
Short Discrete Log Proofs for
FHE and Ring-LWE Ciphertexts

Rafael del Pino1?, Vadim Lyubashevsky2, and Gregor Seiler2,3

1 ENS Paris
Rafael.Del.Pino@ens.fr

2 IBM Research – Zurich
vadim.lyubash@gmail.com, Switzerland

3 ETH Zurich, Switzerland
gseiler@inf.ethz.ch

Abstract. In applications of fully-homomorphic encryption (FHE) that involve computation on en-
cryptions produced by several users, it is important that each user proves that her input is indeed
well-formed. This may simply mean that the inputs are valid FHE ciphertexts or, more generally, that
the plaintexts m additionally satisfy f(m) = 1 for some public function f . The most efficient FHE
schemes are based on the hardness of the Ring-LWE problem and so a natural solution would be to use
lattice-based zero-knowledge proofs for proving properties about the ciphertext. Such methods, howe-
ver, require larger-than-necessary parameters and result in rather long proofs, especially when proving
general relationships.

In this paper, we show that one can get much shorter proofs (roughly 1.25KB) by first creating a
Pedersen commitment from the vector corresponding to the randomness and plaintext of the FHE
ciphertext. To prove validity of the ciphertext, one can then prove that this commitment is indeed to
the message and randomness and these values are in the correct range. Our protocol utilizes a con-
nection between polynomial operations in the lattice scheme and inner product proofs for Pedersen
commitments of Bünz et al. (S&P 2018). Furthermore, our proof of equality between the ciphertext
and the commitment is very amenable to amortization – proving the equivalence of k ciphertext /
commitment pairs only requires an additive factor of O(log k) extra space than for one such proof. For
proving additional properties of the plaintext(s), one can then directly use the logarithmic-space proofs
of Bootle et al. (Eurocrypt 2016) and Bünz et al. (IEEE S&P 2018) for proving arbitrary relations of
discrete log commitment.

Our technique is not restricted to FHE ciphertexts and can be applied to proving many other relations
that arise in lattice-based cryptography. For example, we can create very efficient verifiable encryption
/ decryption schemes with short proofs in which confidentiality is based on the hardness of Ring-LWE
while the soundness is based on the discrete logarithm problem. While such proofs are not fully post-
quantum, they are adequate in scenarios where secrecy needs to be future-proofed, but one only needs
to be convinced of the validity of the proof in the pre-quantum era. We furthermore show that our
zero-knowledge protocol can be easily modified to have the property that breaking soundness implies
solving discrete log in a short amount of time. Since building quantum computers capable of solving
discrete logarithm in seconds requires overcoming many more fundamental challenges, such proofs may
even remain valid in the post-quantum era.

1 Introduction

Fully-homomorphic encryption (FHE) allows for evaluations of arbitrary functions over encrypted
data. The traditional application of this primitive is outsourcing – a user encrypts his data and
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sends it to a server who performs the (intensive) computation and returns back the encrypted
result. In this scenario, the user is the only one affected by the outcome of the computation, and
so it is not necessary for him to prove that his ciphertexts he submitted to the server are properly
formed.

There are other applications of FHE, however, that involve computations on ciphertexts sub-
mitted by several users [LTV12,MW16,PS16]. For example, multi-key FHE allows the server to
compute over ciphertexts encrypted under different keys and produce a result that can then be
jointly decrypted by the participating parties. One can also use FHE in a “distributed ledger” (e.g.
[ABB+18]) setting where users can submit ciphertexts encrypted under some particular public key
and a computation can be performed by anyone on behalf of the holder of the secret key to produce
an encrypted output. This is useful in scenarios where certain entities (the holder of the secret key
in our example) wish to perform only a limited amount of computation.

For the above scenarios where more than one user is involved, it is important that each party
provides a zero-knowledge proof that his input is a valid FHE ciphertext – otherwise the final
output may, unknowingly to anyone else, be constructed from invalid data. It may furthermore be
necessary to prove that the encrypted message satisfies certain additional properties dictated by
the protocol. For encryptions based on the discrete logarithm problem, such proofs can be very
efficiently constructed for certain relations using techniques in [CS03] and for general circuits using
the more recent logarithmic space proofs for discrete logarithms [BCC+16,BBB+17]. FHE schemes,
on the other hand, are constructed from LWE (or LWE-like) encryption schemes (e.g. [BGV12]),
which unfortunately do not enjoy such practical proofs. For example, the most efficient verifiable
encryption scheme for Ring-LWE [LN17] ciphertexts only handles linear relations B ~m = ~t and
gives proofs of knowledge of an ~m′ satisfying B ~m′ = c ·~t, where c is some polynomial with small
coefficients. This is satisfactory in some scenarios (see [LN17] for examples), but is not general
enough for many other applications. Obtaining proofs without the polynomial c even for simple
relations would make the proof sizes on the order of megabytes (cf. [LLNW18]).

In this work, we take a different approach for creating such proofs. An FHE (or more generally,
a Ring-LWE) ciphertext can be written as

A~s = ~t (1)

where A is the public key, ~t is the ciphertext, and ~s consists of the randomness and the message.
All operations are performed over some polynomial ring Rq = Zq[X]/(f) for some integer q and a
monic, irreducible polynomial f ∈ Z[X] of degree d.

The main result of the current work is an efficient protocol for proving knowledge of ~s with
small coefficients in the above equation. Our strategy is to first create a joint Pedersen commitment
t = Com(~s) to all the coefficients in ~s, and prove in zero-knowledge that these coefficients, when
interpreted as a polynomial vector ~s, satisfy (1). At the same time, the proof will also show that
the coefficients of ~s are in the required range for valid Ring-LWE ciphertexts. Moreover, if we have
many Ring-LWE ciphertexts ~t1, . . . ,~tk, then the size of our proof is only approximately an additive
factor of O(log k) larger than the proof for one equation in (1).

Once we have a Pedersen commitment of the coefficients of ~s, we can additionally use the afore-
mentioned very efficient zero-knowledge proofs for discrete logarithm commitments [BCC+16,BBB+17]
to prove arbitrary properties of the plain-text contained in ~s. This gives us a verifiable encryption
scheme (and also a verifiable decryption scheme) for Ring-LWE ciphertexts (see Section 1.5). As
an example of the proof size, a proof of ciphertext validity of a Ring-LWE encryption scheme in
(9) requires only 1.25KB.
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1.1 Post-Quantum Security

One of the side advantages of FHE based on Ring-LWE is that the encryption scheme remains secure
against quantum attacks (assuming that the Ring-LWE problem is post-quantum secure). Since
Pedersen commitments are statistically-hiding and all the proofs are statistical zero-knowledge,
the secrecy of the ciphertext and the Pedersen commitment is still based on just Ring-LWE. The
soundness of the proofs, however, is based on the hardness of the discrete log problem and is
therefore not post-quantum.

Having the soundness of the proof not be post-quantum is still, for many scenarios, acceptable
even if we do foresee quantum computers appearing in the future. For example, all proofs created
until quantum computers capable of breaking discrete log actually appear would still be valid. Furt-
hermore, the protocol can be easily altered to force the prover to create his Pedersen commitment
and the zero-knowledge proof with “fresh” randomly-chosen generators and complete his proof in a
specified amount of time.4 Breaking the soundness of this proof system would thus require solving
the discrete log problem using a quantum computer within a prescribed (e.g. several seconds) time
interval.

While building a quantum computer capable of breaking cryptographic problems presents a
very substantial scientific and engineering challenge, building one that is capable of solving such
problems in seconds is a potentially significantly harder problem. For a 2048-bit number, under
some reasonable assumptions on the error rate and the speed of each gate computation on a
superconducting platform, this would take around 27 hours and a billion physical qubits [FMMC12].
A trapped-ion based computer with very low error rate would need 110 days to perform the same
operation [LWF+17]. One can sometimes decrease the running time by utilizing more qubits, but
there are several other roadblocks that would keep the computation time from decreasing beyond
certain barriers (c.f. [Gid18] for a discussion). While it is too early to guess when (or if) it will be
possible to run Shor’s algorithm in under a minute, it certainly appears to be a problem that will
require overcoming many more fundamental challenges even after a “basic” fault-tolerant universal
quantum computer is built.

1.2 Other Applications

Our general result gives a way to prove knowledge that the secret ~s in the linear equation (1) is
the same as in the commitment Com(~s), where Com(·) is a Pedersen commitment to the individual
coefficients of ~s. Because (1) is quite generic, it can be used to represent many relations throughout
lattice cryptography. For example, ciphertexts, commitments, public keys in encryption / signature
schemes, etc. are all of this form. One can therefore apply our protocol as a first step in a larger
protocol that needs to prove something about the secret ~s. For example, verifiable encryption and
decryption schemes (where the prover or decryptor needs to prove that the plaintext m satisfies
f(m) = 1 for some public function f) has many applications (c.f. [CS03]) and such schemes that
retain the post-quantum secrecy of the ciphertext can thus be built using our techniques. We sketch
the construction in Section 1.5 and note that proving validity of FHE ciphertexts is just a special
case of verifiable encryption.

