
BlAnC: Blockchain-based Anonymous and Decentralized Credit
Networks

Gaurav Panwar, Satyajayant Misra, Roopa Vishwanathan

New Mexico State University

Las Cruces, New Mexico

{gpanwar,misra,roopav}@nmsu.edu

ABSTRACT
Distributed credit networks, such as Ripple [18] and Stellar [21], are

becoming popular as an alternative means for financial transactions.

However, the current designs do not preserve user privacy or are

not truly decentralized. In this paper, we explore the creation of

a distributed credit network that preserves user and transaction

privacy and unlinkability. We propose BlAnC, a novel, fully de-

centralized blockchain-based credit network where credit transfer

between a sender-receiver pair happens on demand. In BlAnC, mul-

tiple concurrent transactions can occur seamlessly, and malicious

network actors that do not follow the protocols and/or disrupt

operations can be identified efficiently.

We perform security analysis of our proposed protocols in the

universal composability framework to demonstrate its strength,

and discuss how our network handles operational dynamics. We

also present preliminary experiments and scalability analyses.

CCS CONCEPTS
• Security and privacy→ Distributed systems security;

KEYWORDS
Distributed credit network, anonymity, transaction atomicity, blockchain.

ACM Reference Format:
Gaurav Panwar, Satyajayant Misra, Roopa Vishwanathan. 2019. BlAnC:

Blockchain-based Anonymous and Decentralized Credit Networks. In Ninth
ACM Conference on Data and Application Security and Privacy (CODASPY
’19), March 25–27, 2019, Richardson, TX, USA. ACM, New York, NY, USA,

17 pages. https://doi.org/10.1145/3292006.3300034

1 INTRODUCTION
Credit networks are distributed systems of trust between users,

where a user extends financial credit, or guarantees assets to other

users whom it deems credit worthy, with the extended credit propor-

tionate to the amount of trust that exists between the users [2, 24].

Distributed credit networks (DCNs’) are essentially peer-to-peer

lending networks, where users extend credit, borrow money and

commodities from each other directly, while minimizing the role of

banks, clearing-houses, or bourses. The rising popularity of DCNs

stem from their capability to enable direct exchanges between

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODASPY ’19, March 25–27, 2019, Richardson, TX, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6099-9/19/03. . . $15.00

https://doi.org/10.1145/3292006.3300034

users, sidestepping the waiting times and arbitrage fees charged by

traditional, regulated financial institutions, in exchange for users

accepting counter-party credit risks. In a credit network, two users,

Alice and Bob can trade directly with each other, if there exists a

direct trust relationship between them, otherwise a path between

them through network peers, built on credit relationships between

intermediate users, is established to transfer credit.

A DCN provides the basic infrastructure for building distributed

payment networks, where the payment between users could be

remittances of diverse nature (e.g, fiat currency, cryptocurrency,

assets’ transfer, such as stocks and bonds). The goal of such remit-

tance networks is to create a distributed financial ecosystem, best

exemplified by the increasingly popular Ripple payment settlement

network [18].

Credit networks have found use in several applications, such

as designing and securing social networks [13], Sybil tolerant net-

works [24], and content rating systems [8]. Popular blockchain-

based payment settlement networks (e.g., Ripple [18], Stellar [21])

use credit networks as underlying infrastructure to represent credit

between users. Other examples being TrustDavis [3], Bazaar [17],

and Ostra [12]. Furthermore, traditional banking systems have be-

gun integrating blockchain-based payment settlement networks

such as Ripple into their set of services [19]–an increasingly popular

trend.

Conceptually, a credit network can be modeled as a directed

graph where users represent vertices, weighted edges represent the

credit amount that a user is willing to offer its adjacent neighbor,

and the directionality of the edge represents the direction of credit

flow. The amount of credit between a given pair of users is usually

proportional to the degree of trust that exists between them. A user

can route payments to another user over a path in the network that

has sufficient credit. Once a payment gets routed from a sender

to a receiver, all edges along the path will get decremented by the

transmitted amount.

Both centralized and decentralized credit networks currently

exist. In the centralized version [12, 17], a service provider, e.g.,

a bank, constructs and maintains a database of all link weights,

facilitates transactions between users, and performs updates to

users’ credit links post transactions. In the decentralized version [15,

18, 21], users maintain their own credit links, find credit routes

cooperatively, and perform updates locally. Evidently, since there

is no central server to manage the network/users, find paths, and

route payments, operation and maintenance of such distributed

credit networks is more challenging, but the design offers better

privacy guarantees and is intuitively more resilient against failures.

In this paper we focus on this decentralized version.

https://doi.org/10.1145/3292006.3300034
https://doi.org/10.1145/3292006.3300034

Challenges: For broad-based acceptance and use, any credit net-

work has to handle the following three major challenges:

(a) Concurrency: In a credit network, several concurrent transac-

tions could occur (e.g., Ripple’s XRP processes 1500 transactions

per second), with many of them potentially using the same credit

links. The network design ought to support this, while ensuring

the integrity and atomicity of every transaction – ensure either all

credit links get decremented along the path between sender and

receiver, or none at all. This guarantees that the right receiver gets

the payment, and prevents double-spending of credits.

(b) Efficient routing: Routing of a credit payment, requires finding

of a path between a sender and receiver that has sufficient credit, in

an efficient way. This needs to be done in a network where the users

know only their immediate neighbors, and the network topology

is dynamic due to user churn.

(c) Privacy: We believe that, at a minimum, a well-designed DCN

needs to guarantee sender and receiver privacy (does not reveal

their identities), as well as privacy of the amount transacted be-

tween them. The DCN also needs to ensure un-linkability of trans-

actions, guarantee the privacy of the intermediate users in the path,

as well as hide the network topology from adversaries. We note

that today’s blockchain-based networks, such as Ripple make their

entire transaction history and network topology public.

Contributions: In this paper, we present BlAnC, a fully decen-

tralized blockchain-based credit network that provides:

(1) User and transaction privacy, while providing transaction

integrity, and accountability. We also allow users to dynam-

ically choose their transaction amounts, based on current

available liquidity in the network.

(2) On-demand routing, that can swiftly adapt to changing net-

work topology, with quick on-boarding/off-boarding of users,

and very low maintenance overhead.

(3) Capability for concurrent transactions.
(4) Distributed blockchain-based approach to publicly document

transactions and identify malicious actors in transactions,

while preserving both user and transaction privacy.

In essence, we propose an alternative to proposed landmarks based

routing and DCN maintenance techniques [10, 20, 23], by having

a subset of users facilitating transactions, termed routing helpers
(RHs). The set of helpers can change over time, and our protocols are

resilient against possible collusion of the helpers. We also discuss

possible optimizations of our work.

Outline: In Section 2, we review relevant work in the area of

credit networks. In Section 3, we give our systemmodel and assump-

tions. In Section 4, we review the adversary model, and required

privacy/security properties. In Section 5, we present our proto-

cols. In Section 6, we present our security analysis in the universal

composability framework. In Section 7, we analyze the time, space,

message, and communication overheads of BlAnC. In Section 8, we

present our experiments and performance analysis. In Section 9,

we discuss possible optimizations and extensions to BlAnC, and in

Section 10, we conclude the paper, and discuss future work.

2 RELATEDWORK
Since a credit network is essentially a flow network, intuitively, one

can use Ford-Fulkerson method [6], or push-relabel algorithms [7],

for computing available credit on a path, but their computation

costs (O(VE2),O(V 3), respectively, in a graphG(V ,E)) do not scale

well to large, dynamic, distributed networks (millions of nodes).

Prihodko et al. [5] proposed Flare, a routing algorithm for the

Lightning Network, in which each node keeps track of its k neigh-

bors, and maintains links to beacon nodes. Flare reveals the value of
a link to users to all nodes in the neighborhood, and works only for

Bitcoin transactions. Malavolta et al. [11] propose payment-channel

networks that make a tradeoff between privacy and concurrency;

additionally their network topology is publicly known to every user

in the credit network. Designing a distributed credit network, that

maintains user and transaction privacy, while supporting concur-

rency is a challenge.

There is extensive literature on privacy-preserving transactions

in Bitcoin which we do not review here, since credit networks have

different structure and privacy needs as compared to cryptocur-

rencies, which do not require credit links or IOU paths, secure

path-finding, etc. In Bitcoin and other cryptocurrencies, any user

can buy/sell goods and services to other users, whereas in a credit

network, users cannot transact with each other, unless they can find

a path between them. Although, unlike Bitcoin and fiat currency

used by banks, credit networks enable users to transact in different
currencies expeditiously (e.g., 3-5 seconds for XRP payments, vs.

3-5 days for bank wires), and with much lower transaction fees.

Credit networks are broadly divided into centralized and decen-

tralized architectures. In the centralized version, there has been

work into reducing the reliance on the central, trusted server by

using trusted hardware and oblivious computations [14, 24]. In the

distributed setting, mechanisms using landmark routing [23] to

perform route computation between users and landmark(s), and

stitching the paths together to route between users, have been pro-

posed. The landmarks–analogous to real-world banks–have less

control over the network than in the centralized setting. We now

discuss the prior work most relevant to this paper [10, 20].

SilentWhispers [10] presented a DCN architecture using land-

mark routing, in which a subset of paths between a sender and

receiver is calculated, via several landmarks. At regular time in-

tervals, each landmark starts two instances of breadth-first-search

(BFS) rooted at itself. One between the sender and itself, and the

other between the receiver and itself. These two paths are stitched

together to form a complete path between sender and receiver.

While SilentWhispers provides transaction integrity, accountability,

as well as sender/receiver and transaction value privacy, it does

not provide mechanisms for concurrent transactions (essential for

scalability). It is also vulnerable to deadlocks, and requires users to

join the network only at fixed time intervals. Additionally, prior to

going offline, a user needs to hand over her signing keys, and other

transaction-related data to the landmarks, which will impersonate

the user during absence.

Roos et al. [20] presented a DCN which uses graph embedding

for efficient routing, with support for concurrent transactions. The

embedding algorithm constructs a rooted spanning tree of the net-

work graph. Nodes are addressed based on their distance from the

root and routing is performed based on prefixes. In [20], (a) senders

pick random credit amounts to transmit along a path, without know-

ing whether there is adequate liquidity on the chosen path, which

leads to a high rate of transaction failure, (b) there is a waiting time

2

imposed on a user to join the network, and (c) a path is greedily

chosen based on a heuristic estimate of closeness to the receiver. In

a network without high dynamicity, this could lead to linkability of

transactions, and eventually compromise sender/receiver privacy.

In contrast, in our approach BlAnC, the maximum credit avail-

able on a path is computed during the Find Route phase (first

phase), and users can dynamically choose their transaction amount.

Further, the on-boarding process does not require a user to wait.

We do not pre-compute routes; all routing is done on-demand at

the start of a transaction.

While [10, 20] represent progress in this area, their solutions

do not provide resilience against transaction failures, capabilities

such as rollbacks and timeouts, and cannot easily be adapted to

real-world credit networks. We have proactively chosen to design a

blockchain-based solution, to create a secure, anonymous, and dis-

tributed events ledger for BlAnC, with built-in anonymity. Thus our

system can be augmented to fit in with real-world, well-regarded

blockchain-based credit networks [18, 21].

