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Abstract

A repair of the Faure–Loidreau (FL) public-key code-based cryptosystem is proposed. The FL cryptosystem is based on the
hardness of list decoding Gabidulin codes which are special rank-metric codes. We prove that the recent structural attack on the
system by Gaborit et al. is equivalent to decoding an interleaved Gabidulin code. Since all known polynomial-time decoders for
these codes fail for a large constructive class of error patterns, we are able to construct public keys that resist the attack. It is also
shown that all other known attacks fail for our repair and parameter choices. Compared to other code-based cryptosystems, we
obtain significantly smaller key sizes for the same security level.
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I . I N T R O D U C T I O N

Public-key cryptography is the foundation for establishing secure communication between multiple parties. Traditional public-
key algorithms such as RSA are based on the hardness of factoring large numbers or the discrete logarithm problem, but can be
attacked in polynomial time once a capable quantum computer exists. Code-based public-key cryptosystems are considered to
be post-quantum secure, but compared to RSA their main drawback are significantly larger key sizes.

The Faure–Loidreau (FL) code-based cryptosystem [2], [3] is based on the problem of reconstructing linearized polynomials
and can be seen as linearized equivalent of the (broken) Augot–Finiasz cryptosystem [4]. While the Augot–Finiasz cryptosystem
is closely connected to (list) decoding Reed–Solomon codes, the FL cryptosystem is connected to (list) decoding Gabidulin
codes, a special class of rank-metric codes [5].

The main drawback of code-based cryptography compared to systems based on the factorization (e.g., RSA) or the discrete
logarithm problem (e.g., the Diffie–Hellman key exchange) are large key sizes. In contrast to McEliece or Niederreiter-type
cryptosystems, where the public key is a matrix, in the FL system, the key is only a vector, resulting in a much smaller key. At
the time when the FL cryptosystem was designed, it was only conjectured that Gabidulin codes cannot be list decoded efficiently.
As this was proven recently for many families of Gabidulin codes [6], [7], the FL system is a very promising post-quantum
secure public-key cryptosystem.

However, there are attacks on the FL cryptosystem: syndrome decoding [8], an Overbeck-like attack [9] which can be avoided
by choosing the parameters in a certain way (cf. [3]) and, more severe, the recent attack by Gaborit, Otmani and Talé Kalachi
[10] which leaves no secure set of parameters of the system.

The main contributions of this paper are as follows. Firstly, a new coding-theoretic interpretation of the FL system is given
and an alternative decryption algorithm is proposed. Secondly, it is shown that the public key can be seen as corrupted codeword
of an interleaved Gabidulin code. Further, it is proven that the failure condition of the attack by Gaborit et al. [10] on the public
key is equivalent to the failure condition of decoding the public key as an interleaved Gabidulin code to obtain the private key.
Thirdly, a repair of the FL system is proposed. By choosing the public key in a way that the corresponding interleaved decoder
is guaranteed to fail, the system is secured against the attack in [10]. We also prove that the repaired system resists all other
known attacks.

The structure of this paper is as follows. In Section II, the notation is introduced and definitions are given. In Section III, the
original FL system is shown and its complexity is analyzed. A new interpretation of the ciphertext and the public key is shown
in Section IV. In Section V, the attack by Gaborit et al. [10] is recalled and its equivalence to decoding the public key as an
interleaved Gabidulin is proven. Based on this proof, a repair of the system is proposed in Section VI and a security analysis of
the repair is given in Section VII. In Section VIII, example parameters for security levels of 80, 128, 256 bit are proposed and
compared to those of McEliece-like systems based on Goppa codes, Gabidulin codes, QC-MDPC codes and DC-LRPC codes.
Conclusions are given in Section IX.
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I I . P R E L I M I N A R I E S

A. Notation

Let q be a power of a prime and let Fq denote the finite field of order q and Fqm its extension field of order qm. We use
Fm×nq to denote the set of all m× n matrices over Fq and Fnqm = F1×n

qm for the set of all row vectors of length n over Fqm .
Further, we use another field extension Fqmu with u > 1. Thus, Fq ⊆ Fqm ⊆ Fqmu .

For a field F, the vector space that is spanned by v1, . . . ,vl ∈ Fn is denoted by

〈v1, . . . ,vl〉F =

{
l∑
i=1

aivi : ai ∈ F

}
.

Denote the set of integers [a, b] = {i : a ≤ i ≤ b}. Rows and columns of m × n-matrices are indexed by 1, . . . ,m and
1, . . . , n, where Ai,j is the element in the i-th row and j-th column of the matrix A. Further,

A[a,b] :=

A1,a . . . A1,b

...
. . .

...
Am,a . . . Am,b

 .

By rankq(A) and rankqm(A), we denote the rank of a matrix A over Fq , respectively Fqm . Let (γ1, γ2, . . . , γu) be an ordered
basis of Fqmu over Fqm . By utilizing the vector space isomorphism Fqmu ∼= Fuqm , we can relate each vector a ∈ Fnqmu to a
matrix A ∈ Fu×nqm according to

extγ : Fnqm → Fm×nq

a = (a1, . . . , an) 7→ A =

A1,1 . . . A1,n

...
. . .

...
Am,1 . . . Am,n

 ,

where γ = (γ1, γ2, . . . , γu) and

aj =

m∑
i=1

Ai,jγi, ∀j ∈ [1, n].

The trace operator of a vector a ∈ Fqm to Fq is defined by

Trqm/q : Fnqm → Fnq

a = (a1, . . . , an) 7→

(
m−1∑
i=0

aq
i

1 , . . . ,

m−1∑
i=0

aq
i

n

)
.