4 If the proof is to be made non-interactive, the randomness for creating the generators could come from some public
randomness beacons (e.g. the NIST randomness beacon).
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1.3 Previous Related Work

A connection between Ring-LWE and discrete log commitments has been previously explored by
Benhamouda et al. [BCK+14]. The construction in the current paper is completely different and
enjoys significant advantages (both theoretical and practical) over the aforementioned prior work.
Firstly, the modulus q in (1) has to be the same as the group size underlying the discrete log
commitment for the proof in [BCK+14] – and taking q ≈ 2256 would require making the Ring-LWE
/ FHE scheme significantly less efficient than it needs to be (typical sizes of q are ≈ 230). Secondly,
the protocol in [BCK+14] requires a separate Pedersen commitment for every coefficient of ~s rather
than one commitment for all the coefficients of ~s. Thirdly, the proof is a Σ-protocol with soundness
error 1/d (where n is the degree of f) and so needs to be repeated around a dozen times. While
[BCK+14] did not provide concrete parameters, we would estimate that our proofs would be shorter
by 2 - 3 orders of magnitude. And additionally, our current proof can be amortized for proving k
equations as in (1) while only incurring an O(log k) additive overhead.

Our work can also be seen as complementary to that of Fiore, Gennaro, and Pastro [FGP14]
where they give a succinct proof that the evaluation in the FHE scheme was performed correctly
for certain types of functions.

1.4 High Level Overview of the Protocol

Our general proof is for k copies of (1) – in other words a proof of a matrix S ∈ Rm×kq with bounded
coefficients such that

AS = T mod (f , q). (2)

We will explicitly write out which modular reductions occur as it will change throughout the
protocol.

In this overview, we will sketch the proof of a simpler version of (2), which is just a Ring-LWE
/ Ring-SIS equation

m∑
i=1

aisi = t mod (f , q) (3)

where ai, t, si ∈ Rq and the coefficients of si have absolute value less than B. Afterwards, we will
explain how this can be extended to the full proof of (2). Let G be a group of size p ≤ 2256 in which
the discrete problem is hard.

The prover first rewrites (3) so that it is entirely over the ring Z[X] – i.e. there are no reductions
modulo q and f :

m∑
i=1

aisi = t− r1 · q − r2 · f . (4)

The polynomials r1 and r2 are not unique, but we would like them to simultaneously have small
coefficients and be of small degree. We show that r1 can be of degree 2(d− 1) and have coefficients
of absolute value at most d

2(Bm + ‖f‖∞), while r2 can have degree d − 2 with coefficients having
absolute value at most 1

2(q − 1).
The prover creates a Pedersen commitment t = Com(s1, . . . , sm, r1, r2) ∈ G where each integer

coefficient of si and ri is in the exponent of a different generator gj .
5 The prover sends t to the

verifier.
5 If we would like to achieve post-quantum security based on the assumption that discrete log cannot be solved in

a prescribed amount of time, then the gi should not be known to the prover before the start of the proof. This
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The verifier chooses a random challenge element α ∈ Zp and sends it to the prover. The prover
now needs to give several proofs. In the real protocol, all these will be combined into one proof, but
for ease of exposition, we will explain them separately here. The first proof is a range proof πs,r
from [BBB+17] showing that all the committed values in t are in the correct ranges. The second
proof is a proof that (4) evaluated at α holds true over the field Zp. By the Schwartz-Zippel lemma,
this implies that with probability > 1 − 2d/|G|, this equation also holds true over the polynomial
ring Zp[X]. Since we have already proven that the coefficients of si and ri are relatively small and
we assumed that q is also small (compared to p), we know that if (4) holds true in Zp[X], then it
also holds over Z[X] because no reduction modulo p takes place. This will complete the proof. We
now just have to prove that (4) evaluated at α holds true mod p.

Define the matrices

U =
[
a1(α ) · · · am(α) q f(α)

]
mod p, S =


− s1 −
· · ·

− sm −
− r1 −
− r2 −

 , V =


1
α
. . .
αd−1

 mod p, (5)

where the rows of S consist of the integer coefficients of si and ri with the constant coefficient
being in the leftmost column row and the coefficients of Xd−1 being in the rightmost (e.g. if

si =
d−1∑
j=0

σjX
j , then the ith row of S is

[
σ0 σ1 · · · σd−1

]
. With this notation, observe that the

matrix product

SV =
[
s1(α) · · · sm(α) r1(α) r2(α)

]T
mod p,

and so

USV =
m∑
i=1

ai(α)si(α) + r1(α)q + r2(α)f(α) mod p.

Thus if we prove that
USV = t(α) mod p, (6)

then we will end up proving that (4) evaluated at α is true modulo p. Since U, V and t(α) are public
and we have a commitment to the coefficients of S, we can apply an extension of the inner-products
proofs from [BCC+16,BBB+17] to prove our linear relation.6 To complete the protocol, the prover
simply sends π, πs,r to the verifier and he accepts if all the proofs are correct.

Combining the Two Proofs. In the real protocol which we describe in Section 5, we combine
the two proofs πs,r and π into one. The reason is that the range proof πs,r in [BBB+17] works by
writing each coefficient in binary, storing a matrix of these coefficients, and then giving a proof
that each coefficient of the decomposition is 0 or 1 (the number of these coefficients then implies
the range). Due to the fact that the ranges of the si and ri are different, storing these in the same
matrix would require us to increase the size of the matrix to accommodate the largest coefficients,

can be arranged by either having the verifier sending them (or more precisely, send a short seed that expands into
the prescribed number of generators) at the start of the protocol or using a randomness beacon in non-interactive
proofs.

6 The “inner-product” proofs in [BCC+16,BBB+17] show that the vectors committed to in a Pedersen commitment
satisfy a linear relation. This can also be extended to matrices.
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which would be wasteful. Thus instead of proving the matrix equation (6), we write these out as a
series of appropriate equations (each of varying lengths) where the coefficients of S are in binary
and prove those instead. This allows us to do a range proof and the proof of (6) in one step.

We provide explicit details of the above algorithm in Section 5. We additionally obtain a tighter
security proof of the inner-product proof of [BCC+16,BBB+17] by using a different extraction
strategy, described in Section 3. In addition, our zero-knowledge range proof is somewhat simpler
than the one in [BBB+17] because our range proof is constructed on top of a zero-knowledge inner
product proof instead of the original Bulletproof inner product proof which is not zero-knowledge.
This allows for not blinding the vectors in the range proof simplifying extraction and saving two
rounds of the protocol. The additional complexity in the inner product proof is basically just a
Schnorr proof (see Section 4). These small improvements may be of independent interest.

Some observations about the proof strategy. The reason that we converted (3) into (4) and
then used the Schwartz-Zippel lemma for proving (4) is for reducing the time complexity of the
proof. An alternate, simpler, procedure for proving (3) would have been the following: first write
(3) as

m∑
i=1

aisi = t + r1q mod f , (7)

and create the commitments ts and tr1 as before. Now, observe that polynomial multiplication
aisi can be written as a matrix / vector product As, where column j (labeled from 0 to d − 1)
of A consists of the coefficients of the d − 1 degree polynomial aiX

j mod f and s is a vector of

coefficients of si. Thus
m∑
i=1

aisi can be written as a matrix / vector product itself. Then one could

directly apply the modified inner-product proof to prove (7) modulo p, which would again imply
that this equation holds true over Z (since the coefficients are all much smaller than p), and so this
implies (3).

The main problem with the above approach is that the matrices A are d×d matrices, and so the
proof of matrix/vector product would require O(d2) exponentiations (or multiplications in elliptic
curve groups) in G. For typical values of d > 1000, this operation is quite expensive and could
take several minutes even on a reasonably powerful machine. Our proof, on the other hand, takes
advantage of the fact that the operations can be interpreted over the ring Zp[X] for a very large
p and one can then prove polynomial equality via the Schwartz-Zippel lemma. Since polynomial
evaluation is an inner-product of d-dimensional vectors, constructing a matrix product proof only
requires O(d) exponentiations per evaluation. Note that this is also the reason that our proofs would
be much less computationally efficient for proving relations over Z (i.e. LWE / SIS relations).

Another issue to draw attention to is that the polynomial equations we want to prove are modulo
q, whereas the proofs are done modulo a larger p. As mentioned before, the reason for this is that
in typical cryptographic applications of the Ring-LWE / Ring-SIS problems (such as FHE), the
modulus q is not very large (smaller than 240). On the other hand, the discrete log commitments
must be performed over a much larger-size group. If, however, an application called for the modulus
q to be a large prime, then our proof could use q = p, and we would never need to switch to working
over Z[X] – we could always work over Zq[X] and have no need for the polynomial r1.
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Simultaneously proving k polynomial equations. The proof for proving knowledge of S
satisfying (2) is a straightforward extension of the above-described algorithm with the strategy for
the proof being the same. First, we will prove that in the analogue of (4),

AS = T− qR1 − fR2, (8)

all the coefficients of S,R1,R2 are small and then prove that the above equation holds, with high
probability, over the ring Zp[X] for a very large p. This will imply that (8) also holds over Z[X],
and thus (2) is true. We now describe the protocol in slightly more detail.