3 SYSTEM MODEL
A credit network is a directed graph where the vertices of the graph

represent the users or member nodes of the credit network, the

weighted edges represent the flow of credit between the nodes. A

directed edge with weight γ from node j to node k signifies that k
has extended γ credits to j . The in-degree of k signifies the number

of nodes that k has extended credit to, while the out-degree of k
signifies the number of nodes that have extended credit to k . A
node can lose no more than the total credit it has extended to its

neighbors. Our DCN consists of nodes with credit relationships,

credit senders and receivers, and a group of volunteering nodes

called routing helpers who facilitate transactions between them.

We assume all credit amounts are non-negative integers. We also

assume that credit transfer between a sender-receiver pair happens

over multiple paths to increase value privacy. We give our table of

notations in Table 1.

Routing Helpers: We assume the existence of a dynamic set of

routing helpers (RHs) who help route transactions (RHs do not know
the identities of the sender, receiver, and any intermediate nodes

on the path). Any well-connected node can volunteer to be an RH

by writing a “volunteer” message to the Blockchain containing its

public key. A sender-receiver pair creates a credit transfer path

between itself using an on-demand routing protocol with the help

of intermediate RHs. Credit may be distributed across multiple

paths to improve unlinkability and transaction privacy. In BlAnC,

the RHs help set up checkpoints, which minimize the number of

rollbacks, shorten the length of a path segment along which a

failed transaction (or path set-up) needs to be re-tried, and provide

resilience. For simplicity, we do not discuss routing fees or mining

incentives in this paper. Incorporating these into an implementation

of BlAnC would be trivial, using techniques such as [4].

Blockchain: All nodes, in BlAnC are part of a Blockchain (BC).
Unlike in Bitcoin, where transactions are written to the BC, in
BlAnC, the miners write signed messages to the BC, converting it

into a distributed events ledger. Each node is subscribed to the BC,
so whenever a new block is written to the BC, all the nodes in the

network will get notified. When a node needs to write a message,

Table 1: Notations

Variable Definition

λ Security parameter

RH Routing helper

α = {α1, . . . ,αn } α is the total credit amount; each αi is a
share of α .

hopMax Broadcast parameter

txid, txid′

txid′′, txid′′′ Transaction ids

M Upper-bound on neighbors along a path

segjk Path segment between nodes j,k

tS Current timestamp

tD Deadline (time) for the transaction to time-

out

currMaxi Max. link weight of user i

currMaxsegjk Max. link weight along segjk
cw jk Current link weight between nodes j and k

f w jk Future link weight between nodes j and k

uw jk Updated link weight between nodes j and k

Hjk Hold contract between Node j and k

Pjk Pay contract between Node j and k

BC.read()
BC.write() Blockchain read/write functions

Ki j Shared symmetric key between users i, j

Ki jk Shared symmetric key between users i, j,k

SKj ,VKj Temporary signing/verification key-pair of

node j

PKj ,DKj Encryption/decryption key-pair of node j

Ci Ciphertext produced by user i

σ Signature

msд, to the BC, it calls the function BC.write(msд), which adds the

message to the message pool, and at a later point, a miner would

write the message on to the BC. Message pools are analogous to

transaction pools from Bitcoin and other cryptocurrency networks.

The RHs or any nodes in the network can become miners who

help in writing transactions from the message pools. The system

model calls for a low mining difficulty in the credit network for

near instantaneous generation of new blocks on the BC. This will
facilitate fast transactions and rollbacks. As the miners themselves

are part of the DCN, thus high mining complexity (proof-of-work)

is not essential in BlAnC. The block chain will be used for proof

of transactions (and misbehavior); any adjudication and punitive

enforcement of misbehavior is out of scope of this work. BlAnC is

designed for decentralized anonymity, using a database for credit

link weight storage might be more efficient but it leaks private

information.

Joining/leaving the network: A node which needs to join any

DCN needs to find at least one network node that is willing to

extend credit to, and/or receive credit from it. In BlAnC, the joining

and the existing node share their pseudonymous identities and

their corresponding real identities (verification keys), along with

the agreed link weights for the credits between them. The new

3

node also joins the BC network to receive update messages from

the BC (including updates about RHs). A node leaving the DCN

permanently just needs to set its link weights to zero and inform

its neighbors to do the same for its incoming links. Any node going

offline temporarily cannot be part of any ongoing transactions in

the network. Before going offline, the node needs to inform its

neighbors not to send any Find Route packets to it until it comes

back online. We discuss handling disconnections, etc., in Section 5.5.

4 ADVERSARY MODEL AND SECURITY
PROPERTIES

In our system, the adversary can adaptively corrupt a subset of

users. Once user i is corrupted, its credit links will be controlled by

the adversary, the adversary can misreport i’s link credit value, not

respond to requests, relay fraudulent messages to neighbors, and

try to re-route payments to other adversary(s). An adversary can

also corrupt RHs, who could possibly collude with other malicious

users, but we assume a honest majority of RHs. We assume that an

adversary cannot corrupt all users in the DCN, and thus may know

partial network topology, but does not have global knowledge.

We assume that all users have a long-term verification/signing

key-pair, and user i’s long-term key-pair is denoted by (vki , ski).
Further, all users have pseudonymous, temporary key-pairs; let

us denote the temporary verification/signing key-pair of user i
by (VKi , SKi). The temporary key-pair is signed by the long-term

signing key: σ ← Siдnski (VKi). This effectively ties the temporary

keys (identities) to the real/longterm identity. Each user i exchanges
its temporary key-pair with all of its neighbors, who in turn verify

i’s pair using i’s long-term verification key. A user’s pseudonym

and temporary key-pair do not change unless there is a dispute

or user failure. The temporary verification key of each RH in the

system is known to all users, along with the permanent public

encryption key of the RH. Sender and receiver in a transaction

share each other’s temporary key-pairs.

Desired Security/Privacy properties: We now outline the pri-

vacy and security properties provided by our system.

Sender/receiver privacy: An adversary will not know the real or

pseudonymous identities of the sender/receiver in any successful

transaction, unless she is their next-hop neighbor (all neighbors

know each others’ identities).

Link privacy: An adversary only knows the value of credit links

adjacent to her.

Value privacy: An adversary not on the sender-receiver path does

not know the amount being transacted. A corrupted node on a

sender-receiver path will know the fraction of the amount trans-

acted through her (unavoidable), butwill not know the sender/receiver

identities. Also, an adversary cannot compute the total credit trans-

ferred between two node pairs without compromising at least one

node on all the credit fraction paths (the sender-receiver pair trans-

fer credit concurrently along multiple paths to improve unlinkabil-

ity).

Accountability: An adversary cannot re-route payments or mis-

report her credit link value without being detected by her honest

neighbors. Malicious users violating the protocol can be identified

and barred from being in the credit paths.

Integrity/Rollback: If a transaction does not go through successfully

(aftermultiple retries), every credit links on the sender-receiver path

will get rolled back to its original value. If a transaction goes through

successfully, the credit links on the path will get decremented by

the credit amount correctly.

Trent

Fred

Gary

Kevin

Eric Pam

NancyOlga JohnJuliet

Sam

Mike

Direction of find & findRecieve msgs (Alg. 1: Step 1,2 & 3)

Direction of Credit flow of X amount

65

CS:80 CS:40

CS:70

CS:65

CS:65

CS:35

CS:65

CS:55

CS:45

CS:45

CR:25

CR:30

CR:50

CR:40

CR:30

(Routing
helper)

(Routing
helper)

Direction of findReply msgs (Alg. 1: Step 4)

CR:30

X

70

80

4080

35

75 45 60

30

70

40
25 50

55 Cs:45

Reply message(Y) from Routing Helper (Alg. 1: Step 4)Y

CR represents currMaxR
CS represents currMaxS

15 2095 58

Figure 1: Find Route Phase: Alice and Bob use Charlie and Denise
as RHs for one of the transaction-split αi .

5 CONSTRUCTION OF BlAnC

The operations of BlAnC can be summed up using three broad

phases: Find Route, Hold, and Pay, which we discuss here.

5.1 Find Route Phase
In this phase, at a high-level a sender Alice needs to send receiver

Bob an amountα , shares of whichwill be transmitted along different

paths. Alice and Bob agree on the number of paths, n, and pick two

RHs for each path (to break up the path and improve unlinkability).

The maximum transmittable amount along each path, αi (where
i ∈ [1..n]), will be determined dynamically by Alice and Bob after

the RHs find a path between Alice and Bob, and report to them the

maximum available credit on that path. As shown in the illustration

in Figure 1, Alice and Bob use RHs Charlie and Denise. The route

between Alice and Bob is segmented at the two RHs: segment

between Alice and Charlie (segAC), segment between Charlie and

Denise (segCD), and segment between Denise and Bob (segDB).
Alice broadcasts a find message towards Charlie on segAC ; the

message is broadcasted forward by each neighbor that receives it

until the copies reach Charlie. Bob performs a similar broadcast

of the findReceive message towards Denise on segDB . Both RHs

only act on the first find or findReceive messages they receive, and

drop all later duplicate messages. For readability, only a single path

(segAC , segCD , segDB) between Alice and Bob is shown.

In case the find or findReceive did not reach the intended routing

helper, Alice or Bob respectively, can update the hopMax value

in the tuple before re-broadcasting it. When the find message

reaches Charlie, he retrieves the maximum credit available on

segAC , Cs = 65, and forwards the find message to Denise. The

max. credit available on segCD is 45, so Denise sets Cs = 45, and

forwards a findReply message to Charlie, who in turn forwards the

message back to Alice. The max. available credit on the path from

Alice to Denise (segAC , segCD) is 45. Denise replies to Bob with

maximum credit available on segDB , Cr = 30. Finally, Alice and

Bob compute min(Cs ,Cr) = 30.

4

Algorithm 1: Find Route Phase

Input :α ,n, λ, hopMax, hash functionH , public ledgerBC
Output :Maximum available credit along n paths, α1, . . . ,αn .
Parties :Sender: Alice, Receiver: Bob

1 for i ∈ [1..n] do
Step 1: Alice and Bob pick RHs Charlie, Denise, broadcast

find and findReceive tuples along segAC and segDB
respectively, containing currMaxs = currMaxA and

currMaxr = currMaxB . (see Algorithm 6)

Step 2: Intermediate neighbors (j,k) update currMaxs and
currMaxr along the paths by setting

currMaxsegXY =min(cw jk , currMaxsegXY) where
segXY ∈ {segAC , segDB }, and forward tuples. (see

Algorithm 7)

Step 3: Charlie finds a path to Denise and the max.

available credit along segAC , segCD . (see Algorithm 8)

Step 4: Charlie and Denise reply with the max. credit

values, currMaxs and currMaxr , to Alice and Bob

respectively (see Algorithm 9)

Step 5: Alice and Bob compute out-of-band,

αi =min(currMaxs , currMaxr).
2 end
3 If α ′ = sum(α1, . . . ,αn), such that α ′ < α , Alice and Bob will

repeat Algorithm 1 until α is met, or will choose to transmit

α ′.

Algorithm 1 presents the algorithm (see Table 1 for notations).

The steps are self-explanatory. Due to space constraints, we have

given the other algorithms invoked within Algorithm 1 in the Ap-

pendix A.

