
An Analysis of the ProtonMail
Cryptographic Architecture

Nadim Kobeissi

September 6, 2021

Abstract

ProtonMail is an online email service that claims to offer end-to-end
encryption such that “even [ProtonMail] cannot read and decrypt [user]
emails.” The service, based in Switzerland, offers email access via webmail
and smartphone applications to over five million users as of November 2018.
In this work, we provide the first independent analysis of ProtonMail’s
cryptographic architecture. We find that for the majority of ProtonMail
users, no end-to-end encryption guarantees have ever been provided by the
ProtonMail service. We also find and document weaknesses in ProtonMail’s
“Encrypt-to-Outside” feature. We justify our findings against well-defined
security goals and conclude with recommendations.

1 Introduction

ProtonMail1 is an email service founded in 2014 and based in Geneva, Switzerland.
By promoting its claims of end-to-end encryption features, the service was able
to receive initial support through a crowdfunding campaign and now supports
itself through paid plans being offered adjacent to its free-of-charge service. As of
January 2017, ProtonMail claimed to have over 2 million users [1]. This number
grew to over 5 million users by September 2018 [2]. ProtonMail is primarily
accessed through its webmail interface, with iOS and Android applications
launching in 2016, two years after the service was opened to the public.

ProtonMail has published a technical specification [3] detailing its “security
features and infrastructure” in July 2016. Despite the strong security claims
made in this paper and despite ProtonMail’s success, no independent formal
analysis of ProtonMail’s security claims has been published.

In this work, we provide the first independent analysis into ProtonMail’s
cryptographic design.

• We begin by defining a set of security goals in §2 which are based on
ProtonMail’s own claims as well as on cryptographic definitions for standard
security goals.

1ProtonMail is accessible at https://protonmail.com.

1

https://protonmail.com


• In §3, we establish the cryptographic primitives relevant to our analysis.
This allows us to describe ProtonMail’s protocol flows in §4.

• Based on our comparison of ProtonMail’s security goals against its protocol
flows, we present a security analysis §5 in which we find serious shortcomings
with regards to ProtonMail’s effective security guarantees. we provide
recommendations in our conclusion (§6).

In carrying out this analysis, we evaluated ProtonMail’s security claims
against well-defined security goals. We found that ProtonMail’s cryptographic
architecture ultimately does not guarantee end-to-end encryption for the majority
of users. Furthermore, we also uncover weaknesses in ProtonMail’s “Encrypt-
to-Outside” functionality which is intended to allow ProtonMail users to send
end-to-end encrypted email to recipients that do not use ProtonMail.

2 Security Definitions

“ProtonMail conservatively assumes that all mail servers may
eventually be compromised. Thus, ProtonMail uses end-to-end en-
cryption to ensure that plaintext email data is never sent to the
server. If a server only contains encrypted messages, then the risks
of a central server breach are mitigated.” — ProtonMail Security
Features and Architecture Specification [3]

We begin with security definitions for each of ProtonMail’s security claims.
Each security definition is motivated by claims made on ProtonMail’s website
and is defined in such a way as to be consistent with how such security goals are
understood in modern cryptographic literature.

2.1 Security Assumptions

Our security definitions concern three clients: ProtonMail user A, ProtonMail
user B and Microsoft Outlook2 user S. We also consider two servers: ProtonMail
webmail server P and Microsoft Outlook webmail server M. These principals
operate under the following network assumptions:

• Transport Layer Security. We assume that all communications between
all principals occur over an authenticated TLS link.

• No Client State Compromise. We assume that none of the clients A,
B and S ever suffer a local state compromise.

• Untrusted Server. We assume that P is untrusted and could act with
the intent to recover encrypted communications between clients A, B, S.
We treat M as controlled by an adversary.

2For simplicity, we use Microsoft Outlook as a running example of any third-party run-of-
the-mill email service that is not ProtonMail. This could also potentially be Apple iCloud
Mail, Gmail, FastMail, etc.

2



The Untrusted Server assumption is directly informed by the above-mentioned
quotes from ProtonMail.

We are therefore assuming a relatively safe threat model where transport
layer communications are always encrypted and where local state compromise
never occurs.

