
Reverse Firewalls for Actively Secure MPCs

Suvradip Chakraborty?, Stefan Dziembowski??, and Jesper Buus Nielsen? ? ?

Abstract. Reverse firewalls were introduced at Eurocrypt 2015 by Miro-nov and Stephens-
Davidowitz, as a method for protecting cryptographic protocols against attacks on the
devices of the honest parties. In a nutshell: a reverse firewall is placed outside of a device
and its goal is to “sanitize” the messages sent by it, in such a way that a malicious device
cannot leak its secrets to the outside world. It is typically assumed that the cryptographic
devices are attacked in a “functionality-preserving way” (i.e. informally speaking, the func-
tionality of the protocol remains unchanged under this attacks). In their paper, Mironov
and Stephens-Davidowitz construct a protocol for passively-secure two-party computations
with firewalls, leaving extension of this result to stronger models as an open question.

In this paper, we address this problem by constructing a protocol for secure computation
with firewalls that has two main advantages over the original protocol from Eurocrypt
2015. Firstly, it is a multiparty computation protocol (i.e. it works for an arbitrary number
n of the parties, and not just for 2). Secondly, it is secure in much stronger corruption
settings, namely in the actively corruption model. More precisely: we consider an adversary
that can fully corrupt up to n − 1 parties, while the remaining parties are corrupt in a
functionality-preserving way.

Our core techniques are: malleable commitments and malleable non-interactive zero-knowledge,
which in particular allow us to create a novel protocol for multiparty augmented coin-
tossing into the well with reverse firewalls (that is based on a protocol of Lindell from
Crypto 2001).

1 Introduction

The traditional approach to cryptography is to design schemes in a black-box way, i.e,
under the assumption that the devices that execute cryptographic algorithms are fully
trusted. Abstract, “black-box” cryptography is currently well-understood, and there exist
several algorithms that implement basic cryptographic tasks in a way that is secure
against a large class of attacks (under very plausible assumptions). Therefore, one can
say that cryptographic algorithms, if implemented correctly, are the most secure part of
digital systems.

Unfortunately, once we get closer to the real “physical world” the situation becomes
much less satisfactory. This is because several real-life attacks on cryptographic devices
are based on attacking the implementation, not the abstract mathematical algorithm.
In particular, the adversary can sometimes tamper with the device and change the
way in which it behaves (e.g. by installing so-called “Trojan horses” on it). What can
be viewed as the extreme case of the tampering attacks are scenarios in which the
device is produced by an adversarial manufacturer, who maliciously modifies its design.

? Institute of Science and Technology Austria. suvradip.chakraborty@ist.ac.at
?? University of Warsaw. s.dziembowski@crypto.edu.pl

? ? ? Aarhus University. jbn@cs.au.dk

Such attacks are quite realistic, since, for the economical reasons, private companies
and government agencies are often forced to use hardware that they did not produce
themselves. Another source of such attacks are the insiders that originate from within a
given company or organization. Last but not least, some attacks of this type can originate
from the governments. The revelations of Edward Snowden disclosed a massive scale of
the US government cyberattacks directed against the individuals (both within the US
and abroad). It is generally believed that many other governments take similar actions,
one recent example being the “Chinese hack chip” attack (revealed in October 2018)
that reached almost 30 U.S. companies, including Amazon and Apple.

Countermeasures. Starting from late 1990s there has been a significant effort in the
cryptographic community to address this kind of “implementation attacks”, by extend-
ing the black-box model to cover also them (see, e.g., [24, 22]). More recently, Mironov
and Stephens-Davidowitz [25] put forward another method that they called reverse fire-
walls. On a high level (for a formal definition see Sec. 3), this technique addresses the
problem of information leakage from cryptographic implementations that are malicious,
either because they were produced by an adversarial manufacturer, or because they are
were maliciously modified at a later stage. More concretely, reverse firewalls are used to
protect against attacks in which a malicious implementation leaks some of its secrets via
so-called “subliminal channels” [27], i.e, by encoding this secrets in innocently-looking
protocol messages. In a nutshell, a reverse firewall is an external device that is put be-
tween a party P and the external world in order to “sanitize” the messages that are sent
and received by P . A reverse firewall is not a trusted third party, and, in particular, it
cannot be used to keep P ’s secrets and to perform operations “in P ’s name”. Reverse
firewalls come in different variants. The most popular one, that we also consider in this
paper, requires that the reverse firewalls provide protection only against the aforemen-
tioned “informational leakage” attack (and not against attacks that may influence the
output of the computation). In particular, in this model, we are not concerned with
the correctness of the computation. More formally, we assume that all the adversarial
tampering cannot change the functionality of the entire protocol. This type of attacks
are called “functionality maintaining” corruptions [25]. The authors of [25] provide a
construction of a two-party passively secure computation protocol with a reverse fire-
wall, leaving the generalization of this construction to stronger security notions as an
open problem. Reverse firewalls has been recently used in a very practical context by
Dauterman et al. in [11] in a design of a True2F system that is based on a firewalled
key generation and ECDSA signature generation. One of the potential applications of
this system are the cryptocurrency wallets.

Our contribution. We address the open problem of [25] by providing a construction
of reverse firewalls for secure computation in a much stronger security model, and in a
more general setting. More concretely, we show a solution to the problem by constructing
multiparty computation protocols with active security. Recall that in the active security
settings the corrupt parties can misbehave in an arbitrary way, i.e., the adversary takes
a full control over them, and, besides learning their inputs, can instruct them to take

2

any actions of his choice. It is well known [18, 17] that such protocols can be constructed
even if a majority of parties is corrupt (assuming that no fairness is guaranteed, i.e., the
adversary can prevent the honest parties from learning their outputs, after she learns the
outputs of corrupt parties). In this work, we show an MPC protocol (based on [18, 17]),
together with a reverse firewall for it, that provides security in a very strong sense: it can
tolerate up to n− 1 “standard” (active) corruptions (where n is the number of parties)
plus a corruption of the remaining parties, as long as it is “functionality maintaining” and
these parties are protected by their corresponding reverse firewalls. The core technique
that we use in this construction is a novel protocol for multiparty augmented parallel
coin-tossing into the well with reverse firewalls (our starting point for this construction
is a protocol of Lindell [23]).

Our result shows the general feasibility of MPCs with reverse firewalls. While we
do not focus on concrete applications, we believe that our approach can lead to some
practical concrete constructions, especially in the light of [11] (see above). For example,
to further increase the security of hardware wallets (e.g. in critical applications such
as cryptocurrency exchanges), one could develop reverse firewalls for threshold ECDSA
(see, e.g., [16, 13]). Our results show that this is in principle possible, but further work
to bring these ideas to practice is needed.

Other related work. After the publication of [25] there has been some follow-up work on
the reverse firewalls. In particular [12] constructed a firewalled protocol for CCA-secure
message transmission, and [9] provide protocols for oblivious signature-based envelopes
with firewalls, and oblivious transfer (this is done using a new technique called “mal-
leable smooth projective hash function” that they develop in this paper). In [3] Ateniese
et al. use reverse firewalls to construct signature schemes secure against arbitrary tam-
pering. Reverse firewalls are also related to several earlier topics in cryptography such as
the algorithm-substitution attacks, subliminal channels and divertible protocols, com-
biners, kleptography, collusion-free protocols and mediated collusion-free protocols and
more. Due to space constraints, we refer the reader to Sec. 1.1 of [25] for an overview of
these topics and their relation to reverse firewalls.

1.1 Overview of our construction

On a high level, our construction can be viewed as “adding reverse firewalls to the MPC
protocol of [18, 17]”. In particular, we follow the protocol structure presented in Sec. 3.3.3
of [17], i.e.: the parties generate random strings to which they are committed (this is
called “augmented coin-tossing”), they commit to their inputs (the “input commitment
protocol”), and finally they perform the “authenticated computation” in which they
do computations on these values, simultaneously proving (in zero knowledge) that the
computation is done correctly (in our construction we use a non-interactive version of
zero-knowledge protocols, NIZKs, [6]). The main things that need to be addressed in
adding reverse firewalls to this protocol is to construct protocols for commitment schemes
and NIZKs with firewalls (since the correctness of every step of the computation is proven
in zero knowledge, we do not need to construct separate firewalls for the computations

3

itself). Essentially, these firewalls are constructed by “re-randomizing” the messages that
are sent by the parties. More precisely: for messages that come from commitments, we
exploit the standard homomorphic properties of such schemes, and for NIZKs we use the
“controlled-malleable NIZK proof systems” of [8]1. On a high level, the firewalls can re-
randomize a protocol transcript exploiting homomorphic properties of the commitment
scheme, and controlled malleability property of the NIZK proofs (where the controlled
malleability is “tied” to the appropriate mauling of the commitments). One of the key
ingredients of our construction is a firewalled scheme for augmented coin tossing. This
is built by combining the firewalled protocols for commitment and NIZKs with the coin-
tossing protocol of Lindell [23].

Reverse firewalls for multi-party (augmented) coin-tossing. Let us explain the design
principle of our reverse firewall for the multi-party augmented coin-tossing protocol in
more details. The starting point of our protocol is the 2-party augmented parallel coin-
tossing of Lindell [23]. The protocol of [23] uses a “commit-and-prove” technique, where
one party (often called the initiating party) commits to a random bit-string and proves
in zero-knowledge about the consistency of the committed value. The other party also
sends a random bit-string to this party. The final string is the exclusive OR of both
these strings and the initiating party commits to this final string. The protocol ends
by outputting a random bit-string (which the initiating party gets), and the commit-
ment value to the final bit-string (which the other party receives). First, we extend this
protocol to the multi-party setting, and then design a reverse firewall for this protocol.
We assume that the honest parties are corrupted in a functionality-maintaining way.
Note that, in the traditional model of corruption the adversary completely controls the
party and may also cause the party to deviate arbitrarily from the protocol. In contrast,
functionality-maintaining corruptions also allows the adversary to completely control the
party and also cause the party to deviate from the protocol specification as long as it
does not violate or break the functionality (i.e, correctness) of the underlying protocol.
The first observation is that the corrupted parties may not necessarily commit to a ran-
dom bit-string. Even if it does so, the commitment may also leak information about the
committed value (say the randomness used to commit may leak additional information
about the bit-string). Secondly, the bit-strings sent by the other parties to the initiating
party may also act as a subliminal channel to leak secret information.

The main idea behind our firewall design is that it should somehow be possible to
maul the commitment in such a way that the committed element is random (even if the
initial bit-string is not chosen randomly) and the commitment is itself re-randomizable
(so that the commitment appears to be “fresh”). For this, we assume the commitment
scheme to be additively homomorphic (with respect to an appropriate relation), which
suffices for our purpose. At this point, the original zero-knowledge proof (that conforms
to the initial commitment) is no longer valid with respect to the mauled commitment.
Hence, the firewall needs a way to appropriately maul the proof (so that the mauled proof

1 Since we use a NIZK proof system, we need to assume a trusted setup algorithm which generates a
common reference string (CRS) to be used by all the parties. We assume that the CRS is hardwired
inside the code of each party.

4

is consistent with the mauled commitment), and also to re-randomize the proof (so that
the randomness used to proof does not leak any information on the witness, which is
the committed string). To this end, we use the controlled-malleable NIZK proof systems
(cm-NIZK) introduced by Chase et al. [8]. We replace the (interactive) zero-knowledge
proofs used in the protocol of [23] with cm-NIZK proofs (with a trusted setup procedure).
The firewall then re-randomizes the shares (bit-strings) of the other parties in such a
way that is consistent with the initial mauling of the commitment and the proof.

However, at this point another technical difficulty arises: the views of all the parties
are not identical– in particular, the view of the initiating party and the other parties are
not same, due to the above mauling by the firewall. While this appears to be problematic
as far as the functionality of the protocols is concerned, we show that the firewall can
again re-maul the transcript in such a way that the views of all the parties become
consistent, without compromising on the security of the protocol. Here by “consistent”
we mean that the initiating party (of the coin-tossing protocol) receives a random bit
string, and the rest of the parties receive the commitment to the same bit-string.

Indeed, we show that at the end the initiating party ends up with a random bit-string
(as required by the functionality), even if it is corrupted (in a functionality-maintaining
way) and the other parties obtains a secure commitment to this bit-string. We show that
the above firewall maintains functionality, preserves security for the honest parties, and
also provide weak exfiltration-resistant2 against other parties. Finally, we stress that the
above mauling operations, specially the mauling of the NIZK proofs, does not require
the firewall to know the original witness (chosen by the initiating party), which makes
it interesting and doable from the firewall perspective (since it shares no secret with any
of the parties). We refer the reader to Sec. 6.1 for the details.

Reverse firewalls for other protocols. We also design reverse firewalls for the multi-party
input commitment protocol and the multi-party authenticated computation protocol,
which are also used as key ingredients for our final actively-secure MPC protocol. The
reverse firewalls for these protocols are relatively much simpler and involve only re-
randomizing the commitment and the NIZK proof (in case of the input commitment
protocol) and re-randomizing the proof (for the authenticated computation protocol).
We show that both the firewalls corresponding to these two protocols preserve security
and is exfiltration-resistant against other parties.

The final compiler. Finally, we show the construction of our actively-secure MPC pro-
tocols in the presence of reverse firewalls. Our final compiler is similar to the compiler
presented in [17], however, adapted to the setting of reverse firewalls. The compiler takes
as input any semi-honest MPC protocol (without reverse firewalls) and runs the multi-
party input commitment protocol, the multi-party (augmented) coin-tossing protocol
and the multi-party authenticated computation protocol in the reverse firewall setting
(in sequential order) to obtain the final actively-secure MPC protocol. On a high level,

2 Informally, the exfiltration-resistant property stipulates that the corrupt implementation of party
does not leak any information through the firewall. Weak exfiltration-resistance guarantees the same
property when the party is corrupted in a functionality-maintaining way (and not arbitrarily).