The first step of the protocol remains virtually identical with the prover committing to S and
R1,R2. After receiving the challenge α, the prover again wishes to show that the coefficients of
S,R1,R2 are in the appropriate ranges and prove the equality of (8) where each polynomial is
evaluated at α.

If we define In ∈ Zn×n to be the identity matrix, then one can rewrite what we would like to
prove as

[
A(α) qIn f(α)In

]
·

 S(α)
R1(α)
R2(α)

 = T(α) mod p.

If, for a polynomial m× k matrix S, we create the m× (kd) integer matrix ~S by writing each
polynomial in S as a row consisting of its d coefficients (the way way that si were expanded in the
matrix S in (5)), then we can rewrite the above equation as

[
A(α) qIn f(α)In

]
·

 ~S
~R1

~R2

 ·
Ik ⊗


1
α
. . .
αd−1


 = T(α) mod p.

Since all the matrices in the above equation except

 ~S
~R1

~R2

 are public, we can again apply the

modified inner-product proof from [BCC+16,BBB+17] to prove the equality modulo p. And again,
as before, our real protocol would combine the range proof and modified inner-product proof into
one proof.

1.5 Application to Verifiable Encryption and Decryption for Ring-LWE Ciphertexts

Notice that the first step of our proof involved creating a Pedersen commitment t to the coefficients
of S. The rest of the proof then went on to show that the commitment is really to an S satisfying (2).
Since at the end of the protocol, we end up with a Pedersen commitment to S, we can use another
SNARK (e.g. one from [BBB+17]) that proves arbitrary relations of its committed values. Thus
just proving knowledge of S naturally gives rise to verifiable encryption and decryption schemes for
Ring-LWE encryption, as we sketch below.

In a verifiable encryption scheme, the encryptor produces an encryption of a message m and a
ZKPoK that the ciphertext is a valid encryption to m and that f(m) = 1 for a public function f .
Consider the following “usual” encryption scheme based on Ring-LWE [LPR13]:
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The secret key are polynomials s, e with small, bounded coefficients and the public key consists
of a random polynomial a ∈ Rq and t = as + e ∈ Rq.

The encryption of a message m ∈ Rq, where all coefficients of m are in the range [0, p), is
created as in the below equation, where r, e1, e2 are polynomials with bounded coefficients.

[
pa p 0 0
pt 0 p 1

]
·


r
e1
e2
m

 =

[
u
v

]
(9)

For a verifiable encryption scheme, we can use our proof system with A ∈ R2×4
q and S ∈ R4×1

q to
create a Pedersen commitment(s) to S and prove that all the coefficients of r, ei,m lie within their
prescribed bounds and that (9) is satisfied by the commitment(s) representing S. The preceding

proves knowledge of the plaintext m for the ciphertext

[
u
v

]
.

To decrypt a ciphertext

[
u
v

]
, the decryptor first computes

v − us = p(er + e2 − se1) + m. (10)

Since all the coefficients of the above equation are small, no reduction modulo q takes place and
this equation holds true over Z[X]. Computing v − us mod p therefore recovers m.

To construct a verifiable decryption scheme, let g = er + e2 − se1 from the above equation.
Let β be a bound on g such that no reduction modulo q takes place in (10) and so decryption still
works (i.e. β should be less than approximately q/p). Then the decryptor should be able to prove
knowledge of s, e,g,m in the following equation with coefficients of s, e having the appropriate
bounds and m having all coefficients in [0, p).

[
a 1 0 0
u 0 p 1

]
·


s
e
g
m

 =

[
t
v

]
. (11)

Proving the above shows that m is a valid decryption. To show that there is only one possible
decryption (i.e. only one possible solution to the above equation), suppose there exist two solutions:

[
a 1 0 0
u 0 p 1

]
·


s
e
g
m

 =

[
t
v

]
and

[
a 1 0 0
u 0 p 1

]
·


s′

e′

g′

m′

 =

[
t
v

]
. (12)

If s 6= s′, then the first row of (12) implies a non-zero solution to

a(s− s′) + (e− e′) = 0.

Writing a as above can either be shown to be impossible either via an information-theoretic
argument or via the computational assumption that the Ring-SIS problem [PR06,LM06] is hard.7

7 In general, the polynomial a is created as H(seed), where H is a cryptographic hash function and the seed is
public. It is therefore a valid assumption that a is random in Rq.
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If s = s′, then the second row of (12) implies that p(g−g′)+(m−m′) = 0. Since the coefficients
are small enough that no reduction modulo q takes place, the preceding implies that m −m′ is a
multiple of p, which implies that m = m′ (since the coefficients of m−m′ are in the range (−p, p).)

1.6 Open Problems

We have shown how linear relations over polynomial rings can have very compact proofs by conver-
ting the problem into a form that is compatible with the compact SNARKs in [BCC+16,BBB+17].
While the proofs are small, creating such proofs may require on the order of hundreds of thousands
of exponentiations. It would therefore be interesting to see whether one can transform the problem
into a form compatible with SNARKS that are less compact but may require fewer operations, such
as for example those in [WTS+18]. Since the latter proofs are particularly tailored to parallelizable
functions, they may also result in rather efficient proofs for LWE / SIS ciphertexts, and not require
one to work over polynomial rings. We leave this direction as an open problem.

2 Notation

We use bold letters f for polynomials, arrows for column vectors as in ~v, and capital letters A for
matrices. Vectors and matrices of polynomials are denoted by bold letters ~v with arrows and bold
capital letters M, respectively. We write R = Z[X]/(f) for the ring of integer polynomials modulo
a monic irreducible polynomial f ∈ Z[X], Rq for the quotient ring R/qR for some prime q and
similarly Zp for Z/pZ.

Let ~v1 ∈ Znp and ~v2 ∈ Znp be two vectors over Zp. Then we write 〈~v1, ~v2〉 ∈ Zp, ~v1 ◦ ~v2 ∈ Znp and

~v1 ⊗ ~v2 ∈ Zn2

p for their inner product, componentwise product and tensor product, respectively.

Norms. The absolute value |a| of an element a ∈ Zq is defined to be the absolute value of the
centralized representative in {−(q − 1)/2, . . . , (q − 1)/2}. The infinity norm ‖s‖∞ of a polynomial
s ∈ Rq is the maximum absolute value of all of its coefficients. Likewise, the infinity norm ‖~s‖∞ of
a vector of polynomials is the maximum over the infinity norms of its coefficient polynomials.

Multi exponentiations. For a group G of order p, written multiplicatively, and vectors ~g =
(g1, . . . , gn)T ∈ Gn and ~a = (a1, . . . , an)T ∈ Znp we use the notation

~g~a = ga11 . . . gann ∈ G.

Throughout the paper the group G will be understood to be cyclic of prime order p with hard
computational discrete-log problem. A Pedersen multi-commitment over generators ~g ∈ Gn, u ∈ G
to a vector ~v ∈ Znp with randomness ρ

$← Zp is given by the multi-exponentiation t = ~g~vuρ. This
is clearly perfectly hiding and computationally binding under the assumption that it is hard to
compute a non-trivial discrete-log relation between the generators ~g, u. The latter problem is easily
seen to be equivalent to the discrete-log problem.
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Serializing matrices to vectors. We will need to serialize matrices A ∈ Zn×mp to vectors. For
this reason we define functions

Serialize : Zn×mp → Znmp , A 7→ ~a

where ~a contains the coefficients of A in row major order. So if A = (aij), 0 ≤ i ≤ n − 1,
0 ≤ j ≤ m− 1, then ~a = (ai) with ami+j = aij . In many programming languages, most notably C,
this is how matrices are stored in memory so that Serialize is a non-operation in these languages.
We extend Serialize to polynomial matrices over Z[X] by first expanding each polynomial to its
row coefficient vector and then proceeding as before.

Expanding integers to their binary representation. We will also need to map integers to
their binary representation, including negative integers. For this we define the function

Binaryb : {−2b−1, . . . , 2b−1 − 1} → {0, 1}b, z 7→ ~z

that maps a signed b-bit integer to its binary representation using two’s complement. More precisely,
~z = (z0, . . . , zb−1)

T is defined by

z = z0 + z12 + · · ·+ zb−22
b−2 − zb−12b−1.

Again this representation for signed integers is used by all modern CPU’s and Binary is a non-
operation. We extend Binary to vectors where Binary is applied to each coefficient individually.

