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Rodrigo Abarúa1, Claudio Valencia2, and Julio López3
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Abstract

The main objective of the Internet of Things is to interconnect everything around us
to obtain information which was unavailable to us before, thus enabling us to make better
decisions. This interconnection of things involves security issues for any Internet of Things
key technology. Here we focus on elliptic curve cryptography (ECC) for embedded devices,
which offers a high degree of security, compared to other encryption mechanisms. However,
ECC also has security issues, such as Side-Channel Attacks (SCA), which are a growing threat
in the implementation of cryptographic devices. This paper analyze the state-of-the-art of
several proposals of algorithmic countermeasures to prevent passive SCA on ECC defined
over prime fields. This work evaluates the trade-offs between security and the performance
of side-channel attack countermeasures for scalar multiplication algorithms without pre-
computation, i.e. for variable base point.

Although a number of results are required to study the state-of-the-art of side-channel
attack in elliptic curve cryptosystems, the interest of this work is to present explicit solutions
that may be used for the future implementation of security mechanisms suitable for embedded
devices applied to Internet of Things. In addition security problems for the countermeasures
are also analyzed.

Keywords: Internet of Things, Elliptic curve cryptosystems, Side-channel attack, Coun-
termeasures.

1 Introduction

At present, it is not unusual to have our mobile and home devices connected through the devel-
opment of different devices and communication protocols such as the wireless sensor networks
(WSN), Radio - Frequency Identification (RFID) and miniaturization technologies, which en-
able generating new technology embedded and immersed in our daily lives, known as Internet of
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Things (IoT). The application ranges of IoT are completely intersected, ranging from industrial
automation to remote care of people [116].

The features of IoT and the broad variety of devices for each application enable opening
lines of research to cover different areas of knowledge, including security, which represents a
fundamental problem in our days [68, 117]. A central component in the embedded IoT are
microcontrollers, therefore incorporating security mechanisms for these components is relevant
due to their characteristics.

Public-key cryptography (PKC) plays an important role in embedded IoT devices to pro-
vide security services such as confidentiality, data authentication and key exchange [137]. A
clear example of PKC is the Elliptic Curve Cryptography (ECC) proposed by Koblitz [77] and
Miller [89], which provides the same cryptographic strength as the RSA public-key system with
significant smaller key sizes. For example, a 256-bit ECC key is equivalent to RSA 3072-bit key.
Due to smaller key sizes, ECC offers some advamtages for compact and faster implementation
on embedded devices [50]. Therefore, the ECC is a viable option for IoT applications. In gen-
eral, the development of techniques for protecting cryptographic algoritms against Side Channel
Attack (SCA) is crucial for the security of applications running on microcontrollers used in IoT.

Passive SCA exploit physical leakages on a device when a cryptographic process is executed,
where we have timing [80], power consumption [78] and electromagnetic radiation [107, 48]
attacks. These attacks are easy to perform in microcontrollers without proper countermeasures.

There are two general strategies to these attacks: Simple Side-channel Analysis (SSCA) [80]
and Differential Side-channel Analysis (DSCA) [78]. The SSCA analyses the differences of
physical leakages on a device using a single scalar multiplication, otherwise the DSCA uses
statistical techniques to retrieve information based on the measurements of physical leakages on
a device using several scalar multiplications [104].

There are currently several studies on SCA and countermeasures in ECC such as the Avanzi’s
report [6], book [29], surveys [41, 39, 34] and PhD theses [36, 38, 132, 133]. It is noticed that pre-
vious works, in general, present studies from a point of view of the attacks and countermeasures,
and not the security analysis of the countermeasures.

This article is an extension version of the work presented in [98]. The objective is to show
a panorama of solutions that designers and implementors can choose to protect ECC against
SCA, targeted a very restricted embedded devices suitable for IoT. Our focus is in protecting
the central operation of ECC, which is: given an non-negative integer k and an elliptic point
P , compute [k]P . This operation is known as point multiplication or scalar multiplication.
The main contribution is based on our security analysis of the SCA countermeasures on ECC,
providing a comparative analysis between security versus computational cost.

The characteristics of embedded IoT devices limit the paper scope to SCA countermeasures
that do not use precomputation tables to store elliptic curve points.

The paper is organized as follows. In the next Section, we present a brief background of
elliptic curves. Scalar multiplication algorithms are presented in Section 3 and the countermea-
sure of different passive attacks are given in Sections 4, 5, 6, 7, 8 and 9. Futhermore a summary
of the countermeasures and security problems are presented in Section 10. Finally, we present
the conclusion in Section 11.
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2 Mathematical Background

An elliptic curve E defined over a large prime field Fp is given by an equation of the form
E(Fp) : y2 = x3 + ax+ b, with 4a3 + 27b2 6= 0. The group used for cryptography consists of the
affine (A) points (x, y) on the curve and the point at infinity P∞ (the neutral element), with
the “chord-and-tangent” addition. The group operation for (x1, y1) + (x2, y2) is given by:

(x3, y3) =
(
λ2 − x1 − x2, λ(x1 − x3)− y1

)
,

where,

λ =


y1 − y2

x1 − x2
if x1 6= x2, [ECADDA]

3x2
1 + a

2y1
if (x1, y1) = (x2, y2). [ECDBLA]

and (x1, y1) + (x1,−y1) = P∞.
The (projective) points on E1 are divided into classes by the equivalence relation: (X1, Y1, Z1) ≡

(X2, Y2, Z2) ⇐⇒ ∃λ ∈ F∗p s.t. (X2, Y2, Z2) = (λ2X1, λ
3Y1, λZ1). We denote by (X : Y : Z) the

equivalence class containing the point (X,Y, Z). Note that every equivalence class with Z 6= 0
contains exactly one point of the form (x, y, 1) which corresponds to an point (x, y) on curve
E (and vice versa). The (unique) equivalence class with Z = 0 is of the form (ρ3 : ρ2 : 0)
(with ρ ∈ F∗p) and corresponds to the point at infinity P∞ of E. A detail description of ECC is
presented in [29, 56, 136].

The point addition formula is based on different operations over Fq: multiplication (M),
squaring (S), inversion (I), addition and subtraction, which have different computational costs.
For a typical software implementation of prime field operations, it is often assumed that I ≈
100M and S = 0.8M [47]. In general, for a microcontroller, a field inversion costs a few dozens
of field multiplications, the cost of a field squaring is slightly lower than the cost of a field
multiplication and the cost of an addition/subtraction is significantly lower than a multiplication.

3 Scalar Multiplications Algorithm

The fundamental algorithm for ECC is the scalar multiplication [k]P , where k is an integer and
P an elliptic curve point. In this paper, we concentrate mostly on the basic double-and-add
method since it can be implemented without lookup tables. There are two versions of the basic
double-and-add algorithm the Right-to-left and Left-to-right, in the Algorithm 1 the Left-to-right
is showed.Given the binary representation of an integer k =

∑n−1
i=0 ki2

i, the scalar multiplication
[k]P = (kn−12k−1 + · · · + k020)P is computed using the Horner’s rule, therefore [k]P = [k0 +
2(k1 + 2(. . . (kn−2 + 2kn−1) . . . ))]P require n doublings and n/2 additions on average, denoted
by (n/2)A+ nD. The latter is true for the Algorithm 1 and Right-to-left Algorithm. Then the
double-and-add method is optimal [29, 56, 25, 81].

The Left-to-right and Right-to-left binary methods may be subject to SCA. An adversary
can to distinguish from a power trace between point doubling (2Ri, with i = 0, 1) and point
addition (R0 +R1), and so it can recover the value of the secret scalar [k] (for details see [80]).

The attack is possible because the algorithms used to compute [k]P directly depends on
the bits of the secret key k. For example, a general description of a SSCA can be explained
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Algorithm 1 Double-and-add binary expansion method: Left-to-right

Inputs: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Outputs: Q = [k] ·P
1: R0 ← P∞; R1 ← P
2: for i from n− 1 to 0 do
3: R0 ← 2R0

4: if ki = 1 then
5: R0 ← R0 +R1

6: end if
7: end for
8: return R0

with the following idea: if the bit of the secret key k is 1, both algorithms – Left-to-right and
Right-to-left- compute one doubling and one addition. Otherwise, if the bit of the secret key k
is 0, both algorithms only perform a doubling 2P . These two operations have different curves
of: time, power consumption or electromagnetic radiation. Then, observing these curves (power
consumption, for example), we can found if the bit (in a given time) of the key k is 1 or 0, and
then an attacker could be able to determine the bits of the secret key. Alternatively, DSCA
[78] uses statistical techniques to retrieve information on the secret key based on measurements
from several scalar multiplications [104]. For details see [6, 41, 70]. The following section the
countermeasures of SSCA are will present.

4 Countermeasures of Simple Side-channel attacks in ECC

SSCA is made easier for [k]P algorithms because the operations ECADD and ECDBL are
different. Countermeasures to special elliptic curves are known such as Edwards curves [37,
12, 13, 61], inverted Edwards curves [14], Huff model curve [72], Hessian curves [113, 107, 42],
Jacobi curves [84, 16, 35, 55, 62]. Recently, the Edwards curves were standardized [83]. This
special family of elliptic curves is not studied in this work. Although, in general, we can choose
an EC of the special form, it is very likely for us to select EC recommended by a standard. For
example, over a large prime field, the NIST [101] and SEC 2 [114] recommends the use of prime
order EC.

The usual way to prevent SSCA consists always repeating the same pattern of operation,
whatever the point is processed. For example, the double-and-add-always algorithm of Coron [24]
ensuring that the operation of the secret scalar are independent by inserting dummy ECADD
between consecutive ECDBL. Other c ountermeasures to prevent SSCA are the following: Unified
Formulæ of Brier-Joye in [18] and Brier-Dechene-Joye in [11], Montgomery Ladder over prime
fields [18, 94, 63, 44] and fields of characteristic two [87], Joye’s Double-add, Add-Only [73], Zero-
less Signed-digit expansion (ZSD) in [52], Atomic Blocks [47, 20, 82, 26, 1]. Another approach
consists in using “regular” representations of the scalar [95, 126, 73], with the same fixed pattern
of group operations for all scalars. Note, that this family of countermeasures is not analyzed in
this work.

In the next subsections, we present a security analysis and theoretical computation cost of
the above mentioned countermeasures.
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4.1 Unified Formulæ of Brier-Joye [18]

An Unified formula uses the same set of field operations for ECADD and ECDBL. For Weier-
strass elliptic curves, we have the following algorithm for point addition [18] (for more details
see [15]). The computational cost for an addition is 13M + 5S.

Let P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), with xi = Xi/Zi and yi = Yi/Zi, R = P + Q =
(X3, Y3, Z3) is:

U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, T = U1 + U2,

M = S1 + S2, Z = Z1Z2, F = ZM, L = MF, G = TL,

R = T 2 − U1U2 + aZ2, W = R2 −G, X3 = 2FW, Y3 = R(G− 2W )− L2, Z3 = 2F 3.

Security Problems:

4.1.1 Izu-Takagi Attack

The Unified Formulas of Brier-Joye are only valid if y1 + y2 6= 0. Izu and Takagi [66] presented
an attack using two points such that x1 6= x2 and y1 + y2 = 0. The main idea of the attack is
to use an special point, which causes a fault, i.e. a division by zero (0−1 /∈ Fp) in converting
from projective to affine coordinates at the end of the [k]P . The secret scalar k is thus guessed
from the error of [k]P for different points P . If an attacker wants to know [m]P + P with
2 ≤ m < k, he can use a point P in such a way that y(mP ) + y(P ) = 0 (the m-th self-collision
point). If the device replies with an fault to the attacker, he then knows the device compute
[m]P + P . Starting with m = 2 1, and by following this process, the attacker is able to recover
the k bit-by-bit, from the most to the least significant.