5

after the input commitment and the coin-tossing protocol (in the presence of reverse fire-
walls) the inputs and the random pads of all the (honest) parties are fixed. Now, since
the honest parties are corrupted in a functionality-maintaining way, the computation
performed by the party in the authenticated computation protocol is determined, and
the final zero-knowledge proofs conform to these computations. Hence, at this point,
the security of the underlying semi-honest MPC protocol (without using reverse fire-
walls) can be invoked to argue security of our final actively-secure MPC protocol (in the
presence of reverse firewalls).

Compiler for reverse firewalls for broadcast model. As a contribution of independent
interest, we also present a compiler for reverse firewalls (RF) in the broadcast model. In
particular, existence of a broadcast channels in the RF setting is a stronger assumption
than the existence of a broadcast channel in the classical setting. To this end, we present
a version of the Dolev Strong protocol [14] secure in the RF setting. The key idea is
to transform the original Dolev Strong protocol to be a “unique message protocol”, so
that, at any given point there is only one possible message that a party can send. We
implement this by replacing the signatures in the Dolev-Strong protocol with unique
signatures. Intuitively this works because: on any input in the Dolev-Strong protocol,
the only allowed message consists of adding a signature on a well-defined message. The
signature is either sent or added to a valid set. Since the signatures are unique and the
parties are corrupted in a functionality-maintaining way, it is forced to send the unique
message at that particular round. In general, the above idea also works if we replace
the signatures in the Dolev-Strong protocol with re-randomizable signatures [21, 28].
Note that unique signatures are efficiently re-randomizable. We note that, our result
also nicely complements the result of Ateniese et al. [3], who gave a negative result for
the construction of RF for arbitrary signature schemes. On the positive side, they show
constructions of RF for the class of re-randomizable signature schemes (which includes
unique signatures as well).

Constructing actively secure MPC from semi-malicious MPC in the RF setting. A recent
line of work [26, 5, 15] constructs 2-round MPC protocols achieving semi-malicious
security, which means that the protocol is secure for all (possibly adversarial) choices
of the random coins of the parties. Furthermore, following the compilation paradigm of
[2, 1], one can immediately obtain maliciously secure Universal Composable (UC) MPC
protocols in the CRS model, using NIZK proofs. At first thought, it seems that if we start
with any of these 2-round semi-malicious MPC protocols and use a controlled-malleable
NIZK proof on top (instead of just NIZK) we can hope to get a 2-round actively secure
MPC protocol in the RF setting. However, this approach does not work: semi-malicious
security protects the other parties against a semi-malicious corrupted party, but does not
protect the corrupted party itself. In fact, a maliciously chosen random tape might be
used to leak information covertly, so semi-malicious security does not provide exfiltration
resistance.

6

On the Trusted Setup assumption. Our construction of the actively secure MPC protocol
uses a controlled-malleable NIZK (cm-NIZK) proof, and hence is in the CRS model. This
is in contrast to the original GMW protocol [18] which does not require any trusted setup
assumption, since it uses interactive zero-knowledge proofs. A natural idea is whether it
is possible to replace the cm-NIZK proofs with controlled-malleable interactive ZK (cm-
IZK) proofs. Indeed, while it is not hard to see that one can construct cm-IZK proofs
from one-way functions3, it seems that the techniques of our paper are unlikely to extend
to work with cm-IZK proofs. The main challenge is in making the views of the parties
consistent in the final MPC protocol. We consider this as an interesting open problem
to remove the trusted setup assumption.

Organization of the paper. The basic definitions and notation are provided in Sect. 2
(Sect. 3 contains the definitions related to the reverse firewalls). Our main technical con-
tribution is presented in Sect. 4, with Sections 5 and 5.1 describing the construction of
broadcast channels in the reverse firewall setting, Sections 6—6.4 describing the ingre-
dients of our construction, and Sect. 6.5 putting them together into a single “protocol
compiler” algorithm. The security of our construction in stated and proven in Thm. 7.

2 Preliminaries

In this section we introduce some standard notation and terminology that will be used
throughout the paper. For an integer n ∈ N, we denote by [n] the set {1, 2, · · · , n} and
for any pair of integers 1 < i < j ≤ n, we denote by [i, j] the set {i, i + 1, · · · , j}.
For a distribution or random variable X, we denote x ← X the action of sampling
an element x according to X. For any integer m ∈ N, we write Um to denote the
uniform distribution over all m-bit strings. A decision problem related to a language
L ⊆ {0, 1}∗ requires to determine if a given string x is in L or not. In this paper,
we consider NP language. Corresponding to each NP language L, we can associate a
binary relation R ⊆ {0, 1}∗ × {0, 1}∗ defining L such that: L = {x : ∃ω s.t. (x, ω) ∈ R}
and |ω| ≤ poly(|x|). We call x the statement/theorem, and ω the witness testifying the
membership of x in the language L, i.e., x ∈ L. Let T = (Tx, Tω) be a pair of efficiently
computable n-ary functions, Tx : {{0, 1}∗}n → {0, 1}∗. We call such a tuple T as an n-ary
transformation. Following [8], we define what it means for a transformation T = (Tx, Tw)
to be admissible with respect to a NP relation R.

Definition 1. (Admissible transformations [8]). An n-ary transformation T =
(Tx, Tw) is said to admissible for an efficient relation R, if R is closed under T , i.e,
for any n-tuple {(x1, ω1), · · · , (xn, ωn)} ∈ Rn, it holds that the pair

(
Tx(x1, · · ·xn),

Tω(ω1, · · · , ωn)
)
∈ R. We say that a class or set of transformations T is an allowable

set of transformation if every transformation T ∈ T is admissible for R.

3 One can modify the zero-knowledge proofs for the Graph Hamiltonicity problem or the 3-Coloring
problem to obtain cm-IZK proofs by replacing the commitments with homomorphic commitments,
similar to our coin-tossing protocol

7

2.1 Homomorphic Commitments

A (non-interactive) commitment scheme consists of three polynomial time algorithms
(G,K, com). The probabilistic setup algorithm G takes as input the security parameter λ
and outputs the setup parameters par. The key generation algorithm K is a probabilistic
algorithm that takes as input par and generates a commitment key ck. We assume that
the commitment key ck includes the description of the message spaceM, the randomness
space R and the commitment space C to be used in the scheme. We also assume it
is possible to efficiently sample elements from R. The algorithm com takes as input
the commitment key ck, a message m from the message space M and “encodes” m
to produce a commitment string c in the commitment space C. Additionally, we also
require the commitment scheme to be homomorphic [19, 20], i.e, we assume that M, R
and C are groups with the homomorphic property, and if we add any two commitments,
the resulting commitment will encode the sum of the underlying messages. The formal
definition follows:

Definition 2 (Homomorphic commitments [19]). A homomorphic trapdoor com-
mitment scheme consists of the tuple of algorithms (G,K, com) as described above, with
the security properties as stated below:

– (Perfect hiding). The triple (G,K, com) is perfectly hiding if for all stateful adver-
saries A, we have:

Pr

[
b′ = b

∣∣∣∣par← G(1λ); ck← K(par); (m0,m1, st)← A(par, ck);

b
$←− {0, 1}; c← comck(mb); b

′ ← A(c, st)

]
≤ 1

2
+ negl(λ).

– (Computationally binding). The triple (G,K, com) is computationally binding if
for all non-uniform polynomial time stateful adversaries A, we have:

Pr

[
m 6= m′ ∧ par← G(1λ); ck← K(par); (m,m′, r, r′)← A(par, ck) :
m,m′ 6= ⊥ comck(m; r) = comck(m

′; r′)

]
≤ negl(λ)

– (Homomorphic). The commitment scheme (G,K, com) is homomorphic if K always
outputs ck describing groups M, R, C, which are written additively, such that for all
m,m′ ∈M, r, r′ ∈ R we have: comck(m; r) + comck(m

′; r′) = comck(m+m′; r + r′).

2.2 Controlled Malleable Non-Interactive Zero-Knowledge Proofs.

We recall the definitions of controlled-malleable non-interactive proof systems from [8].
A non-interactive proof system for a NP language L associated with relation R con-
sists of three (probabilistic) polynomial-time algorithm (CRSGen,P,V). The Common
Reference String (CRS) generation algorithm CRSGen takes as input the security pa-
rameter 1λ, and outputs CRS σcrs. The prover algorithm P takes as input σcrs, and a
pair (x, ω) ∈ R, and outputs a proof π. The verifier algorithm V takes as input σcrs, a
statement x and a purported proof π, and outputs a decision bit b ∈ {0, 1}, indicating

8

whether the proof π with respect to statement x is accepted or not (with 0 indicat-
ing reject, else accept). The two most basic requirements from such a proof system
are perfect completeness and adaptive soundness with respect to (possibly unbounded)
cheating provers. Besides, we also want the NIZK proof systems for efficient relations
R that are (1) malleable with respect to an allowable set of transformations T , i.e.,
for any T ∈ T , given proofs π1, · · · , πn for statements x1, · · · , xn ∈ L they can be
transformed into a proof π for the statement Tx(x1, · · · , xn), and (2) derivation private,
i.e. the resultant proof π cannot be distinguished from a fresh proof computed by the
prover on input

(
Tx(x1, · · · , xn), Tω(ω1, · · · , ωn)

)
. We also want zero-knowledge property

and simulation-sound extractability property to hold for the NIZK proof system under
controlled malleability, as defined below.

Definition 3. (Controlled-malleable NIZK proof system [8]). A controlled mal-
leable non-interactive (cm-NIZK) proof system for a language L associated with aNP re-
lationR consists of four (probabilistic) polynomial-time algorithms (CRSGen,P,V,ZKEval)
such that the following conditions hold:

• (Completeness). For all σcrs ← CRSGen(1λ), and (x, ω) ∈ R, it holds that V(σcrs, x, π) =
1 for all proofs π ← P(σcrs, x, ω).

• (Soundness). We say that (CRSGen,P,V) satisfies adaptive soundness if for all PPT
(malicious) provers P∗ we have:

Pr
[
σcrs ← CRSGen(1λ); (x, π)← P∗(σcrs) : V(σcrs, x, π) = 0 if x /∈ L

]
> 1− negl(κ).

for some negligible function negl(κ). Perfect soundness is achieved when this proba-
bility is always 1.
• (Malleability). Let T be a set of allowable transformation for an efficient relation R.

Then the proof system (CRSGen,P,V) is said to be malleable with respect to T , if
there exists an efficient algorithm ZKEval that does the following: ZKEval takes as
input σcrs, the description of a n-ary admissible transformation T ∈ T , statement-
proof pairs (xi, πi), where 1 ≤ i ≤ n, such that V(σcrs, xi, πi) = 1 for all i, and
outputs a proof π for the statement x = T ({xi}) such that V(σcrs, x, π) = 1.
• (Rerandomizability). We say that the NIZK proof system (CRSGen,P,V) for relation
R is re-randomizable if there exists an additional algorithm RandProof, such that

the probability of the event that b′ = b (where b
$←− {0, 1} is sampled uniformly at

random) in the following game is negligible:

– σcrs ← CRSGen(1λ).

–
(
state, x, w, π)

$←− A(σcrs).
– If V(σcrs, x, π) = 0, or (x,w) /∈ R, output ⊥. Otherwise form

π′ ←

{
P
(
σcrs, x, w

)
if b = 0

RandProof(σcrs, x, π) if b = 1.

9

– b′ ← A(σcrs, π
′)

• (Derivation privacy). We say that the NIZK proof system (CRSGen,P,V,ZKEval) for
relation R with respect to T is derivation-private, if for all adversaries A and bit b,

the probability pAb (λ) that the event b′ = b (where b
$←− {0, 1} is sampled uniformly

at random) in the following game is negligible:

– σcrs ← CRSGen(1λ).

–
(
state, (x1, ω1, π1), · · · , (xq, ωq, πq), T

)
← A(σcrs).

– If V(σcrs, xi, πi) = 0 for some i, (xi, ωi) /∈ R for some i, or T /∈ T , abort and
output ⊥. Otherwise compute,

π ←

{
P
(
σcrs, Tx(x1, · · · , xq), Tω(ω1, · · · , ωq)

)
if b = 0

ZKEval(σcrs, T, {(xi, πi)}i∈[q]) if b = 1.

– b′ ← A(state, π).

• (Controlled-malleable simulation-sound extractability). Let (CRSGen,P,V) be a NIZK
proof of knowledge (NIZKPoK) system for the relation R, with a simulator (S1,S2)
and an extractor (E1, E2). Let T be an allowable set of unary transformation for the
relation R such that membership in T is efficiently testable. Let SE1 be an algorithm,
that on input 1λ outputs (σcrs, τs, τe) such that (σcrs, τs) is distributed identically to
the output of S1. Consider the following game with the adversary A:

– (σcrs, τs, τe)← SE1(1λ).

– (x, π)← AS2(σcrs,τs,·)(σcrs, τe).

– (ω, x′, T)← E2(σcrs, τe, x, π).

We say that the NIZKPoK satisfies controlled-malleable simulation-sound extractabil-
ity (CMSSE) if for all PPT algorithms A there exists a negligible function ν(·) such
that the probability that V(σcrs, x, π) = 1 and (x, π) /∈ Q (where Q is the set of
queried statements and their responses) but either (1) ω 6=⊥ and (x, ω) /∈ R; (2)
(x′, T) 6= (⊥,⊥) and either x′ /∈ Qx (the set of queried instances), x 6= Tx(x′), or
T /∈ T ; (3) (ω, x′, T) = (⊥,⊥,⊥) is at most ν(λ).

Theorem 1. [8] If a proof system is both malleable and randomizable and uses ZKEval′ =
RandProof ◦ ZKEval, then it is also derivation private.