Trent

Fred

Gary

Kevin

Eric Pam

Direction of hold msgs (Alg. 2 Line 2-13)

Direction of Credit flow of X amount

𝜎𝐴, 𝜎𝑇,HAT

𝜎𝑇, 𝜎𝐾,HTK

𝜎𝐴, 𝜎𝑇,HAT

𝜎𝐾, 𝜎𝐶,HKC

𝜎𝑇, 𝜎𝐾,HTK

𝜎𝑐, 𝜎𝐸,HCE

𝜎𝐾, 𝜎𝐶,HKC

𝜎𝐸, 𝜎𝑃,HEP

𝜎𝐶, 𝜎𝐸,HCE

𝜎𝑃, 𝜎𝐷,HPD

𝜎𝐸, 𝜎𝑃,HEP

𝜎𝑃, 𝜎𝐷,HPD

𝜎𝐷, 𝜎𝐹,HDF

𝜎𝐷, 𝜎𝐹,HDF

𝜎𝐹, 𝜎𝐺,HFG

𝜎𝐹, 𝜎𝐺,HFG

𝜎𝐺, 𝜎𝐵,HGB

𝜎𝐺, 𝜎𝐵,HGB

(Routing
helper)

(Routing
helper)

Direction of holdReceive msgs (Alg. 3 Line 2-6)

BC.write(hold) BC.write(hold)

X

65

70

80

75 45 60

30

70

40

BC.write(holdReceive)

Figure 2: Hold Phase: Between Alice and Denise on segments
segAC , segCD and between Bob and Denise on segment segDB .
5.2 Hold Phase
After the Find Route phase, the path between Alice and Bob is

identified. Now, we need to ensure that all the nodes on the path

from Alice to Bob commit to the current transaction by signing con-

tracts with their neighbors on the path. The idea is neighbors j and
k (represented by (j, k)) each sign a contract which specifies their

current and future link weights (after the transaction), represented

as cw jk and f w jk respectively, and store each other’s signatures on

the contract. This contract will be written to the BC in the event of

a dispute or transaction failure, thus providing accountability.

We give a pictorial representation of the Hold Phase that hap-

pens from both Alice and Bob in Figure 2. Alice constructs a hold
tuple with αi = 30 and forwards it on the Alice-Denise path (in

the figure, αi is contained in every contract Hjk , for neighbors j,k).
Each neighboring node-pair on the Alice-Denise path creates hold
contracts between themselves. In parallel, Bob creates a holdReceive
tuple with αi = 30, and forwards it on the Bob-Denise path, segDB .
Each node on the Bob-Denise segment segDB segment writes the

corresponding contract, signatures of its neighbor and itself on the

contract (σj ,σk , for neighbors j,k) into it’s log file for accountabil-

ity. Each RH writes a message to the BC whenever they receive

hold and/or holdReceive tuples indicating the successful reception
of the tuple by them.

Algorithm 2 and Algorithm 3 show the sender and receiver

portions of the hold phase.

Algorithm 2: Hold Phase: Sender and Helpers’ Sub-paths

Input :Set of RHs, α = α1, . . . ,αn , λ, hash function H , a

public ledger BC, txid′, txid′′, KAD
Output :hold contracts between all nodes on the path on

segAC and segCD
Parties :Sender: Alice, Receiver: Bob, Helpers: Charlie, Denise

1 for αi , i ∈ [1..n] do
/* Hold on sub-path from Alice to Charlie */

2 begin
3 Alice picks token,x ← {0, 1}λ , txid ← H (x), shares

token,x , txid with Bob; constructs tuple:

hold(txid′ | |txid| |αi | |CA | |tD), where,
CA = EKAD (token| |VKC | |txid| |tS); sends hold to

neighbor on path txid′.
4 for each pair of consecutive nodes j,k ∈ [1..M] on path

txid′ do
5 When k receives hold(txid′, txid,αi ,CA) from j,

then k runs MultiSig(j || SKj || VKj || k || SKk ||

VKk || tS| |cw jk | | f w jk); j,k each locally stores

(σj ,σk , (Hjk= contract)) (see Algorithm 5), and

k updates current record of txid′ to txid.
6 end
7 Charlie, on receiving hold, calls MultiSig(),

and updates txid, writes a signed message to BC using

BC.write((VKC | |txid| |hold)| |SiдnSKC (VKC | |txid| |hold)).
8 end

/* Hold on sub-path from Charlie to Denise */

9 begin
10 Charlie updates the tuple to

hold(txid′′ | |txid| |αi | |CA | |tD), sends it to neighbor on
segCD with txid′′.

11 The intermediate nodes follow the same procedure as

those on segAC , except with txid′′ instead of txid′

(details omitted due to space constraints).

12 Denise, on receiving hold tuple, calls MultiSig(),

updates txid, writes a signed message to BC by calling

BC.write((VKD | |txid| |hold)| |SiдnSKD (VKD | |txid| |hold)).
13 end
14 end

5

Alice and Bob pick a pre-image, x ← {0, 1}λ out-of-band, and

compute txid ← H (x) (Line 3 in Algorithm 2). Note that after

successful completion of the transaction, Bob will write x to the

BC, which will help all nodes on the path verify that the trans-

action concluded successfully. Alice sends a hold message on the

segAC to Charlie, who will in turn forward it to Denise on segCD
(Line 3 in Algorithm 2). The hold message helps create pairwise

contracts for nodes on intermediate edges on the path from Alice

to Denise; the contracts are binding for them. The hold messages

follow the path used by txid′ on segAC , and txid
′′
on segCD in the

Find Route Phase. When Charlie or Denise receive the hold mes-

sage, they write a signed message to the BC, which indicates to all

nodes on the previous segment that the hold message reached the

target RH. In the MultiSig algorithm (Line 5, 7, 12 in Algorithm 2),

nodes exchange pairwise signatures on contracts; this step is intu-

itive, and is given in Algorithm 5. The hold message will update

the transaction id stored by the nodes along the path to the actual

transaction id, txid.

Algorithm 3: Hold Phase: Receiver’s Sub-path

Input :Set of RHs, total amount α = α1, . . . ,αn , λ, hash
function H , a public ledger, BC, txid′′′, KBD

Output :hold contracts between all nodes on segDB
Parties :Sender: Alice, Receiver: Bob, Helpers: Charlie, Denise

1 for αi , i ∈ [1..n] do
/* Hold on sub-path from Bob to Denise */

2 begin
3 Concurrently, Bob constructs tuple:

holdReceive(txid′′′ | |txid| |αi | |CB | |tD), where
CB = EKBD (token| |VKC | |txid| |tS), sends holdReceive
tuple to next neighbor on path txid′′′.

4 The intermediate nodes follow the same procedure as

those on segAC , except with txid′′′ instead of txid′.
5 Denise receives the holdReceive tuple and then creates

hold contract with the neighbor on txid′′′ path. On
receiving the hold from the neighbor on segCD
Denise establishes a full path marked by txid from

Alice to Bob. Finally, Denise writes a signed message

to BC by calling BC.write((VKD | |txid| |holdReceive)| |
SiдnSKD (VKD | |txid| |holdReceive)).

6 end
7 end

Similarly, Bob will send a holdReceive message on segDB , which
will follow the path with txid′′′ and create pairwise contracts for

each link on the path (Line 3 in Algorithm 3). The nodes on segDB
will also get updated with the actual transaction id, txid. When

Denise receives the holdReceive message, she writes a signed mes-

sage to the BC, thus indicating to all nodes on the segDB segment

that the holdReceive message reached the target RH. The hold and

holdReceive messages from Alice and Bob, respectively, contain a

tD parameter. This parameter indicates the time at which the hold
contracts will timeout if the nodes don’t see a signed hold message

(for nodes on segAC and segCD) or a signed holdReceive message

(for nodes on segDB) corresponding to txid from their target RH.

Trent

Fred

Gary

Kevin

Eric Pam

Direction of Message flow (Alg. 4 Line 2-15)

65

70

80 75 45 60
70

30

𝜎𝐴, 𝜎𝑇,PAT

𝜎𝑇, 𝜎𝐾,PTK

𝜎𝐴, 𝜎𝑇 ,PAT

𝜎𝐾, 𝜎𝐶,PKC
𝜎𝑇, 𝜎𝐾,PTK

𝜎𝐶, 𝜎𝐸,PCE

𝜎𝐾, 𝜎𝐶,PKC

𝜎𝐸, 𝜎𝑃,PEP

𝜎𝐶, 𝜎𝐸,PCE

𝜎𝑃, 𝜎𝐷,PPD

𝜎𝐸, 𝜎𝑃,PEP

𝜎𝑃, 𝜎𝐷,PPD

𝜎𝐷, 𝜎𝐹,PDF

𝜎𝐷, 𝜎𝐹,PDF

𝜎𝐹, 𝜎𝐺,PFG

𝜎𝐹, 𝜎𝐺,PFG

𝜎𝐺, 𝜎𝐵,PGB

𝜎𝐺, 𝜎𝐵,PGB

(Routing
helper)

(Routing
helper)

BC.write(pay) BC.write(pay)

Direction of Credit flow of X amountX

35

40

50

45 15 30

0

40

1040

Blockchain
write

Figure 3: Pay Phase: Alice creates a pay tuple with αi = 30, and for-
wards it on the Alice-Bob path (in the figure, αi is contained in each
Pjk contract, for nodes j, k). Each RH writes a message to the BC
whenever they receive the pay tuple. When Bob receives αi credits,
he writes a successmessage to the BC.

At the conclusion of the Hold phase, the three different paths from

the Find Route phase coalesce into a single path marked by txid
from Alice to Bob through Charlie and Denise.

5.3 Pay Phase
At the end of the Hold phase, all nodes on the path from Alice

to Bob would have committed αi credits to the current transac-

tion, txid, by signing contracts with neighbors on the path. In

the Pay phase, Alice sends a pay tuple along the path to Bob:

pay(txid,αi , tD) to complete the transaction. Algorithm 4 shows

the steps of the Pay phase; we give a pictorial representation of

the Pay phase in Figure 3.

Each node first signs pay contracts, corresponding to its previ-

ously signed hold contracts, with neighbors on the path and changes
its link weights: this step is intuitive, and is given in Algorithm 5.

Whenever Charlie or Denise receive the pay message, they write

a signed message to the BC, thus indicating to all nodes on the

previous segment that the pay message reached the target RH. The

pay message from Alice, contains a tD parameter indicating the

time at which the pay contracts will timeout if the nodes don’t see

a signed pay message for txid from their target RH.

5.4 Blockchain Operations
Because of low mining complexity in the BC, we assume that there

will not be any shortage of miners. Thus ensuring timely propaga-

tion of new blocks containing latest messages from nodes within

the network. The relatively higher volume of messages in BC can

be dealt by creating an archived snapshot of BC at certain fixed

time intervals and starting a new one-block chain. In this model,

individual resource constrained user nodes need not store the entire

BC, but only the compacted chain from the last snapshot. However,

unconstrained devices (users, RHs) can store longer chains of the

BC to act as a source of truth for older transaction data.

Whenever a new block is mined, and written onto the BC, the un-
derlying BC protocol’s consensus algorithm synchronizes it across

the network. The proposed credit network can be deployed on

any existing BC as long as it can accommodate certain features

6

such as supporting individual nodes writing signed messages to the

BC as opposed to writing transactions, and also have low mining

complexity.