4.1.2 Walter’s Attack

The Walter’s attack in [134] uses the side-channel leakage of the conditional substraction in a
Montgomery modular multiplication (MMM) operation. Let P = (X,Y, Z) a point in EC, when
the doubling algorithm of Brier-Joye is calculated the registers U1 = U2 = XZ are identical, and
they exhibit identical side-channel leakage of the conditional substraction in MMM operation
(the same property holds for S1 and S2). The behavior for point addition is different. When the
addition algorithm is used, the input point P = (X1, Y1, Z1) are randomized coordinates, the
latter implies that occasionally Z1 will be large and X1 and Y1 will both be small. Then, the
computations of U1 and S1 are less likely to include the additional subtraction in MMM, on the
other hand, the computations of U2 and S2 are more likely to include the additional subtraction.
This difference in behavior can be detected by a side-channel attack and used accordingly to
recover the bits of k.

Recently Wang et al. [135] performs an implementation of Walter’s attack on a smart card
verifying that Walter’s attack is effective against Double-and-Add Always and the Montgomery
Ladder Algorithm.

4.1.3 Amiel et al ’s Attack

A common requirement for several countermeasures against SSCA is that M and S fields op-
erations are indistinguishable from the SCA point of view. Particularly, the countermeasures

1When m = 2 and the attacker knows whether y(2P ) + y(P ) = 0, then, if it is, kn−2 = 1; otherwise, kn−2 = 0

5



atomic blocks [47, 20, 26] and Unified Formulas [12, 72, 18] assumes this property. However, this
assumption is not always true. Amiel’s attack [4] is based on distinguishing between M and S
using the power consumption trace. This is possible because the Hamming weight of the result
of a M and S are different, and they can be distinguished in the power traces.

Notice that when a point addition is computed, the multiplications Z = Z1Z2 and U1U2 are
different but when a point doubling operation is computed the above operations are Z = Z2

1

and U2
1 , hence, Amiel’s attack can be applied to such implementations.

4.1.4 Combined Attack, Passive and Active Attack (PACA)

Amiel et al. in [5] presents a combined attack on a resistant implementation to side channel of
RSA. This attack is easily applied to ECC.

The PACA attack use the following idea. An attacker applies a fault in the register that
store the Z coordinate of point P1, say Z1 = 0, then, we use the Unified Formula which has
two different patterns for the calculation, Z = Z1 · Z1 = 0 · 0 (if doubling is computed) and
Z = Z1 · Z2 = 0 · Z2 (with Z2 6= 0 if addition is computed). The authors report that these two
patterns can be identified in a power consumption trace [5, 118]. The latter allows an attacker
applying SPA techniques to distinguish between additions operations and doubling operations
to know the secret key k. Schmidt et al. in [118] present this attack in Edwards curves [37] in
inverted coordinates, and this attack is to apply Unified Formula of Brier-Joye.

4.1.5 Horizontal Collision correlation analysis (HCCA)

Recently, Bauer et al. [9] presents the HCCA, this new attack use two different techniques called
Horizontal power analysis and Collision correlation analysis which are effective for Atomic
Blocks and Unified formulae countermeasures. The main assumption is that ”The adversary
can detect when two field multiplication have at least one operand in common”, basically, when
the Unified Formula performs a doubling operation (P = Q) the attack uses the fact that the
multiplication X1Z2 is computed twice (U1 and U2), hence, we can define the two following
applications: T1 := (X1 ·Z1)1−s · (X1 ·Z2)s, T2 := (X1 ·Z1)1−s · (X2 ·Z1)s. In their work, they
assume a co-processor with Long Integer Multiplication (LIM) implemented, followed by field
reduction. Using the Hamming weight leakage model in order to demonstrate from theoretical
and practical points of view that there is a Pearson’s linear correlation (Pc) of LIM(X,Z) and
LIM(Y,Z) (i.e. two LIM processing share the same operand), when s = 0 → Pc ≈ 1 then
there is correlation. When the device processes LIM(X,W ) and LIM(Y, Z) (all the operands
are independent), hence s = 1→ Pc ≈ 0 therefore there is no correlation.

4.1.6 Horizontal Same Value Attack (SVA)

Murdica in [97] presents SVA for ECC applying vertical attack technique. Later, Danger in [32]
use the SVA for ECC apply horizontal attack technique, if the input point of Unified Formula
are the same P = Q, the values U1 and U2 are equal, the same occurs for the S1 and S2 values.
Therefore, this attack can differentiate a doubling or addition and only requires a single trace,
for example energy, to reveal all the secret bits of scalar k. For more details see [32].

Observation Table 11 shows a relationship between the types of attacks to Unified Formulas
versus the requirements to perform the attack. Here, we can see that Izu-Takagi attack [66]
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needs a larger set of requirements to achieve the attack. On the other hand, the remaining
attacks need a simple execution to perform the attack. It is noted that the required statistical
analysis cost to perform the attack has not been considered.

Recently, Renes et al. in [108] presented new complete formulas for elliptic curves on prime
field. The new formulas naturally protect against SSCA, the computational cost for curves of
type a = −3 used in standards NIST and SEGC is 12M + 2mb + 29A where mb is defined as
multiplication by the b parameter of the elliptic curve. Chmielewski et al. in [30] presents an
implementation of the Renes formulas in an FPGA platform, and they show in a real way that
these formulas protect against SSCA.

Futhermore, Das in [33] shows that the complete formulas recently presented by Renes are
resistant to Bauer attack [9], but that formula do not resist to the triangular analysis attacks
[109] which exploits the inner collisions within a LIM, this attack is able to differentiate M or
S field operations. Additionaly, Das presents the countermeasures which compute the square S
and exchange the operands in a LIM and that can hide side channel information, for details of
the algorithm see [33].

Moreover, Brier, Dechene and Joye in [11] presents a new Unified Formula to protect against
the Izu-Takagi attacks. The cost of these new formulae is 16M + 3S. Stebila and Thériault in
[115] generalize Walter’s attack and detect a conditional addition at the end of the Montgomery
multiplication. Moreover, the Brier-Dechene-Joye formula is prone to Amiel’s attacks [4] and
PACA [5].

4.2 Double-and-add Always Coron’s Algorithm

The double-and-add-always algorithm presented in [24] (Algorithm 2) uses an dummy point addi-
tion when the scalar bit ki = 0 and the sequence of operations to compute a [k]P is independent
from the value of k. Thus, an adversary cannot guess the information bit of ki by the SPA. A

Algorithm 2 Double-and-add always resistant against SPA

Inputs: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Outputs: Q = [k] · P
1: R0 ← P∞
2: for i from n− 1 to 0 do do
3: R0 ← 2R0

4: R1 ← R0 + P
5: R0 ← Rki
6: end for
7: return R0

drawback of this method is its efficiency, the algorithm requires nA+nD. The method increases
the amount of field operations by the “dummy” computation in 33%.

Security Problems:

4.2.1 Fouque et.al. Doubling Attacks

The doubling attack by Fouque et.al. in [40] is an attack with chosen inputs, based on the
fact that the similar intermediate values appear when the [k]P is computed for input P and
2P . Therefore, with two microcontroller requests, all the bits of the secret scalar may be
recovered. The doubling attack is a powerful attack for some classic SPA-protected algorithms,
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such as double-and-add-always algorithm including those using the blinding countermeasures
[24]. The Algorithm 2 the partial sums are computed as follow, in the iteration j we get:
Sj(P ) =

∑j
i=0 kn−i2

j−iP =
∑j−1

i=0 kn−i2
j−1−i(2P ) + kn−jP = Sj−1(2P ) + kn−jP. Thus, the

intermediate result of the Algorithm 2 with P at step j will be equal to the intermediate result
with 2P at step j − 1, if and only if kn−j = 0 otherwise kn−j = 1.

4.2.2 Goubin’s Refined Power Analysis (RPA)

Goubin in [51] presents the RPA. The basic idea of this attack is to use “special points” P on
the EC E(K) in such a way that P = (x, 0) or P = (0, y). The attacker can choose the point
input of [k]P and to use for instance the base point P = (c−1 mod #E)(0, y) for some integer
c, the point [c]P = (0, y) leaving a significant difference in the consumption traces. The DPA
can successfully detect the difference in the consumption traces. The attacker may know the
secret key bits k recursively, thus this attack belongs to the family of attacks multiple execution.
This means, that the attack can be applied to protocols that use the same private key k, for
multiple executions, therefore the attack can be applied to single pass ECMQV where one of the
ephemeral Diffie-Hellman/MQV keys is kept constant, ECIES and single pass ECD. Therefore
for NIST and SECG curves over prime fields, there are only special points in the form (0, y).
An efficient countermeasure is the use of isogeny, discussed in Section 7 and countermeasures of
several attacks are presented in Section 9.

4.2.3 Akashita and Takagi’s Zero-value Point Attacks (ZPA)

Akashita and Takagi in [2] presents a generalization of Goubin’s attack; the principal idea of
ZPA is the use of special points, in such a way that the auxiliary register can take the zero-
value, in particular for points P = (x, y) which satisfies a) ED1: 3x2 + a = 0 or b) ED2:
5x4 + 2ax2 − 4bx + a2 = 0 that cannot be randomized by projective coordinates or random
EC isomorphism or random field isomorphism. The attack depends of the addition formula
implementation, particularly Akashita et al. uses the zero-value register for doubling point
formula. Akishita in [2] recommended: ”In order to resist this type of attacks, we have be careful
in implementing the addition formula”. Similar to the above attack, an efficient countermeasure
is the use of isogeny discussed in Section 7 and countermeasure of several attacks in Section 9.

Recently, Liu et al. in [86] performed an implementation of the Montgomery Ladder algo-
rithm to protect against SSCA and Randomized Projective Coordinate to protect against DSCA,
in particular they propose the algorithm Randomized MSB serial multiplication over GF (2m)
that protects against ZPA.

4.2.4 Yen et al.’s C-safe Fault Attacks

This attack consists of introducing a fault in [k]P at a point corresponding to a suspected dummy
operation, if the final output is still valid, the guess was correct, whereas, if the fault produces
an error in the final output, then the guess was incorrect. For instance, in the Algorithm 2, if an
attacker disturbs the step 4 “R1” and if a correct result is obtained at the end of the algorithm,
then it is a “dummy” operation, hence ki = 0, for the other case ki = 1. For more details
see [130].
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4.2.5 Yen et al.’s M-safe Fault Attacks

The M-safe faults attack consist of apply a fault in some memory blocks which may be erased
[131]. If we observe the Algorithm 2 performed in Step 4 R1 ← R0 + P , hence, if a fault is
induced in R0 once it has been used after the calculation of step 4, then if ki = 1, the faults on
line 5 in R1 will be erased. Otherwise, if ki = 0, then the value of R0 is erroneous, this fault
propagates to the end of the [k]P . Through this process the adversary can reveal ki

4.2.6 The 2-Torsion Attack’s (for fields of characteristic two)

Yen et al. in [129], introduces the 2-torsion attack. This is a SPA that uses a point of order 2
as input. In the context of EC an attacker uses the point P as input and observes the power
consumption curves, hence there are only two possibilities: For example, Double-and-add-always
Algorithm 2, the Step (5) of iteration i the register R0 = P∞ if ki = 0 or R0 = P if ki = 1, then
an attacker, by analyzing a single power consumption curve can know ki bits of the secret key.

4.2.7 Correlation Collision attack on the horizontal setting

For further details see subsection 4.5.1.

Observation Table 11 shows a relationship between the types of attacks to doubling-add-
always versus the requirements to perform the attack. We can see that most of the attack
requires multiple executions.

