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Abstract

Given 2 Elliptic Curves F; and FEs, we use some theory of elliptic
Kummer surfaces to construct a hyperelliptic curve with Jacobian
isogenous to 1 X Fs. We require the 2-torsion of E; and Es to be
defined over the field we are working over.

1 Introduction

Let E; and Es be elliptic curves. The aim of this note is to construct an
explicit genus 2 curve C' on E; X Es.

The result of this paper was obtained 15 years ago. At that time I was
preparing to write a paper on it, and made a reference to it in another paper
[7]. In the proof of lemma 3.1 of [7] a reference to the current paper was
made as being in preparation. Since then, results in [7] have been used by
other researchers, see [5], [1], [3], [2], and I have been asked about the state
of the current paper. This prompted me to finish it.

2 The construction

Let ) be an elliptic curve given by 42 = f(x1) and Fy an elliptic curve given
by y3 = g(z2), with f and g cubic monic polynomials with coefficients in
some field k. Let S be the surface £y x Ey/(—1).

An affine equation for a surface that is birational to .S is

f@)y? —g(z) =0, (1)
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with the projection 7 : E; x Ey — S given by

w2 2) 1 (2,9:2) = (00,2 0).
Equation (1| occured in work of Kuwata, see for example [4]. It defines an
affine part of the associated Kummer surface. See the next section for more
on this.

At this point we can jump ahead to the construction of C. After the
construction, we will introduce some theory (of elliptic Kummer surfaces)
and show why our construction gives the curve we are looking for.

We can consider the equation f(z)y* — g(z) = 0 as a cubic curve over
the rational function field k(y). Call this curve E. Assume that f(x) =
z(z —a)(z — f) and g(z) = z(z — v)(2 — 9). The curve E has the following
points: (O’ 0)7 (07 7)7 (07 6)7 (av O)a (57 0)7 (Oé, 7)7 (Oé, 5)7 (57 7)7 (67 5) By
choosing (0,0) as zero point, E becomes an elliptic curve with group law.
Denote the group operation by @. We can compute (a,7y) @ (8,0). This
point over k(y) can be considered as a curve R over k. It is a rational curve
on the surface S, and its preimage 7~ '(R) is the genus 2 curve C' on E; X FEy
we are looking for.

3 Kummer surfaces

The surface S has singular points at the image of the fixed points of [—1] on
E; x E,. That is, at the image 7(T') for any 2-torsion point 7" on E; X Fj.
There are 16 of those. They are ordinary double points, and blowing them
up once resolves the singular point, replacing each point with a P!. This
resolution of singularities is called a Kummer surface. Let us call it K and
the resulution map p : K — S. Figure [I| shows some rational curves on K,
and how they intersect:

The curves p(F;) are images w(F; x T') with T a 2-torsion point on Fj.
p(Fp) is the image when T is the zero point of Es.

The curves p(G;) are images 7(T x Es) with T" a 2-torsion point on Ej.
p(Gyp) is the image when T is the zero point of Ej.

The 16 curves H;; are curves created in the blow-ups of singular points
on S.
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Figure 1: Some rational curves on Kummer surface
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4 Elliptic Surfaces

See [§] for details on this section.

An elliptic surface is a surface X and curve D over a field k£ and map
7:X — D and a section O : D — X with 7 0 O = Idp such that almost
every fibre 771(p) is an elliptic curve with zero O(p). A section is a map
¥ : D — X such that the composition 7 o ¢ is the identity map on D. The
generic fibre of 7 is an elliptic curve over the function field of D. Sections
of the elliptic surface are in 1-1 correspondence with points on the generic
fibre. We often use the same notation for a point on the generic fibre, its
corresponding section D — X, and the image of the section, which is a curve
on X isomorphic to D.

Some notation: Given two sections F' and G, we can add the images as
divisors or elements of the Néron-Severi group. We will denote this sum by
F + G. We can also add them using the elliptic curve group law on the
generic fibre. This will result in a new section which we denote by F' & G.

Singular fibres of an elliptic surface were classified by Kodeira. Once X
is non-singular, complete and relatively minimal (one can always find such a
model) singular fibres are of type I,,, II, I[1I, IV, IV* III* II* or I}.

