x∗ to the ideal functionality Tf and receive an output z.
4. Compute cy = Com(c1, 0).

5. Generate keys
−→
K = {Ki,b}i∈[n],b∈{0,1}, where Ki,b ← {0, 1}n for each i ∈ [n] and b ∈ {0, 1}.

6. Generate garbled circuit GC = SimGC(
−→
K, z).

7. Compute
−→
ot2 by, for i ∈ [n], taking (

−→
ot2)i = OT2((

−→
ot1)i,Ki,0,Ki,1).

8. Compute zk2 ← SimZK(zk1, (
−→
ot2,GC, cy)).

9. Send (zk2,
−→
ot2,GC, cy) to R.

Figure 6: Simulator for a malicious receiver.

H2 is indistinguishable from H1 by the hiding property of the underlying commitment scheme
Com (i.e., that, for any adversarially chosen first message c1 and messages m0,m1, the respective
commitments are indistinguishable by TCom(n) · poly(n)-time adversaries). The only difference
between H1 and H2 is how the commitment cy is generated; hence, if there were a non-uniform
polynomial-time distinguisher D able to distinguish the adversary’s view between the experiments
H1 and H2, then it would be possible to construct a TSim(n) ·poly(n)-time distinguisher D′ between
Com(c1, 0) and Com(c1, y). Specifically, D′ could run the adversary to obtain the first message
c1, request a commitment cy of one of the two values (0 or y) under the message c1, use cy
in place of the respective commitment while emulating the rest of the experiment in TSim(n) ·
poly(n) time, and return the output of D on the resulting view. If D distinguishes between the
respective experiments H1 and H2, then D′ would distinguish between Com(c1, 0) and Com(c1, y),
contradicting the hiding of Com since we assumed it to have security against TCom(n) ·poly(n)-time
adversaries and TCom(n)� TSim(n). (Note that D′ does indeed run in time TSim(n) · poly(n); while
the final simulator SR uses the extractor ExtOT, which requires far more time, none of the hybrids
before H3 use this extractor.)

H2 is indistinguishable from H3 by sender’s security of the weak OT protocol (OT1,OT2,OT3)
(see Appendix A.1). Specifically, the only difference between the adversary’s view in H2 and
H3 is in how the OT message

−→
ot2 is generated. If the adversary’s view of the experiments were

distinguishable by some non-uniform polynomial-time distinguisher D, it would be possible to
create a TExtOT(n) ·poly(n)-time distinguisher D′ (note that the running time is significantly higher
than distinguishing H1 and H2 as we now need to run ExtOT) between OT2((

−→
ot1)i,Ki,0,Ki,1)

and OT2 run on the same inputs but with a different Ki,b corresponding to b 6= ExtOT((
−→
ot1)i),

directly contradicting (statistical) sender’s security of the OT. The distinguisher would use the
respective OT2 output in place of a randomly chosen one of the OT messages, emulate the rest of
the experiment in TExtOT(n) ·poly(n) time (specifically, in TExtOT(n) +TSim(n) +poly(n) time, since
the experiment runs both SimZK and ExtOT; however, we collect the terms due to the observation
that TSim(n) � TExtOT(n)), and return the output of D on the resulting view. If D′ were able to
distinguish between the respective experiments, then D would be able to distinguish between the
respective OT messages, breaking statistical sender’s security.

Lastly, H3 is indistinguishable from H4 by security of the garbled circuit scheme (Garble,Eval)
with respect to the simulator SimGC. The only difference between the adversary’s views in H3

and H4 is in how the garbled circuit GC is generated, so, as before, if we had some non-uniform
polynomial-time distinguisher D between the respective views in experiments H3 and H4, we could

38

construct a TExtOT(n) · poly(n)-time distinguisher between real and simulated garbled circuits by
running the experiment while using ExtOT to recover x∗ and z = f(x∗, y), obtaining a (real or
simulated) garbled circuit for the respective inputs and output, substituting the circuit for GC,
emulating the rest of the experiment (again, in time TExtOT(n) + TSim(n) + poly(n) = TExtOT(n) ·
poly(n)), and returning the output of D on the resulting view. If D successfully distinguishes
between H3 and H4, then D′ would in turn distinguish between the real and simulated circuits.
This, however, would contradict security of (Garble,Eval), since we have assumed it secure against
TGC(n) · poly(n)-time adversaries for TGC(n)� TExtOT(n).

Extension to the CRS model. A NISC protocol from any UC-secure OT is claimed in ([IPS08],
Appendix B), which can be instantiated with the OT protocol in the CRS model of [PVW08] to
get a NISC protocol in the CRS model (with simulation based security). As their protocol is a bit
complicated (and only informally analyzed), we point out that the above SPS protocol can be easily
modified (and the proof directly extends) to give a NISC in the CRS model from any UC-secure
OT in the CRS model, as follows:10

• We now require (OT1,OT2,OT3) to be a maliciously secure and fully simulatable oblivious
transfer protocol (which, in the CRS model, can still be based on LWE [PVW08]), and we
require (ZK1,ZK2,ZK3) to be a two-round zero-knowledge protocol with polynomial-time
simulation in the CRS model, which is implied by OT [Kil88, KMO89, Ps05].

• We can relax the security on all underlying primitives to hold against polynomial-time ad-
versaries, rather than T (n) · poly(n)-time adversaries.

• We remove the commitment scheme Com from the protocol (and remove c1, cy, rCom, and
the respective check from the language L) and let the simulators extract the inputs from
the malicious party by using the respective (polynomial-time) simulators for the OT protocol
instead of the superpolynomial-time extractors for weak OT and Com, so that the simulators
will run in polynomial time.