Remark 1. The definition of CM-SSE is a weakening of the definition of (standard)
simulation-sound extractability (SSE). The notion of CM-SEE intuitively says that the
extractor will either extract a valid witness ω corresponding to the new statement x (as
in SSE), or a previously proved statement x′ and a transformation T in the allowable
set T that could be used to transform x′ into the new statement x. Note that, when
T = ∅, we obtain the standard notion of SSE-NIZK as defined by Groth [20]. However,
as shown in [8], this definitional relaxation is necessary, since the standard notion of SSE
is impossible to achieve for malleable proof systems.

10

2.3 Secure computation

We present the definition of general multi-party computation protocols (for an introduc-
tion to this topic see, e.g., [10]). We follow the definitions as presented in [17, 23], which
in turn follows the definitions of [7, 4].

Multi-party protocols. Let n denote the number of parties involved in the protocol.
We assume that n is fixed. A multi-party protocol problem is casted by specifying a
random process which maps sequences of inputs (one input per each of the n parties)
to sequences of outputs (one for each of the n parties). We refer to such a process as
a n-ary functionality, denoted by f : ({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, · · · , fn).
For a input vector x = {x1, · · · , xn} the output is a tuple of random variables denoted
by (f1(x), · · · , fn(x)). The ith party Pi initially holds the input xi and obtains the ith

element in f(x1, · · · , xn), i.e. fi(x1, · · · , xn). We also assume that all the parties hold
input of equal length, i.e., |xi| = |xj | for all i, j ∈ [n]. We will denote such a functionality
as (x1, · · · , xn) 7→ (f1(x1, · · ·xn), · · · , fn(x1, · · ·xn)).

Adversarial behavior. For the analysis of our protocols we consider the malicious
adversarial model. A malicious adversary may corrupt a subset of parties and can com-
pletely control these parties and deviate arbitrarily from the specified protocol. We
assume a static corruption model, where the set of corrupted or dishonest parties are
already specified before the execution of the protocol. A weaker model of security is the
semi-honest model, where the adversary has to follow the protocol as per its specifica-
tion, but it may record the entire transcript of the protocol to infer something beyond the
output of the protocol. We consider the definition of security in terms of a real-world and
ideal-world simulation paradigm, as in [17]. In the ideal model, we assume the existence
of an in-corruptible trusted third party (TTP). In the semi-honest model, all the parties
send their local inputs to the TTP, who computes the desired functionality and send
back the prescribed outputs to them. The honest parties then output their respective
outputs, while the semi-honest parties output an arbitrary probabilistic polynomial-time
function of their respective inputs and the outputs obtained from the TTP. In contrast,
in the malicious model the malicious parties may substitute their local input and send
it to the TTP in the first place. We assume that the TTP always answers the malicious
parties first. The malicious parties may also abort the execution of the protocol by re-
fraining from sending their own messages. Finally, as in the semi-honest model, each
honest party outputs its output as received from the TTP, while the malicious parties
may output an arbitrary probabilistic polynomial-time function of their initial inputs
and the outputs obtained from the TTP.

Definition 4 (Malicious adversaries–the ideal model). Let f : ({0, 1}∗)n → ({0, 1}∗)n
be a n-ary functionality as defined above. Let I = {i1, · · · , iq} ⊂ [n], and (x1, · · · , xn)I =
(xi1 , · · · , xiq). A pair (I, C) where I ⊂ [n] and C is a polynomial-size circuit family rep-
resents an adversary in the ideal model. The joint execution under (I, C) in the ideal
model (on input sequence x = (x1, · · · , xn)), denoted by IDEALf,(I,C)(x) is defined as
follows:

11

(C(xI ,⊥),⊥, · · · ,⊥) if C(xI) =⊥ .
(C(xI , fI(C(xI),xĪ),⊥),⊥, · · · ,⊥) if C(xI) 6=⊥ , 1 ∈ I and yI =⊥, where

yI
def
= (C(xI , fI(C(xI),xĪ))

(C(xI , fI(C(xI),xĪ)), fĪ(C(xI),xĪ)) otherwise.

where Ī = [n] \ I.

The first equation represents the case where the adversary makes some dishonest party
to abort before invoking the trusted party. The second equation represents the case
where the trusted party is invoked with possibly substituted inputs C(xI) and is halted
right after supplying the adversary with the I-part of the output yI = fI(C(xI),xĪ)).
This case is allowed only when 1 ∈ I, i.e, the party P1 can only be blamed for early
abort. Finally, the third equation presents the case where the trusted party is invoked
with possibly substituted inputs C(xI), but is also allowed to answer to all the parties.

Definition 5 (Malicious adversaries–the real model). Let f : ({0, 1}∗)n → ({0, 1}∗)n
be a n-ary functionality as defined above. Let Π be a protocol for computing f . The joint
execution under (I, C) in the real model (on input sequence x = (x1, · · · , xn)), denoted
by REALΠ,(I,C)(x) is defined as the output sequence resulting of the interaction between
the n parties where the messages of parties in I are computed according to C and the
messages of parties not in I are computed according to Π.

Now that the ideal and real models are defined, we put forward the notion of security
for a multi-party protocol. Informally, it says that a secure multi-party protocol in the
real model emulates the ideal model.

Definition 6 (Security in the Malicious model). Let f and Π be as in Def. 5.
Protocol Π is said to securely compute f if there exists a polynomial-time computable
transformation of polynomial-size circuit families A = {Aλ} for the real model (of
Def. 5) into polynomial-size circuit families B = {Bλ} for the ideal model (of Def.
4) such that for every subset I ⊂ [n] we have that {IDEALf,(I,B)(x)}λ∈N,x∈({0,1}λ)n ≡c
{REALΠ,(I,A)(x)}λ∈N,x∈({0,1}λ)n.

3 Definition of Cryptographic Reverse Firewalls for Actively Secure
MPCs

In this section, we present the definitions of reverse firewalls for activel;y secure MPC
protocols, generalizing the definitions of [25, 12]. As in [25], we assume that a crypto-
graphic protocol comes with some functionality (i.e., correctness) requirements F and
some security requirements S. For a party P and reverse firewall W we define W ◦ P as
the “composed” party in which the incoming and outgoing messages of A are “sanitized”
by W. In other words, W is applied to (1) the outgoing messages of P before they leave

12

the local network of P and (2) the incoming messages of P before P sees them. We
stress that the reverse firewallW neither shares any private input with party P nor does
it get to know the output of party P . The firewall W is allowed to see only the public
parameters of the system. Besides this, it can internally toss its own random coins and
can also maintain state.

Let a MPC protocol Π run between the parties {P1, · · · , Pn} with the set of honest
parties denoted by H. We require that each honest party {Pi}i∈H is equipped with a
reverse firewallWi. The first condition we want to the firewalls to satisfy is: The firewalls
Wi should preserve the functionality of the MPC protocol, i.e., the composed parties
Wi ◦Pi (for all i ∈ H) should not break the correctness of the protocol Π. Following [25,
12] we actually require the stronger property that the reverse firewalls be “stackable”,
i.e, many firewalls can be composed in series Wi ◦ · · · ◦ Wi ◦ Pi without breaking the
functionality of the protocol. In addition, we would want the firewalls Wi to preserve
the security S of the underlying (actively secure) MPC protocol, even in the face of
compromise of the honest parties. Our strongest notion of security requires that the
security of the underlying MPC protocol be preserved even when all the honest parties
Pi (of the underlying protocol) are arbitrarily corrupted (denote as Pi). A weaker notion
of security requires the security of the MPC protocol to hold, even when the honest
parties Pi are tampered in a functionality-maintaining way (denoted by P̂i), i.e., when
the tampered implementation still maintains the functionality F of the protocol4. We
write Π{Pi→P̂i}i∈H

to represent the protocol in which the role of the honest parties

{Pi}i∈H are replaced by parties {P̂i}i∈H . Further, we require exfiltration resistance from
the reverse firewalls, which informally says that “no corrupt implementation of a party
P can leak any information through the firewall”. Finally, following [12], we will also
need the notion of “detectable failure” from the reverse firewall. Informally, this notion
stipulates that a protocol fails detectably if we can distinguish transcripts of valid runs
of a protocol from invalid transcripts. This property will be used by the firewall of a
large protocol to test whether some sub-protocol failed or not. We now formally define
all these properties below.

Definition 7. (Functionality-maintaining CRF). For any reverse firewall W and
a party P , let W1 ◦ P = W ◦ P , and Wk ◦ P = W ◦ · · · ◦ W︸ ︷︷ ︸

k times

◦P . A reverse firewall W

maintains functionality F for a party P in protocol Π if Π satisfies F , the protocol
ΠP→W◦P satisfies F , and the protocol ΠP→Wk◦P also satisfies F .

Definition 8. (Security-preserving CRF for Maliciously secure MPCs). Let
Π be a multi-party protocol run between the parties P1, · · · , Pn satisfying functional-
ity requirement F and is secure against static malicious adversaries (see Def. 6). Let

4 In this work, we assume that the functionality-maintaining corruptions never break the functionality of
the protocol. A stronger requirement, as proposed in [25], requires that the functionality-maintaining
corruptions may behave arbitrarily a negligible fraction of time. While we prove our constructions
to be secure according to our notion, it is possible to modify our constructions easily to meet the
requirements of [25]. In order to avoid complications, we choose not to consider the above case, and
will present this in an extended version of our work.

13

I = {i1, · · · , iq} ⊂ [n] be the indices of the parties that are corrupt (in the sense of “stan-
dard” corruption) by the adversary A in the underlying protocol Π. Also, let = {Pi}i∈I
(resp., {P̂i}i∈I) denote the set of arbitrary (resp. “functionality-maintaining”) tampered

implementations of the honest parties (where, I = [n] \ I). We assume that each hon-
est party {Pi}i∈I is equipped with its corresponding reverse firewall {Wi}i∈I . Denote by

{P ∗i ← Wi ◦ Pi}i∈I the set of composed parties comprising of the tampered implemen-

tations {Pi}i∈I (of parties {Pi}i∈I) of the honest parties composed with their respective
firewalls {Wi}i∈I . Then:

– We say that the reverse firewalls Wi for parties {Pi}i∈I strongly preserves security
of the protocol Π, if there exists a polynomial-time computable transformation of
polynomial-size circuit families A = {Aλ}λ∈N for the real model (see Def. 5) into
polynomial-size circuit families B = {Bλ}λ∈N for the ideal model (see Def. 4) such
that for every subset I ⊂ [n], every input sequence x = (x1, · · · , xn) ∈ ({0, 1}λ)n,
and every tampered implementation {Pi}i∈I we have that:

{IDEALf,(I,B)(x)}λ∈N,x∈({0,1}λ)n ≡c {REALΠ{Pi→P∗i }i∈I ,(I,A)(x)}λ∈N,x∈({0,1}λ)n .

– We say that the reverse firewalls Wi for parties {Pi}i∈I weakly preserves security of
the protocol Π, if the above condition holds, but only with respect to “functionality-
maintaining” tampered implementations {P̂i}i∈I of parties {Pi}i∈I .

We also need the notion of exfiltration-resistance from the reverse firewall. In formally, a
reverse firewall is exfiltration-resistant if “no corrupt implementation of a party can leak
any information through the firewall”. Our definition of exfiltration-resistance generalizes
the definition of [25, 12] in the multi-party setting.

Definition 9. (Exfiltration-resistant CRF). Let Π be a multi-party protocol run
between the parties P1, · · · , Pn satisfying functionality F and having reverse firewalls Wi

for the set of honest parties {Pi}i∈I (recall that I is the set of users corrupted by the

adversary in the underlying protocol Π). Then ∀i ∈ I:

– We say that the firewall Wi is strongly exfiltration-resistant for party Pi against all
other parties (P1, · · · , Pi−1, Pi+1, · · · , Pn), if for any PPT adversary E, the advantage
AdvLEAKE,Wi

(λ) of E in the game LEAK as shown below is negligible in the security
parameter λ,

– We say that the firewall W is weakly exfiltration-resistant for party Pi against the
other parties (P1, · · · , Pi−1, Pi+1, · · · , Pn), if for any PPT adversary E, the advan-
tage AdvLEAKE,Wi

(λ) of E in the game LEAK (see Figure 1)is negligible in the security
parameter λ, provided that Pi maintains functionality F for Pi.

The advantage of any adversary E in the game LEAK is defined as: AdvLEAKE,Wi
(λ) =∣∣∣Pr[LEAK(Π, i, {P1, · · · , Pn},Wi, λ) = 1]− 1

2

∣∣∣.
Finally, we define another technical condition related to detectable failures of reverse

firewalls, as presented in [12]. First, we recall the definition for what it means for a
transcript to be valid, and then define detectable failures.

14

Proc. LEAK(Π, i, {P1, · · · , Pn},Wi, λ)

(P1, · · · , Pn, I)← E(1λ).

b
$←− {0, 1}.

IF b = 1, P ∗i ←Wi ◦ Pi.
ELSE, P ∗i ←Wi ◦ Pi.
T ∗ ← ΠPi→P∗i ,{Pj→Pj}j∈[n\i]

(I).

b∗ ← E(T ∗, {stPj}j∈[n\i]).
OUTPUT (b = b∗)

Fig. 1. LEAK(Π, i, {P1, · · · , Pn},Wi, λ) is the exfiltration-resistance security game for a reverse firewall
Wi for a party Pi in protocol Π against the set of parties {Pj}j∈[n\i] with input I. E is the adversary, λ is
the security parameter, {stPj}j∈[n\i] denote the states of the parties {Pj}j∈[n\i] after the run of the proto-
col, I is the valid input for Π, and T ∗ is the transcript of running the protocol ΠPi→P∗i ,{Pj→Pj}j∈[n\i]

(I).