5.5 System Dynamics: Handling Timeouts,
Node Failures, and Corrupt Nodes

Timeout in Hold Phase: All nodes know who the target RH on

their respective segment is, e.g., Charlie for segAC , and so on. If

there are no hold messages written on BC associated with the

current txid by either RHs, this means that the hold messages timed

out in the first segment and never reached Charlie. In this scenario,

hold contracts are dropped by all nodes on the path and Alice has

to retry the transaction. If nodes time out during the Hold phase

and see a hold message on BC from their target RH, they do not

drop their hold contracts, they wait for the transaction to be retried

and completed in another segment.

However, if the nodes on any segment do not see a hold message

from their target RH before timing out, they drop the hold contracts

and reservation on their links, since the transaction timed-out in

their segment, and the FindRoute phase will be retried on that seg-

ment. All the nodes on the specific timed-out segment also publish

the dropped contracts onto the BC. This will expose the offending
node’s (node which caused the time-out) ephemeral identity and

thus its neighbors will not forward the find tuple to this node for

the current transaction when the Find Route phase is retried in

current segment. The offending node’s privacy in the network is

still maintained and only its immediate neighbors find out that

the node timed-out in the current transaction. The offending node

could be an RH, then the sender-receiver can try again or abort the

transaction and start with a new set of RHs.

To illustrate, if Charlie had written the hold message to BC and

Denise did not, then Charlie will retry for segCD by repeating the

Find Route phase, and Hold phase to Denise, to find an alternate

path. If the timeout occurs after Denise has written a hold message

on the BC, but the holdReceive message is not complete, then Bob

will retry the transaction for segDB on its end.

Timeout in Pay Phase: On timeout, each node j on a path txid on

the timed-out segment, will call BC.write (txid| |Hjk | |Pjk) if they
had a pay contract or just BC.write (Hjk) if they did not receive a

pay message from neighboring node. In the pay phase, segAC or

segCD time-out if target RH (Charlie or Denise, respectively) did

not write a signed pay message to the BC indicating successful

reception of pay message. Segment segDB times-out if nodes on the

segment do not see a success message on the BC from Bob, with a

correct pre-image for txid. When the current transaction cannot be

completed because either the timeout occurred on segAC , or if there
are no alternate viable paths on segCD or segDB , Alice or Bob can
abort the transaction. To abort transaction and initiate a rollback

of any changes in the network (from pay contracts affecting link

weights) tied to txid, Bob or Alice write the tuple: (txid,x , failure−
rollback) to the BC using BC.write. All nodes on path should delete

hold contracts and revert back to previous link weights if they had

any pay contracts associated with transaction txid.
Alternatively, if the timeout occurred on segCD or segDB , then

Charlie or Denise, respectively, will retry to find an alternate path.

Since all contracts were written to the BC, all honest nodes in the

Algorithm 4: Pay Phase

Input :Set of RHs, total amount α = α1, . . . ,αn , λ, hash
function H , a public ledger, BC, txid

Output :Updated link weights and corresponding pay
contracts on each link from Sender to Receiver

equivalent to transaction amount

Parties :Sender: Alice, Receiver: Bob, Helpers: Charlie, Denise
1 for αi , i ∈ [1..n] do

/* Pay on sub-path from Alice to Charlie */

2 begin
3 Alice constructs tuple pay(txid| |αi | |tD), sends pay

tuple to next neighbor on path txid
4 for each pair of consecutive nodes j,k ∈ [1..M] in

segAC which have txid do
5 When k receives pay(txid| |αi | |tD) from j, k runs

MultiSig(j || SKj || VKj || k || SKk || VKk ||

tS| |cw jk | |uw jk) (see Algorithm 5). Nodes j,k
each locally store (σj ,σk , (Pjk= contract)).

6 end
7 On receiving pay tuple, after calling Multi-

Sig(), Charlie writes a signed message to BC by calling

BC.write((VKC | |txid| |pay)| |SignSKC (VKC | |txid| |pay)).
8 end

/* Pay on sub-path from Charlie to Denise */

9 begin
10 Charlie forwards pay tuple to the next neighbor on

txid path towards Denise.

11 Intermediate nodes follow the same steps as those on

segAC . On receiving the pay tuple, and after calling

MultiSig(), Denise writes a signed message to BC by

calling

BC.write((VKD | |txid| |pay)| |SignSKD
(VKD | |txid| |pay)).

Denise forwards pay tuple to the next neighbor on

txid path towards Bob.

12 end
/* Pay on sub-path from Denise to Bob */

13 begin
14 Intermediate nodes on segDB follow the same steps as

those on the other segments. On receiving the pay
tuple, after calling MultiSig(), Bob writes a success

message to BC by calling BC.write(txid| |x | |success).
15 end
16 end

path know which node timed out the transaction (faulty node),

either by malicious behavior or by going offline, the honest nodes

will route retry packets to neighbors other than the identified faulty

node to prevent subsequent failures. If Charlie wrote the pay mes-

sage to the BC, then Charlie will retry the Find Route, and Hold
phases to Denise to find an alternative path, before retrying the

Pay phase again.

In the absence of malicious nodes in the network, only six mes-

sages will be written to the BC. Three messages are written by

the RHs after the Hold and two message in the Pay phases. The

7

sixth message is the success message written by Bob to the BC
informing the rest of the nodes on the path about the transaction

being successful. Since no node involved in the transaction exposed

their identity, there is no need to change any node’s pseudonymous

identities. However, if the transaction was retried, that is, a timeout

occurred, all nodes involved in the transaction will need to up-

date their pseudonymous identities and share new pseudonymous

identities with each other and their neighbors. This rekeying will

help reduce linkability between transactions as now all the nodes’

previous pseudonymous identities are in the BC.

Algorithm 5:Multisig Exchange

Input : j, SKj , VKj , k , SKk , VKk , cw jk , γ ∈ { f w jk , uw jk },

txid, tS
Output :Tuple (σj ,σk , contract) stored at node j and k
Parties :Node j and k

1 j sends σj ← SignSKj
(contract = (cw jk ,γ), txid, tS) to k

2 k sends σk ← SignSKk (contract = (cw jk ,γ), txid, tS) to j

3 if VerifyVKk (contract| |σk)
?

← 1 then
4 j stores (σj | |σk | |contract)
5 end

6 if VerifyVKj
(contract| |σj)

?

← 1 then
7 k stores (σj | |σk | |contract)
8 end

Malicious RHs: In case of misbehaving RHs where the RHs ne-

glects to write hold/pay tuple reception messages to the BC, other
nodes on the path would timeout. They would then dump all the

hold/pay contracts for the given transactions on to the BC. This
would show that all nodes on the path went through with the trans-

action and it was the misbehaving RH who did not update the

transaction on the BC.
There is a possibility of an RH changing its public identity and

coming back as a new one after it is identified asmalicious. However,

if users choose well-known RHs (e.g., one that has written many

transactions to the BC), then the impact of such a malicious RH

can be significantly mitigated. Even in the presence of misbehaving

RHs the sender/receiver do not end up losing any credits as the

transaction will either get re-routed or aborted in case of failure.

6 SECURITY ANALYSIS
We prove the security of our constructions in the Universal Compos-

ability (UC) framework [1] which is a well-known framework used

to analyze the security of distributed protocols. The UC paradigm

elegantly captures the conditions under which a given distributed

protocol is secure, by comparing it to an ideal realization of the

protocol. To this end, the UC framework defines two “worlds”: the

real-world, where the protocol, π to be proved secure runs, and the

ideal-world, where the entire protocol, ϕ is executed by an ideal,

trusted functionality, where all users only talk to the ideal func-

tionality via secure and authenticated channels. The goal then is to

prove that no distinguishing algorithm, commonly called as “envi-

ronment”,Z, can successfully distinguish between the execution

Table 2: Asymptotic Complexities: n denotes the number of shares
of a payment (inRipple [18], themax. number of paths, and hencen,
for a single transaction is 7), d denotes node degree, k is the number
of nodes on a single path (k ⊆ M, |k | << |M |), c is the max. path
length between sender and receiver (fromRipple [18], themax. path
length is 10).

Phases Time Space Messages

Regular users Charlie (RH) Denise (RH)

Find Phase O(n) O(n) O(dc · n) O(dc · n) O(k · n)

Hold Phase O(k · n) O(k · n) O(k · n) O(n) O(n)

Pay Phase O(k · n) O(k · n) O(k · n) O(n) O(n)

(EXEC) of the two worlds. The notion of UC security is captured

by the pair of definitions below:

Definition 6.1. (UC-emulation [1]) Let π and ϕ be probabilistic

polynomial-time (PPT) protocols. We say that π UC-emulates ϕ if

for any PPT adversary A there exists a PPT adversary S such that

for any balanced PPT environmentZ we have

EXECϕ,S,Z ≈ EXECπ ,A,Z

Definition 6.2. (UC-realization [1]) Let F be an ideal function-

ality and let π be a protocol. We say that π UC-realizes F if π
UC-emulates the ideal protocol for F .

We define a distributed credit network functionality FDCN in the

ideal world, which consists of FFindRoute, FHold, FPay, and FBC. An

adversary can corrupt regular users and routing helpers at any time,

upon which the user’s responses to queries by FDCN will be gener-

ated by the adversary. We assume FDCN maintains an adjacency

matrix of all users in the network, where the entries of the matrix

are the link weights, which is regularly updated when FFindRoute
and FPay are called. The definitions of FFindRoute, FHold, FPay, and

FBC, discussion about their design choices and correctness, and the

proof of the following theorem is available in the Section 12.

Theorem 6.3. Let FDCN be an ideal functionality for BlAnC. Let
A be a probabilistic polynomial-time (PPT) adversary for BlAnC, and
let S be the ideal-world PPT simulator for FDCN. BlAnC UC-realizes
FDCN, for any PPT distinguishing environmentZ.

Sketch: At a high level, the proof shows that no PPT distinguish-

ing environment Z can distinguish between the outputs of the

ideal-world simulator, S, and a BlAnC adversary A. Ideal-world

S mirrors the actions of a real-world A, and we show that if A

cheats in the real-world, S would also break the security of the

FDCN, which is not possible.

7 SCALABILITY METRICS
In this section, we analyze the performance of our system with

respect to time, space, message, and communication complexities.

Time is measured in terms of the average execution time of a cryp-

tographic operation, the space is measured in terms of the total

storage required, the message complexity is measured in number of

messages, in the worst case, and the communication complexity is

the number of bytes of information transmitted. Table 2 shows the

asymptotic time, space and message complexities. Table 3 shows

the number of encryptions, decryptions, signatures, and hashes at

each node during the Find Route, Hold, and Pay phases. Table 4

shows the communication complexity in bytes at different nodes.

8

Table 3: n is the number of shares, number of cryptographic opera-
tions at a node: E: no. of encryptions, D: no. of decryptions, S: no. of
signatures, V: no. of verifications, H: no. of hashes.

Phases Sender Receiver RH

Find Phase E: 2n, D: 2n, H: 3n E: 2n, D: 2n, H: 3n E: 2n, D: 2n, S: n, H; n

Hold Phase E: n, S: 2n, V: 2n E: n, S: 2n, V: 2n D: 2n, S: 2n, V: 2n

Pay Phase S: 2n, V: 2n S: 2n, V: 2n S: 2n, V: 2n

Table 4:Worst case communication complexity (in terms ofmessage
size): UsingRSA-2048 for PKI, ECDSA signatures (72 bytes), AES-256
for symmetric key encryption and SHA-256 for token/txids’ genera-
tion.