A dual basis (γ∗1 , γ
∗
2 , . . . , γ

∗
u) to (γ1, γ2, . . . , γu) is a basis that fulfills

Trqmu/qm(γiγ
∗
j ) =

{
1 if i = j

0 else
,

where i, j ∈ [1, u]. Note that a dual basis always exists.
Denote by Ms,q (a) ∈ Fs×nqm the s× n Moore matrix for a vector a = (a1, a2, . . . , an) ∈ Fnqm , i.e.,

Ms,q (a) =


a1 a2 . . . an
aq1 aq2 . . . aqn
...

...
. . .

...

aq
s−1

1 aq
s−1

2 . . . aq
s−1

n

 .



If a1, a2, . . . , an ∈ Fqm are linearly independent over Fq, then rankqm(Ms,q (a)) = min{s, n}, cf. [11, Lemma 3.15]. This
definition can also be extended to matrices by

Ms,q (A) =



A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n

...
...

. . .
...

Al,1 Al,2 . . . Al,n
Aq1,1 Aq1,2 . . . Aq1,n
Aq2,1 Aq2,2 . . . Aq2,n
...

...
. . .

...

Aq
s−1

l,1 Aq
s−1

l,2 . . . Aq
s−1

l,n


,

where A ∈ Fl×nqm .
The Gaussian binomial coefficients are denoted by[s

r

]
q
:=

{
(1−qs)(1−qs−1)...(1−qs−r+1)

(1−q)(1−q2)...(1−qr) for r ≤ s
0 for r > s,

where s and r are non-negative integers.

B. Rank-Metric Codes and Gabidulin Codes
The rank norm rankq(a) is the rank of the matrix representation A ∈ Fm×nq over Fq . The rank distance between a and b is

the rank of the difference of the two matrix representations, i.e.,

dR(a,b) := rankq(a− b) = rankq(A−B).

An [n, k, d]Rq code C over Fqm is a linear rank-metric code, i.e., it is a linear subspace of Fnqm of dimension k and minimum
rank distance

d := min
a,b∈C
a6=b

{
dR(a,b) = rankq(a− b)

}
.

For linear codes with n ≤ m, the Singleton-like upper bound [5], [12] implies that d ≤ n− k + 1. If d = n− k + 1, the code
is called a maximum rank distance (MRD) code.

Gabidulin codes [5] are a special class of rank-metric codes and can be defined by their generator matrices.

Definition 1 (Gabidulin Code [5]) A linear G(n, k) code over Fqm of length n ≤ m and dimension k is defined by its k × n
generator matrix

GG =Mk,q (g1, g2, . . . , gn) ,

where g = (g1, g2, . . . , gn) ∈ Fnqm and rankq(g) = n.

In [5], it is shown that Gabidulin codes are MRD codes, i.e., d = n− k + 1.
For a short description on decoding of Gabidulin codes, denote by CG ∈ Fm×nq the transmitted codeword (i.e., the matrix

representation of cG ∈ Fnqm ) of a G(n, k) code that is corrupted by an additive error E ∈ Fm×nq . At the receiver side, only the
received matrix R ∈ Fm×nq , where R = CG +E, is known. The channel might provide additional side information in the form
of erasures:
• % row erasures (in [13] called "deviations") and
• γ column erasures (in [13] called "erasures"),

such that the received matrix can be decomposed into

R = CG +A(R)B(R) +A(C)B(C) +E︸ ︷︷ ︸
=Etotal

, (1)

where A(R) ∈ Fm×%q , B(R) ∈ F%×nq , A(C) ∈ Fm×γq , B(C) ∈ Fγ×nq are full-rank matrices, respectively, and E(E) ∈ Fm×nq is
a matrix of rank t. The decoder knows R and additionally A(R) and B(C). Further, t denotes the number of errors without
side information. The rank-metric error-erasure decoding algorithms from [13]–[15] can then reconstruct cG ∈ G(n, k) with
asymptotic complexity O(n2) operations over Fqm , or in sub-quadratic complexity using the fast operations described in [16],
[17], if

2t+ %+ γ ≤ d− 1 = n− k (2)

is fulfilled.



Table I
S U M M A RY O F T H E PA R A M E T E R S

Name Use Restriction

q small field size prime power

m extension degree 1 ≤ m

n code length n ≤ m

k code dimension k < n

u extension degree 2 ≤ u < k

w error weight in public key max
{
n− k − k−u

u−1
,
⌊
n−k
2

⌋
+ 1

}
≤ w < u

u+2
(n− k)

tpub error weight in ciphertext tpub =
⌊
n−k−w

2

⌋

C. Decoding Rank Errors Beyond Half the Minimum Distance

Interleaved Gabidulin Codes are a code class for which efficient decoders are known that are able to correct errors or rank
larger than bd−12 c.

Definition 2 (Interleaved Gabidulin Codes [18]) A linear (vertically, homogeneous) interleaved Gabidulin code IG(u;n, k)
over Fqm of length n ≤ m, dimension k ≤ n, and interleaving order u is defined by

IG(u;n, k) :=




c
(1)
G

c
(2)
G
...

c
(u)
G

 : c
(i)
G ∈ G(n, k),∀i ∈ [1, u]

 .

When considering random errors of rank weight t, the code IG(u;n, k) can be decoded uniquely with high probability up to
t ≤ b u

u+1 (n− k)c errors1, cf. [15], [18], [19]. However, it is well-known that there are many error patterns for which the known
efficient decoders fail. In fact, we can explicitly construct a large class of such errors, see Lemma 6 in Section V-B.

I I I . T H E O R I G I N A L FA U R E – L O I D R E A U S Y S T E M

In this section, the algorithms of the original FL cryptosystem are recalled and the main assumption on which the security of
the system is based are explained.

A. Parameters

Let q,m, n, k, u, w, tpub be positive integers that fulfill the restrictions given in Table I. In the following, we consider the
three finite fields Fq , Fqm , and Fqmu , which are extension fields of each other, respectively:

Fq ⊆ Fqm ⊆ Fqmu .