3 Forking Lemma

For proving the security of proof systems based on the Bulletproof technique from [BBB+17] one
needs a special forking lemma which shows that it is possible to obtain many accepting transcripts
from a prover for challenges that are organized in a large tree. The forking lemma used in the
Bulletproof paper goes back to [BCC+16, Lemma 1]. It is only stated in terms asymptotic in the
security parameter. Moreover, the tree finding algorithm for computing the tree that is given and
analyzed in the proof of the forking lemma does not try to avoid collisions between the challenges.
But it is necessary that there are no collision so that the transcripts can be used for extraction.
Therefore, in order to compute the success probability of the tree finding algorithm, the collision
probability has to be taken into account in addition to the failure probability of the prover. For a
256 bit curve, the collision probability gets quite large for moderately sized trees and as a result of
this the reasoning of the forking lemma only applies to provers whose failure probability 1 − ε is
small. Concretely, to obtain a tree of accepting transcripts of height µ where every inner node has
n children one needs ε > nµ/285. For example in the case of the Bulletproof inner product proof,
where n = 4 and µ = log l with l the length of the vectors, ε > l2/285 and the forking lemma only
proves the inner product proof to be sound with soundness error 2−35 if l = 225, a length easily
reached in our application. One would need to repeat the proof four times in order to get below
2−128.

We give a different forking lemma with a different extraction algorithm together with a concrete
analysis in this section. Our forking lemma achieves negligible soundness error. It is still non-tight
though, which is unavoidable as one needs to obtain nµ = llogn transcripts. We stress that we do
not think that this non-tightness in the security proof allows for any actual attacks for 256 bit
curves. Let us start by recalling the definition of a tree of accepting transcripts.
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Definition 3.1. Let P∗ be a deterministic prover for a (2µ + 1)-move interactive proof protocol
where the honest verifier V sends µ challenges in steps 2, 4, . . . , 2µ. An (n1, . . . , nµ)-tree of accepting
transcripts associated with P∗ is a tree of height µ of the following form. Every node in level i,
0 ≤ i ≤ µ − 1, has precisely ni+1 children, all nodes except the root are labeled by a challenge
and each leaf additionally contains the transcript obtained by interacting with P∗ and sending the
challenges in the path from the root to this leaf. Moreover, the challenges in all nodes with the same
parent are distinct and V accepts all transcripts in the leaves.

Lemma 3.2. Let P∗ be a deterministic prover for a (2µ+1)-move interactive proof protocol where
the honest verifier V sends µ = log(l) uniformly random challenges from a set C of size p in steps
2, 4, . . . , 2µ. Then there exists an algorithm tree-finder that, when given rewindable black-box
access to P∗, computes an (n1, . . . , nµ)-tree of accepting transcripts with probability at least 1/4 in
expected time at most

O

(
llogn+logα log l

ε

)
(l→∞)

for every α >
(

1
1−n/p

)2
and with n = max1≤i≤µ−1 ni under the assumption that P∗ convinces V

with probability ε ≥ αµ

α−1
nµ
p = llogα

α−1
nµ
p . Running P∗ once is assumed to take unit time.

Proof. We construct tree-finder = tree-finder(1) as a recursive algorithm with tree-finder(i),
i = 1, . . . , µ, interacting with P∗ from the 2i-th move onward. A naive first approach would be as
follows. For i < µ, tree-finder(i) would run P∗ until and including move 2i + 1 sending a uni-
formly random challenge ci ∈ C in step 2i. Then the algorithm would call tree-finder(i + 1).
Afterwards it would rewind P∗ back to just after step 2(i − 1) + 1 and repeat the process for a
total of ni different challenges. So in the second iteration tree-finder(i) would sample a uniform
challenge from C \ {ci}. The tree-finding algorithm tree-finder(µ) in the last level would send a
last challenge cµ and check whether the interaction with P∗ led to a valid proof, i.e. V would accept
the proof. Then it would repeat for as many last challenges cµ as needed to get nµ valid proofs for
nµ different cµ. The problem with this approach is that in any level for many challenges ci there
might only be very few continuations ci+1, . . . , cµ that lead to valid proofs (or none at all). Hence
the tree-finding algorithm might run into dead ends where tree-finder(µ) runs for a very long
time or does not terminate at all.

For fixed challenges c1, . . . , ci−1, let εi be the acceptance probability over all uniform conti-
nuations ci, . . . , cµ. In particular ε1 = ε. Then for some ci let εi+1 = εi+1(ci) be the acceptance
probability under the additional condition that the i-th challenge is ci. Now from a standard heavy
rows / averaging argument we know εi+1 ≥ εi/α, α > 1, for at least a fraction of 1− 1/α of the ci.
Therefore our solution to the problem is as follows. After choosing ci, tree-finder(i) estimates
εi+1 by running P∗ until the end for many continuations ci+1, . . . , cµ and counting the number of
valid proofs. Then the tree finding algorithm only continues with ci if the acceptance probability
does not decrease too much by fixing ci. The complete algorithm is as follows where 1 < λ <

√
α

and Ti are specified later.
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1: function tree-finder(i)
2: Initialize tree as a tree containing only an empty root
3: C′ = ∅
4: while |C′| < ni do
5: if i = µ then
6: Run P∗ until the end using a fresh challenge

cµ
$← C \ C′ and let tr be the transcript of the

full interactive proof
7: if proof is valid then
8: Append new leaf (cµ, tr) to the root of tree
9: C′ = C′ ∪ {cµ}

10: end if
11: else
12: repeat
13: Run P∗ up to and including step 2i+ 1 using a

fresh challenge ci
$← C \ C′

14: count = 0
15: for j = 1, . . . , Ti do
16: Run P∗ until the end with fresh challenges

ci+1, . . . , cµ
$← C

17: if proof is valid then
18: count = count + 1
19: end if
20: Rewind P∗ back to just after step 2i+ 1
21: end for
22: if count < λTi

ε
αi

then
23: Rewind P∗ back to just after step 2(i− 1) + 1
24: end if
25: until count >= λTi

ε
αi

26: tree ′ ←tree-finder(i+ 1)
27: Label root of tree ′ by ci and append tree ′ to the root

of tree
28: C′ = C′ ∪ {ci}
29: end if
30: end while
31: return tree
32: end function

We analyze the algorithm under the assumption εi ≥ ε/αi−1. The challenge ci is chosen and
the acceptance probability εi+1 = εi+1(ci) estimated during the loop in lines 12−25. We define the
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following probabilities in one iteration of the loop.

p0 = Pr
[
count < λTi

ε

αi

]
,

p1 = Pr
[
count ≥ λTi

ε

αi
and εi+1(ci) ≥

ε

αi

]
,

p2 = Pr
[
count ≥ λTi

ε

αi
and εi+1(ci) <

ε

αi

]
.

So p0, p1 and p2 are the probabilities of continuing the loop, choosing a “good” challenge ci, and
choosing a “bad” challenge, respectively. Note that p0 + p1 + p2 = 1. By the heavy rows argument,
with probability at least 1− 1/

√
α− n/p, εi+1(ci) ≥ ε/(

√
α · αi−1). Therefore and by the Chernoff

bound,

p1 = Pr
[
count ≥ λTi

ε

αi
and εi+1 ≥

ε

αi

]
≥ Pr

[
count ≥ λTi

ε

αi
and εi+1 ≥

ε√
α · αi−1

]
= Pr

[
εi+1 ≥

ε√
α · αi−1

]
Pr

[
count ≥ λTi

ε

αi

∣∣∣∣ εi+1 ≥
ε√

α · αi−1

]
≥
(

1− 1√
α
− n

p

)
Pr

[
count ≥ λTi

ε

αi

∣∣∣∣ εi+1 ≥
ε√

α · αi−1

]
≥
(

1− 1√
α
− n

p

)
Pr

[
count ≥ λ√

α
Tiεi+1

∣∣∣∣ εi+1 ≥
ε√

α · αi−1

]
≥
(

1− 1√
α
− n

p

)(
1− Pr

[
count ≤ λ√

α
Tiεi+1

∣∣∣∣ εi+1 ≥
ε√

α · αi−1

])
≥
(

1− 1√
α
− n

p

)(
1− exp

(
−(1− λ/

√
α)2

2
Tiεi+1

))
≥
(

1− 1√
α
− n

p

)(
1− exp

(
−(
√
α− λ)2

2
√
α

Ti
ε

αi

))
= p′1

On the other hand we find for p2,

p2 = Pr
[
εi+1 <

ε

αi

]
Pr
[
count ≥ λTi

ε

αi

∣∣∣ εi+1 <
ε

αi

]
≤ Pr

[
count ≥ (1 + δ)Tiεi+1

∣∣∣ εi+1 <
ε

αi

]
≤ exp

(
−1

3
min(δ, δ2)εi+1Ti

)
where we have set δ > 0 such that (1 + δ)εi+1 = λε/αi, i.e. δ = λε

αiεi+1
− 1. We want to bound

min(δ, δ2)εi+1 from below. Notice that

δ2εi+1 =
λ2ε2

α2iεi+1
− 2λε

αi
+ εi+1

is strictly decreasing on the interval εi+1 ∈ [0, ε/αi[. Hence,

δ2εi+1 >
λ2ε

αi
− 2λε

αi
+

ε

αi
=

ε

αi
(λ− 1)2.
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Moreover, δεi+1 > (λ− 1) ε
αi

and therefore

p2 < exp

(
−(λ− 1)2

3
Ti
ε

αi

)
= p′2.