Type of Message Size Phase

find Tuple 166 bytes Find Route Phase
findReceive Tuple 134 bytes Find Route Phase
findReply Tuple 240 bytes Find Route Phase

hold Tuple 272 bytes Hold Phase

holdReceive Tuple 272 bytes Hold Phase

pay Tuple 80 bytes Pay Phase

BC.write hold 172 bytes Hold Phase

BC.write holdReceive 179 bytes Hold Phase

BC.write pay 171 bytes Pay Phase

Table 5: Emulation results for crypto operations in BlAnC

Cryptographic Operation Find Phase Hold Phase Pay Phase

RSA-2048 Encrypt Time 202.78 us NA NA

RSA-2048 Decrypt Time 2.63ms NA NA

AES-256 Encrypt Time 4.54 us 4.54 us NA

AES-256 Decrypt Time 4.08 us 4.08 us NA

ECDSA Sign Time 192.22 us 6.38ms 6.17ms

ECDSA Verify Time 1.10ms 31.59ms 31.59ms

SHA-256 Hash Time 24.36 us 8.12 us NA

Joining the network: When a new node joins the credit net-

work, it shares pseudonymous keys, verification keys, and link

weights with nodes that it will be connected to in the network and

stores these values. This is a one time setup cost and is linear in the

number of neighbors the new node will have in the network. The

node also joins the blockchain which incurs a constant time/space

overhead and is a one time setup cost.

Key exchange after timeout: When a transaction times out,

all nodes involved in the transaction would have published their

hold and pay contracts to the BC, exposing their pseudonyms. After

termination of a timed out transaction, regardless of whether it was

finally successful or aborted, all involved nodes need to establish

new pseudonyms with their neighbors. The time complexity of this

step is linear in the number of nodes in the path and degree of each

node, O(k · d), where d is maximum node degree in the DCN.

8 EXPERIMENTS AND EVALUATION
The cryptographic operations used in the protocol, which are AES-

256, SHA-256, RSA-2048 and ECDSA were implemented using C++

Open-SSL libraries [22]. The simulations were performed on a desk-

top class machine with Intel(R) Core(TM) i7-7600U CPU@ 2.80GHz

and 8GB RAM.We use ns-3 [16], a discrete event network simulator

to test BlAnC. The simulations were run on a 100 node network

with the nodes connected over WiFi. Based on the fact that the

Internet’s diameter is around 18, in our simulation setup, the sender

and receiver are at a distance of 15 hops away from each other,

on a path passing through the two RH. This distance accounts for

path stretch from Alice to Bob when using two RHs. The network’s

physical layer delay characteristics are set to the Constant Speed

Propagation Delay Model and loss characteristics are set to the Log

Distance Propagation Loss Model, both available in the ns-3 code-

base. The channel coding was set to Orthogonal frequency-division

multiplexing at a data rate of 6 Mbps. The simulations were run

with multiple concurrent transactions taking place at the same time.

A total of 200 transactions were simulated.

Table 5 shows the timings for the cryptographic operations per-

formed by nodes on a transaction path for the different phases

during a BlAnC transaction (emulated on the same desktop class

machine). As reflected in the figure, the cryptographic operations

in the Hold phase and Pay phases contribute very little to the time

delay, that is, ∼ 37ms as opposed to 4ms in the Find Route phase.
The time delay in the Find Route phase is largely attributed to the

ad hoc, on demand path finding technique of BlAnC. This delay

is a trade-off to ensure that the privacy of sender and receiver is

protected as each transaction triggers a new set of path searches

and the paths to chosen RHs are not pre-determined.

Find Phase Hold Phase Pay Phase

101

102

103

104

Ti
m

e
(m

s)

Time elapsed for Phases
Crypto
Network

Figure 4: Illustration of average time delay for Find Route ,Hold and
Pay phases during a BlAnC transaction due to network and crypto-
graphic operations.

Figure 4 shows that majority of the time delay in BlAnC comes

from the network when compared to delay incurred due to crypto-

graphic operations. The error bars represent the standard deviations

of the delay. From the ns-3 simulations, we observed that the total

time taken by the Find Route phase to conclude was on average

7.303 secs . This is the time taken by Alice and Bob to determine

the maximum value of αi credit that can flow between Alice and

Bob in the chosen path for the transaction in question. The delay of

7.303 secs includes network delay, while the delay contributed by

cryptographic operations was approximately 4.158ms . In compari-

son to SilentWhispers [10] which takes 1.349 seconds (the authors

9

only measured cryptographic costs) to determine αi on a path of

length 10 hops (BlAnC is three orders of magnitude faster).

The Hold and Pay phases took a total duration of 1.253 secs

each. So a complete transaction on average takes 9.809 secs to finish.

We did not include the time delays for the BC as those delays would

not affect the flow of credit from sender to receiver unless there is

an occurrence of a timeout during the transaction.

9 OPTIMIZATIONS
In the FindRoute phase, the cost of finding a path from sender/receiver

to their respective RHs, in the worst case could be O(dc), where d
is the maximum degree of a node on the path, and c is the maxi-

mum hop count. In practice, c could be set as the maximum length

of a path between two nodes, which, according to empirical data

collected from Ripple’s datasets is 10 [10, 18]. This is a one-time

cost, which, we believe, will be amortized over time by having the

sender/receiver store information about the paths to their respective

helpers, over the course of their transactions. The sender/receiver

would then only have to follow a fixed path to their RH, and would

incur a cost of O(dc) infrequently. Another way to optimize this

cost would be for every node in the network to choose a random d ′,
such that d ′ < d , and send find probes only to the set of neighbors

in d ′.
Each node in the credit network that is involved in a transaction,

could keep track of the identity of the RH and the interface it

reached the RH from. By using this information as a forwarding

table, the number of broadcasts could be decreased in a stable credit

network where the links state do not vary frequently. Broadcasts

could be used in-case of a stale forwarding table, in which case

the sender would retry the Find Route phase with a broadcast

instead of a directed find message. This would also reduce the cost

of the protocol in the Find Route phase if the intermediate nodes

do not need to use broadcasts and already have a path available to

a known RH. Each node could also build a history of all the RHs

it has used for prior transactions, and prefer to use the ones with

which the transactions completed successfully instead of trying to

send payment through new RHs.

Graph embedding, as used in [20] could be used in our Find
Route phase to construct an optimal path between the sender/receiver

and their respective RHs. One could construct a spanning tree of

the network rooted at the RHs, and either used tree-base embedded

routing (strictly following the edges of the spanning tree), or a more

flexible approach, where one greedily chooses the shortest path

between two nodes, regardless of whether the shortest path uses

edges present in the spanning tree or not.

Since the BC is being used to publish transaction-related mes-

sages, the storage of the BC can become challenging, along with

the scaling of the DCN. To tackle this problem, the BC can be com-

pressed at regular time epochs as we discussed before. At the end

of a time epoch, all nodes would cease transacting and make sure

all the payments and links are settled. At this point, the BC can

be wiped off and all old data can be compressed and stored with

certain nodes which have enough storage, and are willing to store

the older BC. The hash of the old BC can be provided at the start

of the new BC linking the two together. At the start of the new

epoch, all RHs need to declare themselves as RHs again, as there is

no historical information available to new nodes joining the credit

network in the new epoch.

10 CONCLUSIONS AND FUTUREWORK
In this paper, we propose BlAnC, a novel, fully decentralized blockchain-

based credit network that preserves user and transaction anonymity,

enables on-demand and concurrent transactions to happen seam-

lessly, and can identify malicious network actors that do not fol-

low the protocols and disrupt operations. We performed security

analysis to demonstrate BlAnC’s strength and presented scalabil-

ity metrics. Simulation/emulation-based analysis of the latency of

transactions in the DCN demonstrate BlAnC’s scalability.

In the future, we intend to implement BlAnC in a real-world

testbed like Hyperledger [9] and test impact of real-world network

dynamics on the protocols’ stability and scalability.

11 ACKNOWLEDGEMENTS
Research supported by NSF awards #1800088; #1719342; #1345232;

EPSCoRCooperative agreement OIA-1757207; andAROgrantW911NF-

07-2-0027. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the federal government.

REFERENCES
[1] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS. 136–145.

[2] P. Dandekar, A. Goel, R. Govindan, and I. Post. 2011. Liquidity in credit networks:

a little trust goes a long way. In Proceedings of ACM Conference on Electronic
Commerce (EC). 147–156.

[3] D. B. DeFigueiredo and E. T. Barr. 2005. TrustDavis: A Non-Exploitable Online

Reputation System. In IEEE International Conference on E-Commerce Technology
(CEC 2005). 274–283.

[4] Felix Engelmann, Henning Kopp, Frank Kargl, Florian Glaser, and Christof Wein-

hardt. 2017. Towards an Economic Analysis of Routing in Payment Channel

Networks. In Proceedings of the 1st Workshop on Scalable and Resilient Infrastruc-
tures for Distributed Ledgers (SERIAL ’17). Article 2, 6 pages.

[5] Flare [n. d.]. Flare. https://medium.

com/@BitfuryGroup/the-bitfury-group-releases-\

white-paper-flare-an-approach-to-routing-in-lightning-network-8bc263dcdc92.

[6] L.R. Ford and D.R. Fulkerson. 1954. Maximal flow through a network. Canadian
Journal of Mathematics 8 (1954).

[7] A.V. Goldberg and R. E. Tarjan. 1988. A new approach to the maximum flow

problem. J. of ACM 35 (1988), 921–940.

[8] A. M. Kakhki, C. Kliman-Silver, and A. Mislove. 2013. Iolaus: securing online

content rating systems. In International World Wide Web Conference, WWW.

919–930.

[9] Linux Foundation. 2015. Hyperledger Project. https://{www.hyperledger.org}

[10] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei. 2017. SilentWhispers:

Enforcing Security and Privacy in Decentralized Credit Networks. In Annual
Network and Distributed System Security Symposium, NDSS.

[11] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi. 2017. Concur-

rency and Privacy with Payment-Channel Networks. In Proceedings ACM SIGSAC
Conference on Computer and Communications Security, CCS. 455–471.

[12] A.Mislove, A. Post, P. Druschel, and P. K. Gummadi. 2008. Ostra: Leveraging Trust

to Thwart Unwanted Communication. In Proceedings of the USENIX Symposium
on Networked Systems Design & Implementation, NSDI. 15–30.

[13] A. Mohaisen, N. Hopper, and Y. Kim. 2011. Keep your friends close: Incorporating

trust into social network-based Sybil defenses. In IEEE International Conference
on Computer Communications, INFOCOM. 1943–1951.

[14] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina. 2015. Privacy Preserving

Payments in Credit Networks: Enabling trust with privacy in online marketplaces.

In Annual Network and Distributed System Security Symposium, NDSS.
[15] P. Moreno-Sanchez, N. Modi, R. Songhela, A. Kate, and S. Fahmy. 2018. Mind

Your Credit: Assessing the Health of the Ripple Credit Network. In Proceedings
of the World Wide Web Conference on World Wide Web, WWW. 329–338.