B. Key Generation

The original FL key generation is shown in Algorithm 1.
Algorithm 1: Key Generation

Input: Parameters q,m, n, k, u, w as in Table I
Output: Private key (x,P), public key (g, k,kpub, tpub)

1 Choose g ∈ Fnqm at random with rankq(g) = n
2 Choose x ∈ Fkqmu at random such that {xk−u+1, . . . , xk} forms a basis of Fqmu over Fqm
3 Choose s ∈ Fwqmu with rankq(s) = w
4 Choose an invertible matrix P ∈ Fn×nq at random
5 GG ←Mk,q (g)
6 z← (s | 0) ·P−1

7 kpub ← x ·GG + z
8 tpub ←

⌊
n−w−k

2

⌋
9 return (x,P), (g, k,kpub, tpub)

1In this setting, an error of weight t is a u× n matrix of Fq-rank t. Note that this means that the tall (um)× n-matrix obtained by expanding the matrix
component-wise over Fq has rank t.



C. Encryption

The encryption scheme is given in Algorithm 2.
Algorithm 2: Encryption

Input: Plaintext m = (m1, . . . ,mk−u, 0, . . . , 0) ∈ Fkqm , public key (g, k,kpub, tpub)
Output: Ciphertext c

1 Choose α ∈ Fqmu \ {0} at random
2 Choose e ∈ Fnqm such that rankq(e) = tpub at random
3 GG ←Mk,q (g)
4 return c←m ·GG +Trqmu/qm(αkpub) + e.

D. Decryption

The decryption method is shown in Algorithm 3.
Algorithm 3: Decryption

Input: Ciphertext c, private key (x,P)
Output: Plaintext m

1 c′ ← cP[w+1,n]

2 G′ ← Gabidulin code generated by GGP[w+1,n]

3 m′ ← decode c′ in G′
4 α←

∑k
i=k−u+1m

′
ix
∗
i

5 return m←m′ − Trqmu/qm(αx)

Theorem 1 (Correctness [2]) Algorithm 3 returns the correct plaintext m.

Proof: Line 1 computes

cP = (m+Trqmu/qm(αx))GGP+ (Trqmu/qm(αs)|0) + eP,

whose last n− w columns are given by
c′ = (m+Trqmu/qm(αx))G

′ + e′,

where G′ := GGP[w+1,n] ∈ Fk×(n−w)
qm and e′ := eP[w+1,n]. By decoding in G′, we thus obtain the vector

m′ = m+Trqmu/qm(αx).

Since the last u positions of the plaintext m are zero (i.e., mi = 0 for i = k − u+ 1, . . . , k), we get α =
∑k
i=k−u+1m

′
ix
∗
i ,

where {x∗k−u+1, . . . , x
∗
k} is a dual basis to {xk−u+1, . . . , xk}. The latter observation is technical to prove. As we know α and

x, we can therefore compute the plaintext m.

E. Complexity

It is essential for a cryptosystem that key generation, encryption, and decryption can be implemented fast. The following
results were not known when the original FL system was proposed, but have a major impact on its efficiency.

The complexity of key generation and encryption is dominated by the cost of encoding in a Gabidulin code (Line 7 of
Algorithm 1 and Line 4 of Algorithm 2).2 The asymptotically fastest-known algorithms [16], [17] for this require
• O∼(nmin{ θ+1

2 ,1.635}) operations in Fqm in general and
• O∼(n) operations in Fqm if the entries of g form a normal basis of Fqm over Fq ,

where θ is the matrix multiplication exponent and O∼ means that log factors are neglected.
The bottleneck of decryption is (error-erasure-) decoding in a Gabidulin code (Line 3 of Algorithm 3, see also Section IV-A

below), where the asymptotically fastest algorithm costs

O∼
(
nmin{ θ+1

2 ,1.635}
)

operations in Fqm [16], [17].
For small lengths n, the algorithms in [20]–[22], which have quadratic complexity over Fqm (or cubic complexity over Fq),

might be faster than the mentioned algorithms due to smaller hidden constants in the O-notation.

2Note that since x and z have coefficients in the large field Fqmu , this line can be realized as encoding and corruption of u messages over Fqm with the
generator matrix GG ∈ Fk×nqm (see also Section IV-B below).



F. Assumption of the FL System

The security of the system is based on the assumption that it is computationally infeasible to retrieve any part of the private
key (x,P) given the public key and the ciphertext. As soon as the attacker knows one part of it, he is able to find an alternative
private key efficiently. E.g., if the vector x is known, one can compute z = kpub − xGG and an invertible matrix P̂ ∈ Fn×nq

such that zP̂ = (ŝ | 0). Then, the attacker simply applies the decryption algorithm using (x, P̂) as private key to retrieve the
plaintext from the ciphertext.

I V. C O D I N G - T H E O R E T I C I N T E R P R E TAT I O N O F T H E O R I G I N A L FA U R E – L O I D R E A U S Y S T E M

We present two coding-theoretic interpretations of the Faure–Loidreau system, which—to the best of our knowledge—have
not been observed before.

A. Decryption as Error-Erasure Decoding

Lemma 2 Fix a basis γ of Fqm over Fq . Then, the matrix representation of the ciphertext can be written in the form

extγ(c) = CG +A(C)B(C) +E, (3)

where

CG = extγ([m+Trqmu/qm(αx)] ·GG) ∈ Fm×nq

is unknown and a codeword of a Gabidulin code,

A(C) = extγ(Trqmu/qm(αs)) ∈ Fm×wq

is unknown,

B(C) = (P−1)[1,...,w] ∈ Fw×nq

is known and

E = extγ(e) ∈ Fm×nq

is unknown.

Proof: Due to the Fqm -linearity of the trace map Trqmu/qm and the fact that the entries of the matrices GG and P−1 are
in Fqm , we can write the ciphertext as follows.

c = mGG +Trqmu/qm(αkpub) + e

= mGG +Trqmu/qm(αxGG + αz) + e

=
[
m+Trqmu/qm(αx)

]
GG +Trqmu/qm(αz) + e

=
[
m+Trqmu/qm(αx)

]
GG +Trqmu/qm(α(s | 0)P−1) + e

=
[
m+Trqmu/qm(αx)

]
GG +Trqmu/qm(αs(P−1)[1,w]) + e

=
[
m+Trqmu/qm(αx)

]
GG +Trqmu/qm(αs)(P−1)[1,w] + e.