We set λ such that the arguments of the exponential function in p′1 and p′2 are equal; that is,

(
√
α− λ)2

2
√
α

=
(λ− 1)2

3
.

Then p′1 = (1 − 1/
√
α − n/p)(1 − p′2). With these probabilities we now calculate the probability

that the loop ends with a bad ci. It is given by

pbad =
∞∑
j=0

pk0p2 =
p2

1− p0
=

p2
p1 + p2

=
1

1 + p1/p2
<

1

1 + p′1/p
′
2

=
p′2

p′1 + p′2
.

The probability that the first-level tree-finder(1) chooses n1 good challenges c1 is (1− pbad)n1 .
Under this condition our assumption ε2 ≥ ε/α is true for the second-level tree finders and they
all choose only good challenges with probability (1 − pbad)n1n2 . Write N =

∑µ−1
i=1 (n1 . . . ni) ≤∑µ−1

i=1 n
i = nµ−n

n−1 < nµ = (2logn)µ = (2µ)logn = llogn for n = max1≤i≤µ−1 ni. We see that with

probability (1− pbad)N only good challenges are chosen in the whole execution of the tree-finding
algorithm and the assumption is true for all invocations of tree-finder(i). Now, by the Bernoulli
inequality,

(1− pbad)N ≥ 1−Npbad > 1− Np′2
p′2 + p′1

= 1− Np′2
p′2 + (1− 1/

√
α− n/p)(1− p′2)

> 1− Np′2
1− 1/

√
α− n/p

,

which is bigger than 1/2 if p′2 ≤ (1− 1/
√
α− n/p)/(2N), which in turn is implied by

Ti =
3

(λ− 1)2
αi

ε
ln

(
2N

1− 1/
√
α− n/p

)
= O

(
llogα+logn

ε

)
(l→∞).

The expected number of iterations of the loop in lines 12− 25 under the condition that a good ci
is chosen is

∞∑
j=1

j
pj−10 p1

p1/(1− p0)
= (1− p0)

∞∑
j=1

jpj−10

=
1

1− p0
=

1

p1 + p2

<
1

p′1
=

1

(1− 1/
√
α− n/p)(1− p′2)

= O(1)
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and each iteration takes time Ti + 1. So with probability at least 1/2 the conditioned expected
runtime of the whole tree finding algorithm is at most

t =

µ−1∑
i=1

ni
1

p′1
(Ti + 1) +

nµ−1nµ
ε/αµ−1 − nµ/p

<
1

p′1

µ−1∑
i=1

niTi +
1

p′1
llogn +

nµ
n

llogn+logα

ε

=
1

p′1

3

(λ− 1)2
1

αn− 1
ln

(
2N

1− 1/
√
α− n/p

)
llogn+logα

ε

+
nµ
n

llogn+logα

ε
+

1

p′1
llogn

= O

(
llogn+logα log l

ε

)
.

Here we have used ε ≥ αµnµ/((α − 1)p) which implies ε/αµ−1 − nµ/p ≥ ε/αµ = ε/llogα. When
we are not so lucky and some bad challenges are chosen the algorithm might run for a long time
but we just limit the runtime to 2t. Then the probability for obtaining a full n-tree of accepting
transcripts is at least 1

2(1− 1
2) = 1

4 since the probability that an algorithm with expected runtime
t runs longer than 2t is at most 1/2. Notice that in expected time 8t we can obtain an n-tree of
accepting transcripts. ut

Example. The implied constant in the big-O statement for the runtime of the extractor is readily
computed from the formulas in the proof of Lemma 3.2. For example in the case where p ≈ 2256,
n = 4, l = 225 and α = 1.3, one finds that λ ≈ 1.075 and the implied constant is about 1564.

4 Zero-Knowledge Inner Product Proof

In an inner product proof there is a commitment t = ~g~v1~h~v2uρ to two vectors whose inner product
x = 〈~v1, ~v2〉 is publicly known. The goal is to prove knowledge of an opening to t that really
fulfills this inner product relation. In this section we give a variant of the Bulletproof inner product
proof which differs in that it is zero-knowledge. In the original protocol, after folding the vectors
down to just 1-dimensional elements, the prover reveals the opening to the commitment. The main
difference of the modified protocol from this section is that instead of revealing the opening it
uses a Schnorr-type proof to prove knowledge of an opening in zero-knowledge, in a way that also
proves the necessary product relation. With a zero-knowledge inner product proof at hand we
can significantly simplify our main protocol compared to the similar Bulletproof range proof from
[BBB+17]. For example, our proof is only three round compared to the five rounds of the range
proof. The advantage stems from the fact that the secret vectors do not have to be blinded which
is the reason for much of the complication in the Bulletproof range proof. We write .Π〈·,·〉(·; ·) for
our inner product proof protocol, which is detailed in Figure 1.

The length l of the secret vectors ~v1, ~v2 is assumed to be a power of two. In the main protocol
from Section 5 we need an inner product proof for vectors of arbitrary length but it is trivial to
achieve this by just padding the vectors with zeros. If t = ~g~v1~h~v2uρ is a commitment to two vectors
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of length l which is not a power of two, we can just interpret this as a commitment to vectors of
length 2dlog le over more generators ~g′, ~h′. Notice that the inner product of the padded vectors stays
the same.

Prover P Verifier V

Inputs:

~g,~h ∈ Gl;u ∈ G ~g,~h, u, t, x

~v1, ~v2 ∈ Zlp; ρ ∈ Zp

t = ~g~v1~h~v2uρ

x = 〈~v1, ~v2〉

a� a
$← G

t′ = tax t′ = tax

The parties run (g, h, t′′; v1, v2, ρ
′) = folding(~g,~h, a, u, t′;~v1, ~v2, ρ) where the se-

crets v1, v2, ρ
′ ∈ Zp are such that t′′ = gv1hv2av1v2uρ

′
.

y1, y2, σ, σ
′ $← Zp

w = gy1hy2ay1v2+y2v1uσ

w′ = ay1y2uσ
′ w,w′ -

c� c
$← Z×p

z1 = y1 + cv1

z2 = y2 + cv2

τ = cρ′ + σ + c−1σ′ z1, z2, τ -

(t′′)cw(w′)c
−1 ?

= gz1hz2ac
−1z1z2uτ

Fig. 1. Zero-knowledge inner product Bulletproof .Π〈·,·〉(·; ·). It proves knowledge of an opening to a Pedersen com-

mitment t = ~g~v1~h~v2uρ such that the vectors ~v1 and ~v2 fulfill an inner product relation 〈~v1, ~v2〉 = x.

Theorem 4.1. The protocol given in Figures 1 and 2 is complete, perfectly honest verifier zero-
knowledge and generalized special sound under the discrete-log assumption. So there is an extractor
E that, when given rewindable black-box access to a deterministic prover P∗, either outputs an
opening ~v∗1, ~v

∗
2 ∈ Zlp, ρ∗ ∈ Zp of t, i.e. t = ~g~v

∗
1~h~v

∗
2uρ

∗
, such that x = 〈~v∗1, ~v∗2〉, or a non-trivial

discrete-log relation between ~g,~h, u and two auxiliary generators e, f ∈ G. The extractor E runs
in expected time at most O(l2+logα log l/ε) for some α > 1, for example α = 1.3, when P∗ has
acceptance probability ε ≥ 10 α

α−1 l
logα/p. Running P∗ once is assumed to take unit time.