4.3 Montgomery Ladder of Brier-Joye

The Montgomery ladder algorithm [94] (ML) was built for Montgomery EC defined over field
of large characteristic. The ML algorithm for every bit of the ki both operations an addition
and a doubling are performed. With the supplementary condition that both operations have
an impact on the final output of the [k]P . Later Brier and Joye [18] generalize this idea to
Weierstrass curves defined over field of large characteristic. The computational cost for addition
formula of ML EC is lower than the Weierstrass EC form, and its [k]P is also faster. This
was later generalized to all EC [18, 87, 52], and right-to-left scalar multiplication (Double-add of
Joye’s) [74]. The computational cost is 9M+2S for addition algorithm and 6M+3S for doubling
algorithm. The classic ML is prone to M -safe attacks [131, 74]. Later Joye and Yen proposed
a modification of the ML (Algorithm 3) in order to counteract M -safe fault attacks. Thus, the
modified ML provides natural protection against SPA and safe-error attacks [74]. Notice that
during the computing [k]P using ML allows the use of x-coordinate only [18, 63, 44, 87]. The
computational cost is: a) ML of Brier-Joye [18] is n(12M +13S)+1I+3M +1S. b) X-only ML
[18, 63] is n(9M +7S)+1I+14M +3S. c) (X,Y )-only Co-Z ML [52] is n(8M +6S)+1I+1M .
In Section 4.8 the lower computation cost of this countermeasure is presented.

Security Problems:

4.3.1 Twist Curve Fault Attacks x-only version

The x-only version of the ML is prone to twist curve fault attacks of Fouque [45] given that the
twist curves Ẽ of many cryptographically strong curves could be smooth. Fouque et al. observed
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Algorithm 3 Modified-Montgomery-ladder

Inputs: A point P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Outputs: Q = [k] · P
1: R0 ← P∞, R1 ← P
2: for i from n− 1 to 0 do
3: b← ki,
4: R1−b ← R1−b +Rb
5: Rb ← 2Rb
6: end for
7: return R0

that performing the [k]P for some curve E of NIST [101] without using the y-coordinate, if the
cryptosystem give us a correct result for [k]P on Ẽ the attack is successfully applied only to just
one or two faults during the computation, consequently any generic algorithm may resolve the
discrete logarithm problem. Note that there are countermeasures for this attack, 1) Repeat point
validity check during [k]P , 2) Use y−coordinate all the time, 3) Choose twist-secure curves.

4.3.2 RPA and ZPA

See Sections 4.2.2 and 4.2.3.

4.3.3 Relative Doubling Attack

The relative doubling attack is presented by Yen et al. in [128]. This attack uses the same
chosen input as described in doubling attacks of Fouque et al. (P and 2P )[40]. The attack
deduces the existence of two equal adjacent bits in the secret scalar k i.e, it determines whether
ki = ki−1 = 0 or ki = ki−1 = 1; the latter implies that the bit number k sought by the attacker
is reduced.

4.3.4 Address-bit DPA (ADPA)

To more details see subsection 6.

4.3.5 Correlation Collision attack on the horizontal setting

To more details see subsection 4.5.1.

Observation Heyszl et al. in [59] presents an attack based on Electromagnetic (EM) analysis
of temporal registers for ML algorithm over a field of characteristic two. The fundamental idea
of the attack is to analyze the EM behavior in the temporal register location of the smart cards
and thus, to know the bits of the secret key, since there is a direct relationship between the bits
of the secret key and the temporary registers. Additionally, Heyszl presents a solution for the
attack consisting of randomizing the location of the registers, thus avoiding a direct connection
between the location of the registers and the bits ki.

4.3.6 Attack using Unsupervised Learning

In [58] an attack over algorithms for [k]P using ML and double-and-add always algorithms im-
plemented in FPGA is presented. In particular this work focuses on attacking the ML algorithm
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presented by Lopez-Dahab in [87] using projective randomized coordinates [24]. The attack uses
unsupervised learning for single-execution side-channel leakage, exploit location-based position
leakage [58] using EM [59]. The main idea is to divide a side-channel EM trace and to use the
k-means clustering algorithm. The attack depends on the ability to acquire multiple EM traces
simultaneously of different probe positions. In this way, it identifies for each subtrace ti the
detected location-based leakage depends on the measures position on the surface on the die [58]
that depends directly on the bits ki.

On the other hand, Perin in [106] uses an unsupervised attack since it does not require
previous knowledge of the device to be attacked, for the attack it uses four phases: trace pre-
processing, points of interest identification, fuzzy k-means clustering, and exponent recovery.
For the final stage they use statistical tools: majority rule, density probability function and
Bayesian classifier, where the side-channel data is captured from an EM measures in an FPGA.
The attack is applied to RSA using ML, exponent blinding as a countermeasure for DSCA
(dr = d + r ∗ φ(N)) and contrameasures to protected with the Leak Resistant Arithmetic [8].
The authors mention that the attack can be apply to ECC, capturing all bits ki.

Later Specht et al. in [119] improves the results obtained by Heyszl et al. [58] apply
Principal Component Analysis (PCA), expectation maximization clustering-based and simple
pre-processing used by Perin. This attack is non-profiled for single-execution trace against on
[k]P implemented on an FPGA.

4.3.7 Cmov Side Channels

Nascimento et. al. in [100] presents a new attack over ML algorithm. The attack initially
uses a Template Attacks to study two different attacks techniques, the first is based on the
study of conditional swaps (cswaps), here we can observe that the behavior of these temporal
registers depend directly on the bits of the secret key ki, its attack has an 96.71% effectiveness.
The second idea can also be carried with secret-dependent memory accesses, for more details
see [100].

4.4 Double-Add of Joye

The Joye’s double-add algorithm in [73] is a ML Algorithm for Right-to-left. The Algorithm 4
shows the Joye’s double-add resistant against SPA. The computational cost is: a) Classic Joye’s
double-add [73] is n(13M+8S)+1I+3M+1S. b) Co-Z Joye’s double-add [52] is n(9M+7S)+
1I − 9M − 6S. In Section 4.8 the lower computation cost of this countermeasure is presented.
For this countermeasure there are not attacks reported in the literature.

Algorithm 4 Joye’s double-add resistant against SPA

Inputs: A point P ∈ E(Fq) and k = (kn−1, . . . , k1, k0)2 ∈ N
Outputs: Q = [k] · P
1: R0 ← P∞, R1 ← P
2: for i from 0 to n− 1 do
3: b← ki,
4: R1−b ← 2R1−b +Rb
5: end for
6: return R0
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4.5 Joye’s Add-only algorithm

The Joye’s add-only algorithm was presented in [73]. The Algorithm 5 shows the Joye’s add-only
resistant against SPA. The computational cost is (2n)A.

Algorithm 5 Joye’s Add-Only Scalar Multiplication

Inputs: P ∈ E(Fp) and n-bit scalar k = (kn−1, kn−2, . . . , k0)2
Outputs: Q = [k]P
1: R0 ← P∞, R1 ← P, R2 ← P
2: for i from 0 to n− 1 do
3: R1−ki ← R1−ki +R2

4: R2 ← R0 +R1

5: end for
6: return R0

Security Problems:

4.5.1 Correlation collision attacks in the horizontal setting

Hanley et al. in [57] presents an improved technique to detect internal collisions used to apply
SCA. The attack is applied in two platforms, using ARM7TDMI software and SASEBO-G
FPGA hardware [110]. Hanley, notes that the register R0 remains the same if the bit ki+1 = 0
and the register R1 is the same if ki+1 = 1.

The attacker uses these collisions to know the bits of the secret key ki. In particular, he
apply the attack by observing collisions between the second addition in the loops which operates
the bit ki and the first addition in the next loop that operates with bit ki+1, this occurs if bit
ki+1 = 1. In order to find collisions, Hanley et al. uses two approaches: the Pearson correlation
coefficients and Euclidean distance. Additionally, Hanley et al. presents a modified attack to
countermeasures Coron’s Double-add-Always and ML.

In the case of Double-add-Always, since the algorithm for each bit ki of the secret key
executes a doubling R0 ← 2R0 and an addition given by R1−ki ← R0 + P , the comparison of
these operations is based on the study of collisions at the multiplication level on the field (2R0

and R0 + P ). For further details see [57].
For ML algorithm, for each bit executes R¬ki ← Rki + R¬ki and Rki ← 2Rki Hanley notes

the following collisions: (a) ”If the bits treated in two consecutive loops are the same then the
output of the operation in Rki ← 2Rki in the first loop will be the input to the operation in
Rki ← 2Rki on the second loop.” (b) ”If the bits treated in two consecutive loops are different
then the output of the operation in R¬ki ← Rki + R¬ki in the first loop will be the input to the
operation in Rki ← 2Rki on the second loop.”

This attack is not used to directly compare operations, since the addition and doubling
consists of different operations. Moreover, one cannot compare field operations directly since
one wishes to compare the input of one operation with the output of another operation.

Recently, a countermeasure to protect the latter attack is proposed in [85], see Algorithm 6.

4.6 Signed Digit Methods Goundar

In order to prevent SPA-type attacks, the zeroless signed-digit expansion (ZSD) is considered.
Lets be an odd integer k then we can express this with digits {-1,1}, the idea was presented by
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Algorithm 6 Randomized Montgomery Ladder

Inputs: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N, and kn−1 = 1
Outputs: Q = [k] ·P
1: b

Random←−−−−− {0, 1}, R0 ← P∞
2: if b = 0 then
3: R1 ← P
4: else
5: R1 ← P∞
6: end if
7: for i from n− 1 to 0 do
8: if b⊕ ki = 1 then

9: b
Random←−−−−− {0, 1}

10: end if
11: Rb ← R0 +Rb⊕ki
12: R¬b ← Rb + P
13: end for
14: return R0

Goundar et al. in [52]. The Algorithm 7 show the Signed-digit method for Left-to-right. The
computational cost is: a) Co−Z signed-digit algorithm (Right-to-left) [52] is n(9M + 7S) + 1I−
9M −6S. b) (X,Y )−only co−Z signed-digit algorithm (Left-to-right) [52] is n(8M +6S)+1I−
5M − 4S. In Section 4.8 the lower computation cost of this countermeasure is presented. For
this countermeasure there are no attacks reported in the literature.

Algorithm 7 Signed-digit method: Left-to-right

Inputs: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N with k0 = 1
Outputs: Q = [k] ·P
1: R0 ← P ; R1 ← P
2: for i from n− 1 to 1 do
3: κ← (−1)1+ki
4: R0 ← 2R0 + (κ)R1

5: end for
6: return R0

4.7 Atomic Blocks Chevallier-Manes

The Atomic Blocks idea was presented by Chevallier-Manes et al. [20] and consists of pulling
away the field operations of Addition and Doubling in small homogeneous atomic blocks, where
they are not distinguishable from each other through SSCA. This atomic block had a structure
of Multiplication-Addition-Negation-Addition operations (M,A,N,A) over the prime field and
made an assumption that M = S from a side-channel perspective. Later Hanley et al. [54] and
Amiel et al. [4] refuted the latter assumption.

This distinction may have some efficiency benefits, since squaring is less expensive than mul-
tiplication [47]. A flexible methodology was introduced by Bernstein et. al. [12] and Longa et.
al. [82] where it is possible to prove that is very useful. This methodology enables modifying the
addition and doubling operations to balance the number of S and M , thus facilitating the intro-
duction of squaring into atomic blocks, here the atomic block structure is (S,N,A,M,N,A,A).

Abarzúa and Thériault, to improve the security aspects of previously published atomic
blocks in [1], these atomic block are designed as countermeasures against both SSCA and C-
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safe fault attacks for scalar multiplication. The atomic block structure follows the sequence
(S,N,A,A,M,A).

4.7.1 Point Doubling in Jacobian Coordinates.

Let P = (X1 : Y1 : Z1) be a point in Jacobian coordinates on the EC E. The Doubling Algorithm
requires 4M + 4S (to more detail see [1]). Table 1 shows the atomic blocks for doubling, taking
as input R1 ← X1, R2 ← Y1, and R3 ← Z1, and returning as output X3 ← R1, Y3 ← R2, and
Z3 ← R3.