Since the entries of (P−1)[1,...,w] are in Fq , the expansion of the ciphertext into the Fq-basis γ of Fqm can be written as in (3)
above.

Theorem 3 The message vector m can be reconstructed by the error-erasure decoders in [13]–[15] (as well as their speed-up
in [16], [17]) and Steps 4 and 5 of Algorithm 3.

Proof: As seen in Lemma 2, we can decompose the matrix representation of the ciphertext into a codeword plus an error
that is partially known. In fact, the decomposition is of the form as in (1) (see Section II-B), so m+Trqmu/qm(αx) can be
reconstructed by the error-erasure decoders in [13]–[15] since the decoding condition (2) reads as

w + 2 rankq(E) = w + 2tpub ≤ n− k

in this case and is fulfilled by Table I.
The message m can then be recovered from m+Trqmu/qm(αx) using the same steps as in Algorithm 3.
Theorem 3 leads to the following observation. The ciphertext is a codeword plus an error of rank weight w + tpub, which is

beyond the unique decoding radius. The legitimate receiver can only decrypt since she knows the (w-dimensional) row space of
a part of the error. Although the attacker knows the code, she cannot recover the message since she has no further knowledge
about the structure of the error. Note the difference to the code-based McEliece cryptosystem, where the security relies on the



fact that an attacker does not know the structure of the code. We will turn this observation into an exponential-time message
attack in Section VII-C, which we will consider in our parameter choice.

Furthermore, the procedure implied by Theorem 3 might have a practical advantage compared to the original decryption
algorithm. The code G′ used for decoding in Algorithm 3 depends on the private key. In Theorem 3, the code is given by g,
which is public and in fact does not need to be chosen randomly in the key generation.3 Depending on the used algorithm and
type of implementation (e.g., in hardware), it can be advantageous in terms of complexity or implementation size if the code is
fixed.

B. Public Key as Corrupted Interleaved Codeword

Our second observation is that the public key kpub of the cryptosystem is a corrupted codeword of an interleaved Gabidulin
code. To our knowledge, this connection between the public key and interleaved Gabidulin codes has not been known before.
This interpretation is central to this paper and will be used in Section V-B to derive a modification of the public key that is not
vulnerable against the attacks described in Section V.

Theorem 4 Fix a basis γ of Fqmu over Fqm . Let γ∗ be a dual basis to γ and write kpub =
∑u
i=1 k

(i)
pubγ

∗
i . Then,

k
(1)
pub

k
(2)
pub
...

k
(u)
pub

 =


c
(1)
G

c
(2)
G
...

c
(u)
G

+


z1
z2
...
zu

 , (4)

where the c
(i)
G ∈ Fnqm are codewords of the Gabidulin code G(n, k) with generator matrix GG and the zi ∈ Fnqm are obtained

from the vector z ∈ Fnqmu by z =
∑u
i=1 ziγ

∗
i .

Proof: Recall the definition of the public key

kpub = x ·GG + z,

where x ∈ Fkqmu , GG ∈ Fk×nqm is the generator matrix of a G(n, k) code, and z ∈ Fnqmu with rankq(z) = w. Let x =
∑u
i=1 xiγ

∗
i ,

where the xi have coefficients in Fqm .
Then, we obtain the following representation of the public key kpub as a u× n matrix in Fqm

k
(1)
pub

k
(2)
pub
...

k
(u)
pub

 =


x1

x2

...
xu

·GG +

z1
z2
...
zu

 =


x1 ·GG
x2 ·GG

...
xu ·GG

+


z1
z2
...
zu

 .

Since xi ·GG is a codeword of a G(n, k) code, ∀i ∈ [1, u], the matrix representation of kpub can be seen as a codeword from
an IG(u;n, k) code, corrupted by an error.

Note that the error (z>1 , . . . , z
>
u )
> in (4) has Fq-rank at most w due to the structure of z = (s | 0)P−1.

V. E F F I C I E N T S T R U C T U R A L AT TA C K S

Among all known attacks on the original FL cryptosystem, there are only two that are considered to be efficient. These two
structural attacks on the original FL system provide an alternative private key in polynomial time and are shown in this section.
The first one was proposed by Gaborit, Otmani and Talé Kalachi in [10], whereas the second is new and is derived. Further, it
is proven that the failure conditions of both attacks are equivalent.

A. GOT Attack

The attack shown in Algorithm 4 was proposed by Gaborit, Otmani, and Talé Kalachi in [10, Algo. 1]. It determines an
(alternative) private key that can be used in Algorithm 3 and it is herein referred to as GOT Attack.

3Note that we described the key generation as in [2], where g is chosen at random, but this is not necessary for the security of the system.



Algorithm 4: GOT Attack
Input: Public key (g, k,kpub, tpub)
Output: Private key (x,P)

1 Choose γ1, . . . , γu to be a basis of Fqmu over Fqm
2 k

(i)
pub ← Trqmu/qm(γikpub) for all i = 1, . . . , u

3 GG ←Mk,q (g)

4 Pick at random a non-zero vector h̃ ∈ Fnqm such that

Mn−w−k,q




GG
k
(1)
pub

...

k
(u)
pub


 h̃T = 0.

5 Choose P ∈ Fn×nq and h′ ∈ Fn−wqm such that h̃
(
P−1

)T
= ( 0 | h′)

6 Choose x such that xGGP′ = kpubP
′, where P′ = P[w+1,n] ∈ Fn×(n−w)

q

7 return (x,P)

The key recovery shown in Algorithm 4 on the FL system succeeds under the conditions of the following theorem.