Proof. The subprotocol without the first move is a 2µ + 1 move protocol for µ = log(l) + 1,
which fulfills the prerequisites of the forking lemma given in Lemma 3.2. After sending a uniformly
random generator a = eb of the group G for a uniform b ∈ Zp, the extractor E can thus use
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Prover P Verifier V

Inputs:

~g,~h ∈ Gl; a, u ∈ G ~g,~h, a, u, t

~v1, ~v2 ∈ Zlp; ρ ∈ Zp

t = ~g~v1~h~v2a〈~v1,~v2〉uρ

Outputs:

g, h ∈ G g, h, t′

v1, v2, ρ
′ ∈ Zp

t′ = gv1hv2av1v2uρ
′

If l > 1, define l′ = l
2

and write ~g =
(
~gt
~gb

)
, ~h =

( ~ht
~hb

)
, ~vi =

( ~vi,t
~vi,b

)
, where ~gj ,~hj , ~vi,j ∈

Gl
′

for i = 1, 2, j = t, b. Then,

σ−1, σ1
$← Zp

t−1 = ~g
~v1,b
t

~h
~v2,t
b a〈~v1,b,~v2,t〉uσ−1

t1 = ~g
~v1,t
b

~h
~v2,b
t a〈~v1,t,~v2,b〉uσ1 t−1, t1 -

c� c
$← Z×p

~v′1 = ~v1,t + c−1~v1,b

~v′2 = ~v2,t + c~v2,b

ρ′′ = c−1σ−1 + ρ+ cσ1

and both parties compute ~g′ = ~gt ◦ ~gcb , ~h′ = ~ht ◦ ~hc
−1

b and t′′ = tc
−1

−1 tt
c
1. They re-

cursively run (g, h, t′; v1, v2, ρ
′) = folding(~g′,~h′, a, u, t′′;~v′1, ~v

′
2, ρ
′′) where P knows

~v′1, ~v′2, ρ′′ such that t′′ = (~g′)~v
′
1(~h′)~v

′
2a〈~v

′
1,~v
′
2〉uρ

′′
.

Else g = ~g, h = ~h ∈ G, and P knows v1 = ~v1, v2 = ~v2, ρ
′ = ρ ∈ Zp, such that

t′ = t = gv1hv2av1v2uρ
′
.

Fig. 2. Bulletproof folding protocol folding(~g,~h, a, u, t;~v1, ~v2, ρ). This reduces a Pedersen multi-commitment of the

form t = ~g~v1~h~v2a〈~v1,~v2〉uρ to a new commitment t′ = gv1hv2av1v2uρ
′

with the same (inner) product structure but
in dimension 1. Furthermore, given an opening for t′ having the correct inner product structure, one can extract an
opening for t that also has the inner product structure by using the extractor from the forking lemma (Lemma 3.2).
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tree-finder to obtain a (4, . . . , 4, 5)-tree of accepting transcripts of this subprotocol. More preci-
sely, with probability at least 1/2 over the choice of a, the verifier V will accept with probability
at least ε/2 ≥ αµ

α−1nµ/p. Therefore tree-finder will be successful with probability at least 1/8. If
it is not successful, E restarts.

Consider the 5 accepting transcripts from neighboring leaves with the same parent node. Only
the last challenges differ in the transcripts and we have the 5 verification equations

(t′′)ciw(w′)c
−1
i = gz1,ihz2,iac

−1
i z1,iz2,iuτi (13)

for i = 1, . . . , 5 with distinct ci ∈ Zp. Let (λ1, λ2, λ3)
T ∈ Z3

p be the solution of the linear system 1 1 1
c1 c2 c3
c−11 c−12 c−13

λ1λ2
λ3

 =

0
1
0

 .

It exists because it is well-known that the determinant of this Vandermonde matrix is equal to
−(c1c2c3)

−1(c1− c2)(c1− c3)(c2− c3) 6= 0. Now raise the first 3 equations in 13 for i = 1, 2, 3 to the
powers of λi and multiply them. This gives

t′′ = gv
∗
1hv

∗
2ax

∗
uτ
∗

where for example v∗1 =
∑3

i=1 λiz1,i. In the same manner we can extract openings for w and w′,

w = gy
∗
1hy

∗
2ax

∗
wuσ

∗
,

w′ = g(y
′
1)
∗
h(y
′
2)
∗
ax
∗
w′u(σ

′)∗ .

With these openings to t′′, w and w′ we can reconstruct the equations in (13) and get

(t′′)ciw(w′)c
−1
i

= gciv
∗
1+y

∗
1+c

−1
i (y′1)

∗
hciv

∗
2+y

∗
2+c

−1
i (y′2)

∗
acix

∗+x∗w+c
−1
i x∗

w′uciρ
∗+σ∗+c−1

i (σ′)∗

= gz1,ihz2,iac
−1
i z1,iz2,iuτi

By comparing exponents we either find a non-trivial discrete-log relation between g, h, a, u, which
gives a relation between ~g,~h, u, e since E knows expressions of g, h, a, u as powers of ~g,~h, u, e. Or
we have

cix
∗ + x∗w + c−1i x∗w′ = c−1i z1,iz2,i

= c−1i
(
civ
∗
1 + y∗1 + c−1i (y′1)

∗) (civ∗2 + y∗2 + c−1i (y′2)
∗) .

Multiplying this equation by c3i yields a polynomial of degree 4 which has five roots ci. Hence it
must be the zero polynomial and from the leading coefficient we get x∗ = v∗1v

∗
2 and thus

t′′ = gv
∗
1hv

∗
2av

∗
1v
∗
2uτ

∗
.

The extractor performs this process for all parents in the second-to-last level µ− 1 = log(l) of
the tree of accepting transcripts. Then, with the same techniques and as is detailed in [BBB+17],

18



the extractor can invert all the log(l) folding steps and either compute a non-trivial discrete-log
relation or an opening ~v1, ~v2, x

∗, ρ∗ of t′ = tax,

tax = ~g~v
∗
1~h~v

∗
2ax

∗
uρ
∗
,

such that x∗ = 〈~v1, ~v2〉. If x∗ = x then E has an opening of t as stated in the theorem. If not, E
starts over from scratch but samples a challenge generator a′ = f b

′ ∈ Zp for the first move. By this
E obtains an opening

t(a′)x = ~g~v
∗∗
1 ~h~v

∗∗
2 (a′)x

∗∗
uρ
∗∗
,

and can compute
~g~v
∗
1−~v∗∗1 ~h~v

∗
2−~v∗∗2 eb(x

∗−x)f b
′(x∗∗−x)uρ

∗−ρ∗∗ = 1,

which is a non-trivial discrete-log relation. Not taking into account the simple arithmetic over Zp,
the expected running time of E is at most 16 times the expected running time of tree-finder.

We turn to the zero-knowledge property. The first message by the verifier containing the gene-
rator a and all the messages in the folding protocol are independently uniformly random. This is
because all the cross-terms t−1, t1 are independently blinded with independently random factors

uσ−1 and uσ1 . So the simulator can just choose a
$← G and all messages in the folding protocol

uniformly randomly. From these messages the honest verifier computes the generators g, h and
the commitment t′′. Now it remains to simulate the Schnorr-type protocol at the end for proving
knowledge of an opening of t′′ that obeys the product relation. This is made possible by how we

set up the verification equation. The simulator first samples c
$← Zp, and then z1, z2

$← Zp, which
are independent from the previously chosen messages because of y1 and y2, respectively. Then he

chooses w′
$← G which is independent because of the blinding factor uσ

′
. Last the simulator samples

τ
$← Zp which is still uniformly random because of σ. Now w ∈ G is not independent anymore but

instead fully determined by the previous choices and the simulator can compute it correctly as

w = (t′′)−c(w′)−c
−1
gz1hz2ac

−1z1z2uτ ,

which clearly makes the verification equation true.

5 The Main Protocol

In this section we present in detail our protocol to prove knowledge of a matrix S ∈ Rm×kq consisting
of short polynomials of infinity norm less than B such that

AS = T over Rq (14)

where A ∈ Rn×mq and T ∈ Rn×kq are public.
First, when A, S, T are lifted to matrices over Z[X], the equation is true modulo q and f . So

there are matrices R1,R2 over Z[X] such that

AS + qR1 + fR2 = T over Z[X]. (15)

More precisely, notice that T−AS ∈ (Z[X])n×k consists of polynomials of degree at most 2(d− 1)
and infinity norm less than mdBq/2 when we use central representatives for coefficients in Zq.
Moreover, T−AS is a multiple of f modulo q. So we can exactly divide T−AS by f over Zq[X] to
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obtain R2 with polynomials of degree at most d− 2 and coefficients in {−(q− 1)/2, . . . , (q− 1)/2}.
Then, dividing T − AS − fR2 by q yields R1 with polynomials of degree at most 2(d − 1) and
infinity norm less than (mdB + d ‖f‖∞)/2. Next, for a prime p we have

AS + qR1 + fR2 = T over Zp[X], (16)

and then for an α ∈ Zp the equation

A(α)S(α) + qR1(α) + f(α)R2(α) = T(α) over Zp[X]. (17)

Conversely, by the Schwartz-Zippel lemma, if Equation (17) is true for a uniformly random α, then
Equation (16) holds with probability at least 1− 2(d− 1)/p. In this case, if p ≥ 2(mdB+ d ‖f‖∞)q,
Equation (15) is true since no reduction modulo p takes place, and Equation (14) follows. So in
order to prove knowledge of a matrix S ∈ Sm×kB as in Equation (14), it suffices to prove knowledge
of matrices S, R1 and R2 of integer polynomials whose coefficients have absolute value less than B,
B1 = (mdB+d ‖f‖∞)/2 and B2 = q/2, respectively, such that Equation (17) is true for a uniformly
random α.