Table 1: Atomic block formula for Jacobian doubling

Sec Block 1 Block 2 Block 3 Block 4

S R4 ← R2
3 R6 ← R2

2 R4 ← R2
1 R8 ← R2

7

[Z2
1 ] [Y 2

1 ] [α2] [4Y 4
1 ]

N R5 ← −R4 R7 ← −R1 R5 ← −R1 R2 ← −R8

[−Z2
1 ] [−X1] [−α] [−4Y 4

1 ]

A R6 ← R1 +R4 R1 ← R7 +R7 R8 ← R6 +R6 R8 ← R1 +R6

[X1 + Z2
1 ] [−2X1] [−2β] [X3 − β]

A R4 ← R1 +R5 R7 ← R6 +R6 R1 ← R4 +R8 R4 ← R2 +R2

[X1 − Z2
1 ] [2Y 2

1 ] [X3 = α2 − 2β] [−8Y 4
1 ]

M R5 ← R6R4 R6 ← R1R7 R4 ← R2R3 R6 ← R5R8

[X2
1 − Z4

1 ] [−β] [Y1Z1] [−α(X3 − β)]

A R4 ← R5 +R5 R1 ← R5 +R4 R3 ← R4 +R4 R2 ← R6 +R4

[2(X2
1 − Z4

1 )] [α] [Z3 = 2Y1Z1] [Y3]

4.7.2 Mixed Addition in Jacobian-Affine Coord.

Given the points P = (X1 : Y1 : Z1), in Jacobian coordinates, and Q = (X2, Y2), in affine
coordinates, both on the EC E. The mixed addition formula P + Q = (X3 : Y3 : Z3) requires
8M + 3S. The resulting atomic blocks can be seen in [1].

The computational cost for this countermeasure [1] is n(7M + 7S) + 1I + 3M + 1S 2. In
Section 4.8 the lower computation cost of this countermeasure is presented.

Security Problems:

The atomic blocks presented by [1] are prone to Horizontal Collision Correlation attack
proposed by [9] see Subsection 4.1.5. Moreover, Murdica [97] in his doctoral thesis presents a
Vertical Collision Correlation attack based on the Bauer Attack, see Subsection 4.1.6. Addi-
tionaly, this atomic block are prone to Fouque’s Doubling attacks [40] see Subsection 4.2.1 and
Chen’s attack [26]3.

4.8 Summary Performance & Security Problems Countermeasures of SSCA
in ECC

The binary representation of k = (kn−1, . . . , k0)2. Tables 2 and 3 show a summary of the
lower computational cost, an algorithm description and the security problems of the different
countermeasures for SSCA in ECC.

2We consider this ratios for our computing cost and S/M = 0.8.
3This experimental attack is applied because the implementation does not prevent irregular breaks between

atomic blocks within the same group operation and distinct group operations.
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Description:

The next items represent the algorithms which have been evaluated. Observe that we focus
on e most efficient algorithms that exist in the literature for each one of the different countermea-
sures families. (a) : Using Fast Mixed Addition (7M + 4S) and Fast Point Doubling (3M + 5S)
with (a = −3), in [82]. (b) : (X,Y )-only co-Z Montgomery ladder, (8M + 6S for each bit) in
[52]. (c) : X−only Montgomery ladder, (9M + 7S for each bit) in[18, 63]. (d) : (X,Y )−only
co-Z signed-digit algorithm (8M + 6S for each bit), in [52]. (e) : For addition 6M + 6S and
doubling 4M + 4S, in this case the algorithm performs nD + n

2A, in [1].

Table 2: Left-to-right: Comparison of the different regular multiplication algorithm

Countermeasure Coord. Sys. Total Cost Performance n = 192 Security Problem

Unified Formulae
Weierstrass curves

P n(13M + 5S) + 1I + 2M 3366M (ψ)
n(16M + 3S) + 1I + 2M 3634.8M (φ)

Double-and-Add-Always J n(10M + 9S) + 1I + 3M + 1S(a) 3406.2M (ϕ)

Montgomery Ladder
Weierstrass curves

J n(8M + 6S) + 1I + 1M (b) 2558.6M (τ)

n(9M + 7S) + 1I + 14M + 3S(c) 2919.6M (%)

Signed-digit algorithm J n(8M + 6S) + 1I − 5M − 4S(d) 2549.4M

Atomic Blocks J n(7M + 7S) + 1I + 3M + 1S(e) 2523M (ξ)

Attacks summary:

The following items represents the different attacks for SSCA contrameasures in ECC. (ψ) : Izu
and Takagi attacks [63], Walter attacks [127], Amiel attacks [4], Combined attacks [118], Bauer
attack [9], Horizontal SVA [34]. (φ) : Stebila and Thériault attacks [115], Amiel attacks [4],
PACA [5]. (ϕ) : Safe-error analysis C-type [130] and M-type [131], Fouque’s Doubling attacks
[40], RPA [51], ZPA [2], 2-torsion attacks (only fields characteristic two) [129], Correlation
Collision Attack on horizontal setting [57]. (τ) : Relative Doubling attacks [128], Address-bit
DPA [65], RPA [51] y ZPA [2], Correlation Collision Attak on horizonal setting [57] [59], Attack
using Unsupervised learning [58], Cmov Side Channels [100]. (%) : Twist curve fault attacks
the Fouque [40]. (ξ) : Fouque’s Doubling attacks [40], Chen’s attacks [26], Horizontal Collision
Correlation attack [9], Murdica [97].

Table 3: Right-to-Left: Comparison of the different regular multiplication algorithms

Countermeasure Coordinate Total Performance Security
Systems Cost n = 192 Problem

Joye’s double-add J n(9M + 7S) + 1I − 9M − 6S(f) 2889.4M

Signed-digit algorithm J n(9M + 7S) + 1I − 9M − 6S(g) 2889.4M

Atomic Blocks J n(8, 5M + 8, 5S) + 1I + 3M + 1S(h) 3041.4M (χ)

Add-only Joye J 2n(7M + 4S) + 1I + 3M + 1S(i) 4020.6M (ω)

Description:

(f) : Co-Z Joye’s double-add, (9M + 7S) for each bit, in [52]. (g) : Co-Z signed-digit algorithm,
(9M + 7S) for each bit, in [52]. (h) : For general addition 9M + 9S and doubling 4M + 4S, in
this case the algorithm performs nD + n

2A, in [1] (i) : Using Fast Mixed Addition (7M + 4S).

15



Attacks summary:

(χ) : Chen’s attacks [26]. (ω) : Correlation collision attack [57]. Note that the most efficient
countermeasures for SSCA in ECC are (X,Y )-only Co-Z Montgomery ladder, Co-Z Signed-digit
algorithm and Atomic Blocks.

5 Countermeasure for Differential Power Analysis in ECC

Differential Side-channel Analysis (DSCA) [78] uses statistical tools to recover the ki bits on
the secret key, based on the measurements from several [k]P . Brier et al. in [10] presents an
improved DSCA since it requires fewer curves for recovering the key in contrast with the original
DSCA. Recent results presented by [105, 43, 120] improve the attack.

Sets of Countermeasures Randomization of the Scalar This family is considered an
effective countermeasures against RPA [51], and ZPA [2] if it is used with random base point
[53].

5.1 Coron’s First Countermeasure [24]

Let #E be the order of E. The computing Q = [k]P is done by the following steps: a) Select a
random number d of size n bits. Coron consider n = 20 bits. b) Compute k′ = k + d(#E). c)
Compute the scalar multiplication Q = [k′]P = [k + d(#E)]P = [k]P + [d(#E)]P = [k]P , since
[d(#E)]P = P∞. In Table 4 the average loss cost is presented.

Table 4: Theoretical loss Cost

NIST curves

n bits of d P−192 P−224 P−256 P−384 P−521

20-bits 10.4% 8.9% 7.8% 5.2% 3.8%

32-bits 16.6% 14.2% 12.5% 8.3% 6.1%

40-bits 20.8% 17.8% 15.6% 10.4% 7.6%

Security Problems:

5.1.1 Okeya and Sakurai Analysis

Okeya et al. in [102] analyzed the first countermeasure of Coron’s. The authors analyze the
existence of some relation of k′ which depends only on the secret key k (in the least significant
bits). Okeya studied the different possibilities of the integer d and computing the probabilities
of different values k′, showing that an attacker is able to derive information on the secret key
k by statistical analysis of output k′. Okeya notes that this attack is effective even when the
device is immune to SPA.
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5.1.2 Fouque’s Doubling Attacks

Fouque et al. in [40] presented a weakness of this countermeasure, due to the birthday paradox,
after 210 runs of P and 2P respectively, it is possible obtain a scalar k in such a way that there
is a collision. The attacker needs to compare each curve obtained with P and 2P . The criteria
used is as follows: ”If two measurements have many common intermediate squaring, then a
correct pair is found”, hence, to identify the right pair a set of 220 comparisons is required. For
more details see [40].

5.1.3 Ciet and Joye Analysis

Ciet and Joye in [21] presented the following analysis for this countermeasure. In NIST and
SECG, ECC defined over a prime field Fp, p is the form p = 2l ± 2m ± 1 where m is a
relatively small number. As a result, from the Hasse theorem, we have |#E − p − 1| ≤
2
√
p therefore it follows that the binary representation of #E is likely which is constituted

by 1 and a long run of 0’s. For example, in hexadecimal notation the EC ”secp224k1” is:
#E = (010000000000000000000000000001DCE8D2EC6184CAFOA971769FB1F7)16 points.
The randomized multiplier k′ typically looks as: k′ = k+ d(#E) = (d)2||kl−1 · · · kl−t||some bits.
Notice that a set of bits of the secret scalar can be found by an attacker after the randomization.
Then, applying DSCA [k′]P = [k + d(#E)]P it is possible to recover the t most significant bits
of scalar k.

5.1.4 Fouque’s Carry Leakage

Fouque et at. in [46] presented the next idea, this attack analyze the behavior of the device
when computing the secret scalar of the sum of k + d(#E). Nowadays, the devices has l−bit
architectures where l is a multiple of 8, then Fouque et at. demonstrated that the behavior of
the partial sums of the carry out ci = ki + di(#E) (with i = 0, . . . , k − 1) dependent directly
of secret key ki and not on the bits of mask di(#E) (hence it is assumed that the attacker can
deduce the ci of carries output).

5.1.5 Feix attack

Feix et al. in [43] observes that the order of NIST standard curves are separated into three
categories. Type-1: the order has a large pattern of ones. Type-2: the order has a large
patterns of zeros, Type-3: the order has a combination large of zeros and ones. Given the form
of the orders, the mask d(#E) also has a specific representation. The attack consists of three
parts: (a)First a vertical Collision-correlation attack is performed in order to find the bits of
scalar k which are not masked through d(#E). (b)The second part is to find the random part
of k′ that appears in the most significant bits part of k′ and a horizontal correlation is applied.
(c)As in the two previous parts of the attack, the most significant bits of the private key k and the
blinding of k′ are known, in the third part the least significant bits of the secret part is recovered
given that the random value d is known. Here a classic vertical correlation attack is used.

5.1.6 Big Mac Attack

This countermeasure does not protect against the Big Mac attack in Section 8.
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5.2 Clavier-Joye Countermeasure

Clavier et al. in [22] presented the Exponent Splitting, where for any random number r of n−bit,
i.e. the same length of the secret key k, it is computed by: [k]P = [k− r]P + [r]P . To generate
a random number r is expensive; this countermeasure requires at least two procedures both
[k − r]P and [r]P .