[16] NSNAM.org. 2008. Network Simulator 3. https://www.nsnam.org/

10

https://medium.com/@BitfuryGroup/the-bitfury-group-releases-\ white-paper-flare-an-approach-to-routing-in-lightning-network-8bc263dcdc92
https://medium.com/@BitfuryGroup/the-bitfury-group-releases-\ white-paper-flare-an-approach-to-routing-in-lightning-network-8bc263dcdc92
https://medium.com/@BitfuryGroup/the-bitfury-group-releases-\ white-paper-flare-an-approach-to-routing-in-lightning-network-8bc263dcdc92
https://{www.hyperledger.org}
https://www.nsnam.org/

[17] A. Post, V. Shah, and A. Mislove. 2011. Bazaar: Strengthening User Reputations

in Online Marketplaces. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, NSDI.

[18] Ripple [n. d.]. Ripple website. https://ripple.com.

[19] Ripple [n. d.]. Several global banks join RIpple’s growing network. https://ripple.

com/insights/several-global-banks-join-ripples-growing-network/.

[20] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg. 2018. Settling payments

fast and private: efficient decentralized routing for path-based transactions. In

Annual Network and Distributed System Security Symposium, NDSS, To appear.
[21] Stellar [n. d.]. Stellar website. https://stellar.org.

[22] The OpenSSL Project. 1998. OpenSSL: The Open Source toolkit for SSL/TLS.

https://{www.openssl.org}

[23] P. F. Tsuchiya. 1988. The Landmark Hierarchy: A New Hierarchy for Routing in

Very Large Networks. In Symposium Proceedings on Communications Architectures
and Protocols (SIGCOMM ’88). 35–42.

[24] B. Viswanath, M. Mondal, P. K. Gummadi, A. Mislove, and A. Post. 2012. Canal:

scaling social network-based Sybil tolerance schemes. In Proceedings of EuroSys.
309–322.

12 APPENDICES
A FIND ROUTE PHASE ALGORITHMS
We give details of the algorithms called in the steps of Algorithm 1.

All the algorithms below will have common inputs, CI defined as:

CI = {Set of all RHs, no. of pathsn, security parameter λ,
hash functionH , public ledgerBC, hopMax}

Algorithm 6: Find Route Phase: Sender/Receiver Start

Input :CI (defined above)

Output :find and findReceive tuples of sender and receiver

Parties :Sender: Alice, Receiver: Bob
1 for i ∈ [1..n] do

/* Sender start */

2 begin
3 Alice picks a x ′ ← {0, 1}λ , computes txid′ ← H (x ′),

finds currMaxA,
4 reserves the amount, sets currMaxs ← currMaxA.
5 Constructs tuple:

find(txid′, (VKC ,VKD), reserve(currMaxs), hopMax,CA),
where CA = EPKD (KAD ,y ← {0, 1}

λ , tS), KAD is a

shared symmetric key between Alice and Denise, y is

a nonce, PKD is Public Key of Denise and tS is

timestamp for tuple. The find tuple is sent to all of

Alice’s neighbors.

6 end
/* Receiver start */

7 begin
8 Parallelly, Bob picks a x ′′′ ← {0, 1}λ , computes

txid′′′ ← H (x ′′′), finds and reserves currMaxB , sets
currMaxr ← currMaxB .

9 Constructs tuple:

findReceive(txid′′′,VKD , reserve(currMaxr), hopMax,CB)
10 where CB = EPKD (KBD ,y

′ ← {0, 1}λ , tS); KBD is

shared symmetric between Bob and Denise. The

findReceive tuple is sent to all of Bob’s neighbors.

11 end
12 end

Algorithm 6: In the Find Route phase, we have three separate

transaction ids, txid′, txid′′, txid′′′ for finding routes on segAC ,

segCD , and segDB respectively. Later, in the Hold and Pay phases,

the three transaction ids will coalesce into a single id, txid. This
is done to hide txid from nodes that may not be on the actual

path during the Hold and Pay phases, but might receive a find
broadcast message in the Find Route phase.

For finding a route to their RHs, Alice (Line 2-6) and Bob (Line

7-11) broadcast find and findReceive tuples containing the payment

information to all their neighbors (with whom they have links),

who will then forward the tuples to their neighbors, and so on,

until the tuples reach the respective RHs. Bob’s outgoing tuple is

called findReceive, to distinguish it from find, since the payment

will be credited to Bob via his incoming links, as opposed to Al-

ice, whose payment will get debited via her outgoing links. The

distance the find and findReceive tuples have to travel is deter-

mined by a system-wide parameter, hopMax, which is set by the

originator of a tuple. If hopMax is underestimated by an origina-

tor (i.e., the find,findReceive tuples cannot reach their destination

since hopMax is too low), then the originator will retry after a

reasonable time interval. The find and findReceive tuples consist
of 5 variables: the transaction id for payment of αi , public keys of
RHs, the current running value of the max. available credit on the

path, the maximum hop count, and encrypted info by Alice or Bob

for their RHs. This encrypted info includes a unique symmetric key

generated by the sender, a challenge nonce (y) and timestamp of

the generated tuple by the original sender, encrypted by the public

key of the target RH. currMaxs denotes a running value of the

maximum credit available at each intermediate node’s outgoing

links, on the segAC , segCD paths.

Algorithm 7: Starting from Alice, each intermediate node j
will reserve, or subtract currMaxs from its max. available credit,

currMaxj , if currMaxj > currMaxs (Line 3-9), else j will reserve its
max. available credit for this transaction. It will then set currMaxs
to be the minimum of (currMaxs , currMaxj). Similarly, currMaxr
is the running value of the available max. credit at each interme-

diate node on the Bob-Denise path (Line 13-18). In case the actual

payment does not come before the timeout each node in the path

will add the reserved amount back to its credit links.

Algorithm 8, Algorithm 9: Once Charlie receives the find tu-

ple, he picks a random txid′′ and modifies find tuple received from

Alice before forwarding it towards Denise to construct segCD sub-

path (Alg 8 Line 2). Denise receives the find tuple from Alice and

constructs a findReply tuple which consists of currMaxs represent-
ing the max. credit available on segAC and segCD along with some

encrypted information for Alice. Denise forwards this tuple along

segCD back towards Charlie along the single path that reached

Denise from Charlie represented by nodes with txid′′ (Alg 8 Line
3-12). Denise also receives findReceive tuple from Bob and will reply

with the maximum available credit on segBD along with encrypted

information for Bob in a findReply tuple (Alg 9 Line 6-12). The

findReply tuples will be sent only to the first neighbor from whom

the corresponding find/findReceive tuple for that transaction id was

received. A findReply tuple consists of 4 variables: the transaction id

for payment of αi , public keys of RHs, the current running value of
currMaxs or currMaxr , and some information encrypted by RHs

for the sender or receiver.

11

https://ripple.com
https://ripple.com/insights/several-global-banks-join-ripples-growing-network/
https://ripple.com/insights/several-global-banks-join-ripples-growing-network/
https://stellar.org
https://{www.openssl.org}

Algorithm 7: Find Route Phase: Path Construction

Input :CI
Output :Sender-helper path, receiver-helper path
Parties :Sender: Alice, Receiver: Bob

1 for i ∈ [1..n] do
/* Sender-helper path construction */

2 for neighbors j ∈ [1..M] in credit path between
Alice-Charlie do

3 if (hopMax = 0) then
4 do nothing

5 end
6 else
7 Reserve currMaxj by min(currMaxs , currMaxj),

set currMaxs = min(currMaxs , currMaxj).
8 Construct tuple:

find(txid′, (VKC ,VKD), reserve(currMaxs), (hopMax−
1),CA).

9 Send tuple to all neighbors to whom j has an
outgoing credit link.

10 end
11 end

/* Receiver-helper path construction, done in
parallel with sender-helper path
construction */

12 for neighbors j ∈ [1..M] in credit path between Bob-Denise
do

13 if (hopMax = 0) then
14 do nothing

15 end
16 else
17 Reserve currMaxj by min(currMaxr , currMaxj),

set currMaxr = min(currMaxr , currMaxj).
Construct tuple:

findReceive(txid′′′,VKD , reserve(currMaxr), hopMax−
1,CB).

18 Send tuple to all neighbors to whom j has an
incoming link.

19 end
20 end
21 end

B SECURITY ANALYSIS
(1) FFindRoute: The ideal functionality, FFindRoute, is given in

Figure 5. The goal of FFindRoute is to find paths between Alice

and Bob, and compute the maximum transactable amounts

along the paths.

In the first step, the sender Alice, sends the ideal function-

ality the amount to be transacted, α , the receiver’s identity,
and the number of shares n of α . She also sends FFindRoute
the identities of the RHs that Alice and Bob have agreed

to use for each share. In Step 2, for each share, FFindRoute
starts an instance of BFS rooted at Alice, and sends each

node the transaction id, the id of its parent, and the id of

the target RH for this segment, Charlie. The node replies

Algorithm 8: Find Route Phase: Helpers’ Max. Value Com-

putation

Input :CI
Output :Max. transaction value computed by RHs

Parties :Sender: Alice, Receiver: Bob
1 for i ∈ [1..n] do

/* Sender-helper max. computation */

2 When Charlie gets the find(·, ·, ·, ·, ·) tuple from Alice, he

does:

• Pick x ′′ ← {0, 1}λ , compute txid′′ ← H (x ′′), reserve
currMaxC by min(currMaxs , currMaxC), set
currMaxs = min(currMaxs , currMaxC).
• Store tuple (txid′, txid′′,VKD , reserve(currMaxs)), create
new tuple:

find(txid′′, (VKC ,VKD), reserve(currMaxs), hopMax,CA).
The find tuple is

then sent to all Charlie’s neighbors.

for neighbors j ∈ [1..M] in path between Charlie-Denise do
if (hopMax = 0) then

do nothing.

end
else

Reserve currMaxj by min(currMaxs , currMaxj),
set currMaxs = min(currMaxs , currMaxj).
Construct tuple:

find(txid′′, (VKC ,VKD), reserve(currMaxs), hopMax−
1,CA).

Send tuple to all neighbors.

end
end
/* Max. in path between RHs */

3 When Denise gets the find(·, ·, ·, ·, ·) tuple from Charlie,

she retrieves (KAD ,y, tS) ← DDKD (CA).

4 if decryption fails then
5 do nothing.

6 end
7 else
8 Reserve currMaxD by min(currMaxs , currMaxD), set

currMaxs = min(currMaxs , currMaxD).
9 Store tuple (txid′′,KABD ,y,VKC , reserve(currMaxs)).

10 Construct tuple:

findReply(txid′′, (VKC ,VKD),CD , (m,σD)), where
CD = EKAD (reserve(currMaxs),y, tS),
m = reserve(currMaxs),
σD = SiдnSKD (VKC , reserve(currMaxs)). The
findReply tuple will be

11 forwarded only to those neighbors on the path with

Charlie, who have

12 used txid′′.
13 end
14 end

12

Algorithm 9: Find Route Phase: Helpers Reply

Input :CI
Output :findReply tuples of RHs

Parties :Sender: Alice, Receiver: Bob
1 for i ∈ [1..n] do

/* Sender’s RH sending reply */

2 Charlie, on receipt of Denise’s findReply() does:
3 Retrieve txid′ stored in same tuple as txid′′, sets his copy

of currMaxs to be the currMaxs received from Denise.

4 Compose reply to Alice:

findReply(txid′,VKC ,EKAD (currMaxs ,y′, ts),CA).
5 The findReply tuple will be forwarded only to those

neighbors on the path from Charlie-Alice, who have used

txid′.
/* Receiver’s RH sending reply */

6 In parallel, Denise, on receiving Bob’s message will

retrieve (KBD ,y
′, tS) ← DDKD (CB)

7 if decryption fails then
8 do nothing.