Definition 10 (Valid Transcripts [12]). A sequence of bits r and private input I
generate transcript T in protocol Π if a run of the protocol Π with input I in which the
parties’ coin flips are taken from r results in the transcript T . A transcript T is a valid
transcript for protocol Π if there is a sequence r and private input I generating T such
that no party outputs ⊥ at the end of the run. A protocol has unambiguous transcripts
if for any valid transcript T , there is no possible input I and coins r generating T that
results in a party outputting ⊥.

Definition 11 (Detectable failure). A reverse firewall W detects failure for party
P in protocol Π if (a) ΠP→W◦P has unambiguous transcripts; (b) the firewall outputs
a special symbol ⊥ when run on any transcript that is not valid for ΠP→W◦P , and (c)
there is a polynomial-time deterministic algorithm that decides whether a transcript T
is valid for ΠP→W◦P .

4 Reverse Firewalls and Actively secure MPCs

In this section, we discuss the relationship between actively secure MPC protocols and
reverse firewalls. In this work, we consider computationally-secure MPC protocols. For
the protocol to be secure, we need to assume that atleast one of the parties participating
in the MPC protocol is “honest”. However, in the setting of reverse firewalls, this as-
sumption may not hold true, and in general, we cannot rely on trusted implementation
of any of the parties to guarantee security of the resulting MPC protocol. In particular,
in this setting, one may consider a scenario where all the parties may be arbitrarily
corrupted. To provide any sort of meaningful security guarantees in such a strong cor-
ruption model, we assume that each of the honest parties participating in the MPC
protocol are equipped with a cryptographic reverse firewall. As mentioned earlier, none
of the firewalls share any secrets with any of the parties, nor can it access the outputs of
the corresponding parties. The firewall has access to only the public parameters used in
the protocol. All the incoming and outgoing messages sent and received by the parties
are modified by the firewall. The hope is that: even if the honest parties are corrupted,
the firewall can somehow sanitize the outgoing and incoming messages in such a way

15

that the security of the original MPC protocol (where there is at least one honest party)
is preserved.

Ideally, we would like to build reverse firewalls for the MPC protocol, where all the
honest parties can be arbitrarily corrupted. However, in order to accomplish this goal,
we will need to consider the following scenario: Suppose that one of the parties which was
assumed to be honest in the original MPC protocol refuses to communicate (also called
“attack by refusal” in [12]) in this new model of corruption. To guarantee security against
this attack, clearly the firewall needs to produce a message which looks indistinguishable
from the message the honest party would have sent in the original MPC protocol. In
order words, the firewall needs to simulate the behavior of this (honest) party in our
new corruption model, where the same party can be arbitrarily corrupted. Now suppose
that, the party has a public-secret key pair and it uses the secret key to compute some
message at some point in the protocol (say, a signature on the transcript so far). Clearly,
this action cannot be simulated by the firewall, since it does not have access to the secret
key of the party. Hence, in this setting, where the parties have access to key pairs (which
will indeed be the case for us), achieving security against strong or arbitrary corruption
is impossible.

To circumvent the above impossibility result, we consider a hybrid model of corrup-
tion, which is slightly weaker than the corruption model mentioned above. In particular,
in our model, up to n − 1 parties can be arbitrarily corrupted, where n is the total
number of parties participating in the protocol. The remaining honest parties can also
be corrupted, albeit, in a functionality-maintaining way. In a functionality-maintaining
tampered implementation of a party, the adversary may deviate arbitrarily from the
protocol, as long as it does not break its functionality. Intuitively, this models “more
conspicuous” adversaries whose tampered circuit(s) will be noticed by honest parties
participating in the protocol with non-negligible probability [25].

5 Dolev-Strong Broadcast for Reverse Firewalls

As mentioned earlier, we will assume the availability of a broadcast channel for our
construction of the actively-secure MPC protocol in the reverse firewall (CRF) setting.
However, in the CRF setting, the assumption of broadcast channels may be stronger
than the classical setting. To this end, we present a compiler for reverse firewalls for the
broadcast model. We instantiate the broadcast protocol using a version of the classical
Dolev-Strong protocol [14], secure in the CRF setting. The protocol of [14] shows that
one can simulate a broadcast channel using public-key infrastructure, in particular using
signature schemes as the authentication mechanism. In our construction, we replace the
signature scheme from [14] with unique signatures. Intuitively this works since: on any
input in the Dolev-Strong protocol, the only allowed message consists of adding a signa-
ture on a well-defined message. The signature is either sent or added to a valid set. Since
the signatures are unique, this leaves only one possible message that a (even corrupted)
party can send. The latter holds since we assume that the parties are corrupted in a
functionality-maintaining way.

16

Ports: For each party Pi there is a protocol port Casti. There are also special ports Leak,
Replace, and Deliver connected to the adversary.

Syntax: The inputs on Casti from parties Pi can be of the form (bid,Pi,m), where bid is a
broadcast ID and m is a message. Furthermore, parties Pj 6= Pi can give inputs of the form
(bid,Pi, ?) indicating that they know that Pi is about to give an input. Parties Pj can give
outputs of the form (bid,Pi,m) indicating that they think Pi has broadcast m.

Input: On input (bid,Pi,m) on Casti the IF outputs (bid,Pi,m) on Leak and stores (bid,Pi,m).
Replace: On input (bid,Pi,m) on Replace, where Pi is corrupted the IF stores (bid,Pi,m),

overwriting any previous value of form (bid,Pi, ·).
User Contract: Honest parties must give input according to the following contract.

Synchrony: If in some round any honest party gives an input of the form (bid,Pi, ·), then
in that round all honest parties give an input of the form (bid,Pi, ·).

Unique identifiers: If an honest party is honest then for each bid it gives at most one
input of the form (bid, ·, ·).

Total Breakdown: On input ((bid,Pi,m),Pj) on Deliver at a point in time after the user
contract was broken, output (bid,Pi,m) to Pj .

Ideal Functionality Contract: If the inputs of the honest parties are according to the user
contract, then the IF gives outputs according to the following rule.
Output: If an input of the form (bid,Pi, ·) was input on Castk for an honest Pk in round

r, then in round r + n + 2 rounds, find the stored value (bid,Pi,m). If none is stored,
use m = NoMsg. Then output (bid,Pi,m) on Castj for all honest Pj .

Fig. 2. An ideal functionality Cast for Broadcast.

Here we present a version of the Dolev-Strong protocol suitable for reverse firewalls.
The setup will be that each party gets a signing key. We phrase the protocols and ideal
functionalities in terms of sending values on ports. Send a message m on a port Port
and a party Pi just means sending (Port,m) to Pi. The protocol implements the ideal
functionality in Fig. 2. This IF will broadcast a value in n + 2 rounds. It requires that
all honest users start the protocol in the same round. We model this by allowing the IF
to behave arbitrarily when this user contract is broken. This makes it trivial to simulate
the IF when the user contract is broken: simply ask the IF to output the same (faulty)
messages as the protocol. Hence in the proof of security we can focus on just the case
where the user contract is never broken.

The protocol is given in Fig. 3. The analysis of Dolev-Strong is standard by now, but
we sketch the proof for completeness. Assume that some honest party output (bid,Pi, ·)
in round r. Then by the user contract all honest parties got input (bid,Pi, ·) in round
r − n − 2. Therefore they all output (bid,Pi, ·) in round r. To see that they output the
same m we show that Relayedi(bid,m) = Relayedj(bid,m) for all honest Pi and Pj when
they give output. Namely, if Relayedi(bid,m) = > then it was set to this after seeing
a valid signature set in some round r after input (bid,Pi, ·). Let I be the round where
(bid,Pi, ·) was input. The valid set had size r− 1 and was received in round I+ r. It had
r− 1 signatures from distinct parties and none from Pi, so it had size at most n− 1. So
r ≤ n. Then Pi added its signature and relayed the set. Therefore it is received as a valid
set in the next round by all parties Pj who did not already set Relayedj(bid,m) = >. This
is round at most I + n+ 1. Therefore all honest parties Pj will set Relayedj(bid,m) = >

17

Initialize Party Pi learns the private signing key ski and the public keys of all parties,
(vk1, . . . , vkn). Then it initializes a map Relayedi which is Relayedi(bid,m) = ⊥ for all pos-
sible broadcast identifiers bid and messages m.

Broadcast On input (bid,Pi,m) on Casti compute σi ← Sigski(bid,m), SigSet = {σi}, set
Relayedi(bid,m) = >, and send (bid,Pi,m, SigSet) to all parties.

Relay In round r after input (bid,Pi, ?), if Pj 6= Pi receives a message of form (bid,m, SigSet),
where SigSet is a set of signatures, and if Relayedi(m) = ⊥, proceed as follows. Call SigSet
valid for (bid,Pi,m) in round r if it contains signatures σk from exactly r − 1 distinct
parties Pk such that Vervkk (bid,m, σk) = >. Furthermore, one of these parties has to be Pi
and none of them are Pj . If SigSet is valid, then compute σj ← Sigskj (bid,m), let SigSet′ ←
SigSet ∪ {σj} and send (bid,m, SigSet′) to all parties. Then set Relayedi(bid,m) = >.

Output In round n+ 2 after input (bid,Pi, ?), party Pj computes its output as follows. If there
is exactly one message m such that Relayedi(bid,m) = >, then output (bid,Pi,m) on Castj .
Otherwise, output (bid,Pi,NoMsg) on Castj .

Fig. 3. The Dolev-Strong Protocol, DolevStrong

before round I + n + 2. The honest parties give output in round I + n + 2. Hence
Relayedi(bid,m) = Relayedj(bid,m) for all honest Pi and Pj when they give output.

In Fig. 4 we present a wrapper for party Pi in Dolev-Strong with unique signatures.
We will only treat this case here. The case with randomizable signatures follows by
letting the wrapper randomize the outgoing signatures.

Initialize The wrapper for party Pi learns the public keys of all parties, (vk1, . . . , vkn). Then it
initializes a map Relayedi which is Relayedi(bid,m) = ⊥ for all possible broadcast identifiers
bid and messages m.

Broadcast On input (bid,Pi,m) on Casti it expects Pi in the same round to send
(bid,Pi,m, SigSet), where SigSet = {σi} and Vervki(bid,m, σi) = >. If so, then it lets
(bid,Pi,m, SigSet) pass. Otherwise, output Refusal.

Relay In round r after input (bid,Pi, ?), if Pj 6= Pi receives a message of form (bid,m, SigSet),
where SigSet is a set of signatures, and if Relayedi(m) = ⊥, proceed as follows. Call SigSet
valid for (bid,Pi,m) in round r if it contains signatures σk from exactly r − 1 distinct
parties Pk such that Vervkk (bid,m, σk) = >. Furthermore, one of these parties has to be
Pi and none of them are Pj . If SigSet is valid, then expect Pj in the same round to send
SigSet′ = SigSet∪ {σj} where Vervkj (bid,m, σj) = >. If so, let the message pass. Otherwise,
output Refusal.

Output In round n+2 after input (bid,Pi, ?), the allowed output of Pj is computed as follows. If
there is exactly one message m such that Relayedi(bid,m) = >, then (bid,Pi,m) is expected.
Otherwise, (bid,Pi,NoMsg) is expected. If Pj does not give the expected output on Castj ,
output Refusal. If it gives another output, then drop it and output Deviation.

Deviation If Pi outputs any value not explicitly expected in one of the above rules, drop it
and output Deviation.

Fig. 4. The Dolev-Strong Wrapper Wrap for the case with unique signatures

18

For two programs A and B we use A ≡ B to mean that they give the same outputs
on the same input sequences. The following lemma follows by construction.

Lemma 1. The wrapper Wrap is input-output preserving, i.e., Wrap(Pi) ≡ Pi.

Let P′i be a possibly corrupt implementation of Pi. We call it deviating if it makes
Wrap(P′i) output Deviation. We call it refusing if it makes Wrap(P′i) output Refusal.
We call it covert if it does not make Wrap(P′i) output neither Deviation not Refusal.

The following lemma is also straight forward.

Lemma 2. Assume that DolevStrong is implemented using unique signatures. Let P′i be
a possibly corrupt implementation of Pi. If P′i is covert, then on any input sequence to
Wrap(P′i) there is exactly one message that P′i can send, and it will always send this
message.

Namely, on any input in the Dolev-Strong protocol, the only allowed message consists
of adding a signature on a well-defined message. This signature is either sent or added
to a valid set. The message is known by the wrapper. Since signatures are unique, this
leaves one possible message P′i can send. It will send it, as it is not refusing. It will not
send other messages, as it is not deviating.

Putting the above together we get the following theorem.

Theorem 2. Assume that DolevStrong is implemented using unique signatures. Let P′i
be a possibly corrupt implementation of Pi. If P′i is covert, then Wrap(P′i) ≡ Pi.

Namely, by the second lemma we have that Wrap(P′i) ≡ Wrap(Pi). By the first lemma
we have that Wrap(Pi) ≡ Pi. And ≡ is transitive.

5.1 A Compiler for Reverse Firewalls for the Broadcast Model

We now describe how to take a reverse firewall R for a protocol π for the Cast-hybrid
model and make it into a reverse firewall R′ for the protocol π′ = π[DolevStrong/Cast]
which uses Dolev-Strong for broadcast. Let Qi be the i’th party in π. Let Pi be the i
party in DolevStrong. Let Ri be the i’th party in π′. Then Ri consists of Qi and Pi. The
reverse firewall R′ is composed of R and Wrap. We apply the reverse firewall R′ to Ri as
follows. Apply R to Qi. Whenever R lets Qi broadcast a message (bid,Pi,m), input it
to Wrap(Pi) on Casti. Then send only message that are allowed by Wrap(Pi) and send
all in-coming trafic to Wrap(Pi). If Wrap(Pi) outputs (bid,Pi,m) on Castj then give it
to R(Qi).