Security Problems:

5.2.1 Ebeid Analysis

Ebeid in [36] studied the implementations of this countermeasure using the Shamir-Strauss’s
trick algorithm [121] and found internal collisions that constitute a vulnerability which can be
attacked by a DPA; for this countermeasure, Ebeid studies each term of [k − r]P and [r]P and
recommend that it will be should computed separately using a SPA-resistant algorithm.

5.2.2 Muller and Valette Attack’s

The basic idea of this attack, presented by [91], is to study the statistical properties of exponent
splitting at the bit level of [k − r] and [r]. The pair ([k − r], [r]) is not uniformly distributed,
since it always satisfies [k − r] + [r] = [k]. Muller et al. shows that there is a bias in the
distribution of the i-th bits of the pair ([k − r], [r]). At the bit level, the following relation
is satisfied ci ⊕ ri ⊕ (k − r)i = ki, where, ri, (k − r)i, ki and ci, respectively denotes the i-th
bits of r, (k − r), k and carry bit c in the addition [r] + [k − r]. The analysis of Muller and
Valette studies the transition probabilities obtained from ci and ci+1 for different ki = {0, 1},
and ([ri], [k − r]i),= {(0, 0), (0, 1), (1, 0), (1, 1)}. Muller’s study can be seen as the two bits
([ri], [k−r]i) are not uniformly distributed and the imbalance depends on the bits value. Actually,
Muller et al. use Markov chain to bit-level and the probability transition rules in order to derive
the step i from the step i− 1, for more detail see [91].

5.2.3 Fouque et al. Carry Leakage Attack

Applying the ideas studied by section 5.1.4, it is observed that this attack can be performed
to this countermeasure, since the analysis can be carried out for −r instead of d#E, which is
applied by Fouque in [46].

5.2.4 Ha et al. Analysis Using the 2-Torsion Attack’s (only for fields of character-
istic two)

Ha et al. in [53] introduced the next analysis using 2-Torsion Attacks of Yen [129]. Suppose an
attacker can find the 2-torsion point P and uses this point as input to compute [r]P , therefore
[r]P can be computed with other power attack countermeasures, such as the BRIP (Algorithm
15) or doubling-and-add-always (Algorithm 2), the attacker can derive a secret random number
r and k − r in two independent [k]P using the 2-torsion attack. Furthermore, it can be easily
avoided by checking 2P 6= P∞ before computing [k]P in [92].

5.2.5 Big Mac Attack

The countermeasure does not protect against Big Mac attack presented in section 8.
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5.3 Trichina-Bellezza, Countermeasure

Trichina et al. in [125] proposed the following countermeasure, for any random number r to
compute: [k]P = [kr−1]([r]P ) . The principal disadvantage of this countermeasure is to compute
the inverse of r module ordE(P ). Furthermore, two scalar multiplication are needed, first R =
[r]P and later [kr−1]R is computed. Trichina et al. in [125] indicates that ”one way for this
countermeasure to be efficient is to keep the overhead low, one can choose r to yield a fast [r]P ,
for instance by choosing r among the elements of Fp of at most t-bits, with a small t”. This
contrameasure does not present security problems.

5.4 Ciet-Joye, Countermeasure

In [21] a random key splitting is presented and is called the Euclidean division, that is, k is written
as: [k]P = [k mod r]P + [bk/rc]([r]P ) . Letting S := [r]P, k1 := k mod r and k2 := bk/rc we can
obtain Q = [k]P = [k1]P + [k2]S where the bit length of r is n/2. The next algorithm describes
a regular variant of Shamir’s double ladder. We let l denote the bit-length of max(k, d) –and
thus kl−1 and dl−1 are equal to 1. As we can be seen, the Algortihm 8 requires calculate only
addition and doubling for each bit, that is, it has the same complexity as the algorithm ”double
and add always”.

Algorithm 8 Regular variant of Shamir’s double ladder Q = [k]P + [d]S

Inputs: Point P and S ∈ E(Fq), k = (kn−1, . . . , k0)2, and d = (dn−1, . . . , d0)2 ∈ N,
Outputs: Q = [k]P+ [d]S
1: R1 ← P ; R2 ← S; R3 ← P + S; c← 2dl−1 + kl−1; R0 ← Rc
2: for i from n− 2 to 0 do
3: R0 ← 2R0

4: b← ¬(ki ∨ di); c← 2di + ki; Rb ← Rb +Rc
5: end for
6: return R0

Security Problems:

5.4.1 Ebeid Analysis

Ebeid in [36] studied the above countermeasure and identified the occurrence of some collisions
on intermediate points. Ebeid recommends a way to avoid these collisions, which is to make
the quotient bk/rc always odd. That means that if bk/rc is even, it is decreased by one and
[k mod r] is updated by adding r to it. This may increase the bit length of [k mod r] to l + 1.

5.4.2 Ha et al.’s Analysis using 2-Torsion Attack

Ha et al. in [53] introduced the next analysis. Suppose an attacker can find the 2-torsion point
G and using this point to input, the attacker can derive a secret random number r that is
detected during the computation of S = [r]P using 2-torsion attack. Also, k/r and (k mod r)
are detected during the computation of bk/rcS + (k mod r)P = bk/rcP + (k mod r)P , because
all intermediate values are 3 types P , 2P or P∞ when r is odd. If r is even and input point
is G = 2P = P∞ then S = [r]P = [r]G = P∞. The (k mod r) are also detected during the
computation of (k mod r)P .
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5.5 Chevallier-Mames’s Self-Randomized Exponentiation Algorithms

Chevallier-Mames in [23] presented the use of the exponent splitting method. The idea is as
follows: let k = (kl, . . . , k0)2 =

∑l
i=0 ki2

i with ki ∈ {0, 1} denote the binary representation of
scalar k and defining: kd→j := (kd, . . . , kj)2 =

∑
j≤i≤d ki2

i−j . Left-to-right Algorithm 1, share
the common feature that an accumulator is used throughout the computation for storing the
value of [kl→i]P for decreasing i′s until the accumulator contains the value of Q = [kl→0]P . The
principal idea of this countermeasure (Algorithm 9) is taking part of k as a source of randomness.
The algorithm relies on the simple observation that, for any 0 ≤ ij ≤ l, we have [k]P = [kl→0]P =
[(((kl→0−kl→i1)−kl→i2)−kl→i3) · · ·−kif ]P+[kl→i1 ]P+[kl→i2 ]P+[kl→i3 ]P+· · ·+[kl→if ]P . If the
ij ’s are randomly chosen, the [k]P algorithm becomes probabilistic. A Boolean random variable
ρ is used to determine whether or not the current loop index i belongs to the set {i1, . . . , if}.

To ensure the correctness of the process, the randomization step k ← k−kl−ij cannot modify
the (l − ij + 1) most significant bits (i.e. kl→ij ) of k. This condition is guaranteed by checking
that kl→ij ≤ kij−1→0. Furthermore, the consistency condition i.e., kij−1→0 ≥ kl−1→ij implies
that only the lower half of exponent k is randomized. The performance loss is 10A for a curve to
P−192, for details see Alg. II in [23]. This countermeasure does not present security problem.

Algorithm 9 Self-randomized exponentiation: Left-to-right

Inputs: Point P ∈ E(Fq), k = (kl−1, . . . , k1, k0)2 ∈ N
Outputs: Q = [k] ·P
1: R0 ← P∞; R1 ← P∞; R2 ← P ; i← l − 1
2: while (i ≥ 0) do
3: R0 ← R0 +R0

4: if (ki = 1) then
5: R0 ← R0 +R2

6: end if
7: ρ← Random{0, 1}
8: if ((ρ = 1)∧ (ki−1→0 ≥ kl−1→i)) then
9: k ← k − kl−1→i
10: R1 ← R1 +R0

11: end if
12: i← i− 1
13: end while
14: R0 ← R0 +R1

15: return R0

5.6 Summary Performance & Security Problems Countermeasures DPA Ran-
domization of the Scalar

The next items represent the algorithm which have been evaluated. Observe that we focus on the
most efficient algorithm that exist in the literature for each one of the different countermeasures
families. (a) High: ≈ 100%, Medium: (30 − 70)%, Low: (10 − 25)%, Negligible: < 0.5%. (b)
On average performance loss is 15.9% for the curve P−192. (c) To avoid opening the way to
new attacks, [k − r]P and [r]P must be computed separately, doubling the cost of the scalar
multiplication (Ebied in [36]). (d) Two scalar multiplication and one inversion are needed. (e)
Two scalar multiplication are needed. (f) Performance loss is 10A for a curve to P−192, for
details see Alg. II in [23].

Attacks summary:
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Table 5: Comparison of the Different DPA Countermeasures Randomization of the Scalar

Countermeasure Computation Overhead(a) Security Problem

Coron’s First Countermeasure [24] Low(b) φ

Clavier-Joye Counter. Exp. Splitting [22] High(c) ϕ

Trichina-Bellezza Countermeasure [125] High(d)

Ciet-Joye Countermeasure [21] Medium(e) χ

Chevallier-Mames Self-Rand. Expo. [23] Negligible(f)

φ: Okeya and Sakurai Analysis [102], Fouque’s Doubling Attacks [40], Ciet and Joye Analy-
sis [21] (just for secp224k1 curve), Fouque’s Carry Leakage [46], Feix attack [43], Big Mac Attack
[127]. ϕ: Ebeid Analysis [36], Muller and Valette Attack’s [91], Ha Analysis Using the 2-Torsion
Attack’s (just for fields of characteristic two) [53], Fouque Carry Leakage [46], Big Mac Attack
[127]. χ: Ebeid Analysis [36], Ha et al.’s Analysis using 2-Torsion Attack in [53]

Set of Countermeasures Randomization Point In this section we will study the coun-
termeasures knowns as Randomization Point. The countermeasures and their security problems
will be presented below.

5.7 Blinding the Point Second Countermeasure of Coron’s

In [24] the next idea is presented; for scalar multiplication [k]P , firts [k](P + R) is compute
and at the computation end S = [k]R is subtracted. This countermeasure is effective against
RPA, ZPA and SVP, given that the attacker cannot freely choose the base point. See section 7.
This countermeasure is considered inefficient, since it must perform two scalar multiplications
S = [k]P and [k](P +R).

Algorithm 10 Coron’s Blinding Point Second Countermeasure

Inputs: Point P and secret point R ∈ E(Fq),
k = (kl−1, . . . , k1, k0)2 ∈ N, and S

′
= [k]R

Outputs: Q = [k] ·P
1: P ← P +R;
2: pickβ ∈ {0, 1}at random
3: R← (−1)β2R
4: S

′
← (−1)β2S

′

5: S = double-and-add(P, [k])

6: return S − S
′

Security Problems:

5.7.1 Okeya and Sakurai Analysis

Okeya et al. in [102] presented the next analysis. Let P, 2P, 4P, . . . , 2kP be a point on the
EC, and Cj(t) be a function of power consumption associated with the execution of [k](2jP ).
First, an attacker feeds these points to the cryptographic device that is equipped with this
countermeasure. Then, the attacker gets the functions Cj(t) and calculates the correlation

function by: g(t) = 1
n

∑n−1
j=0 min

[
1

(Cj(t+t0)−Cj+1(t))2
,M
]
. Where t0 is the time required for each
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round, which must be constant to counteract a SPA. M is some large constant, if the function
g(t) tends to infinity.

Okeya assumes that an attacker can take some points from one execution to another execu-
tion. This attack analyze the behavior of the correlation function g(t) and notes it has a strong
relationship with the bits of the secret key k. He concludes: If ki = 1 then g(t) by vanishing
and ki = 0 then g(t) is not vanishing. Through this analysis an attacker can find the bits of the
secret key k. Besides, a countermeasure for this attack is presented called Refresh procedure of
the points R and S (see [102] for details).