Aside from these differences, the protocol and proof proceed identically to the above, yielding the
following theorem:

Theorem 9. Assuming polynomial security of the Learning With Errors assumption, then, for any
functionality f(·, ·) computable by a polynomial-time Turing machine, there exists a non-interactive
secure computation protocol Π for f with polynomial-time simulation in the CRS model.

A.1 Definition of Weak Oblivious Transfer

For completeness, we present the definition of “weak OT” given in [BGI+17].

Definition 7 ([BGI+17]). A two-round 1-of-2 weak oblivious transfer protocol is given by three
algorithms, (OT1,OT2,OT3), defining an interaction between a sender S and a chooser (receiver)
R as follows:

10Our protocol is simpler but this is only because we rely on the underlying OT protocol in a non-black-box way
whereas [IPS08] relies on it only in a black-box way.

39

• OT1(1n, b) → (ot1, σ) generates R’s message ot1 and persistent state σ (which is not sent to
S) given the security parameter n and R’s choice bit b ∈ {0, 1}.
• OT2(ot1, x0, x1)→ ot2 generates S’s message ot2 given S’s messages x0, x1 and R’s message

ot1.
• OT3(ot2, σ)→ x′b generates R’s output x′b given the state σ and S’s message ot2.

such that the following properties hold:

1. Perfect correctness: For any n ∈ N, any choice bit b ∈ {0, 1}, and any inputs x0, x1 ∈
{0, 1}n:

Pr [(ot1, σ)← OT1(1n, b) : xb = OT3(σ,OT2(x0, x1, ot1))] = 1

2. Chooser’s security: For any non-uniform polynomial-time distinguisher D, there exists a
negligible ε(·) such that, for any n ∈ N:

|Pr [D(OT1(1n, 0)) = 1]− Pr [D(OT1(1n, 1)) = 1] | < ε(n)

If the above holds with respect to T (n) ·poly(n)-time distinguishers D, we say that the protocol
satisfies T (·)-chooser’s security, or alternatively that it is T (·)-secure.

3. Statistical sender’s security: There exists an extractor ExtOT that, on input ot1, outputs 0
if Pr [OT1(1n, 0) = ot1] > 0 and 1 otherwise, and, for any (unbounded) distinguisher D, there
exists negligible ε(·) such that, for any ot1 and any K0,K1,K

′
0,K

′
1 for which KExtOT(ot1) =

K ′ExtOT(ot1):

|Pr [D(OT2(ot1,K0,K1)) = 1]− Pr
[
D(OT2(ot1,K

′
0,K

′
1)) = 1

]
| < ε(n)

We say that the protocol is T ′(·)-extractable if there exists an ExtOT satisfying the above
that runs in time T ′(n) · poly(n).

Lastly, for some T (·) < T ′(·), we call a weak OT protocol a (T (n), T ′(n))-weak OT protocol if it
is T (·)-secure and T ′(·)-extractable.

We state the following theorem for the existence of weak OT:

Theorem 10 ([BD18]). Assuming subexponential security of the Learning With Errors assumption,
then, for every c < c′, there exists a (T (·), T ′(·))-weak OT protocol for T (n) = nlog

c(n), T ′(n) =

nlog
c′ (n).

A.2 Definition of Garbled Circuit Schemes

Definition 8 (based on [Yao86, BHHI10]). A garbled circuit scheme consists of a pair of
algorithms (Garble,Eval) such that:

• Garble(
−→
K,C)→ GC: given security parameter n, takes as input a circuit C with input size n

and labels
−→
K = {Kb,i}b∈{0,1},i∈[n] corresponding to each assignment (0 or 1) for each input

wire, and outputs a garbled circuit GC.

40

• Eval(
−→
K∗,GC) → y: takes as input a garbled circuit GC and a garbled input x represented by

the corresponding labels
−→
K∗ = {Kxi,i}i∈[n], and outputs y.

We consider garbled circuit schemes having the following properties:

1. Perfect correctness: For any security parameter n ∈ N, any circuit C with input length

[n], any labels
−→
K = {Kb,i}b∈{0,1},i∈[n] ∈ ({0, 1}n)2n (such that K0,i 6= K1,i for each i), and

any input x = x1|| . . . ||xn ∈ {0, 1}n, letting
−→
K∗ = {Kxi,i}i∈[n]:

Pr[Eval(
−→
K∗,Garble(

−→
K,C)) = C(x)] = 1

2. Security: There exists an efficient simulator Sim such that, for all non-uniform polynomial-
time distinguishers D, there exists a negligible function ε(·) such that, for all n ∈ N, for

any circuit C with input length n and any input x = x1|| . . . ||xn ∈ {0, 1}n, letting
−→
K =

{Kb,i}b∈{0,1},i∈[n] ← ({0, 1}n)2n be uniformly random and
−→
K∗ = {Kxi,i}i∈[n]:

|Pr[D(Garble(
−→
K,C),

−→
K∗) = 1]− Pr[D(Sim(

−→
K,C(x)),

−→
K∗) = 1]| < ε(n)

If the above holds for T (n)poly(n)-time distinguishers D, we say that the scheme is T (·)-
secure.

We state the following theorem for existence:

Theorem 11 ([AIK06, BHHI10]). Assuming the existence of subexponentially secure one-way func-
tions, then, for constant c, there exists a T (·)-secure garbled circuit scheme satisfying perfect cor-
rectness for T (n) = nlog

c(n).

41

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Fully Homomorphic Encryption
	Adaptive Delegation Schemes
	Non-Interactive Secure Computation

	Protocol
	Proof
	Comparing Real and Hybrid Executions
	Comparing Hybrid and Ideal Executions

	Non-succinct NISC Protocols
	Definition of Weak Oblivious Transfer
	Definition of Garbled Circuit Schemes