6 Actively secure MPC protocols using Reverse Firewalls

In this section, we present a construction of multi-party computation (MPC) protocol
secure against malicious adversaries in the setting of reverse firewalls. As mentioned
above, we only consider computationally-secure MPC protocols. The starting point of
our construction is the actively-secure MPC protocol of Goldreich, Micali and Wigderson

19

[18, 17] (henceforth referred to as the GMW protocol). Their methodology works by first
presenting a MPC protocol secure against semi-honest adversaries, and then compiling it
into a protocol secure against malicious adversaries. The resulting actively secure GMW
protocol can tolerate a corruption of up to n − 1 parties, where n is the number of
parties participating in the protocol. We begin with an informal exposition of the GMW
compiler.

Informal description of the GMW compiler. As mentioned before, the GMW
protocol [18, 17] first constructs a semi-honest MPC protocol, and then compiles it to one
which is secure against malicious adversaries. Recall that, in the semi-honest protocol
all the parties follow the protocol specification exactly. However, in the malicious model,
the parties may deviate arbitrarily from the protocol. The way that the GMW protocol
achieves security against malicious adversaries is by somehow enforcing the parties to
behave in a semi-honest manner. However, this only makes sense relative to a given input
and a random tape. The GMW protocol achieves this in the following way:

• All the parties first commit to their inputs by running a multi-party input commit-
ment protocol. Note that, before the protocol starts each party may replace their
given inputs with arbitrary bit strings. However, the security of this protocol guar-
antees that, once they commit to their inputs, it cannot be changed afterwards during
the course of execution of the protocol.

• The parties run an actively-secure multi-party (augmented) coin tossing protocol to
fix their random tapes (to be used in the actual MPC protocol). This protocol ensures
that all the parties have a uniformly random tape.

• After these first two steps, each party holds its own uniformly random tape, and
the commitments to other party’s inputs and random tapes. Hence, the parties can
now be forced to behave properly in the following way: the view of each party in
the MPC protocol is simply a deterministic function of its own input, random tape
and the (public/broadcast) messages received so far in the protocol. Hence, when a
party sends a new message it also proves in zero-knowledge that the computation
was correctly done, as per the protocol specification. The soundness of the proof
system guarantees that even a malicious adversary cannot deviate from the protocol,
while the zero-knowledge property ensures that nothing other than the validity of
each computational step is revealed to the adversary. This phase is also called the
protocol emulation phase.

When we consider the actively-secure GMW protocol in the reverse firewall settings,
we must ensure that the above-mentioned protocols remain functional and secure in
the setting of reverse firewalls. Hence, we need to design reverse firewalls for each of
the three main protocols (as discussed above) used in the GMW compiler. Finally, to
enable the working of the compiler, we need to show that the reverse firewalls for each of
these protocols compose together. To this end, we first propose a multi-party augmented
coin-tossing protocol with reduced round-complexity (see section 6.1) by appropriately
extending the two-party coin-tossing protocol of Lindell [23]. We then present a reverse
firewall for this multi-party coin-tossing protocol in section 6.2. In sections 6.3 and 6.4,

20

we present reverse firewalls for the multi-party input commitment and the multi-party
authenticated computation protocols.

6.1 Multi-party Augmented Coin-Tossing into the Well

The multi-party augmented coin tossing protocol is used to generate random pads for
all the parties participating in an actively secure multi-party computation protocol.
Each party obtains the bits of the random-pad to be held by it, whereas the other
parties obtains commitments to these bits. These random pads serve as the random
coins of the corresponding parties to emulate the semi-honest MPC protocol. Intuitively,
this multi-party coin-tossing functionality guarantees that, at the end of this protocol
the malicious parties can either abort or they end up with a uniformly distributed
random pad. However, the original coin-tossing protocol of GMW [18, 17] was rather
inefficient in terms of round complexity. This is because the protocol of [18, 17] required
polynomially many rounds to generate a polynomially long random pad, since single
coins were tossed sequentially in each round. Later, Lindell [23] showed a constant round
two-party protocol for augmented parallel coin-tossing into the well using a “commit-
and-proof” framework. In Fig. 5, we extend the protocol of [23] in the multi-party setting
with round-complexity only 35 and achieving a comparable level of security as in [23].
In section 6.2, we present a reverse firewall for our multiparty augmented coin-tossing
protocol.

In our case, we slightly modify the augmented coin-tossing functionality [18, 17, 23]
to fit the framework of reverse firewalls. In particular, in the traditional augmented
coin-tossing functionality, the initiating party receives a tuple (x, r) and all other parties
receive a commitment com(x; r) of the same tuple, for a statistically/perfectly hiding
(and computationally binding) commitment scheme. Looking ahead, the value x would
serve as the random coins of the initiating party in the protocol. For our purpose, we
change the above functionality as follows: The initiating party receives a tuple (x, r)
and all other parties receive a commitment com(x; r′) for a potentially different r′. This
means that, all the other parties still receive a commitment of the same random coin x
but potentially under different randomness. Intuitively, this is needed for the following
reason: When the initiating party is corrupted in a functionality-maintaining way, it
might sample the randomness r used in the commitment com(x; r) in a malicious way.
This might act as a channel to exfiltrate sensitive information to other parties. Hence, the
firewall (of the initiating party) should re-randomize the commitment string to thwart
this attack vector.

For our firewalled augmented coin-tossing into the well protocol, we additionally
need the commitment scheme com to be additively homomorphic (other than being
statistically/perfectly hiding (and computationally binding)), and also require the NIZK

5 Although the protocol of Lindell [23] is constant round, its round-complexity is greater than 4 due
to the use of (constant-round) zero-knowledge proofs. We use NIZK arguments in a natural way to
shrink the round-complexity of the protocol to 3, albeit introducing a trusted setup assumption, as
required for NIZK protocols.

21

argument system to be controlled-malleable simulation-sound extractable with respect
to the above homomorphic operation.

Definition 12 (Multi-party Augmented Parallel Coin-Tossing into the Well).
An n-party augmented coin-tossing into the well protocol is an n-party protocol for
securely computing the following functionality with respect to a fixed commitment scheme
{Gλ,Kλ, comλ}λ∈N,

(1λ, · · · , 1λ)→
(
(Ut, Ut·λ), comλ(Ut;U

′
t·λ), · · · , comλ(Ut;U

′
t·λ)
)

(1)

where Um denotes the uniform distribution over m-bit strings, and we assume that com
requires λ random bits to commit to each bit. Note that the string U ′t·λ maybe different
from the string Ut·λ.

Thus, all the parties other than the one who initiates the protocol receive a commitment
to a uniformly random t bit string, and the committing/initiating party receives the
random string and a decommitment to it. In the final compiler, the t bit strings will
be used as random pads for the parties and the decommitment value is used to provide
consistency checks for each step of the protocol (via (non-interactive) zero-knowledge
proof).

W.l.o.g, we denote some party Pi (i ∈ [n]) to be the initializing party in the protocol
below (see Fig. 5), and all the other parties Pj (where j ∈ [n] \ i) receive a commitment
to the random string of Pi. In the final MPC protocol, each party will need to run an
independent instance of the multi-party coin-tossing protocol shown below.

Let {Gλ,Kλ, comλ}λ∈N be a statistically/perfectly hiding and computationally binding commitment scheme. Also,
let (CRSGen,P,V) be a strong simulation-extractable non-interactive zero-knowledge (SSE-NIZK) argument system
for the following language: L = {c, (x, y) | c = comλ(x; y)}.
Inputs: Each party gets as input the security parameter 1λ.
Convention: As mentioned above, we denote the initializing party in each round by party Pi. Any deviation from
the protocol, by a party other than Party Pi, will be interpreted as a canonical legitimate message. In case Pi
aborts or is detected cheating, all honest parties halt outputting the special symbol ⊥.

(i) Party Pi chooses a random string si ∈R {0, 1}m. It then computes ci = comλ(si; ri) for a random ri using
a computationally binding commitment scheme. Pi then computes a proof πi ← P(σcrs, ci, (si, ri)) using the
SSE-NIZK argument system. Pi then places the tuple (ci, πi) on the broadcast channel. In case the proof πi
does not verify with respect to ci, all the parties abort with output ⊥.

(ii) For j ∈ [n] \ i, party Pj selects sj ∈R {0, 1}m and places sj on the broadcast channel.

(iii) Party Pi sets s = si ⊕j∈[n]\i sj , and computes y = comλ(s; r′i), for a random r′i. Pi then proves in zero-
knowledge that there exists a tuple (si, ri, r

′
i) such that ci = comλ(si; ri) and y = comλ(si ⊕j∈[n]\i sj ; r′i). It

then places the tuple (y, π) on the broadcast channel. As before, if the proof π does not verify with respect to
(ci, y), all the parties abort with output ⊥.

Outputs: Party Pi sets its local output to (s, r′i) and all the other parties set their local output to be y, provided
they did not halt with output ⊥ before.

Fig. 5. Multi-party Augmented Parallel Coin-Tossing into the Well.

22

Theorem 3. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally binding
commitment scheme. Also, let (CRSGen,P,V,ZKEval) be a strong simulation-extractable
non-interactive zero-knowledge argument system for the language defined in Fig. 5. Then
the protocol shown in Fig. 5 is a secure protocol for multi-party augmented coin-tossing
into the well.

The proof of this theorem is a straightforward generalization of the proof of the two-party
coin-tossing protocol of [23] to the multi-party setting.

6.2 Multi-party Augmented Coin-Tossing using Reverse Firewalls.

In this section, we present a cryptographic reverse firewall (CRF) for the multi-party
augmented parallel coin-tossing protocol, as shown in Fig. 6. We present a single reverse
firewall W1 for this protocol that happens to work for all the honest parties. However,
each of the honest parties involved in the coin-tossing protocol should be equipped with
their own CRF. It so happens that the “code” of the firewall is the same for all these
parties.

Main Idea. The main idea underlying the multi-party coin-tossing protocol from Fig. 5
involves a “commit-and-proof ” framework. Here, party Pi initially commits to a random
m-bit string si and proves in zero-knowledge about the consistency of the committed
value. Each of the other parties Pj (j ∈ [n] \ i) then sends a random m-bit string sj
to Pi, and the final m-bit string s is then set as the exclusive OR of all these strings.
Finally Pi commits to s and proves in zero-knowledge about the consistency of both the
initial and this final commitment.

However, in reality a tampered implementation of Pi might use a commitment scheme
that leaks some information about si to an eavesdropper. The committed value might also
act as a subliminal channel to leak some of its secrets (or inputs) to the other parties or
to an eavesdropper. Similarly, a tampered implementation of a party Pj might also open
up the possibility to leak m-bit of its input (or other secrets) to Pi or to the eavesdropper.
Thus, it is desirable that the CRF resists exfiltration and also preserves security, even in
the face of such a compromise. Fig. 6 shows the design of the reverse firewall for the multi-
party augmented parallel coin-tossing protocol. For constructing the reverse firewall for
the above protocol, we require the underlying commitment scheme and the NIZK proof
system to be malleable (with respect to some predefined relation) and re-randomizable.
For our application, we require that the commitment to any m-bit string s can be mauled
to a commitment of a related but random m-bit string ŝ = s ⊕ s′, for any uniformly
random string s′. We also require the commitment scheme to be re-randomizable, so
that the randomness used to commit to a string cannot leak any information about
the committed element. We show how to achieve both these properties of malleability
and re-randomizability by assuming that the underlying commitment scheme com is
homomorphic (with respect to an appropriate relation).

Our main idea is that the CRF mauls and re-randomizes the initial commitment it
receives from Pi using the homomorphic properties of com. However, at this point the

23

Protocol: Multi-party Augmented Parallel Coin-Tossing into the Well using CRF W1.

Let (G,K, com) be a perfectly hiding and computationally binding commitment scheme, and
(CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable cm-NIZK argument system (see Def 3). Assume
that Pi is the initiating party.

Party Pi Firewall Parties {Pj}j∈[n]\i

Compute (ci, πi),

Broadcast the tuple (ci, πi)

(ci,πi)−−−−−→
Do the following:

1. Sample s′i ∈R {0, 1}m and r′i ∈ R
2. Compute c′i = comλ(s′i; r

′
i),

3. Compute ĉi = ci + c′i,

4. Define Tx(ci) = ĉi = ci + c′i,

5. Compute π̂i ← ZKEval′
(
σcrs, Tx, (ci, πi)

)
,

where ZKEval′ = RandProof ◦ ZKEval
(ĉi,π̂i)−−−−−→

{s1,··· ,si−1,si+1,··· ,sn}←−−−−−−−−−−−−−−−−
6. For any j ∈ [n] \ i, if sj /∈ {0, 1}m,

sample sj
$←− {0, 1}m.

7. Sample {s(j)i }j∈[n]\i
$←− {0, 1}m,

such that ⊕js(j)i = s′i.