5.7.2 Fouque’s Doubling Attacks

Fouque et al. in [40] presented an analysis for this countermeasure. As input to the micro-
controller a point P is required, then the micro-controller executes P +R. The adversary then
requests the computation with the point 2P . With probability 1/2, the micro-controller will use
the point 2P + 2R = 2(P +R). So, the attacker compares two side channel measurements and
to recover the secret scalar k. Fouque shows that if the noise is too strong, the adversary can
use a statistical approach in order to find the secret scalar. The attacker uses a random point Q
and compute [k]Q and [k]2Q in order to analyze the difference between the first and the second
curve using doubling attack.

5.7.3 Big Mac Attack

This countermeasure does not protect against the Big Mac attack in section 8.

5.8 Third Countermeasure of Coron’s, Randomized Projective Coordinates

The third countermeasure of Coron [24] called Randomizing the Homogeneous Projective coor-
dinates of point P = (X,Y, Z) with a random λ 6= 0 to P = (λX, λY, λ). The random value
λ can be updated in every execution or after each addition-doubling. When, [k]P is computed
using Jacobian coordinates, the point Q = [k]P is represented as Q = (X,Y, Z). So, to avoid
the attack presented by [99] the point Q must be recovered to affine coordinate by computing
x = X/Z2 and y = Y/Z3, this attack is presented in Section 5.8.2. Moreover, a Jacobian coordi-
nate and the curve parameter a = −3 is suggested. Using this technique is much more efficient,
but does not allow λ = 1 (for detail see [122]), i.e. in scalar multiplication, we cannot use
mixed coordinates (Jacobian and affine). Additionally, this countermeasure is effective against
Template Attacks [19]. This countermeasure has a very low computing cost, here 3M for the
homogeneous representation and 4M + 1S for the Jacobian representation are required.

Security Problems:

5.8.1 RPA [51], ZPA [2], SVA [96]

See subsections 7.1, 7.2 and 7.3.

5.8.2 Projective Coordinates Leak

Naccache et al.’s in [99] observed the following analysis of this countermeasure. Let the point Q
be an point of prime order in E over prime fields Fp. Denote the Q = (xQ, yQ) in affine represen-
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tation. Let P = (Xp, Yp, Zp) denoted by its Jacobian projective representation, where P = [k]Q
is computed by the Left-to-right algorithm. Let us guess a sequence of bits k = {kl−1, . . . , k0},
starting from its least significant of bits of k (k0). Let t be a small integer and once that t bits of
secret key k are guessed then it is possible to compute a set of candidates for the coordinates of
the sequence of intermediate values handled by the double-and-add algorithm while k′s bits are
processing and t bits are tracking (that appear at the end of the algorithm). This is achieved by
reversing computations: reversing doubling is halving and reversing an addition amounts to sub-

tracting Q. Thus, we obtain a set of sequences: {s1, s2, . . . , sm} where sj = {M (j)
0 → M

(j)
1 →

· · · → M
(j)
l }, of the intermediate points, with M j

l = P . Let Mi = (xi, yi) points in affine coor-
dinates. The corresponding point in Jacobian projective coordinate is denote by (Xi, Yi, Zi).
There are two cases: (a) When the step Mi → Mi+1 is an addition the following steps:
Zi+1 = (XiZ

2
G − XGZ

2
i )ZiZG = (xi − xG)Z3

i . Given, Xi = xiZ
2
i . Then Zi+1/Z

3
i = (xi − xG).

Here, we need to compute a cubic root to get Zi = 3
√
Zi+1/(xi − xG) from Zi+1. (b) When the

step Mi → Mi+1 is a doubling the following steps: Zi+1 = 2YiZi which yields Zi+1/Z
4
i = 2yi.

Here, we need to compute a fourth root to get Zi from Zi+1. Furthermore, in [99] a coun-
termeasures to the Attack of Projective Coordinates is presented, Naccache et al proposes
to replace the output of the computation by (X, εY, εZ) where ε is chosen randomly from
{−1, 1}. Indeed, the affine representation of the result is not affected by this modifications

as (X, εY, εZ)−−−→
affine

(
X

(εZ)2
, εY

(εZ)3

)
=
(
X
Z2 ,

Y
Z3

)
= (x, y). For details see [99].

On the other hand, Smart et al. in [122] demonstrated a relationship between use of Random-
ized Field Arithmetic and Randomized Projective Coordinates, providing a concrete comparison
of their security and performance properties. The authors presented a framework and explained
the causes of RPA, since for specific values of P one can produce R(P ) (R(P ) defined as projec-
tive coordinates class of P ) whose bits are highly correlated with those of P = (0, y) and show
that it is the best countermeasure redundant modular arithmetic, see Section 5.10.

5.8.3 Big Mac Attack

This countermeasure does not protect against this attack presented in section 8.

5.8.4 Particular Point Attack

The attack takes advantage of the final conditional reduction of the Montgomery multiplication
Algorithm (MMA). This attack is feasible only in curves with parameters a = −3 (NIST [101]),
such curves allow to calculate 3(X1 +Z2

1 )(X1−Z2
1 ) for doubling algorithm. The attack exploits

the occurrence of a special point: P = (2, y). On Jacobian coordinates P = (2Z2
1 , yZ

3
1 , Z1)

for some Z1 ∈ F∗p. When P is doubling, its coordinates are replaced by C = 3(3Z2
1 )(Z2

1 ). In
[123], the authors show that the reduction probability during the MMA of α and β is high,
if the relation β = 3α is satisfied for the random values. If the attacker carefully chooses the
base point, this point occurs only at a certain scalar hypothesis. In this case, the average time
of the scalar multiplication is higher than the random inputs. The particular point is not well
randomized by the Random Projective Coordinates Countermeasure. In fact, whatever the value
of Z1 in the entries of the modular multiplication when C is calculated, it still has α, β = 3α for
some α ∈ Fp . The attack can therefore be applied even if this countermeasure is present.
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5.9 Ciet and Joye’s Method 2P ∗

In [21] the Method 2P ∗ is proposed. This randomization method is applicable to Left-to-right
algorithm. The idea is randomize [2]P using the Random Projective Coordinates algorithm.
This enables continuing to use P in affine coordinate. Then, computing the scalar multipli-
cation a mixed coordinates is used (more efficient to use only projective coordinates). This
countermeasure does not present security problems.

5.10 Redundant Modular Arithmetic of Smart et al.

Smart et al. in [122] presented the following idea. Let m be a modulus with which we wish to
perform modular arithmetic. The standard representation is to take S = {0, . . . ,m−1} = Z/mZ.
However, we can also hold elements in a redundant form by taking a range R = {0, . . . , C − 1},
with C = c · m, for an integer c co-prime to m and then holding integers modulo m within
this range. Such a redundant field representation can create a defense against the attack of
Goubin [51].For more details see [122].

5.11 Joye and Tymen, Randomized field K Isomorphism [69]

The idea of this countermeasure is to use a representation of random fields definition of elliptic
curve, i.e. use a Randomized Field through of the isomorphism φ : K → K′. The latter is
used to obtain a point P ′ = φ(P ) of the curve E′ = φ(E), then the scalar multiplication is
calculated by: [k]P = φ−1([k](φ(P ))) . The major disadvantage of this countermeasure is that
all fields used by the NIST and SEGC standards are defined by Mersenne primes given which
the computational efficiency is better in this fields, but using this technique isomorphisms fields
the operation losses performance [6].

Security Problems:

5.11.1 RPA and ZPA

See subsections 7.1 and 7.2.

5.12 Randomized E(K) Isomorphism Joye and Tymen [69]

The idea of this countermeasure is to transfer the base point P1 = (x, y) ∈ E1(K) to randomly
isomorphic curve φ : E1(K) → E2(K) (the parameters of the curve E2(K) are a′ = r4a and
b′ = r6b, b is not needed in the scalar multiplication algorithm), the transferred point is φ(P1) =
(r2x, r3y) = P2 and execute the scalar multiplication ([k]P2 = [k]φ(P1)) on the curve E2(K) and
bring the result Q2 = (xk, yk) back to the original curve E1(K) and we compute Q1 = [k]P =
(xk/r

2, yk/r
3) = φ−1([k](φ(P ))). The randomization takes 4M + 2S at the beginning and

1I + 3M + 1S at the end. However, when random isomorphisms curve is used the parameters
of E2(K) cannot be chosen and the curve parameter a is randomized, this implies that fast
doubling formula for a = −3 cannot be used.

Generalization: Tunstall and Joye in [124] define φ(P ) = P ′ = (X ′, Y ′, Z ′) = (fµX, fνY,Z)
for an arbitrary f ∈ Fp−{0} and some small integer µ and ν. The inverse of φ can be computed
without inverting f since P = φ−1(P ′) = (fνX ′, fµY ′, fµ+νZ). For the case µ = 2, ν = 3
correspond to the technique of randomized E(K) isomorphism Joye and Tymen [69].
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Security Problems:

5.12.1 RPA, ZPA and SVA

See subsections 7.1, 7.2 and 7.3.

5.12.2 Big Mac Attack

This countermeasure does not protect against Big Mac attack presented in 8.

5.13 Summary Performance & Security Problems Countermeasures of Ran-
domization Point in ECC

We can observe that (a) This countermeasure is considered inefficient, since it must perform
two scalar multiplications S = [k]P and [k](P + R). (b) This countermeasure has a very low
cost since only a few multiplications are required: 3M for the homogeneous representation and
4M + 1S for the Jacobian representation. (c) Mersenne or ”sparse” primes cannot be used. (d)
a = −3 cannot be used.

Attacks Summary:

(φ) Okeya and Sakurai Analysis [102], Fouque’s Doubling Attacks [40], Big Mac Attack [127].
(ϕ) Goubin’s Attacks (RPA) [51], Akishita-Takagi Attacks (ZPA) [2], SVA of Murdica [96],
Projective Coordinates Leak of Naccache [99], Big Mac Attack [127], Particular Point Attack
[123]. (χ) Goubin’s Attacks (RPA) [51], Akishita-Takagi Attacks (ZPA) [2], SVA of Murdica
[96]. (ψ) Goubin’s Attacks (RPA) [51], Akishita-Takagi Attacks (ZPA) [2], SVA of Murdica [96],
Big Mac Attack [127].

Table 6: Comparison of the Different DPA Countermeasures

Countermeasure Total Cost Security Problem

Blindig the Point Second Countermeasure of Coron’s, [24] High(a) (φ)

Randomized Projective Coord. of Coron’s, [24] Low(b) (ϕ)

Method 2P ∗ of Ciet and Joye’s [21] Negligible

Redundant Modular Arithmetic of Smart [122] Low

Randomized Field K Isomorphism of Joye and Tymen [69] High(c) (χ)

Randomized E(K) Isomorphism of Joye and Tymen [69] High(d) (ψ)

6 Countermeasure Adress-bit DPA

Itoh et al. presented the address-bit DPA (ADPA) [65], it exploits and uses the leaked in-
formation guesses individual bits of memory addresses or temporal register. For example, an
implementation of Algorithm 3 Modified-Montgomery-ladder presented in [74], the address of
the doubled point only depends on ki. As a result, ki can be recovered if the attacker can
distinguish between data read from R0 and from R1.
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6.1 Itoh et al.’s Countermeasure

In order to protect from this attacks Itoh et al. [64] presented the Algorithm 11. The registers
on steps 6 and 7 are masked with random numbers r.

Algorithm 11 Montgomery powering ladder method with randomized address [64]

Inputs: Point P ∈ E(Fq), k = (1, kn−2, . . . , k1, k0)2 and r = (rn−1, . . . , r1, r0)2 ∈ N, where ri are random
numbers

Outputs: x([k] ·P)
1: Rrn−1 ← x(P) ;
2: R1−rn−1 ← 2Rrn−1

3: for i from n− 2 to 0 do
4: R2 ← 2(Rki⊕ri+1)
5: R1 ← R0 +R1

6: R0 ← R2−(ki⊕ri)
7: R1 ← R1+(ki⊕ri)
8: end for
9: return Rr0

In the next section we present a security poblem discovered by Izumi.