2.2 End-to-End Encryption

“ProtonMail’s zero access architecture means that your data is
encrypted in a way that makes it inaccessible to us. Data is encrypted
on the client side using an encryption key that we do not have access
to. This means we don’t have the technical ability to decrypt your
messages, and as a result, we are unable to hand your data over to
third parties. With ProtonMail, privacy isn’t just a promise, it is
mathematically ensured. For this reason, we are also unable to do
data recovery. If you forget your password, we cannot recover your
data.” — ProtonMail Security Details Page [4]

End-to-end encryption denotes a collection of properties inherent to a cryp-
tographic protocol, almost always a secure channel protocol. These properties,
known as confidentiality, integrity and authenticity, first became available to the
general public through the introduction of the Pretty Good Privacy (PGP) email
encryption protocol in 1991. Off-the-Record Messaging (OTR), a communica-
tions system that meant to supersede PGP [5] built upon these properties and
expanded them with new ones: forward secrecy and deniability. A decade later,
rigorous formal analysis [6, 7, 8] of the Signal Protocol [9, 10], which itself was
in turn inspired by OTR and which currently encrypts all messages sent through
WhatsApp and other applications, further formalized the security properties of
modern end-to-end encryption systems. Tangentially, similarly rigorous formal
analysis [11, 12, 13] of TLS, the protocol underlying the transport encryption of
almost all web traffic, further helped provide strong applied security definitions
for the properties underlying end-to-end encryption.

Given that ProtonMail uses PGP to provide end-to-end encryption, we
consider the following security properties as being the components that achieve
end-to-end encryption in the context of ProtonMail3. Given that this is a
practical analysis, we colloquialize the understanding of the security properties
provided by the cited work into the following definitions:

• Confidentiality. An email sent from any client to any other client can
only be decrypted by the recipient and, optionally, the sender.

• Authenticity. If a client receives a message that appears to be from
another client, then this apparent sender must have sent the email to
the recipient. Note that this definition of authenticity also encapsulates
the standard definition of integrity in production end-to-end encryption
systems.

3We note that forward secrecy, post-compromise security [14] and deniability are not
considered as relevant properties in this context.

3



2.3 Zero-Knowledge Password Proof

“ProtonMail users enter a user-chosen password on each login, but
while ProtonMail’s backend is responsible for validating and resetting
the password, the password cannot be derived by either ProtonMail
or an attacker with access to the network. This is achieved with the
Secure Remote Password protocol, which as detailed below, conveys
a Zero-Knowledge Password Proof from the user to the server. The
security granted by this protocol extends to the user’s private keys,
which are encrypted with a salted hash of their password before being
sent to the server. [...] The Secure Remote Password protocol [15]
promises theoretically optimal security. When using SRP, even an
attacker who can arbitrarily read, modify, delay, destroy, repeat, or
fabricate messages between ProtonMail and a legitimate user in an
undetectable fashion is limited to checking only a single password
guess per login attempt, a task which could be done just by trying to
log in directly. Even if a server is compromised and acts maliciously,
password-equivalent information is never revealed. This is all done
without permanent private keys: all secret information is derived
from the user’s password.” — ProtonMail Security Features and
Architecture Specification [3]

Zero-Knowledge Password Proofs (ZKPP) result from mechanisms intended
to protect against dictionary attacks [16]. By employing ZKPP, a client can
prove to a server that it knows the value of some password, without revealing any
information about the password itself. This is different from more traditional
design where the server stores a hash of the client’s password. In the latter
design:

• Passwords are vulnerable to brute force attacks in the event that the
adversary obtains the hash.

• The server can distinguish a valid password from an invalid password entry
by comparing it to the stored hash.

We therefore define the ZKPP security goal thus: P should at no point
conduct a password verification scheme with A such that a network observer is
able to learn any information about A’s password.4

3 Cryptographic Primitives

We define the following cryptographic primitives:

• Hashing. HASH(x) −→ y. A standard one-way cryptographic hash
function.

4A previous draft of this paper had a more strict definition of the ZKPP security goal which
based itself on an overly literal interpretation of ProtonMail’s claims. We have since relaxed
this definition to take into account how ZKPPs are often deployed in other systems.

4



Has username Au

A

Has verifier v = gp

P

Au

k
R
←− {0, 1}128

s
R
←− {0, 1}128

S = gs + kv
S

c
R
←− {0, 1}128

C = gc

C

u = HASH(C, S)
g(c+up)s = (gs)c+up

x = HASH(C, S, g(c+up)s)

u = HASH(C, S)
g(c+up)s = (gcvu)s

x

x
?
≡ HASH(C, S, (gcvu)s

y = HASH(C, x, g(c+up)s)
y

y
?
≡ HASH(C, x, g(c+up)s)

Figure 1: Authentication via SRP, as implemented in ProtonMail [3]. All
arithmetic operations are modulo some safe 2048-bit Sophie-Germain prime.