9 end
10 else
11 Reserve currMaxD by min(currMaxr , currMaxD), set

currMaxr = min(currMaxr , currMaxD).
12 Compose reply to Bob

findReply(txid′′′,VKD ,EKBD (currMaxr ,y′, ts),CB).
The findReply tuple will be forwarded only to those

neighbors on the path from Denise-Bob, who have

used txid′′′.
13 end
14 end

with the ids of its children (degree of the node) and the link

weights of each connecting edge. Alternatively, the node can

reply with (txid,⊥,⊥), upon which FFindRoute will ignore

this node and continue visiting the other children of its par-

ent node. In addition to modeling malicious nodes, this also

models nodes that get disconnected from the network, or

faulty nodes. FFindRoute stores a tuple for each visited node,

j, (jp , j, currMaxj), and also updates the adjacency matrix

with the current link weight values.

In Step 3, once the RH, Charlie is reached, FFindRoute com-

putes the max. value that can be transacted along the Alice-

Charlie segment, which is the minimum of all the stored

currMax values seen so far, currMax1, and setsαi = currMax1.
Note that there could be possibly multiple routes to Charlie,

FFindRoute will terminate this segment after the first time

Charlie is reached. Similarly, FFindRoute will find a path be-

tween Charlie and Denise, and Denise and Bob, and will

find the max. value that can be transacted between them,

currMax2 and currMax3 (Step 4, 5). Finally, it computes

αi =min(currMax1, currMax2, currMax3), and informs Al-

ice and Bob about αi (Step 6). Note that any node can give

fake ids of its children and cause delays, but FFindRoute will

terminate once the max. path length, hopMax has been

reached.

(2) FHold: The FHold functionality is given in Figure 6. For each

share of the total amount, the goal of the FHold functionality

is to create pairwise contracts between neighboring nodes

that commit to transacting that share.

In the first step, FHold divides the path into three segments:

Alice-Charlie, Charlie-Denise, and Denise-Bob, so that if a

hold-failure occurs in any of the segments (e.g., due to un-

responsive, or malicious nodes), only that segment will be

re-tried upto a threshold number of times. For each share,

starting from Alice, the ideal functionality sends each pair

of neighboring nodes (j,k), a tuple consisting of the trans-
action id, the amount αi , and a contract, Chjk , consisting

of the current link weight, lwc jk and the future link weight

(after the Pay phase), lwfjk between j and k . In Step 2, each

node can choose to either accept or reject the contract (if a

node doesn’t respond within a time period, FHold assumes

its response is ⊥). If a node along the Alice-Charlie seg-

ment, rejects the contract, FHold sends failure messages to

all nodes along the segment, writes a hold − fail message

to the blockchain and terminates. If any node along the

Charlie-Denise and/or Denise-Bob segment rejects the con-

tract, FHold will retry the failed segment a fixed number of

times, while the nodes in the successful segments will hold

on to their contracts. When a node receives a failure message

from FHold, it will drop its held contracts. If no node rejects

the hold contract, FHold stores a tuple (txid,write,Chjk) for
every pair of nodes j,k . When Bob is reached, he can either

choose to accept or reject the contract (Step 3). If Bob accepts,

all stored tuples are written to the blockchain, and FHold no-

tifies each node along the path individually that the hold

operation was successful (Step 4). Note that the contracts are

established iteratively in a pairwise manner to enable any

node along the path to potentially abort the hold operation.

(3) FPay: The FPay functionality is given in Figure 7. For each

share, the goal of FPay is to finalize the transaction by sub-

tracting the credit values on links along the path from Alice

to Bob, and writing it to the blockchain. FPay works simi-

lar to FHold, the only difference being that at the successful

completion of FPay for all nodes, the matrix stored by FDCN
will be updated with the new, decremented link weights.

(4) FBC: The blockchain functionality is given in Figure 8. FBC
receives messages from FHold and FPay. FBC writes tuples

to the blockchain, and sends a copy of the new block to

nodes (as in the other other ideal functionalities, we as-

sume that all communication between FBC and nodes take

place via secure and authenticated channels). This is done by

sending (update,B). The node can either accept the update,

or decline (unresponsive, disconnected, or non-cooperating

nodes). When a new node joins the network, or a dormant

node wishes to update itself, it can request a copy of the full

blockchain by sending a read message to FBC.

B.1 Design Choices for Ideal Functionalities
In this section, we give the motivation and reasoning behind some

of our design choices for the ideal functionalities.

13

FFindRoute Ideal Functionality

(1) Sender Alice sends a tuple (α , ID
Bob
,n) to FFindRoute. For

each i ∈ [1..n], Alice sends a tuple (ID
Charlie

, IDDenise) to

FFindRoute (RHs could be different for each share i).
(2) For each i ∈ [1..n], FFindRoute starts an instance of

breadth first search (BFS), rooted at Alice. FFindRoute
will send each node j, a tuple (txid, jp , IDCharlie

).

Each node replies to FFindRoute with a tuple

(txid, (j1, currMax1), . . . , (jd , currMaxd)), or it replies

with (txid,⊥,⊥), where d is the degree of j. In the latter

case, FFindRoute backtracks to the parent node, and ignores

this child. For each visited node j, FFindRoute stores a tuple
(jp , j, currMaxj). FFindRoute also updates the matrix stored

by FDCN with the currMax (link weight) values.

(3) Once Charlie is reached, or the maximum path length,

hopMax, has been exceeded, FFindRoute terminates the BFS

for the Alice-Charlie segment. In the former case, FFindRoute
computes the minimum of all the stored currMax values so

far, to find the max. value that can be transacted along the

Alice-Charlie segment, currMax1, and sets αi = currMax1.
In the latter case, FFindRoute aborts.

(4) Next, FFindRoute starts an instance of BFS rooted at Char-

lie, with the goal of finding a path between Charlie and

Denise, which proceeds similar to Step 2. If Charlie replies

with (txid,⊥,⊥), FFindRoute will ask Alice to select a new

RH in place of Charlie, and will re-compute αi . Once Denise
is reached, or the max. path length, hopMax, has been ex-

ceeded, FFindRoute terminates the BFS for the Charlie-Denise

segment. In the former case, FFindRoute computes the mini-

mum of the stored currMax values along the Charlie-Denise

segment to compute the max. value that can be transacted

between Charlie and Denise, currMax2. If currMax2 < αi ,
it sets αi = currMax2. If the hopMax has been exceeded

without reaching Denise, FFindRoute will retry finding a path

between Charlie and Denise a fixed number of times; if all

are unsuccessful, FFindRoute aborts.

(5) FFindRoute then finds a path between Denise and Bob in a

similar manner, and computes the max. value that can be

transacted along that path, currMax3. If Denise replies with
(txid,⊥,⊥), FFindRoute will ask Alice to select a new RH in

place of Denise, and will re-compute αi . If currMax3 < αi ,
it sets αi = currMax3.

(6) FFindRoute sends a tuple (txid,αi , IDCharlie
, IDDenise) to Al-

ice and Bob. They can respond with (txid, find − accept)
or (txid,⊥). If FFindRoute receives a (txid,⊥) from either of

them, it aborts. Else it sends them both (txid, find − success),
outputs all stored tuples of the form (jp , j, currmax j) on the

path from Alice to Bob, and the final value of αi , and termi-

nates.

Figure 5: Ideal functionality for the Find Route phase

(1) Each node decides on the fly the next node to route to in

FFindRoute. This is because each node should be able to de-

cide if it wants to be part of a transaction or not. FFindRoute

FHold Ideal Functionality

(1) FHold will follow the paths constructed by FFindRoute be-

tween Alice and Bob, and use the αi values output by

FFindRoute for each path. For each i ∈ [1..n] FHold divides

the path into 3 segments: Alice-Charlie (segAC), Charlie-
Denise (segCD), and Denise-Bob (segBD). FHold constructs
and sends to every pair of neighboring nodes j,k , a tuple
(txid,αi ,Chjk = (lwc jk , lwfjk)), where j is k’s preceding

node.

(2) Nodes j,k can send (txid,Chjk , accept − hold) or

(txid,Chjk ,⊥) to FHold. Depending on which segment it is

in, FHold responds thus:

(a) If any node in segAC replies with (txid,Chjk ,⊥), FHold
aborts the transaction by sending (txid, hold − fail) to
all nodes, writes (txid, hold − fail) to the blockchain by

calling FBC, and terminates. When nodes receive the

(txid, hold − fail) message, they delete their contracts.

Else, if nodes j,k accept the hold message, FHold stores a

tuple (txid, hold,Chjk).
(b) If any node in segCD or segBD replies with (txid,Chjk ,⊥),
FHold re-tries the transaction only along the failed seg-

ment a fixed number of times. If all re-tries fail, FHold
deletes stored tuples, sends (txid, hold − fail) to all nodes

(at which point nodeswill drop their held contracts), writes

(txid, hold − fail) to the blockchain, and terminates. Else,

FHold stores a tuple (txid, hold,Chjk) for all neighboring
nodes j,k .

(3) FHold then sends Bob the tuple (txid, hold,αi). If Bob

replies with a (txid,⊥), FHold deletes all stored tuples, sends

(txid, hold − fail) to all nodes and terminates. If Bob replies

with a (txid, hold − success), FHold writes (txid, hold) to the
blockchain by calling FBC for all neighboring nodes.

(4) If the write call to FBC was successful, FHold sends

each node in the path between Alice and Bob a tu-

ple (txid, hold − success), outputs all stores tuples of

the form (txid, hold,Chjk), and terminates. Else it sends

(txid, hold − fail) to nodes and terminates.

Figure 6: Ideal functionality for the Hold phase

could, in principle, decrement the link weights in the ma-

trix maintained by FDCN, but this would take away the de-

ciding power from nodes. Corrupted nodes could redirect

FFindRoute among themselves, but since FFindRoute knows

hopMax, it will eventually stop, unless Bob is eventually

reached, in which case we consider the transaction to be

valid.

(2) The functionality of FHold could be implemented by FPay,

but we model it separately to stay true to the real world

protocol.

(3) In all three phases, FFindRoute, FHold, and FPay in the final

step, the ideal functionality sends Bob and/or Alice a tuple

with the αi value (among other things). This is to give Alice

and Bob one final opportunity to abort the transaction (e.g.,

if Alice and Bob have changed their mind, do not want to go

14

FPay Ideal Functionality

(1) For each i ∈ [1..n], starting from Alice, FPay constructs a

tuple (txid,αi ,Cpjk = (lwc jk , lwfjk)) and sends to every pair

of neighboring nodes, j,k . These tuples will corresponds to
the hold tuples outputted by FHold. FPay will follow the path

constructed by FFindRoute and FHold. The path is divided into

segments, similar to the FHold functionality.

(2) Nodes j,k can send (txid,Cpjk , accept − pay) or

(txid,Cpjk ,⊥). Similar to FHold, if any node along segAC
replies with (txid,Cpjk ,⊥), FPay aborts the transaction,

initiates a rollback by calling FBC to write (txid, pay − fail)
to the blockchain, sends (txid, pay − fail) to all nodes,

and terminates. When a node receives a (txid, pay − fail)
message, it drops its hold and pay contracts. If any nodes

along segCD or segBD reply with (txid,Cpjk ,⊥), FPay will

retry the transaction a fixed number of times before aborting.