6.2 Izumi et al.’s Countermeasure

Izumi et al. in [67] observed, “When a register is overwritten by the same data as one stored
in the register during a data move process, the power consumption is lower than the case
of being overwritten by the different data”. As shown in Step 7 of the Algorithm 11, R1

stores two different data on the relation between l-th secret key bit kl and random bit rl.
R1 ← R1 if kl = rl; R1 ← R0 if kl 6= rl. Izumi’s el al. attack analyzed the following de-
bility: l-th loop and the beginning of the (l − 1)−th loop the following calculation is per-
formed: lth step 7 : R1 ← R1+(kl⊕rl); (l − 1)th step 4 : R2 ← 2(Rkl−1⊕rl). In step 7 of
the l-th loop, we assume that power traces corresponding to kl ⊕ rl = 1 is in the group
A := {The power traces which are higher than the threshold} and power traces which is related
to kl−1⊕rl = 0 is in group B := {The power traces which are lower than the threshold}. The ad-
dress value kl−1⊕rl of the source register Rkl−1⊕rl in the step 4 of the (l−1)−th loop is calculated

as follows. For the group A, kl−1⊕rl becomes kl−1 ⊕ kl since rl = kl. On the other hand, kl−1⊕rl
becomes kl−1⊕kl since rl = kl in the group B. As a result, the random bit rl can be cancelled out
in step 4. Then apply a DPA to calculate the difference between power consumption (Pw) in the
group A and the group B during the data move process. Pw(1→ kl−1 ⊕ kl)−Pw(1→ kl−1⊕kl).
Since kl and kl−1 are both constant, we can distinguish whether kl is equal kl−1 or not by ADPA.
Izumi, proposes a new algorithm for to resolve this problem, it is showed in the Algorithm 12.
This new countermeasure does not present security problems.

7 Countermeasure for RPA, ZPA & SVA

In this section we presents the different countermeasures for RPA, ZPA and SVA. Particulary
the SVA is presented in Section 7.3. The attacks RPA, ZPA and SVA assume that the secret
scalar k is fixed and the attacker can be chosen the point P in the scalar multiplication, therefore
this attack applies to the following protocols ECIES and single pass ECDH but not in ECDSA
and two-pass ECDH. To protect against RPA, ZPA and SVA, the base point P or the secret
scalar d should be randomized.
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Algorithm 12 Montgomery powering ladder method with randomized address [67]

Inputs: Point P ∈ E(Fq), k = (1, kn−2, . . . , k1, k0)2 and r = (rn−1, . . . , r1, r0)2 ∈ N
Outputs: x([k] ·P)
1: Rrn−1 ← x(2 ·P) ;
2: R1⊕rn−1 ← x(P )
3: for i from n− 2 to 0 do
4: R2 ← 2(Rki+1⊕ki⊕ri+1)
5: R1⊕ri ← R0 +R1

6: Rri ← R2

7: end for
8: return Rk0⊕r0

7.1 Countermeasures RPA

The idea presented by Goubin in [51] was explained in subsection 4.2.2.

7.1.1 Point Co-factor Countermeasures Special Point Small Order (x, 0)

In [112] the next theorem is presented: ”For an elliptic curve E over prime field K = Fp (p > 3),
a special point of the form (x, 0) exists if and only if the equation x3 +ax+b = 0 has at least one
root α in K”. This special point has a small order, to prevent small subgroup attacks, the most
protocol can be reformulated using cofactor multiplication. In [112], to prevent this attacks,
at the protocol of Diffie-Hellman cofactor variant, Alice first computes Q = [h]P (where h is a
cofactor) and then computes the shared secret via [d]Q, if and only if Q 6= P∞. Goubin’s attack
then no longer applies since only genuine points in the subgroup of order q are passed into the
scalar multiplication algorithm with the secret exponent d. We note that elliptic curves defined
for standard NIST prime fields considers the cofactor h = 1, then do not have special points of
low order.

7.1.2 Isogeny Countermeasure for Special Point (0, y)

Smart in [112] the next theorem: ”For an elliptic curve E : y2 = x3 + ax+ b over a prime field
Fp with p > 3, a special point of the form (0, y) exists if and only if b is a quadratic residue

modulo p, i.e.
(
b
p

)
= 1, where

( ·
·
)

is the Legendre symbol”. In order to resist RPA for point

of large order, Smart in [112] proposed to map the underlying curve to the isogenous curve
that does not have the point (0, y). This countermeasure with a small isogeny degree is faster.
However, but it is much slower to implement it on a micro-controller, for more details see [6].

7.1.3 Volcanoes Isogeny

Miret et al. in [90], presented improvements to the searching time to find the isogeny of SECG
elliptic curves [114], for the above the Isogeny-Volcano is used. In Table 7 we present the result
obtained by Smart in [112] and Mired et al. in [90]. In the second and fourth column the minimal
and preferred isogeny degree with respect to condition ED4 is presented by Smart in [112], while
the third and the fifth columns contain the degrees of the isogeny-route given by the algorithm
presented by Miret in [90]. More precisely, the minimal `std and preferred isogeny degree `prf can
be defined by: `std The minimal Isogeny degree for condition ED4. `prf The minimal Isogeny
degree for condition ED4 and condition a = −3. The integer `std − route and `prf − route
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correspond to the minimal and preferred isogeny degree obtained by Miret et al. in [90]. For
example, the curve P-192 the preferred isogeny degree is `prf = 73 while `prf−route = 5−13−23,
which means that three isogenies of degrees 5, 13 and 23 are compound.

Table 7: Minimal isogeny degrees with respect to ED4 for SECG curves

ED4 `std [112] `std − route [90] `prf[112] `prf-route [90]

P-192 23 5-13 73 5-13-23

P-224 1 1 1 1

P-256 3 3 11 3-5

P-384 19 19 19 19

P-521 5 5 5 5

7.1.4 Isomorphism Shifting

In [34] a countermeasure against RPA is presented in order to avoid the points of the form (0, y).
The idea is try to control the point using an isomorphism, given the next definition of the elliptic
curve: E : y2 = x3 + a4x+ a6, E′ : y2 = x3 + a′2x

2 + a′4x+ a′6, are isomorphic over Fp if only
if there exist u ∈ F∗p and r ∈ Fp such that the change of (x, y)→ (u−2(x− r), u−3y), transforms
equation E into equation E′ with: u2a′2 = 3r, u4a′4 = a4 + 3r2, u6a′6 = a6 + ra4 + r3. The
computational costs is 2M + 1S + 5A. For more details see [34].

7.2 Countermeasure ZPA

The ZPA was presented in subsection 4.2.3. Akishita et al. in [3] presented the following
proposition to know when an elliptic curve has points satisfying ED1: 3x2 + a = 0. Let E be
an elliptic curve over prime field Fp defined by y2 = x3 + ax + b. The elliptic curve E satisfies

a = −3, #E(Fp) is odd, and
(
a
p

)
= −1. Then the elliptic curve E satisfies condition ED1.

The Table 8 shows the comparison of the results obtained by Akishita-Takagi and Miret
et al. presented in [90], concerning isogenous curve and conditions ED1 and ED4 with results
obtained using the Isogeny-route.

Table 8: Minimal isogeny degrees with respect to ED1+ED4 for SECG curves

ED1+ED4 `std `std − route `prf `prf-route

P-192 23 13-13 – –

P-224 1 1 1 1

P-256 3 3 23 5-11

P-384 31 31 – –

P-521 5 5 5 5

7.3 Countermeasure SVA

Murdica et al. in [96] presented an attack called Same Value Analysis. The attacker, to ob-
serve at points that show up same values during addition or doubling algorithm, uses an internal
collisions power analysis attack to detect if the special point appears during an scalar multiplica-
tion. Murdica et al., notes that certain special points, internal collisions occur in the operation
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of doubling Jacobian coordinates, for example, SED2: x = 1, SED3: y = x2 and SED15:
2y = 3x2 + a, more specifically. Let P = (X1, Y1, Z1) = (λ2

1x1, λ
3
1y1, λ1) be a point in Jacobian

coordinates one can be computed the doubling point by the following formula P3 = (X3, Y3, Z3):
α = 3X2

1 + aZ4
1 , β = 4X1Y

2
1 , Z3 = 2Y1Z1, X3 = α2 − 2β, Y3 = α(β − X3) − 8Y 4

1 . For
example, when SED2 is used, the latter condition implies that during the computation of the
X2

1 and Z4
1 the energy consumption are the same. He uses the methodology presented by [111]

and [28] to detect internal collision. If a collision is detected, he can conclude that ki = 0.
Otherwise, he concludes that ki = 1. The attacker can recursively recover all bits of the private
key k.

In Table 9, we can see there are no NIST curves that are safe for RPA, ZPA or SVP.

Table 9: Summary of RPA, ZPA and SVP Points on Standard Curves NIST [101]

E : y2 = x3 − 3x+ b

Curves Fp RPA ZPA SVA

(0, y) 3x2 + a = 0 5x4 + 2ax2 − 4bx+ a2 = 0 x = 1 x2 = y 2y = 3x2 + a

P-192 X X X ø ø X
P-224 ø ø X ø ø X
P-256 X ø X ø ø X
P-384 X X ø ø ø ø

P-521 X ø ø X X ø

8 Countermeasures against Big Mac Attack

The scalar multiplication implicitly must operate with modular long integer multiplication, there
are several methods to perform multiplication, but the most used is the schoolbook long integer
multiplication that uses a t-bit internal multiplier giving a 2t-bit result. For more detail see [56]
Chapter 2. Big Mac attack was introduced by Walter [127] and basically consists of detecting if
two multiplications share a common operator by comparing their energy traces. The success of
the attack depends directly on the length of the integers to be used. This method was generalized
by Bauer in [17] for atomic blocks. Recently Danger in [32] improves the attack presented in
[17] since it is able to compare many multiplications, in particular he used 14 pairs instead of
two.

8.1 Multiplication with Random Permutation

This countermeasure was introduced by Clavier [27] and consists of randomizing the order of
the manipulation of the words xi during a long multiplication. Here, the correlation between the
common operators is hidden. The number of possibilities of internal multiplication is (l!)2, for
more details see [27]. This countermeasure also protects against Horizontal Correlation Analysis
on Exponentiation [9].

Recently, Bauer [17] shows that the Big Mac attack is still feasible againts Clavier couter-
measure [27], since it is still possible to perform this attack by deducting only one of the random
permutations instead of both. With this attack, the number of possibilities is reduced to l! for
l ≤ 16. The authors in [17] suggest the countermeasure generation random permutation over
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{(a, b); a, b ∈ [0; l]} and this ideas is presented in Algorithm 13. The output of the above algo-
rithm is used to randomize the manipulation of the words X[a] and Y [b] simultaneously. Here,
a second permutation P must be developed in order to avoid attacks on the carry propagation
treatment on the integers 1, 2, . . . , 2l+ 1, as observed in the Algorithm 14. This countermeasure
(Algorithm 14) does not have security problems (For more details see [17]).

Algorithm 13 Generation of Random Permutation (GRP)

Inputs: Two intergers t and l, a permutation α0 over [0, (t+ 1)2 − 1].
Outputs: A vector in [0, (t+ 1)2 − 1] (elements are represented in base t+ 1)

(r0, r1, . . . , rl−1)← random elements in Z(t+1)2

1: for i from 0 to l − 1 do
2: for j from 0 to (t+ 1)2 − 1 do
3: αi+1[j]← α0[(αi[j] + ri) mod (t+ 1)2]
4: end for
5: end for
6: return αl

Algorithm 14 Long Interger Multiplication with randomization of the two loops together.