We describe our strategy for conducting such a proof. If we expand all polynomials in the secret
matrices S, R1, R2 to their coefficient row vectors of dimensions d, 2d− 1 and d− 1, respectively,
and hence consider the matrices as integer matrices S, R1, R2, then, with ~αd = (1, α, . . . , αd−1)T ,
we can equivalently write

A(α)S(Ik ⊗ ~αd) + qR1(Ik ⊗ ~α2d−1) + f(α)R2(Ik ⊗ ~αd−1) = T(α). (18)

Now a natural strategy would be to produce a Pedersen multi-commitment over a group of order
p to the secret matrices S, R1, R2. Then one could prove that the matrices fulfill Equation (18) by
reducing them to integers using in the order of log(mkd) bulletproof folding steps. In addition one
would also need to give a range proof that the coefficients of the matrices are sufficiently small. For
increased efficiency we combine these proofs in one single proof.

The usual method for range proofs consists of expressing the coefficients by their binary repre-
sentations so that the range follows from the number of bits used per coefficient. The proof that this
representation really only contains bits in {0, 1} is most easily done via an inner product proof as
in [BBB+17]. Therefore we want to reduce Equation (18) to an inner product equation which then
can be integrated into the range proof. To this end we first multiply from both sides by uniformly
random vectors ~β ∈ Zkp and ~γ ∈ Znp , so that

~γTA(α)S(~β ⊗ ~αd) + q~γTR1(~β ⊗ ~α2d−1) + f(α)~γTR2(~β ⊗ ~αd−1) = ~γTT(α)~β.

This equation implies Equation (18) with probability at least 1− 2/p. Next we serialize the secret
matrices to column vectors ~s ∈ Zmkd, ~r1 ∈ Znk(2d−1) and ~r2 ∈ Znk(d−1) in row-major order. With
these the last equation is equivalent to the inner product equation〈

A(α)T~γ ⊗ ~β ⊗ ~αd, ~s
〉

+
〈
q~γ ⊗ ~β ⊗ ~α2d−1, ~r1

〉
+
〈
f(α)~γ ⊗ ~β ⊗ ~αd−1, ~r2

〉
= ~γTT(α)~β.
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Finally, we expand each secret vector one more time and replace the coefficients by their binary
representation using two’s complement for negative numbers. We get〈

A(α)T~γ ⊗ ~β ⊗ ~αd ⊗~2b,Binaryb(~s)
〉

+
〈
q~γ ⊗ ~β ⊗ ~α2d−1 ⊗~2b1 ,Binaryb1(~r1)

〉
+
〈
f(α)~γ ⊗ ~β ⊗ ~αd−1 ⊗~2b2 ,Binaryb2(~r2)

〉
=~γTT(α)~β, (19)

where ~2b = (1, 2, . . . , 2b−2,−2b−1)T , b = dlog(B)e + 1, b1 = dlog(B1)e+ 1 = dlog(mdB + d ‖f‖∞)e
and b2 = dlog(B2)e+1 = dlog(q)e. For the sake of clarity in what follows we concatenate the public
and secret vectors and define

~v = A(α)T~γ ⊗ ~β ⊗ ~αd ⊗~2b ‖ q~γ ⊗ ~β ⊗ ~α2d−1 ⊗~2b1 ‖ f(α)~γ ⊗ ~β ⊗ ~αd−1 ⊗~2b2 ,
~s1 = Binaryb(~s) ‖ Binaryb1(~r1) ‖ Binaryb2(~r2)

so that we can write 〈~v,~s1〉 = ~γTT(α)~β.

It remains to prove that the secret vector ~s1 only contains coefficients in {0, 1}. As usual
this is done by proving that there is a second vector ~s2, the vector with all bits flipped, such
that ~s1 ◦ ~s2 = ~0 and ~s1 + ~s2 = ~1. The first property holds with probability at least 1 − 1/p if
〈~ϕ,~s1 ◦ ~s2〉 = 〈~ϕ ◦ ~s2, ~s1〉 = 0 for a uniformly random vector ~ϕ. Similarly, the second property follows
with overwhelming probability from 〈~ϕ,~s1 + ~s2〉 = 〈~ϕ,~s1〉+〈~ϕ ◦ ~s2,~1〉 = 〈~ϕ,~1〉. We incorporate both
inner product equations into Equation (19) and arrive at〈

~v + ~ϕ ◦ ~s2 + ψ~ϕ,~s1 + ψ~1
〉

= ~γTT(α)~β + ψ
〈
~v,~1
〉

+ (ψ + ψ2)
〈
~ϕ,~1
〉

where ψ ∈ Zp is another uniformly random field element with the purpose of separating the three
inner product equations.

When given a Pedersen multi-commitment to the vectors ~s2 and ~s1 it is easy to compute a
commitment to ~v1 = ~v+ ~ϕ ◦~s2 +ψ~ϕ and ~v2 = ~s1 +ψ~1. It might be unclear at first how to multiply
~s2 componentwise with ~ϕ inside the multi-commitment, which means each coefficient has to be
multiplied by a different value. There is a standard trick to do this. Suppose ~g ∈ Gl is the vector of
generators underlying ~s2. Then we just reinterpret this part of the commitment as a commitment
over generators ~g′ = ~g~ϕ

−1
. Since ~g~s2 = (~g~ϕ

−1
)~ϕ◦~s2 = (~g′)~s2 , our original commitment containing ~s2

over ~g thus becomes a commitment containing ~ϕ◦~s2 over ~g′. Now given the commitment to ~v1 and ~v2
we prove that the inner product of these vectors of dimension l = mkdb+nk(2d−1)b1+nk(d−1)b2
is equal to x = ~γTT(α)~β + ψ〈~v,~1〉+ (ψ + ψ2)〈~ϕ,~1〉. It follows with overwhelming probability that
~s1 gives rise to a matrix S ∈ Rm×kq of short polynomials such that AS = T over Rq. For the
inner product proof we make use of Bulletproofs, which have communication cost logarithmic in
l. But in contrast to the range proof in [BBB+17], we do not blind the vectors and instead use a
variant of the Bulletproof inner product proof that is zero knowledge. Here one first reduces the
vectors to dimension 1 and then uses a zero-knowledge Schnorr-type proof for the one-dimensional
base case. See Figure 3 for the complete protocol and Theorem 5.1 for its security. We state the
zero-knowledge inner product Bulletproof in Figure 1.
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Prover P Verifier V
Inputs:

A ∈ Rn×mq ,S ∈ Sm×kB A,T, b, b1, b2, l, ~g,~h, u

T = AS ∈ Rn×kq

b = dlog(B)e+ 1

b1 = dlog(mdB + d ‖f‖∞)e
b2 = dlog(q)e
l = mkdb+ nk(2d− 1)b1

+ nk(d− 1)b2

~g,~h ∈ Gl, u ∈ G

R2 = (T−AS)/f over Zq[X]

R1 = (T−AS− fR2)/q over Z[X]

~s = Serialize(S) ∈ Zmkd

~r1 = Serialize(R1) ∈ Znk(2d−1)

~r2 = Serialize(R2) ∈ Znk(d−1)

~s1 = Binaryb(~s) ‖ Binaryb1(~r1)

‖ Binaryb2(~r2)

~s2 = ~s1 +~1 ∈ Zl2 (XOR)

ρ
$← Zp

w = ~g~s2~h~s1uρ w -

α
$← Z×p , ~β

$← (Z×p )k, ~γ
$← (Z×p )n

α, ~β,~γ, ~ϕ, ψ� ~ϕ
$← (Z×p )l, ψ

$← Z×p

~g′ = ~g~ϕ
−1

~g′ = ~g~ϕ
−1

~v = A(α)T~γ ⊗ ~β ⊗ ~αd ⊗~2b ~v = A(α)T~γ ⊗ ~β ⊗ ~αd ⊗~2b
‖ q~γ ⊗ ~β ⊗ ~α2d−1 ⊗~2b1 ‖ q~γ ⊗ ~β ⊗ ~α2d−1 ⊗~2b1
‖ f(α)~γ ⊗ ~β ⊗ ~αd−1 ⊗~2b2 ∈ Zlp ‖ f(α)~γ ⊗ ~β ⊗ ~αd−1 ⊗~2b2

t = w(~g′)~v+ψ~ϕ~hψ t = w(~g′)~v+ψ~ϕ~hψ

~v1 = ~v + ~ϕ ◦ ~s2 + ψ~ϕ

~v2 = ~s1 + ψ~1

x = 〈~v1, ~v2〉 x = ~γTT(α)~β + ψ
〈
~v,~1
〉

+ (ψ + ψ2)〈~ϕ,~1〉 ∈ Zp

The parties run the zero-knowledge inner product proof .Π〈·,·〉(~g
′,~h, u, t, x;~v1, ~v2, ρ) and the verifier V accepts if he

accepts in .Π〈·,·〉(·; ·).