5



• Encryption and Decryption.

– Encryption. ENC(ek, p, a) −→ (Eek,p,n,a,t, n, t). This is an authenti-
cated encryption with associated data (AEAD) construction where ek

is an encryption key, n is a randomly generated nonce, a is associated
data and t is an authentication tag.

– Decryption. DEC(ek, Eek,p,n,a,t, n, a, t) −→ {p,⊥}.

PGP Interface. We also describe the following simplified PGP API:

• Key Generation. PGPGEN(c) −→ (sk, pk).

• Encryption. PGPSEND(c, m, pk) −→ PGPm,pk.

• Decryption. PGPREAD(c, PGPm,pk, sk) −→ {m,⊥}.

In the operations described above, c indicates the application code that the
client is using in order to perform PGP operations, generally assumed to contain
a correct implementation of the OpenPGP protocol. The relevance of c is such
that if c does not contain a correct implementation of OpenPGP, all output
generated by PGPGEN, PGPSEND and PGPREAD could be arbitrarily affected.
PGPm,pk is a ciphertext of m encrypted towards public key pk. PGPREAD

decrypts this ciphertext if the corresponding secret key sk is provided for pk.
Otherwise, it returns ⊥.

4 Protocol Flows

In this section, we provide high-level descriptions of two distinct protocol flows:

• ProtonMail-to-ProtonMail. A sends a PGP-encrypted message m to
B through P.

• “Encrypt-to-Outside”. A sends a symmetrically encrypted email to
S through P which relays the email to S through M. S sends a PGP-
encrypted reply r to A using the web interface J and A’s PGP public key
Apk, both provided by P.

Both protocol flows are pre-empted by a ZKPP password mechanism using
SRP, described in Fig 1.

4.1 Effects of Client Application Choice on Protocol Flows

Users have the option of accessing ProtonMail either through a webmail client
or through a smartphone application.5 How A accesses their ProtonMail inbox
has substantial implications on protocol flows and ultimately on the security
properties that their communications obtain. The reason for this has to do with
the authenticity properties provided by the code delivery methods, which differ
between applications.

5A desktop “bridge” application is also offered to paying customers. For simplicity, we
group it with smartphone applications.

6



4.1.1 ProtonMail Webmail

ProtonMail’s webmail application appears to be the primary ProtonMail prod-
uct and how ProtonMail is most often accessed by its users.6 When visiting
https://protonmail.com, A’s web browser is served with JavaScript code rep-
resenting the ProtonMail web application [17] and its underlying OpenPGP
implementation, also written in JavaScript [18].

Since communication between all ProtonMail users (including A and B) to
P is assumed to be encrypted using TLS (§2.1), delivery of the ProtonMail web
application is assumed to be safe against a network attacker. However, we note
that a malicious P (also an assumption in §2.1) would be able to arbitrarily serve
compromised webmail clients to A or any other ProtonMail user without this
being detectable and that, conversely, correct delivery of webmail/OpenPGP
client code is not verifiable.

Therefore, for A, providing input to ProtonMail’s webmail application pro-
vided by P is directly equivalent to providing input to P since, in effect, P
acts as a man-in-the-middle between the user and the webmail application code.
No existing mechanism, including TLS, is sufficient to offset P’s middle-man
authority in this application scenario.

4.1.2 ProtonMail Smartphone Application

Mainstream smartphone applications on modern mobile platforms are delivered
through a significantly different process to ProtonMail’s webmail application.
When a new ProtonMail smartphone application version is released for the
Apple App Store or the Google Play Store, its author must increment a version
number and release timestamp. The application binary and its manifest are
both cryptographically signed with a key owned by the author and again by
Apple or Google (depending on the platform) upon publication.

Note that in this application scenario, releases are cryptographically au-
thenticated and tracked through an incremental version number, and that the
delivery of client code is restricted purely to software update instances. Users are
therefore able to audit whether they received the same binary for some version of
the application as everyone else. Furthermore, the application distributor (Apple,
Google) adds a second layer of authentication and its separate governance from
ProtonMail renders targeted delivery of malicious code even more difficult for a
malicious P.