The Néron-Severi group NS(X) of a surface X is the group of divisors
modulo algebraic equivalence. This group is finitely generated, and there is
a pairing on the group, the intersection pairing. For an elliptic surface X,
there is a close relationship between NS(X) with the interesection pairing
and the Modell-Weil group of its generic fibre with the pairing defined be
the Néron-Tate height. One can define the Néron-Tate pairing of a point in
terms of intersections of the corresponding section with fibre components and
the zero-section. For sections (or points on generic fibre) P and ) denote
the intersection pairing of P and @ by (P, Q) and the Néron-Tate height by
(P, Q). Let x be the arithmetic genus of X. Then

(P.Q) = x+(P,0)+(Q,0)—(P,Q) =) contr,(P,Q),  (2)
(P,P) = 2x+2(P,0)- ) contr,(P,P).

Here the sums runs over points v of D such that 77! (v) is reducible, and the
contr, (P, Q) are explicit numbers that depend on the Kodeira type of the
fibre, and which component the sections P and () intersect.

The elliptic surface we consider in this paper is a K3 surface, and it has
arithmic genus y = 2 in the above height pairing formulas.
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Any curve P on X that intersects with a fibre once (i.e. (P,77!(v)) =1
for a v on D) is the image of a section.

5 Elliptic Kummer surfaces

A main reference for results in this section is [6].

On a Kummer surface K (or more generally a K3 surface) one can have
several different maps to P! that give it the structure of an elliptic surface.
Let E be a divisor of K such that F is either an elliptic curve, or a reducible
curve that is one of the Kodeira types. Then there is a way to give K the
structure of an elliptic surface K — P! such that F is a fibre. The elliptic
surface corresponds to the complete linear system |E|. A few examples of
such F are:

o [/ = 2F0 + HOO + H[)1 + HOQ + Hog. This fibre has type IS . This
corresponds to the elliptic surface S — FE/(—1) induced from the
projection F; X Ey — F5. Other reducible fibres are 2F; + H;o + H;1 +
Hl'g + Hig,’i < 3, all of type Ig

[ ] Slmllarly, E= 2G0 + H(]O + H10 + H20 + H30 of type If)k, induced from
FE, x Ey — Ej.

e F = 3Fy+ 2Hy + 2Hy, + 2Hy3 + G1 + Gy + G3. This has Kodeira
type IV*. This case corresponds to where consider f(x)y? — g(z) =0
as an elliptic curve over k(y). Here E is the reducible fibre over y = 0.
There is another reducible fibre of type IV* over y = oo given by
3G0—|—2H10—|—2H20+2H30+F1+F2—|—F3. The 9 curves Hi,ja 1 S Z,j S 3
are all images of sections (as they intersect the I'V*-fibres once). One
can show that they generate a subgroup of the Mordell-Weil group of
rank 4, but we won’t need this. In fact, they generate the Mordell-Weil
group if £ and Es are not isogenous. If F; and F, are isogenous then
graphs of the isogenies can be used to construct more points, and the
Mordell-Weil rank is 4 + rank(Hom(E4, Ey)).

6 Computation of intersections and heights

We consider the Kummer surface K with the two IV* fibres from the previous
sections. The elliptic curve f(x)y?—g(z) = 0 over k(y) has nine points (0, 0),
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(0,7), (0,6), (,0), (a,7), (o, 9), (5,0), (5,7), (B,0), which by relabeling we
assume to correspond to the sections Hyy, Hoy, Hz1, Hio, Hoo, H3o, Hy3, Hog,
H3s respectively. We choose Hy; = (0,0) as the zero for the elliptic curve
group structure. The definition of the elliptic curve group law in terms of
lines intersecting the cubic equation in the (z, z)-affine plane over k(y)
immediately gives us the following relations:

Hy3 = Hy @ Hs,
His = Hy3® Hss,
H3 = Ha @ Hag,
Hy = Hs3y @ Hss.

Let R denote the curve corresponding to the section Haoz & H3s. We will
use the relation between height pairing and intersection pairing to compute
the intersection of R with each of the 16 H;;. Note that R is a rational
curve, as it is a section of the elliptic surface over P'. We will find that
(R, H;;) = 2 for exactly 3 pairs (7, ) (namely (z,7) = (0,0), (2,3) and (3,2)),
and (R, H;;) = 0 for all other (¢, 7). This means that the pullback of R on
FE x Ey is unramified outside at most 6 points. The only possible ramification
points are above where R intersects one of the H;;. So the pullback on E; x Ej
has genus at most 2. On the singular surface S the curve R has multiplicity 2
singularities at the points below the H;; with (R, H;;) = 2. For now we won’t
study in detail whether the cover ramifies does ramify at these points. In the
last section we will obtain an explicit equation of the pullback on E; x Es,
and observe that generically it has genus 2.