Fig. 3. Discrete-log based zero-knowledge proof of knowledge of a short solution to a matrix equation over Rq.
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Theorem 5.1. If p ≥ 2(mdB+d ‖f‖∞)q, then the protocol in Figure 3 is complete, perfectly honest
verifier zero-knowledge and generalized special sound under the discrete-log assumption in the sense
that there is an extractor E with the following properties. When given rewindable black-box access
to a deterministic prover P∗ that convinces the honest verifier with probability ε ≥ 100l/p, E either
outputs a solution S∗ ∈ Rm×kq to AS∗ = T, which consists of polynomials whose coefficients fit in
b = dlog(B)e+ 1 bits, or a non-trivial discrete-log relation between generators of the group G. The
extractor E runs in expected time at most O(l2.4 log l/ε). Running P∗ once is assumed to take unit
time.

Proof. Completeness is clear from the discussion at the beginning of Section 5 and the zero-
knowledge property follows immediately from the fact that the inner product proof is honest verifier
zero-knowledge; see Theorem 4.1. Let us now prove soundness. The extractor E runs P∗, sends uni-
formly random challenges in the second move and then uses the extractor for the inner product
proof assuming acceptance probability ε/2 to get an opening for t, c.f. Theorem 4.1. From an avera-
ging argument we know that for at least half of the challenges in the second move the inner product
proof π is valid with probability at least ε/2. Then, since ε/2 > 10αllogα/((α − 1)p) for α ≥ 1.3,
the conditions of Theorem 4.1 are met. So after an expected number of 2 trials we can assume that
E either has a non-trivial discrete-log relation or an opening ~v∗1, ~v

∗
2, ρ
∗ of t, i.e.

t = (~g′)~v
∗
1~h~v

∗
2uρ

∗
,

such that 〈~v∗1, ~v∗2〉 = x. Since t = w(~g′)~v+ψ~ϕ~hψ, we get the opening ~ϕ◦~s∗2 = ~v∗1−~v−ψ~ϕ, ~s∗1 = ~v∗2−ψ~1,
ρ∗ for w such that

〈~v,~s∗1〉+
〈
~v, ψ~1

〉
+ 〈~ϕ ◦ ~s∗2, ~s∗1〉+

〈
~ϕ ◦ ~s∗2, ψ~1

〉
+ 〈ψ~ϕ,~s∗1〉+

〈
ψ~ϕ, ψ~1

〉
= 〈~v,~s∗1〉+ 〈~ϕ,~s∗1 ◦ ~s∗2〉+ ψ 〈~ϕ,~s∗1 + ~s∗2〉+ ψ2

〈
~ϕ,~1
〉

+ ψ
〈
~v,~1
〉

= ~γTT(α)~β + ψ
〈
~v,~1
〉

+ (ψ + ψ2)
〈
~ϕ,~1
〉
.

The last equation is equivalent to

〈~v,~s∗1〉+ 〈~ϕ,~s∗1 ◦ ~s∗2〉+ ψ
〈
~ϕ,~s∗1 + ~s∗2 −~1

〉
= ~γTT(α)~β,

which can be interpreted as a multivariate polynomial P over Zp in n + k + l + 2 variables that

evaluates to zero at (α, ~β,~γ, ~ϕ, ψ). If the polynomial is the zero polynomial it follows that

~s∗1 ◦ ~s∗2 = 0 and ~s∗1 + ~s∗2 = ~1

so ~s∗1 is a binary vector with entries s∗1,i ∈ {0, 1}. Write S∗ ∈ (Z[X])m×k for the polynomial matrix
in which the coefficient of Xν , 0 ≤ ν ≤ d−1, of the polynomial in the (i, j)-th entry, 0 ≤ i ≤ m−1,
0 ≤ j ≤ k − 1, is given by

s∗1,bdki+bdj+bν + s∗1,bdki+bdj+bν+12 + · · ·+ s∗1,bdki+bdj+bν+(b−2)2
b−2

− s∗1,bdki+bdj+bν+(b−1)2
b−1.
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Proceed similarly for R∗1,R
∗
2 ∈ (Z[X])n×k starting from coefficient s∗1,bdkm and s∗1,bdkm+b1(2d−1)kn of

~s∗1, respectively. In other words, S∗,R∗1 and R∗2 are such that

Binaryb(Serialize(S∗)) ‖ Binaryb1(Serialize(R∗1)) ‖ Binaryb2(Serialize(R∗2))

= ~s∗1.

By construction the polynomials in S∗, R∗1 and R∗2 have coefficients that fit in b, b1 and b2 bits,

respectively. Then, since 〈~v,~s∗1〉 = ~γTT(α)~β, it follows by inspection

~γT
(
AS∗ + qR∗1 + fR∗2 −T

)
(α)~β = 0 in Zp.

The coefficient of Xν of the polynomial in the (i, j)-th entry of the matrix in the middle corresponds
to the coefficient of ανβjγi of our multivariate polynomial P that we assume to be zero. So,

AS∗ + qR∗1 + fR∗2 = T over Zp[X]

but from our assumption on p this equation is even true over Z[X] and we finally get AS∗ = T
over Rq.

It remains to consider the case where P 6= 0. Note that in this case the polynomial is of total
degree at most 2d. Consequently, it can evaluate to zero at no more than 2dpn+k+l+1 points in
Zn+k+l+2
p (this is just a counting version of the Schwartz-Zippel lemma). Now the extractor E

reruns P∗ but sends a uniform challenge (α, ~β,~γ, ~ϕ, ψ) ∈ Zn+k+l+2
p from the set of non-roots of

P . Then E again tries to extract from the inner product proof and continues in this fashion until
he is successful for a second time. At least for a fraction of 1

2 −
2d
p of the non-roots, the inner

product proof is accepted with probability at least ε/2. So after an expected number of roughly 2
trials E will get a non-trivial discrete-log relation or new multivariate polynomial P ′ that is zero
outside of the small set of roots of our original polynomial P so that P ′ must be different to P .
But then, since P and P ′ are in one-to-one correspondence to openings of the commitment t, we
must have two different openings and can compute a non-trivial discrete-log relation. We see the
total expected runtime of E is at most 4 times the expected runtime of the extractor of the inner
product proof. ut

5.1 Proof size

The communication size of our protocol from Figure 3 is very small. Instead of all the individual
challenges in the second move the verifier can just send a short seed that is expanded to the
challenges with the help of a XOF. Moreover, in the non-interactive version of the protocol via the
Fiat-Shamir transform the challenges are expanded from public information and the first message.
So such a non-interactive proof only consists of the first message and the inner product proof of size
logarithmic in l. Simple counting shows that one full non-interactive proof consists of 2dlog le + 3
group elements and 3 elements of Zp. If a 256 bit elliptic curve is used for G, then this results in
64dlog le+ 192 bytes per proof.

5.2 Number of exponentiations

Computing multi-exponentiations over G is by far the most time-consuming operation in our main
protocol. We count the number of exponentiations to be performed by the prover and verifier in

24



order to estimate the time needed to execute the protocol. The prover computes l exponentiations
for ~g′, l + 1 exponentiations for t and only 1 exponentiation for w (~s1 and ~s2 are binary) plus the
exponentiations in the inner product proof. The verifier computes 2l+ 1 exponentiations and those
from the inner product proof. In the inner product proof the prover has to compute 2 · 2dlog le−i +
6 exponentiations in the i-th folding level, i = 0, . . . , dlog le − 1. This amounts to 4 · 2dlog le +
6dlog le − 4 < 8l + 6 log l + 2 exponentiations for the full Bulletproof folding. In addition there are
6 exponentiations needed for the Schnorr-type proof. The verifier performs 4dlog le < 4 log l + 1
exponentiations for the folding protocol and 6 exponentiations for the verification equation. This
can be heavily optimized by delaying exponentiations; see [BBB+17, Section 6.2]. We conclude
that the total exponentiation costs for the prover and verifier are less than 10l + 6 log l + 10 and
2l + 4 log l + 10 exponentiations.

5.3 Example

We return to the example of a verifiable encryption scheme from Section 1.5. In the case of verifiable
encryption, one has to prove a matrix equation A~s = ~t with parameters n = 2, m = 4, k = 1,
B = 4. For the ring Rq, a common example for encrypting messages that are binary polynomials
(c.f. [ADPS16]) is setting f = X1024 + 1 and q being a prime of about 13 bits, and p = 2. With
these parameters we find the length l of the secret vectors ~s1 and ~s2 in the inner product proof
to be equal to 100296. It then follows from above that the prover and verifier need to compute
about 724986 and 200667 exponentiations to run our protocol for this application. With current
CPUs one exponentiation on a 256 bit elliptic curve can be computed in about 35000 cycles (see
https://bench.cr.yp.to/results-dh.html), which amounts to roughly 85000 exponentiations
per second. So computing one of our proofs should be possible in less than 10 seconds. This can
then be improved by using specialized algorithms for computing multi-exponentiations, in particular
Pippenger’s algorithm [Pip80]. The size of the proof is 1.25 kilobytes.
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