4.2 ProtonMail-to-ProtonMail

In Fig. 2, we see a ProtonMail user A sending a PGP-encrypted email to another
ProtonMail user B. Notice that there is a significant difference in the protocol
flow depending on whether Alice uses the webmail application (Fig. 2a) or the
smartphone application (Fig. 2b). In the former case, A is forced to obtain an
unauthenticated copy of J from P every time before sending an encrypted email

6This observation is made based on anecdotal evidence. ProtonMail does not publish
platform usage statistics.

7

https://protonmail.com


A

Has application J

P

Has public key Bpk

B

BpkBpk

J

PGPm,Bpk
←− PGPSEND(J, m,Bpk)

PGPm,Bpk
PGPm,Bpk

(a) A sends an email to B using the ProtonMail webmail application. We assume that A

authenticates the fingerprint for PGP public key Bpk out of band.

Has application I

A P

Has public key Bpk

B

BpkBpk

PGPm,Bpk
←− PGPSEND(I, m,Bpk)

PGPm,Bpk
PGPm,Bpk

(b) A sends an email to B using the ProtonMail smartphone application. We assume that A

authenticates the fingerprint for PGP public key Bpk out of band.

Figure 2: A sends an email to B using the ProtonMail webmail application
(Fig. 2a) and using the ProtonMail smartphone application (Fig. 2b).

to B. In the latter case, A can simply rely on her local authenticated binary
residing in her smartphone.

4.3 “Encrypt-to-Outside”

In Fig. 3, we see a ProtonMail user A sending a symmetrically encrypted email
to a Microsoft Outlook user S using ProtonMail’s “Encrypt-to-Outside” (ETO)
feature. Both the sender and the recipient are expected to have advanced
knowledge of some symmetric encryption key psk. A sends her symmetrically
encrypted message m through P mail servers, which add a URI to J and a
copy of Alice’s PGP public key Apk into the payload and in turn relay it to the
Microsoft Outlook mail servers at M which then relay it to S. S follows the
URI to J using HTTPS, whereupon he enters psk in order to obtain m. Using
J , S may also send a reply r which is PGP-encrypted to public key Apk.

5 Security Analysis

In this section, we provide the results of our examination as to whether the
protocol flows described in §4 achieve the end-to-end encryption security goals
as defined in §2.2 and the ZKPP security goals as defined in §2.3 while operating
under the assumptions defined in §2.1.

8



Has key psk

A

Has application J

P M

Has key psk

S

(Epsk,m,n,∅,t, n, t)←− ENC(psk, m, ∅)

Epsk,m,n,∅,t, n, t URIJ ,Apk, (Epsk,m,n,∅,t, n, t) URIJ ,Apk, (Epsk,m,n,∅,t, n, t)

HTTPSGET(URIJ)

J

m←− DEC(psk, Epsk,m,n,∅,t, n, ∅, t)
PGPr,Apk

←− PGPSEND(J, r,Apk)
PGPr,Apk

PGPr,Apk

Figure 3: A sends an email containing message m to Microsoft Outlook user S
symmetrically encrypted using a pre-shared key psk. S responds through the
webmail interface provided by P, encrypting his reply r using PGP to Apk.

5.1 On End-to-End Encryption

We present three findings showing that ProtonMail has, since its inception, never
achieved end-to-end encryption security guarantees for the majority of its users.

5.1.1 ProtonMail Webmail Does Not Provide End-to-End Encryption

A crucial security assumption, based on ProtonMail’s self-professed security
goals in its specification documents (§2.1), is that the ProtonMail server P
is untrusted. In Fig. 2a, we see that this untrusted server P must serve an
authentic OpenPGP implementation J every time A logs into ProtonMail or, in
some cases, multiple times in between A same single ProtonMail session. Since
P is untrusted and since no authentication mechanism is implemented to check
for the correctness of J , P can arbitrarily and untraceably compromise any
information that A sends as part of her ProtonMail session. This includes A’s
PGP secret key and any emails she has sent and received.

The ProtonMail smartphone applications are unaffected by this issue. How-
ever, even if A has used the ProtonMail smartphone applications for the entire
lifetime of her ProtonMail account thus far and then logs into ProtonMail via
the web application just once, P still obtains A’s PGP secret key and is therefore
able to not only impersonate A going forward but also to retroactively decrypt
all of A’s previous communications.