Theorem 5 (GOT Attack [10, Thm. 1]) Let γ1, . . . , γu ∈ Fqmu be a basis of Fqmu over Fqm and let zi = Trqmu/qm(γiz),
for i = 1, . . . u.

If the matrix Z ∈ Fu×nqm with z1, . . . , zu as rows, satisfies

rankqm(Mn−k−w,q (Z)) = w,

then (x, z) can be recovered from GG ,kpub with O(n3) operations in Fqmu .

If the key is generated as described in Section III-B, the GOT attack breaks the FL system with high probability.

B. Interleaved Decoding Attack

The second attack is based on the observation in Section IV-B that the public key kpub is a corrupted interleaved codeword.
We will refer to it in the following as Interleaved Decoding attack. The idea is to decode kpub in an interleaved Gabidulin code.
Since w ≤ u

u+1 (n− k), such a decoder will return x with high probability, but fail in certain cases.

Lemma 6 (Interleaved Decoding [18], [19], [22, p. 64]) Let ci = xi · GG . All known4 efficient decoders for IG(u;n, k)
codes fail to correct an error z ∈ Fnqmu with z =

∑u
i=1 ziγ

∗
i and rankq(z) = w if

rankqm


Mn−w−1,q (g)

Mn−k−w,q (c1 + z1)
Mn−k−w,q (c2 + z2)

...
Mn−k−w,q (cu + zu)

 < n− 1.

Since rankqm(Mn−w−1,q (g)) = n− w − 1, the interleaved decoder fails if

rankqm
(
Z̃
)
:= ϕ < w, (5)

where

Z̃ =


Mn−k−w,q (z1)
Mn−k−w,q (z2)

...
Mn−k−w,q (zu)

 . (6)

4i.e., the algorithms in [18], [19], and [22, p. 64].



C. Equivalence of GOT Attack’s and Interleaved Decoding Attack’s Failure Conditions

In the following theorem, we prove that the failure condition of the GOT Attack is equivalent to the condition that decoding
kpub in an interleaved Gabidulin code fails.

Theorem 7 The GOT Attack from [10] fails if and only if the Interleaved Decoding Attack from Section V-B fails. In particular,
it fails if (5) holds.

Proof: Rewrite the matrix from Theorem 5 as

Mn−w−k,q (Z) =



z1
...
zu
zq1
...
zqu
...

zq
n−w−k−1

1
...

zq
n−w−k−1

u



(7)

and the matrix from equation (6) as

Z̃ =



z1
...

zq
n−w−k−1

1

z2
...

zq
n−w−k−1

2
...
zu
...

zq
n−w−k−1

u



. (8)

Since the matrix in (7) and in (8) only differ in row permutations, they are row-space equivalent, implying that they have the
same rank. Further, the rank of the matrix in (8) cannot become larger than w (since any vector in the right kernel of this matrix
has rank weight at least n− w [23, Algorithm 3.2.1]). Thus, the failures of Theorem 5 and Lemma 6 are equivalent.

V I . R E PA R AT I O N O F T H E F L S Y S T E M

To repair the FL system, we introduce a new key generation algorithm that is based on choosing z =
∑u
i=1 ziγ

∗
i in a way

that ϕ < w. In this case, an interleaved decoder, see (5), and therefore also the GOT attack [10] fail, see Theorem 7.

Theorem 8 Let dim(〈z1, . . . , zu〉Fqm ) = ζ. Then

ϕ ≤ min{ζ(n− k − w), w}. (9)

Proof: The dimension of 〈z1, . . . , zu〉Fqm implies that at most ζ(n− k−w) rows of Z̃ are linearly independent over Fqm ,
meaning that ϕ ≤ ζ(n− k − w).

The definition of z = (s | 0) ·P−1 leads to



ϕ = rankqm(Z̃)

= rankqm


 Mn−k−w,q (s1) 0

...
...

Mn−k−w,q (su) 0

P−1


= rankqm

 Mn−k−w,q (s1)
...

Mn−k−w,q (su)


≤ w,

where the last inequality holds since s1, . . . , su are vectors of length w.
We therefore propose the following modification to Line 3 of the Key Generation.

3 Choose ζ < w
n−k−w and generate s1, . . . , su ∈ Fwqm at random such that dim(〈s1, . . . , su〉Fqm ) = ζ and rankq

(∑u
i=1 siγ

∗
i

)
=

w. Compute s =
∑u
i=1 siγ

∗
i .

Clearly, we restrict the choice of z in Line 3 of the Key Generation algorithm but we will see that there are still enough
possibilities for z to preserve a high security level.

A SageMath v8.4 [24] implementation of the FL system including the proposed repair can be downloaded from https:
//bitbucket.org/julianrenner/repaired\_fl. It should be noted that the purpose of the source code is to clarify the shown algorithms
but not to provide a secure and efficient implementation.

V I I . S E C U R I T Y A N A LY S I S O F T H E R E PA I R

In this section, we summarize the most efficient attacks on the FL system and we show that the restriction on z from (6) does
not pose a problem in terms of the security level. Furthermore, we show that choosing ζ = 1 provides the largest security level.

A. Brute-Force the Vector z Attack

As shown in Section III-F, knowing z is sufficient to be able to decrypt the ciphertext. Thus, one possible attack is to try all
possible choices of z. We count the number of such choices using the following result. In [23, Lemma 3.13], the number of
a× b matrices of rank c over Fq is given by

Ma,b,c :=

c−1∏
i=0

(qa − qi)(qb − qi)
qc − qi

.

Together with the constructive argument in [25, Section IV.B], we obtain the following bounds on Ma,b,c:

qc(a+b−c−1) ≤Ma,b,c ≤ γc · qc(a+b−c), (10)

where γc :=
∏c−1
i=0

1
1−qi−c ≤ 0.288−1 ≤ 3.48.