8. ∀j ∈ [n] \ i, compute ŝj = sj ⊕ s(j)i .
{ŝ1,··· ,ŝi−1,ŝi+1,··· ,ŝn}←−−−−−−−−−−−−−−−−

(y,π)−−−−−→
9. Sample r′′i ∈ R, and compute c′′i = comλ(0; r′′i),

10. Compute ŷ = y + c′′i ,

11. Define T ′x(ci, (ŝ1, · · · , ŝi−1, ŝi+1, . . . , ŝn), y) = (ĉi, (s1, · · · , si−1, si+1, . . . , sn), ŷ)

12. Compute π̂ ← ZKEval′(σcrs, T
′
x, (ci, (ŝ1, · · · , ŝi−1, ŝi+1, . . . , ŝn), y), π)

(ŷ,π̂)−−−−−−−→

Fig. 6. Reverse firewall W1 for the parties involved in the protocol from Fig. 5.

proof πi given by Pi (that proves consistency of the initial commitment value) will no
longer be valid with respect to the mauled commitment. Hence, the CRF also needs to
maul the proof in such a way that the mauled proof is consistent with the mauled state-
ment (i.,e the commitment). At first thought, it seems that the CRF cannot produce
such a proof, since it does not know the witness corresponding to the original state-
ment (i.e., the committed string and the randomness used for commitment) and hence,
also has no knowledge of the mauled witness (witness resulting from mauling the state-
ment/commitment). Fortunately, as we show, the CRF can still maul the proof πi without
actually knowing the mauled witness, thanks to the availability of the public evaluation
algorithm ZKEval of the underlying controlled-malleable simulation-extractable NIZK
argument system. The mauled proof is then further re-randomized using the algorithm
RandProof, so that the randomness used in the proof does not reveal any information

24

about the witness. Finally, the resulting proof looks like a fresh proof corresponding to
the mauled statement. The firewall then places the mauled commitment-proof pair on
the broadcast channel. When any other party Pj sends a string sj , the CRF checks if
the string is indeed a m-bit string. If not, it chooses a random m-bit string on behalf of
Pj . It then computes a (n − 1)-out-of-(n − 1) secret sharing of the initial offset string
s′i chosen by the CRF at the beginning (used to maul the initial commitment) and re-
randomizes all the received strings by adding the shares to them. At this point, another
technical difficulty arises: the views of party Pi and all other parties in the protocol are
inconsistent due to the above mauling by the CRF. However, as we show, the CRF can
again appropriately maul the transcript (which will be treated as a statement in the
final NIZK proof) so that at the end all the parties arrive at a consistent view of the
protocol. The design of the reverse firewall (see Fig. 6) is now described in details:

1. The CRFW1 receives a commitment-proof pair (ci, πi) from party Pi. Let us assume
that ci is a commitment to some m-but string si (may not be random). It then does
the following:

• Sample another random m-bit string s′i ∈R {0, 1}m and a randomizer r′i ∈R R
for the commitment scheme com.
• Compute c′i = comλ(s′i, r

′
i) and then homomorphically compute the mauled com-

mitment ĉi = ci + c′i.
• Define the transformation Tx(ci) = ĉi = ci + c′i.
• Derive a proof for the transformed statement as: π̂i ← RandProof ◦ ZKEval(

σcrs, Tx, (ci, πi)
)
. Note that, the proof π̂i is consistent with the mauled com-

mitment ĉi.
• The firewall then places the tuple (ĉi, π̂i) on the broadcast channel.

2. On receiving the strings sj from party Pj (j ∈ [n]\i), the CRF checks if sj ∈ {0, 1}m.
If not, then it chooses a random string sj ∈ {0, 1}m. It then computes a (n− 1)-out-

of-(n−1) xor secret sharing of the string s′i, i.e., it samples random strings s
(j)
i , such

that ⊕js(j)
i = s′i. Then, for all j ∈ [n] \ i, it computes ŝj = sj ⊕ s(j)

i . It then forwards
the tuple {ŝ1, · · · , ŝi−1, ŝi+1, · · · , ŝn} to party Pi.

3. Receive the tuple (y, π) from Pi. Note that, the proof π will not be consistent with
the view of the other parties {Pj}j∈[n]\i, since the common input (or statement) for
Pj will be different from the input of party Pi. In particular, the (public) input for
Pi is the tuple (ci, ŝ1, · · · , ŝi−1, ŝi+1, · · · , ŝn), while the (public) input for the parties
Pj is the tuple (ĉi, s1, · · · , si−1, si+1, · · · , sn). The CRF then does the following:

• Sample r′′i ∈R R, and compute c′′i = comλ(0; r′′i). Then, it homomorphically
computes the re-randomized commitment ŷ = y + c′′i .
• Define the following transformation:

T ′x(ci, (ŝ1, · · · , ŝi−1, ŝi+1, · · · , ŝn), y) = (ĉi, (s1, · · · , si−1, si+1, · · · , sn), ŷ).

Note that, this is efficiently computable, given the knowledge of the strings

{s(j)
i }j∈[n]\i.

25

• Compute the proof π̂ as follows:
π̂ ← RandProof ◦ ZKEval

(
σcrs, T

′
x, (ci, (ŝ1, · · · , ŝi−1, ŝi+1, · · · , ŝn), y), π

)
. Broad-

cast the tuple (ŷ, π̂) to all the parties Pj . Note that, the proof π̂ is now consistent
with the statement (ĉi, s1, · · · , si−1, si+1, · · · , sn).

Theorem 4. The reverse firewall W1 for augmented multi-party coin-tossing shown
in Fig. 6 is functionality-maintaining. If the commitment scheme com is computa-
tionally binding and is homomorphic with respect to the (addition) operation defined
over the underlying groups (i.e, the message space, randomness space and the commit-
ment space of com) and the NIZK argument system is controlled-malleable simulation-
sound extractable, then the firewall W1 preserves security for party Pj and is weakly
exfiltration-resistant against the other parties {Pj}j∈[n]\i. If the commitment scheme is
perfectly/statistically hiding and homomorphic as above and the NIZK argument system
also satisfies the same property as above, W1 strongly preserves security for the parties
{Pj}j∈[n]\i and is strongly exfiltration-resistant against Pi. The firewall W1 also detects
failures for all the parties.

Proof. First, we will show that the reverse firewall shown in Fig. 6 is functionality
maintaining. If the parties are honest, the output view of all these parties are con-
sistent. In particular, the output of party Pi is: ŝ = si ⊕ (ŝ1, · · · , ŝi−1, ŝi+1, · · · , ŝn) =
(si⊕ s′i)⊕j∈[n]\i sj . The output of Pi is a commitment y to the m-bit string ŝ. Even if all
the strings si and (s1, · · · , si−1, si+1, · · · , sn) are not random, the resultant m-bit string ŝ
is indeed random. Hence, at the end party Pi ends up with a random pad, while the other
parties receives a commitment to the string. This shows that the CRF is functionality-
maintaining. We now proceed to show that the reverse firewall for Pi preserves security
and exfiltration-resistance against the other parties {Pj}j∈[n]\i. Note that, the homomor-
phically evaluated commitment ĉi is independent of the original commitment ci. This is
because the firewall chooses an independent m-bit string s′i and randomness r′i to ho-
momorphically evaluate the original (potentially malicious) commitment string ci. The
proof πi is also appropriately mauled so that the mauled proof π̂i is consistent with the
mauled commitment ĉi. The mauled proof is further re-randomized using the algorithm
RandProof. Hence, by the derivation-privacy of the proof of the NIZK argument system
(see Thm. 1), the mauled proof π̂i looks indistinguishable from a fresh proof of the com-
mitment ĉi. Hence, the firewall sanitizes the messages sent across by Pi, even though the
implementation of Pi may be corrupt. Since, Pi is functionality maintaining, his second
message is fixed, unless he can find an alternate opening for ci, which by definition of
binding is computationally hard. Hence, it follows that the reverse firewall for party Pi
is weakly exfiltration-resistant for Pi against all the other parties Pj and also preserves
security for Pi. To prove strong exfiltration-resistance for any party Pj against party Pi
and strong security preservation for Pj , one should note that the mauled commitment is
a uniformly random commitment to a uniformly random m-bit string. Since, the com-
mitment scheme com is perfectly (statistically) hiding, it is (statistically) independent
of the string sj chosen by the party Pj . The firewall mauls all the the strings {sj}j∈[n]\i
by adding a share of the random offset s′i to each sj (using (n− 1)-out-of-(n− 1) secret

26

sharing of s′i), and hence the final m-bit string of party Pi is random, irrespective of how
the strings sj were chosen.

6.3 Multi-party Input Commitment phase using Reverse Firewalls

In this step, each party commits to its input to be used in the protocol. Similar to the
augmented coin-tossing functionality (see Def. 12), we slightly modify the multi-party
input commitment functionality to fit the framework of reverse firewalls. In particular, in
the traditional multi-party input commitment functionality, the initiating party receives
a tuple (x, r) and all other parties receive a commitment com(x; r) of the same tuple,
for a statistically/perfectly hiding (and computationally binding) commitment scheme.
Looking ahead, the value x would serve as the input of the initiating party in the proto-
col. For our purpose, we change the above functionality as follows: The initiating party
receives a tuple (x, r) and all other parties receive a commitment com(x; r′) for a poten-
tially different r′. This means that, all the other parties still receive a commitment of
the same random coin x but potentially under different randomness. More formally, the
parties execute a secure protocol for the following functionality:

Definition 13 (Multi-party Input Commitment). An n-party input commitment
protocol is an n-party protocol for securely computing the following functionality with
respect to a fixed commitment scheme {Gλ,Kλ, comλ}λ∈N,(

(x, U`·λ), 1λ, · · · , 1λ
)
→
(
λ, comλ(x;U ′`·λ), · · · , comλ(x;U ′`·λ)

)
. (2)

where x ∈ {0, 1}` is the input string of the party, Um denotes the uniform distribution
over m-bit strings, and we assume that com requires λ random bits to commit to each
bit of x. Note that the string U ′`·λ may be different from the string U`·λ.

In the input commitment phase, each party P first chooses a random string x and
commits to x using randomness r to generate the commitment C. It also generates a
proof π using a simulation-extractable non-interactive zero-knowledge argument system
that it knows a witness (i.,e, the tuple (x, r)) corresponding to the commitment C.
Finally, party Pi places the pair (C, π) on the broadcast channel. Next, we present a
reverse firewall W2 for the above protocol, as shown in Figure 7. As before, we assume
that Pi is the initiating party.

The main idea of the working of the reverse firewall W2 is very simple (see Fig.
6). The CRF simply re-randomizes the commitment Ci and the proof Πi received from
party Pi. The way the CRF re-randomizes the commitment Ci is by homomorphically
adding to it a fresh commitment of the all zero string. To make the proof consistent
with the mauled commitment, the firewall also mauls the NIZK proof using the public
evaluation algorithm ZKEval of the underlying cm-NIZK argument system, and then
re-randomizes the proof using the RandProof algorithm. The CRF then broadcasts the
mauled commitment and the mauled proof.

27

Protocol: Multi-party Input-commitment using CRF W2.

Let (G,K, com) be a perfectly hiding and computationally binding commitment scheme (see Def. 2),
and (CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable cm-NIZK argument system (see Def 3)
for the following language: L = {C, (x, y) |C = comλ(x; y)}.

Party Pi Firewall Party {Pj}j∈[n]\i

Compute (Ci, Πi),

Broadcast the tuple (Ci, Πi)

(Ci,Πi)−−−−−−−→
Do the following:

1. Sample ri ∈ R and

2. Compute Ci = comλ(0m; ri),

3. Compute Ĉi = Ci + Ci,

4. Define T (Ci) = Ĉi = Ci + Ci,

5. Compute Π̂i ← ZKEval′(σcrs, T, Ci, Πi)

where ZKEval′ = RandProof ◦ ZKEval
(Ĉi,Π̂i)−−−−−−−→

Fig. 7. Reverse Firewall W2 for the Multi-party Input commitment protocol

Theorem 5. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally binding
commitment scheme. Also, let (CRSGen,P,V,ZKEval) be a simulation-extractable non-
interactive zero-knowledge argument system for the language L = {C | C = comλ(x; y)}.
Then the protocol in Figure 7 securely computes the functionality presented in Eq. 2. The
reverse firewall W2 shown in Figure 7 is functionality-maintaining and detects failure
for party Pi. If the commitment scheme com is perfectly hiding, computationally binding
and homomorphic with respect to the (addition) operation defined over the underlying
groups (i.e, the message space, randomness space and the commitment space of com); the
NIZK argument system is re-randomizable and simulation-sound extractable, then the
reverse firewall W2 preserves security for party Pi and is exfiltration-resistant against
the other parties {Pj}j∈[n]\i.

Proof. The proof that the underlying protocol is secure follows in a straightforward
manner from the proof of the input commitment functionality, as presented in [17]. The
only difference is that, instead of using a strong NIZK proof of knowledge (in the plain
model), we use a cm-NIZK in the CRS model. However, this change is purely an efficiency
concern and in no way impacts the security of the protocol. It is also clear that the
firewall maintains functionality and fails detectably for party Pi. The re-randomizability
property of the commitment scheme com guarantees that Ĉi is indistinguishable from
a fresh commitment. Similarly, the derivation privacy property of the of the cm-NIZK
argument system guarantees that the mauled proof Π̂i is indistinguishable from a fresh
and honest proof on the statement Ĉi by the party Pi (using the appropriate mauled

28

witness). Hence, the firewall W2 preserves security for Pi and resists exfiltration for Pi
against the other parties {Pj}j∈[n]\i. ut

6.4 Multi-party Authenticated Computation Protocol using Reverse
Firewalls

Let f, h : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be polynomial-time computable. The goal of this
protocol is to force the initializing party Pi to compute f(α, β), where β is known to
all the parties, α is known only to Pi, and h(α, r) (where h is one-to-one function) is
known to all the parties, where r is known only to party Pi. Here f captures the desired
computation. Similar to the augmented coin-tossing functionality and the multi-party
input commitment functionality (see Def. 12 and Def. 13), we slightly modify the multi-
party authenticated computation functionality to fit the framework of reverse firewalls.
In particular, we require that the function h is a one-to-one additively homomorphic
function. Further, instead of receiving h(α, r), all parties in this modified protocol will
receive h(α, r̂), where r̂ is different from r with overwhelming probability.