In effect, this means that any ProtonMail webmail user has never obtained
end-to-end encryption guarantees under ProtonMail’s own security model and
security goal definitions.

9



5.1.2 “Encrypt-to-Outside” Allows Mail Servers to Recover Pre-
Shared Key and Reply Plaintext

In Fig. 3, we see that P relays the URI for ProtonMail web application code J

to S through third-party mail server M. This provides both P and M with the
ability to stage significant Man-in-the-Middle attacks:

• P is free to arbitrarily replace J with an incorrect OpenPGP implementa-
tion or to replace Apk with a PGP public key corresponding to a secret
key that P itself controls. The former would allow P to recover psk and
m, while the later would allow P to recover r.

• M is free to arbitrarily replace URIJ with any other arbitary URI to a web
application that it controls, which could in effect pretend to be ProtonMail.
This would allow M to harvest psk as well as r. M can then obtain A’s
legitimate ciphertext and decrypt it using J and psk, thereby obtaining
m, and also encrypt r to A using Apk thereby performing an undetected
man-in-the-middle attack.

5.1.3 Mailbox Keys, PGP Secret Keys and “Encrypt-to-Outside”
Pre-Shared Keys Vulnerable to Dictionary Attacks

In our testing7 of the ProtonMail applications, we were able to set both user
mailbox passwords and “Encrypt-to-Outside” pre-shared key passwords that were
exceptionally weak and vulnerable to simple guessing attacks. These passwords
included “1”, “iloveyou” and “password” and were used to derive encryption
keys for PGP secret keys that were later stored on ProtonMail servers as well as
for “Encrypt-to-Outside” symmetric encryption.

As we will see in §5.2, the ProtonMail servers do indeed possess a password
oracle that renders dictionary and brute force attacks possible. Allowing ex-
tremely weak passwords only further exacerbates the issue and could potentially
allow for the easy obtention of a user’s PGP secret key. Furthermore, an attacker
that obtains access to ProtonMail’s database of millions of encrypted user PGP
secret keys will likely find that a significant portion of them can be brute-forced
using dictionary attacks that simply run through the top 100,000 most common
passwords, a relatively small amount of guesses.

5.2 On User Authentication

While SRP authentication, as described in Fig. 1, does indeed provide ZKPP-
based authentication, the ProtonMail Security Features and Architecture specifi-
cation also states the following:

“The private key is symmetrically encrypted with the mailbox
password using AES-256. The public key and encrypted private key
are then stored on the ProtonMail server along with the user’s other
account information and retreived whenever a user logs in succesfully.

7Our testing occurred on November 17, 2018.

10



Has username Au

A P

Chooses password p

(Ask,Apk)←− PGPGEN(c)
(Ep,Ask,n,∅,t, n, t)←− ENC(p,Ask, ∅)

Ep,Ask,n,∅,t, n, t

Figure 4: A sends an encrypted copy of her PGP secret key to P during account
creation. In this flow, the application code c provided to PGP operations is
irrelevant.

The encrypted private key is decrypted on successful mailbox password
entry on the user’s local device and can be used to read and sign
messages during that session.” — ProtonMail Security Features and
Architecture Specification [3]

Indeed, we document this functionality in Fig. 4. During account creation,
A will send P a copy of her PGP secret key Ask encrypted under her mailbox
password p. This encrypted secret key acts as an oracle for p. Therefore, P
posesses an oracle for A’s mailbox password. This oracle can be used for brute
force or dictionary “offline” attack attempts.

ProtonMail uses the bcrypt [19] password hash which slows down dictionary
attacks. However, ProtonMail restricts the number of bcrypt rounds to a
relatively small number of 210 [17] which, especially when coupled with recent
advances in bcrypt computation [20], renders dictionary attacks feasible once
more.

Recall that the ProtonMail Security Features and Architecture Specification,
quoted in §2.3, states that no information is stored on the ProtonMail server
that allows the password to be derived by “either ProtonMail or an attacker with
access to the network.” A previous draft of this work interpreted this definition
literally, leading to the conclusion that ZKPP security goals are not met since P
possesses multiple oracles that allow it to derive a correct guess on A’s password:
the verifier v seen in Fig.1 as well as the encrypted PGP secret key described
above.