In the general case ζ < w
n−k−w , the number of Moore matrices as in (6) and such that rankq(z) = w is given from the

failure probability of an interleaved Gabidulin decoder, cf. [19]. The number of such matrices therefore equals

|{z ∈ Fnqmu : rankq(z) = w}| · Pf ≥ qw(mu+n−w−1) · Pf ,

where the inequality is due to (10). However, a lower bound on the failure probability is not known. As an approximation, we
can use Pf ≈ q−m and therefore the number of such matrices is at least qw(mu+n−w−1)−m.

The number of vectors s1 ∈ Fwqm with rankq(s1) = w is at least qw(m+n−w−1) by (10). Thus, for ζ = 1, the number of
vectors s ∈ Fwqmu is greater or equal to qw(m+n−w−1)qm(u−1). Since there are at least qn

2−n full-rank matrices P ∈ Fn×nq , the
number of possible vectors z in Line 3 of Algorithm 1 is lower-bounded by

WFz = qw(m+n−w−1)+m(u−1)+n2−n.

Since u < n ≤ m, this is always larger than the work factor WFα = qmu of brute-forcing α and thus, trying all possible z
does not reduce the security of the system.



B. Interleaved Decoding Attack

As described in Section V-B, an attacker can apply an interleaved decoder on kpub to retrieve an alternative private key.
The crucial point in the interleaved decoding algorithm is solving a linear system of equations based on the syndromes with

w + 1 unknowns and ϕ linearly independent equations which is equivalent to finding the kernel of the matrix in (6), cf. [22,
Section 4.1]. For ζ ≥ w

n−k−w , the dimension of the solution space is one and all solutions are valid for the remaining decoding
steps. For ζ < w

n−k−w , the dimension of the solution space is w + 1− ϕ but the valid solutions form only a one-dimensional
subspace of the solution space. One can search in the solution space for a valid solution which requires on average

(qm)w+1−ϕ

qm
= qm(w−ϕ)

trails.
The size of the solution space is maximized for the smallest-possible value of ϕ, i.e., ϕ = n− k − w. In this case, search

through the solution space has a work factor of

WFILD = qm(2w−n+k).

Since the size of the solution space is maximal for ϕ = n− k−w, the repair from Section VI with the explicit parameter value
ζ = 1 is the most secure choice in this sense. However, we keep the choice of ζ free for the case that an attack is found which
utilizes the pair-wise linear dependence of the zi.

Besides the interleaved decoding algorithms in [18], [19], and [22, p. 64], there is an interpolation-based decoding algorithm
[22, Section 4.3 (page 72)]. This interpolation-based algorithm can be interpreted both as a list decoder with exponential
worst-case and average list size or as a probabilistic unique decoder.

It is mentioned in [22, Section 4.3.2] that the probabilistic unique interpolation-based decoder fails if and only if the decoding
algorithms in [18], [19], [22, p. 64] fail.

In case of the list decoder, there are two known results on the list size:
• [22, Lemma 4.5] states that the maximal list size of the decoder (and thus the work factor of the resulting attack) is at

most
WFlist, public key ≤ qm(u−1)k. (11)

• [22, Lemma 4.6] states that the average list size is relatively small, assuming that the received word is uniformly distributed
at random in Fu×nqm . This assumption is not satisfied in our case. Since there is a dependency of decoding failure of the
probabilistic unique decoder and the list size of the list decoder, we conjecture that the average list size is close to the
worst case since the error is chosen such that unique decoding always fails.

C. (List) Decoding on the Ciphertext Attack

As we have seen in Section IV-A, the ciphertext of the (repaired) FL system is a codeword of a Gabidulin code, corrupted
by an error of rank weight at most τ = w+ tpub. Hence, an attacker can try to decode the ciphertext directly. Since τ is always
greater than the unique decoding radius

⌊
n−k
2

⌋
of the Gabidulin code, this would require the existence of an efficient (list)

decoding algorithm up to radius τ .
However, such an algorithm has not been found, yet. It was even shown in [6], [7] that for some classes of Gabidulin codes

(of rate ≥ 1
5 ) such an algorithm cannot exist. Note that the latter result was not yet known when the FL cryptosystem was

proposed.
For instance, for a Gabidulin code with parameters n | m and gcd(n, n− τ) ≥ 2, there is a received word such that there are

at least

Lc,worst ≥ max


[

n/g
(n−τ)/g

]
qg

qn(τ/g−1)
: g ≥ 2, g | gcd(n, n− τ)

 (12)

codewords in rank distance at most τ to it.
Note that the list size Lc,worst is a lower bound on the worst-case work factor of the attack. Although it does not imply any

statement about the average list size/average work factor, it gives us an estimate in which order of magnitude the work factor
of such an attack can be. We ensured that the value of Lc,worst is sufficiently large in our example parameters in Section VIII.

On the other hand, it implies that there is no polynomial-time list decoding algorithm for arbitrary Gabidulin codes beyond
the unique decoding radius (such as the Guruswami–Sudan algorithm for Reed–Solomon codes). Hence, an efficient attack can
always be counteracted by a suitable parameter choice.



D. Syndrome Decoding Attack

The ciphertext can be interpreted as a codeword from a code of dimension k (see [2]), generated by the generator matrix
Mk−u,q (g)

Trqum/qm(γ1kpub)
...

Trqum/qm(γukpub)

 .

Since the structure of this code only permits decoding like a random rank-metric code, it can be decoded with the syndrome
decoding attack from [26] whose complexity is in the order of

WFSD = (n− k)3m3qtpubd
(k+1)m

n e−m.

E. Linearization Attack

In [2], a message attack was proposed which succeeds for some parameters with high probability in polynomial time.

Lemma 9 (Linearization Attack [2]) Let k(i)
pub = Trqmu/qm(γikpub) for i = 1, . . . , u and

M =



Mtpub+1,q (c)

−Mtpub+1,q

(
k
(1)
pub

)
...