Else FPay creates and stores a tuple (txid, pay,Cpjk).
(3) When FPay reaches Bob, it will send him a tuple

(txid, pay,αi). If Bob replies with (txid,⊥), FPay aborts and
rolls back the transaction by sending all nodes prior to

Bob on the path to Alice (txid, pay − fail). It also writes

(txid, pay − fail) to the blockchain. Else if Bob replies

with a (txid, pay − success) FPay writes (txid, pay) to the

blockchain by calling FBC. It also updates the matrix stored

by FDCN with the new, decremented link weights.

(4) If the write call to FBC was successful, FPay sends

each node in the path (txid, pay − success), else it sends

(txid, pay − fail).

Figure 7: Ideal functionality for the Pay phase

FBC Ideal Functionality

(1) FBC can receive 4 kinds of write messages: (txid, hold − fail),
(txid, hold), (txid, pay − fail), (txid, pay) from FHold and

FPay respectively. FBC writes the tuple to the blockchain

and sends a copy of the newest block B to every node in the

credit network by sending a tuple (update,B) to all nodes in
the credit network.

(2) Each node in the network either replies with (agree,B) or
(⊥,⊥). In the former case, the node updates its copy of the

blockchain, has the latest copy of the blockchain stored lo-

cally, and is as such synced with the blockchain. However,

if the reply was (⊥,⊥), the node now has an outdated copy

of the blockchain and can to be referred to as an outdated

node.

(3) If a new node joins the credit network or an outdated node

wants to get synced with the blockchain, it sends a message

(read) to FBC. FBC now sends a message (update,B′)where
B′ is the copy of the entire blockchain so the new/outdated

node is synced with the blockchain.

Figure 8: Ideal functionality for blockchain

through with the transaction for any reason, or if they get

disconnected from the network).

(4) Alice and Bob give FFindRoute the number of shares n and the

RHs for each share at the beginning, before any paths have

been found. This is one possible way to model FFindRoute,

since then FFindRoute can let them know how much max-

imum credit is available along each of the n paths. Alice

and Bob can re-run FFindRoute if they want to route more

than α1, . . . ,αn . Another possible way to model FFindRoute
is for Alice and Bob to just give it the total amount α , and
let it compute the number of shares and paths. The first way

gives Alice and Bob the freedom to pick their RHs per share.

Since the set of RHs is public, Alice and Bob can pick n as a

function of the total number of RHs.

B.2 Correctness of Ideal Functionalities
In this section, we give an informal overview of why our definition

of the ideal functionalities preserves the claimed privacy/security

properties. The formal theorem statement and its proof is given in

Section B.3.

FDCN consists of 4 ideal functionalities FFindRoute,FHold,FPay
and FBC. There are certain pieces of information that are unavoid-

able to reveal; in fact the construction of the ideal functionalities

would be unrealistic without revealing this information. All four

ideal functionalities reveal the transaction id, txid, which is a ran-

domly generated hash digest to all nodes in a path. This will only

tell nodes along a path that a certain transaction has traversed

them, but cannot tell anything more than that. With this in mind,

we recollect that we define value privacy to mean that no node

not along a path will learn anything about the value transacted for

a particular transaction. Now let us consider each of them with

respect to the desired security/privacy properties:

(1) FFindRoute:FFindRoute preserves sender/receiver privacy, since

it never reveals the sender/receiver identity to any node in

the network. Link privacy is preserved, since every node (in-

cluding sender/receiver) only knows its parent and children.

(2) FHold, FPay: The FHold and FPay functionalities do not reveal

sender/receiver information to any node in the network.

They reveal the value, αi traversed along a path, and every

node knows the weights on the links connecting it to to

its parent and children, but nothing more. Every node also

doesn’t get any information about the network topology,

other than its own outgoing and incoming links.

(3) FBC: When messages get written to the blockchain, only

the txid and hold − fail, pay − fail, hold, pay messages are

written to the blockchain. These messages just tell nodes

in the network that some transaction, txid, was written to

the blockchain, and whether its hold and pay phases went

through or not. This doesn’t reveal sender/receiver identity,

or the value transacted, or any information about network

topology.

B.3 Analysis
Proof of Theorem 6.3.

15

Proof. We need to prove that no environment, Z can distin-

guish between the outputs of the ideal-world simulator, S, and the

real-world probabilistic polynomial-time (PPT) adversary, A. We

consider a simulator, S that internally runs A, and, with the help

of the ideal-world functionality FDCN, provides whatever inputs

A asks for in a run of the real-world protocol. A will then run the

real-world protocol, possibly corrupting users, and will generate

outputs in each phase of the protocol, which are given to S. Fi-

nally, S takes A’s outputs and forwards them to FDCN (consisting

of FFindRoute,FHold,FPay), who completes the simulation of the

protocol in the ideal-world.

Our goal here is to show that ifA tries to cheat at any point in the
execution of the real-world protocol, it will result in both, the ideal-
world and real-world aborting. In other words, it is not possible

for A to cheat in the real-world in such a way that the ideal-world

and real-world simulations go through properly. It follows that if S

can exactly mirror the actions of A in the real-world (successfully

completing whenA completes, and aborting whenA tries to cheat,

or A aborts), then no environmentZ can successfully distinguish

between the two worlds, except with negligible probability, where

the probabilities are taken over the random coins of A.

Let us consider a complete run of the ideal world and real-world

protocols consisting of the Find Route phase, the Hold phase and

the Pay phase.

• Find Route phase: In the Find Route phase, S will gen-

erate the set of inputs for A: the set of RHs, the number of

paths to be found, n, security parameter λ, hash function

H , a public ledger BC, and the max. path length, hopMax.
Since all of these parameters are public, S can generate them

by itself. A then picks two RHs, Charlie and Denise, gen-

erates random txid′ and txid′′ along the Alice-Charlie and
Bob-Denise path, constructs the find and findReceive tuples,
and gives them to S. Now, S needs to simulate this cor-

rectly in the ideal-world. S will pick the same RHs that A

picked, Charlie and Denise, and call FFindRoute with param-

eters (txid,α , ID
Bob
,n, ID

Charlie
, IDDenise). Note that S uses

a single txid, while forwarding information to FFindRoute,

since in the ideal-world, FFindRoute, and not the RHs find

routes. But S will record txid′ and txid′′, and will use them

while giving A the results of FFindRoute’s run.

FFindRoute then starts an instance of breadth first search

(BFS) rooted at sender Alice, and each node j along the Alice-
Charlie path will receive tuples (txid, jp , IDCharlie

), where jp
is j’s parent. The BFS proceeds as described in Figure 5; once

done, FFindRoute updates its matrix with link weights. At

some point, either Charlie will be reached, or hopMax will

get exceeded. In the former case, S will store the value of αi ,
and continue the simulation with FFindRoute on the Charlie-

Denise andDenise-Bob paths. In the latter case (which occurs

if A has corrupted nodes along the path), FFindRoute will

abort. S notifies A of the failure, and terminates the ideal-

world execution, following which A will have to halt the

real-world execution, since a path has not been found from

Alice to Charlie.

After Charlie has been reached, FFindRoute will continue with

the simulation, finding paths from Charlie to Denise and

Denise to Bob in a similar way, in serial order. At any point

of hopMax gets exceeded without reaching the target (i.e.,

A corrupts nodes along the way, which forward FFindRoute
between themselves, or A aborts), S notifies A that the

protocol has failed, which results in both, ideal and real

worlds aborting. Finally, S will forward to A the results

of FFindRoute’s execution: n full paths from Alice to Bob,

and α1, . . . ,αn . Note that before forwarding to A, S will

replace txid with txid′, txid′′ and txid′′′ along the three

path segments, respectively.

One can see that there is no way A can cause FFindRoute to

run indefinitely, or find paths to wrong users (e.g., instead of

Bob, the credit gets routed to A). This ensures integrity of

the transaction. Also, corrupted nodes not directly on a path,

will not be given any information by FFindRoute, and hence

will not know the value transacted through them. Recollect

that in our adversary model, it is unavoidable that nodes

sitting on a path will know the value transacted through

them. Finally, unless A corrupts the next-hop neighbor of

either sender or receiver, A is not given any information

about the identities of Alice and Bob by S, i.e., in FFindRoute,

every node only knows its parent and children, and has no

information about other nodes.

Hence, S exactly mirrors the actions ofA in the ideal-world,

aborts at any attempt to cheat by A. It follows that no envi-

ronmentZ can successfully distinguish between the actions

of A in the real-world and S in the ideal-world.

• Hold phase: In the Hold phase, S will begin by providing

A the set of RHs, the number of paths, n, and the amount

to be transacted along each path, α1, . . . ,αn , hash function

H , public blockchain, BC. The main point to notice here

is that we are giving the adversary all amounts along all

paths; this is because we assume a strong adversary, where

A can corrupt nodes along all paths between Alice and Bob,

in which case A will know all the αi values. A starts the

execution by re-using its txidpr ime , txid′′, txid′′′ and keys

from the Find Route phase. It constructs the hold tuple for

Alice, which is forwarded to S. On receiving the hold tuple,

S constructs a tuple (txid,αi ,Hjk= (cw jk ,f w jk)), where j
is k’s preceding node. These tuples are sent starting from

Alice’s neighbor up until Bob. S re-uses the txid it stored

from the find phase. An interesting point is where does S

get (cw jk , f w jk) from? S contacts FDCN, which maintains

the matrix of link weights, and gets cw jk from the matrix;

f w jk is set to be cw jk−αi , which can be locally computed by

S. Now,S forwards the tuples to FHold, who sends the tuples

starting from Alice’s neighbor, up until Bob is reached. The

ideal-world simulation proceeds as described in Figure 6. If

any node along the path replies with a (txid,Hjk ,⊥) (which

means A has corrupted the node), FHold aborts the trans-

action (after a number of re-tries, if applicable), informs A

of the failure, calls FBC and writes (txid, hold − fail) to the
blockchain. This will force A to abort the real-world proto-

col. If Bob is successfully reached, accepts the hold contract,

and the final write call to FBC is successful, S sends A the

tuple (txid,αi ,Hjk).

16

It follows that ifA causes any nodes along the path to be un-

responsive, does not follow the route created by FFindRoute,

or otherwise tries to route FHold in a circular fashion among

corrupt nodes, S will terminate the ideal-world simulation,

which will force A to abort the real-world execution. Since

the Hold phase has failed, A cannot continue further with

the Pay phase. We note that since we are considering a

strong adversary, who corrupts nodes along all paths, A
will know the values of α1, . . . ,αn . In practice, this might

rarely be the case, and A will only know the values trans-

mitted along those paths on which it has planted corrupted

nodes.

• Pay phase: The simulation works very similar to the hold

phase.

□

17

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Adversary Model and Security Properties
	5 Construction of BlAnC
	5.1 Find Route Phase
	5.2 Hold Phase
	5.3 Pay Phase
	5.4 Blockchain Operations
	5.5 System Dynamics: Handling Timeouts, Node Failures, and Corrupt Nodes

	6 Security Analysis
	7 Scalability Metrics
	8 Experiments and Evaluation
	9 Optimizations
	10 Conclusions and Future Work
	11 Acknowledgements
	References
	12 Appendices
	A Find Route Phase Algorithms
	B Security Analysis
	B.1 Design Choices for Ideal Functionalities
	B.2 Correctness of Ideal Functionalities
	B.3 Analysis