Looking ahead, in the actual protocol the random variable α is set to be the con-
catenation of the party’s original input and its’ random tape (obtained as output of
the augmented coin-tossing protocol), r is set to be the concatenations of the random-
ness used in generating the commitments in the multi-party augmented coin-tossing
and multi-party input commitment protocols, and h(α, r) denote the concatenations of
the commitments themselves from the coin-tossing and input commitment protocols.
However, since the final commitments in the augmented coin-tossing and input com-
mitment protocols are re-randomized by the reverse firewall, the parties receive some
other value h(α, r̂) (instead of h(α, r)). However, the reverse firewall can use its internal
state (from the previous augmented coin-tossing and input commitment protocols) to
compute h(α, r̂) from the value h(α, r) using the additive homomorphic property of the
function h. In particular, the parties execute this protocol for computing the following
functionality:(

(α, r, β), (h(α, r̂), β), · · · , (h(α, r̂), β)
)
→
(
λ, f(α, β), · · · , f(α, β)

)
. (3)

The Construction. The multi-party authenticated computation protocol is run by
all the parties after executing the multi-party input commitment and the multi-party
(augmented) coin-tossing protocols. Hence, at this point, the inputs and the random
tapes of all the parties are fixed. Other than its own input and the random tape (along
with other decommitment values/randomnesses), each party also holds the commitment
to all the other parties input and random tapes. We now just briefly recall the multi-
party authenticated computation protocol. We follow the protocol as stated in [17],
except that we use cm-NIZK argument systems instead of strong zero-knowledge proof
of knowledge (as in [17]). The use of NIZK arguments naturally makes the protocol
constant-round, albeit with a setup assumption. Assume that the party Pi is the initiating
party in a particular run of this protocol. The input to Pi is the tuple (α, r, β), while the
common input to all the parties is (û, β), where û = h(α, r̂), and r̂ is different from r
with overwhleming probability. Party Pi then computes the desired functionality f(α, β)

29

Protocol: Multi-party Authenticated Computation Protocol using CRF W3.

Let f, h : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be two-argument functions, and let h be a one-one additively
homomorphic function.
Input to Pi: (α, r, β).
Common input for all the parties: (û, β), where û = h(α, r̂). Also, let us denote by u the value u =
h(α, r). Note that, the firewall W3 possesses internal state st (st precisely consists of the randomnesses
r′′i (see Fig. 6) and ri (see Fig. 7) sampled in the augmented coin-tossing protocol and input commitment
protocol respectively) to transform u to û.
Let (CRSGen,P,V,RandProof,ZKEval)) be a re-randomizable cm-NIZK argument system (see Def 3) for
the following language: L = {(u, v, f, h), (α, r) |u = h(α, r) ∧ v = f(α, β)}.

Party Pi Firewall Party {Pj}j∈[n]\i

Compute (v,Π), Stores st

Broadcast the tuple (v,Π)

(v,Π)−−−−−−−→
Do the following:

Compute û = h(α, r̂) from u using st.
Define T (u) = û.

Compute Π̂ ← ZKEval′(σcrs, (u, T, v, f, h), Π)
where ZKEval′ = RandProof ◦ ZKEval

(v,Π̂)−−−−−−−→

Fig. 8. Reverse Firewall W3 for the Multi-party authenticated computation protocol

and invokes a cm-NIZK argument system to generate a proof Π corresponding to the
following language: L = {

(
(u, v, f, h), (α, r)

)
|
(
(u = h(α, r)) ∧ (v = f(α, β))

)
}. It then

broadcasts the tuple (v,Π). In case the proof does not verify, all the parties abort and
output ⊥.

We now discuss the design of the reverse firewall W3 for this protocol. We assume
that the party Pi is tampered in a functionality-maintaining way. The idea for the design
of the CRF is very simple: the CRF possesses state st used to transform u to the value û.
It then mauls the proof Π using the cm-NIZK and also re-randomizes the mauled proof.
Note that, the value v = f(α, β) given by Pi should be correctly computed. This follows
from the fact that party P ′is input and random coins are fixed, and it is corrupted in a
functionality-maintaining way. The design of the CRF is shown in Fig. 8.

Theorem 6. Let {Gλ,Kλ, comλ}λ∈N be a perfectly hiding and computationally binding
commitment scheme. Also, let (CRSGen,P,V,ZKEval) be a strong simulation-extractable
non-interactive zero-knowledge argument system for the language L shown in Figure 8.
Then the protocol in Figure 8 securely computes the functionality presented in Eq. 3. The
reverse firewallW3 shown in Figure 8 is functionality-maintaining and detects failure for
party Pi. If the commitment scheme com is perfectly hiding and computationally bind-
ing; the NIZK argument system is re-randomizable and simulation-sound extractable,
then the reverse firewall W3 preserves security for party Pi and is exfiltration-resistance
against the other parties {Pj}j∈[n]\i.

30

Proof. The proof that the underlying protocol is secure follows from the proof of the
protocol executing the authenticated computation functionality, as presented in [17]. The
only difference compared to [17] is that we use a cm-NIZK, instead of a strong NIZK proof
of knowledge. It is also clear that the firewall maintains functionality and fails detectably
for party Pi. Consider a functionality-maintaining tampered implementation of party
Pi, i.e, P̃i, and let (v,Π) be the output of P̃i. Since P̃i is functionality-maintaining, the
value v should be correctly computed, and the NIZK proof Π should also comply to the
fact that the computational is consistent. However, the proof Π is not consistent with
the value û = h(α; r̂) stoted by the other parties. Hence, the firewall mauls the proof
appropriately, re-randomizes the proof and outputs the mauled proof Π̂. The derivation
privacy of cm-NIZK implies that the proof Π̂ is indistinguishable from a fresh proof
using the mauled witnesses. Hence, the security preservation and exfiltration-resistance
follows. ut

6.5 The Final Compiler

We now present the final compiler which transforms any semi-honest MPC protocol Π
into a protocol Π ′ which is secure in the malicious model in the setting of reverse fire-
walls. We assume the existence of a single broadcast channel. The specification of our
compiler is similar to that presented in [17]; however, adjusted to the reverse firewall
setting. In particular, we present a reverse firewall W∗ for the final MPC protocol Π ′.
As we show, this firewallW∗ can be seen as consisting of three sub-firewallsW1,W2 and
W3 corresponding to the three sub-protocols or building blocks used in the compiler,
namely, input commitment, (augmented) coin-tossing, and the authenticated computa-
tion protocols respectively. We then present a generic composition theorem for reverse
firewalls and show that the compiled protocol Π ′ is secure in the presence of the reverse
firewall W∗.

The Construction. LetΠ be a given n-party MPC protocol, secure in the semi-honest
model. We compile the protocolΠ into another protocolΠ ′ in the reverse firewall setting
using the building blocks we have developed so far. The specification of the protocol Π ′

follows:

Inputs. Party Pi gets input xi = xi1x
i
2 · · ·xi` ∈ {0, 1}`.

Input Commitment phase using reverse firewalls. Each of the n parties commits
to their `-bit input string using a secure implementation of the multi-party input com-
mitment functionality (see Eq. 2) using reverse firewall W1, as presented in Fig. 7. That
is, for all j ∈ [n], party Pj selects rj ∈ {0, 1}` and invokes a secure implementation of
the multi-party input commitment protocol using reverse firewall W1, playing the role
of the (initializing) party Pi with input (xj , rj). The other parties play the role of other
parties {Pk}k∈[n]\i of Fig. 7 with input 1λ, and obtain the output comλ(xj ; rj). Party i
records rj , and the other parties record comλ(xj ; rj).

Coin-generation phase. Each of the n parties run a secure implementation of the
multi-party augmented parallel coin-tossing functionality (see Eq. 1) using reverse fire-

31

wallW2, as presented in Fig. 6. This protocol is run by each party to generate a random
pad of length t for emulation of the corresponding party in the semi-honest MPC proto-
col Π. The other parties obtain a commitment of the random tape of that party. That
is, for all j ∈ [n], party Pj invokes a secure implementation of the multi-party augmented
parallel coin-tossing protocol using reverse firewall W2 (see Fig. 6), playing the role of
party Pi with input 1λ. The other parties play the role of parties {Pk}k∈[n]\j of Fig. 6.

Party Pj obtains a pair (sj , ωj), where sj ∈ {0, 1}t and ωj ∈ {0, 1}t·λ. The other parties
obtain the commitment comλ(sj ;ωj

′
), where ωj

′
may be different from the string ωj .

Party Pj records (sj , ωj), and the other parties record comλ(sj ;ωj
′
).

Protocol emulation phase. Each of the n parties run a secure implementation of the
multi-party authenticated computation functionality (see Eq. 3) using reverse firewall
W3 as presented in Fig. 8. The party which is supposed to send a message plays the role
of party Pi in Eq. 3 and all the other parties play the role of other parties {Pk}k∈[n]\i.
The variables α, β, r, and the functions h, f of the protocol are set as follows. The string
α is set to be the concatenations of the party’s original input and its’ random tape.
The string r is set to be the concatenations of all the randomnesses used to generate the
commitments, and h(α, r̂) is set to be the concatenations of the commitments themselves
as received by the other parties (note that r̂ will be different from r with overwhelming
probability).

α = (xi, si), where xi = xi1x
i
2 · · ·xi`, and si ∈ {0, 1}t,

r =
(
ri, ωi

)
, where ri ∈ {0, 1}`·λ, ωi ∈ {0, 1}t·λ,

h(α, r̂) =
(
comλ(xi; ri

′′
), comλ(si;ωi)

)
The string β is set to be the concatenation of all previous messages sent by other

parties over the broadcast channel. Finally, the function f is set to be the next message
function, i.e, the computation that determines the next message to be sent by Pi in Π.
The message can be thought of as a deterministic polynomial-time computable function
of the party’s input, it’s random pad and the messages received so far.

Aborting. We denote the composed firewall for the compiled protocol as W∗. The
reverse firewall W∗ is composed of three sub-firewalls W1, W2 and W3 corresponding to
the three sub-protocols or building blocks as mentioned above. In case, any of these sub-
firewalls fails detectably, the firewallW∗ for the larger protocol also aborts the execution
and outputs ⊥. Else, the outputs are as follows:

Output. At the end of the protocol emulation phase, each party holds locally its output
value. The parties simply output their respective values.

The composition theorem below shows that the final compiled protocolΠ ′ is an actively-
secure MPC protocol. The protocol Π ′ has a reverse firewall for all parties provided
that each of the input commitment, the (augmented) coin-tossing and the authenticated
computation protocols have their own firewalls satisfying some properties.

Theorem 7. (Composition Theorem for security of Π ′). Given a MPC protocol
Π secure in the semi-honest model, and provided that the multi-party input commitment

32

protocol Π ′1, the multi-party (augmented) coin-tossing protocol Π ′2, and the multi-party
authenticated computation protocol Π ′3 are secure in the malicious model, the compiled
MPC protocol Π ′ is an actively-secure MPC protocol. Let W∗1 , W∗2 and W∗3 denote the
reverse firewalls for the protocols Π ′1, Π ′2 and Π ′3 respectively. Also, let party Pi be the
initiating party for all these protocols at some point in time (in general it can be any one
of the parties corrupted in a functionality-maintaining way). Now consider the following
properties:

• Let Π be a MPC protocol secure in the semi-honest model (without reverse firewalls).

• Let the firewall W∗1 (for the multi-party input commitment protocol Π ′1) preserves
security for party Pi, is exfiltration-resistant against the other parties {Pj}j∈[n]\i,
and detects failure for Pi.

• Let the firewall W∗2 (for the multi-party augmented coin-tossing protocol Π ′2) pre-
serves security for party Pi and is weakly exfiltration-resistant against the other par-
ties {Pj}j∈[n]\i. Also, let W2 strongly preserve the security for the parties {Pj}j∈[n]\i
and is strongly exfiltration-resistant against Pi. Finally, let W2 detect failures for all
the parties.

• Let the firewall W∗3 (for multi-party authenticated computation protocol Π ′3) pre-
serves security for party Pi, is weakly exfiltration-resistant against the other parties
{Pj}j∈[n]\i, and detects failure for Pi.

Then the composed reverse firewall W∗ =W∗1 ◦W∗2 ◦W∗3 preserves security for party Pi
and is weakly exfiltration-resistant against the parties {Pj}j∈[n]\i in the protocol Π ′.

Proof. The proof for the first part of the composition theorem is a very well-known
result. We refer the reader to [17] for the detailed proof. Before proceeding with the
proof of the second part, we introduce some additional notations. Let P̃i denote the
functionality-maintaining tampered implementation of party Pi in the final protocol Π ′.
For two distinct protocols Πj and Πk, we denote by Πj ◦Πk the composed protocol
obtained by running the two protocols sequentially, i.e, running the protocol Πj followed

by the protocol Πk. Let P̃ ′i be the truncation of P̃i till the end of the execution of the
protocol Π ′1 ◦Π ′2 (i.,e, till the execution of the (augmented) coin-tossing protocol). Also,

let P̃ ′′i be the truncation of P̃i to the end of the execution of the protocol Π ′1 (i.e,. till the
execution of the multi-party input-commitment protocol). We follow the game hopping
technique to prove the theorem. Consider the following sequence of games.

Game 1 corresponds to the security model for MPC protocols in the malicious
model, except that we replace party Pi with the composed party W∗ ◦ P̃i (where W∗
is the firewall for the final protocol Π ′). Game 2 is similar to Game 1, except that
we consider the protocol Π ′ where the multi-party input commitment protocol Π ′1 is
replaced by its corresponding ideal functionality. Game 3 is similar to Game 2, except

that we replace the composed partyW∗1 ◦P̃ ′′i withW∗1 ◦P ′′i (i.e, the honest implementation
of the “truncated” party P ′′i (till the end of the multi-party input commitment phase)

33

composed with the firewall W∗1). Game 4 is similar to Game 3, except that we consider
the protocol Π ′ where the multi-party augmented parallel coin-tossing protocol Π ′2 is
replaced by its corresponding ideal functionality. Game 5 is similar to Game 4, except

that we replace the composed partyW∗2 ◦P̃ ′i withW∗2 ◦P ′i (i.e, the honest implementation
of the “truncated” party P ′i (till the end of the multi-party augmented coin-tossing
phase) composed with the firewall W∗2). Game 6 is similar to Game 5, except that we
consider the protocol Π ′ where the multi-party authenticated computation protocol Π ′3
is replaced by its corresponding ideal functionality. Game 7 is similar to Game 6, except
that we replace the partyW∗ ◦ P̃i with the partyW∗ ◦P1 (i.e, the honest implementation
of Pi composed with the firewall W∗).