−Mtpub+1,q

(
k
(u)
pub

)
−Mk+tpub−u,q (g)


. (13)

Then, the encrypted message m can be efficiently recovered if the left kernel of M has dimension dim(ker(M)) = 1.

If (u+ 2)tpub + k > n, then M has at least two more rows than columns and we have dim(ker(M)) > 1. If kpub is random
and (u+ 2)tpub + k ≤ n, the attack is efficient with high probability [2].

Lemma 10 Let M be as in (13). Then,

rankqm(M) ≤ min{ϕ+ k + 2tpub − u, n}.

Proof: We can write

k
(i)
pub = Trqmu/qm(γikpub)

= Trqmu/qm(γix) · Mk,q (g) + zi,

so by elementary row operations, we can transform M into

M′ =


Mtpub+1,q (c)
−Mtpub+1,q (z1)

...
−Mtpub+1,q (zu)
−Mk+tpub−u,q (g)

 .

Due to w + 2tpub < n− k, the matrix Mtpub+1,q (zi) is a sub-matrix of Mn−k−w,q (zi), so

rankqm(M) = rankqm(M
′)

≤ ϕ+ rankqm(Mtpub+1,q (c)) + rankqm(Mk+tpub−u,q (g))

= ϕ+ k + 2tpub − u.

Further, since the number of columns of M is equal to n,

rankqm(M) ≤ n.

The linearization attack is inefficient if the rank of M is smaller than its number of rows, which implies the following,
stronger version of the original statement in [2].



Theorem 11 If tpub > n−k
u+2 or ϕ < u(tpub + 1), the linearization attack in [2] is inefficient and its work factor is

WFLin = qm·max{utpub+u+1−ϕ,(u+2)tpub+k+1−n}.

The first condition in Corollary 11 is again fulfilled by the choice of w in Table I. The second one reads tpub > ϕ
u + 1, and for

any valid ϕ, there are choices of w such that tpub fulfills this inequality for any u > 1.

F. Algebraic Attacks

Faure and Loidreau [2] also described two message attacks of exponential worst-case complexity. The first one is based on
computing gcds of polynomials of degrees

qm(u−1) q
tpub+1 − 1

q − 1
=: WFAlg. (14)

Since computing the gcd of two polynomials can be implemented in quasi-linear time in the polynomials’ degree, (14) gives
an estimate on the work factor of this attack. The second algebraic attack is based on finding Gröbner bases of a system of
np =

(
n

k+2tpub−u+1

)
many polynomials of degree approximately dp = qtpub+1−1

q−1 . The attack is only efficient for small code
parameters, cf. [2, Sec. 5.3]. Since the average-case complexity of Gröbner bases algorithms is hard to estimate, we cannot
directly relate np and dp to the attack’s work factor. Faure and Loidreau choose the code parameters such that np ≈ 232 and
dp = 127 and claim that the attack is inefficient for these values. Our example parameters in Section VIII result in at least
these values.

G. Overbeck-like Attack

The key attack described in [3, Ch. 7, Sec. 2.1] is based on a similar principle as Overbeck uses to attack the McEliece
cryptosystem based on rank-metric codes [9]. The attack from [3, Ch. 7, Sec. 2.1] cannot be applied if

w ≥ n− k − k − u
u− 1

.

H. Moving to Another Close Error Attack

The following attack by Rosenkilde [27] tries to move the vector z (which we have chosen such that the interleaved decoder
fails) on a close vector for which the interleaved decoder for kpub does not fail. Therefore, a vector y ∈ Fu×nqm is needed such
that for z′ := z+ y it holds that rankq(z′) ≤ w and that the rank of the matrix from (6) over Fqm is at least w.

Rosenkilde suggested to find such a vector by guessing 2w − n+ k independent vectors from Fnq which are in the Fq-row
space of z, put them as the first rows of a matrix in Fum×nq (the remaining rows are zeros) and use its mapping to a matrix
in Fu×nqm as matrix y. That way, z′ is in the row space of z and rankq(z

′) ≤ w is guaranteed. Further, the rank of the matrix
from (6) over Fqm is increased to w with high probability.

The complexity of this attack is dominated by the complexity of finding 2w− n+ k independent vectors from Fnq which are
in the Fq-row space of z, i.e.:

WFMCE = q(2w−n+k)(n−w).

I. Brute-Force the Parameter α Attack

An attacker can brute-force α, which has a complexity of

WFα = qmu.

By knowing α, he just needs to apply an efficient decoding algorithm on c̃ = c − Trqmu/qm(αkpub) to retrieve the secret
message.

V I I I . A N A LY S I S O F T H E R E PA I R E D S Y S T E M

In this section, we recall the conditions on the choice of the parameters such that all known attacks are inefficient and
summarize their work factors. Furthermore, we give specific parameters and compare the FL system to other code-based
cryptosystems.



Table II
S U M M A RY O F T H E D I S C U S S E D AT TA C K S ’ W O R K FA C T O R S

Name of the attack Work factor Reference

Brute-force z WFz = qw(m+n−w−1)+m(u−1)+n2−n Section VII-A

Interleaved Decoding WFILD = qm(2w−n+k) Section VII-B

Syndrome Decoding WFSD = (n− k)3m3qtpubd
(k+1)m

n
e−m Section VII-D, using [26]

Linearization WFLin = qm·max{utpub+u+1−ϕ,(u+2)tpub+k+1−n} First in [2], cf. Section VII-E

Algebraic WFAlg = qm(u−1) q
tpub+1−1
q−1

First in [2], cf. Section VII-F

Moving to Another Close Error WFMCE = q(2w−n+k)(n−w) First in [27], cf. Section VII-H

Brute-force α WFα = qmu Section VII-I

Table III
C O M PA R I S O N O F T H E M C E L I E C E ( B A S E D O N G O P PA C O D E S ) , T H E L O I D R E A U , T H E R E PA I R E D F L , T H E Q C - M D P C A N D T H E