A IV* fibre has 3 components of multiplicity 1. Each section must in-
tersect 1 of these. The group structure of the elliptic curve induces a Z/37Z
group structure on the 3 components. We use this to determine which re-
ducible fibre component intersects the sections we are studying. For a IV*
fibre, the contr, (P, Q) values are the following:

e contr,(P,Q) = 0 if at least 1 of P and () intersects the identity com-
ponent.

e contr,(P,Q) = % if P and () intersect the same non-identity component.

e contr,(P,Q) = % if P and @ intersect different non-identity compo-
nents.



Now we can compute the height pairings and intersection pairings that
we need. We start off with using the known intersections between the F;, G;
and H;; (see figure (1)) to compute the height pairings between the 9 sections
H;;,1 <14,j <3, using . Then we use the bi-linearity of the height pairing
to compute height pairings between other sections. Then we use again
to compute the intersection pairings we need.

4 4 4 ]
<HijaHij> = 4—§—§:§ fOI'QSZ,]<3
2 2 2
Hys, H. = 2—— —— ==
(Ha3, Hso) 37373
4 4 2 2
4= 3 + 3 + 3 + 3 = (Has, Has) + (Hso, Hyo) + (Has, Haa) + (Haa, Hog) =
(R,R) = 4+2(R,0),
(R,0) = 0,
= <R7 H23 = 2 - (R7H23>7
(R,Hy3) = 0, (R, H3) = 0 is similar
4 2
<H23,H33 — 2+0+0—0—§—§:O,

)
)
)
)
)
= (R, H33) = 2— (R, Hs),
) = 2, (R, Hyp) = 2 is similar
> = 2- (R7 Hl3>7
) = 0,
) = 0for (i,5) = (1,2),(2,1),(3,1) is similar

Note that R does not intersect Fj, and G because they are fibre com-
ponents with multiplicity > 1. And the group law on the component group
tells us that it intersects F; and G, and it does not intersect F3, G, F3 and
Gs.

Now we have computed (R, H; ;) for every (i,7) except (i,7) = (0,0).
Since Hyg is not a fibre component or section of the elliptic fibration we
chose, we can not use the above technique. However, we can use one of the
elliptic fibrations with four Ij fibres. Using the intersections computed so
far, we can see that R intersects 3 of these Ij fibres with multiplicity 2, hence
it yields a degree 2 cover of E;/(—1). Therefore it must also intersect the
fourth I with multiplicity 2, and this can only happen if (R, Hy) = 2.



7 Explicit Equations

Given the elliptic curve f(z)y* — g(z) = 0 over k(y) as before, we can use
the group law to evaluate

(a75) D (57’7) =
< (ad—B7)(7=9)* (a5—ﬁv)(a—ﬁ)2y2>
(a=B)3y2—(v=6)3 (a—PB)3y2—(y—9)?

To find the Weierstrass points of the genus 2 curve C' we are after, we solve
for which y this points passes through (oo, 00), («, ) and (3, 6). Our compu-
tation of intersection numbers in the previous section ensures that the curve
passes through each of these points twice. An easy computation shows that
this happens at

2 (7—5)3
YT e p
» Yy —9)?
YT ala— B2
2 5(7—5)2
YT Bla-p®

So up to a twist, C' has equation

Y2 = ((a - H)X* - (7 - ) (aX? = 7) (8X = 3)

(The ((Z:g); factor can be removed with a straightforward coordinate trans-

formation).
Theorem 1. The curve C' defined by equation
(b = ) Y? = ((a = B)X* = (v = 0)) (aX* — ) (BX* —9) (3)
maps to both elliptic curves Ey and F.
Proof. Replacing X? with X maps C to the elliptic curve
(60 = 7)Y = (0= B)X — (v = 8)) (aX =) (BX = 9) (4)

Replacing X with
ad — By 790
X+
(a = B)ap a—p
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transforms equation to

04252

my = XX -8)(X —q)

which is isomorphic to E;. If we swap « and =, and we swap § and J
in equation [3| then the resulting equation defines a curve isomorphic to C'
(map X to + and rescale Y). So C also maps to E». ]

In the proof of lemma 3.1 of [7] we made use of (a transformation of)

equation (3)).
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