Note that, at the end of Game 7, the advantage of any PPT adversary is negligible.
This is because, when we replace the tampered implementation of the party Pi with
its corresponding honest implementation, we can invoke the security of the underlying
actively-secure MPC protocol mimickingW∗ ◦Pi as the honest party (where the firewall
W∗ does nothing and simply lets all the messages pass from Pi to the other parties). Then
the real world-ideal world security of MPC protocols in the semi-honest model guarantees
that the advantage of any PPT adversary is negligible. Also, if there are more than one
honest parties, the security of the resulting protocol naturally generalizes, since we have
shown it to hold for an arbitrary party corrupted in a functionality-maintaining way.
To complete the proof we show a sequence of claims that prove that every Game i is
indistinguishable from Game i+ 1.

Claim 1 If the firewall W∗1 for the protocol Π ′1 preserves security for party Pi and fails
detectably, then for any PPT adversary A1, it holds that:

|AdvGame1A1
(λ)− AdvGame2A1

(λ)| ≤ negl(λ)

Proof. Suppose the claim does not hold. Then we can construct another adversary A′1
against the multi-party input commitment protocol using A1 as a black-box. We can
view the final protocol Π ′ as the composition of the sub-protocols Π ′1, Π ′2 and Π ′3.

Hence, we can view the party W∗ ◦ P̃i in the final protocol Π ′ as the composition of(
(W∗1 ◦P̃ ′′i)◦(W∗2 ◦P̃ ′i)◦(W∗3 ◦P̃i)

)
. After running the input commitment protocol Π ′1, the

firewall W∗1 checks if the transcript of the underlying protocol is valid for W∗1 ◦P ′′i . Note
that this can be done by running the efficient algorithm that can distinguish between
valid and invalid runs of the protocol. Now, since the firewall preserves security for
party Pi in the protocol Π ′1, we can replace the protocol Π ′1 with its corresponding
ideal functionality in the malicious model, call it Fcomm. Hence, if any adversary can
distinguish between Game 1 and Game 2 with noticeable advantage, it can be used as
a black-box to build a distinguisher A′1 between the protocol Π ′1 and its corresponding
ideal-world functionality Fcomm, which contradicts the security of Π ′1 in the malicious
model. The claim follows. ut

Claim 2 If the firewall W∗1 for the protocol Π ′1 is exfiltration-resistant for party Pi
against other parties {Pj}j∈[n]\i, then for any PPT adversary A′1, it holds that:

34

|AdvGame2A′1
(λ)− AdvGame3A′1

(λ)| ≤ negl(λ)

Proof. The protocol Π ′1 is replaced with its ideal functionality Fcomm (in the presence of
reverse firewalls). By definition, there is no extra leakage in the ideal world functionality

beyond what is leakage by the protocol output. Hence, the tampered implementation P̃ ′′i
(recall that P ′′i is the truncation of party Pi till the end of the input commitment phase)
does not leak any information through the firewall W∗1 , due to the exfiltration-resistant
property of W∗1 . The claim follows. ut

Claim 3 If the firewall W∗2 for the protocol Π ′2 preserves security for party Pi and fails
detectably, then for any PPT adversary A2, it holds that:

|AdvGame3A2
(λ)− AdvGame4A2

(λ)| ≤ negl(λ).

Proof. As before, we can view the composed partyW∗ ◦ P̃i in the protocol Π ′ as
(
(W∗1 ◦

P̃ ′′i) ◦ (W∗2 ◦ P̃ ′i) ◦ (W∗3 ◦ P̃i)
)
. However, before the beginning of this game, the multi-

party input commitment protocol has already been replaced by its corresponding ideal
functionality Fcomm. Hence, the composed party W∗ ◦ P̃i can be seen as the composition

of
(
Fcomm ◦ (W∗2 ◦ P̃ ′i) ◦ (W∗3 ◦ P̃i)

)
. In this game, we replace the protocol Π ′2 with its

corresponding ideal functionality, call it Fcoin. Any adversary A2 that can distinguish
between these two games Game 2 and Game 3 can be used as a black-box to construct
another distinguisher for the real world-ideal world security of the protocol Π ′2. This
follows from the fact that the firewall W∗2 preserves security for party Pi in the protocol
Π ′2 and also fails detectably. ut

Claim 4 If the firewall W∗2 for the protocol Π ′2 is exfiltration-resistant for party Pi
against other parties {Pj}j∈[n]\i, then for any PPT adversary A2, it holds that:

|AdvGame4A2
(λ)− AdvGame5A2

(λ)| ≤ negl(λ).

Proof. The proof of this claim follows from the fact that the protocol Π ′2 is replaced
by its corresponding ideal functionality Fcoin and no information other than what is
implied by the outputs of the protocol are leaked by the ideal functionality. Hence, the

tampered implementation P̃ ′i (recall that P ′i is the truncation of party Pi till the end of
the coin-tossing phase) does not leak any information through the firewall W∗2 , due to
the exfiltration-resistant property of W∗2 . The claim follows. ut

Claim 5 If the firewall W∗3 for the protocol Π ′3 preserves security for party Pi and fails
detectably, then for any PPT adversary A3, it holds that:

|AdvGame5A3
(λ)− AdvGame6A3

(λ)| ≤ negl(λ).

35

Proof. At the beginning of this game, the multi-party input commitment protocol Π ′1
and the multi-party augmented parallel coin-tossing protocol Π ′2 has been replaced by
the corresponding ideal functionalities Fcomm and Fcoin respectively in the malicious
model. Hence, at this point, the inputs and the random tapes of all the parties are fixed.
The composed partyW∗◦P̃i can be seen as the composition of

(
Fcomm◦Fcoin◦(W∗3 ◦P̃i)

)
.

In this game, we replace the protocol Π ′3 with its corresponding ideal functionality, call
it Fauth-com. Any adversary A3 that can distinguish between Game 5 and Game 6 can
be used as a black-box to construct another distinguisher for the real world-ideal world
security of the protocol Π ′3. This follows from the fact that the firewall W∗3 preserves
security for party Pi in the protocol Π ′3 and also fails detectably. ut

Claim 6 For any PPT adversary A∗, it holds that:

|AdvGame6A∗ (λ)− AdvGame7A∗ (λ)| ≤ negl(λ).

Proof. Before the beginning of this game, all the sub-protocols Π ′1, Π ′2 and Π ′3 are
replaced with their respective ideal functionalities Fcomm, Fcoin and Fauth-com respec-
tively. Hence the security of the final protocol Π ′ can be reduced to the security of the
semi-honest protocol Π. Hence, the protocol Π ′ cannot leak any additional information
about the secrets of party Pi. Hence, the exfiltration-resistance of the composed firewall
W∗ follows, and we can replace W∗ ◦ P̃i with the party W∗ ◦ Pi. ut

Combining claims 1 - 6, we get the proof of Thm. 7. ut

7 Conclusion and Future Work

In this work, we present the first feasibility result for general MPC protocols in the set-
ting of reverse firewalls. Previous work in this area constructed reverse firewalls either for
arbitrary 2-party functionalities in the passive setting, or for a few concrete functionali-
ties ranging from signature schemes, oblivious transfer and key exchange protocols. Our
result is obtained by revisiting the classical compiler of Goldreich, Micali, and Widger-
son and making it reverse-firewall compatible. We leave open the construction of more
efficient and round-optimal RF-compatible MPC protocols for future work. Constructing
RF-compatible adaptively secure MPC protocols is also an interesting open problem. As
mentioned in the introduction, another research direction is to develop concrete instan-
tiations of firewalls for threshold cryptography schemes.

References

[1] P. Ananth, A. R. Choudhuri, and A. Jain. “A New Approach to Round-Optimal
Secure Multiparty Computation”. In: Santa Barbara, CA, USA, 2017.

[2] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs.
“Multiparty Computation with Low Communication, Computation and Interac-
tion via Threshold FHE”. In: Advances in Cryptology – EUROCRYPT 2012. Cam-
bridge, UK, 2012.

36

[3] G. Ateniese, B. Magri, and D. Venturi. “Subversion-Resilient Signature Schemes”.
In: ACM CCS 15: 22nd Conference on Computer and Communications Security.
Denver, CO, USA, 2015.

[4] D. Beaver. “Foundations of Secure Interactive Computing”. In: Advances in Cryp-
tology – CRYPTO’91. Santa Barbara, CA, USA, 1992.

[5] F. Benhamouda and H. Lin. “k-Round Multiparty Computation from k-Round
Oblivious Transfer via Garbled Interactive Circuits”. In: 2018.

[6] M. Blum, P. Feldman, and S. Micali. “Non-Interactive Zero-Knowledge and Its
Applications (Extended Abstract)”. In: 20th Annual ACM Symposium on Theory
of Computing. Chicago, IL, USA, 1988.

[7] R. Canetti. “Security and Composition of Multiparty Cryptographic Protocols”.
In: Journal of Cryptology 1 (2000).

[8] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. “Malleable Proof
Systems and Applications”. In: Advances in Cryptology – EUROCRYPT 2012.
Cambridge, UK, 2012.

[9] R. Chen, Y. Mu, G. Yang, W. Susilo, F. Guo, and M. Zhang. “Cryptographic
Reverse Firewall via Malleable Smooth Projective Hash Functions”. In: Advances
in Cryptology – ASIACRYPT 2016. Berlin, Heidelberg, 2016.

[10] R. Cramer, I. B. Damg̊ard, and J. B. Nielsen. Secure Multiparty Computation and
Secret Sharing. 2015.

[11] E. Dauterman, H. Corrigan-Gibbs, D. Mazières, D. Boneh, and D. Rizzo. “True2F:
Backdoor-Resistant Authentication Tokens”. In: 2019 IEEE Symposium on Secu-
rity and Privacy. 2019.

[12] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. “Message Transmission with
Reverse Firewalls—Secure Communication on Corrupted Machines”. In: Advances
in Cryptology – CRYPTO 2016, Part I. Santa Barbara, CA, USA, 2016.

[13] J. Doerner, Y. Kondi, E. Lee, and a. shelat. “Threshold ECDSA from ECDSA
Assumptions: The Multiparty Case”. In: 2019 IEEE Symposium on Security and
Privacy. 2019.

[14] D. Dolev and H. Strong. “Authenticated Algorithms for Byzantine Agreement”.
In: SIAM Journal on Computing 4 (1983). eprint: https://doi.org/10.1137/
0212045.

[15] S. Garg and A. Srinivasan. “Two-Round Multiparty Secure Computation from
Minimal Assumptions”. In: 2018.

[16] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with Fast
Trustless Setup”. In: ACM CCS 18: 25th Conference on Computer and Commu-
nications Security. 2018.

[17] O. Goldreich. Secure Multi-Party Computation. manuscript available at http:

//www.wisdom.weizmann.ac.il/~oded/pp.html.
[18] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental Game or

A Completeness Theorem for Protocols with Honest Majority”. In: 19th Annual
ACM Symposium on Theory of Computing. New York City, NY, USA, 1987.

37

https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
http://www.wisdom.weizmann.ac.il/~oded/pp.html
http://www.wisdom.weizmann.ac.il/~oded/pp.html

[19] J. Groth. Homomorphic Trapdoor Commitments to Group Elements. Cryptology
ePrint Archive, Report 2009/007. http://eprint.iacr.org/2009/007. 2009.

[20] J. Groth. “Simulation-Sound NIZK Proofs for a Practical Language and Constant
Size Group Signatures”. In: Advances in Cryptology – ASIACRYPT 2006. Shang-
hai, China, 2006.

[21] D. Hofheinz, T. Jager, and E. Knapp. “Waters Signatures with Optimal Security
Reduction”. In: PKC 2012: 15th International Conference on Theory and Practice
of Public Key Cryptography. Darmstadt, Germany, 2012.

[22] Y. Ishai, A. Sahai, and D. Wagner. “Private Circuits: Securing Hardware against
Probing Attacks”. In: Advances in Cryptology – CRYPTO 2003. Santa Barbara,
CA, USA, 2003.

[23] Y. Lindell. “Parallel Coin-Tossing and Constant-Round Secure Two-Party Com-
putation”. In: Advances in Cryptology – CRYPTO 2001. Santa Barbara, CA, USA,
2001.

[24] S. Micali and L. Reyzin. “Physically Observable Cryptography (Extended Ab-
stract)”. In: TCC 2004: 1st Theory of Cryptography Conference. Cambridge, MA,
USA, 2004.

[25] I. Mironov and N. Stephens-Davidowitz. “Cryptographic Reverse Firewalls”. In:
Advances in Cryptology – EUROCRYPT 2015, Part II. Sofia, Bulgaria, 2015.

[26] P. Mukherjee and D. Wichs. “Two Round Multiparty Computation via Multi-key
FHE”. In: Advances in Cryptology – EUROCRYPT 2016, Part II. Vienna, Austria,
2016.

[27] G. J. Simmons. “The Prisoners’ Problem and the Subliminal Channel”. In: Ad-
vances in Cryptology – CRYPTO’83. Santa Barbara, CA, USA, 1983.

[28] B. R. Waters. “Efficient Identity-Based Encryption Without Random Oracles”. In:
Advances in Cryptology – EUROCRYPT 2005. Aarhus, Denmark, 2005.

38

http://eprint.iacr.org/2009/007

	Reverse Firewalls for Actively Secure MPCs