However, we take into consideration what ZKPP is historically understood
to achieve which is to prevent a active network attacker only from learning
information about the password, and not the server P itself. Under this definition,
ZKPP guarantees are indeed met by ProtonMail.

11



6 Recommendations and Conclusion

Our findings, presented in §5, constitute serious shortcomings in ProtonMail’s
cryptographic architecture that we believe should be urgently remedied. As it
stands, ProtonMail does not meet its self-professed security goals when these
are subjected to analysis.

While this paper presents the first formal argument justifying these findings,
some of them have already been documented: the results discussed in §5.1.1
seem to have been known informally since at least 2015 [21, 22].

With regards to the ProtonMail web application, features such as Subresource
Integrity (SRI) [23] could arguably provide some increased authenticity to the
code delivery mechanism. However, these features are deemed insufficient for
ProtonMail to meet its security goals, and it is our conclusion that no webmail-
style application could. Other messaging services, such as WhatsApp and Signal,
provide downloadable web applications which run locally on the user’s device
and therefore accomplish the same code integrity as ProtonMail’s smartphone
applications (as described in Fig. 2b).

Failing the removal of ProtonMail’s web application, ProtonMail simply
should not claim end-to-end encryption except for use cases where both senders
and recipients restrict themselves to ProtonMail’s mobile applications.

We also recommend that ProtonMail never store user PGP secret keys on its
servers. As shown in §5 and in contradiction with ProtonMail’s claims, these
keys are indeed vulnerable to “offline” dictionary attacks and moreso with the
allowance of exceptionally weak passwords. Instead, we recommend a system in
which the device from which the user is signing up to ProtonMail from (iOS app,
Android app, desktop app) locally derive a PGP identity and that this identity
be communicated from device to device using QR codes. This method is already
implemented by other popular secure messaging applications with success.

With regards to user passwords, we recommend that ProtonMail at the very
least impose a minimum character requirement and to use a password strength
measurement library such as zxcvbn [24]. A stronger way to address the issue,
however, could be for ProtonMail to encourage the use of passphrases instead of
passwords, which seems warranted given that PGP does not provide forward
secrecy and that the atomic compromise of a PGP secret key has indefinite
consequences for the lifetime of that PGP key pair.

Finally, we would like to pre-empt ProtonMail’s potential response, which
could indicate that the findings in this analysis were already known to Proton-
Mail. If this is the case, then ProtonMail must radically overhaul its existing
specifications, documentation and product presentation materials ([3, 4, 17])
to remove all mentions of end-to-end encryption as they pertain to the web
application and to “Encrypt-to-Outside” functionality, as any continued claim
of achieving these properties would be misleading for most users and therefore
indefensible.

12



Acknowledgements

This paper is dedicated to music composer Toby Fox. We also thank Santiago
Zanella-Béguelin for his insight.

References
[1] Proton Technologies A.G. Fighting Censorship with ProtonMail En-

crypted Email over Tor, Jan 2017. https://protonmail.com/blog/
tor-encrypted-email/. 1

[2] Nick Lucchesi. ProtonMail Hits 5 Million Accounts and Wants Users to
Ditch Google by 2021, Sep 2018. https://www.inverse.com/article/
49041-protonmail-ceo-andy-yen-interview. 1

[3] Proton Technologies A.G. ProtonMail Security Features and Infrastructure,
Jul 2016. https://protonmail.com/docs/business-whitepaper.pdf. 1,
2, 4, 5, 11, 12

[4] Proton Technologies A.G. ProtonMail Security Details Page, Nov 2018.
https://protonmail.com/security-details. 3, 12

[5] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. Off-the-record communi-
cation, or, why not to use PGP. In Proceedings of the 2004 ACM Workshop
on Privacy in the Electronic Society, WPES 2004, Washington, DC, USA,
October 28, 2004, pages 77–84, 2004. 3

[6] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A Formal Security Analysis of the Signal Messaging Proto-
col. In Security and Privacy (EuroS&P), 2017 IEEE European Symposium
on, pages 451–466. IEEE, 2017. 3

[7] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is Less: On the
End-to-End Security of Group Chats in Signal, WhatsApp, and Threema.
2018. 3

[8] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated
Verification for Secure Messaging Protocols and their Implementations: A
Symbolic and Computational Approach. In IEEE European Symposium on
Security and Privacy (EuroS&P), 2017. 3