D C - L R P C C RY P T O S Y S T E M S

Method q u k n m w τ tLoi λ Security level Rate Key size
McEliece 2 1436 1876 11 41 80.04 0.77 78.98 KB
Loidreau 2 32 50 50 3 3 80.93 0.64 3.60 KB
Repaired FL 2 3 31 61 61 16 90.00 0.46 1.86 KB
QC-MDPC 2 4801 9602 80.00 0.50 0.60 KB
DC-LRPC 2 37 74 41 80.00 0.50 0.19 KB
McEliece 2 2482 3262 12 66 128.02 0.76 242.00 KB
Loidreau 2 40 64 96 4 3 139.75 0.63 11.52 KB
Repaired FL 2 3 31 62 62 17 131.99 0.45 1.92 KB
QC-MDPC 2 9857 19714 128.00 0.50 1.23 KB
DC-LRPC 2 47 94 47 128.00 0.50 0.30 KB
McEliece 2 5318 7008 13 133 257.47 0.76 1123.43 KB
Loidreau 2 80 120 128 4 5 261.00 0.67 51.20 KB
Repaired FL 2 4 48 83 83 21 256.99 0.53 4.31 KB
QC-MDPC 2 32771 65542 256.00 0.50 4.10 KB

A. Summary of the Work Factors

In the following, we choose the parameters q, m, n, k, u, w, and tpub as in Table I. Recall that this choice of w prevents
the Overbeck-like attack (Section VII-G) and results in an exponential work factor of the linearization attack (Section VII-E).
Furthermore, we choose ζ = 1 to maximize the work factor of searching the exponentially-large output of the interleaved
decoding attack (Section VII-B). Note that the latter attack returns an exponentially-large output if and only if of the GOT [10]
attack fails, cf. Theorem 7.

The resulting considered work factors are summarized in Table II. In addition to these work factors, we have considered the
following additional requirements:
• The work factor of the second algebraic attack in [2] (cf. Section VII-F) is unknown. Hence, we choose the code parameters

such that the resulting non-linear system of equations occurring in the attack consists of more than np ≈ 232 many
polynomials of degree at least dp = 127. This is the same choice as in [2].

• Since there is no efficient list decoder for Gabidulin codes, the work factor of the list-decoding ciphertext attack in
Section VII-C is not known. However, we do have a lower bound on the worst-case work factor for some codes, given
by the maximal list size Lc,worst in (12). In all examples for which the bound holds, we chose the parameters such that
log2(Lc,worst) is much larger than the claimed security level.

B. Parameters and Key Sizes

To evaluate the performance of the repaired FL cryptosystem, we compare it to McEliece’s cryptosystem based on Goppa codes
using list decoding [28], Loidreau’s new rank-metric code-based encryption scheme [29], [30], the QC-MDPC cryptosystem [31]
and the DC-LRPC based system [32].

The most efficient attack on McEliece has a work factor (cf. [28]) of

WFME = min

{
1

2

(
n

τ

)(
n− k
τ − p

)−1(
k

p

)−1/2

: 0 ≤ p ≤ min{τ, k}

}



operations, where τ is the binary Johnson bound.
The work factor of Loidreau’s system [29], [30] is

WFLoi = m3q(tLoi−1)b(k·min(m,n))/nc,

operations, where tLoi · λ =
⌊
n−k
2

⌋
.

In Table III, parameters for expected work factors of around 280, 2128 and 2256 are shown. Further, both the required key sizes
and the achieved rates are given, where the rate states the ratio of length of the secret message to the length of the ciphertext.
The shown work factors of the repaired FL system stem from the number of operations required by the most efficient attack
which is the Moving to Another Close Error Attack for 280 and the Algebraic Attack for 2128 and 2256. We observe that in all
cases McEliece has the highest rate followed by Loidreau, repaired FL, QC-MDPC and DC-LRPC. The results further show that
repaired FL requires much smaller key sizes compared to Loidreau and McEliece, it has similar key sizes as QC-MDPC and it
is in this sense only worse compared to the system based on DC-LRPC codes5. Since public-key cryptosystems are mostly
used for encrypting small data packages (usually they are used to exchange the private key of a symmetric cryptosystem), small
key sizes are usually more important than high code rates.

I X . C O N C L U S I O N

In this paper, new coding-theoretic interpretations of the Faure–Loidreau system were given. It was shown that the ciphertext
is a corrupted codeword of a Gabidulin code, where to an unauthorized receiver, the error weight is too large to be correctable.
The authorized user knows the row space of a part of the error and is thus able to correct the error.

Further, it was derived that a part of the public key can be seen as a corrupted codeword of an interleaved Gabidulin code
and that in the original FL system, an interleaved Gabidulin decoder can efficiently recover the private key from this part of
the public key with high probability. It was proven that the condition that interleaved Gabidulin decoders fail is equal to the
condition that the severe attack by Gaborit, Otmani and Talé Kalachi fails.

Based on the latter interpretation, a repair was proposed that modifies the key generation algorithm such that interleaved
Gabidulin decoders fail which in turn implies that the attack by Gaborit et al. fails.

A security analysis was conducted and it was shown that the security level is not decreased with respect to all other known
attacks by the proposed repair.

Parameters for security levels of 80, 128, 256 bit where presented and compared to McEliece-like systems based on Goppa
codes, Gabidulin codes, QC-MPDC codes and DC-LRPC codes. It was observed that the repaired FL system has smaller key
sizes compared the systems based on Goppa codes and Gabidulin codes, similar key sizes as the system based on QC-MDPC
codes but larger key sizes than DC-LRPC based system. However, while both the QC-MDPC and DC-LRPC scheme give no
guarantee that the ciphertext can be decrypted as decoding these codes might fail, the repaired FL system guarantees decryption.
Hence, the repaired FL cryptosystem has advantages compared to the other mentioned systems and should be considered as an
alternative of small key size.
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