Inputs: X = (X[t], X[t− 1], . . . , X[0])2w , Y = (Y [t], Y [t− 1], . . . , Y [0])2w , p.
Outputs: LIM(X,Y ).
1: αl = (α, β)← GRP(t, p, α0)
2: P ← random permutation of 1, 2, . . . , 2t+ 1.
3: for a from 0 to 2t+ 1 do
4: R[a] = C[a] = 0
5: end for
6: for h from 0 to (t+ 1)2 − 1 do
7: a← α[h]; b← β[h]
8: (U, V )2w ← R[a+ b] +X[a] · Y [b]
9: R[a+ b]← V
10: C[a+ b+ 1]← C[a+ b+ 1] + U
11: end for
12: for i from 1 to 2t+ 1 do
13: for j from 1 to 2t+ 1 do
14: s← P [j]
15: if s ≥ i then
16: (U, V )2w ← R[s] + C[s]
17: R[s]← V
18: C[s+ 1]← C[s+ 1] + U
19: C[s]← 0
20: end if
21: end for
22: end for
23: return R

9 Countermeasures for Several Attacks

In this section, countermeasures that protect against several simultaneous attacks were analyzed.

9.1 BRIP Countermeasure of Mamiya et al.’s

Mamiya et al. presented a countermeasure for attacks SPA, DPA, RPA, ZPA and SVA called
BRIP, the latter, only work for Left-to-right algorithm presented in [93]. This method uses a
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random initial point R (thus, it is resistant against DPA, RPA, ZPA and SVA), furthermore in
order for this algorithm to be secure against SPA, it is based on the principle of Doubling-and-add
always of Coron’s. This algorithm computes [k]P +R and at the end of the algorithm execution
computes ([k]P +R)−R = [k]P . Mamiya et al. applies the identity 1 = (111 · · · 11)2 apply the
extended binary method [75] to compute: [k]P +R = [(dn−1dn−2 · · · d1d0)2]P + [(111 · · · 11)2]R.
R is subtracted at the end to the algorithm execution. The Algorithm 15 cost per bit using
General Jacobian coordinates is 15M + 9S, if a = −3 then the cost is 15M + 7S.

Algorithm 15 BRIP

Inputs: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Outputs: Q = [k] ·P
1: R← randompoint(); R0 ← R; R1 ← −R; R2 ← P −R
2: for i from n− 1 to 0 do
3: R0 ← 2R0

4: if ki = 0 then
5: R0 ← R0 +R1

6: else
7: R0 ← R0 +R2

8: end if
9: end for
10: return R0 +R1

Security Problems:

2-torsion Attacks Yen et al. in [129] presented a chosen-message-attack for the RSA. Here,
an attacker by just analyzing a single power consumption curve can know ki bits of the secret
key, it is only applicable to ECC defined in fields of characteristic two. Besides, it can be easily
avoided: before computing [k]P it is mandatory check 2P 6= P∞, for more details see [92].

Doubling attacks BRIP can be attacked through doubling attack. The reason is that the
intermediate values of BRIP are always of the form X + R, where R is Random Initial Point
(RIP) and X is the original unmasked intermediate values in each scalar multiplication, for more
details see [53].

Address-bit DPA See Section 6.

9.2 Kim et al.’s Countermeasure

Kim et al. in [79] presented an countermeasure against the DPA, RPA, ZPA, SVA, Doubling
Attack, and 2-torsion attacks. This is based on random blinding point countermeasure (P +R
with R a random point) with the Shamir-Strauss method. The basic idea of this countermeasure
is to compute: [k]P = [k](P+R)+[#E−k]R =

∑
i{ki(P+R)+siR} =

∑
i kiP+

∑
i(ki+si)R =

[k]P + (k + r)R = [k]P + (#E)R where (#E)R = P∞ as described in Algorithm 16. The
computational cost is 2A + 1D for precalculation and nD + nA for the computation of scalar
multiplication [k]P . For this algorithm the next attack can be performed, in the case that
kisi = 00, it must be added in line 6 of the algorithm Q = Q + Tkisi = Q + T00 = Q + P∞, in
this particular case a SPA attack could be apply.
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Algorithm 16 Kim’s Countermeasure

Inputs: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Outputs: Q = [k] ·P
1: s = #E − k; Choose a random elliptic point R ∈ E(Fq)
2: T00 ← P∞; T01 ← R; T10 ← P +R; T11 ← P + 2R
3: Q← T00

4: for i from n− 1 to 0 do
5: Q← 2Q
6: Q← Q+ Tkisi
7: end for
8: return Q

9.3 Ha et al.’s Countermeasure

Ha et al. in [53], presented an enhanced countermeasure using the Shamir’s trick and a message
blinding technique. The proposed countermeasure can protect against SPA, DPA, Doubling
attacks, RPA, ZPA, SVA, 2-torsion attacks and address-bit DPA. The basic idea of the proposed
countermeasure is blind a point P using a random point R. Here, it is assumed that the number
of points on the curve E represented by #E is the large n−bits. Thus, t(P +R) + sR + (2n −
1)(P+R) is finally computed instead of [k]P , where t and s are n−bit positive integers. The final
result [k]P is obtained by: [k]P = (d#E+k− (2n−1))(P +R)+(#E−k)R+(2n−1)(P +R) =∑n−1

i 2i(ti(P + R)) + siR + (P + R)), where #ER = P∞. Let t = d#E + k − (2n − 1) and
s = #E − k be n-bit integers, then the smallest integer d is chosen such that (d− 1)#E + k <
(2n − 1) < d#E + k, thus d is 1 or 2. The idea of the algorithm is to simultaneously compute
the above three operations t(P +R), sR, and (2n − 1)(P +R), as is described in Algorithm 17.
The computational cost is 4A for pre-calculation and (n− 1)D + (n− 1)A for the computation
of scalar multiplication [k]P . This algorithm has not been attacked.

Algorithm 17 Ha’s Countermeasure

Inputs: Point P ∈ E(Fq), k = (kn−1, . . . , k1, k0)2 ∈ N
Outputs: Q = [k] ·P
1: t = d#E + k − (2n − 1); s = #E − d
2: Choose a random Elliptic point R and random bits u, v
3: T00⊕uv ← P +R; T01⊕uv ← P + 2R; T10⊕uv ← 2P + 2R; T11⊕uv ← 2P + 3R
4: Q← Ttn−1sn−1⊕uv
5: for i from n− 2 to 0 do
6: Q← 2Q
7: Q← Q+ Ttisi⊕uv
8: end for
9: return Q

9.4 Summary Performance v/s Security Problems Countermeasures for Sev-
eral Attacks in ECC

We will consider the cost of generating a random point R on the curve as Rran.

Algorithm # regs. Total cost Security Problem

BRIP Algorithm [93] 3 (n+ 3)A+ nD +Rran τ

Kim’s Algorithm [79] 4 (n+ 2)A+ (n+ 1)D +Rran υ

Ha’s Algorithm [53] 5 (n+ 3)A+ (n− 1)D +Rran
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Attacks: (τ): 2-torsion Attacks, Address-bit DPA and Doubling attacks. (υ): SPA Attack
when kisi = 00.

10 Summary

The Table 10 shows a summary of attacks versus countermeasures. Table 11 shows a summary of
the side channel attacks versus the main features for the implementation of the different attacks.

Table 10: Summary countermeasures & security problems

Attacks Countermeasures Security Problems (Attacks)

Simple Side
Channel Attacks

Unified Formulae Izu-Takagi, Walter’s, Amiel’s, PACA, Horizontal Collision Correlation Analysis, Horizon-
tal SVA,

Double-and-Add-Always Doubling Attack, RPA, ZPA, C-safe Fault Attack, M-safe Fault Attack, 2-Torsion Attack,
Correlation Collision Attack on horizontal settings

Montgomery Ladder Twisted Curve Fault Attacks x-only version, RPA, ZPA, Relative Doubling Attack,
Address-bit DPA, Correlation Collision Attack on horizontal settings, Unsupervised learn-
ing Attack, Cmov Attack

Joye’s Double-Add
Joye’s Add-only Correlation Collision Attack on horizontal settings
Zero-less Signed-Digit
Atomic Blocks Horizontal Collision Correlation, Vertical Collision Correlation, Doubling Attack, Chen’s

Attack

Differential Side
Channel Attacks

Coron’s First Countermeasure Okeya-Sakurai Analysis, Doubling Attacks, Ciet-Joye Analysis, Fouque’s Carry Leakage,
Feix’s Attacks, Big Mac Attack

Clavier-Joye Ebeid Analysis, Muller-Valette Attack, Fouque’s Carry Leakage Attack, Ha’s Analysis
using 2-torsion Attack’s, Big Mac Attack

Trichina-Belleza
Ciet-Joye Ebeid Analysis, Ha’s Analysis using 2-torsion Attack’s
Self-Randomized Exp.
Blinding the Point Okeya-Sakurai Analysis, Doubling Attack, Big Mac Attack
Randomized Projective Coord. RPA, ZPA, SVA, Naccache’s Projective Coord. Leak, Big Mac Attack, Particular Point

Attack.
Ciet-Joye Method 2P ∗

Smart’s Redundant Modular Arit-
metic
Randomized Field K Isomorphism RPA, ZPA
Randomized E(K) Isomorphic RPA, ZPA, SVA, Big Mac Attack

Adress-Bit DPA
Itoh’s Countermeasure Izumi ATable 11 shows a summary of the side channel attacks versus the main features

for the implementation of the different attacks.ttacks.
Izumi’s Countermeasure

RPA, ZPA, SVP
Isogeny Countermeasure
Volcano Isogeny
Isomorphic Shifting

Big Mac Attack Multiplication with Random Per-
mutation

Countermeasures for
Several Attacks

BRIP (SPA, DPA, RPA, ZPA) Doubling Attacks, Address-bit DPA, 2-torsion Attacks
Kim’s (DPA, RPA, ZPA, Doubling
Attack, 2-torsion Attack)

SPA

Ha’s (SPA, DPA, Doubling Attacks,
RPA, Address-bit DPA, 2-torsion
and ZPA)

11 Conclusion

In this article we give an overview of the countermeasure for passive SCA in ECC, we analyzed
their security problems and computational performances for the current countermeasures.

We believe that practical and theoretical analysis of these countermeasures is important for
security of ECC in IoT devices. Moreover, we should assume that using some countermeasure
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Table 11: Physical Attacks on ECC
Attack Single Multiple Chosen Using Incremental

Exe. Exe. Base Point Output Point key Recovery

Izu-Takagi [66] X X X X
Walter’s [134] X

Amiel et al ’s [4] X
PACA [5] X

Horizontal collision X
correlation analysis [9]

Horizontal SVA [34] X
Doubling Attacks [40] X X

C-safe Fault [130] X X X
M-safe Fault [131] X X X

The 2-Torsion(only fields char. two ) [129] X X
RPA [51] X X X
ZPA [2] X X X

Relative Doubling Attacks [128] X X X
Address-bit DPA [64] X X

Correlation Collision Attack in the Horizontal Setting [57] X
Vertical Collision Correlation SVA [97] X X

Okeya and Sakurai Analysis [102] X
Fouque’s Doubling Attacks [40] X

Ciet and Joye Analysis [21] X
Fouque’s Carry Leakage [46] X

Ebeid Analysis DPA [36] X X
Muller-Vallete Attack [91] X 4

Big Mac Attack [127] X X
Naccache Projective Coordinate Leak [99] X X

Particular Point Attack [123] X X X
Izumi Attack [67] X
SVA Attack [96] X X X

Unsupervised Learning Attack [58] X
Cmov Side Channel Attack [100] X

may be effective against several attacks, but a full analysis of the software/hardware solutions
is required in order to avoid known attacks or introduce new attacks.
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