[9] Trevor Perrin and Moxie Marlinspike. The X3DH Key Agreement Protocol,
2016. https://signal.org/docs/specifications/x3dh/. 3

[10] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm, 2016.
https://signal.org/docs/specifications/doubleratchet/. 3

[11] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A Comprehensive Symbolic Analysis of TLS 1.3. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, pages 1773–1788, New York, NY, USA,
2017. ACM. 3

[12] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A
Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates. In
ACM Conference on Computer and Communications Security (CCS), pages
1197–1210, 2015. 3

13

https://protonmail.com/blog/tor-encrypted-email/
https://protonmail.com/blog/tor-encrypted-email/
https://www.inverse.com/article/49041-protonmail-ceo-andy-yen-interview
https://www.inverse.com/article/49041-protonmail-ceo-andy-yen-interview
https://protonmail.com/docs/business-whitepaper.pdf
https://protonmail.com/security-details
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/doubleratchet/


[13] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the TLS 1.3 standard candidate.
In Security and Privacy (SP), 2017 IEEE Symposium on, pages 483–502.
IEEE, 2017. 3

[14] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On Post-
Compromise Security. In Computer Security Foundations Symposium (CSF),
2016 IEEE 29th, pages 164–178. IEEE, 2016. 3

[15] Thomas Wu. SRP-6: Improvements and Refinements to the Secure Remote
Password Protocol, Oct 2002. 4

[16] Steven M Bellovin and Michael Merritt. Encrypted Key Exchange: Password-
Based Protocols Secure Against Dictionary Attacks. In Research in Security
and Privacy, 1992. Proceedings., 1992 IEEE Computer Society Symposium
on, pages 72–84. IEEE, 1992. 4

[17] Proton Technologes A.G. Official AngularJS web client for the ProtonMail
secure email service. https://github.com/ProtonMail/WebClient. 7, 11,
12

[18] Proton Technologes A.G. OpenPGP.js: OpenPGP Implementation for
JavaScript. https://github.com/openpgpjs/openpgpjs. 7

[19] Niels Provos and David Mazieres. Bcrypt algorithm. USENIX, 1999. 11
[20] Katja Malvoni, Designer Solar, and Josip Knezović. Are your passwords

safe: Energy-efficient bcrypt cracking with low-cost parallel hardware. In
WOOT’14 8th Usenix Workshop on Offensive Technologies Proceedings 23rd
USENIX Security Symposium, 2014. 11

[21] Arno. A Case Study on ProtonMail Design Limits and Secu-
rity Flaws, Sep 2015. https://arno0x0x.wordpress.com/2015/09/16/
end2end-encryption-protonmail/. 12

[22] Bob Ortiz. ProtonMail Security Concerns, Apr 2015.
https://security.stackexchange.com/questions/85047/
protonmail-security-concerns. 12

[23] Devdatta Akhawe, Francois Marier, Frederik Braun, and Joel Weinberger.
Subresource Integrity. W3C working draft, W3C, July, 2015. 12

[24] Daniel Lowe Wheeler. zxcvbn: Low-Budget Password Strength Estimation.
In USENIX Security Symposium, pages 157–173, 2016. 12

14

https://github.com/ProtonMail/WebClient
https://github.com/openpgpjs/openpgpjs
https://arno0x0x.wordpress.com/2015/09/16/end2end-encryption-protonmail/
https://arno0x0x.wordpress.com/2015/09/16/end2end-encryption-protonmail/
https://security.stackexchange.com/questions/85047/protonmail-security-concerns
https://security.stackexchange.com/questions/85047/protonmail-security-concerns

	Introduction
	Security Definitions
	Security Assumptions
	End-to-End Encryption
	Zero-Knowledge Password Proof

	Cryptographic Primitives
	Protocol Flows
	Effects of Client Application Choice on Protocol Flows
	ProtonMail Webmail
	ProtonMail Smartphone Application

	ProtonMail-to-ProtonMail
	``Encrypt-to-Outside''

	Security Analysis
	On End-to-End Encryption
	ProtonMail Webmail Does Not Provide End-to-End Encryption
	``Encrypt-to-Outside'' Allows Mail Servers to Recover Pre-Shared Key and Reply Plaintext
	Mailbox Keys, PGP Secret Keys and ``Encrypt-to-Outside'' Pre-Shared Keys Vulnerable to Dictionary Attacks

	On User Authentication

	Recommendations and Conclusion

